Sample records for defined tunneling area

  1. Defining the value of injection current and effective electrical contact area for EGaIn-based molecular tunneling junctions.

    PubMed

    Simeone, Felice C; Yoon, Hyo Jae; Thuo, Martin M; Barber, Jabulani R; Smith, Barbara; Whitesides, George M

    2013-12-04

    Analysis of rates of tunneling across self-assembled monolayers (SAMs) of n-alkanethiolates SCn (with n = number of carbon atoms) incorporated in junctions having structure Ag(TS)-SAM//Ga2O3/EGaIn leads to a value for the injection tunnel current density J0 (i.e., the current flowing through an ideal junction with n = 0) of 10(3.6±0.3) A·cm(-2) (V = +0.5 V). This estimation of J0 does not involve an extrapolation in length, because it was possible to measure current densities across SAMs over the range of lengths n = 1-18. This value of J0 is estimated under the assumption that values of the geometrical contact area equal the values of the effective electrical contact area. Detailed experimental analysis, however, indicates that the roughness of the Ga2O3 layer, and that of the Ag(TS)-SAM, determine values of the effective electrical contact area that are ~10(-4) the corresponding values of the geometrical contact area. Conversion of the values of geometrical contact area into the corresponding values of effective electrical contact area results in J0(+0.5 V) = 10(7.6±0.8) A·cm(-2), which is compatible with values reported for junctions using top-electrodes of evaporated Au, and graphene, and also comparable with values of J0 estimated from tunneling through single molecules. For these EGaIn-based junctions, the value of the tunneling decay factor β (β = 0.75 ± 0.02 Å(-1); β = 0.92 ± 0.02 nC(-1)) falls within the consensus range across different types of junctions (β = 0.73-0.89 Å(-1); β = 0.9-1.1 nC(-1)). A comparison of the characteristics of conical Ga2O3/EGaIn tips with the characteristics of other top-electrodes suggests that the EGaIn-based electrodes provide a particularly attractive technology for physical-organic studies of charge transport across SAMs.

  2. Influence of Short Distance Super-large Diameter Shield Tunneling on Existing Tunnels in Sea Areas

    NASA Astrophysics Data System (ADS)

    Li, Zhuolin; Liu, Dagang; Wang, Mingnian; Xiao, Shihui; Yuan, Jiawei

    2018-03-01

    In oder to find out the influence of large diameter shield tunneling on the existing tunnel under the condition of compound strata in the sea area, taking the Maliuzhou traffic tunnel as the research background, numerical simulation and field test were combined to get the regulation of the additional internal force and deformation of the existing tunnel caused by the shield tunneling. Analysis of the data showed that: the shield construction caused the secondary additional internal force; The moment of the vault was most affected by the tunnel excavation; The axial force of the arch bottom was most affected by the excavation of the tunnel. The deformation of arch waist near excavation tunnel was more affected by tunnel excavation than that of the other side. Combined with the construction experience, the influence of the tunnel close-distance construction on the existing tunnel was within the control range, which could ensure the normal construction.

  3. Single Electron Tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggiero, Steven T.

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors thatmore » add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  4. Subject-Specific Finite Element Analysis of the Carpal Tunnel Cross-Sectional to Examine Tunnel Area Changes in Response to Carpal Arch Loading

    PubMed Central

    Walia, Piyush; Erdemir, Ahmet; Li, Zong-Ming

    2017-01-01

    Background Manipulating the carpal arch width (i.e. distance between hamate and trapezium bones) has been suggested as a means to increase carpal tunnel cross-sectional area and alleviate median nerve compression. The purpose of this study was to develop a finite element model of the carpal tunnel and to determine an optimal force direction to maximize area. Methods A planar geometric model of carpal bones at hamate level was reconstructed from MRI with inter-carpal joint spaces filled with a linear elastic surrogate tissue. Experimental data with discrete carpal tunnel pressures (50, 100, 150, and 200 mmHg) and corresponding carpal bone movements were used to obtain material property of surrogate tissue by inverse finite element analysis. The resulting model was used to simulate changes of carpal arch widths and areas with directional variations of a unit force applied at the hook of hamate. Findings Inverse finite element model predicted the experimental area data within 1.5% error. Simulation of force applications showed that carpal arch width and area were dependent on the direction of force application, and minimal arch width and maximal area occurred at 138° (i.e. volar-radial direction) with respect to the hamate-to-trapezium axis. At this force direction, the width changed to 24.4 mm from its initial 25.1 mm (3% decrease), and the area changed to 301.6 mm2 from 290.3 mm2 (4% increase). Interpretation The findings of the current study guide biomechanical manipulation to gain tunnel area increase, potentially helping reduce carpal tunnel pressure and relieve symptoms of compression median neuropathy. PMID:28073093

  5. 1. EAST ENTRANCE FROM LOADING AREA. CONCRETE TUNNEL TO TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAST ENTRANCE FROM LOADING AREA. CONCRETE TUNNEL TO TEST STAND 1-3 IS AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  6. Sub micron area Nb/AlO(x)/Nb tunnel junctions for submillimeter mixer applications

    NASA Technical Reports Server (NTRS)

    Leduc, Henry G.; Bumble, B.; Cypher, S. R.; Judas, A. J.; Stern, J. A.

    1992-01-01

    In this paper, we report on a fabrication process developed for submicron area tunnel junctions. We have fabricated Nb/AlO(x)/Nb tunnel junctions with areas down to 0.1 sq micron using these techniques. The devices have shown excellent performance in receiver systems up to 500 GHz and are currently in use in radio astronomy observatories at 115, 230, and 500 GHz.

  7. Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials.

    PubMed

    Joiner, Corey A; Campbell, Philip M; Tarasov, Alexey A; Beatty, Brian R; Perini, Chris J; Tsai, Meng-Yen; Ready, William J; Vogel, Eric M

    2016-04-06

    Tunneling devices based on vertical heterostructures of graphene and other 2D materials can overcome the low on-off ratios typically observed in planar graphene field-effect transistors. This study addresses the impact of processing conditions on two-dimensional materials in a fully integrated heterostructure device fabrication process. In this paper, graphene-molybdenum disulfide-graphene tunneling heterostructures were fabricated using only large-area synthesized materials, unlike previous studies that used small exfoliated flakes. The MoS2 tunneling barrier is either synthesized on a sacrificial substrate and transferred to the bottom-layer graphene or synthesized directly on CVD graphene. The presence of graphene was shown to have no impact on the quality of the grown MoS2. The thickness uniformity of MoS2 grown on graphene and SiO2 was found to be 1.8 ± 0.22 nm. XPS and Raman spectroscopy are used to show how the MoS2 synthesis process introduces defects into the graphene structure by incorporating sulfur into the graphene. The incorporation of sulfur was shown to be greatly reduced in the absence of molybdenum suggesting molybdenum acts as a catalyst for sulfur incorporation. Tunneling simulations based on the Bardeen transfer Hamiltonian were performed and compared to the experimental tunneling results. The simulations show the use of MoS2 as a tunneling barrier suppresses contributions to the tunneling current from the conduction band. This is a result of the observed reduction of electron conduction within the graphene sheets.

  8. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    NASA Astrophysics Data System (ADS)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  9. Design of a variable area diffuser for a 15-inch Mach 6 open-jet tunnel

    NASA Technical Reports Server (NTRS)

    Loney, Norman W.

    1994-01-01

    The Langley 15-inch Mach 6 High Temperature Tunnel was recently converted from a Mach 10 Hypersonic Flow Apparatus. This conversion was effected to improve the capability of testing in Mach 6 air at relatively high reservoir temperatures not previously possible at Langley. Elevated temperatures allow the matching of the Mach numbers, Reynolds numbers, and ratio of wall-to-adiabatic-wall temperatures (TW/Taw) between this and the Langley 20-inch Mach 6 CF4 Tunnel. This ratio is also matched for Langley's 31-inch Mach 10 Tunnel and is an important parameter useful in the simulation of slender bodies such as National Aerospace Plane (NASP) configurations currently being studied. Having established the nozzle's operating characteristics, the decision was made to install another test section to provide model injection capability. This test section is an open-jet type, with an injection system capable of injecting a model from retracted position to nozzle centerline between 0.5 and 2 seconds. Preliminary calibrations with the new test section resulted in Tunnel blockage. This blockage phenomenon was eliminated when the conical center body in the diffuser was replaced. The issue then, is to provide a new and more efficient variable area diffuser configuration with the capability to withstand testing of larger models without sending the Tunnel into an unstart condition. Use of the 1-dimensional steady flow equation with due regard to friction and heat transfer was employed to estimate the required area ratios (exit area / throat area) in a variable area diffuser. Correlations between diffuser exit Mach number and area ratios, relative to the stagnation pressure ratios and diffuser inlet Mach number were derived. From these correlations, one can set upper and lower operating pressures and temperatures for a given diffuser throat area. In addition, they will provide appropriate input conditions for the full 3-dimensional computational fluid dynamics (CFD) code for further

  10. Design and validation of a wind tunnel system for odour sampling on liquid area sources.

    PubMed

    Capelli, L; Sironi, S; Del Rosso, R; Céntola, P

    2009-01-01

    The aim of this study is to describe the methods adopted for the design and the experimental validation of a wind tunnel, a sampling system suitable for the collection of gaseous samples on passive area sources, which allows to simulate wind action on the surface to be monitored. The first step of the work was the study of the air velocity profiles. The second step of the work consisted in the validation of the sampling system. For this purpose, the odour concentration of some air samples collected by means of the wind tunnel was measured by dynamic olfactometry. The results of the air velocity measurements show that the wind tunnel design features enabled the achievement of a uniform and homogeneous air flow through the hood. Moreover, the laboratory tests showed a very good correspondence between the odour concentration values measured at the wind tunnel outlet and the odour concentration values predicted by the application of a specific volatilization model, based on the Prandtl boundary layer theory. The agreement between experimental and theoretical trends demonstrate that the studied wind tunnel represents a suitable sampling system for the simulation of specific odour emission rates from liquid area sources without outward flow.

  11. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors.

    PubMed

    Xu, Zirui; Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-Il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

  12. Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography

    NASA Astrophysics Data System (ADS)

    Pascher, Nikola; Hennel, Szymon; Mueller, Susanne; Fuhrer, Andreas

    2016-08-01

    A four-terminal donor quantum dot (QD) is used to characterize potential barriers between degenerately doped nanoscale contacts. The QD is fabricated by hydrogen-resist lithography on Si(001) in combination with n-type doping by phosphine. The four contacts have different separations (d = 9, 12, 16 and 29 nm) to the central 6 nm × 6 nm QD island, leading to different tunnel and capacitive coupling. Cryogenic transport measurements in the Coulomb-blockade (CB) regime are used to characterize these tunnel barriers. We find that field enhancement near the apex of narrow dopant leads is an important effect that influences both barrier breakdown and the magnitude of the tunnel current in the CB transport regime. From CB-spectroscopy measurements, we extract the mutual capacitances between the QD and the four contacts, which scale inversely with the contact separation d. The capacitances are in excellent agreement with numerical values calculated from the pattern geometry in the hydrogen resist. Furthermore, we show that by engineering the source-drain tunnel barriers to be asymmetric, we obtain a much simpler excited-state spectrum of the QD, which can be directly linked to the orbital single-particle spectrum.

  13. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors

    PubMed Central

    Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel’s global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point’s plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel. PMID:28141829

  14. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  15. Importance of numerical analyses for determining support systems in tunneling: A comparative study from the trabzon-gumushane tunnel, Turkey

    NASA Astrophysics Data System (ADS)

    Kanik, Mustafa; Gurocak, Zulfu

    2018-07-01

    In this study, we determined the consistency of support elements from empirical rock mass classification systems, to obtain optimum support elements via comparative numerical analyses. For this purpose, the Macka tunnel, on the Trabzon-Gumushane highway and still under construction, was selected as the study area. Along the tunnel route, Late Cretaceous-aged Catak, Macka and Esiroglu Formations crop out. All the formations are cut by a Late Cretaceous Kackar Rhyodacite. Laboratory and field studies were done to determine the properties of the rock material and discontinuities. The results were used to define rock mass properties. Preliminary support systems were defined by using Rock Mass Rating (RMR), Rock Mass Quality (Q) and Rock Mass Index (RMi) systems, respectively. The suggested support elements of all classification systems were in turn evaluated using the Finite Elements Method (FEM), allowing the thickness of the plastic zone and total displacement values to be determined. Results of the analyses showed that it is possible to remove the instabilities around the tunnel section by applying lower numbers of support elements. When using the support systems from the numerical analyses it was found that the optimum support systems were compatible with the support systems suggested by the RMi system. Besides, when the shotcrete strength was increased to 40 MPa, the displacements and thickness of the plastic zone around the tunnel could be reduced to minimal values.

  16. Tunnel Detection Using Seismic Methods

    NASA Astrophysics Data System (ADS)

    Miller, R.; Park, C. B.; Xia, J.; Ivanov, J.; Steeples, D. W.; Ryden, N.; Ballard, R. F.; Llopis, J. L.; Anderson, T. S.; Moran, M. L.; Ketcham, S. A.

    2006-05-01

    Surface seismic methods have shown great promise for use in detecting clandestine tunnels in areas where unauthorized movement beneath secure boundaries have been or are a matter of concern for authorities. Unauthorized infiltration beneath national borders and into or out of secure facilities is possible at many sites by tunneling. Developments in acquisition, processing, and analysis techniques using multi-channel seismic imaging have opened the door to a vast number of near-surface applications including anomaly detection and delineation, specifically tunnels. Body waves have great potential based on modeling and very preliminary empirical studies trying to capitalize on diffracted energy. A primary limitation of all seismic energy is the natural attenuation of high-frequency energy by earth materials and the difficulty in transmitting a high- amplitude source pulse with a broad spectrum above 500 Hz into the earth. Surface waves have shown great potential since the development of multi-channel analysis methods (e.g., MASW). Both shear-wave velocity and backscatter energy from surface waves have been shown through modeling and empirical studies to have great promise in detecting the presence of anomalies, such as tunnels. Success in developing and evaluating various seismic approaches for detecting tunnels relies on investigations at known tunnel locations, in a variety of geologic settings, employing a wide range of seismic methods, and targeting a range of uniquely different tunnel geometries, characteristics, and host lithologies. Body-wave research at the Moffat tunnels in Winter Park, Colorado, provided well-defined diffraction-looking events that correlated with the subsurface location of the tunnel complex. Natural voids related to karst have been studied in Kansas, Oklahoma, Alabama, and Florida using shear-wave velocity imaging techniques based on the MASW approach. Manmade tunnels, culverts, and crawl spaces have been the target of multi-modal analysis

  17. Contact area between femoral tunnel and interference screw in anatomic rectangular tunnel ACL reconstruction: a comparison of outside-in and trans-portal inside-out techniques.

    PubMed

    Hiramatsu, Kunihiko; Mae, Tatsuo; Tachibana, Yuta; Nakagawa, Shigeto; Shino, Konsei

    2018-02-01

    The purpose of this study was to compare the femoral tunnel length, the femoral graft bending angle at the femoral tunnel aperture, and the contact area between the femoral tunnel wall and an interference screw used for fixation in anatomic rectangular tunnel anterior cruciate ligament (ACL) reconstruction (ART ACLR). The study included 149 patients with primary ACL injury who underwent ART ACLR. Preoperatively, flexion angle of the index knee was checked under general anaesthesia. Those of less than 130° of passive flexion were assigned to the outside-in (OI) technique (78 patients), while the others to the trans-portal inside-out (TP) technique (71 patients). The patients underwent computed tomography with multiplanar reconstruction at 3-5 weeks post-operatively. Femoral tunnel length, graft bending angle, and contact ratio between the IFS and femoral tunnel were assessed. P < 0.05 was considered statistically significant. The femoral tunnel length in the OI technique was significantly longer than that in the TP technique (P < 0.001). The femoral graft bending angle in the OI technique was significantly more acute than that in the TP technique (P < 0.001). The contact ratio in the OI technique was significantly larger than that in the TP technique at every point in the femoral tunnel (P < 0.001). The OI technique resulted in a more acute femoral graft bending angle, longer mean femoral tunnel length, and larger contact ratio than the TP technique after ART ACLR. Retrospective comparative study, Level III.

  18. Sixth progress report on the cooperative investigation of springs and streamflow in the Tecolote Tunnel area of Santa Barbara County, California

    USGS Publications Warehouse

    Hofmann, Walter

    1955-01-01

    This report is the sixth in a continuing series of progress reports giving the results of discharge measurements obtained at more than 120 selected sites in the "Tecolote Tunnel Area" of the Santa Ynez Mountains.  The area derives its name from the tunnel now being completed by the Bureau of Reclamation for the purpose of diverting the flood waters of the Santa Ynez River stored in Cachuma Reservoir into urban and agricultural areas in and near the city of Santa barbara.  The observational area for purposes of this investigation extends from Refugio Pass on the west to San Marcos Pass and the Painted Cave area on the east.  The tunnel alignment is rouhly north and south through the center of this area.

  19. Materials Handling for Urban Tunneling in Rock

    DOT National Transportation Integrated Search

    1979-01-01

    An examination of prior forecasts of tunnel construction provides an estimate of 2.4 million feet of rock tunnel to be constructed during the 1976-2000 period. Tunnel projects for the near term (1980+) and far term (1990+) periods are defined for stu...

  20. Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    An edge defined geometry is used to produce very small area tunnel junctions in a structure with niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier. The incorporation of an MgO tunnel barrier with two NbN electrodes results in improved current-voltage characteristics, and may lead to better junction noise characteristics. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  1. Seventh progress report on the cooperative investigation of springs and streamflow in the Tecolote tunnel area of Santa Barbara County, California

    USGS Publications Warehouse

    Peterson, W.C.

    1957-01-01

    This report is the seventh in a a continuing series of progress reports giving the results of discharge measurements made at selected springs and streams in the Tecolote Tunnel are area of the Santa Ynez Mountains. The mountains. The measurement program was begun on its present scale in the latter part of 1948 by the Geological Survey at the request of the Santa Barbara County Water Agency and is being continued under a cooperative agreement whereby each agency pays half the cost of the investigation. The purpose of the program is to obtain sufficient factual data to determine what effect, if any, the inflow of ground water into Tecolote Tunnel will have on the flow of springs and streams in the vicinity of the tunnel. The area involved in the study, shown by plate 1, was made large enough to include a number of springs and steams believe to be outside the zone of influence of the tunnel. Tecolote Tunnel, completed late in 1955, was built by the Bureau of Reclamation for the purpose of conveying water stored in Cachuma Reservoir to the city of Santa Barbara and adjacent coastal communities. The alinement of the tunnel is roughly north and south through the center of the arbitrarily chosen study area which extends from the Painted Cave area on the east to Refugio Pass on the west and from the Santa Ynez River on the North to the Pacific Ocean on the south. The purpose of this report is to make available the factual data obtained from July 1954 to June 1956, together with a brief presentation of precipitation, springflow, and tunnel outflow for the entire period of investigation.

  2. Recognition Tunneling

    PubMed Central

    Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo

    2010-01-01

    Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode (“tethered molecule-pair” configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the “free analyte” configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules. PMID:20522930

  3. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    NASA Astrophysics Data System (ADS)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches

  4. Quantum temporal probabilities in tunneling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastopoulos, Charis, E-mail: anastop@physics.upatras.gr; Savvidou, Ntina, E-mail: ksavvidou@physics.upatras.gr

    We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines ‘classical’ time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects ofmore » the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems. -- Highlights: •Present a general methodology for deriving temporal probabilities in tunneling systems. •Treatment applies to relativistic particles interacting through quantum fields. •Derive a new expression for tunneling time. •Identify new time parameters relevant to tunneling. •Propose a resolution of the superluminality paradox in tunneling.« less

  5. Large area tunnel oxide passivated rear contact n -type Si solar cells with 21.2% efficiency: Large area tunnel oxide passivated rear contact n -type Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yuguo; Upadhyaya, Vijaykumar; Chen, Chia-Wei

    This paper reports on the implementation of carrier-selective tunnel oxide passivated rear contact for high-efficiency screen-printed large area n-type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open-circuit voltage iVoc of 714mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back-end high temperature process. In combination with an ion-implanted Al2O3-passivated boron emitter and screen-printed front metal grids,more » this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n-type Czochralski wafers.« less

  6. Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements

    NASA Astrophysics Data System (ADS)

    Mo, Ziwei; Liu, Chun-Ho

    2017-04-01

    Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.

  7. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  8. Volume and contact surface area analysis of bony tunnels in single and double bundle anterior cruciate ligament reconstruction using autograft tendons: in vivo three-dimensional imaging analysis.

    PubMed

    Yang, Jae-Hyuk; Chang, Minho; Kwak, Dai-Soon; Wang, Joon Ho

    2014-09-01

    Regarding reconstruction surgery of the anterior cruciate ligament (ACL), there is still a debate whether to perform a single bundle (SB) or double bundle (DB) reconstruction. The purpose of this study was to analyze and compare the volume and surface area of femoral and tibial tunnels during transtibial SB versus transportal DB ACL reconstruction. A consecutive series of 26 patients who underwent trantibial SB ACL reconstruction and 27 patients with transportal DB ACL reconstruction using hamstring autograft from January 2010 to October 2010 were included in this study. Three-dimensional computed tomography (3D-CT) was taken within one week after operation. The CT bone images were segmented with use of Mimics software v14.0. The obtained digital images were then imported in the commercial package Geomagic Studio v10.0 and SketchUp Pro v8.0 for processing. The femoral and tibial tunnel lengths, diameters, volumes and surface areas were evaluated. A comparison between the two groups was performed using the independent-samples t-test. A p-value less than the significance value of 5% (p < 0.05) was considered statistically significant. Regarding femur tunnels, a significant difference was not found between the tunnel volume for SB technique (1,496.51 ± 396.72 mm(3)) and the total tunnel volume for DB technique (1,593.81 ± 469.42 mm(3); p = 0.366). However, the total surface area for femoral tunnels was larger in DB technique (919.65 ± 201.79 mm(2)) compared to SB technique (810.02 ± 117.98 mm(2); p = 0.004). For tibia tunnels, there was a significant difference between tunnel volume for the SB technique (2,070.43 ± 565.07 mm(3)) and the total tunnel volume for the DB technique (2,681.93 ± 668.09 mm(3); p ≤ 0.001). The tibial tunnel surface area for the SB technique (958.84 ± 147.50 mm(2)) was smaller than the total tunnel surface area for the DB technique (1,493.31 ± 220.79 mm(2); p ≤ 0.001). Although the total femoral tunnel volume was similar between two

  9. Influence of nanoscale faceting on the tunneling properties of near broken gap InAs/AlGaSb heterojunctions grown by selective area epitaxy.

    PubMed

    Desplanque, L; Fahed, M; Han, X; Chinni, V K; Troadec, D; Chauvat, M-P; Ruterana, P; Wallart, X

    2014-11-21

    We report on the selective area molecular beam epitaxy of InAs/AlGaSb heterostructures on a GaSb (001) substrate. This method is used to realize Esaki tunnel diodes with a tunneling area down to 50 nm × 50 nm. The impact of the size reduction on the peak current density of the diode is investigated, and we show how the formation of the InAs facets can deeply affect the band-to-band tunneling properties of the heterostructure. This phenomenon is explained by the surface-dependent incorporation of Si dopant during growth.

  10. Second progress report on the cooperative investigation of springs and stream flow in the Tecolote Tunnel area of Santa Barbara County, California

    USGS Publications Warehouse

    Troxell, Harold C.; Burgess, C.E.

    1950-01-01

    This report represents the second of a series of progress reports giving the results of discharge measurements made at more than 100 locations in the Santa Ynez Mountains from the Refugio Canyon on the west to the San Marcos Pass and Painted Cave area on the east. The flow in all the developed springs and headwater streams within this area, here designated as the Tecolote Tunnel Area of the purpose of this report, is generally measured monthly. The primary purpose of this second progress report is to make available to the public all factual data regarding the flow at these locations obtained since the preparation of the first progress report, issued in May 1949. Near the mid-point of this area the Bureau of Reclamation and the Santa Barbara County Water Agency proposed a tunnel, known as Tecolote Tunnel, for the purpose of diverting a portion of the runoff of the Santa Ynez River drainage area into water-deficient Santa Barbara and the coastal areas to the east and west, Because the water users of the mountain springs in the Tecolote Tunnel Area are somewhat apprehensive as to the influence this tunnel may have on their present water supply, the Santa Barbara Water Agency has requested the Geological Survey to obtain records of flow in their springs at frequent and regular intervals. During the current fiscal year these observations have been made as a result of a cooperative agreement between the Geological Survey and the Santa Barbara County Water Agency whereby each paid half the cost of the investigation. During the previous fiscal year all the costs to the Geological Survey in obtaining these observations were completely reimbursed by the Bureau of Reclamation.

  11. Wind-tunnel Tests of the Fowler Variable-area Wing

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Platt, Robert C

    1932-01-01

    The lift, drag, and center of pressure characteristics of a model of the Fowler variable-area wing were measured in the NACA 7 by 10 foot wind tunnel. The Fowler wing consists of a combination of a main wing and an extension surface, also of airfoil section. The extension surface can be entirely retracted within the lower rear portion of the main wing or it can be moved to the rear and downward. The tests were made with the nose of the extension airfoil in various positions near the trailing edge of the main wing and with the surface at various angular deflections. The highest lift coefficient obtained was C(sub L) = 3.17 as compared with 1.27 for the main wing alone.

  12. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  13. Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.

    2007-01-01

    The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.

  14. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  15. Klein tunneling phenomenon with pair creation process

    NASA Astrophysics Data System (ADS)

    Wu, G. Z.; Zhou, C. T.; Fu, L. B.

    2018-01-01

    In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.

  16. Pressure data for four analytically defined arrow wings in supersonic flow. [Langley Unitary Plan Wind Tunnel tests

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1980-01-01

    In order to provide experimental data for comparison with newly developed finite difference methods for computing supersonic flows over aircraft configurations, wind tunnel tests were conducted on four arrow wing models. The models were machined under numeric control to precisely duplicate analytically defined shapes. They were heavily instrumented with pressure orifices at several cross sections ahead of and in the region where there is a gap between the body and the wing trailing edge. The test Mach numbers were 2.36, 2.96, and 4.63. Tabulated pressure data for the complete test series are presented along with selected oil flow photographs. Comparisons of some preliminary numerical results at zero angle of attack show good to excellent agreement with the experimental pressure distributions.

  17. Distribution of tunnelling times for quantum electron transport.

    PubMed

    Rudge, Samuel L; Kosov, Daniel S

    2016-03-28

    In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an electron jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.

  18. FHWA road tunnel design guidelines

    DOT National Transportation Integrated Search

    2004-07-01

    This document provides technical criteria and guidance for the planning and design of road tunnels. Specific areas covered include planning, studies and investigations, design, and design of construction, of tunnels and shafts. Performance concepts a...

  19. Cumberland Gap Tunnel pavement problems.

    DOT National Transportation Integrated Search

    2005-10-01

    Ground penetrating radar was used to verify voids beneath the concrete roadway located at the Cumberland Gap Tunnel, in Middelsboro, KY. Preliminary results indicate that several void areas reside beneath the north and southbound tunnel.

  20. Tunneling Flight Time, Chemistry, and Special Relativity.

    PubMed

    Petersen, Jakob; Pollak, Eli

    2017-09-07

    Attosecond ionization experiments have not resolved the question "What is the tunneling time?". Different definitions of tunneling time lead to different results. Second, a zero tunneling time for a material particle suggests that the nonrelativistic theory includes speeds greater than the speed of light. Chemical reactions, occurring via tunneling, should then not be considered in terms of a nonrelativistic quantum theory calling into question quantum dynamics computations on tunneling reactions. To answer these questions, we define a new experimentally measurable paradigm, the tunneling flight time, and show that it vanishes for scattering through an Eckart or a square barrier, irrespective of barrier length or height, generalizing the Hartman effect. We explain why this result does not lead to experimental measurement of speeds greater than the speed of light. We show that this tunneling is an incoherent process by comparing a classical Wigner theory with exact quantum mechanical computations.

  1. Spin-dependent tunneling effects in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Gao, Li

    2009-03-01

    It has long been known that current extracted from magnetic electrodes through ultra thin oxide tunnel barriers is spin polarized. This current gives rise to two important properties: tunneling magnetoresistance (TMR) when the tunnel barrier is sandwiched between two thin magnetic electrodes and, spin momentum transfer, which can be used to manipulate the magnetic state of the magnetic electrodes. In the first part of my talk I show how the structure of thin CoFe layers can be made amorphous by simply sandwiching them between two amorphous layers, one of them the tunnel barrier. No glass forming elements are needed. By slightly changing the thickness of these layers or by heating them above their glass transition temperature they become crystalline. Surprisingly, the TMR of the amorphous structure is significantly higher than of its crystalline counterpart. The tunneling anisotropic magnetoresistance, which has complex voltage dependence, is also discussed. In the second part of my talk I discuss the microwave emission spectrum from magnetic tunnel junctions induced by spin torque from spin polarized dc current passed through the device. We show that the spectrum is very sensitive to small variations in device structures, even in those devices which exhibit similarly high TMR (˜120%) and which have similar resistance-area products (˜4-10 φμm^2). We speculate that these variations are due to non-uniform spatial magnetic excitation arising from inhomogeneous current flow through the tunnel barrier. [In collaboration with Xin Jiang, M. Hayashi, Rai Moriya, Brian Hughes, Teya Topuria, Phil Rice, and Stuart S.P. Parkin

  2. PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Zandvliet, Harold J. W.; Lin, Nian

    2010-07-01

    out the potential landscape of the system (often a molecule or an atom) under study [4, 5]. However, the dynamical processes might also be induced by the tunnelling process itself [6, 7]. In the field of molecular science, excited single molecule experiments have been especially performed [8]. As a nice example, we refer to the work of Sykes' group [9] on thioether molecular rotors. In addition, several groups explore the possibility of combining time-resolved scanning tunnelling microscopy with optical techniques [10, 11]. Although the majority of studies that have been performed so far focus on rather simple systems under nearly ideal and well-defined conditions, we anticipate that time-resolved scanning tunnelling microscopy can also be applied in other research areas, such as biology and soft condensed matter, where the experimental conditions are often less ideal. We hope that readers will enjoy this collection of papers and that it will trigger them to further explore the possibilities of this simple, but powerful technique. References [1] Besenbacher F, Laegsgaard E and Stengaard I 2005 Mater. Today 8 26 [2] van Houselt A and Zandvliet H J W 2010 Rev. Mod. Phys. 82 1593 [3] Tringides M C and Hupalo M 2010 J. Phys.: Condens. Matter 22 264002 [4] Ronci F, Colonna S, Cricenti A and Le Lay G 2010 J. Phys.: Condens. Matter 22 264003 [5] van Houselt A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264004 [6] Sprodowski C, Mehlhorn M and Morgenstern K 2010 J. Phys.: Condens. Matter 22 264005 [7] Saedi A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264007 [8] Sloan P A 2010 J. Phys.: Condens. Matter 22 264001 [9] Jewell A D, Tierney H L, Baber A E, Iski E V, Laha M M and Sykes E C H 2010 J. Phys.: Condens. Matter 22 264006 [10] Riedel D 2010 J. Phys.: Condens. Matter 22 264009 [11] Terada Y, Yoshida S, Takeuchi O and Shigekawa H 2010 J. Phys.: Condens. Matter 22 264008

  3. Resonance tunneling electron-vibrational spectroscopy of polyoxometalates.

    PubMed

    Dalidchik, F I; Kovalevskii, S A; Balashov, E M

    2017-05-21

    The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier-Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters-energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level.

  4. Resonance tunneling electron-vibrational spectroscopy of polyoxometalates

    PubMed Central

    Dalidchik, F. I.; Kovalevskii, S. A.

    2017-01-01

    The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier–Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters—energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level. PMID:28527451

  5. Improved Design of Tunnel Supports : Volume 1 : Simplified Analysis for Ground-Structure Interaction in Tunneling

    DOT National Transportation Integrated Search

    1980-06-01

    The purpose of this report is to provide the tunneling profession with improved practical tools in the technical or design area, which provide more accurate representations of the ground-structure interaction in tunneling. The design methods range fr...

  6. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  7. Magnetic tunnel junctions utilizing diamond-like carbon tunnel barriers

    NASA Astrophysics Data System (ADS)

    Cadieu, F. J.; Chen, Li; Li, Biao

    2002-05-01

    We have devised a method whereby thin particulate-free diamond-like carbon films can be made with good adhesion onto even room-temperature substrates. The method employs a filtered ionized carbon beam created by the vacuum impact of a high-energy, approximately 1 J per pulse, 248 nm excimer laser onto a carbon target. The resultant deposition beam can be steered and deflected by magnetic and electric fields to paint a specific substrate area. An important aspect of this deposition method is that the resultant films are particulate free and formed only as the result of atomic species impact. The vast majority of magnetic tunnel junctions utilizing thin metallic magnetic films have employed a thin oxidized layer of aluminum to form the tunnel barrier. This has presented reproducibility problems because the indicated optimal barrier thickness is only approximately 13 Å thick. Magnetic tunnel junctions utilizing Co and permalloy films made by evaporation and sputtering have been fabricated with an intervening diamond-like carbon tunnel barrier. The diamond-like carbon thickness profile has been tapered so that seven junctions with different barrier thickness can be formed at once. Magnetoresistive (MR) measurements made between successive permalloy strip ends include contributions from two junctions and from the permalloy and Co strips that act as current leads to the junctions. Magnetic tunnel junctions with thicker carbon barriers exhibit MR effects that are dominated by that of the permalloy strips. Since these tunnel barriers are formed without the need for oxygen, complete tunnel junctions can be formed with all high-vacuum processing.

  8. Wall Interference in Two-Dimensional Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1986-01-01

    Viscosity and tunnel-wall constraints introduced via boundary conditions. TWINTN4 computer program developed to implement method of posttest assessment of wall interference in two-dimensional wind tunnels. Offers two methods for combining sidewall boundary-layer effects with upper and lower wall interference. In sequential procedure, Sewall method used to define flow free of sidewall effects, then assessed for upper and lower wall effects. In unified procedure, wind-tunnel flow equations altered to incorporate effects from all four walls at once. Program written in FORTRAN IV for batch execution.

  9. Fixed-Gap Tunnel Junction for Reading DNA Nucleotides

    PubMed Central

    2015-01-01

    Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events. PMID:25380505

  10. Geological Prediction Ahead of Tunnel Face in the Limestone Formation Tunnel using Multi-Modal Geophysical Surveys

    NASA Astrophysics Data System (ADS)

    Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.

  11. Wind-tunnel and Flight Investigations of the Use of Leading-Edge Area Suction for the Purpose of Increasing the Maximum Lift Coefficient of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Holzhauser, Curt A; Bray, Richard S

    1956-01-01

    An investigation was undertaken to determine the increase in maximum lift coefficient that could be obtained by applying area suction near the leading edge of a wing. This investigation was performed first with a 35 degree swept-wing model in the wind tunnel, and then with an operational 35 degree swept-wing airplane which was modified in accord with the wind-tunnel results. The wind-tunnel and flight tests indicated that the maximum lift coefficient was increased more than 50 percent by the use of area suction. Good agreement was obtained in the comparison of the wind-tunnel results with those measured in flight.

  12. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  13. Modification of FN tunneling provoking gate-leakage current in ZTO (zinc-tin oxide) TFT by regulating the ZTO/SiO2 area ratio

    NASA Astrophysics Data System (ADS)

    Li, Jeng-Ting; Tsai, Ho-Lin; Lai, Wei-Yao; Hwang, Weng-Sing; Chen, In-Gann; Chen, Jen-Sue

    2018-04-01

    This study addresses the variation in gate-leakage current due to the Fowler-Nordheim (FN) tunneling of electrons through a SiO2 dielectric layer in zinc-tin oxide (ZTO) thin film transistors. It is shown that the gate-leakage current is not related to the absolute area of the ZTO active layer, but it is reduced by reducing the ZTO/SiO2 area ratio. The ZTO/SiO2 area ratio modulates the ZTO-SiO2 interface dipole strength as well as the ZTO-SiO2 conduction band offset and subsequently affects the FN tunneling current through the SiO2 layer, which provides a route that modifies the gate-leakage current.

  14. Modifications to the 4x7 meter tunnel for acoustic research: Engineering feasibility study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The NASA-Langley Research Center 4 x 7 Meter Low Speed Wind Tunnel is currently being used for low speed aerodynamics, V/STOL aerodynamics and, to a limited extent, rotorcraft noise research. The deficiencies of this wind tunnel for both aerodynamics and aeroacoustics research have been recognized for some time. Modifications to the wind tunnel are being made to improve the test section flow quality and to update the model cart systems. A further modification of the 4 x 7 Meter Wind Tunnel to permit rotorcraft model acoustics research has been proposed. As a precursor to the design of the proposed modifications, NASA is conducted both in-house and contracted studies to define the acoustic environment within the wind tunnel and to provide recommendations or the reduction of the wind tunnel background noise to a level acceptable to acoustics researchers. One of these studies by an acoustics consultant, has produced the primary reference documents that define the wind tunnel noise sources and outline recommended solutions.

  15. CORRECTIVE ACTION DECISION DOCUMENT FOR CORRECTIVE ACTION UNIT 383: AREA 12 E-TUNNEL SITES, NEVADA TEST SITE, REV. NO. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark McLane

    2005-03-01

    This Corrective Action Decision Document (CADD) was prepared by the Defense Threat Reduction Agency (DTRA) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The recommendations and corrective actions described within this document apply to the future closure of Corrective Action Unit (CAU) 383, Area 12 E-Tunnel Sites, which is a joint DTRA and NNSA/NSO site. The CAU consists of three (3) Corrective Action Sites (CASs): CAS 12-06-06 (Muckpile); CAS 12-25-02 (Oil Spill); and CAS 12-28-02 (Radioactive Material). In addition to these CASs, E-Tunnel Ponds One, Two, and Three, and the Drainage Area above themore » ponds were included since closure of the Muckpile will impact these areas. This CADD is consistent with the requirements of the ''Federal Facility Agreement and Consent Order'' agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The DTRA point of contact is the Nevada Operations Office, Environmental Project Manager; currently Ms. Tiffany A. Lantow. The NNSA/NSO point of contact is the Environmental Restoration, Industrial Sites Project Manager; currently Ms. Janet Appenzeller-Wing. The purpose of this CADD is to identify and provide the rationale for the selection of a recommended corrective action alternative for CAU 383. This document presents the recommended corrective action for CAU 383 (E-Tunnel Sites); however, implementation may be affected by the corrective action (to be determined) for CAU 551 (Area 12 Muckpiles) due to the close proximity of B, C, D, and F-Tunnels. The scope of this CADD consists of the following tasks: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend and

  16. V/STOL wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.

    1984-01-01

    Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The planning sequence itself, which includes a short checklist of considerations that could enhance the value of the tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation, model development and test operations, is discussed, and examples of appropriate past and current V/STOL test programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review of several model installations, from two-dimensional to large-scale models of complete aircraft configurations. Model sizing, power simulation, and planning are treated, including three areas is test operations: data-acquisition systems, acoustic measurements in wind tunnels, and flow surveying.

  17. Anatomical variations of the carpal tunnel structures

    PubMed Central

    Mitchell, Ryan; Chesney, Amy; Seal, Shane; McKnight, Leslie; Thoma, Achilleas

    2009-01-01

    There are many anatomical variations in and around the carpal tunnel that affect the nerves, tendons and arteries in this area. Awareness of these variations is important both during the clinical examination and during carpal tunnel release. The purpose of the present review is to highlight recognized anatomical variations within the carpal tunnel including variation in nerve anatomy, tendon anatomical variants, vascular anatomical variations and muscle anatomical variations. PMID:20808747

  18. Shock tunnel studies of scramjet phenomena

    NASA Technical Reports Server (NTRS)

    Morgan, R. G.; Paull, A.; Stalker, R. J.; Jacobs, P.; Morris, N.; Stringer, I.; Brescianini, C.

    1988-01-01

    Commissioning of the new T4 shock tunnel at the University of Queensland implied that it was no longer necessary to focus the work of the research group about an annual test series conducted in the T3 shock tunnel in Canberra. Therefore, it has been possible to organize a group for work to proceed along lines such that particular personnel are associated with particular project areas. The format of this report consists of a series of reports on specific project areas, with a brief general introduction commenting on each report. The introduction is structured by project areas, with the title of the relevant report stated under the project area heading. The reports themselves follow in the order of the project area headings.

  19. Quantitative magnetic resonance imaging analysis of the cross-sectional areas of the anconeus epitrochlearis muscle, cubital tunnel, and ulnar nerve with the elbow in extension in patients with and without ulnar neuropathy.

    PubMed

    Eng, Hing Y; Gunio, Drew A; Benitez, Carlos L

    2018-05-10

    The purpose of this study was to assess the cross-sectional area of the anconeus epitrochlearis muscle (AEM), cubital tunnel, and ulnar nerve with the elbow in extension in patients with and without ulnar neuropathy. We performed a retrospective, level IV review of elbow magnetic resonance imaging (MRI) studies. Elbow MRI studies of 32 patients with an AEM (26 men and 6 women, aged 18-60 years), 32 randomly selected patients without an AEM (aged 16-71 years), and 32 patients with clinical ulnar neuritis (22 men and 10 women, aged 24-76 years) were reviewed. We evaluated the ulnar nerve cross-sectional area proximal to, within, and distal to the cubital tunnel; AEM cross-sectional area; and cubital tunnel cross-sectional area. We found no significant difference in the nerve caliber between patients with and without an AEM. No correlation was found between the AEM cross-sectional area and ulnar nerve cross-sectional area within the cubital tunnel (r = 0.14). The mean cubital tunnel cross-sectional area was larger in patients with an AEM. Only 4 of the 32 patients with an AEM had findings of ulnar neuritis on MRI. Of the 32 patients with a clinical diagnosis of ulnar neuritis, only 2 had an AEM. With the elbow in extension, the presence or cross-sectional area of an AEM does not correlate with the area of the ulnar nerve or cubital tunnel. Only a small number of individuals with MRI evidence of an AEM had clinical evidence of ulnar neuropathy. Likewise, MRI evidence of an AEM was found in only a small number of individuals with clinical evidence of ulnar neuropathy. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Relativistic features and time delay of laser-induced tunnel ionization

    NASA Astrophysics Data System (ADS)

    Yakaboylu, Enderalp; Klaiber, Michael; Bauke, Heiko; Hatsagortsyan, Karen Z.; Keitel, Christoph H.

    2013-12-01

    The electron dynamics in the classically forbidden region during relativistic tunnel ionization is investigated. The classical forbidden region in the relativistic regime is identified by defining a gauge-invariant total-energy operator. Introducing position-dependent energy levels inside the tunneling barrier, we demonstrate that the relativistic tunnel ionization can be well described by a one-dimensional intuitive picture. This picture predicts that, in contrast to the well-known nonrelativistic regime, the ionized electron wave packet arises with a momentum shift along the laser's propagation direction. This is compatible with results from a strong-field approximation calculation where the binding potential is assumed to be zero ranged. Further, the tunneling time delay, stemming from Wigner's definition, is investigated for model configurations of tunneling and compared with results obtained from the exact propagator. By adapting Wigner's time delay definition to the ionization process, the tunneling time is investigated in the deep-tunneling and in the near-threshold-tunneling regimes. It is shown that while in the deep-tunneling regime signatures of the tunneling time delay are not measurable at remote distance, they are detectable, however, in the latter regime.

  1. Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.

    2004-01-01

    Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.

  2. Spin-polarized scanning tunneling microscopy experiments on the rough surface of a polycrystalline NiFe film with a fine magnetic tip sensitive to a well-defined magnetization component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, H., E-mail: matsu@phys.sci.hokudai.ac.jp; Nara, D.; Kageyama, R.

    We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM) in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin imagemore » of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.« less

  3. The Design of Low-Turbulence Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L; Abbott, Ira H

    1949-01-01

    Within the past 10 years there have been placed in operation in the United States four low-turbulence wind tunnels of moderate cross-sectional area and speed, one at the National Bureau of Standards, two at the NACA Langley Laboratory, and one at the NACA Ames Laboratory. This paper reviews briefly the state of knowledge and those features which make possible the attainment of low turbulence in wind tunnels. Specific applications to two wind tunnels are described.

  4. Experimental Study of Floating-Gate-Type Metal-Oxide-Semiconductor Capacitors with Nanosize Triangular Cross-Sectional Tunnel Areas for Low Operating Voltage Flash Memory Application

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Guo, Ruofeng; Kamei, Takahiro; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku

    2012-06-01

    The floating-gate (FG)-type metal-oxide-semiconductor (MOS) capacitors with planar (planar-MOS) and three-dimensional (3D) nanosize triangular cross-sectional tunnel areas (3D-MOS) have successfully been fabricated by introducing rapid thermal oxidation (RTO) and postdeposition annealing (PDA), and their electrical characteristics between the control gate (CG) and FG have been systematically compared. It was experimentally found in both planar- and 3D-MOS capacitors that the uniform and higher breakdown voltages are obtained by introducing RTO owing to the high-quality thermal oxide formation on the surface and etched edge regions of the n+ polycrystalline silicon (poly-Si) FG, and the leakage current is highly suppressed after PDA owing to the improved quality of the tetraethylorthosilicate (TEOS) silicon dioxide (SiO2) between CG and FG. Moreover, a lower breakdown voltage between CG and FG was obtained in the fabricated 3D-MOS capacitors as compared with that of planar-MOS capacitors thanks to the enhanced local electric field at the tips of triangular tunnel areas. The developed nanosize triangular cross-sectional tunnel area is useful for the fabrication of low operating voltage flash memories.

  5. Three-dimensional scanning force/tunneling spectroscopy at room temperature.

    PubMed

    Sugimoto, Yoshiaki; Ueda, Keiichi; Abe, Masayuki; Morita, Seizo

    2012-02-29

    We simultaneously measured the force and tunneling current in three-dimensional (3D) space on the Si(111)-(7 × 7) surface using scanning force/tunneling microscopy at room temperature. The observables, the frequency shift and the time-averaged tunneling current were converted to the physical quantities of interest, i.e. the interaction force and the instantaneous tunneling current. Using the same tip, the local density of states (LDOS) was mapped on the same surface area at constant height by measuring the time-averaged tunneling current as a function of the bias voltage at every lateral position. LDOS images at negative sample voltages indicate that the tip apex is covered with Si atoms, which is consistent with the Si-Si covalent bonding mechanism for AFM imaging. A measurement technique for 3D force/current mapping and LDOS imaging on the equivalent surface area using the same tip was thus demonstrated.

  6. Improved multidimensional semiclassical tunneling theory.

    PubMed

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  7. Aeroacoustic research in wind tunnels: A status report

    NASA Technical Reports Server (NTRS)

    Bender, J.; Arndt, R. E. A.

    1973-01-01

    The increasing attention given to aerodynamically generated noise brings into focus the need for quality experimental research in this area. To meet this need several specialized anechoic wind tunnels have been constructed. In many cases, however, budgetary constraints and the like make it desirable to use conventional wind tunnels for this work. Three basic problems are inherent in conventional facilities: (1) high background noise, (2) strong frequency dependent reverberation effects, and (3) unique instrumentation problems. The known acoustic characteristics of several conventional wind tunnels are evaluated and data obtained in a smaller 4- x 5-foot wind tunnel which is convertible from a closed jet to an open jet mode are presented. The data from these tunnels serve as a guideline for proposed modifications to a 7- x 10-foot wind tunnel. Consideration is given to acoustic treatment in several different portions of the wind tunnel.

  8. Screens Would Protect Wind-Tunnel Fan Blades

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G.

    1992-01-01

    Butterfly screen installed in wind tunnel between test section and fan blades to prevent debris from reaching fan blades if model structure fails. Protective screens deployed manually or automatically. Concept beneficial anywhere wind tunnels employed. Also useful in areas outside of aerospace industry, such as in airflow design of automobiles and other vehicles.

  9. Evaluation of the source area of rooftop scalar measurements in London, UK using wind tunnel and modelling approaches.

    NASA Astrophysics Data System (ADS)

    Brocklehurst, Aidan; Boon, Alex; Barlow, Janet; Hayden, Paul; Robins, Alan

    2014-05-01

    The source area of an instrument is an estimate of the area of ground over which the measurement is generated. Quantification of the source area of a measurement site provides crucial context for analysis and interpretation of the data. A range of computational models exists to calculate the source area of an instrument, but these are usually based on assumptions which do not hold for instruments positioned very close to the surface, particularly those surrounded by heterogeneous terrain i.e. urban areas. Although positioning instrumentation at higher elevation (i.e. on masts) is ideal in urban areas, this can be costly in terms of installation and maintenance costs and logistically difficult to position instruments in the ideal geographical location. Therefore, in many studies, experimentalists turn to rooftops to position instrumentation. Experimental validations of source area models for these situations are very limited. In this study, a controlled tracer gas experiment was conducted in a wind tunnel based on a 1:200 scale model of a measurement site used in previous experimental work in central London. The detector was set at the location of the rooftop site as the tracer was released at a range of locations within the surrounding streets and rooftops. Concentration measurements are presented for a range of wind angles, with the spread of concentration measurements indicative of the source area distribution. Clear evidence of wind channeling by streets is seen with the shape of the source area strongly influenced by buildings upwind of the measurement point. The results of the wind tunnel study are compared to scalar concentration source areas generated by modelling approaches based on meteorological data from the central London experimental site and used in the interpretation of continuous carbon dioxide (CO2) concentration data. Initial conclusions will be drawn as to how to apply scalar concentration source area models to rooftop measurement sites and

  10. Defining Primary Care Shortage Areas: Do GIS-based Measures Yield Different Results?

    PubMed

    Daly, Michael R; Mellor, Jennifer M; Millones, Marco

    2018-02-12

    To examine whether geographic information systems (GIS)-based physician-to-population ratios (PPRs) yield determinations of geographic primary care shortage areas that differ from those based on bounded-area PPRs like those used in the Health Professional Shortage Area (HPSA) designation process. We used geocoded data on primary care physician (PCP) locations and census block population counts from 1 US state to construct 2 shortage area indicators. The first is a bounded-area shortage indicator defined without GIS methods; the second is a GIS-based measure that measures the populations' spatial proximity to PCP locations. We examined agreement and disagreement between bounded shortage areas and GIS-based shortage areas. Bounded shortage area indicators and GIS-based shortage area indicators agree for the census blocks where the vast majority of our study populations reside. Specifically, 95% and 98% of the populations in our full and urban samples, respectively, reside in census blocks where the 2 indicators agree. Although agreement is generally high in rural areas (ie, 87% of the rural population reside in census blocks where the 2 indicators agree), agreement is significantly lower compared to urban areas. One source of disagreement suggests that bounded-area measures may "overlook" some shortages in rural areas; however, other aspects of the HPSA designation process likely mitigate this concern. Another source of disagreement arises from the border-crossing problem, and it is more prevalent. The GIS-based PPRs we employed would yield shortage area determinations that are similar to those based on bounded-area PPRs defined for Primary Care Service Areas. Disagreement rates were lower than previous studies have found. © 2018 National Rural Health Association.

  11. Mitigation of landslide area around railway tunnel, South Sumatra Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Toha, M. Taufik; Setiabudidaya, Dedi; Komar, Syamsul; Bochori, Ghadafi, Moamar A.; Adiwarman, Mirza; Rahim, S. E.

    2017-09-01

    Adequate and safe railway line infrastructures as well as facilities are required to support the rail transport system in South Sumatra. The slope stability along railway line of Lahat-Lubuk Linggau South Sumatra were studied during landslide that occured on January 23th, 2016. The landslide occurred on the mouth of railway tunnel in Gunung Gajah Village, Lahat District that causing the railway transportation system had to be stopped for a few days. A comprehensive research was conducted to analyze the causes of the landslide and to identify other landslide risky areas along the railway line Lahat-Lubuk Linggau. The research activities included surveying, sampling, laboratory testing, investigating condition of geology, geotechnics, hydrogeology/hydrology, morphology and land use. The factors that cause landslide in the past studies were found to be morphology, structural geology, physical and mechanical characteristics, hydrogeology, hydrology, external forces (train vibration, earthquake). Results back analysis of slope stability when the landslide occurred showed that the value Safety Factor (SF) = 1, angle of friction = 0°, and cohesion = 0.49 kg/cm2 (49 kPa). Based on the observation and analysis of the condition of the morphology and orientation of the structure of the rock layers, there was a location prone to landslide (labile) in the surrounding area of the landslide. Mitigations to potential landslide in adjacent area were building a retaining wall, draining channels, and shortcrete at the rock wall after landslides and maintaining the land use around the slopes.

  12. Comparison of options for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel, including reduction of nozzle area

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.

    1984-01-01

    The acoustically significant features of the NASA 4X7m wind tunnel and the Dutch-German DNW low speed tunnel are compared to illustrate the reasons for large differences in background noise in the open jet test sections of the two tunnels. Also introduced is the concept of reducing test section noise levels through fan and turning vane source reductions which can be brought about by reducing the nozzle cross sectional area, and thus the circuit mass flow for a particular exit velocity. The costs and benefits of treating sources, paths, and changing nozzle geometry are reviewed.

  13. The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. H., E-mail: zhaohui@physics.umanitoba.ca; Bai, Lihui; Hu, C.-M.

    2015-03-15

    The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ) was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, itsmore » angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.« less

  14. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  15. Trajectories and traversal times in quantum tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhi Hong.

    1989-01-01

    The classical concepts of trajectories and traversal times applied to quantum tunneling are discussed. By using the Wentzel-Kramers-Brillouin approximation, it is found that in a forbidden region of a multidimensional space the wave function can be described by two sets of trajectories, or equivalently by two sets of wave fronts. The trajectories belonging to different sets are mutually orthogonal. An extended Huygens construction is proposed to determine these wave fronts and trajectories. In contrast to the classical results in the allowed region, these trajectories couple to each other. However, if the incident wave is normal to the turning surface, themore » trajectories are found to be independent and can be determined by Newton's equations of motion with inverted potential and energy. The multidimensional tunneling theory is then applied to the scanning tunneling microscope to calculate the current density distribution and to derive the expressions for the lateral resolution and the surface corrugation amplitude. The traversal time in quantum tunneling, i.e. tunneling time, is found to depend on model calculations and simulations. Computer simulation of a wave packet tunneling through a square barrier is performed. Several approaches, including the phase method, Larmor clock, and time-dependent barrier model, are investigated. For a square barrier, two characteristic times are found: One is equal to the barrier width divided by the magnitude of the imaginary velocity; the other is equal to the decay length divided by the incident velocity. It is believed that the tunneling time can only be defined operationally.« less

  16. Sonographic diagnosis of carpal tunnel syndrome: a study in 200 hospital workers*

    PubMed Central

    Castro, Adham do Amaral e; Skare, Thelma Larocca; Nassif, Paulo Afonso Nunes; Sakuma, Alexandre Kaue; Barros, Wagner Haese

    2015-01-01

    Objective To describe the prevalence of carpal tunnel syndrome in a sample of 200 healthy hospital workers, establishing the respective epidemiological associations. Materials and Methods Two hundred individuals were submitted to wrist ultrasonography to measure the median nerve area. They were questioned and examined for epidemiological data, body mass index, carpal tunnel syndrome signs and symptoms, and submitted to the Boston carpal tunnel questionnaire (BCTQ) to evaluate the carpal tunnel syndrome severity. A median nerve area ≥ 9 mm2 was considered to be diagnostic of carpal tunnel syndrome. Results Carpal tunnel syndrome was diagnosed by ultrasonography in 34% of the sample. It was observed the association of carpal tunnel syndrome with age (p < 0.0001), paresthesia (p < 0.0001), Tinel’s test (p < 0.0001), Phalen’s test (p < 0.0001), BCTQ score (p < 0.0001), and years of formal education (p < 0.0001). Years of formal education was the only variable identified as an independent risk factor for carpal tunnel syndrome (95% CI = 1.03 to 1.24). Conclusion The prevalence of carpal tunnel syndrome in a population of hospital workers was of 34%. The number of years of formal education was the only independent risk factor for carpal tunnel syndrome. PMID:26543279

  17. Behaviour of tunnel lining material in road tunnel fire

    NASA Astrophysics Data System (ADS)

    Tomar, M.; Khurana, S.; Singh, R.

    2018-04-01

    The worldwide road tunnel linings are protected against possible fire scenarios to safeguard the structure and assist in occupant evacuation. There are various choices of active and passive protection available, passive protections includes calcium silicate boards, polypropylene fibers, vermiculite cement based sprays, and other intumescent materials. Tunnel fire is a complex phenomenon and researchers in the past has highlighted that there are various factors which affect the tunnel fires. The effect of passive protection techniques on tunnel fire is not well understood, especially for the insulation boards. It’s been understood from past research that for a heavy good vehicular (HGV) fire in the tunnel, the heat feedback effect is significant. Insulation boards may also affect the tunnel fires by altering the heat feedback effect in vehicular tunnels and hence this can affect the overall heat release rates and temperature profile inside a tunnel. This study focuses on studying the role of insulation boards in tunnel fires and evaluating its effect on overall heat release rate and tunnel temperatures.

  18. 14. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  19. 13. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  20. 6. VIEW OF FIVEFOOT WIND TUNNEL WITH AIR STRAIGHTENER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF FIVE-FOOT WIND TUNNEL WITH AIR STRAIGHTENER AND OPERATOR STATION IN FOREGROUND (1991). - Wright-Patterson Air Force Base, Area B, Building No. 19, Five-Foot Wind Tunnel, Dayton, Montgomery County, OH

  1. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  2. 78 FR 46117 - National Tunnel Inspection Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... based on roadway enclosure and length: ``Any combination of structures that creates a structure that is... this SNPRM apply to all structures defined as highway tunnels on all public roads, on and off Federal... describes the organizational requirements associated with successful implementation of the proposed NTIS...

  3. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  4. Giant tunneling magnetoresistance and tunneling spin polarization in magnetic tunnel junctions with MgO (100) tunnel barriers

    NASA Astrophysics Data System (ADS)

    Parkin, Stuart

    2006-03-01

    Recent advances in generating, manipulating and detecting spin-polarized electrons and electrical current make possible new classes of spin based sensor, memory and logic devices [1]. One key component of many such devices is the magnetic tunneling junction (MTJ) - a sandwich of thin layers of metallic ferromagnetic electrodes separated by a tunneling barrier, typically an oxide material only a few atoms thick. The magnitude of the tunneling current passing through the barrier can be adjusted by varying the relative magnetic orientation of the adjacent ferromagnetic layers. As a result, MTJs can be used to sense the magnitude of magnetic fields or to store information. The electronic structure of the ferromagnet together with that of the insulator determines the spin polarization of the current through an MTJ -- the ratio of 'up' to 'down' spin electrons. Using conventional amorphous alumina tunnel barriers tunneling spin polarization (TSP) values of up to ˜55% are found for conventional 3d ferromagnets, such as CoFe, but using highly textured crystalline MgO tunnel barriers TSP values of more than 90% can be achieved for otherwise the same ferromagnet [2]. Such TSP values rival those previously observed only with half-metallic ferromagnets. Corresponding giant values of tunneling magnetoresistance (TMR) are found, exceeding 350% at room temperature and nearly 600% at 3K. Perhaps surprisingly the MgO tunnel barrier can be quite rough: its thickness depends on the local crystalline texture of the barrier, which itself is influenced by structural defects in the underlayer. We show that the magnitude and the sign of the TMR is strongly influenced by defects in the tunnel barrier and by the detailed structure of the barrier/ferromagnet interfaces. The observation of Kondo-assisted tunneling phenomena will be discussed as well as the detailed dependence of TMR on chemical bonding at the interfaces [3]. [1] .S.S.P. Parkin, X. Jiang, C. Kaiser, et al., Proc. IEEE 91, 661

  5. Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models

    NASA Astrophysics Data System (ADS)

    Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter

    2013-10-01

    Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.

  6. LOFT. Construction view of tunnel during 1957 to compare with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Construction view of tunnel during 1957 to compare with HAER photo ID-33-E-358 above. Tunnel sections were pre-cast, then joined together. Photographer described this as :Personnel and service tunnel running east-west in test building of the FET." Date: December 19, 1957. Photographer: Jack L. Anderson. INEEL negative no. 57-6206 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Tunneling behavior of the formosan subterranean termite (isoptera: rhinotermitadae) in dry soil

    USDA-ARS?s Scientific Manuscript database

    This study examines the effect of dry soil on tunnel construction by the Formosan subterranean termite, Cptotermes formosanus. Termites did not construct tunnels in dry soil in any of the treatments. Termites only constructed tunnels in moist areas in treatments where the soil was partially moistene...

  8. Shallow Underground Tunnel/Chamber Explosion Test Program Summary Report

    DTIC Science & Technology

    1990-08-01

    TECHNICAL REPORT SL-90-10 SHALLOW UNDERGROUND TUNNEL /CHAMBERo ni neers= EXPLOSION TEST PROGRAM SUMMARY REPORT ~ by .11 ~ ~A.Charles E. Joachim N...hazardous et f ects produced by thle eXPlO.SiOll. Fhe prugrari was divided into four study areas; tunnel /c’hamber pressure, external ai rhlast...extern:il grounid motion, andl ejecta/debris. The tunnel /chamber pressure meaisurements 11roe i dell (LI La onl thle i nte rnalI explosion environment and the

  9. 10. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  10. 9. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  11. 11. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  12. A water tunnel flow visualization study of the F-15

    NASA Technical Reports Server (NTRS)

    Lorincz, D. J.

    1978-01-01

    Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.

  13. Systems tunnel linear shaped charge lightning strike

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol Lightning Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the high-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated lightning strikes with peak current levels within 71 percent of the worst-case lightning strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.

  14. Tarsal tunnel syndrome in a patient on long-term peritoneal dialysis: case report.

    PubMed

    Ozdemir, Ozgür; Calişaneller, Tarkan; Sönmez, Erkin; Altinörs, Nur

    2007-10-01

    Tarsal tunnel syndrome (TTS) is defined as the entrapment of the posterior tibial nerve in the tarsal tunnel of the ankle. The etiologies of tarsal tunnel syndrome are mainly the presence of a ganglion, osseous prominence with tarsal bone coalition, trauma, varicose veins, neurinoma, hypertrophy of the flexor retinaculum, or systemic disease (rheumatoid arthritis, ankylosing spondylitis). However, no specific cause can be identified in some cases. Patients with chronic renal failure tend to develop peripheral nerve entrapment and carpal tunnel syndrome is the best-known peripheral entrapment neuropathy among them. Contrary to carpal tunnel syndrome, tarsal tunnel syndrome is observed less frequently in chronic renal failure patients. The common presenting symptoms of TTS are paresthesias and/or pain in the plantar side of the foot. Motor symptoms are rarely detected. Diagnosis is made primarily by electroneuromyographic studies and physical examination. Surgery is the treatment of choice and the outcome is generally favourable. In this report, we present a patient with tarsal tunnel syndrome complicating peritoneal dialysis.

  15. 3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  16. Evaluation of tunnel seismic prediction (TSP) result using the Japanese highway rock mass classification system for Pahang-Selangor Raw Water Transfer Tunnel

    NASA Astrophysics Data System (ADS)

    Von, W. C.; Ismail, M. A. M.

    2017-10-01

    The knowing of geological profile ahead of tunnel face is significant to minimize the risk in tunnel excavation work and cost control in preventative measure. Due to mountainous area, site investigation with vertical boring is not recommended to obtain the geological profile for Pahang-Selangor Raw Water Transfer project. Hence, tunnel seismic prediction (TSP) method is adopted to predict the geological profile ahead of tunnel face. In order to evaluate the TSP results, IBM SPSS Statistic 22 is used to run artificial neural network (ANN) analysis to back calculate the predicted Rock Grade Points (JH) from actual Rock Grade Points (JH) using Vp, Vs and Vp/Vs from TSP. The results show good correlation between predicted Rock Grade points and actual Rock Grade Points (JH). In other words, TSP can provide geological profile prediction ahead of tunnel face significantly while allowing continuously TBM excavation works. Identifying weak zones or faults ahead of tunnel face is crucial for preventative measures to be carried out in advance for a safer tunnel excavation works.

  17. Numerical simulation study on impact of slope on smoke temperature distribution and smoke spread pattern in spiral tunnel fires

    NASA Astrophysics Data System (ADS)

    Li, Tao; Xie, Wei

    2017-04-01

    The spiral tunnel arises as a new form of tunnel, with great differences in fire development pattern when compared with traditional straight line tunnel, this paper takes method of numerical simulation, based on computation fluid dynamics theory and fire-turbulence numerical simulation theory, establishing a full-scale spiral tunnel model, and applies CFX simulation software to research full-scale spiral tunnel fire and its ventilation condition. The results indicate that with increasing tunnel slope, high temperature area gradually extends to downstream area, high temperature mainly distributes near fire source area, and symmetrically distributes among the fire center point; With increasing tunnel slope, the highest temperature underneath tunnel arch rises first followed by a downward trend and then rising again, which strengthens chimney effect, and promotes more fresh cold air flow into the tunnel, suppressing fire smoke backflow and simultaneously accelerating fire smoke spread to downstream area; Fire plume presents vertical slender shape with 1% or 3% tunnel slope, and burning flame hits tunnel arch and then extending all around into the ceiling jet flow, when tunnel slope increases to 5% or 7%, fire plume cross section grows bigger and wider with unstable burning flame swaying in all directions, integrally incline to fire downstream.

  18. Instantons re-examined: dynamical tunneling and resonant tunneling.

    PubMed

    Le Deunff, Jérémy; Mouchet, Amaury

    2010-04-01

    Starting from trace formulas for the tunneling splittings (or decay rates) analytically continued in the complex time domain, we obtain explicit semiclassical expansions in terms of complex trajectories that are selected with appropriate complex-time paths. We show how this instantonlike approach, which takes advantage of an incomplete Wick rotation, accurately reproduces tunneling effects not only in the usual double-well potential but also in situations where a pure Wick rotation is insufficient, for instance dynamical tunneling or resonant tunneling. Even though only one-dimensional autonomous Hamiltonian systems are quantitatively studied, we discuss the relevance of our method for multidimensional and/or chaotic tunneling.

  19. GRC-11-02-17-WindTunnel-9x15-001

    NASA Image and Video Library

    2017-11-02

    The Aerosciences Evaluation and Test Capabilities (AETC) Portfolio implemented the Capability Challenge to “Reduce Background Noise Levels for Engine Efficiency Measurements at the NASA Glenn 9x15 Low Speed Wind Tunnel”. The 9x15 Low Speed Wind Tunnel Acoustic Improvements animation documents the acoustic modifications being made to the 9x15 leg of the wind tunnel to reduce background noise levels. A brief history of the 9x15, research testing performed in the wind tunnel, the need to reduce background noise, and the five state of the art acoustic design modifications are documented in the animation. The expected noise reduction is presented audibly and the resulting benefit to NASA is also defined.

  20. 6. CLOSEUP VIEW OF TENFOOT WIND TUNNEL (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CLOSE-UP VIEW OF TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  1. Parametric Method to Define Area of Allowable Configurations while Changing Position of Restricted Zones

    NASA Astrophysics Data System (ADS)

    Pritykin, F. N.; Nefedov, D. I.; Rogoza, Yu A.; Zinchenko, Yu V.

    2018-03-01

    The article presents the findings related to the development of the module for automatic collision detection of the manipulator with restricted zones for virtual motion modeling. It proposes the parametric method for specifying the area of allowable joint configurations. The authors study the cases when restricted zones are specified using the horizontal plane or front-projection planes. The joint coordinate space is specified by rectangular axes in the direction of which the angles defining the displacements in turning pairs are laid off. The authors present the results of modeling which enabled to develop a parametric method for specifying a set of cross-sections defining the shape and position of allowable configurations in different positions of a restricted zone. All joint points that define allowable configurations refer to the indicated sections. The area of allowable configurations is specified analytically by using several kinematic surfaces that limit it. A geometric analysis is developed based on the use of the area of allowable configurations characterizing the position of the manipulator and reported restricted zones. The paper presents numerical calculations related to virtual simulation of the manipulator path performed by the mobile robot Varan when using the developed algorithm and restricted zones. The obtained analytical dependencies allow us to define the area of allowable configurations, which is a knowledge pool to ensure the intelligent control of the manipulator path in a predefined environment. The use of the obtained region to synthesize a joint trajectory makes it possible to correct the manipulator path to foresee and eliminate deadlocks when synthesizing motions along the velocity vector.

  2. Magnetic tunnel junction thermocouple for thermoelectric power harvesting

    NASA Astrophysics Data System (ADS)

    Böhnert, T.; Paz, E.; Ferreira, R.; Freitas, P. P.

    2018-05-01

    The thermoelectric power generated in magnetic tunnel junctions (MTJs) is determined as a function of the tunnel barrier thickness for a matched electric circuit. This study suggests that lower resistance area product and higher tunnel magnetoresistance will maximize the thermoelectric power output of the MTJ structures. Further, the thermoelectric behavior of a series of two MTJs, a MTJ thermocouple, is investigated as a function of its magnetic configurations. In an alternating magnetic configurations the thermovoltages cancel each other, while the magnetic contribution remains. A large array of MTJ thermocouples could amplify the magnetic thermovoltage signal significantly.

  3. Wind Tunnel Complex at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    This aerial photograph shows the entire original wind tunnel complex at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The large Altitude Wind Tunnel (AWT) at the center of the photograph dominates the area. The Icing Research Tunnel to the right was incorporated into the lab’s design to take advantage of the AWT’s powerful infrastructure. The laboratory’s first supersonic wind tunnel was added to this complex just prior to this September 1945 photograph. The AWT was the nation’s only wind tunnel capable of studying full-scale engines in simulated flight conditions. The AWT’s test section and control room were within the two-story building near the top of the photograph. The exhauster equipment used to thin the airflow and the drive motor for the fan were in the building to the right of the tunnel. The unique refrigeration equipment was housed in the structure to the left of the tunnel. The Icing Research Tunnel was an atmospheric tunnel that used the AWT’s refrigeration equipment to simulate freezing rain inside its test section. A spray bar system inside the tunnel was originally used to create the droplets. The 18- by 18-inch supersonic wind tunnel was built in the summer of 1945 to take advantage of the AWT’s powerful exhaust system. It was the lab’s first supersonic tunnel and could reach Mach 1.91. Eventually the building would house three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951.

  4. Geophysical investigations in deep horizontal holes drilled ahead of tunnelling

    USGS Publications Warehouse

    Carroll, R.D.; Cunningham, M.J.

    1980-01-01

    Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.

  5. Diagnostic utility of sonography and correlation between sonographic and clinical findings in patients with carpal tunnel syndrome.

    PubMed

    Tajika, Tsuyoshi; Kobayashi, Tsutomu; Yamamoto, Atsushi; Kaneko, Tetsuya; Takagishi, Kenji

    2013-11-01

    First, we investigated the accuracy of carpal tunnel syndrome diagnosis by comparing the cross-sectional area of the median nerve measured at the level of proximal inlet of the carpal tunnel with that measured at the level of the distal radioulnar joint on sonography. Second, we evaluated the correlation between sonographic and neurophysiologic findings and clinical findings assessed by the Carpal Tunnel Syndrome Instrument of the Japanese Society for Surgery of the Hand (JSSH). Fifty wrists in 34 patients and 81 wrists in 45 healthy volunteers were examined. The proximal cross-sectional area and the difference (Δ) between the proximal and distal cross-sectional areas were calculated for each wrist. Nerve conduction velocity tests were performed for all patients with carpal tunnel syndrome. The proximal, distal, and Δ cross-sectional areas were compared for the two groups. We examined the correlation between the proximal, distal, and Δ areas, nerve conduction velocity findings, and JSSH scores in the patients. The diagnosis of carpal tunnel syndrome determined by the Δ cross-sectional area was more accurate than the diagnosis determined by the proximal area on receiver operating characteristic curve analysis (P = .006). Statistically significant correlations were found between proximal area, Δ area, and nerve conduction velocity findings (proximal, r = 0.45; P = .0013; Δ, r = 0.44; P = .001). The proximal and distal areas were positively correlated with the JSSH symptom severity score (proximal, r= 0.39; P= .005; distal, r = 0.35; P = .014). The cross-sectional area method using sonography has excellent performance for diagnosing carpal tunnel syndrome. It was useful for measuring the proximal and distal cross-sectional areas to evaluated the symptom severity and for calculating the Δ cross-sectional area to assess motor nerve damage in patients with carpal tunnel syndrome.

  6. Field Evaluation of Advanced Methods of Geotechnical Instrumentation for Transit Tunneling

    DOT National Transportation Integrated Search

    1983-09-01

    The construction of new rail rapid transit systems and additions to existing systems, has greatly increased the amount of tunneling performed in the United States. Since these transit systems are generally located in urban areas, tunneling is used to...

  7. The Design of Wind Tunnels and Wind Tunnel Propellers

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H; Hebbert, C M

    1919-01-01

    Report discusses the theory of energy losses in wind tunnels, the application of the Drzewiecki theory of propeller design to wind tunnel propellers, and the efficiency and steadiness of flow in model tunnels of various types.

  8. Report Tunneling Cost Reduction Study prepared for Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1999-07-16

    Fermi National Accelerator Laboratories has a need to review the costs of constructing the very long tunnels which would be required for housing the equipment for the proposed Very Large Hadron Collider (VLHC) project. Current tunneling costs are high, and the identification of potential means of significantly reducing them, and thereby helping to keep overall project costs within an acceptable budget, has assumed great importance. Fermilab has contracted with The Robbins Company to provide an up-to-date appraisal of tunneling technology, and to review the potential for substantially improving currently the state-of-practice performance and construction costs in particular. The Robbins Companymore » was chosen for this task because of its long and successful experience in hard rock mechanical tunnel boring. In the past 40 years, Robbins has manufactured over 250 tunneling machines, the vast majority for hard rock applications. In addition to also supplying back-up equipment, Robbins has recently established a division dedicated to the manufacture of continuous conveying equipment for the efficient support of tunneling operations. The study extends beyond the tunnel boring machine (TBM) itself, and into the critical area of the logistics of the support of the machine as it advances, including manpower. It is restricted to proven methods using conventional technology, and its potential for incremental but meaningful improvement, rather than examining exotic and undeveloped means of rock excavation that have been proposed from time to time by the technical community. This is the first phase of what is expected to be a number of studies in increasing depth of technical detail, and as such has been restricted to the issues connected with the initial 34 kilometer circumference booster tunnel, and not the proposed 500 kilometer circumference tunnel housing the VLHC itself. The booster tunnel is entirely sited within low to medium strength limestone and dolomite

  9. Sonographically guided percutaneous needle release of the carpal tunnel for treatment of carpal tunnel syndrome: preliminary report.

    PubMed

    McShane, John M; Slaff, Samantha; Gold, Judith E; Nazarian, Levon N

    2012-09-01

    The purpose of this study was to evaluate the effectiveness of a novel treatment procedure, sonographically guided percutaneous needle release of the carpal tunnel, for individuals with carpal tunnel syndrome. Seventeen patients (89% female; mean age, 62 years; SD, 13.6 years) with a clinical diagnosis of carpal tunnel syndrome who had undergone a sonographically guided percutaneous needle release of the carpal tunnel at least 6 months before follow-up evaluation were retrospectively reviewed. At the follow-up evaluation, to ascertain previous and current symptoms as well as functional impairment, the patients filled out a hand diagram and a questionnaire. In addition, medical records were reviewed, and patients were queried regarding complications such as infection or nerve damage. Median nerve sonographic measurements and a physical evaluation were performed on a subset of 13 patients who came to the office for evaluation. Postprocedure sonography showed that patients had a significantly smaller (P = .03) cross-sectional area of the median nerve compared to pretreatment values. In addition, patients had significantly fewer symptoms (P < .0001), less functional impairment (P = .0002), and an improved hand diagram score (P < .0001). Postprocedure patients had grip strength that was 12 lb below average (≈1 SD below) compared to grip strength norms. However, most patients (84.6%) had negative clinical diagnostic test results for carpal tunnel syndrome, and 86% said they were satisfied with the procedure. There were no procedure-related infections or nerve injuries. Of the patients with carpal tunnel syndrome who agreed to participate in this study, most had favorable symptomatic and functional outcomes. Sonographically guided percutaneous needle release of the carpal tunnel may be an alternative option to traditional surgical treatment of carpal tunnel syndrome.

  10. TWINTAN: A program for transonic wall interference assessment in two-dimensional wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1980-01-01

    A method for assessing the wall interference in transonic two dimensional wind tunnel test was developed and implemented in a computer program. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the perturbation attriburable to the model, and the equivalent free air flow around the model. Input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall induced perturbation fields is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.

  11. Overestimation of femoral tunnel length during anterior cruciate ligament reconstruction using the retrograde outside-in drilling technique.

    PubMed

    Okazaki, Ken; Osaki, Kanji; Nishikawa, Kazutaka; Matsubara, Hirokazu; Tashiro, Yasutaka; Iwamoto, Yukihide

    2016-08-01

    When the femoral tunnel socket is reamed in an oblique direction from the wall of inter-condylar notch in anterior cruciate ligament (ACL) reconstruction, the tunnel length can be shorter at the periphery than at the centre. Because surgeons can manipulate the direction of tunnel in the outside-in femoral tunnel drilling technique, this length mismatch would vary depending on the direction of the tunnel. The purpose of this study was to investigate this length mismatch when reamed in various directions. In total of thirteen points were defined as femoral drilling entry points on concentric lines with 0, 1, 2, and 3 cm radius from the lateral epicondyle of a three-dimensional bone model from 40 subjects. Femoral tunnel drilling was simulated on the models by connecting the centre of the ACL footprint with each defined point on the lateral femoral surface. The mismatch length was measured between the centre and the shortest peripheral side of the tunnel socket. When the distance between the drilling entry point on the lateral femoral surface and the lateral epicondyle was increased to anterior proximal direction, there was a significant increase in the mismatch length. The mismatch length became more than 2 mm when the entry point was located more than 2 cm away from the lateral epicondyle. When the drilling entry point is set far away from the lateral epicondyle, a significant increase was observed in tunnel length mismatch between the centre of the tunnel and its shortest peripheral side. Because the tunnel length is measured with a guide pin introduced at the centre of the tunnel before reaming in retrograde outside-in technique, this length mismatch could cause an overestimation of the tunnel length. Surgeons should recognise this mismatch when preparing the length of graft and socket to optimise the graft insertion length into the socket.

  12. Pre-Test Assessment of the Use Envelope of the Normal Force of a Wind Tunnel Strain-Gage Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    The relationship between the aerodynamic lift force generated by a wind tunnel model, the model weight, and the measured normal force of a strain-gage balance is investigated to better understand the expected use envelope of the normal force during a wind tunnel test. First, the fundamental relationship between normal force, model weight, lift curve slope, model reference area, dynamic pressure, and angle of attack is derived. Then, based on this fundamental relationship, the use envelope of a balance is examined for four typical wind tunnel test cases. The first case looks at the use envelope of the normal force during the test of a light wind tunnel model at high subsonic Mach numbers. The second case examines the use envelope of the normal force during the test of a heavy wind tunnel model in an atmospheric low-speed facility. The third case reviews the use envelope of the normal force during the test of a floor-mounted semi-span model. The fourth case discusses the normal force characteristics during the test of a rotated full-span model. The wind tunnel model's lift-to-weight ratio is introduced as a new parameter that may be used for a quick pre-test assessment of the use envelope of the normal force of a balance. The parameter is derived as a function of the lift coefficient, the dimensionless dynamic pressure, and the dimensionless model weight. Lower and upper bounds of the use envelope of a balance are defined using the model's lift-to-weight ratio. Finally, data from a pressurized wind tunnel is used to illustrate both application and interpretation of the model's lift-to-weight ratio.

  13. Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity

    NASA Technical Reports Server (NTRS)

    Stephens, T.; Adams, R.

    1972-01-01

    A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.

  14. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE PAGES

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...

    2017-07-12

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  15. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  16. Tunnel flexibility effect on the ground surface acceleration response

    NASA Astrophysics Data System (ADS)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  17. Defining urban and rural areas: a new approach

    NASA Astrophysics Data System (ADS)

    Arellano, Blanca; Roca, Josep

    2017-10-01

    The separation between the countryside and the city, from rural and urban areas, has been one of the central themes of the literature on urban and territorial studies. The seminal work of Kingsley Davis [10] in the 1950s introduced a wide and fruitful debate which, however, has not yet concluded in a rigorous definition that allows for comparative studies at the national and subnational levels of a scientific nature. In particular, the United Nations (UN) definition of urban and rural population is overly linked to political and administrative factors that make it difficult to use data adequately to understand the human settlement structure of different countries. The present paper seeks to define a more rigorous methodology for the identification of rural and urban areas. For this purpose it uses the night lights supplied by the SNPP satellite, and more specifically by the VIIRS sensor for the determination of the urbanization gradient, and by means of the same construct a more realistic indicator than the statistics provided by the UN. The arrival of electrification to nearly every corner of the planet is certainly the first and most meaningful indicator of artificialization of land. In this sense, this paper proposes a new methodology designed to identify highly impacted (urbanized) landscapes worldwide based on the analysis of satellite imagery of night-time lights. The application of this methodology on a global scale identifies the land highly impacted by light, the urbanization process, and allows an index to be drawn up of Land Impacted by Light per capita (LILpc) as an indicator of the level of urbanization. The methodology used in this paper can be summarized in the following steps: a) a logistic regression between US Urban Areas (UA), as a dependent variable, and night-time light intensity, as an explanatory variable, allows us to establish a nightlight intensity level for the determination of Areas Highly Impacted by Light (AHIL); b) the delimitation of

  18. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    DOE PAGES

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; ...

    2016-12-28

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO 2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excitemore » infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.« less

  19. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO 2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excitemore » infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.« less

  20. The Role of Astro-Geodetic in Precise Guidance of Long Tunnels

    NASA Astrophysics Data System (ADS)

    Mirghasempour, M.; Jafari, A. Y.

    2015-12-01

    One of prime aspects of surveying projects is guidance of paths of a long tunnel from different directions and finally ending all paths in a specific place. This kind of underground surveying, because of particular condition, has some different points in relation to the ground surveying, including Improper geometry in underground transverse, low precise measurement in direction and length due to condition such as refraction, distinct gravity between underground point and corresponding point on the ground (both value and direction of gravity) and etc. To solve this problems, astro-geodetic that is part of geodesy science, can help surveying engineers. In this article, the role of astronomy is defined in two subjects: 1- Azimuth determination of directions from entrance and exit nets of tunnel and also calibration of gyro-theodolite to use them in Underground transvers: By astronomical methods, azimuth of directions can be determine with an accuracy of 0.5 arcsecond, whereas, nowadays, no gyroscope can measure the azimuth in this accuracy; For instance, accuracy of the most precise gyroscope (Gyromat 5000) is 1.2 cm over a distance of one kilometre (2.4 arcsecond). Furthermore, the calibration methods that will be mention in this article, have significance effects on underground transverse. 2- Height relation between entrance point and exit point is problematic and time consuming; For example, in a 3 km long tunnel ( in Arak- Khoram Abad freeway), to relate entrance point to exit point, it is necessary to perform levelling about 90 km. Other example of this boring and time consuming levelling is in Kerman tunnel. This tunnel is 36 km length, but to transfer the entrance point height to exit point, 150 km levelling is needed. According to this paper, The solution for this difficulty is application of astro-geodetic and determination of vertical deflection by digital zenith camera system TZK2-D. These two elements make possible to define geoid profile in terms of

  1. In-vehicle nitrogen dioxide concentrations in road tunnels

    NASA Astrophysics Data System (ADS)

    Martin, Ashley N.; Boulter, Paul G.; Roddis, Damon; McDonough, Liza; Patterson, Michael; Rodriguez del Barco, Marina; Mattes, Andrew; Knibbs, Luke D.

    2016-11-01

    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08-0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35-0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.

  2. Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating in AEDC Tunnel 9

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Horvath, Thomas J.; Berger, Karen T.; Lillard, Randolph P.; Kirk, Benjamin S.; Coblish, Joseph J.; Norris, Joseph D.

    2008-01-01

    An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Arnold Engineering Development Center Tunnel 9. The goals of this test were to measure turbulent heating augmentation levels on the heat shield and to obtain high-fidelity heating data for assessment of computational fluid dynamics methods. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins for the computational method. Data from both the wind tunnel test and the computational study are presented herein.

  3. Estimation of tunnel blockage from wall pressure signatures: A review and data correlation

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.; Wilsden, D. J.; Lilley, D. E.

    1979-01-01

    A method is described for estimating low speed wind tunnel blockage, including model volume, bubble separation and viscous wake effects. A tunnel-centerline, source/sink distribution is derived from measured wall pressure signatures using fast algorithms to solve the inverse problem in three dimensions. Blockage may then be computed throughout the test volume. Correlations using scaled models or tests in two tunnels were made in all cases. In many cases model reference area exceeded 10% of the tunnel cross-sectional area. Good correlations were obtained regarding model surface pressures, lift drag and pitching moment. It is shown that blockage-induced velocity variations across the test section are relatively unimportant but axial gradients should be considered when model size is determined.

  4. Wind-tunnel results of the aerodynamic characteristics of a 1/8-scale model of a twin engine short-haul transport. [in Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.

    1977-01-01

    A wind tunnel test was conducted in the Langley V/STOL tunnel to define the aerodynamic characteristics of a 1/8-scale twin-engine short haul transport. The model was tested in both the cruise and approach configurations with various control surfaces deflected. Data were obtained out of ground effect for the cruise configuration and both in and out of ground effect for the approach configuration. These data are intended to be a reference point to begin the analysis of the flight characteristics of the NASA terminal configured vehicle (TCV) and are presented without analysis.

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 478: Area 12 T-Tunnel Ponds, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 478, Area 12 T-Tunnel Ponds. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 478 is comprised of one corrective action site (CAS): • 12-23-01, Ponds (5) RAD Area The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with usemore » restrictions for CAU 478.« less

  6. A method for defining down-wind evacuation areas for transportation accidents involving toxic propellant spills

    NASA Technical Reports Server (NTRS)

    Siewert, R. D.

    1972-01-01

    Evacuation areas for accidental spills of toxic propellants along rail and highway shipping routes are defined to help local authorities reduce risks to people from excessive vapor concentrations. These criteria along with other emergency information are shown in propellant spill cards. The evacuation areas are based on current best estimates of propellant evaporation rates from various areas of spill puddles. These rates are used together with a continuous point-source, bi-normal model of plume dispersion. The rate at which the toxic plume disperses is based on a neutral atmospheric condition. This condition, which results in slow plume dispersion, represents the widest range of weather parameters which could occur during the day and nighttime periods. Evacuation areas are defined by the ground level boundaries of the plume within which the concentrations exceed the toxic Threshold Limit Value (TLV) or in some cases the Emergency Exposure Limit (EEL).

  7. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    PubMed Central

    Ohno, Takeo; Oyama, Yutaka

    2012-01-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor. PMID:27877466

  8. The self streamlining wind tunnel. [wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1975-01-01

    A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.

  9. Experience in design and construction of the Log tunnel

    NASA Astrophysics Data System (ADS)

    Jovičić, Vojkan; Goleš, Niko; Tori, Matija; Peternel, Miha; Vajović, Stanojle; Muhić, Elvir

    2017-09-01

    A twin highway Log tunnel is a part of a new motorway connection between Maribor and Zagreb, section Draženci-Gru\\vskovje, which is located towards the border crossing between Slovenia and Croatia. The tunnel is currently under construction, and only the excavation works have been completed during the writing of this paper. The terrain in the area of the Log tunnel is diverse, and the route of the highway in its vicinity is characterised by deep excavations, bridges or viaducts. The Log tunnel is approximately 250 m long, partly constructed as a gallery. The geological conditions are dominated by Miocene base rock, featuring layers of well-connected clastic rocks, which are covered by diluvium clays, silts, sands and gravels of different thicknesses. Due to the short length of the tunnel, the usual separation of the motorway route to the left and the right tunnel axes was not carried out. Thus, the tunnel was constructed with an intermediate pillar and was designed as a three-lane tunnel, including the stopping lane. The construction of the tunnel was carried out using the New Austrian tunnelling method (NATM), in which the central adit was excavated first and the intermediate pillar was constructed within it. The excavation of the main tubes followed and was divided into the top heading, bench and the invert, enabling the intermediate pillar to take the load off the top heading of both tubes. The secondary lining of the tunnel is currently under construction. The experience of the tunnel construction gathered so far is presented in the paper. The main emphasis is on the construction of the intermediate pillar, which had to take the significant and asymmetrical ground load.

  10. Tunnel formation by Reticulitermes flavipes and Coptotermes formosanus (Isoptera: Rhinotermitidae) in response to wood in sand.

    PubMed

    Puche, H; Su, N Y

    2001-12-01

    The tunneling responses of two subterranean termite species, Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar), to the presence of sound wood in laboratory arenas were studied. Branching pattern and the speed of tunnel construction between R. flavipes and C. formosanus also were compared. Patlak's residence index (rho) was generated using the length, width, speed of construction, and area of the primary tunnels built by termites. In the same allotted time, C. formosanus built wider and shorter primary tunnels, whereas R. flavipes built thinner and longer primary tunnels. The presence of wood did not affect termite tunnel formation. This lack of variation in tunnel formation parameters was evidenced by the inability of the termites to locate wood sources over distance, even as short as 2.5 mm, and by the similar tunneling behaviors in areas of the arena with or without wood. Patlak's model predicted the densities of tunnels with an error between 9 and 28%. in experiments with R. flavipes exposed to a range of 0-8,000 g of wood, and between 61 and 87% in experiments with C. formosanus. These results indicated that the residence index can provide a qualitative measure of the effect of habitat heterogeneity on the individual termite tunnels. The tunneling constructions strategy of these subterranean termites is discussed.

  11. Design and Development of Low-Cost Water Tunnel for Educational Purpose

    NASA Astrophysics Data System (ADS)

    Zahari, M.; Dol, S. S.

    2015-04-01

    The hydrodynamic behaviour of immersed body is essential in fluid dynamics study. Water tunnel is an example of facility required to provide a controlled condition for fluid flow research. The operational principle of water tunnel is quite similar to the wind tunnel but with different working fluid and higher flow-pumping capacity. Flow visualization in wind tunnel is more difficult to conduct as turbulent flows in wind dissipate quickly whilst water tunnel is more suitable for such purpose due to higher fluid viscosity and wide variety of visualization techniques can be employed. The present work focusses on the design and development of open flow water tunnel for the purpose of studying vortex-induced vibration from turbulent vortex shedding phenomenon. The water tunnel is designed to provide a steady and uniform flow speed within the test section area. Construction details are discussed for development of low-cost water tunnel for quantitative and qualitative fluid flow measurements. The water tunnel can also be used for educational purpose such as fluid dynamics class activity to provide quick access to visualization medium for better understanding of various turbulence motion learnt in class.

  12. Planar Tunneling Spectroscopy of Graphene Nanodevices

    NASA Astrophysics Data System (ADS)

    Wang, Joel I.-Jan; Bretheau, Landry; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    2-D Van-der-Waals mesoscopic physics have seen a rapid development in the last 10 years, with new materials each year added to the toolbox. Stacking them like Lego enables the combination of their individual electronic properties. In particular, hexagonal boron nitride, which is an insulator, gives the possibility to perform planar (2-D to 2-D) tunneling spectroscopy within this type of heterostructures. Unlike standard transport measurements, tunneling spectroscopy enables to probe the electronic properties in the energy domain. Moreover, since planar tunneling probes a large area of the system, global quantum features such as quantum Hall effect, superconducting proximity effect or quantum confinement can be investigated. In this talk, we will present implementation of heterostructures consisting of graphene, hexagonal boron nitride, and graphite, fabricated for planar tunneling spectroscopy. In order to reveal the intrinsic properties of materials, the fabrication scheme aims at preserving the pristine nature of the 2-DEGS as well as minimizing the doping introduced by external probes. As a demonstration, measurements of these devices in normal states, high magnetic field environment, and induced superconducting state will be presented.

  13. The role of sediment supply in esker formation and ice tunnel evolution

    NASA Astrophysics Data System (ADS)

    Burke, Matthew J.; Brennand, Tracy A.; Sjogren, Darren B.

    2015-05-01

    Meltwater is an important part of the glacier system as it can directly influence ice sheet dynamics. Although it is important that ice sheet models incorporate accurate information about subglacial meltwater processes, the relative inaccessibility of contemporary ice sheet beds makes direct investigation challenging. Former ice sheet beds contain a wealth of meltwater landforms such as eskers that, if accurately interpreted, can provide detailed insight into the hydrology of former ice sheets. Eskers are the casts of ice-walled channels and are a common landform within the footprint of the last Laurentide and Cordilleran Ice Sheets. In south-western Alberta, esker distribution suggests that both water and sediment supply may have been important controls; the longest esker ridge segments are located within meltwater valleys partially filled by glaciofluvial sediments, whereas the shortest esker ridge segments are located in areas dominated by clast-poor till. Through detailed esker ridge planform and crest-type mapping, and near surface geophysics we reveal morpho-sedimentary relationships that suggest esker sedimentation was dynamic, but that esker distribution and architecture were primarily governed by sediment supply. Through comparison of these data with data from eskers elsewhere, we suggest three formative scenarios: 1) where sediment supply and flow powers were high, coarse sediment loads result in rapid deposition, and rates of thermo-mechanical ice tunnel growth is exceeded by the rate of ice tunnel closure due to sediment infilling. High sedimentation rates reduce ice tunnel cross-sectional area, cause an increase in meltwater flow velocity and force ice tunnel growth. Thus, ice tunnel growth is fastest where sedimentation rate is highest; this positive feedback results in a non-uniform ice tunnel geometry, and favours macroform development and non-uniform ridge geometry. 2) Where sediment supply is limited, but flow power high, the rate of sedimentation

  14. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  15. TWINTN4: A program for transonic four-wall interference assessment in two-dimensional wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1984-01-01

    A method for assessing the wall interference in transonic two-dimensional wind tunnel tests including the effects of the tunnel sidewall boundary layer was developed and implemented in a computer program named TWINTN4. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the equivalent free air flow around the model, and the perturbation attributable to the model. Required input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall-induced perturbation field is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.

  16. Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp

    2015-02-23

    Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less

  17. Tunnel and Station Cost Methodology : Mined Tunnels

    DOT National Transportation Integrated Search

    1983-01-01

    The main objective of this study was to develop a model for estimating the cost of subway station and tunnel construction. This report describes a cost estimating methodology for subway tunnels that can be used by planners, designers, owners, and gov...

  18. View down tank tunnel (tunnel no. 2) showing pipes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View down tank tunnel (tunnel no. 2) showing pipes and walkway of metal grating, side tunnel to tank 3 is on the left - U.S. Naval Base, Pearl Harbor, Diesel Purification Plant, North Road near Pierce Street, Pearl City, Honolulu County, HI

  19. Autonomous Robotic Inspection in Tunnels

    NASA Astrophysics Data System (ADS)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  20. New drainage tunnel of the tunnel Višňové - design and excavation

    NASA Astrophysics Data System (ADS)

    Jurík, Igor; Grega, Ladislav; Valko, Jozef; Janega, Peter

    2017-09-01

    The actual pilot tunnel dated to the period of geological and hydrogeological survey, is designed as a part of the tunnel Višňové, which is located at the section of the D1 motorway Lietavská Lúčka - Višňové - Dubná Skala in Slovakia. Drainage tunnel will be used for the drainage of the main tunnel tubes, where the maximum inflow from the eastern portal is greater than 250 l.s-1. Overlapping of the initial pilot tunnel with the profile of the southern tunnel tube led to the demolition of the portal sections of the pilot tunnel during the excavation of main tunnel tubes. These sections were replaced by new drainage tunnels, with the lengths of 288.0 meters from west portal and 538.0 meters from eastern portal, to ensure access from both portals. The new drainage tunnel is excavated under the level of the two main tunnel tubes. Drainage pipes with a diameter of 250 mm will be installed from cleaning niches in the main tunnel tubes to the new drainage tunnel.

  1. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, K.; Poeter, E.

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (??18O and ??2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  2. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, Katherine; Poeter, Eileen

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ18O and δ2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  3. Carpal Tunnel Syndrome

    MedlinePlus

    ... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...

  4. Comparison of carpal tunnel injection techniques: a cadaver study.

    PubMed

    Ozturk, Kahraman; Esenyel, Cem Zeki; Sonmez, Mesut; Esenyel, Meltem; Kahraman, Sinan; Senel, Berna

    2008-01-01

    The purpose of the study was to evaluate the accuracy of injections into the carpal tunnel using three different portals in cadavers, and to define safe guidelines. In this study, 150 wrists of 75 cadavers (54 male, 21 female) were included. To compare three injection sites, 50 wrists of 25 cadavers were used for each technique; we used 23 gauge needles, and acrylic dye. The first injection technique: the needle was inserted 1cm proximal to the wrist crease and directed distally by roughly 45 in an ulnar direction through the flexor carpi radialis tendon. The second injection technique: the needle was inserted into the carpal tunnel from a point just ulnar to the palmaris longus tendon and 1cm proximal to the wrist crease. The third injection technique: the needle was inserted just distal to the distal skin crease of the wrist in line with the fourth ray. The first injection technique gave the highest accuracy rate, and this was also the safest injection site. Median nerve injuries caused by injection was seen mostly with the second technique. Although a steroid injection may provide symptomatic relief in patients with carpal tunnel syndrome, the median nerve and other structures in the carpal tunnel are at risk of injury. Because of that, the injection should be given using the correct technique by physicians skilled in carpal tunnel surgery.

  5. Magnetic resonance spectroscopy investigations of functionally defined language areas in schizophrenia patients with and without auditory hallucinations.

    PubMed

    Homan, Philipp; Vermathen, Peter; Van Swam, Claudia; Federspiel, Andrea; Boesch, Chris; Strik, Werner; Dierks, Thomas; Hubl, Daniela; Kreis, Roland

    2014-07-01

    Cerebral dysfunction occurring in mental disorders can show metabolic disturbances which are limited to circumscribed brain areas. Auditory hallucinations have been shown to be related to defined cortical areas linked to specific language functions. Here, we investigated if the study of metabolic changes in auditory hallucinations requires a functional rather than an anatomical definition of their location and size to allow a reliable investigation by magnetic resonance spectroscopy (MRS). Schizophrenia patients with (AH; n=12) and without hallucinations (NH; n=8) and healthy controls (HC; n=11) underwent a verbal fluency task in functional MRI (fMRI) to functionally define Broca's and Wernicke's areas. Left and right Heschl's gyri were defined anatomically. The mean distances in native space between the fMRI-defined regions and a corresponding anatomically defined area were 12.4±6.1 mm (range: 2.7-36.1 mm) for Broca's area and 16.8±6.2 mm (range: 4.5-26.4 mm) for Wernicke's area, respectively. Hence, the spatial variance was of similar extent as the size of the investigated regions. Splitting the investigations into a single voxel examination in the frontal brain and a spectroscopic imaging part for the more homogeneous field areas led to good spectral quality for almost all spectra. In Broca's area, there was a significant group effect (p=0.03) with lower levels of N-acetyl-aspartate (NAA) in NH compared to HC (p=0.02). There were positive associations of NAA levels in the left Heschl's gyrus with total (p=0.03) and negative (p=0.006) PANSS scores. In Broca's area, there was a negative association of myo-inositol levels with total PANSS scores (p=0.008). This study supports the neurodegenerative hypothesis of schizophrenia only in a frontal region whereas the results obtained from temporal regions are in contrast to the majority of previous studies. Future research should test the hypothesis raised by this study that a functional definition of language regions

  6. Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy.

    PubMed

    Artés, Juan M; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2011-03-22

    We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current−distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.

  7. Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges.

    PubMed

    Bellunato, Amedeo; Vrbica, Sasha D; Sabater, Carlos; de Vos, Erik W; Fermin, Remko; Kanneworff, Kirsten N; Galli, Federica; van Ruitenbeek, Jan M; Schneider, Grégory F

    2018-04-11

    The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene.

  8. Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges

    PubMed Central

    2018-01-01

    The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene. PMID:29513997

  9. Assessment of electrical resistivity imaging for pre-tunneling geological characterization - A case study of the Qingdao R3 metro line tunnel

    NASA Astrophysics Data System (ADS)

    Li, Shucai; Xu, Shan; Nie, Lichao; Liu, Bin; Liu, Rentai; Zhang, Qingsong; Zhao, Yan; Liu, Quanwei; Wang, Houtong; Liu, Haidong; Guo, Qin

    2018-06-01

    Water inrush during tunneling is a significant problem in the underground infrastructure construction. Electrical resistivity imaging (ERI) is a technique that can detect and characterize a water body in an open fracture or fault by exploiting the resistivity contrast that exists between the water body and the surrounding materials. ERI is an efficient method for pre-tunneling geological characterization. In this study, a case study is presented in which tunnel-face and borehole ERI (TBERI) is performed by using the probe hole to detect a water body during tunnel construction. The construction site is a metro line site, situated in the city of Qingdao, China. Unlike the traditional cross-hole observation mode, TBERI only use a single borehole. The installation of injection electrodes inside the probe hole and the installation of measuring electrodes on the tunnel face is proposed as the observation mode. Furthermore, a numerical simulation is carried out before the real field experiment, and the simulation results show that the TBERI is capable of detecting a deeply buried water body. In addition, the water body in the field case is also identified by TBERI. The water body appears as a strongly conductive anomaly relative to the background materials. This study highlights the respective strengths and weaknesses of the TBERI for pre-tunneling geological characterization. This method is a relatively rapid means of investigating the studied area. This study clearly demonstrates the suitability of TBERI in a tunneling scenario.

  10. Where can pixel counting area estimates meet user-defined accuracy requirements?

    NASA Astrophysics Data System (ADS)

    Waldner, François; Defourny, Pierre

    2017-08-01

    Pixel counting is probably the most popular way to estimate class areas from satellite-derived maps. It involves determining the number of pixels allocated to a specific thematic class and multiplying it by the pixel area. In the presence of asymmetric classification errors, the pixel counting estimator is biased. The overarching objective of this article is to define the applicability conditions of pixel counting so that the estimates are below a user-defined accuracy target. By reasoning in terms of landscape fragmentation and spatial resolution, the proposed framework decouples the resolution bias and the classifier bias from the overall classification bias. The consequence is that prior to any classification, part of the tolerated bias is already committed due to the choice of the spatial resolution of the imagery. How much classification bias is affordable depends on the joint interaction of spatial resolution and fragmentation. The method was implemented over South Africa for cropland mapping, demonstrating its operational applicability. Particular attention was paid to modeling a realistic sensor's spatial response by explicitly accounting for the effect of its point spread function. The diagnostic capabilities offered by this framework have multiple potential domains of application such as guiding users in their choice of imagery and providing guidelines for space agencies to elaborate the design specifications of future instruments.

  11. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    NASA Astrophysics Data System (ADS)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  12. Wind tunnel technology for the development of future commercial aircraft

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  13. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimardani, Nasir; Conley, John F., E-mail: jconley@eecs.oregonstate.edu

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling,more » and operation is relatively insensitive to temperature.« less

  14. Tunneling spin polarization in planar tunnel junctions: measurements using NbN superconducting electrodes and evidence for Kondo-assisted tunneling

    NASA Astrophysics Data System (ADS)

    Yang, Hyunsoo

    2006-03-01

    The fundamental origin of tunneling magnetoresistance in magnetic tunnel junctions (MTJs) is the spin-polarized tunneling current, which can be measured directly using superconducting tunneling spectroscopy (STS). The STS technique was first developed by Meservey and Tedrow using aluminum superconducting electrodes. Al has been widely used because of its low spin orbit scattering. However, measurements must be made at low temperatures (<0.4 K) because of the low superconducting transition temperature of Al. Here, we demonstrate that superconducting electrodes formed from NbN can be used to measure tunneling spin polarization (TSP) at higher temperatures up to ˜1.2K. The tunneling magnetoresistance and polarization of the tunneling current in MTJs is highly sensitive to the detailed structure of the tunneling barrier. Using MgO tunnel barriers we find TSP values as high as 90% at 0.25K. The TMR is, however, depressed by insertion of ultra thin layers of both non-magnetic and magnetic metals in the middle of the MgO barrier. For ultra-thin, discontinuous magnetic layers of CoFe, we find evidence of Kondo assisted tunneling, from increased conductance at low temperatures (<50K) and bias voltage (<20 mV). Over the same temperature and bias voltage regimes the tunneling magnetoresistance is strongly depressed. We present other evidence of Kondo resonance including the logarithmic temperature dependence of the zero bias conductance peak. We infer the Kondo temperature from both the spectra width of this conductance peak as well as the temperature dependence of the TMR depression. The Kondo temperature is sensitive to the thickness of the inserted CoFe layer and decreases with increased CoFe thickness. * performed in collaboration with S-H. Yang, C. Kaiser, and S. Parkin.

  15. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important formore » understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.« less

  16. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    NASA Astrophysics Data System (ADS)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  17. Time scales of tunneling decay of a localized state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Yue; Muga, J. G.; Sherman, E. Ya.

    2010-12-15

    Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observingmore » diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.« less

  18. The separation of the Hartland Formation and Ravenswood Granodiorite from the Fordham Gneiss at Cameron's Line in the New York City area

    USGS Publications Warehouse

    Baskerville, C.A.; Mose, D.G.

    1989-01-01

    Recent study of the rocks in City Water Tunnel Number 3 between Roosevelt Island and beneath 34th Street and the 63rd Street subway-rail tunnels at 41st Avenue in Long Island City, as well as study of drill core from other sites in western Queens, establishes that this area of New York City is underlain by the Ravenswood Granodiorite and the Hartland Formation. The Fordham Gneiss does not appear east of the East River at these sites. Cameron's Line can be traced down the east side of the East River, as learned from observations in the tunnels, separating the Middle Proterozoic Fordham Gneiss to the west from the Cambrian and Ordovician Hartland Formation and related Ravenswood Granodiorite to the east. The older, adequately defined, Ravenswood Granodiorite, Hartland Formation, and the Fordham Gneiss, are the rock units that make up the poorly defined Brooklyn gneiss or Brooklyn Injection Gneiss and thus appropriately should supercede these later classifications. -from Authors

  19. Spray-applied waterproofing membranes: effective solution for safe and durable tunnel linings?

    NASA Astrophysics Data System (ADS)

    Pisova, Barbora; Hilar, Matous

    2017-09-01

    What is the perfect tunnel lining? Cost efficient, easy and fast to build with acceptable environmental impact? How to construct a watertight and safe tunnel lining? Would it be possible to apply a waterproofing system directly onto the rock face just after the tunnel face opening? This might be the system of the future enabling all concrete applied to the rock face to remain permanent. For now though, we would like to focus on an optimisation and examination of currently available technologies and materials, such as tunnel linings with the use of spray-applied waterproofing membranes. In this paper, the failure mechanisms of a tunnel lining with a spray-applied waterproofing membrane are described, the behaviour of spray-applied waterproofing membrane under various conditions (dry, moist, wet) is challenged and the possibilities of interface numerical modelling are presented. Tunnel lining design is mainly dependent on the geological and hydrological conditions in the considered area. The application of tunnel linings with spray-applied waterproofing membrane in both hard rock and soft ground tunnelling, are studied.

  20. Water Inrush Analysis of the Longmen Mountain Tunnel Based on a 3D Simulation of the Discrete Fracture Network

    NASA Astrophysics Data System (ADS)

    Xiong, Ziming; Wang, Mingyang; Shi, ShaoShuai; Xia, YuanPu; Lu, Hao; Bu, Lin

    2017-12-01

    The construction of tunnels and underground engineering in China has developed rapidly in recent years in both the number and the length of tunnels. However, with the development of tunnel construction technology, risk assessment of the tunnels has become increasingly important. Water inrush is one of the most important causes of engineering accidents worldwide, resulting in considerable economic and environmental losses. Accordingly, water inrush prediction is important for ensuring the safety of tunnel construction. Therefore, in this study, we constructed a three-dimensional discrete network fracture model using the Monte Carlo method first with the basic data from the engineering geological map of the Longmen Mountain area, the location of the Longmen Mountain tunnel. Subsequently, we transformed the discrete fracture networks into a pipe network model. Next, the DEM of the study area was analysed and a submerged analysis was conducted to determine the water storage area. Finally, we attempted to predict the water inrush along the Longmen Mountain tunnel based on the Darcy flow equation. Based on the contrast of water inrush between the proposed approach, groundwater dynamics and precipitation infiltration method, we conclude the following: the water inflow determined using the groundwater dynamics simulation results are basically consistent with those in the D2K91+020 to D2K110+150 mileage. Specifically, in the D2K91+020 to D2K94+060, D2K96+440 to D2K98+100 and other sections of the tunnel, the simulated and measured results are in close agreement and show that this method is effective. In general, we can predict the water inflow in the area of the Longmen Mountain tunnel based on the existing fracture joint parameters and the hydrogeological data of the Longmen Mountain area, providing a water inrush simulation and guiding the tunnel excavation and construction stages.

  1. Does the graft-tunnel friction influence knee joint kinematics and biomechanics after anterior cruciate ligament reconstruction? A finite element study.

    PubMed

    Wan, Chao; Hao, Zhixiu

    2018-02-01

    Graft tissues within bone tunnels remain mobile for a long time after anterior cruciate ligament (ACL) reconstruction. However, whether the graft-tunnel friction affects the finite element (FE) simulation of the ACL reconstruction is still unclear. Four friction coefficients (from 0 to 0.3) were simulated in the ACL-reconstructed joint model as well as two loading levels of anterior tibial drawer. The graft-tunnel friction did not affect joint kinematics and the maximal principal strain of the graft. By contrast, both the relative graft-tunnel motion and equivalent strain for the bone tunnels were altered, which corresponded to different processes of graft-tunnel integration and bone remodeling, respectively. It implies that the graft-tunnel friction should be defined properly for studying the graft-tunnel integration or bone remodeling after ACL reconstruction using numerical simulation.

  2. 30 CFR 77.211 - Draw-off tunnels; stockpiling and reclaiming operations; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Draw-off tunnels; stockpiling and reclaiming operations; general. 77.211 Section 77.211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.211 Draw-off tunnels; stockpiling and...

  3. Safety in tunnels : transport of dangerous goods through road tunnels : highlights

    DOT National Transportation Integrated Search

    2001-10-01

    A serious incident involving dangerous goods in a tunnel can be extremely costly in terms of loss of human lives, environmental degradation, tunnel damage and transport disruption. On the other hand, needlessly banning dangerous goods from tunnels ma...

  4. Analysis of heat-transfer measurements from 2 AEDC wind tunnels on the Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Nutt, K. W.

    1984-01-01

    Previous aerodynamic heating tests have been conducted in the AEDC/VKF Supersonic Wind Tunnel (A) to aid in defining the design thermal environment for the space shuttle external tank. The quality of these data has been under discussion because of the effects of low tunnel enthalpy and slow model injection rates. Recently the AEDC/VKF Hypersonic Wind Tunnel (C) has been modified to provide a Mach 4 capability that has significantly higher tunnel enthalpy with more rapid model injection rates. Tests were conducted in Tunnel C at Mach 4 to obtain data on the external tank for comparison with Tunnel A results. Data were obtained on a 0.0175 scale model of the Space Shuttle Integrated Vehicle at Re/ft = 4 x 10 to the 6th power with the tunnel stagnation temperature varying from 740 to 1440 R. Model attitude varied from an angle of attack of -5 to 5 deg and an angle of sideslip of -3 to 3 deg. One set of data was obtained in Tunnel C at Re/ft = 6.9 x 10 to the 6th for comparison with flight data. Data comparisons between the two tunnels for numerous regions on the external tank are given.

  5. Analysis and design of quiet hypersonic wind tunnels

    NASA Astrophysics Data System (ADS)

    Naiman, Hadassah

    The purpose of the present work is to integrate CFD into the design of quiet hypersonic wind tunnels and the analysis of their performance. Two specific problems are considered. The first problem is the automated design of the supersonic portion of a quiet hypersonic wind tunnel. Modern optimization software is combined with full Navier-Stokes simulations and PSE stability analysis to design a Mach 6 nozzle with maximum quiet test length. A response surface is constructed from a user-specified set of contour shapes and a genetic algorithm is used to find the "optimal contour", which is defined as the shortest nozzle with the maximum quiet test length. This is achieved by delaying transition along the nozzle wall. It is found that transition is triggered by Goertler waves, which can be suppressed by including a section of convex curvature along the contour. The optimal design has an unconventional shape described as compound curvature, which makes the contour appear slightly wavy. The second problem is the evaluation of a proposed modification of the test section in the Boeing/AFOSR Mach 6 Quiet Tunnel. The new design incorporates a section of increased diameter with the intention of enabling the tunnel to start in the presence of larger blunt models. Cone models with fixed base diameter (and hence fixed blockage ratio) are selected for this study. Cone half-angles from 15° to 75° are examined to ascertain the effect of ii the strength of the test model shock wave on the tunnel startup. The unsteady, laminar, compressible Navier-Stokes equations are solved. The resulting flowfields are analyzed to see what affect the shocks and shear layers have on the quiet test section flow. This study indicates that cone angles ≤20° allow the tunnel to start. Keywords. automated optimization, response surface, parabolized stability equations, compound curvature, laminar, wind tunnel, unstart, test section.

  6. Correction of downwash in wind tunnels of circular and elliptic sections

    NASA Technical Reports Server (NTRS)

    Lotz, Irmgard

    1936-01-01

    The downwash velocity distribution behind the wing was determined for the free jet and for the closed tunnel of both circular and elliptic cross sections. The wing was placed at the center of the tunnel. The theory makes it possible to determine the downwash at any point in the jet. The computations were performed for points in the plane determined by the jet axis and the center-of-pressure line of the wing. The downwash proved to be proportional to the wing lift and inversely proportional to the cross-sectional area of the tunnel.

  7. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    NASA Astrophysics Data System (ADS)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  8. A geographic information system-based method for estimating cancer rates in non-census defined geographical areas.

    PubMed

    Freeman, Vincent L; Boylan, Emma E; Pugach, Oksana; Mclafferty, Sara L; Tossas-Milligan, Katherine Y; Watson, Karriem S; Winn, Robert A

    2017-10-01

    To address locally relevant cancer-related health issues, health departments frequently need data beyond that contained in standard census area-based statistics. We describe a geographic information system-based method for calculating age-standardized cancer incidence rates in non-census defined geographical areas using publically available data. Aggregated records of cancer cases diagnosed from 2009 through 2013 in each of Chicago's 77 census-defined community areas were obtained from the Illinois State Cancer Registry. Areal interpolation through dasymetric mapping of census blocks was used to redistribute populations and case counts from community areas to Chicago's 50 politically defined aldermanic wards, and ward-level age-standardized 5-year cumulative incidence rates were calculated. Potential errors in redistributing populations between geographies were limited to <1.5% of the total population, and agreement between our ward population estimates and those from a frequently cited reference set of estimates was high (Pearson correlation r = 0.99, mean difference = -4 persons). A map overlay of safety-net primary care clinic locations and ward-level incidence rates for advanced-staged cancers revealed potential pathways for prevention. Areal interpolation through dasymetric mapping can estimate cancer rates in non-census defined geographies. This can address gaps in local cancer-related health data, inform health resource advocacy, and guide community-centered cancer prevention and control.

  9. Torque Sensor Based on Tunnel-Diode Oscillator

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Young, Joseph

    2008-01-01

    A proposed torque sensor would be capable of operating over the temperature range from 1 to 400 K, whereas a typical commercially available torque sensor is limited to the narrower temperature range of 244 to 338 K. The design of this sensor would exploit the wide temperature range and other desirable attributes of differential transducers based on tunnel-diode oscillators as described in "Multiplexing Transducers Based on Tunnel-Diode Oscillators". The proposed torque sensor would include three flexural springs that would couple torque between a hollow outer drive shaft and a solid inner drive shaft. The torque would be deduced from the torsional relative deflection of the two shafts, which would be sensed via changes in capacitances of two capacitors defined by two electrodes attached to the inner shaft and a common middle electrode attached to the outer shaft.

  10. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.

    PubMed

    Niroui, Farnaz; Wang, Annie I; Sletten, Ellen M; Song, Yi; Kong, Jing; Yablonovitch, Eli; Swager, Timothy M; Lang, Jeffrey H; Bulović, Vladimir

    2015-08-25

    Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications.

  11. Research on Evaluation and Control of Karst Water Resources in a Certain Tunnel of Dalian Subway

    NASA Astrophysics Data System (ADS)

    Wang, Guang Qiang

    2018-05-01

    Taking a certain tunnel in Dalian Metro as the research object, to evaluate the situation of karst development through geophysical prospecting and drilling data in study area. Karst water resources can be evaluated by quality and quantity in the study area, the correlation of the ion content can be analyzed according to the analysis results of chemical composition of groundwater and the maximum water inflow in karst water section tunnel can be calculated by using the Oshima Yoshi formula. Put forward measures and methods of groundwater control and tube well dewatering based on these evaluation, it has certain guiding significance for tunnel construction in karst area.

  12. Muck Utilization in Urban Transportation Tunneling Process

    DOT National Transportation Integrated Search

    1977-12-01

    The purpose of this study is to develop a workable approach to muck utilization for transit tunnels, including cut and cover construction, in the urban area. This report presents the results of a detailed investigation into the potential for muck uti...

  13. NbN/MgO/NbN edge-geometry tunnel junctions

    NASA Technical Reports Server (NTRS)

    Hunt, B. D.; Leduc, H. G.; Cypher, S. R.; Stern, J. A.; Judas, A.

    1989-01-01

    The fabrication and low-frequency testing of the first edge-geometry NbN/MgO/NbN superconducting tunnel junctions are reported. The use of an edge geometry allows very small junction areas to be obtained, while the all-NbN electrodes permit operation at 8-10 K with a potential maximum operating frequency above 1 THz. Edge definition in the base NbN film was accomplished utilizing Ar ion milling with an Al2O3 milling mask, followed by a lower energy ion cleaning step. This process has produced all-refractory-material tunnel junctions with areas as small as 0.1 sq micron, resistance-area products less than 21 ohm sq micron, and subgap to normal state resistance ratios larger than 18.

  14. Measures for the reduction of sinter formations in tunnels

    NASA Astrophysics Data System (ADS)

    Harer, Gerhard

    2017-09-01

    A considerable part of the maintenance costs of tunnel structures is related to the inspection, maintenance and repair of the drainage system. The drainage system of tunnels is frequently clogged with Calcium precipitates. Cleaning and water conditioning are costintensive for operating companies. Apart from the direct costs associated with inspection, maintenance and repair works of the drainage system indirect costs are generated, such as by the blocking of the tunnel while inspection, maintenance or repair or by the reduction of the permitted operation speed. Sintering and clogging of the drainage systems is mainly caused by dissolution of cement minerals in concrete and mortar and/or by inadequate design and construction of the drainage system and/or grubby workmanship. With long-term studies and in-situ experiments in Austria traffic tunnels the specific input factors for sinter mechanism have been identified and appropriate counter measures could be defined. In particular modified mix designs for shotcretes and mortars have proven to bring a significant beneficial effect. By means of constructional measures and by the application of hardness stabilizers a further reduction of hard deposits inside the drainage system is achievable. The paper will deal with the specific aspects and will propose adequate counter measures.

  15. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  16. Environmental trade-offs of tunnels vs cut-and-cover subways

    USGS Publications Warehouse

    Walton, M.

    1978-01-01

    Heavy construction projects in cities entail two kinds of cost - internal cost, which can be defined in terms of payments from one set of parties to another, and external cost, which is the cost borne by the community at large as the result of disutilities entailed in construction and operation. Environmental trade-offs involve external costs, which are commonly difficult to measure. Cut-and-cover subway construction probably entails higher external and internal cost than deep tunnel construction in many urban geological environments, but uncertainty concerning the costs and environmental trade-offs of tunneling leads to limited and timid use of tunneling by American designers. Thus uncertainty becomes a major trade-off which works against tunneling. The reverse is true in Sweden after nearly 30 years of subway construction. Econometric methods for measuring external costs exist in principle, but are limited in application. Economic theory based on market pressure does not address the real problem of urban environmental trade-offs. Nevertheless, the problem of uncertainty can be addressed by comparative studies of estimated and as-built costs of cut-and-cover vs tunnel projects and a review of environmental issues associated with such construction. Such a study would benefit the underground construction industry and the design of transportation systems. It would also help solve an aspect of the urban problem. ?? 1978.

  17. Two-step tunneling technique of deep brain stimulation extension wires-a description.

    PubMed

    Fontaine, Denys; Vandersteen, Clair; Saleh, Christian; von Langsdorff, Daniel; Poissonnet, Gilles

    2013-12-01

    While a significant body of literature exists on the intracranial part of deep brain stimulation surgery, the equally important second part of the intervention related to the subcutaneous tunneling of deep brain stimulation extension wires is rarely described. The tunneling strategy can consist of a single passage of the extension wires from the frontal incision site to the subclavicular area, or of a two-step approach that adds a retro-auricular counter-incision. Each technique harbors the risk of intraoperative and postoperative complications. At our center, we perform a two-step tunneling procedure that we developed based on a cadaveric study. In 125 consecutive patients operated since 2002, we did not encounter any complication related to our tunneling method. Insufficient data exist to fully evaluate the advantages and disadvantages of each tunneling technique. It is of critical importance that authors detail their tunneling modus operandi and report the presence or absence of complications. This gathered data pool may help to formulate a definitive conclusions on the safest method for subcutaneous tunneling of extension wires in deep brain stimulation.

  18. Path-integral analysis of the time delay for wave-packet scattering and the status of complex tunneling times

    NASA Astrophysics Data System (ADS)

    Sokolovski, D.; Connor, J. N. L.

    1990-12-01

    The wave-packet simulation (WPS) method for calculating the time a tunneling particle spends inside a one-dimensional potential barrier is reexamined using the Feynman path-integral technique. Following earlier work by Sokolovski and Baskin [Phys. Rev. A 36, 4604 (1987)], the tunneling (or traversal) time tTpack is defined as a matrix element of a classical nonlocal functional between two states that represent the initial and transmitted wave packets. These states do not lie on the same orbit in Hilbert space; as a result, tTpack is complex-valued. It is shown that RetTpack reduces to the standard WPS result, tTphase, for conditions similar to those employed in the conventional WPS analysis. Similarly, ImtTpack is shown to contain information about the energy dependence of the transmission probability. Under semiclassical conditions, ImtTpack reduces to the well-known Wentzel-Kramers-Brillouin expression for the tunneling time. It is shown there are different definitions for the traversal time of a classical moving object, whose size is comparable to the width of the region of interest. In the quantum case, these different definitions correspond to different ways of analyzing the WPS experiment. The path-integral approach demonstrates that the tunneling-time problem is one of understanding the physical significance of complex-valued off-orbit matrix elements of an operator or functional. The physical content of complex-valued tunneling times is discussed. It is emphasized that the use of complex tunneling times includes real-time approaches as a special case. Nevertheless, there is a limitation in the description of tunneling experiments using tunneling times, whether real or complex. The path-integral approach does not supply a universal traversal time, analogous to a classical time, that can be used in quantum situations. It is demonstrated that the often expressed hope of finding a well-defined and universal real tunneling time is erroneous.

  19. Estimating Tunnel Strain in the Weak and Schistose Rock Mass Influenced by Stress Anisotropy: An Evaluation Based on Three Tunnel Cases from Nepal

    NASA Astrophysics Data System (ADS)

    Panthi, Krishna Kanta; Shrestha, Pawan Kumar

    2018-06-01

    Total plastic deformation in tunnels passing through weak and schistose rock mass consists of both time-independent and time-dependent deformations. The extent of this total deformation is heavily influenced by the rock mass deformability properties and in situ stress condition prevailing in the area. If in situ stress is not isotropic, the deformation magnitude is not only different along the longitudinal alignment but also along the periphery of the tunnel wall. This manuscript first evaluates the long-term plastic deformation records of three tunnel projects from the Nepal Himalaya and identifies interlink between the time-independent and time-dependent deformations using the convergence law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech 24(3):145-154, 1987a, Int J Rock Mech Min Sci Geomech 24(3):155-164, 1987b). Secondly, the manuscript attempts to establish a correlation between plastic deformations (tunnel strain) and rock mass deformable properties, support pressure and in situ stress conditions. Finally, patterns of time-independent and time-dependent plastic deformations are also evaluated and discussed. The long-term plastic deformation records of 24 tunnel sections representing four different rock types of three different headrace tunnel cases from Nepal Himalaya are extensively used in this endeavor. The authors believe that the proposed findings will be a step further in analysis of plastic deformations in tunnels passing through weak and schistose rock mass and along the anisotropic stress conditions.

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 383: Area E-Tunnel Sites, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 383, Area 12 E-Tunnel Sites, which is the joint responsibility of DTRA and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense. Corrective Action Unit 383 is comprised of three Corrective Action Sites (CASs) and two adjacent areas: • CAS 12-06-06, Muckpile •more » CAS 12-25-02, Oil Spill • CAS 12-28-02, Radioactive Material • Drainage below the Muckpile • Ponds 1, 2, and 3 The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure with no further corrective action, by placing use restrictions at the three CASs and two adjacent areas of CAU 383.« less

  1. Reliability of a semi-automated 3D-CT measuring method for tunnel diameters after anterior cruciate ligament reconstruction: A comparison between soft-tissue single-bundle allograft vs. autograft.

    PubMed

    Robbrecht, Cedric; Claes, Steven; Cromheecke, Michiel; Mahieu, Peter; Kakavelakis, Kyriakos; Victor, Jan; Bellemans, Johan; Verdonk, Peter

    2014-10-01

    Post-operative widening of tibial and/or femoral bone tunnels is a common observation after ACL reconstruction, especially with soft-tissue grafts. There are no studies comparing tunnel widening in hamstring autografts versus tibialis anterior allografts. The goal of this study was to observe the difference in tunnel widening after the use of allograft vs. autograft for ACL reconstruction, by measuring it with a novel 3-D computed tomography based method. Thirty-five ACL-deficient subjects were included, underwent anatomic single-bundle ACL reconstruction and were evaluated at one year after surgery with the use of 3-D CT imaging. Three independent observers semi-automatically delineated femoral and tibial tunnel outlines, after which a best-fit cylinder was derived and the tunnel diameter was determined. Finally, intra- and inter-observer reliability of this novel measurement protocol was defined. In femoral tunnels, the intra-observer ICC was 0.973 (95% CI: 0.922-0.991) and the inter-observer ICC was 0.992 (95% CI: 0.982-0.996). In tibial tunnels, the intra-observer ICC was 0.955 (95% CI: 0.875-0.985). The combined inter-observer ICC was 0.970 (95% CI: 0.987-0.917). Tunnel widening was significantly higher in allografts compared to autografts, in the tibial tunnels (p=0.013) as well as in the femoral tunnels (p=0.007). To our knowledge, this novel, semi-automated 3D-computed tomography image processing method has shown to yield highly reproducible results for the measurement of bone tunnel diameter and area. This series showed a significantly higher amount of tunnel widening observed in the allograft group at one-year follow-up. Level II, Prospective comparative study. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Autologous Fat Transfer in Secondary Carpal Tunnel Release

    PubMed Central

    Noszczyk, Bartłomiej H.

    2015-01-01

    Background: Carpal tunnel release is the gold standard for the treatment of median nerve compression disease. Recurrent or persistent symptoms do not occur in most patients, although a small number of them have indicated that such a postoperative condition indeed exists. Some patients undergo repeated treatments. In the majority of the cases, the disease is associated with scarring in the carpal tunnel or even reformation of the carpal ligament. The authors propose the usage of autologous fat grafting during secondary carpal tunnel release to inhibit the scarring process. Methods: Ten patients with recurrent or persistent symptoms underwent autologous fat grafting at the time of their repeated carpal tunnel release. Fat was harvested from the lower abdomen and grafted into the scarred transverse carpal ligament and surrounding tissues. Each patient underwent pre- and postoperative examinations and completed the carpal tunnel questionnaire (Boston) to evaluate their sensory and motor functions. The patients underwent 1 year of follow-up. Results: There were 2 main reasons for continued symptoms: a technical mistake resulting in incomplete release (IR) during the first operation and abundant scarring (ABS) in the operated area. The beneficial effects of the interventions were confirmed by a clinical study and by administering the carpal tunnel questionnaire to all patients (functional severity score decreased from 4.38 to 1.88 in IR and 3.62 to 1.48 in ABS group, sensory severity score from 3.26 to 1.7 in IR and 3.04 to 1.48 in ABS group; P < 0.05) after 12 months of follow-up. Conclusion: Our initial observations suggest the possible efficacy of adipose tissue in secondary carpal tunnel release. PMID:26090291

  3. The Foraging Tunnel System of the Namibian Desert Termite, Baucaliotermes hainesi

    PubMed Central

    Tschinkel, Walter R.

    2010-01-01

    The harvester termite, Baucaliotermes hainesi (Fuller) (Termitidae: Nasutitermitinae), is an endemic in southern Namibia, where it collects and eats dry grass. At the eastern, landward edge of the Namib Desert, the nests of these termites are sometimes visible above ground surface, and extend at least 60 cm below ground. The termites gain access to foraging areas through underground foraging tunnels that emanate from the nest. The looseness of the desert sand, combined with the hardness of the cemented sand tunnels allowed the use of a gasolinepowered blower and soft brushes to expose tunnels lying 5 to 15 cm below the surface. The tunnels form a complex system that radiates at least 10 to 15 m from the nest with crossconnections between major tunnels. At 50 to 75 cm intervals, the tunnels are connected to the surface by vertical risers that can be opened to gain foraging access to the surrounding area. Foraging termites rarely need to travel more than a meter on the ground surface. The tunnels swoop up and down forming high points at riser locations, and they have a complex architecture. In the center runs a smooth, raised walkway along which termites travel, and along the sides lie pockets that act as depots where foragers deposit grass pieces harvested from the surface. Presumably, these pieces are transported to the nest by a second group of termites. There are also several structures that seem to act as vertical highways to greater depths, possibly even to moist soil. A census of a single nest revealed about 45,000 termites, of which 71% were workers, 9% soldiers and 6% neotenic supplementary reproductives. The nest consisted of a hard outer “carapace” of cemented sand, with a central living space of smooth, sweeping arches and surfaces. A second species of termite, Promirotermes sp. nested in the outer carapace. PMID:20672982

  4. Improvement of a wind-tunnel sampling system for odour and VOCs.

    PubMed

    Wang, X; Jiang, J; Kaye, R

    2001-01-01

    Wind-tunnel systems are widely used for collecting odour emission samples from surface area sources. Consequently, a portable wind-tunnel system was developed at the University of New South Wales that was easy to handle and suitable for sampling from liquid surfaces. Development work was undertaken to ensure even air-flows above the emitting surface and to optimise air velocities to simulate real situations. However, recovery efficiencies for emissions have not previously been studied for wind-tunnel systems. A series of experiments was carried out for determining and improving the recovery rate of the wind-tunnel sampling system by using carbon monoxide as a tracer gas. It was observed by mass balance that carbon monoxide recovery rates were initially only 37% to 48% from a simulated surface area emission source. It was therefore apparent that further development work was required to improve recovery efficiencies. By analysing the aerodynamic character of air movement and CO transportation inside the wind-tunnel, it was determined that the apparent poor recoveries resulted from uneven mixing at the sample collection point. A number of modifications were made for the mixing chamber of the wind-tunnel system. A special sampling chamber extension and a sampling manifold with optimally distributed sampling orifices were developed for the wind-tunnel sampling system. The simulation experiments were repeated with the new sampling system. Over a series of experiments, the recovery efficiency of sampling was improved to 83-100% with an average of 90%, where the CO tracer gas was introduced at a single point and 92-102% with an average of 97%, where the CO tracer gas was introduced along a line transverse to the sweep air. The stability and accuracy of the new system were determined statistically and are reported.

  5. Unified semiclassical theory for the two-state system: an analytical solution for general nonadiabatic tunneling.

    PubMed

    Zhu, Chaoyuan; Lin, Sheng Hsien

    2006-07-28

    Unified semiclasical solution for general nonadiabatic tunneling between two adiabatic potential energy surfaces is established by employing unified semiclassical solution for pure nonadiabatic transition [C. Zhu, J. Chem. Phys. 105, 4159 (1996)] with the certain symmetry transformation. This symmetry comes from a detailed analysis of the reduced scattering matrix for Landau-Zener type of crossing as a special case of nonadiabatic transition and nonadiabatic tunneling. Traditional classification of crossing and noncrossing types of nonadiabatic transition can be quantitatively defined by the rotation angle of adiabatic-to-diabatic transformation, and this rotational angle enters the analytical solution for general nonadiabatic tunneling. The certain two-state exponential potential models are employed for numerical tests, and the calculations from the present general nonadiabatic tunneling formula are demonstrated in very good agreement with the results from exact quantum mechanical calculations. The present general nonadiabatic tunneling formula can be incorporated with various mixed quantum-classical methods for modeling electronically nonadiabatic processes in photochemistry.

  6. Ferromagnetic tunnel contacts to graphene: Contact resistance and spin signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cubukcu, M.; Laczkowski, P.; Vergnaud, C.

    2015-02-28

    We report spin transport in CVD graphene-based lateral spin valves using different magnetic contacts. We compared the spin signal amplitude measured on devices where the cobalt layer is directly in contact with the graphene to the one obtained using tunnel contacts. Although a sizeable spin signal (up to ∼2 Ω) is obtained with direct contacts, the signal is strongly enhanced (∼400 Ω) by inserting a tunnel barrier. In addition, we studied the resistance-area product (R.A) of a variety of contacts on CVD graphene. In particular, we compared the R.A products of alumina and magnesium oxide tunnel barriers grown by sputteringmore » deposition of aluminum or magnesium and subsequent natural oxidation under pure oxygen atmosphere or by plasma. When using an alumina tunnel barrier on CVD graphene, the R.A product is high and exhibits a large dispersion. This dispersion can be highly reduced by using a magnesium oxide tunnel barrier, as for the R.A value. This study gives insight in the material quest for reproducible and efficient spin injection in CVD graphene.« less

  7. Probing individual tunneling fluctuators with coherently controlled tunneling systems

    NASA Astrophysics Data System (ADS)

    Meißner, Saskia M.; Seiler, Arnold; Lisenfeld, Jürgen; Ustinov, Alexey V.; Weiss, Georg

    2018-05-01

    Josephson junctions made from aluminum and its oxide are the most commonly used functional elements for superconducting circuits and qubits. It is generally known that the disordered thin film AlOx contains atomic tunneling systems. Coherent tunneling systems may couple strongly to a qubit via their electric dipole moment, giving rise to spectral level repulsion. In addition, slowly fluctuating tunneling systems are observable when they are located close to coherent ones and distort their potentials. This interaction causes telegraphic switching of the coherent tunneling systems' energy splitting. Here, we measure such switching induced by individual fluctuators on timescales from hours to minutes using a superconducting qubit as a detector. Moreover, we extend the range of measurable switching times to millisecond scales by employing a highly sensitive single-photon qubit swap spectroscopy and statistical analysis of the measured qubit states.

  8. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    PubMed

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  9. Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.

    DTIC Science & Technology

    URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.

  10. Carpal tunnel syndrome assessment with ultrasonography: value of inlet-to-outlet median nerve area ratio in patients versus healthy volunteers.

    PubMed

    Fu, Tengfei; Cao, Manlin; Liu, Fang; Zhu, Jiaan; Ye, Dongmei; Feng, Xianxuan; Xu, Yiming; Wang, Gang; Bai, Yuehong

    2015-01-01

    To evaluate the diagnostic value of the Inlet-to-outlet median nerve area ratio (IOR) in patients with clinically and electrophysiologically confirmed carpal tunnel syndrome (CTS). Forty-six wrists in 46 consecutive patients with clinical and electrodiagnostic evidence of CTS and forty-four wrists in 44 healthy volunteers were examined with ultrasonography. The cross-sectional area (CSA) of the median nerve was measured at the carpal tunnel inlet (the level of scaphoid-pisiform) and outlet (the level of the hook of the hamate), and the IOR was calculated for each wrist. Ultrasonography and electrodiagnostic tests were performed under blinded conditions. Electrodiagnostic testing combined with clinical symptoms were considered to be the gold standard test. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value between the inlet CSA and IOR. The study population included 16 men and 30 women (mean age, 45.3 years; range, 18-83 years). The control population included 18 men and 26 women (mean age, 50.4 years; range, 18-79 years). The mean inlet CSA was 8.7 mm2 in healthy controls and 14.6mm2 in CTS group (P<0.001). The mean IOR in healthy volunteers (1.0) was smaller than that in patients (1.6, P<0.001). Receiver operating characteristic analysis revealed a diagnostic advantage to using the IOR rather than the inlet CSA (P<0.01). An IOR cutoff value of ≥ 1.3 would yield 93% specificity and 91% sensitivity in the diagnosis of CTS. The IOR of median nerve area promises to be an effective means in the diagnosis of CTS. A large-scale, randomized controlled trial is required to determine how and when this parameter will be used.

  11. Transphyseal ACL Reconstruction in Skeletally Immature Patients: Does Independent Femoral Tunnel Drilling Place the Physis at Greater Risk Compared With Transtibial Drilling?

    PubMed

    Cruz, Aristides I; Lakomkin, Nikita; Fabricant, Peter D; Lawrence, J Todd R

    2016-06-01

    Most studies examining the safety and efficacy of transphyseal anterior cruciate ligament (ACL) reconstruction for skeletally immature patients utilize transtibial drilling. Independent femoral tunnel drilling may impart a different pattern of distal femoral physeal involvement. To radiographically assess differences in distal femoral physeal disruption between transtibial and independent femoral tunnel drilling. We hypothesized that more oblique tunnels associated with independent drilling involve a significantly larger area of physeal disruption compared with vertically oriented tunnels. Cross-sectional study; Level of evidence, 3. We analyzed skeletally immature patients aged between 10 and 15 years who underwent transphyseal ACL reconstruction utilizing an independent femoral tunnel drilling technique between January 1, 2008, and March 31, 2011. These patients were matched with a transtibial technique cohort based on age and sex. Radiographic measurements were recorded from preoperative magnetic resonance imaging and postoperative radiographs. Ten patients in each group were analyzed. There were significant differences between independent drilling and transtibial drilling cohorts in the estimated area of physeal disruption (1.64 vs 0.74 cm(2); P < .001), femoral tunnel angles (32.1° vs 72.8°; P < .001), and medial/lateral location of the femoral tunnel (24.2 vs 36.1 mm from lateral cortex; P = .001), respectively. There was a significant inverse correlation between femoral tunnel angle and estimated area of distal femoral physeal disruption (r = -0.8255, P = .003). Femoral tunnels created with an independent tunnel drilling technique disrupt a larger area of the distal femoral physis and create more eccentric tunnels compared with a transtibial technique. As most studies noting the safety of transphyseal ACL reconstruction have utilized a central, vertical femoral tunnel, surgeons should be aware that if an independent femoral tunnel technique is utilized

  12. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    NASA Astrophysics Data System (ADS)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  13. Seismic sample areas defined from incomplete catalogues: an application to the Italian territory

    NASA Astrophysics Data System (ADS)

    Mulargia, F.; Tinti, S.

    1985-11-01

    The comprehensive understanding of earthquake source-physics under real conditions requires the study not of single faults as separate entities but rather of a seismically active region as a whole, accounting for the interaction among different structures. We define "seismic sample area" the most convenient region to be used as a natural laboratory for the study of seismic source physics. This coincides with the region where the average large magnitude seismicity is the highest. To this end, time and space future distributions of large earthquakes are to be estimated. Using catalog seismicity as an input, the rate of occurrence is not constant but appears generally biased by incompleteness in some parts of the catalog and possible nonstationarities in seismic activity. We present a statistical procedure which is capable, under a few mild assumptions, of both detecting nonstationarities in seismicity and finding the incomplete parts of a seismic catalog. The procedure is based on Kolmogorov-Smirnov nonparametric statistics, and can be applied without a priori assuming the parent distribution of the events. The efficiency of this procedure allows the analysis of small data sets. An application to the Italian territory is presented, using the most recent version of the ENEL seismic catalog. Seismic activity takes place in six well defined areas but only five of them have a number of events sufficient for analysis. Barring a few exceptions, seismicity is found stationary throughout the whole catalog span 1000-1980. The eastern Alps region stands out as the best "sample area", with the highest average probability of event occurrence per time and area unit. Final objective of this characterization is to stimulate a program of intensified research.

  14. Description and calibration of the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Corlett, W. A.; Monta, W. J.

    1981-01-01

    The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed.

  15. Evaluation of the clavicular tunnel placement on coracoclavicular ligament reconstruction for acromioclavicular dislocations: a finite element analysis.

    PubMed

    Kocadal, Onur; Yüksel, Korcan; Güven, Melih

    2018-01-27

    The two-tunnel coracoclavicular ligament reconstruction (CLR) technique is one of the treatment approaches commonly used in the surgical treatment of acromioclavicular (AC) injuries. Clavicular tunnel malposition is one of the major causes of failure in coracoclavicular ligament reconstruction. The main purpose of this study was to investigate the effects of clavicular tunnel placement on tendon loading in the CLR technique with finite element analysis. Models of clavicle and scapula were constructed using computerized tomography images. Two clavicular bone tunnel reconstruction models were created with the tendon passing through the conoid and trapezoid tunnels. Four models based on the tunnel ratio (TR) method and defined as primary, anatomic, medialized, and lateralized were constructed to evaluate the effect of tunnel placement on loading conditions during tendon graft. All models were loaded by insertion from the trapezius and sternocleidomastoid muscles. The loading on the tendon were evaluated with the finite element analysis. The highest load value measured on the tendon was in the anatomic model (0.789 kPa), and the lowest load value (0.598 kPa) was measured in the lateralized tunnel model. The load value of the primary model was (0.657 kPa), and the medialized model's value was (0.752 kPa). In two-tunnel CLR technique, tendon loadings are related to tunnel placement. Medialized tunnel placement increases tendon loading. The TR method may be an appropriate option for determining tunnel placement.

  16. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels.

    PubMed

    Guo, Chun; Xu, Jianfeng; Wang, Mingnian; Yan, Tao; Yang, Lu; Sun, Zhitao

    2015-12-22

    The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO₂. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  17. Carpal Tunnel Syndrome

    PubMed Central

    Zimmerman, Gregory R.

    1994-01-01

    Carpal tunnel syndrome is a neuropathy resulting from compression of the median nerve as it passes through a narrow tunnel in the wrist on its way to the hand. The lack of precise objective and clinical tests, along with symptoms that are synonymous with other syndromes in the upper extremity, cause carpal tunnel syndrome to appear to be a rare entity in athletics. However, it should not be ruled out as a possible etiology of upper extremity paralysis in the athlete. More typically, carpal tunnel syndrome is the most common peripheral entrapment neuropathy encountered in industry. Treatment may include rest and/or splinting of the involved wrist, ice application, galvanic stimulation, or iontophoresis to reduce inflammation, and then transition to heat modalities and therapeutic exercises for developing flexibility, strength, and endurance. In addition, an ergonomic assessment should be conducted, resulting in modifications to accommodate the carpal tunnel syndrome patient. ImagesFig 3.Fig 4.Fig 5.Fig 6.Fig 7. PMID:16558255

  18. The anatomy and histology of the bicipital tunnel of the shoulder.

    PubMed

    Taylor, Samuel A; Fabricant, Peter D; Bansal, Manjula; Khair, M Michael; McLawhorn, Alexander; DiCarlo, Edward F; Shorey, Mary; O'Brien, Stephen J

    2015-04-01

    The bicipital tunnel is the extra-articular, fibro-osseous structure that encloses the long head of the biceps tendon. Twelve cadaveric shoulder specimens underwent in situ casting of the bicipital tunnel with methyl methacrylate cement to demonstrate structural competence (n = 6) and en bloc harvest with gross and histologic evaluation (n = 6). The percentage of empty tunnel was calculated histologically by subtracting the proportion of cross-sectional area of the long head of the biceps tendon from that of the bicipital tunnel for each zone. Cement casting demonstrated that the bicipital tunnel was a closed space. Zone 1 extended from the articular margin to the distal margin of the subscapularis tendon. Zone 2 extended from the distal margin of the subscapularis tendon to the proximal margin of the pectoralis major tendon. Zone 3 was the subpectoral region. Zones 1 and 2 were both enclosed by a dense connective tissue sheath and demonstrated the presence of synovium. Zone 3 had significantly greater percentage of empty tunnel than zones 1 and 2 did (P < .01). The bicipital tunnel is a closed space with 3 distinct zones. Zones 1 and 2 have similar features, including the presence of synovium, but differ from zone 3. A significant bottleneck occurs between zone 2 and zone 3, most likely at the proximal margin of the pectoralis major tendon. The bicipital tunnel is a closed space where space-occupying lesions may produce a bicipital tunnel syndrome. Careful consideration should be given to surgical techniques that decompress both zones 1 and 2 of the bicipital tunnel. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Wind-tunnel Modelling of Dispersion from a Scalar Area Source in Urban-Like Roughness

    NASA Astrophysics Data System (ADS)

    Pascheke, Frauke; Barlow, Janet F.; Robins, Alan

    2008-01-01

    A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T / U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume

  20. Employees' Knowledge of Carpal Tunnel Syndrome.

    ERIC Educational Resources Information Center

    Gandy-Goldston, Terrie M.

    A study examined employees' knowledge of the causes of carpal tunnel syndrome (CTS), its prevention, and their legal rights after being diagnosed with CTS. A 24-item questionnaire was administered to a random sample of 30 Chicago-area employees who had been afflicted with CTS. Of those surveyed, 99% considered their CTS injury related to their…

  1. The Tunnels of Samos

    NASA Technical Reports Server (NTRS)

    Apostol, Tom M. (Editor)

    1995-01-01

    This 'Project Mathematics' series video from CalTech presents the tunnel of Samos, a famous underground aquaduct tunnel located near the capital of Pithagorion (named after the famed Greek mathematician, Pythagoras, who lived there), on one of the Greek islands. This tunnel was constructed around 600 BC by King Samos and was built under a nearby mountain. Through film footage and computer animation, the mathematical principles and concepts of why and how this aquaduct tunnel was built are explained.

  2. Interior of Tunnel No. 1356, Stick Pile Tunnel showing timber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Tunnel No. 1356, Stick Pile Tunnel showing timber framing and missing posts, looking northeast. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  3. Femoral tunnel placement in single-bundle anterior cruciate ligament reconstruction: a cadaveric study relating transtibial lateralized femoral tunnel position to the anteromedial and posterolateral bundle femoral origins of the anterior cruciate ligament.

    PubMed

    Rue, John-Paul H; Ghodadra, Neil; Bach, Bernard R

    2008-01-01

    There is controversy regarding the necessity of reconstructing both the posterolateral and anteromedial bundles of the anterior cruciate ligament. A laterally oriented transtibial drilled femoral tunnel replaces portions of the femoral footprints of the anteromedial and posterolateral bundles of the anterior cruciate ligament. Descriptive laboratory study. Footprints of the anteromedial and posterolateral bundles of the anterior cruciate ligament were preserved on 7 matched pairs (5 female, 2 male) of fresh-frozen human cadaveric femurs (14 femurs total). Each femur was anatomically oriented and secured in a custom size-appropriate, side-matched replica tibia model to simulate transtibial retrograde drilling of a 10-mm femoral tunnel in each specimen. The relationship of the tunnel relative to footprints of both bundles of the anterior cruciate ligament was recorded using a Microscribe MX digitizer. The angle of the femoral tunnel relative to the vertical 12-o'clock position was recorded for all 14 specimens; only 10 specimens were used for footprint measurements. On average, the 10-mm femoral tunnel overlapped 50% of the anteromedial bundle (range, 2%-83%) and 51% of the posterolateral bundle (range, 16%-97%). The footprint of the anteromedial bundle occupied 32% (range, 3%-49%) of the area of the tunnel; the footprint of the posterolateral bundle contributed 26% (range, 7%-41%). The remainder of the area of the 10-mm tunnel did not overlap with the anterior cruciate ligament footprint. The mean absolute angle of the femoral tunnel as measured directly on the specimen was 48 degrees (range, 42 degrees-53 degrees) from vertical, corresponding to approximately a 10:30 clock face position on a right knee. Anterior cruciate ligament reconstruction using a laterally oriented transtibial drilled femoral tunnel incorporates portions of the anteromedial and posterolateral bundle origins of the native anterior cruciate ligament. A laterally oriented transtibial drilled

  4. Development and Evaluation of Solar Tunnel Dryer for Commercial Fish Drying

    NASA Astrophysics Data System (ADS)

    Mohod, A. G.; Khandetod, Y. P.; Shrirame, H. Y.

    2014-01-01

    The local practice of drying fish in open sun drying poses problems such as high moisture content, uncontrolled drying and contamination. These problems can be avoided by proper use of improved methods such as the solar tunnel dryer, which results in faster drying of fish. The semi cylindrical walk-in type natural convection solar tunnel dryer, having drying area of 37.5 m2 was developed and evaluated for the drying of fish products in comparison with the conventional method of open sun drying. The experiments were conducted without fish and with fish to evaluate the performance of solar tunnel dryer. The average rise in temperature inside the solar tunnel dryer was found to be 11.24 °C and 18.29 °C over the ambient temperature during no load test in winter and summer respectively. The average 28 % saving in time was observed for selected fish drying using solar tunnel dryer over open sun drying method with average drying efficiency of 19 %. The economics was calculated for drying of prawns ( Parapaeneopsis stylifera) by solar tunnel dryer and open sun drying system on the basis of business as a whole. The economics of the solar tunnel dryer is presented in term of Net present worth, Benefit-Cost Ratio, Payback period, Profitability index and Internal rate of return. The pay back period for solar tunnel dryer was found to be 2.84 years.

  5. Evaluating the distance between the femoral tunnel centers in anatomic double-bundle anterior cruciate ligament reconstruction using a computer simulation

    PubMed Central

    Tashiro, Yasutaka; Okazaki, Ken; Iwamoto, Yukihide

    2015-01-01

    Purpose We aimed to clarify the distance between the anteromedial (AM) bundle and posterolateral (PL) bundle tunnel-aperture centers by simulating the anatomical femoral tunnel placement during double-bundle anterior cruciate ligament reconstruction using 3-D computer-aided design models of the knee, in order to discuss the risk of tunnel overlap. Relationships between the AM to PL center distance, body height, and sex difference were also analyzed. Patients and methods The positions of the AM and PL tunnel centers were defined based on previous studies using the quadrant method, and were superimposed anatomically onto the 3-D computer-aided design knee models from 68 intact femurs. The distance between the tunnel centers was measured using the 3-D DICOM software package. The correlation between the AM–PL distance and the subject’s body height was assessed, and a cutoff height value for a higher risk of overlap of the AM and PL tunnel apertures was identified. Results The distance between the AM and PL centers was 10.2±0.6 mm in males and 9.4±0.5 mm in females (P<0.01). The AM–PL center distance demonstrated good correlation with body height in both males (r=0.66, P<0.01) and females (r=0.63, P<0.01). When 9 mm was defined as the critical distance between the tunnel centers to preserve a 2 mm bony bridge between the two tunnels, the cutoff value was calculated to be a height of 160 cm in males and 155 cm in females. Conclusion When AM and PL tunnels were placed anatomically in simulated double-bundle anterior cruciate ligament reconstruction, the distance between the two tunnel centers showed a strong positive correlation with body height. In cases with relatively short stature, the AM and PL tunnel apertures are considered to be at a higher risk of overlap when surgeons choose the double-bundle technique. PMID:26170727

  6. A Historical Evaluation of the U12n Tunnel, Nevada National Security Site, Nye County, Nevada Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drollinger, Harold; Jones, Robert C; Bullard, Thomas F

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudsonmore » Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings

  7. Quantum Tunneling Contribution for the Activation Energy in Microwave-Induced Reactions.

    PubMed

    Kuhnen, Carlos A; Dall'Oglio, Evandro L; de Sousa, Paulo T

    2017-08-03

    In this study, a quantum approach is presented to explain microwave-enhanced reaction rates by considering the tunneling effects in chemical reactions. In the Arrhenius equation, the part of the Hamiltonian relative to the interaction energy during tunneling, between the particle that tunnels and the electrical field defined in the medium, whose spatial component is specified by its rms value, is taken into account. An approximate evaluation of the interaction energy leads to a linear dependence of the effective activation energy on the applied field. The evaluation of the rms value of the field for pure liquids and reaction mixtures, through their known dielectric properties, leads to an appreciable reduction in the activation energies for the proton transfer process in these liquids. The results indicate the need to move toward the use of more refined methods of modern quantum chemistry to calculate more accurately field-induced reaction rates and effective activation energies.

  8. View of entrance tunnel. Tunnel right to Control Center, left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of entrance tunnel. Tunnel right to Control Center, left to Antenna Silos - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  9. Clavicular bone tunnel malposition leads to early failures in coracoclavicular ligament reconstructions.

    PubMed

    Cook, Jay B; Shaha, James S; Rowles, Douglas J; Bottoni, Craig R; Shaha, Steven H; Tokish, John M

    2013-01-01

    Modern techniques for the treatment of acromioclavicular (AC) joint dislocations have largely centered on free tendon graft reconstructions. Recent biomechanical studies have demonstrated that an anatomic reconstruction with 2 clavicular bone tunnels more closely matches the properties of native coracoclavicular (CC) ligaments than more traditional techniques. No study has analyzed tunnel position in regard to risk of early failure. To evaluate the effect of clavicular tunnel position in CC ligament reconstruction as a risk of early failure. Case series; Level of evidence, 4. A retrospective review was performed of a consecutive series of CC ligament reconstructions performed with 2 clavicular bone tunnels and a free tendon graft. The population was largely a young, active-duty military group of patients. Radiographs were analyzed for the maintenance of reduction and location of clavicular bone tunnels using a picture archiving and communication system. The distance from the lateral border of the clavicle to the center of each bone tunnel was divided by the total clavicular length to establish a ratio. Medical records were reviewed for operative details and functional outcome. Failure was defined as loss of intraoperative reduction. The overall failure rate was 28.6% (8/28) at an average of 7.4 weeks postoperatively. Comparison of bone tunnel position showed that medialized bone tunnels were a significant predictor for early loss of reduction for the conoid (a ratio of 0.292 vs 0.248; P = .012) and trapezoid bone tunnels (a ratio of 0.171 vs 0.128; P = .004); this correlated to an average of 7 to 9 mm more medial in the reconstructions that failed. Reconstructions performed with a conoid ratio of ≥0.30 were significantly more likely to fail (5/5, 100%) than were those performed lateral to a ratio of 0.30 (3/23, 13.0%) (P < .01). There were no failures when the conoid ratio was <0.25 (0/10, 0%). Conoid tunnel placement was also statistically significant for

  10. The steady-state flow quality in a model of a non-return wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Eckert, W. T.; Kelly, M. W.

    1972-01-01

    The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.

  11. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Robert C.; Drollinger, Harold; Bullard, Thomas F.

    2013-01-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase,more » Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts

  12. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Roberrt C.; Drollinger, Harold

    2013-06-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase,more » Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts

  13. Impact of geometric, thermal and tunneling effects on nano-transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Langhua; Chen, Duan, E-mail: dchen10@uncc.edu; Wei, Guo-Wei

    Electronic transistors are fundamental building blocks of large scale integrated circuits in modern advanced electronic equipments, and their sizes have been down-scaled to nanometers. Modeling and simulations in the framework of quantum dynamics have emerged as important tools to study functional characteristics of these nano-devices. This work explores the effects of geometric shapes of semiconductor–insulator interfaces, phonon–electron interactions, and quantum tunneling of three-dimensional (3D) nano-transistors. First, we propose a two-scale energy functional to describe the electron dynamics in a dielectric continuum of device material. Coupled governing equations, i.e., Poisson–Kohn–Sham (PKS) equations, are derived by the variational principle. Additionally, it ismore » found that at a given channel cross section area and gate voltage, the geometry that has the smallest perimeter of the channel cross section offers the largest channel current, which indicates that ultra-thin nanotransistors may not be very efficient in practical applications. Moreover, we introduce a new method to evaluate quantum tunneling effects in nanotransistors without invoking the comparison of classical and quantum predictions. It is found that at a given channel cross section area and gate voltage, the geometry that has the smallest perimeter of the channel cross section has the smallest quantum tunneling ratio, which indicates that geometric defects can lead to higher geometric confinement and larger quantum tunneling effect. Furthermore, although an increase in the phonon–electron interaction strength reduces channel current, it does not have much impact to the quantum tunneling ratio. Finally, advanced numerical techniques, including second order elliptic interface methods, have been applied to ensure computational accuracy and reliability of the present PKS simulation.« less

  14. Pavement settlement issues and hydro-geochemical water testing results for the Cumberland Gap Tunnel : final report.

    DOT National Transportation Integrated Search

    2010-03-01

    Both Ground Penetrating Radar (GPR) surveys and Hydro-Geochemical Water Testing (HGWT) have been performed at the Cumberland Gap Tunnel to determine why the reinforced concrete pavement has settled in various areas throughout both tunnels. To date, a...

  15. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  16. View of Water Storage Tank off entrance tunnel. Tunnel at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Water Storage Tank off entrance tunnel. Tunnel at left of image to Launch Silos - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  17. BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swerts, J., E-mail: Johan.Swerts@imec.be; Mertens, S.; Lin, T.

    Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface ofmore » the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.« less

  18. Predicition and Discovery of High Tunneling Magnetoresistance in Magnetic Tunnel Junctions with Crystalline Barriers

    NASA Astrophysics Data System (ADS)

    Butler, William

    2005-03-01

    Tunneling magnetoresistance in excess of 200% has recently been observed in magnetic tunnel junctions using bcc Fe or bcc CoFe electrodes with crystalline MgO tunnel barriers[1,2]. These results demonstrate that tunneling magnetoresistance depends on more than the ``electrode polarization''. This talk will describe the calculations that predicted high TMR in these and other systems[3,4,5]. These calculations helped us to understand certain principles that may lead to high TMR through coherent electron tunneling. They can be briefly summarized as follows: (1) If the symmetry of a Bloch state can be preserved as electrons cross the interfaces between the electrode and the tunnel barrier, this be used to advantage for spin filtering. (2) Evanescent states of different symmetries decay at different rates in the barrier. (3) Interfacial bonding can be very important in determining the probability that an electron can traverse the interface. (4) Electrons of disallowed symmetry cannot propagate in an electrode. Once these simple principles are understood, simple band codes can be used to screen and to develop heterostructures with the proper symmetries to obtain high TMR. [1] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant AND S.-H. Yang, ``Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers,'' Nature Materials, Advance Online Publication [2] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, ``Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions,'' Nature Materials, Advance Online Publication [3] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, ``Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches'' Phys. Rev. B 63, 054416 (2001) [4] J. Mathon, A. Umerski, ``Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction,'' Phys. Rev. B 63, 220403(R) (2001). [5] X.-G. Zhang, and W. H. Butler, ``Large magnetoresistance in

  19. Photon-assisted tunneling in an asymmetrically coupled triple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao

    The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-centralmore » dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.« less

  20. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1993-01-01

    The main objective of this work is to develop an interim Quiet (low-disturbance) supersonic wind tunnel for the NASA-Ames Fluid Mechanics Laboratory (FML). The main emphasis is to bring on-line a full-scale Mach 1.6 tunnel as rapidly as possible to impact the NASA High Speed Research Program (HSRP). The development of a cryogenic adaptive nozzle and other sophisticated features of the tunnel will now happen later, after the full scale wind tunnel is in operation. The work under this contract for the period of this report can be summarized as follows: provide aerodynamic design requirements for the NASA-Ames Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT); research design parameters for a unique Mach 1.6 drive system for the LFSWT using an 1/8th-scale Proof-of-Concept (PoC) supersonic wind tunnel; carry out boundary layer transition studies in PoC to aid the design of critical components of the LFSWT; appraise the State of the Art in quiet supersonic wind tunnel design; and help develop a supersonic research capability within the FML particularly in the areas of high speed transition measurements and schlieren techniques. The body of this annual report summarizes the work of the Principal Investigator.

  1. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  2. Tunnelling in Dante's Inferno

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuuchi, Kazuyuki; Sperling, Marcus, E-mail: kazuyuki.furuuchi@manipal.edu, E-mail: marcus.sperling@univie.ac.at

    2017-05-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  3. Inelastic tunnel diodes

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Power is extracted from plasmons, photons, or other guided electromagnetic waves at infrared to midultraviolet frequencies by inelastic tunneling in metal-insulator-semiconductor-metal diodes. Inelastic tunneling produces power by absorbing plasmons to pump electrons to higher potential. Specifically, an electron from a semiconductor layer absorbs a plasmon and simultaneously tunnels across an insulator into metal layer which is at higher potential. The diode voltage determines the fraction of energy extracted from the plasmons; any excess is lost to heat.

  4. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  5. Cubital Tunnel Syndrome

    MedlinePlus

    ... Tunnel Syndrome Find a hand surgeon near you. Videos Cubital Tunnel Syndrome Close Popup Figures Figure 1 - ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  6. Heavy-Atom Tunneling Calculations in Thirteen Organic Reactions: Tunneling Contributions are Substantial, and Bell's Formula Closely Approximates Multidimensional Tunneling at ≥250 K.

    PubMed

    Doubleday, Charles; Armas, Randy; Walker, Dana; Cosgriff, Christopher V; Greer, Edyta M

    2017-10-09

    Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy-atom tunneling in organic chemistry, and to check the accuracy of one-dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and S N 2. When compared at the temperatures that give the same effective rate constant of 3×10 -5  s -1 , tunneling accounts for 25-95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κ Bell  , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κ SCT . Mean unsigned deviations of κ Bell vs. κ SCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κ Bell is a useful first choice for predicting transmission coefficients in heavy-atom tunnelling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors.

    PubMed

    Vdovin, E E; Mishchenko, A; Greenaway, M T; Zhu, M J; Ghazaryan, D; Misra, A; Cao, Y; Morozov, S V; Makarovsky, O; Fromhold, T M; Patanè, A; Slotman, G J; Katsnelson, M I; Geim, A K; Novoselov, K S; Eaves, L

    2016-05-06

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.

  8. TOPICAL REVIEW: Spin-dependent tunnelling in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Tsymbal, Evgeny Y.; Mryasov, Oleg N.; LeClair, Patrick R.

    2003-02-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR.

  9. 7. BLOCK HOUSE BASEMENT LOOKING THROUGH DOOR INTO CABLE TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. BLOCK HOUSE BASEMENT LOOKING THROUGH DOOR INTO CABLE TUNNEL RUNNING BETWEEN BLOCK HOUSE AND STATIC TEST TOWER. - Marshall Space Flight Center, East Test Area, Block House, Huntsville, Madison County, AL

  10. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    PubMed

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  11. View of entrance tunnel outside Portal elevator. Tunnel ahead to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of entrance tunnel outside Portal elevator. Tunnel ahead to Control Center, right to Launchers, left to Antenna Silos - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  12. Vacuum phonon tunneling.

    PubMed

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  13. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Encomendero, Jimy; Faria, Faiza Afroz; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Sensale-Rodriguez, Berardi; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace

    2017-10-01

    For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs), the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  14. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.

    PubMed

    Yu, Arthur; Li, Shaowei; Wang, Hui; Chen, Siyu; Wu, Ruqian; Ho, W

    2018-05-09

    The coupling between localized plasmon and molecular orbital in the light emission from a metallic nanocavity has been directly detected and imaged with sub-0.1 nm resolution. The light emission intensity was enhanced when the energy difference between the tunneling electrons and the lowest unoccupied molecular orbital (LUMO) of an azulene molecule matches the energy of a plasmon mode of the nanocavity defined by the Ag-tip and Ag (110) substrate of a scanning tunneling microscope (STM). The spatially resolved image of the light emission intensity matches the spatial distribution of the LUMO obtained by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. Our results highlight the near-field coupling of a molecular orbital to the radiative decay of a plasmonic excitation in a confined nanoscale junction.

  15. Cryogenic Wind Tunnel Models. Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  16. Wind tunnel test results of a 1/8-scale fan-in-wing model

    NASA Technical Reports Server (NTRS)

    Wilson, John C.; Gentry, Garl L.; Gorton, Susan A.

    1996-01-01

    A 1/8-scale model of a fan-in-wing concept considered for development by Grumman Aerospace Corporation for the U.S. Army was tested in the Langley 14- by 22-Foot Subsonic Tunnel. Hover testing, which included height above a pressure-instrumented ground plane, angle of pitch, and angle of roll for a range of fan thrust, was conducted in a model preparation area near the tunnel. The air loads and surface pressures on the model were measured for several configurations in the model preparation area and in the tunnel. The major hover configuration change was varying the angles of the vanes attached to the exit of the fans for producing propulsive force. As the model height above the ground was decreased, there was a significant variation of thrust-removed normal force with constant fan speed. The greatest variation was generally for the height-to-fan exit diameter ratio of less than 2.5; the variation was reduced by deflecting fan exit flow outboard with the vanes. In the tunnel angles of pitch and sideslip, height above the tunnel floor, and wind speed were varied for a range of fan thrust and different vane angle configurations. Other configuration features such as flap deflections and tail incidence were evaluated as well. Though the V-tail empennage provided an increase in static longitudinal stability, the total model configuration remained unstable.

  17. Gate-defined Quantum Confinement in Suspended Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Allen, Monica

    2013-03-01

    Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.

  18. Defining Functional Areas in Individual Human Brains using Resting Functional Connectivity MRI

    PubMed Central

    Cohen, Alexander L.; Fair, Damien A.; Dosenbach, Nico U.F.; Miezin, Francis M.; Dierker, Donna; Van Essen, David C.; Schlaggar, Bradley L.; Petersen, Steven E.

    2009-01-01

    The cerebral cortex is anatomically organized at many physical scales starting at the level of single neurons and extending up to functional systems. Current functional magnetic resonance imaging (fMRI) studies often focus at the level of areas, networks, and systems. Except in restricted domains, (e.g. topographically-organized sensory regions), it is difficult to determine area boundaries in the human brain using fMRI. The ability to delineate functional areas non-invasively would enhance the quality of many experimental analyses allowing more accurate across-subject comparisons of independently identified functional areas. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity (rs-fcMRI), are especially promising as a way to accurately localize differences in patterns of correlated activity across large expanses of cortex. In the current report, we applied a novel set of image analysis tools to explore the utility of rs-fcMRI for defining wide-ranging functional area boundaries. We find that rs-fcMRI patterns show sharp transitions in correlation patterns and that these putative areal boundaries can be reliably detected in individual subjects as well as in group data. Additionally, combining surface-based analysis techniques with image processing algorithms allows automated mapping of putative areal boundaries across large expanses of cortex without the need for prior information about a region’s function or topography. Our approach reliably produces maps of bounded regions appropriate in size and number for putative functional areas. These findings will hopefully stimulate further methodological refinements and validations. PMID:18367410

  19. A Study of Vertical Transport through Graphene toward Control of Quantum Tunneling.

    PubMed

    Zhu, Xiaodan; Lei, Sidong; Tsai, Shin-Hung; Zhang, Xiang; Liu, Jun; Yin, Gen; Tang, Min; Torres, Carlos M; Navabi, Aryan; Jin, Zehua; Tsai, Shiao-Po; Qasem, Hussam; Wang, Yong; Vajtai, Robert; Lake, Roger K; Ajayan, Pulickel M; Wang, Kang L

    2018-02-14

    Vertical integration of van der Waals (vdW) materials with atomic precision is an intriguing possibility brought forward by these two-dimensional (2D) materials. Essential to the design and analysis of these structures is a fundamental understanding of the vertical transport of charge carriers into and across vdW materials, yet little has been done in this area. In this report, we explore the important roles of single layer graphene in the vertical tunneling process as a tunneling barrier. Although a semimetal in the lateral lattice plane, graphene together with the vdW gap act as a tunneling barrier that is nearly transparent to the vertically tunneling electrons due to its atomic thickness and the transverse momenta mismatch between the injected electrons and the graphene band structure. This is accentuated using electron tunneling spectroscopy (ETS) showing a lack of features corresponding to the Dirac cone band structure. Meanwhile, the graphene acts as a lateral conductor through which the potential and charge distribution across the tunneling barrier can be tuned. These unique properties make graphene an excellent 2D atomic grid, transparent to charge carriers, and yet can control the carrier flux via the electrical potential. A new model on the quantum capacitance's effect on vertical tunneling is developed to further elucidate the role of graphene in modulating the tunneling process. This work may serve as a general guideline for the design and analysis of vdW vertical tunneling devices and heterostructures, as well as the study of electron/spin injection through and into vdW materials.

  20. Interband Lateral Resonant Tunneling Transistor.

    DTIC Science & Technology

    1994-11-14

    INTERBAND LATERAL RESONANT TUNNELING TRANSISTOR 10 BACKGROUND OF THE INVENTION Field of the Invention This invention pertains to a tunneling transistor...and in 15 particular to an interband lateral resonant tunneling transistor. Description of Related Art Conventional semiconductor technologies are... interband lateral resonant tunneling transistor along the cross-section B-B of Figure 2c. Figure 4 is another preferred embodiment cross-sectional 20

  1. Where tunneling equipment is heading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, R.K.

    1984-02-01

    A variety of equipment is being used for roadheading and tunneling in the mining industry. This includes hydraulic/rotary precussive drills for use in conventional drill and blast, drum-type continuous miners, roadheaders, mini-and midi-full facers for small size openings, soft rock shielded tunnel boring machines, and hard rock tunnel boring machines. The availability, performance, and specifications for tunneling equipment are discussed.

  2. Mach 4 free-jet tunnel starting experiments for a hypersonic research engine model causing high blockage

    NASA Technical Reports Server (NTRS)

    Carson, G. T., Jr.; Midden, R. E.

    1976-01-01

    Tests of a full scale hypersonic research engine (HRE) were conducted in the hypersonic tunnel facility at Mach numbers of 5, 6, and 7. Since the HRE would cause a rather high blockage (48.83 percent of the nozzle area), subscale tests were conducted in various available small wind tunnels prior to the full scale tests to study the effects of model blockage on tunnel starting. The results of the Mach 4 subscale tests which utilized a model system at 0.0952 scale which simulated the HRE in the test section of the tunnel are presented. A satisfactory tunnel starting could not be achieved by varying the free jet length or diffuser size nor by inserting the model into the test stream after tunnel starting. However, the installation of a shroud around the HRE model allowed the tunnel to start with the model preset in the tunnel at a tunnel stagnation pressure to atmospheric exit pressure ratio of 13.4. The simulation of the discharge of instrumentation cooling water and the addition of test hardware at the aft end of the HRE model did not have a significant effect on the tunnel starting.

  3. Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, Henry G.; Judas, A. J.

    1992-01-01

    At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions.

  4. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope

    PubMed Central

    Nazin, G. V.; Wu, S. W.; Ho, W.

    2005-01-01

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189

  5. Tunnel operations study.

    DOT National Transportation Integrated Search

    2013-12-01

    In June 2000, the State of Alaska Department of Transportation and Public Facilities completed construction of the Whittier Access Project by converting the existing 2.5- : mile Whittier Tunnel into the worlds only dual-use highway/rail tunnel wit...

  6. Modernization and Activation of the NASA Ames 11- by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.

    2000-01-01

    The Unitary Plan Wind Tunnel (UPWT) was modernized to improve performance, capability, productivity, and reliability. Automation systems were installed in all three UPWT tunnel legs and the Auxiliaries facility. Major improvements were made to the four control rooms, model support systems, main drive motors, and main drive speed control. Pressure vessel repairs and refurbishment to the electrical distribution system were also completed. Significant changes were made to improve test section flow quality in the 11-by 11-Foot Transonic leg. After the completion of the construction phase of the project, acceptance and checkout testing was performed to demonstrate the capabilities of the modernized facility. A pneumatic test of the tunnel circuit was performed to verify the structural integrity of the pressure vessel before wind-on operations. Test section turbulence, flow angularity, and acoustic parameters were measured throughout the tunnel envelope to determine the effects of the tunnel flow quality improvements. The new control system processes were thoroughly checked during wind-off and wind-on operations. Manual subsystem modes and automated supervisory modes of tunnel operation were validated. The aerodynamic and structural performance of both the new composite compressor rotor blades and the old aluminum rotor blades was measured. The entire subsonic and supersonic envelope of the 11-by 11-Foot Transonic leg was defined up to the maximum total pressure.

  7. Interacting and self-organized two-level states in tunnel barriers

    NASA Technical Reports Server (NTRS)

    Pesenson, L.; Robertazzi, R. P.; Buhrman, R. A.; Cypher, S. R.; Hunt, B. D.

    1991-01-01

    The excess low-frequency 1/f noise and discrete two-level resistance fluctuations (TLFs) were studied in small-area NbN-MgO-NbN tunnel junctions with a high, low-temperature density of active defects. Strong and evolving interactions between large TLFs indicate that these fluctuations result from the self-organization of interacting defect elements. In the low-T tunneling regime, an unusual slowing down of the rates and a decrease in amplitude with increasing T is sometimes observed indicative of a thermally induced change in the self-organized two-level state.

  8. Green Tunnel Construction Technology and Application

    NASA Astrophysics Data System (ADS)

    Zhang, J. L.; Shi, P. X.; Huang, J.; Li, H. G.; Zhou, X. Q.

    2018-05-01

    With the dramatic growth of urban tunnels in recent years, energy saving and environmental protection have received intensive attention in tunnel construction and operation. As reference to the concept of green buildings, this paper proposes the concept of green tunnels. Combining with the key issues of tunnel design, construction, operation and maintenance, the major aspects of green tunnels including prefabricated construction, noise control, ventilation & lighting energy saving, and digital intelligent maintenance are discussed and the future development of green tunnels is outlined with the economic and social benefits as indicators.

  9. Hawking Radiation of the Charged Particle Via Tunneling from the Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Pu, Jin; Han, Yan

    2017-08-01

    Since Parikh and Wilczek proposed a semiclassical tunneling method to investigate the Hawking radiation of static and spherically symmetric black holes, the method has been extensively developed to study various black holes. However, in almost all of the subsequent papers, there exists a important shortcoming that the geodesic equation of the massive particle is defined inconsistently with that of the massless particle. In this paper, we propose a new idea to reinvestigate the tunneling radiation from the event horizon of the Reissner-Nordström black hole. In our treatment, by starting from the Lagrangian analysis on the action, we redefine the geodesic equation of the massive and massless particle via tunneling from the event horizon of the Reissner-Nordström black hole, which overcomes the shortcoming mentioned above. The highlight of our work is a new and important development for the Parikh-Wilczek's semiclassical tunneling method.

  10. Tunneling in Superconductors

    NASA Astrophysics Data System (ADS)

    Giaever, Ivar

    2002-03-01

    It has been said that Thomas Edison's greatest invention was that of the "Research Laboratory" as a social institution. My greatest discovery was when I learned at 29 years of age that it was possible to work in such an institution and get paid for doing research. I had become interested in physics, gotten a job at General Electric Research Laboratory and found a great mentor in John C. Fischer, who besides instructing me in physics told me that sooner or later we all would become historians of science. I guess for me that time is now, because I have been asked to tell you about my second greatest discovery: Tunneling in superconductors. My great fortune was to be at the right place at the right time, where I had access to outstanding and helpful (not necessary an oxymoron) physicists. Hopefully I will be able to convey to you some of the fun and excitement of that area in this recollection. If you become real interested you may find a written version in my Nobel Prize talk: "Electron Tunneling and Superconductivity" Les Prix Nobel en 1973 or Science 183, 1253-1258 1974 or Reviews of Modern Physics 46 (2), 245-250 1974

  11. RiskSOAP: Introducing and applying a methodology of risk self-awareness in road tunnel safety.

    PubMed

    Chatzimichailidou, Maria Mikela; Dokas, Ioannis M

    2016-05-01

    Complex socio-technical systems, such as road tunnels, can be designed and developed with more or less elements that can either positively or negatively affect the capability of their agents to recognise imminent threats or vulnerabilities that possibly lead to accidents. This capability is called risk Situation Awareness (SA) provision. Having as a motive the introduction of better tools for designing and developing systems that are self-aware of their vulnerabilities and react to prevent accidents and losses, this paper introduces the Risk Situation Awareness Provision (RiskSOAP) methodology to the field of road tunnel safety, as a means to measure this capability in this kind of systems. The main objective is to test the soundness and the applicability of RiskSOAP to infrastructure, which is advanced in terms of technology, human integration, and minimum number of safety requirements imposed by international bodies. RiskSOAP is applied to a specific road tunnel in Greece and the accompanying indicator is calculated twice, once for the tunnel design as defined by updated European safety standards and once for the 'as-is' tunnel composition, which complies with the necessary safety requirements, but calls for enhancing safety according to what EU and PIARC further suggest. The derived values indicate the extent to which each tunnel version is capable of comprehending its threats and vulnerabilities based on its elements. The former tunnel version seems to be more enhanced both in terms of it risk awareness capability and safety as well. Another interesting finding is that despite the advanced tunnel safety specifications, there is still room for enriching the safe design and maintenance of the road tunnel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. From tunneling to point contact: Correlation between forces and current

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Mortensen, Henrik; Schär, Sacha; Lucier, Anne-Sophie; Miyahara, Yoichi; Grütter, Peter; Hofer, Werner

    2005-05-01

    We used a combined ultrahigh vacuum scanning tunneling and atomic force microscope (STM/AFM) to study W tip-Au(111) sample interactions in the regimes from weak coupling to strong interaction and simultaneously measure current changes from picoamperes to microamperes. Close correlation between conductance and interaction forces in a STM configuration was observed. In particular, the electrical and mechanical points of contact are determined based on the observed barrier collapse and adhesive bond formation, respectively. These points of contact, as defined by force and current measurements, coincide within measurement error. Ab initio calculations of the current as a function of distance in the tunneling regime is in quantitative agreement with experimental results. The obtained results are discussed in the context of dissipation in noncontact AFM as well as electrical contact formation in molecular electronics.

  13. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  14. A Historical Evaluation of the U12n Tunnel, Nevada national Security Site, Nye County, Nevada Part 2 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drollinger, Harold; Jones, Robert C; Bullard, Thomas F

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudsonmore » Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings

  15. RF Tomography for Tunnel Detection: Principles and Inversion Schemes

    NASA Astrophysics Data System (ADS)

    Lo Monte, L.; Erricolo, D.; Inan, U. S.; Wicks, M. C.

    2008-12-01

    We propose a novel way to detect underground tunnels based on classical seismic tomography, Ground Penetrating Radar (GPR), inverse scattering principles, and the deployment of distributed sensors, which we call "Distributed RF Tomography". Tunnel detection has been a critical problem that cannot be considered fully solved. Presently, tunnel detection is performed by methods that include seismic sensors, electrical impedance, microgravity, boreholes, and GPR. All of these methods have drawbacks that make them not applicable for use in unfriendly environments, such as battlefields. Specifically, they do not cover wide surface areas, they are generally shallow, they are limited to vertical prospecting, and require the user to be in situ, which may jeopardize one's safety. Additional application of the proposed distributed RF tomography include monitoring sensitive areas, (e.g. banks, power plants, military bases, prisons, national borders) and civil applications (e.g. environmental engineering, mine safety, search and rescue, speleology, archaeology and geophysics). The novelty of a Distributed RF tomography system consists of the following. 1) Sensors are scattered randomly above the ground, thus saving time and money compared to the use of boreholes. 2) The use of lower operating frequency (around HF), which allows for deeper penetration. 3) The use of CW diffraction tomography, which increases the resolution to sub-wavelength values, independently from the sensor displacement, and increases the SNR. 4) Use of linear inversion schemes that are suited for tunnel detection. 5) The use of modulation schemes and signal processing algorithms to mitigate interferences and noise. This presentation will cover: 1. Current physical limits of existing techniques for tunnel detection. 2. Concept of Distributed RF Tomography. 3. Inversion theories and strategies a. Proper forward model for voids buried into an homogeneous medium b. Extended matched filtering inversion c. Near

  16. Wind tunnel studies of Martian aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Iversen, J. D.; Pollack, J. B.; Udovich, N.; White, B.

    1973-01-01

    Preliminary results are reported of an investigation which involves wind tunnel simulations, geologic field studies, theoretical model studies, and analyses of Mariner 9 imagery. Threshold speed experiments were conducted for particles ranging in specific gravity from 1.3 to 11.35 and diameter from 10.2 micron to 1290 micron to verify and better define Bagnold's (1941) expressions for grain movement, particularly for low particle Reynolds numbers and to study the effects of aerodynamic lift and surface roughness. Wind tunnel simulations were conducted to determine the flow field over raised rim craters and associated zones of deposition and erosion. A horseshoe vortex forms around the crater, resulting in two axial velocity maxima in the lee of the crater which cause a zone of preferential erosion in the wake of the crater. Reverse flow direction occurs on the floor of the crater. The result is a distinct pattern of erosion and deposition which is similar to some martian craters and which indicates that some dark zones around Martian craters are erosional and some light zones are depositional.

  17. [Morbidity with temporary disability in railway tunnel workers].

    PubMed

    Kudrin, V A; Prokhorov, A A

    2003-01-01

    The paper presents data on the health status of a large professional group of transport building workers--those who build BAM railway tunnels and those who build Moscow and Saint Petersburg underground stations. Major factors that are associated with underground work and that form the level of morbidity with temporary disability are identified. Respiratory, osteomuscular, digestive diseases, accidents, intoxications, and injuries are predominant in the structure of temporary disability. Lines of better organization of therapeutical-and-prophylactic aid to this contingent are defined.

  18. Techniques For Mass Production Of Tunneling Electrodes

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W.; Podosek, Judith A.; Reynolds, Joseph K.; Rockstad, Howard K.; Vote, Erika C.; Kaiser, William J.

    1993-01-01

    Techniques for mass production of tunneling electrodes developed from silicon-micromachining, lithographic patterning, and related microfabrication processes. Tunneling electrodes named because electrons travel between them by quantum-mechanical tunneling; tunneling electrodes integral parts of tunneling transducer/sensors, which act in conjunction with feedback circuitry to stabilize tunneling currents by maintaining electrode separations of order of 10 Angstrom. Essential parts of scanning tunneling microscopes and related instruments, and used as force and position transducers in novel microscopic accelerometers and infrared detectors.

  19. Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements.

    PubMed

    Arvidsson, Tommy; Bergström, Lars; Kreuger, Jenny

    2011-06-01

    In this study, the collecting efficiency of different samplers of airborne drift was compared both in wind tunnel and in field experiments. The aim was to select an appropriate sampler for collecting airborne spray drift under field conditions. The wind tunnel study examined three static samplers and one dynamic sampler. The dynamic sampler had the highest overall collecting efficiency. Among the static samplers, the pipe cleaner collector had the highest efficiency. These two samplers were selected for evaluation in the subsequent field study. Results from 29 individual field experiments showed that the pipe cleaner collector on average had a 10% lower collecting efficiency than the dynamic sampler. However, the deposits on the pipe cleaners generally were highest at the 0.5 m level, and for the dynamic sampler at the 1 m level. It was concluded from the wind tunnel part of the study that the amount of drift collected on the static collectors had a more strongly positive correlation with increasing wind speed compared with the dynamic sampler. In the field study, the difference in efficiency between the two types of collector was fairly small. As the difference in collecting efficiency between the different types of sampler was small, the dynamic sampler was selected for further measurements of airborne drift under field conditions owing to its more well-defined collecting area. This study of collecting efficiency of airborne spray drift of static and dynamic samplers under field conditions contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry.

  20. Magnetic Fluxtube Tunneling

    NASA Technical Reports Server (NTRS)

    Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.

    1996-01-01

    We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.

  1. Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles.

    PubMed

    Bagheri, G H; Bonadonna, C; Manzella, I; Pontelandolfo, P; Haas, P

    2013-05-01

    A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications.

  2. Orbital-resolved nonadiabatic tunneling ionization

    NASA Astrophysics Data System (ADS)

    Zhang, Qingbin; Basnayake, Gihan; Winney, Alexander; Lin, Yun Fei; Debrah, Duke; Lee, Suk Kyoung; Li, Wen

    2017-08-01

    In this theoretical work, we show that both the orbital helicity (p+ vs p-) and the adiabaticity of tunneling have a significant effect on the initial conditions of tunneling ionization. We developed a hybrid quantum (numerical solution of the time-dependent Schrödinger equation) and classical (back propagation of trajectories) approach to extract orbital-specific initial conditions of electrons at the tunneling exit. Clear physical insight connecting these initial conditions with the final momentum and deflection angles of electrons are presented. Moreover, the adiabaticity of tunneling ionization is characterized by comparing the initial conditions with those with a static field. Significant nonadiabatic tunneling is found to persist beyond a Keldysh parameter of less than 0.5.

  3. Design and Characterization of the UTIAS Anechoic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Chow, Derrick H. F.

    The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.

  4. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  5. Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors

    NASA Astrophysics Data System (ADS)

    Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard

    2018-05-01

    Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .

  6. Airway disease in highway and tunnel construction workers exposed to silica.

    PubMed

    Oliver, L Christine; Miracle-McMahill, Heidi

    2006-12-01

    Construction workers employed in a unique type of tunnel construction known as tunnel jacking were exposed over an 18-month period to respirable crystalline silica at concentrations that exceeded the OSHA permissible exposure limit. The present study examines workplace exposures and occurrence of airway disease in these workers. Medical and occupational histories and chest radiographs were obtained on 343 active construction workers who had worked on the site during the period in question. Chest radiographs were interpreted according to the ILO-1980 system of classification. Standardized questions were used to develop an algorithm to define symptoms consistent with asthma (SCA) and to determine these respiratory outcomes: chronic bronchitis, shortness of breath (SOB), and physician-diagnosed asthma (current vs. not current). Relationships with each of three work activities were examined: slurry wall breakthrough (SWB), chipping caisson overpour, and tunneling/mining. Participants included laborers, carpenters, tunnel workers, ironworkers, operating engineers, and electricians. No cases of silicosis were found on chest X-ray. Overall prevalence of chronic bronchitis, SCA, SOB, and physician-diagnosed asthma was 10.7%, 25%, 29%, and 6.6%, respectively. Odds ratios (OR) for carpenters compared to laborers were significantly elevated for chronic bronchitis, SCA, and SOB. SWB was associated with chronic bronchitis and SCA (OR 4.93, 95% CI = 1.01, 24.17; OR 3.32, 95% CI = 1.25, 8.84, respectively). The interaction between SWB, SCA, and trade was significant for carpenters (OR 6.87, 95% CI = 1.66, 28.39). Inverse trends were observed for months on the site and chronic bronchitis, SCA, and SOB (P = 0.0374, 0.0006, and 0.0307, respectively). Tunnel construction workers exposed to respirable crystalline silica and cement dust are at increased risk for airway disease. Extent of risk varies by trade and work activity. Our data indicate the importance of bystander exposures and

  7. Quiet Supersonic Wind Tunnel Development

    NASA Technical Reports Server (NTRS)

    King, Lyndell S.; Kutler, Paul (Technical Monitor)

    1994-01-01

    The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.

  8. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grezes, C.; Alzate, J. G.; Cai, X.

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memorymore » and logic integrated circuits.« less

  9. Assessment of disruptive effects associated with urban transportation tunnel construction

    DOT National Transportation Integrated Search

    1976-06-01

    Social, economic, and environmental impacts resulting from tunnels' being constructed for mass transportation purposes in urban areas are identified. A matrix is constructed identifying the locus of costs to affected groups by four kinds of causal ag...

  10. The S-Tunnel for tunnelled dialysis catheter: an alternative approach to the prevention of displacement.

    PubMed

    Jenkins, Glyndwr W; Kelly, Michael; Anwar, Siddiq; Ahmed, Saeed S

    2015-01-01

    Vascular access has been described in the literature anywhere from the 'Achilles Heel' to the 'Cornerstone' of haemodialysis. Displacement of a central venous catheter is not an uncommon occurrence. We discuss an alternative method of placement for the tunnelled central venous catheter to prevent displacement in those patients with excess anterior chest wall soft tissue. A new surgical technique for placement of a tunnelled central venous catheter was developed in an attempt to reduce the number of displacements. This involved the creation of a second tunnel at a 90° angle to the original retrograde tunnelled path. The authors have currently placed five 'S-Line' tunnelled central venous catheters with no reports of displacement or line infection over a period of 18 months. The 'S-Line' offers a simple, straightforward and most importantly safe method to reduce the incidence of tunnelled right internal jugular central venous catheter displacement.

  11. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  12. Submucosal tunneling techniques: current perspectives.

    PubMed

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.

  13. The comparison between limited open carpal tunnel release using direct vision and tunneling technique and standard open carpal tunnel release: a randomized controlled trial study.

    PubMed

    Suppaphol, Sorasak; Worathanarat, Patarawan; Kawinwongkovit, Viroj; Pittayawutwinit, Preecha

    2012-04-01

    To compare the operative outcome of carpal tunnel release between limited open carpal tunnel release using direct vision and tunneling technique (group A) with standard open carpal tunnel release (group B). Twenty-eight patients were enrolled in the present study. A single blind randomized control trial study was conducted to compare the postoperative results between group A and B. The study parameters were Levine's symptom severity and functional score, grip and pinch strength, and average two-point discrimination. The postoperative results between two groups were comparable with no statistical significance. Only grip strength at three months follow up was significantly greater in group A than in group B. The limited open carpal tunnel release in the present study is effective comparable to the standard open carpal tunnel release. The others advantage of this technique are better cosmesis and improvement in grip strength at the three months postoperative period.

  14. An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels

    NASA Technical Reports Server (NTRS)

    Jachimowski, Casimir J.

    1992-01-01

    The effect of initial nonequilibrium dissociated air constituents on the combustion of hydrogen in high-speed flows for a simulated Mach 17 flight condition was investigated by analyzing the results of comparative combustion experiments performed in a reflected shock tunnel test gas and in a shock expansion tunnel test gas. The results were analyzed and interpreted with a one-dimensional quasi-three-stream combustor code that includes finite rate combustion chemistry. The results of this study indicate that the combustion process is kinetically controlled in the experiments in both tunnels and the presence of the nonequilibrium partially dissociated oxygen in the reflected shock tunnel enhances the combustion. Methods of compensating for the effect of dissociated oxygen are discussed.

  15. Lightning tests and analyses of tunnel bond straps and shielded cables on the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Druen, William M.

    1993-01-01

    The purposes of the tests and analyses described in this report are as follows: (1) determine the lightning current survivability of five alternative changed designs of the bond straps which electrically bond the solid rocket booster (SRB) systems tunnel to the solid rocket motor (SRM) case; (2) determine the amount of reduction in induced voltages on operational flight (OF) tunnel cables obtained by a modified design of tunnel bond straps (both tunnel cover-to-cover and cover-to-motor case); (3) determine the contribution of coupling to the OF tunnel cables by ground electrical and instrumentation (GEI) cables which enter the systems tunnel from unshielded areas on the surfaces of the motor case; and (4) develop a model (based on test data) and calculate the voltage levels at electronic 'black boxes' connected to the OF cables that run in the systems tunnel.

  16. Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Chennault, Jonathan

    2004-01-01

    The Icing Research Tunnel in Building 11 at the NASA Glenn Research Center is committed to researching the effects of in flight icing on aircraft and testing ways to stop the formation of hazardous icing conditions on planes. During this summer, I worked here with Richard DelRosa, the lead engineer for this area. address one of the major concerns of aviation: icing conditions. During the war, many planes crashed (especially supply planes going over the.Himalayas) because ice built up in their wings and clogged the engines. To this day, it remains the largest ice tunnel in the world, with a test section that measures 6 feet high, 9 feet long, and 20 feet wide. It can simulate airspeeds from 50 to 300 miles per hour at temperatures as low as -50 Fahrenheit. Using these capabilities, IRT can simulate actual conditions at high altitudes. The first thing I did was creating a cross reference in Microsoft Excel. It lists commands for the DPU units that control the pressure and temperature variations in the tunnel, as well as the type of command (keyboard, multiplier, divide, etc). The cross reference also contains the algorithm for every command, and which page it is listed in on the control sheet (visual Auto-CAD graphs, which I helped to make). I actually spent most of the time on the computer using Auto-CAD. I drew a diagram of the entire icing tunnel and then drew diagrams of its various parts. Between my mentor and me, we have drawings of every part of it, from the spray bars to the thermocouples, power cabinets, input-output connectors for power systems, and layouts of various other machines. I was also responsible for drawing schematics for the Escort system (which controls the spray bars), the power system, DPUs, and other electrical systems. In my spare time, I am attempting to build and program the "toddler". Toddler is a walking robot that I have to program in PBASIC language. When complete, it should be able to walk on level terrain while avoiding obstacles in

  17. Does flexible tunnel drilling affect the femoral tunnel angle measurement after anterior cruciate ligament reconstruction?

    PubMed

    Muller, Bart; Hofbauer, Marcus; Atte, Akere; van Dijk, C Niek; Fu, Freddie H

    2015-12-01

    To quantify the mean difference in femoral tunnel angle (FTA) as measured on knee radiographs between rigid and flexible tunnel drilling after anatomic anterior cruciate ligament (ACL) reconstruction. Fifty consecutive patients that underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a flexible reamer were included in this study. The control group was comprised of 50 patients all of who underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a rigid reamer. All femoral tunnels were drilled through a medial portal to ensure anatomic tunnel placement. The FTA was determined from post-operative anterior-to-posterior (AP) radiographs by two independent observers. A 5° difference between the two mean FTA was considered clinically significant. The average FTA, when drilled with a rigid reamer, was 42.0° ± 7.2°. Drilling with a flexible reamer resulted in a mean FTA of 44.7° ± 7.0°. The mean difference of 2.7° was not statistically significant. The intraclass correlation coefficient for inter-tester reliability was 0.895. The FTA can be reliably determined from post-operative AP radiographs and provides a useful and reproducible metric for characterizing femoral tunnel position after both rigid and flexible femoral tunnel drilling. This has implications for post-operative evaluation and preoperative treatment planning for ACL revision surgery. IV.

  18. 13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL TO COLD CALIBRATION TEST STAND BASEMENT, SHOWING HARD WIRE CONNECTION (INSTRUMENTATION AND CONTROL). - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  19. Treatment of tunnel wash water and implications for its disposal.

    PubMed

    Hallberg, M; Renman, G; Byman, L; Svenstam, G; Norling, M

    2014-01-01

    The use of road tunnels in urban areas creates water pollution problems, since the tunnels must be frequently cleaned for traffic safety reasons. The washing generates extensive volumes of highly polluted water, for example, more than fivefold higher concentrations of suspended solids compared to highway runoff. The pollutants in the wash water have an affinity for particulate material, so sedimentation should be a viable treatment option. In this study, 12 in situ sedimentation trials were carried out on tunnel wash water, with and without addition of chemical flocculent. Initial suspended solids concentration ranged from 804 to 9,690 mg/L. With sedimentation times of less than 24 hours and use of a chemical flocculent, it was possible to reach low concentrations of suspended solids (<15 mg/L), PAH (<0.1 μg/L), As (<1.0 μg/L), Cd (<0.05 μg/L), Hg (<0.02 μg/L), Fe (<200 μg/L), Ni (<8 μg/L), Pb (<0.5 μg/L), Zn (<60 μg/L) and Cr (<8 μg/L). Acute Microtox(®) toxicity, mainly attributed to detergents used for the tunnel wash, decreased significantly at low suspended solids concentrations after sedimentation using a flocculent. The tunnel wash water did not inhibit nitrification. The treated water should be suitable for discharge into recipient waters or a wastewater treatment plant.

  20. Cost-Minimization Analysis of Open and Endoscopic Carpal Tunnel Release.

    PubMed

    Zhang, Steven; Vora, Molly; Harris, Alex H S; Baker, Laurence; Curtin, Catherine; Kamal, Robin N

    2016-12-07

    Carpal tunnel release is the most common upper-limb surgical procedure performed annually in the U.S. There are 2 surgical methods of carpal tunnel release: open or endoscopic. Currently, there is no clear clinical or economic evidence supporting the use of one procedure over the other. We completed a cost-minimization analysis of open and endoscopic carpal tunnel release, testing the null hypothesis that there is no difference between the procedures in terms of cost. We conducted a retrospective review using a private-payer and Medicare Advantage database composed of 16 million patient records from 2007 to 2014. The cohort consisted of records with an ICD-9 (International Classification of Diseases, Ninth Revision) diagnosis of carpal tunnel syndrome and a CPT (Current Procedural Terminology) code for carpal tunnel release. Payer fees were used to define cost. We also assessed other associated costs of care, including those of electrodiagnostic studies and occupational therapy. Bivariate comparisons were performed using the chi-square test and the Student t test. Data showed that 86% of the patients underwent open carpal tunnel release. Reimbursement fees for endoscopic release were significantly higher than for open release. Facility fees were responsible for most of the difference between the procedures in reimbursement: facility fees averaged $1,884 for endoscopic release compared with $1,080 for open release (p < 0.0001). Endoscopic release also demonstrated significantly higher physician fees than open release (an average of $555 compared with $428; p < 0.0001). Occupational therapy fees associated with endoscopic release were less than those associated with open release (an average of $237 per session compared with $272; p = 0.07). The total average annual reimbursement per patient for endoscopic release (facility, surgeon, and occupational therapy fees) was significantly higher than for open release ($2,602 compared with $1,751; p < 0.0001). Our data showed

  1. Wall-interference corrections for parachutes in a closed wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.; Buffington, R.J.

    1989-01-01

    An extensive test program was conducted to gather information on wall-interference effects for parachutes in closed wind tunnels. Drag area and base pressure measurements were made for a set of ribbon parachutes of 7%, 15% and 30% geometric porosity in six different wind tunnels, covering a range of geometric blockages from two to thirty-five percent. The resulting data have been used to formulate and validate approximate blockage correction equations based on the theory of Maskell. The corrections are applicable to single parachutes and clusters of two and three parachutes. 8 refs., 7 figs., 1 tab.

  2. Results Of Automating A Photolithography Cell In A Clean Tunnel

    NASA Astrophysics Data System (ADS)

    June, David H.

    1987-01-01

    A prototype automated photobay was installed in an existing fab area utilizing flexible material handling techniques within a clean tunnel. The project objective was to prove design concepts of automated cassette-to-cassette handling within a clean tunnel that isolated operators from the wafers being processed. Material handling was by monorail track transport system to feed cassettes to pick and place robots. The robots loaded and unloaded cassettes of wafers to each of the various pieces of process equipment. The material handling algorithms, recipe downloading and statistical process control functions were all performed by custom software on the photobay cell controller.

  3. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  4. Ultrasound instrumentation for the 7 inch Mach seven tunnel

    NASA Technical Reports Server (NTRS)

    Mazel, D. S.; Mielke, R. R.

    1985-01-01

    The use of an Apple II+ microcomputer to collect data during the operation of the 7 inch Mach Seven Tunnel is discussed. A method by which the contamination of liquid oxygen is monitored with sound speed techniques is investigated. The electrical equivalent of a transducer bonded to a high pressure fill plug is studied. The three areas are briefly explained and data gathered for each area are presented.

  5. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  6. Charge Islands Through Tunneling

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  7. Wind tunnel

    NASA Technical Reports Server (NTRS)

    Wilson, E. M. (Inventor)

    1969-01-01

    A supersonic wind wind tunnel is described for testing several air foils mounted in a row. A test section of a wind tunnel contains means for mounting air foil sections in a row, means for rotating each section about an axis so that the angle of attack of each section changes with the other sections, and means for rotating the row with respect to the air stream so that the row forms an oblique angle with the air stream.

  8. Wideband Feedback Circuit For Tunneling Sensor

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Rockstad, Howard K.; Reynolds, Joseph K.

    1994-01-01

    Improved feedback circuit designed for use in controlling tunneling displacement transducer. Features include stability and nearly flat frequency response up to 50 kHz. Transducer could be that in scanning tunneling microscope, or any of micromachined electromechanical transducers described in "Micromachined Electron-Tunneling Infrared Detectors" (NPO-18413), "Micromachined Tunneling Accelerometer" (NPO-18513), and "Improved Electromechanical Infrared Sensor" (NPO-18560).

  9. Carpal tunnel and median nerve volume changes after tunnel release in patients with the carpal tunnel syndrome: a magnetic resonance imaging (MRI) study.

    PubMed

    Crnković, T; Trkulja, V; Bilić, R; Gašpar, D; Kolundžić, R

    2016-05-01

    Our aim was to study the dynamics of the post-surgical canal and nerve volumes and their relationships to objective [electromyoneurography (EMNG)] and subjective (pain) outcomes. Forty-seven patients with carpal tunnel syndrome (CTS) (median age 52, range 23-75 years) with a prominent narrowing of the median nerve within the canal (observed during carpal tunnel release) were evaluated clinically using EMNG and magnetic resonance imagining (MRI) before and at 90 and 180 days post-surgery. Canal and nerve volumes increased, EMNG findings improved and pain resolved during the follow-up. Increase in tunnel volume was independently associated with increased nerve volume. A greater post-surgical nerve volume was independently associated with a more prominent resolution of pain, but not with the extent of EMNG improvement, whereas EMNG improvement was not associated with pain resolution. Data confirm that MRI can detect even modest changes in the carpal tunnel and median nerve volume and that tunnel release results in tunnel and nerve-volume increases that are paralleled by EMNG and clinical improvements. Taken together, these observations suggest that MRI could be used to objectivise persistent post-surgical difficulties in CTS patients. Level of evidence 3 (follow-up study).

  10. NASA Glenn Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Roeder, James W.; Stark, David E.; Linne, Alan A.

    2004-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models that are to be tested in the wind tunnel facilities at the NASA Glenn Research Center. This report presents two methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it defines project procedures to test models in the NASA Glenn aeropropulsion facilities. Both customer-furnished and in-house model systems are discussed. The functions of the facility personnel and customers are defined. The format for the pretest meetings, safety permit process, and model reviews are outlined. The format for the model systems report (a requirement for each model that is to be tested at NASA Glenn) is described, the engineers responsible for developing the model systems report are listed, and the timetable for its delivery to the project engineer is given.

  11. SOFIA 2 model telescope wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  12. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drollinger, Harold; Jones, Robert C.; Thomas F. Bullard

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less

  13. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 5 of 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less

  14. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less

  15. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 3 of 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less

  16. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 2 of 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less

  17. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 4 of 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less

  18. A numerical study of the effects of wind tunnel wall proximity on an airfoil model

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark; Roberts, Leonard

    1990-01-01

    A procedure was developed for modeling wind tunnel flows using computational fluid dynamics. Using this method, a numerical study was undertaken to explore the effects of solid wind tunnel wall proximity and Reynolds number on a two-dimensional airfoil model at low speed. Wind tunnel walls are located at varying wind tunnel height to airfoil chord ratios and the results are compared with freestream flow in the absence of wind tunnel walls. Discrepancies between the constrained and unconstrained flows can be attributed to the presence of the walls. Results are for a Mach Number of 0.25 at angles of attack through stall. A typical wind tunnel Reynolds number of 1,200,000 and full-scale flight Reynolds number of 6,000,000 were investigated. At this low Mach number, wind tunnel wall corrections to Mach number and angle of attack are supported. Reynolds number effects are seen to be a consideration in wind tunnel testing and wall interference correction methods. An unstructured grid Navier-Stokes code is used with a Baldwin-Lomax turbulence model. The numerical method is described since unstructured flow solvers present several difficulties and fundamental differences from structured grid codes, especially in the area of turbulence modeling and grid generation.

  19. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    NASA Astrophysics Data System (ADS)

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-05-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories.

  20. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    PubMed Central

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-01-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories. PMID:28513590

  1. Altitude Wind Tunnel at NASA Glenn Research Center: An Interactive History

    NASA Technical Reports Server (NTRS)

    2008-01-01

    When constructed in the Early 1940s, the Altitude Wind Tunnel (AWT) at NASA Glenn Research Center was the nation's only wind tunnel capable of studying full scale engines under realistic flight conditions. It played a significant role in the development of the first U.S. jet engines as well as technologies such as the afterburner and variable-area nozzle. In the late 1950s, the tunnels interior components were removed so that hardware for Project Mercury could be tested in altitude conditions. In 1961, a portion of the tunnel was converted into one of the country's first large vacuum tanks and renamed the Space Power Chamber (SPC). SPC was used extensively throughout the 1960s for the Centaur rocket program. This multimedia piece allows one to interactively learn about the Altitude Wind Tunnel facility. and the research performed there. The piece contains: (1) A chronological history of the AWT from its construction during World War II and the testing of early jet engines, through the Mercury and Centaur programs of the 1960s and up to the final use of the building for the Microwave Systems laboratory. (2) Photographic surveys of the facility in it wind tunnel, vacuum tank and final configurations. (3) Browsable gallery of over 200 captioned photographs and video clips.(4) A nine minute documentary of the AWT produced by NASA in 1961 (5) Links to over 70 reports and publications related to AWT research and the history of the NACA.

  2. Anomalous Shocks on the Measured Near-Field Pressure Signatures of Low-Boom Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2006-01-01

    Unexpected shocks on wind-tunnel-measured pressure signatures prompted questions about design methods, pressure signature measurement techniques, and the quality of measurements in the flow fields near lifting models. Some of these unexpected shocks were the result of component integration methods. Others were attributed to the three-dimension nature of the flow around a lifting model, to inaccuracies in the prediction of the area-ruled lift, or to wing-tip stall effects. This report discusses the low-boom model wind-tunnel data where these unexpected shocks were initially observed, the physics of the lifting wing/body model's flow field, the wind-tunnel data used to evaluate the applicability of methods for calculating equivalent areas due to lift, the performance of lift prediction codes, and tip stall effects so that the cause of these shocks could be determined.

  3. Resonant torus-assisted tunneling.

    PubMed

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Kim, Chil-Min

    2016-01-01

    We report a new type of dynamical tunneling, which is mediated by a resonant torus, i.e., a nonisolated periodic orbit. To elucidate the phenomenon, we take an open elliptic cavity and show that a pair of resonances localized on two classically disconnected tori tunnel through a resonant torus when they interact with each other. This so-called resonant torus-assisted tunneling is verified by using Husimi functions, corresponding actions, Husimi function distributions, and the standard deviations of the actions.

  4. Distributions of tunnel splittings in quantum tunneling of magnetization in the single-molecule magnet, manganese12-acetate

    NASA Astrophysics Data System (ADS)

    Mertes, Kevin Mathias

    I present the results of an experimental investigation of quantum tunneling of magnetization in the single molecule magnet, Mn12-acetate, for magnetic fields applied along the easy c-axis of the crystal. Magnetization measurements for temperatures below 2 Kelvin reveal new properties of the nature of tunneling in Mn12-acetate: an abrupt cross-over from thermally-assisted tunneling to pure ground state tunneling, strong suppression of ground state tunneling for temperatures corresponding to the thermally activated regime and the unexpected dependence of the tunnel splitting determined from the Landau-Zener-Stueckelberg formalism on the magnetic field sweep rate. It is shown that the measured data is inconsistent with a system of identical molecules. The data is shown to be consistent with the presence of a broad log-normal distribution of second order transverse anisotropy which drives the tunneling process. A general method of determining the distribution is developed.

  5. Submucosal Tunneling Endoscopic Resection (STER) and Other Novel Applications of Submucosal Tunneling in Humans.

    PubMed

    Liu, Bing-Rong; Song, Ji-Tao

    2016-04-01

    The submucosal tunneling technique was originally developed to provide safe access to the peritoneal cavity for natural orifice transluminal endoscopic surgery procedures. With this technique, the submucosal tunnel becomes the working space for partial myotomy and tumor resection. The submucosal space has come to represent the "third space" distinguished from gastrointestinal lumen (first space) and peritoneal cavity (second space). New applications continue to be developed and further clinical applications in the future are anticipated. This article summarizes the current applications of submucosal tunneling endoscopic resection for subepithelial tumors and describes other related uses of submucosal tunneling. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of Blast-Induced Vibration from New Railway Tunnel on Existing Adjacent Railway Tunnel in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Liang, Qingguo; Li, Jie; Li, Dewu; Ou, Erfeng

    2013-01-01

    The vibrations of existing service tunnels induced by blast-excavation of adjacent tunnels have attracted much attention from both academics and engineers during recent decades in China. The blasting vibration velocity (BVV) is the most widely used controlling index for in situ monitoring and safety assessment of existing lining structures. Although numerous in situ tests and simulations had been carried out to investigate blast-induced vibrations of existing tunnels due to excavation of new tunnels (mostly by bench excavation method), research on the overall dynamical response of existing service tunnels in terms of not only BVV but also stress/strain seemed limited for new tunnels excavated by the full-section blasting method. In this paper, the impacts of blast-induced vibrations from a new tunnel on an existing railway tunnel in Xinjiang, China were comprehensively investigated by using laboratory tests, in situ monitoring and numerical simulations. The measured data from laboratory tests and in situ monitoring were used to determine the parameters needed for numerical simulations, and were compared with the calculated results. Based on the results from in situ monitoring and numerical simulations, which were consistent with each other, the original blasting design and corresponding parameters were adjusted to reduce the maximum BVV, which proved to be effective and safe. The effect of both the static stress before blasting vibrations and the dynamic stress induced by blasting on the total stresses in the existing tunnel lining is also discussed. The methods and related results presented could be applied in projects with similar ground and distance between old and new tunnels if the new tunnel is to be excavated by the full-section blasting method.

  7. Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires.

    PubMed

    Dawood, M K; Liew, T H; Lianto, P; Hong, M H; Tripathy, S; Thong, J T L; Choi, W K

    2010-05-21

    We report a simple and cost effective method for the synthesis of large-area, precisely located silicon nanocones from nanowires. The nanowires were obtained from our interference lithography and catalytic etching (IL-CE) method. We found that porous silicon was formed near the Au catalyst during the fabrication of the nanowires. The porous silicon exhibited enhanced oxidation ability when exposed to atmospheric conditions or in wet oxidation ambient. Very well located nanocones with uniform sharpness resulted when these oxidized nanowires were etched in 10% HF. Nanocones of different heights were obtained by varying the doping concentration of the silicon wafers. We believe this is a novel method of producing large-area, low cost, well defined nanocones from nanowires both in terms of the control of location and shape of the nanocones. A wide range of potential applications of the nanocone array can be found as a master copy for nanoimprinted polymer substrates for possible biomedical research; as a candidate for making sharp probes for scanning probe nanolithography; or as a building block for field emitting tips or photodetectors in electronic/optoelectronic applications.

  8. Experimental investigation of the subsonic high-altitude operation of the NASA Lewis 10- by 10-foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.

    1988-01-01

    An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.

  9. Electrically tunable tunneling rectification magnetoresistance in magnetic tunneling junctions with asymmetric barriers.

    PubMed

    Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo

    2017-10-26

    The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.

  10. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  11. Rolls Royce Avon RA-14 Engine in the Altitude Wind Tunnel

    NASA Image and Video Library

    1956-03-21

    A Rolls Royce Avon RA-14 engine was tested in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics’ (NACA) Lewis Flight Propulsion Laboratory. The Avon RA-14 engine was a 16-stage axial-flow compressor turbojet capable of producing 9,500 pounds of thrust. The Avon replaced Rolls Royce’s successful Nene engine in 1950 and remained in service until 1974. It was one of several British engines studied in the tunnel during the 1950s. The Altitude Wind Tunnel went through a series of modifications in 1951 to increase its capabilities. An annex was attached to the Exhauster Building to house three new Ingersoll-Rand compressors. The wooden blades on the tunnel’s 31-foot diameter fan were replaced, a pump house and exhaust cooler were constructed underneath the tunnel, and two new cells were added to the cooling tower. The modified wind tunnel continued to analyze jet engines in the 1950s, although the engines, like the RA-14 seen here, were much more powerful than those studied several years before. Lewis researchers studied the RA-14 turbojet engine in the Altitude Wind Tunnel for 11 months in 1956. The engine was mounted on a stand capable of gauging engine thrust, and the tunnel’s air was ducted to the engine through a venturi and bellmouth inlet, seen in this photograph. The initial studies established the engine’s performance characteristics with a fixed-area nozzle and its acceleration characteristics. The researchers also used the tunnel to investigate windmilling of the compressor blades, restarting at high altitudes, and the engine’s performance limits at altitude.

  12. Electromagnetics for Detecting Shallow Tunnels

    NASA Astrophysics Data System (ADS)

    Won, I.

    2006-05-01

    Detecting tunnels by geophysical means, even very shallow ones, has been difficult, to say the least. Despite heavy R&D funding from the military since the early 70s, geophysicists have not produced tools that are simple and practical enough to meet the military needs. The initial interest and R&D funding on the subject perhaps started with the Vietcong tunnels in the 60s. Tunnels in the Korean DMZ, first found in the mid 70s, sharply escalated the R&D spending. During the 90s, covert tunnels along the US-Mexico border have kept the topic alive but at a minimal funding level. Most recent interest appears to be in the terrorism-related shallow tunnels, more or less anywhere in the regions of conflict. Despite the longstanding effort in the geophysical community under heavy public funding, there is a dearth of success stories where geophysicists can actually claim to have found hitherto unknown tunnels. For instance, geophysics has not discovered a single tunnel in Vietnam or in Korea! All tunnels across the Korean DMZ were found from human intelligence. The same is true to all illicit tunnels found along the southwestern border. The tunnels under discussion are clandestine, which implies that the people who built them do not wish others to succeed in finding them. The place around the tunnel, therefore, may not be the friendliest venue for surveyors to linger around. The situation requires tools that are fast, little noticeable, and hardly intrusive. Many geophysical sensors that require ground contacts, such as geophones and electrodes that are connected by a myriad of cables, may not be ideal in this situation. On the other hand, a sensor that can be carried by vehicle without stopping, and is nothing obviously noticeable to bystanders, could be much more acceptable. Working at unfriendly environment also requires forgoing our usual practices where we collect data leisurely and make pretty maps later. To be useful, geophysical tools must be able to process

  13. Recovering information of tunneling spectrum from weakly isolated horizon

    NASA Astrophysics Data System (ADS)

    Chen, Ge-Rui; Huang, Yong-Chang

    2015-02-01

    In this paper we investigate the properties of tunneling spectrum from weakly isolated horizon (WIH)—a locally defined black hole. We find that there exist correlations among Hawking radiations from a WIH, information can be carried out by such correlations, and the radiation is an entropy conservation process. Through revisiting the calculation of the tunneling spectrum from a WIH, we find that Zhang et al.'s (Ann Phys 326:350, 2011) requirement that radiated particles have the same angular momenta of a unit mass as that of the black hole is unnecessary, and the energy and angular momenta of the emitted particles are very arbitrary, restricted only by keeping the cosmic censorship hypothesis of black holes. So we resolve the information loss paradox based on the method of Zhang et al. (Phys Lett B 675:98, 2009; Ann Phys 326:350, 2011; Int J Mod Phys D 22:1341014, 2013) in a general case.

  14. A Top Pilot Tunnel Preconditioning Method for the Prevention of Extremely Intense Rockbursts in Deep Tunnels Excavated by TBMs

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanqing; Feng, Xiating; Zhou, Hui; Qiu, Shili; Wu, Wenping

    2012-05-01

    The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.

  15. Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabe, Michiharu, E-mail: tabe.michiharu@shizuoka.ac.jp; Tan, Hoang Nhat; Mizuno, Takeshi

    We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of amore » donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.« less

  16. Tibial and Femoral Tunnel Changes After ACL Reconstruction: A Prospective 2-Year Longitudinal MRI Study.

    PubMed

    Weber, Alexander E; Delos, Demetris; Oltean, Hanna N; Vadasdi, Katherine; Cavanaugh, John; Potter, Hollis G; Rodeo, Scott A

    2015-05-01

    Tunnel widening after anterior cruciate ligament reconstruction (ACL-R) is a well-accepted and frequent phenomenon, yet little is known regarding its origin or natural history. To prospectively evaluate the cross-sectional area (CSA) changes in tibial and femoral bone tunnels after ACL-R with serial MRI. Case series; Level of evidence, 4. Patients underwent arthroscopic ACL-R with the same surgeon, surgical technique, and rehabilitation protocol. Each patient underwent preoperative dual-energy x-ray absorptiometry and clinical evaluation, as well as postoperative time zero MRI followed by subsequent MRI and clinical examination, including functional and subjective outcome tests, at 6, 12, 24, 52, and 104 weeks. Tibial and femoral tunnel CSA was measured on each MRI at tunnel aperture (ttA and ftA), midsection (ttM and ftM), and exit (ttE and ftE). Logistic regression modeling was used to examine the predictive value of demographic data and preoperative bone quality (as measured by dual-energy x-ray absorptiometry) on functional outcome scores, manual and instrumented laxity measurements, and changes in tunnel area over time. Eighteen patients (including 12 men), mean age 35.5±8.7 years, underwent ACL-R. There was significant tunnel expansion at ttA and ftA sites 6 weeks postoperatively (P=.024 and .0045, respectively). Expansion continued for 24 weeks, with progressive tunnel narrowing thereafter. Average ttA CSA was significantly larger than ftA CSA at all times. The ttM significantly expanded after 6 weeks (P=.06); continued expansion to week 12 was followed by 21 months of reduction in tunnel diameter. The ftM and both ttE and ftE sites decreased in CSA over the 2 years. Median Lysholm and International Knee Documentation Committee scores significantly improved at final follow-up (P=.0083 and <.0001, respectively), and patients returned to preoperative activity levels. Pivot shift significantly decreased (P<.0001). Younger age (<30 years), male sex, and delayed

  17. Experimental Investigation of Mars Science Laboratory Entry Vehicle Aeroheating in AEDC Hypervelocity Tunnel 9

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Collier, Arnold S.

    2017-01-01

    An experimental investigation of the aeroheating environment of the Mars Science Laboratory entry vehicle was conducted in the Arnold Engineering Development Complex Hypervelocity Wind Tunnel 9. Testing was performed on a 6-in. (0.1524 m) diameter model in the tunnel's Mach 8 and Mach 10 nozzles at free stream Reynolds numbers from 4.1×10*exp 6)/ft to 49×10(exp 6)/ft and from 1.2×10(exp 6)/ft to 19×10(exp 6)/ft, respectively, using pure nitrogen test gas. These conditions spanned the boundary layer flow regimes from completely laminar to fully turbulent flow over the entire forebody. A computational fluid dynamics study was conducted in support of the wind tunnel testing. Laminar and turbulent solutions were generated for all wind tunnel test conditions and comparisons of predicted heating distributions were performed with the data. These comparisons showed agreement for most cases to within the estimated +/-12% experimental uncertainty margin for fully-laminar or fully-turbulent conditions, while transitional heating data were bounded by laminar and turbulent predictions. These results helped to define uncertainty margins on the use of computational tools for vehicle design.

  18. 3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS AND PERISCOPE FACING TO TEST STAND 1-3. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. Hydrogeologic setting and simulation of groundwater flow near the Canterbury and Leadville Mine Drainage Tunnels, Leadville, Colorado

    USGS Publications Warehouse

    Wellman, Tristan P.; Paschke, Suzanne S.; Minsley, Burke; Dupree, Jean A.

    2011-01-01

    The Leadville mining district is historically one of the most heavily mined regions in the world producing large quantities of gold, silver, lead, zinc, copper, and manganese since the 1860s. A multidisciplinary investigation was conducted by the U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, to characterize large-scale groundwater flow in a 13 square-kilometer region encompassing the Canterbury Tunnel and the Leadville Mine Drainage Tunnel near Leadville, Colorado. The primary objective of the investigation was to evaluate whether a substantial hydraulic connection is present between the Canterbury Tunnel and Leadville Mine Drainage Tunnel for current (2008) hydrologic conditions. Altitude in the Leadville area ranges from about 3,018 m (9,900 ft) along the Arkansas River valley to about 4,270 m (14,000 ft) along the Continental Divide east of Leadville, and the high altitude of the area results in a moderate subpolar climate. Winter precipitation as snow was about three times greater than summer precipitation as rain, and in general, both winter and summer precipitation were greatest at higher altitudes. Winter and summer precipitation have increased since 2002 coinciding with the observed water-level rise near the Leadville Mine Drainage Tunnel that began in 2003. The weather patterns and hydrology exhibit strong seasonality with an annual cycle of cold winters with large snowfall, followed by spring snowmelt, runoff, and recharge (high-flow) conditions, and then base-flow (low-flow) conditions in the fall prior to the next winter. Groundwater occurs in the Paleozoic and Precambrian fractured-rock aquifers and in a Quaternary alluvial aquifer along the East Fork Arkansas River, and groundwater levels also exhibit seasonal, although delayed, patterns in response to the annual hydrologic cycle. A three-dimensional digital representation of the extensively faulted bedrock was developed and a geophysical direct

  20. Suppression of Magnetic Quantum Tunneling in a Chiral Single-Molecule Magnet by Ferromagnetic Interactions.

    PubMed

    Lippert, Kai-Alexander; Mukherjee, Chandan; Broschinski, Jan-Philipp; Lippert, Yvonne; Walleck, Stephan; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten

    2017-12-18

    Single-molecule magnets (SMMs) retain a magnetization without applied magnetic field for a decent time due to an energy barrier U for spin-reversal. Despite the success to increase U, the difficult to control magnetic quantum tunneling often leads to a decreased effective barrier U eff and a fast relaxation. Here, we demonstrate the influence of the exchange coupling on the tunneling probability in two heptanuclear SMMs hosting the same spin-system with the same high spin ground state S t = 21/2. A chirality-induced symmetry reduction leads to a switch of the Mn III -Mn III exchange from antiferromagnetic in the achiral SMM [Mn III 6 Cr III ] 3+ to ferromagnetic in the new chiral SMM RR [Mn III 6 Cr III ] 3+ . Multispin Hamiltonian analysis by full-matrix diagonalization demonstrates that the ferromagnetic interactions in RR [Mn III 6 Cr III ] 3+ enforce a well-defined S t = 21/2 ground state with substantially less mixing of M S substates in contrast to [Mn III 6 Cr III ] 3+ and no tunneling pathways below the top of the energy barrier. This is experimentally verified as U eff is smaller than the calculated energy barrier U in [Mn III 6 Cr III ] 3+ due to tunneling pathways, whereas U eff equals U in RR [Mn III 6 Cr III ] 3+ demonstrating the absence of quantum tunneling.

  1. Long-range electron tunneling.

    PubMed

    Winkler, Jay R; Gray, Harry B

    2014-02-26

    Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment.

  2. Carpal Tunnel Syndrome Associated with Oral Bisphosphonates. A Population-Based Cohort Study

    PubMed Central

    Carvajal, Alfonso; Martín Arias, Luis H.; Sáinz, María; Escudero, Antonio; Fierro, Inmaculada; Sauzet, Odile; Cornelius, Victoria R.; Molokhia, Mariam

    2016-01-01

    Background Bisphosphonates are widely used to prevent osteoporotic fractures. Some severe musculoskeletal reactions have been described with this medication; among them, some cases of carpal tunnel syndrome. Thus, the aim of this study was to explore whether bisphosphonates may be associated with this syndrome. Methods A cohort study was conducted to compare exposed to unexposed women; the exposed group was that composed of women having received at least one prescription of an oral bisphosphonate. For the purpose, we used information from The Health Improvement Network (THIN) database. The outcome of interest was defined as those women diagnosed with carpal tunnel syndrome. A survival analysis was performed; the Cox proportional hazard model was used to calculate hazard ratios and 95% confidence intervals, and to adjust for identified confounding variables. Results Out of a sample of 59,475 women older than 51 years, 19,825 were treated with bisphosphonates during the period studied. No differences in age distribution or mean follow-up time were observed between the two groups in comparison. Overall, there were 572 women diagnosed with carpal tunnel syndrome, 242 (1.2%) in the group exposed to bisphosphonates, and 330 (0.8%) in the unexposed. An adjusted hazard ratio of developing carpal tunnel syndrome of 1.38 (95%CI, 1.15–1.64) was found for women exposed to bisphosphonates; no significant changes in the hazard ratios were found when considering different levels of bisphosphonate exposure. Conclusions An increased risk of carpal tunnel syndrome is associated with the use of bisphosphonates in postmenopausal women. PMID:26765346

  3. Quantum tunneling with friction

    NASA Astrophysics Data System (ADS)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  4. Electron-Tunneling Magnetometer

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Waltman, Steven B.

    1993-01-01

    Electron-tunneling magnetometer is conceptual solid-state device operating at room temperature, yet offers sensitivity comparable to state-of-art magnetometers such as flux gates, search coils, and optically pumped magnetometers, with greatly reduced volume, power consumption, electronics requirements, and manufacturing cost. Micromachined from silicon wafer, and uses tunneling displacement transducer to detect magnetic forces on cantilever-supported current loop.

  5. NASA Lewis 9- by 15-foot low-speed wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.

  6. Two-dimensional wind tunnel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on the Japanese National Aerospace Laboratory two dimensional transonic wind tunnel, completed at the end of 1979 is presented. Its construction is discussed in detail, and the wind tunnel structure, operation, test results, and future plans are presented.

  7. Investigation of Corner Effect and Identification of Tunneling Regimes in L-Shaped Tunnel Field-Effect-Transistor.

    PubMed

    Najam, Faraz; Yu, Yun Seop

    2018-09-01

    Corner-effect existing in L-shaped tunnel field-effect-transistor (LTFET) was investigated using numerical simulations and band diagram analysis. It was found that the corner-effect is caused by the convergence of electric field in the sharp source corner present in an LTFET, thereby increasing the electric field in the sharp source corner region. It was found that in the corner-effect region tunneling starts early, as a function of applied bias, as compared to the rest of the channel not affected by corner-effect. Further, different tunneling regimes as a function of applied bias were identified in the LTFET including source to channel and channel to channel tunneling regimes. Presence of different tunneling regimes in LTFET was analytically justified with a set of equations developed to model source to channel, and channel to channel tunneling currents. Drain-current-gate-voltage (Ids-Vgs) characteristics obtained from the equations is in reasonable qualitative agreement with numerical simulation.

  8. Experimental Evidence for Quantum Tunneling Time

    NASA Astrophysics Data System (ADS)

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z.; Pfeifer, Thomas; Keitel, Christoph H.; Moshammer, Robert

    2017-07-01

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  9. Parallel Quantum Circuit in a Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian; GNS theory Group Team

    In between 2 metallic nanopads, adding identical and independent electron transfer paths in parallel increases the electronic effective coupling between the 2 nanopads through the quantum circuit defined by those paths. Measuring this increase of effective coupling using the tunnelling current intensity can lead for example for 2 paths in parallel to the now standard G =G1 +G2 + 2√{G1 .G2 } conductance superposition law (1). This is only valid for the tunnelling regime (2). For large electronic coupling to the nanopads (or at resonance), G can saturate and even decay as a function of the number of parallel paths added in the quantum circuit (3). We provide here the explanation of this phenomenon: the measurement of the effective Rabi oscillation frequency using the current intensity is constrained by the normalization principle of quantum mechanics. This limits the quantum conductance G for example to go when there is only one channel per metallic nanopads. This ef fect has important consequences for the design of Boolean logic gates at the atomic scale using atomic scale or intramolecular circuits. References: This has the financial support by European PAMS project.

  10. Tunneling from the past horizon

    NASA Astrophysics Data System (ADS)

    Kang, Subeom; Yeom, Dong-han

    2018-04-01

    We investigate a tunneling and emission process of a thin-shell from a Schwarzschild black hole, where the shell was initially located beyond the Einstein-Rosen bridge and finally appears at the right side of the Penrose diagram. In order to obtain such a solution, we should assume that the areal radius of the black hole horizon increases after the tunneling. Hence, there is a parameter range such that the tunneling rate is exponentially enhanced, rather than suppressed. We may have two interpretations regarding this. First, such a tunneling process from the past horizon is improbable by physical reasons; second, such a tunneling is possible in principle, but in order to obtain a stable Einstein-Rosen bridge, one needs to restrict the parameter spaces. If such a process is allowed, this can be a nonperturbative contribution to Einstein-Rosen bridges as well as eternal black holes.

  11. Molecular series-tunneling junctions.

    PubMed

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  12. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  13. Automated Boundary Conditions for Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  14. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Jefferies, Sharon; Howe, A. Scott; Howard, Robert; Mary, Natalie; Watson, Judith; Lewis, Ruthan

    2016-01-01

    When the first human visitors on Mars prepare to return to Earth, they will have to comply with stringent planetary protection requirements. Apollo Program experience warns that opening an EVA hatch directly to the surface will bring dust into the ascent vehicle. To prevent inadvertent return of potential Martian contaminants to Earth, careful consideration must be given to the way in which crew ingress their Mars Ascent Vehicle (MAV). For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel that eliminates extravehicular activity (EVA) ingress is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications, such as rover to habitat transfer, once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The study team began by identifying the minimum set of functional requirements needed for the tunnel to perform its primary mission, as this would presumably be the simplest design, with the lowest mass and volume. This Minimum Functional Tunnel then becomes a baseline against which various tunnel design concepts and potential alternatives can be traded, and aids in assessing the mass penalty of increased functionality. Preliminary analysis indicates that the mass of a single-mission tunnel is about 237 kg, not including mass growth allowance.

  15. Tunneling into fuzzball states

    NASA Astrophysics Data System (ADS)

    Mathur, Samir D.

    2010-01-01

    String theory suggests that black hole microstates are quantum, horizon sized ‘fuzzballs', rather than smooth geometries with horizon. Radiation from fuzzballs can carry information and does not lead to information loss. But if we let a shell of matter collapse then it creates a horizon, and it seems that subsequent radiation will lead to information loss. We argue that the resolution to this problem is that the shell can tunnel to the fuzzball configurations. The amplitude for tunneling is small because we are relating two macroscopically different configurations, but the number of states that we can tunnel to, given through the Bekenstein entropy, is very large. These small and large numbers can cancel each other, making it possible for the shell to tunnel into fuzzball states before a significant amount of radiation has been emitted. This offers a way to resolve the information paradox.

  16. Demographic monitoring of wild muriqui populations: Criteria for defining priority areas and monitoring intensity.

    PubMed

    Strier, Karen B; Possamai, Carla B; Tabacow, Fernanda P; Pissinatti, Alcides; Lanna, Andre M; Rodrigues de Melo, Fabiano; Moreira, Leandro; Talebi, Maurício; Breves, Paula; Mendes, Sérgio L; Jerusalinsky, Leandro

    2017-01-01

    Demographic data are essential to assessments of the status of endangered species. However, establishing an integrated monitoring program to obtain useful data on contemporary and future population trends requires both the identification of priority areas and populations and realistic evaluations of the kinds of data that can be obtained under different monitoring regimes. We analyzed all known populations of a critically endangered primate, the muriqui (genus: Brachyteles) using population size, genetic uniqueness, geographic importance (including potential importance in corridor programs) and implementability scores to define monitoring priorities. Our analyses revealed nine priority populations for the northern muriqui (B. hypoxanthus) and nine for the southern muriqui (B. arachnoides). In addition, we employed knowledge of muriqui developmental and life history characteristics to define the minimum monitoring intensity needed to evaluate demographic trends along a continuum ranging from simple descriptive changes in population size to predictions of population changes derived from individual based life histories. Our study, stimulated by the Brazilian government's National Action Plan for the Conservation of Muriquis, is fundamental to meeting the conservation goals for this genus, and also provides a model for defining priorities and methods for the implementation of integrated demographic monitoring programs for other endangered and critically endangered species of primates.

  17. Study on the measures of tunnels side-crossing bridge based on sheltering effects of isolation piles

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Liu, Jun yan; Liu, Yan

    2017-08-01

    Based on the transit line 3, we studied the effect of the bridge piles crossed closely from the side by the shield tunnel. Using the three-dimensional finite element numerical analysis software Midas GTS/NX, we analyzed the effect of shield tunnel on pile deformation, statistics are obtained that under the condition of pile, subgrade reinforcement and ground changes. The calculation results show that in the condition of reinforcement, the new tunnel shield crossing through the pile caused longitudinal disturbance of the tunnel surrounding strata along the tunnel, where the soil over the area is within a certain range of pile and settlement deformation of surface subsidence occurs, changing the surface roughly to the shape of “V”. The maximum value appears above the shield tunnel and the value is high. In combination with engineering geology, hydrogeology and environment factors, this paper adopted isolation pile reinforcement to the pile, and the simulated results show that, pile settlement was significantly reduced under the condition of pile reinforcement. The calculation results show the rationality of the reinforcement scheme to a certain extent, which provides a theoretical basis for the similar tunnel.

  18. Disturbance of tunneling coherence by oxygen vacancy in epitaxial Fe/MgO/Fe magnetic tunnel junctions.

    PubMed

    Miao, G X; Park, Y J; Moodera, J S; Seibt, M; Eilers, G; Münzenberg, M

    2008-06-20

    Oxygen vacancies in the MgO barriers of epitaxial Fe/MgO/Fe magnetic tunnel junctions are observed to introduce symmetry-breaking scatterings and hence open up channels for noncoherent tunneling processes that follow the normal WKB approximation. The evanescent waves inside the MgO barrier thus experience two-step tunneling, the coherent followed by the noncoherent process, and lead to lower tunnel magnetoresistance, higher junction resistance, as well as increased bias and temperature dependence. The characteristic length of the symmetry scattering process is determined to be about 1.6 nm.

  19. The Channel Tunnel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Channel Tunnel is a 50.5 km-long rail tunnel beneath the English Channel at the Straits of Dover. It connects Dover, Kent in England with Calais, northern France. The undersea section of the tunnel is unsurpassed in length in the world. A proposal for a Channel tunnel was first put forward by a French engineer in 1802. In 1881, a first attempt was made at boring a tunnel from the English side; the work was halted after 800 m. Again in 1922, English workers started boring a tunnel, and advanced 120 m before it too was halted for political reasons. The most recent attempt was begun in 1987, and the tunnel was officially opened in 1994. At completion it was estimated that the project cost around $18 billion. It has been operating at a significant loss since its opening, despite trips by over 7 million passengers per year on the Eurostar train, and over 3 million vehicles per year.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring

  20. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  1. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  2. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  3. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  4. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  5. Experimental Evidence for Quantum Tunneling Time.

    PubMed

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z; Pfeifer, Thomas; Keitel, Christoph H; Moshammer, Robert

    2017-07-14

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  6. Performance Evaluation of III-V Hetero/Homojunction Esaki Tunnel Diodes on Si and Lattice Matched Substrates

    NASA Astrophysics Data System (ADS)

    Thomas, Paul M.

    Understanding of quantum tunneling phenomenon in semiconductor systems is increasingly important as CMOS replacement technologies are investigated. This work studies a variety of heterojunction materials and types to increase tunnel currents to CMOS competitive levels and to understand how integration onto Si substrates affects performance. Esaki tunnel diodes were grown by Molecular Beam Epitaxy (MBE) on Si substrates via a graded buffer and control Esaki tunnel diodes grown on lattice matched substrates for this work. Peak current density for each diode is extracted and benchmarked to build an empirical data set for predicting diode performance. Additionally, statistics are used as tool to show peak to valley ratio for the III-V on Si sample and the control perform similarly below a threshold area. This work has applications beyond logic, as multijunction solar cell, heterojunction bipolar transistor, and light emitting diode designs all benefit from better tunnel contact design.

  7. Design of experiments enhanced statistical process control for wind tunnel check standard testing

    NASA Astrophysics Data System (ADS)

    Phillips, Ben D.

    The current wind tunnel check standard testing program at NASA Langley Research Center is focused on increasing data quality, uncertainty quantification and overall control and improvement of wind tunnel measurement processes. The statistical process control (SPC) methodology employed in the check standard testing program allows for the tracking of variations in measurements over time as well as an overall assessment of facility health. While the SPC approach can and does provide researchers with valuable information, it has certain limitations in the areas of process improvement and uncertainty quantification. It is thought by utilizing design of experiments methodology in conjunction with the current SPC practices that one can efficiently and more robustly characterize uncertainties and develop enhanced process improvement procedures. In this research, methodologies were developed to generate regression models for wind tunnel calibration coefficients, balance force coefficients and wind tunnel flow angularities. The coefficients of these regression models were then tracked in statistical process control charts, giving a higher level of understanding of the processes. The methodology outlined is sufficiently generic such that this research can be applicable to any wind tunnel check standard testing program.

  8. Phonon-Mediated Tunneling into Graphene

    NASA Astrophysics Data System (ADS)

    Wehling, T. O.; Grigorenko, I.; Lichtenstein, A. I.; Balatsky, A. V.

    2008-11-01

    Recent scanning tunneling spectroscopy experiments on graphene reported an unexpected gap of about ±60meV around the Fermi level [V. W. Brar , Appl. Phys. Lett.APPLAB0003-6951 91, 122102 (2007); 10.1063/1.2771084Y. Zhang , Nature Phys.NPAHAX1745-2481 4, 627 (2008)10.1038/nphys1022]. Here we give a theoretical investigation explaining the experimentally observed spectra and confirming the phonon-mediated tunneling as the reason for the gap: We study the real space properties of the wave functions involved in the tunneling process by means of ab initio theory and present a model for the electron-phonon interaction, which couples the graphene’s Dirac electrons with quasifree-electron states at the Brillouin zone center. The self-energy associated with this electron-phonon interaction is calculated, and its effects on tunneling into graphene are discussed. Good agreement of the tunneling density of states within our model and the experimental dI/dU spectra is found.

  9. Phonon mediated tunneling into graphene

    NASA Astrophysics Data System (ADS)

    Wehling, Tim; Grigorenko, Ilya; Lichtenstein, Alexander; Balatsky, Alexander

    2009-03-01

    Recent scanning tunneling spectroscopy experiments [V. W. Brar et al., Appl. Phys. Lett. 91, 122102 (2007); Y. Zhang et al., Nature Phys. 4, 627 (2008)] on graphene reported an unexpected gap of about ±60,eV around the Fermi level. Here, we give a theoretical investigation explaining the experimentally observed spectra and confirming the phonon mediated tunneling as the reason for the gap: We study the real space properties of the wave functions involved in the tunneling process by means of ab-initio theory and present a model for the electron-phonon interaction, which couples the graphene's Dirac electrons with quasi free electron states at the Brillouin zone center. The self-energy associated with this electron-phonon interaction is calculated and its effects on tunneling into graphene are discussed. In particular, good agreement of the tunneling density of states within our model and the experimental dI/dU spectra is found.

  10. Conductive atomic force microscopy measurements of nanopillar magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Evarts, E. R.; Hogg, C.; Bain, J. A.; Majetich, S. A.

    2009-03-01

    Magnetic tunnel junctions have been studied extensively for their magnetoresistance and potential uses in magnetic logic and data storage devices, but little is known about how their performance will scale with size. Here we examined the electronic behavior of 12 nm diameter magnetic tunnel junctions fabricated by a novel nanomasking process. Scanning electron microscopy images indicated feature diameter of 12 nm, and atomic force microscopy showed a height of 5 nm suggesting that unmasked regions have been milled on average to the oxide barrier layer, and areas should have the remnants of the free layer exposed with no remaining nanoparticle. Electrical contact was made to individual nanopillars using a doped-diamond-coated atomic force microscopy probe with a 40 nm radius of curvature at the tip. Off pillar we observed a resistance of 8.1 x 10^5 φ, while on pillar we found a resistance of 2.85 x 10^6 φ. Based on the RA product for this film, 120 φ-μm^2, a 12 nm diameter cylinder with perfect contact would have a resistance of 1.06 x 10^6 φ. The larger experimental value is consistent with a smaller contact area due to damaging the pillar during the ion milling process. The magnetoresistance characteristics of these magnetic tunnel junctions will be discussed.

  11. New Set of Fan Blades for the Altitude Wind Tunnel

    NASA Image and Video Library

    1951-08-21

    New wooden fan blades being prepared for installation in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The facility underwent a major upgrade in 1951 to increase its operating capacities in order to handle the new, more powerful turbojet engines being manufactured in the 1950s. The fan blades were prepared in the shop area, seen in this photograph, before being lowered through a hole in the tunnel and attached to the drive shaft. A new drive bearing and tail faring were also installed on the fan as part of this rehab project. A 12-bladed 31-foot-diameter spruce wood fan generated the 300 to 500 mile-per-hour airflow through the tunnel. An 18,000-horsepower General Electric induction motor located in the rear corner of the Exhauster Building drove the fan at 410 revolutions per minute. An extension shaft, sealed in the tunnel’s shell with flexible couplings that allowed for the movement of the shell, connected the motor to the fan. A bronze screen secured to the turning vanes protected the fan against damage from any engine parts sailing through the tunnel. Despite this screen the blades did become worn or cracked over time and had to be replaced.

  12. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    NASA Astrophysics Data System (ADS)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  13. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions

    PubMed Central

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S.; Saeys, Mark; Yang, Hyunsoo

    2014-01-01

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices. PMID:25266219

  14. Test techniques: A survey paper on cryogenic tunnels, adaptive wall test sections, and magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.

    1989-01-01

    The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.

  15. 3. CABLE TUNNEL TO TEST STAND 1A, LOOKING SOUTH TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CABLE TUNNEL TO TEST STAND 1-A, LOOKING SOUTH TO STAIRS LEADING UP TO CONTROL CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  16. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the

  17. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  18. Tunneling magnetoresistance and electroresistance in Fe/PbTiO{sub 3}/Fe multiferroic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Jian-Qing, E-mail: djqkust@sina.com

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction with asymmetric TiO{sub 2}- and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p{sub z} orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing tomore » the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.« less

  19. Scanning Tunneling Optical Resonance Microscopy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the

  20. New generation of free-piston shock tunnels

    NASA Technical Reports Server (NTRS)

    Morrison, W. R. B.; Stalker, R. J.; Duffin, J.

    1990-01-01

    Consideration is given to three free-piston driven hypersonic tunnels under construction that will greatly enhance existing test capabilities. The tunnel being built at Caltech will feature energy capabilities about 40 percent higher than those of the world's largest operational free-piston tunnel to date. The second tunnel under construction will allow full-size engine hardware at near-orbital speeds. The third facility is a high-performance expansion tube that will be capable of generating high enthalpy flows at speeds of up to 9 km/sec. It will provide flows with dissociation levels much lower than are attainable with a reflected shock tunnel, approaching actual flight conditions. A table shows the tunnels' characteristics.

  1. Anatomic and Biomechanical Comparison of Traditional Bankart Repair With Bone Tunnels and Bankart Repair Utilizing Suture Anchors

    PubMed Central

    Judson, Christopher H.; Charette, Ryan; Cavanaugh, Zachary; Shea, Kevin P.

    2016-01-01

    Background: Traditional Bankart repair using bone tunnels has a reported failure rate between 0% and 5% in long-term studies. Arthroscopic Bankart repair using suture anchors has become more popular; however, reported failure rates have been cited between 4% and 18%. There have been no satisfactory explanations for the differences in these outcomes. Hypothesis: Bone tunnels will provide increased coverage of the native labral footprint and demonstrate greater load to failure and stiffness and decreased cyclic displacement in biomechanical testing. Study Design: Controlled laboratory study. Methods: Twenty-two fresh-frozen cadaveric shoulders were used. For footprint analysis, the labral footprint area was marked and measured using a Microscribe technique in 6 specimens. A 3-suture anchor repair was performed, and the area of the uncovered footprint was measured. This was repeated with traditional bone tunnel repair. For the biomechanical analysis, 8 paired specimens were randomly assigned to bone tunnel or suture anchor repair with the contralateral specimen assigned to the other technique. Each specimen underwent cyclic loading (5-25 N, 1 Hz, 100 cycles) and load to failure (15 mm/min). Displacement was measured using a digitized video recording system. Results: Bankart repair with bone tunnels provided significantly more coverage of the native labral footprint than repair with suture anchors (100% vs 27%, P < .001). Repair with bone tunnels (21.9 ± 8.7 N/mm) showed significantly greater stiffness than suture anchor repair (17.1 ± 3.5 N/mm, P = .032). Mean load to failure and gap formation after cyclic loading were not statistically different between bone tunnel (259 ± 76.8 N, 0.209 ± 0.064 mm) and suture anchor repairs (221.5 ± 59.0 N [P = .071], 0.161 ± 0.51 mm [P = .100]). Conclusion: Bankart repair with bone tunnels completely covered the footprint anatomy while suture anchor repair covered less than 30% of the native footprint. Repair using bone tunnels

  2. Anatomic and Biomechanical Comparison of Traditional Bankart Repair With Bone Tunnels and Bankart Repair Utilizing Suture Anchors.

    PubMed

    Judson, Christopher H; Charette, Ryan; Cavanaugh, Zachary; Shea, Kevin P

    2016-01-01

    Traditional Bankart repair using bone tunnels has a reported failure rate between 0% and 5% in long-term studies. Arthroscopic Bankart repair using suture anchors has become more popular; however, reported failure rates have been cited between 4% and 18%. There have been no satisfactory explanations for the differences in these outcomes. Bone tunnels will provide increased coverage of the native labral footprint and demonstrate greater load to failure and stiffness and decreased cyclic displacement in biomechanical testing. Controlled laboratory study. Twenty-two fresh-frozen cadaveric shoulders were used. For footprint analysis, the labral footprint area was marked and measured using a Microscribe technique in 6 specimens. A 3-suture anchor repair was performed, and the area of the uncovered footprint was measured. This was repeated with traditional bone tunnel repair. For the biomechanical analysis, 8 paired specimens were randomly assigned to bone tunnel or suture anchor repair with the contralateral specimen assigned to the other technique. Each specimen underwent cyclic loading (5-25 N, 1 Hz, 100 cycles) and load to failure (15 mm/min). Displacement was measured using a digitized video recording system. Bankart repair with bone tunnels provided significantly more coverage of the native labral footprint than repair with suture anchors (100% vs 27%, P < .001). Repair with bone tunnels (21.9 ± 8.7 N/mm) showed significantly greater stiffness than suture anchor repair (17.1 ± 3.5 N/mm, P = .032). Mean load to failure and gap formation after cyclic loading were not statistically different between bone tunnel (259 ± 76.8 N, 0.209 ± 0.064 mm) and suture anchor repairs (221.5 ± 59.0 N [P = .071], 0.161 ± 0.51 mm [P = .100]). Bankart repair with bone tunnels completely covered the footprint anatomy while suture anchor repair covered less than 30% of the native footprint. Repair using bone tunnels resulted in significantly greater stiffness than repair with suture

  3. Hydrogeochemical effects of a bulkhead in the Dinero mine tunnel, Sugar Loaf mining district, near Leadville, Colorado

    USGS Publications Warehouse

    Walton-Day, Katherine; Mills, Taylor J.

    2015-01-01

    The Dinero mine drainage tunnel is an abandoned, draining mine adit near Leadville, Colorado, that has an adverse effect on downstream water quality and aquatic life. In 2009, a bulkhead was constructed (creating a mine pool and increasing water-table elevations behind the tunnel) to limit drainage from the tunnel and improve downstream water quality. The goal of this study was to document changes to hydrology and water quality resulting from bulkhead emplacement, and to understand post-bulkhead changes in source water and geochemical processes that control mine-tunnel discharge and water quality. Comparison of pre-and post-bulkhead hydrology and water quality indicated that tunnel discharge and zinc and manganese loads decreased by up to 97 percent at the portal of Dinero tunnel and at two downstream sites (LF-537 and LF-580). However, some water-quality problems persisted at LF-537 and LF-580 during high-flow events and years, indicating the effects of the remaining mine waste in the area. In contrast, post-bulkhead water quality degraded at three upstream stream sites and a draining mine tunnel (Nelson tunnel). Water-quality degradation in the streams likely occurred from increased contributions of mine-pool groundwater to the streams. In contrast, water-quality degradation in the Nelson tunnel was likely from flow of mine-pool water along a vein that connects the Nelson tunnel to mine workings behind the Dinero tunnel bulkhead. Principal components analysis, mixing analysis, and inverse geochemical modeling using PHREEQC indicated that mixing and geochemical reactions (carbonate dissolution during acid weathering, precipitation of goethite and birnessite, and sorption of zinc) between three end-member water types generally explain the pre-and post-bulkhead water composition at the Dinero and Nelson tunnels. The three end members were (1) a relatively dilute groundwater having low sulfate and trace element concentrations; (2) mine pool water, and (3) water that

  4. Pronounced Environmental Effects on Injection Currents in EGaIn Tunneling Junctions Comprising Self-Assembled Monolayers.

    PubMed

    Carlotti, Marco; Degen, Maarten; Zhang, Yanxi; Chiechi, Ryan C

    2016-09-15

    Large-area tunneling junctions using eutectic Ga-In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O 2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga 2 O 3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode-molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions.

  5. Pronounced Environmental Effects on Injection Currents in EGaIn Tunneling Junctions Comprising Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    Large-area tunneling junctions using eutectic Ga–In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga2O3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode–molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions. PMID:27738488

  6. MSTB 2 x 6-Inch Low Speed Tunnel Turbulence Generator Grid/Honeycomb PIV Measurements and Analysis

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    An assessment of the turbulence levels present in the Measurement Science and Technology (MSTB) branch's 2 x 6-inch low speed wind tunnel was made using Particle Image Velocimetry (PIV), and a turbulence generator consisting of a grid/honeycomb structure. Approximately 3000 digital PIV images were captured and analyzed covering an approximate 2 x 6-inch area along the centerline of the tunnel just beyond the turbulence generator system. Custom software for analysis and acquisition was developed for semi-automated digital PIV image acquisition and analysis. Comparisons between previously obtained LTA and LV turbulence measurements taken in the tunnel are presented.

  7. Tunneling of Bloch electrons through vacuum barrier

    NASA Astrophysics Data System (ADS)

    Mazin, I. I.

    2001-08-01

    Tunneling of Bloch electrons through a vacuum barrier introduces new physical effects in comparison with the textbook case of free (plane wave) electrons. For the latter, the exponential decay rate in the vacuum is minimal for electrons with the parallel component of momentum kparallel = 0, and the prefactor is defined by the electron momentum component in the normal to the surface direction. However, the decay rate of Bloch electrons may be minimal at an arbitrary kparallel ("hot spots" ), and the prefactor is determined by the electron's group velocity, rather than by its quasimomentum. We illustrate this by first-principles calculations for (110) Pd surface.

  8. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for diverting the flow in a wind tunnel from the wing of a tested model is described. The wing is mounted on the wall of a tunnel. A diverter plate is pivotally mounted on the tunnel wall ahead of the model. An actuator fixed to the tunnel is pivotably connected to the diverter plate, by plunger. When the model is about to become unstable during the test the actuator moves the diverter plate from the tunnel wall to divert maintaining stable model conditions. The diverter plate is then retracted to enable normal flow.

  9. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  10. 9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST STAND 1-3 AT FAR LEFT, AND ITS MACHINE SHOP AT LEFT CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  11. Multisensor system for tunnel inspection

    NASA Astrophysics Data System (ADS)

    Idoux, Maurice

    2005-01-01

    The system is aimed at assisting inspection and monitoring of the degradation of tunnels in order to minimize maintenance and repair time. ATLAS 70 is a complete sensors/software package which enables thorough diagnosis of tunnel wall conditions. The data collected locally are stored on a computer hard disk for subsequent analysis in a remote location via elaborate dedicated software. The sensors and local computer are loaded onto a rail and/or road vehicle of specific design, i.e. with even travelling speed of 2 to 5 km/h. Originally, the system has been developed for the Paris Underground Company and has since been applied to rail and road tunnels, large town sewage systems, clean water underground aqueducts and electric cable tunnels.

  12. Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2001-01-01

    Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.

  13. Slotted-wall research with disk and parachute models in a low-speed wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.; Buffington, R.J.; Henfling, J.L.

    1990-01-01

    An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.

  14. Computational Multiqubit Tunnelling in Programmable Quantum Annealers

    DTIC Science & Technology

    2016-08-25

    ARTICLE Received 3 Jun 2015 | Accepted 26 Nov 2015 | Published 7 Jan 2016 Computational multiqubit tunnelling in programmable quantum annealers...state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational ...qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational

  15. MTR MAIN FLOOR. NEUTRON TUNNEL (SPANNED BY STILELIKE STEPS) PROJECTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR MAIN FLOOR. NEUTRON TUNNEL (SPANNED BY STILE-LIKE STEPS) PROJECTS FROM THE SOUTHEAST CORNER OF THE MTR TOWARD SOUTHEAST CORNER OF BUILDING, WHERE SHIELDING BLOCKS BEGIN TO SURROUND THE TUNNEL AS IT NEARS DETECTING INSTRUMENTS NEAR THE BUILDING WALL. GEAR RELATED TO CRYSTAL NEUTRON SPECTROMETER IS IN FOREGROUND SURROUNDED BY SHIELDING. DATA CONSOLES ARE AT MID-LEVEL OF EAST FACE. OTHER WORK PROCEEDS ON TOP OF AND ELSEWHERE AROUND REACTOR. NOTE TOOLS HANGING AGAINST SOUTHEAST CORNER, USED TO CHANGE FUEL ELEMENTS AND OTHER REACTOR ITEMS DURING REFUELING CYCLES. INL NEGATIVE NO. 10439. Unknown Photographer, 4/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. User's guide to STIPPAN: A panel method program for slotted tunnel interference prediction

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1985-01-01

    Guidelines are presented for use of the computer program STIPPAN to simulate the subsonic flow in a slotted wind tunnel test section with a known model disturbance. Input data requirements are defined in detail and other aspects of the program usage are discussed in more general terms. The program is written for use in a CDC CYBER 200 class vector processing system.

  17. Wind-tunnel procedure for determination of critical stability and control characteristics of airplanes

    NASA Technical Reports Server (NTRS)

    Goett, Harry J; Jackson, Roy P; Belsley, Steven E

    1944-01-01

    This report outlines the flight conditions that are usually critical in determining the design of components of an airplane which affect its stability and control characteristics. The wind-tunnel tests necessary to determine the pertinent data for these conditions are indicated, and the methods of computation used to translate these data into characteristics which define the flying qualities of the airplane are illustrated.

  18. Tensile properties of the transverse carpal ligament and carpal tunnel complex.

    PubMed

    Ugbolue, Ukadike C; Gislason, Magnus K; Carter, Mark; Fogg, Quentin A; Riches, Philip E; Rowe, Philip J

    2015-08-01

    A new sophisticated method that uses video analysis techniques together with a Maillon Rapide Delta to determine the tensile properties of the transverse carpal ligament-carpal tunnel complex has been developed. Six embalmed cadaveric specimens amputated at the mid-forearm and aged (mean (SD)): 82 (6.29) years were tested. The six hands were from three males (four hands) and one female (two hands). Using trigonometry and geometry the elongation and strain of the transverse carpal ligament and carpal arch were calculated. The cross-sectional area of the transverse carpal ligament was determined. Tensile properties of the transverse carpal ligament-carpal tunnel complex and Load-Displacement data were also obtained. Descriptive statistics, one-way ANOVA together with a post-hoc analysis (Tukey) and t-tests were incorporated. A transverse carpal ligament-carpal tunnel complex novel testing method has been developed. The results suggest that there were no significant differences between the original transverse carpal ligament width and transverse carpal ligament at peak elongation (P=0.108). There were significant differences between the original carpal arch width and carpal arch width at peak elongation (P=0.002). The transverse carpal ligament failed either at the mid-substance or at their bony attachments. At maximum deformation the peak load and maximum transverse carpal ligament displacements ranged from 285.74N to 1369.66N and 7.09mm to 18.55mm respectively. The transverse carpal ligament cross-sectional area mean (SD) was 27.21 (3.41)mm(2). Using this method the results provide useful biomechanical information and data about the tensile properties of the transverse carpal ligament-carpal tunnel complex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Developing social standards for wilderness encounters in Mount Rainier National Park: Manager-defined versus visitor-defined standards

    Treesearch

    Kristopher J. Lah

    2000-01-01

    This research compared the differences found between manager-defined and visitor-defined social standards for wilderness encounters in Mount Rainier National Park. Social standards in recreation areas of public land are defined by what is acceptable to the public, in addition to the area’s management. Social standards for the encounter indicator in Mount Rainier’s...

  20. Subselenean tunneler melting head design: A preliminary study

    NASA Technical Reports Server (NTRS)

    Engblom, Bill; Graham, Eric; Perera, Jeevan; Strahan, Alan; Ro, Ted

    1988-01-01

    The placement of base facilities in subsurface tunnels created as a result of subsurface mining is described as an alternative to the establishing of a base on the lunar surface. Placement of the base facilities and operations in subselenean tunnels will allow personnel to live and work free from the problem of radiation and temperature variations. A conceptual design for a tunneling device applicable to such a lunar base application was performed to assess the feasibility of the concept. A tunneler was designed which would melt through the lunar material leaving behind glass lined tunnels for later development. The tunneler uses a nuclear generator which supplies the energy to thermally melt the regolith about the cone shaped head. Melted regolith is exacavated through intakes in the head and transferred to a truck which hauls it to the surface. The tunnel walls are solidified to provide support lining by using an active cooling system about the mid section of the tunneler. Also addressed is the rationale for a subselenean tunneler and the tunneler configuration and subsystems, as well as the reasoning behind the resulting design.

  1. Quantum electron tunneling in respiratory complex I.

    PubMed

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2011-05-12

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. While the one-electron tunneling approximation is found to hold in electron tunneling between the antiferromagnetic binuclear and tetranuclear Fe/S clusters without major orbital or spin rearrangement of the core electrons, induced polarization of the core electrons contributes significantly to decrease the electron transfer rates to 19-56 %. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of the electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A signature of the wave properties of electrons is observed as distinct quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included is in good agreement with a reported phenomenological relation.

  2. A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance

    NASA Astrophysics Data System (ADS)

    Dash, S.; Mishra, G. P.

    2015-09-01

    A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.

  3. Cryogenic wind tunnels: Unique capabilities for the aerodynamicist

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1976-01-01

    The cryogenic wind-tunnel concept as a practical means for improving ground simulation of transonic flight conditions. The Langley 1/3-meter transonic cryogenic tunnel is operational, and the design of a cryogenic National Transonic Facility is undertaken. A review of some of the unique capabilities of cryogenic wind tunnels is presented. In particular, the advantages of having independent control of tunnel Mach number, total pressure, and total temperature are highlighted. This separate control over the three tunnel parameters will open new frontiers in Mach number, Reynolds number, aeroelastic, and model-tunnel interaction studies.

  4. Stress changes ahead of an advancing tunnel

    USGS Publications Warehouse

    Abel, J.F.; Lee, F.T.

    1973-01-01

    Instrumentation placed ahead of three model tunnels in the laboratory and ahead of a crosscut driven in a metamorphic rock mass detected stress changes several tunnel diameters ahead of the tunnel face. Stress changes were detected 4 diameters ahead of a model tunnel drilled into nearly elastic acrylic, 2??50 diameters ahead of a model tunnel drilled into concrete, and 2 diameters ahead of a model tunnel drilled into Silver Plume Granite. Stress changes were detected 7??50 diameters ahead of a crosscut driven in jointed, closely foliated gneisses and gneissic granites in an experimental mine at Idaho Springs, Colorado. These results contrast markedly with a theoretical elastic estimate of the onset of detectable stress changes at 1 tunnel diameter ahead of the tunnel face. A small compressive stress concentration was detected 2 diameters ahead of the model tunnel in acrylic, 1.25 diameters ahead of the model tunnel in concrete, and 1 diameter ahead of the model tunnel in granite. A similar stress peak was detected about 6 diameters ahead of the crosscut. No such stress peak is predicted from elastic theory. The 3-dimensional in situ stress determined in the field demonstrate that geologic structure controls stress orientations in the metamorphic rock mass. Two of the computed principal stresses are parallel to the foliation and the other principal stress is normal to it. The principal stress orientations vary approximately as the foliation attitude varies. The average horizontal stress components and the average vertical stress component are three times and twice as large, respectively, as those predicted from the overburden load. An understanding of the measured stress field appears to require the application of either tectonic or residual stress components, or both. Laboratory studies indicate the presence of proportionately large residual stresses. Mining may have triggered the release of strain energy, which is controlled by geologic structure. ?? 1973.

  5. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  6. All NbN tunnel junction fabrication

    NASA Technical Reports Server (NTRS)

    Leduc, H. G.; Khanna, S. K.; Stern, J. A.

    1987-01-01

    The development of SIS tunnel junctions based on NbN for mixer applications in the submillimeter range is reported. The unique technological challenges inherent in the development of all refractory-compound superconductor-based tunnel junctions are highlighted. Current deposition and fabrication techniques are discussed, and the current status of all-NbN tunnel junctions is reported.

  7. Tunneling induced absorption with competing Nonlinearities

    PubMed Central

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-01-01

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303

  8. Tunneling induced absorption with competing Nonlinearities.

    PubMed

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-12-13

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.

  9. Tunnel-construction methods and foraging path of a fossorial herbivore, Geomys bursarius

    USGS Publications Warehouse

    Andersen, Douglas C.

    1988-01-01

    The fossorial rodent Geomys bursarius excavates tunnels to find and gain access to belowground plant parts. This is a study of how the foraging path of this animal, as denoted by feeding-tunnel systems constructed within experimental gardens, reflects both adaptive behavior and constraints associated with the fossorial lifestyle. The principal method of tunnel construction involves the end-to-end linking of short, linear segments whose directionalities are bimodal, but symmetrically distributed about 0°. The sequence of construction of left- and right-directed segments is random, and segments tend to be equal in length. The resulting tunnel advances, zigzag-fashion, along a single heading. This linearity, and the tendency for branches to be orthogonal to the originating tunnel, are consistent with the search path predicted for a "harvesting animal" (Pyke, 1978) from optimal-foraging theory. A suite of physical and physiological constraints on the burrowing process, however, may be responsible for this geometric pattern. That is, by excavating in the most energy-efficient manner, G. bursarius automatically creates the basic components to an optimal-search path. The general search pattern was not influenced by habitat quality (plant density). Branch origins are located more often than expected at plants, demonstrating area-restricted search, a tactic commonly noted in aboveground foragers. The potential trade-offs between construction methods that minimize energy cost and those that minimize vulnerability to predators are discussed.

  10. Mechanical Tunneling in Solid Rock

    DOT National Transportation Integrated Search

    1979-12-01

    This report introduces the principles of mchanized tunneling and provides detailed guidelines for practical application. The subject is introduced with a detailed review of technical aspects and terms relating to mchanized tunneling. It discusses the...

  11. [Tunnel neuropathies].

    PubMed

    Averochkin, A I; Shtul'man, D R

    1991-01-01

    Analysis is made of 261 patients operated on for tunnel neuropathies. Of these, there were 152 men and 109 women aged 15 to 82 years, the mean age being 46 years. Among 22 patterns of neuropathy, there dominated compression of the ulnar nerve in the cubital canal (104 patients) and compression of the median nerve in the carpal canal (76 patients) accounting for 69% of all the cases. 76 patients had two and more tunnel syndromes; double operative interventions were made in 23 patients. 58 patients (22.2%) recovered, 163 (62.75%) improved, no changes were recorded in 40 (15.3%) patients. There were no deteriorations.

  12. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  13. Urban dogs in rural areas: Human-mediated movement defines dog populations in southern Chile.

    PubMed

    Villatoro, Federico J; Sepúlveda, Maximiliano A; Stowhas, Paulina; Silva-Rodríguez, Eduardo A

    2016-12-01

    Management strategies for dog populations and their diseases include reproductive control, euthanasia and vaccination, among others. However, the effectiveness of these strategies can be severely affected by human-mediated dog movement. If immigration is important, then the location of origin of dogs imported by humans will be fundamental to define the spatial scales over which population management and research should apply. In this context, the main objective of our study was to determine the spatial extent of dog demographic processes in rural areas and the proportion of dogs that could be labeled as immigrants at multiple spatial scales. To address our objective we conducted surveys in households located in a rural landscape in southern Chile. Interviews allowed us to obtain information on the demographic characteristics of dogs in these rural settings, human influence on dog mortality and births, the localities of origin of dogs living in rural areas, and the spatial extent of human-mediated dog movement. We found that most rural dogs (64.1%) were either urban dogs that had been brought to rural areas (40.0%), or adopted dogs that had been previously abandoned in rural roads (24.1%). Some dogs were brought from areas located as far as ∼700km away from the study area. Human-mediated movement of dogs, especially from urban areas, seems to play a fundamental role in the population dynamics of dogs in rural areas. Consequently, local scale efforts to manage dog populations or their diseases are unlikely to succeed if implemented in isolation, simply because dogs can be brought from surrounding urban areas or even distant locations. We suggest that efforts to manage or study dog populations and related diseases should be implemented using a multi-scale approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Virtual scanning tunneling microscopy: A local spectroscopic probe of two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Sciambi, A.; Pelliccione, M.; Bank, S. R.; Gossard, A. C.; Goldhaber-Gordon, D.

    2010-09-01

    We propose a probe technique capable of performing local low-temperature spectroscopy on a two-dimensional electron system (2DES) in a semiconductor heterostructure. Motivated by predicted spatially-structured electron phases, the probe uses a charged metal tip to induce electrons to tunnel locally, directly below the tip, from a "probe" 2DES to a "subject" 2DES of interest. We test this concept with large-area (nonscanning) tunneling measurements, and predict a high spatial resolution and spectroscopic capability, with minimal influence on the physics in the subject 2DES.

  15. RSRA sixth scale wind tunnel test. [of scale model of Sikorsky Whirlwind Helicopter

    NASA Technical Reports Server (NTRS)

    Flemming, R.; Ruddell, A.

    1974-01-01

    The sixth scale model of the Sikorsky/NASA/Army rotor systems research aircraft was tested in an 18-foot section of a large subsonic wind tunnel for the purpose of obtaining basic data in the areas of performance, stability, and body surface loads. The model was mounted in the tunnel on the struts arranged in tandem. Basic testing was limited to forward flight with angles of yaw from -20 to +20 degrees and angles of attack from -20 to +25 degrees. Tunnel test speeds were varied up to 172 knots (q = 96 psf). Test data were monitored through a high speed static data acquisition system, linked to a PDP-6 computer. This system provided immediate records of angle of attack, angle of yaw, six component force and moment data, and static and total pressure information. The wind tunnel model was constructed of aluminum structural members with aluminum, fiberglass, and wood skins. Tabulated force and moment data, flow visualization photographs, tabulated surface pressure data are presented for the basic helicopter and compound configurations. Limited discussions of the results of the test are included.

  16. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    PubMed

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  17. Early Testing in the Icing Research Tunnel

    NASA Image and Video Library

    1944-09-21

    National Advisory Committee for Aeronautics (NACA) design engineers added the Icing Research Tunnel to the new Aircraft Engine Research Laboratory’s original layout to take advantage of the massive refrigeration system being constructed for the Altitude Wind Tunnel. The Icing Research Tunnel was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks airflow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. The tunnel can produce speeds up to 300 miles per hour and temperatures from about 30 to –45⁰ F. Initially the tunnel used a spray bar system to introduce moisture into the airstream. NACA engineers struggled for nearly 10 years to perfect the spray system. The Icing Research Tunnel began testing in June of 1944. Initial testing, seen in this photograph, studied ice accumulation on propellers of a military aircraft. NACA reserach also produced a protected air scoop for the C–46 transport aircraft. A large number of C–46 aircraft were lost due to icing while flying supply runs over the Himalayas during World War II.

  18. Updating the OMERACT filter: core areas as a basis for defining core outcome sets.

    PubMed

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah; Beaton, Dorcas; Bingham, Clifton O; Choy, Ernest; Conaghan, Philip G; D'Agostino, Maria-Antonietta; Dougados, Maxime; Furst, Daniel E; Guillemin, Francis; Gossec, Laure; van der Heijde, Désirée M; Kloppenburg, Margreet; Kvien, Tore K; Landewé, Robert B M; Mackie, Sarah L; Matteson, Eric L; Mease, Philip J; Merkel, Peter A; Ostergaard, Mikkel; Saketkoo, Lesley Ann; Simon, Lee; Singh, Jasvinder A; Strand, Vibeke; Tugwell, Peter

    2014-05-01

    The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are universal to all studies of the effects of intervention effects. There is no published outline for instrument choice or development that is aimed at measuring outcome, was derived from broad consensus over its underlying philosophy, or includes a structured and documented critique. Therefore, a new proposal for defining core areas of measurement ("Filter 2.0 Core Areas of Measurement") was presented at OMERACT 11 to explore areas of consensus and to consider whether already endorsed core outcome sets fit into this newly proposed framework. Discussion groups critically reviewed the extent to which case studies of current OMERACT Working Groups complied with or negated the proposed framework, whether these observations had a more general application, and what issues remained to be resolved. Although there was broad acceptance of the framework in general, several important areas of construction, presentation, and clarity of the framework were questioned. The discussion groups and subsequent feedback highlighted 20 such issues. These issues will require resolution to reach consensus on accepting the proposed Filter 2.0 framework of Core Areas as the basis for the selection of Core Outcome Domains and hence appropriate Core Outcome Sets for clinical trials.

  19. Increased revision rate with posterior tibial tunnel placement after using the 70-degree tibial guide in ACL reconstruction.

    PubMed

    Inderhaug, Eivind; Raknes, Sveinung; Østvold, Thomas; Solheim, Eirik; Strand, Torbjørn

    2017-01-01

    To map knee morphology radiographically in a population with a torn ACL and to investigate whether anatomic factors could be related to outcomes after ACL reconstruction at mid- to long-term follow-up. Further, we wanted to assess tibial tunnel placement after using the 70-degree "anti-impingement" tibial tunnel guide and investigate any relation between tunnel placement and revision surgery. Patients undergoing ACL reconstruction involving the 70-degree tibial guide from 2003 to 2008 were included. Two independent investigators analysed pre- and post-operative radiographs. Demographic data and information on revision surgery were collected from an internal database. Anatomic factors and post-operative tibial tunnel placements were investigated as predictors of revision. Three-hundred and seventy-seven patients were included in the study. A large anatomic variation with significant differences between men and women was seen. None of the anatomic factors could be related to a significant increase in revision rate. Patients with a posterior tibial tunnel placement, defined as 50 % or more posterior on the Amis and Jakob line, did, however, have a higher risk of revision surgery compared to patients with an anterior tunnel placement (P = 0.03). Use of the 70-degree tibial guide did result in a high incidence (47 %) of posterior tibial tunnel placements associated with an increased rate of revision surgery. The current study was, however, not able to identify any anatomic variation that could be related to a higher risk of revision surgery. Avoiding graft impingement from the femoral roof in anterior tibial tunnel placements is important, but the insight that overly posterior tunnel placement can lead to inferior outcome should also be kept in mind when performing ACL surgery. IV.

  20. Breakthrough in current-in-plane tunneling measurement precision by application of multi-variable fitting algorithm.

    PubMed

    Cagliani, Alberto; Østerberg, Frederik W; Hansen, Ole; Shiv, Lior; Nielsen, Peter F; Petersen, Dirch H

    2017-09-01

    We present a breakthrough in micro-four-point probe (M4PP) metrology to substantially improve precision of transmission line (transfer length) type measurements by application of advanced electrode position correction. In particular, we demonstrate this methodology for the M4PP current-in-plane tunneling (CIPT) technique. The CIPT method has been a crucial tool in the development of magnetic tunnel junction (MTJ) stacks suitable for magnetic random-access memories for more than a decade. On two MTJ stacks, the measurement precision of resistance-area product and tunneling magnetoresistance was improved by up to a factor of 3.5 and the measurement reproducibility by up to a factor of 17, thanks to our improved position correction technique.

  1. The effect of crystal size on tunneling phenomena in luminescent nanodosimetric materials

    NASA Astrophysics Data System (ADS)

    Pagonis, Vasilis; Bernier, Shannon; Vieira, Francisco Marques dos Santos; Steele, Shane

    2017-12-01

    The study of luminescence signals from nanodosimetric materials is an active research area, due to the many possible practical applications of such materials. In several of these materials it has been shown that quantum tunneling is a dominant mechanism for recombination processes associated with luminescence phenomena. This paper examines the effect of crystal size on quantum tunneling phenomena in nanocrystals, based on the assumption of a random distribution of electrons and positive ions. The behavior of such random distributions is determined by three characteristic lengths: the radius of the crystal R, the tunneling length a, and the initial average distance 〈d〉 between electrons and positive ions (which is directly related to the density of charges in the material). Two different cases are examined, depending on the relative concentrations of electrons and ions. In the first case the concentration of electrons is assumed to be much smaller than the concentration of positive ions. Examination of a previously derived analytical equation demonstrates two different types of crystal size effects. When the tunneling length a is much smaller than both R and 〈d〉, the analytical equations show that smaller crystals exhibit a faster tunneling recombination rate. However, when the tunneling length a is of the same order of magnitude as both R and 〈d〉, the opposite effect is observed, with smaller crystals exhibiting a slower tunneling recombination rate. As the crystal size increases, the rate of tunneling in both cases reaches the limit expected for bulk materials. In the second case we examine the situation where the concentrations of electrons and positive ions are equal at all times. In this situation there is no analytical equation available to describe the process, and the crystal size effects are simulated by using Monte Carlo (MC) techniques. The two opposite behaviors as a function of the crystal size are also observed in these MC simulations. The

  2. Light intensity distribution optimization for tunnel lamps in different zones of a long tunnel.

    PubMed

    Lai, Wei; Liu, Xianming; Chen, Weimin; Lei, Xiaohua; Cheng, Xingfu

    2014-09-22

    The light distributions in different tunnel zones have different requirements in order to meet the driver's visual system. In this paper, the light intensity distributions of tunnel lamps in different zones of a long tunnel are optimized separately. A common nonlinear optimization approach is proposed to minimize the consuming power as well as satisfy the luminance and glare requirements both on the road surface and on the wall set by International Commission on Illumination (CIE). Compared with that of the reported linear optimization method, the optimization model can save energy from 11% to 57.6% under the same installation conditions.

  3. Development of an Extruded Tunnel Lining System

    DOT National Transportation Integrated Search

    1983-12-01

    The objective of this report was to design, develop, fabricate, test and demonstrate a system for placing a continuously extruded tunnel liner. The Extruded Tunnel Lining System (ETLS) is a process for continuous slipforming of a concrete tunnel lini...

  4. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction

    NASA Astrophysics Data System (ADS)

    Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng

    2018-05-01

    Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.

  5. Computational design of low aspect ratio wing-winglets for transonic wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Brown, Christopher K.

    1989-01-01

    A computational design has been performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three planforms has been selected to be constructed as a wind tunnel model for testing in the NASA LaRC 7 x 10 High Speed Wind Tunnel. A design point of M = 0.8, CL approx = 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. This report summarizes the design process and the predicted transonic performance for each configuration.

  6. Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1981-01-01

    Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

  7. Electron tunneling in proteins program.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-05

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Hawking radiation due to photon and gravitino tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majhi, Bibhas Ranjan, E-mail: bibhas@bose.res.i; Samanta, Saurav, E-mail: srvsmnt@gmail.co

    2010-11-15

    Applying the Hamilton-Jacobi method we investigate the tunneling of photon across the event horizon of a static spherically symmetric black hole. The necessity of the gauge condition on the photon field, to derive the semiclassical Hawking temperature, is explicitly shown. Also, the tunneling of photon and gravitino beyond this semiclassical approximation are presented separately. Quantum corrections of the action for both cases are found to be proportional to the semiclassical contribution. Modifications to the Hawking temperature and Bekenstein-Hawking area law are thereby obtained. Using this corrected temperature and Hawking's periodicity argument, the modified metric for the Schwarzschild black hole ismore » given. This corrected version of the metric, up to h order is equivalent to the metric obtained by including one loop back reaction effect. Finally, the coefficient of the leading order correction of entropy is shown to be related to the trace anomaly.« less

  9. ETR BUILDING, TRA642, INTERIOR. CONSOLE FLOOR, SOUTH HALF. CABLE TUNNEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642, INTERIOR. CONSOLE FLOOR, SOUTH HALF. CABLE TUNNEL. CAMERA FACING SOUTH INTO ETR ELECTRICAL BUILDING (TRA-648). INL NEGATIVE NO. HD46-20-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  11. Survey Of Wind Tunnels At Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bower, Robert E.

    1989-01-01

    Report presented at AIAA 14th Aerodynamic Testing Conference on current capabilities and planned improvements at NASA Langley Research Center's major wind tunnels. Focuses on 14 major tunnels, 8 unique in world, 3 unique in country. Covers Langley Spin Tunnel. Includes new National Transonic Facility (NTF). Also surveys Langley Unitary Plan Wind Tunnel (UPWT). Addresses resurgence of inexpensive simple-to-operate research tunnels. Predicts no shortage of tools for aerospace researcher and engineer in next decade or two.

  12. 75 FR 42643 - National Tunnel Inspection Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... inspectors; inspection frequencies; and a National Tunnel Inventory (NTI). DATES: Comments must be received... elements and specify an appropriate inspection frequency. Additionally, the DOT Inspector General (IG), in... with respect to how frequently tunnels are inspected. The frequency of tunnel inspections varies from...

  13. Railway tunnels in Europe and North America

    DOT National Transportation Integrated Search

    2002-05-01

    This list of railway tunnels (longer than 1, 000 m) was compiled by the secretariat from various national and international sources. The list is intended to serve as a reference inventory for a long railway tunnels in Europe and North America. Tunnel...

  14. Vehicle fires and fire safety in tunnels

    DOT National Transportation Integrated Search

    2002-09-20

    Tunnels present what is arguably the most hazardous environment, from the point of view of fire safety, that members of the public ever experience. The fire safety design of tunnels is carried out by tunnel engineers on the basis of a potential fire ...

  15. Immersion and contact freezing experiments in the Mainz wind tunnel laboratory

    NASA Astrophysics Data System (ADS)

    Eppers, Oliver; Mayer, Amelie; Diehl, Karoline; Mitra, Subir; Borrmann, Stephan; Szakáll, Miklós

    2016-04-01

    Immersion and contact freezing are of outmost important ice nucleation processes in mixed phase clouds. Experimental studies are carried out in the Mainz vertical wind tunnel laboratory in order to characterize these nucleation processes for different ice nucleating particles (INP), such as for mineral dust or biological particles. Immersion freezing is investigated in our laboratory with two different experimental techniques, both attaining contact-free levitation of liquid droplets and cooling of the surrounding air down to about -25 °C. In an acoustic levitator placed in the cold room of our laboratory, drops with diameters of 2 mm are investigated. In the vertical air stream of the wind tunnel droplets with diameter of 700 micron are freely floated at their terminal velocities, simulating the flow conditions of the free atmosphere. Furthermore, the wind tunnel offers a unique platform for contact freezing experiments. Supercooled water droplets are floated in the vertical air stream at their terminal velocities and INP are injected into the tunnel air stream upstream of them. As soon as INP collides with the supercooled droplet the contact freezing is initiated. The first results of immersion and contact freezing experiments with cellulose particles both in the acoustic levitator and in the wind tunnel will be presented. Cellulose is considered as typical INP of biological origin and a macrotracer for plant debris. Nucleating properties of cellulose will be provided, mainly focusing on the temperature, INP concentration, and specific surface area dependences of the freezing processes. Direct comparison between the different experimental techniques (acoustic levitator and wind tunnel), as well as between nucleation modes (immersion and contact freezing) will be presented. The work is carried out within the framework of the German research unit INUIT.

  16. Carpal Tunnel Syndrome (For Kids)

    MedlinePlus

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... Search English Español Carpal Tunnel Syndrome KidsHealth / For Kids / Carpal Tunnel Syndrome What's in this article? Where ...

  17. Ivar Giaever, Tunneling, and Superconductors

    Science.gov Websites

    ... Interview with Ivar Giaever (video) Ivar Giaever - Science Video Interview: Tunneling in Semiconductors and Superconductors (video) How Quantum Tunneling Works (video) Top Some links on this page may take you to non

  18. Scale Model Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.

    1997-01-01

    NASA Lewis Research Center's Icing Research Tunnel (IRT) is the world's largest refrigerated wind tunnel and one of only three icing wind tunnel facilities in the United States. The IRT was constructed in the 1940's and has been operated continually since it was built. In this facility, natural icing conditions are duplicated to test the effects of inflight icing on actual aircraft components as well as on models of airplanes and helicopters. IRT tests have been used successfully to reduce flight test hours for the certification of ice-detection instrumentation and ice protection systems. To ensure that the IRT will remain the world's premier icing facility well into the next century, Lewis is making some renovations and is planning others. These improvements include modernizing the control room, replacing the fan blades with new ones to increase the test section maximum velocity to 430 mph, installing new spray bars to increase the size and uniformity of the artificial icing cloud, and replacing the facility heat exchanger. Most of the improvements will have a first-order effect on the IRT's airflow quality. To help us understand these effects and evaluate potential improvements to the flow characteristics of the IRT, we built a modular 1/10th-scale aerodynamic model of the facility. This closed-loop scale-model pilot tunnel was fabricated onsite in the various shops of Lewis' Fabrication Support Division. The tunnel's rectangular sections are composed of acrylic walls supported by an aluminum angle framework. Its turning vanes are made of tubing machined to the contour of the IRT turning vanes. The fan leg of the tunnel, which transitions from rectangular to circular and back to rectangular cross sections, is fabricated of fiberglass sections. The contraction section of the tunnel is constructed from sheet aluminum. A 12-bladed aluminum fan is coupled to a turbine powered by high-pressure air capable of driving the maximum test section velocity to 550 ft

  19. Rudolf Hermann, wind tunnels and aerodynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  20. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  1. Franck-Condon fingerprinting of vibration-tunneling spectra.

    PubMed

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  2. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  3. Write operation study of Co/BTO/LSMO ferroelectric tunnel junction

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Zhao, W. S.; Kang, W.; Bouchenak-Khelladi, A.; Zhang, Y.; Klein, J.-O.; Ravelosona, D.; Chappert, C.

    2013-07-01

    Recently, a Co/BaTiO3/La0.67Sr0.33MnO3 (Co/BTO/LSMO) ferroelectric tunnel junction (FTJ) has shown the great potential towards non-volatile memory and logic applications due to its excellent performance. Especially, the giant OFF/ON tunnel resistance ratio (e.g., ˜100) assures that FTJ-based random access memory (FTRAM) can achieve lower reading error rate than emerging magnetic RAM. Nevertheless, in this paper, our investigation demonstrated that this FTJ suffered from difficulties in write operation when integrating with current CMOS technology into a FTRAM. Specifically, the write performances of Co/BTO/LSMO 1T1R FTRAM such as cell area, speed, energy dissipation, and thermal fluctuation effect were simulated and evaluated with a compact model and CMOS 40 nm design kit. Simulation results indicate the drawbacks of this FTRAM including significant performance asymmetry between two write orientations, high write voltage, large cell area, and severe thermal fluctuation disturbance. Simultaneously, this research provides several methods of improving write performance of FTRAM from the perspective of device size and process parameters.

  4. Comparison of emission factors for road traffic from a tunnel study (Gubrist tunnel, Switzerland) and from emission modeling

    NASA Astrophysics Data System (ADS)

    John, Christian; Friedrich, Rainer; Staehelin, Johannes; Schläpfer, Kurt; Stahel, Werner A.

    The emission factors of NO x, VOC and CO of a road tunnel study performed in September 1993 in the Gubrist tunnel, close to Zürich (Switzerland) are compared with results of emission calculations based on recent results of dynamometric test measurements. The emission calculations are carried out with a traffic emission model taking into account the detailed composition of the vehicle fleet in the tunnel, the average speed and the gradient of the road and the special aerodynamics in a tunnel. With the exception of NO x emission factors for heavy duty vehicles no evidence for a discrepancy between the results of the tunnel study and the emission modeling was found. The measured emission factors of individual hydrocarbons of light duty vehicles were in good agreement with the expectations for most components.

  5. The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puthen-Veettil, B., E-mail: b.puthen-veettil@unsw.edu.au; Patterson, R.; König, D.

    Efficient iso-entropic energy filtering of electronic waves can be realized through nanostructures with three dimensional confinement, such as quantum dot resonant tunneling structures. Large-area deployment of such structures is useful for energy selective contacts but such configuration is susceptible to structural disorders. In this work, the transport properties of quantum-dot-based wide-area resonant tunneling structures, subject to realistic disorder mechanisms, are studied. Positional variations of the quantum dots are shown to reduce the resonant transmission peaks while size variations in the device are shown to reduce as well as broaden the peaks. Increased quantum dot size distribution also results in amore » peak shift to lower energy which is attributed to large dots dominating transmission. A decrease in barrier thickness reduces the relative peak height while the overall transmission increases dramatically due to lower “series resistance.” While any shift away from ideality can be intuitively expected to reduce the resonance peak, quantification allows better understanding of the tolerances required for fabricating structures based on resonant tunneling phenomena/.« less

  6. Improved Design of Tunnel Supports : Volume 5 : Empirical Methods in Rock Tunneling -- Review and Recommendations

    DOT National Transportation Integrated Search

    1980-06-01

    Volume 5 evaluates empirical methods in tunneling. Empirical methods that avoid the use of an explicit model by relating ground conditions to observed prototype behavior have played a major role in tunnel design. The main objective of this volume is ...

  7. Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics

    PubMed Central

    Kim, Seongsu; Kim, Tae Yun; Lee, Kang Hyuck; Kim, Tae-Ho; Cimini, Francesco Arturo; Kim, Sung Kyun; Hinchet, Ronan; Kim, Sang-Woo; Falconi, Christian

    2017-01-01

    Gates can electrostatically control charges inside two-dimensional materials. However, integrating independent gates typically requires depositing and patterning suitable insulators and conductors. Moreover, after manufacturing, gates are unchangeable. Here we introduce tunnelling triboelectrification for localizing electric charges in very close proximity of two-dimensional materials. As representative materials, we use chemical vapour deposition graphene deposited on a SiO2/Si substrate. The triboelectric charges, generated by friction with a Pt-coated atomic force microscope tip and injected through defects, are trapped at the air–SiO2 interface underneath graphene and act as ghost floating gates. Tunnelling triboelectrification uniquely permits to create, modify and destroy p and n regions at will with the spatial resolution of atomic force microscopes. As a proof of concept, we draw rewritable p/n+ and p/p+ junctions with resolutions as small as 200 nm. Our results open the way to time-variant two-dimensional electronics where conductors, p and n regions can be defined on demand. PMID:28649986

  8. Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics

    NASA Astrophysics Data System (ADS)

    Kim, Seongsu; Kim, Tae Yun; Lee, Kang Hyuck; Kim, Tae-Ho; Cimini, Francesco Arturo; Kim, Sung Kyun; Hinchet, Ronan; Kim, Sang-Woo; Falconi, Christian

    2017-06-01

    Gates can electrostatically control charges inside two-dimensional materials. However, integrating independent gates typically requires depositing and patterning suitable insulators and conductors. Moreover, after manufacturing, gates are unchangeable. Here we introduce tunnelling triboelectrification for localizing electric charges in very close proximity of two-dimensional materials. As representative materials, we use chemical vapour deposition graphene deposited on a SiO2/Si substrate. The triboelectric charges, generated by friction with a Pt-coated atomic force microscope tip and injected through defects, are trapped at the air-SiO2 interface underneath graphene and act as ghost floating gates. Tunnelling triboelectrification uniquely permits to create, modify and destroy p and n regions at will with the spatial resolution of atomic force microscopes. As a proof of concept, we draw rewritable p/n+ and p/p+ junctions with resolutions as small as 200 nm. Our results open the way to time-variant two-dimensional electronics where conductors, p and n regions can be defined on demand.

  9. Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapor.

    PubMed

    Scudiero, L; Barlow, D E; Mazur, U; Hipps, K W

    2001-05-02

    Thin films of vapor-deposited Ni(II) and Co(II) complexes of tetraphenylporphyrin (NiTPP and CoTPP) were studied supported on gold and embedded in Al-Al(2)O(3)-MTPP-Pb tunnel diodes, where M = Ni or Co. Thin films deposited onto polycrystalline gold were analyzed by ultraviolet photoelectron spectroscopy (UPS) using He I radiation. Scanning tunneling microscopy (STM) and orbital-mediated tunneling spectroscopy (STM-OMTS) were performed on submonolayer films of CoTPP and NiTPP supported on Au(111). Inelastic electron tunneling spectroscopy (IETS) and OMTS were measured in conventional tunnel diode structures. The highest occupied pi molecular orbital of the porphyrin ring was seen in both STM-OMTS and UPS at about 6.4 eV below the vacuum level. The lowest unoccupied pi molecular orbital of the porphyrin ring was observed by STM-OMTS and by IETS-OMTS to be located near 3.4 eV below the vacuum level. The OMTS spectra of CoTPP had a band near 5.2 eV (below the vacuum level) that was attributed to transient oxidation of the central Co(II) ion. That is, it is due to electron OMT via the half-filled d(z)(2) orbital present in Co(II) of CoTPP. The NiTPP OMTS spectra show no such band, consistent with the known difficulty of oxidation of the Ni(II) ion. The STM-based OMTS allowed these two porphyrin complexes to be easily distinguished. The present work is the first report of the observation of STM-OMTS, tunnel junction OMTS, and UPS of the same compounds. Scanning tunneling microscope-based orbital-mediated tunneling provides more information than UPS or tunnel junction-based OMTS and does so with molecular-scale resolution.

  10. Quantum Electron Tunneling in Respiratory Complex I1

    PubMed Central

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666

  11. Room-temperature current blockade in atomically defined single-cluster junctions

    NASA Astrophysics Data System (ADS)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  12. Development of the safety control framework for shield tunneling in close proximity to the operational subway tunnels: case studies in mainland China.

    PubMed

    Li, Xinggao; Yuan, Dajun

    2016-01-01

    China's largest cities like Beijing and Shanghai have seen a sharp increase in subway network development as a result of the rapid urbanization in the last decade. The cities are still expanding their subway networks now, and many shield tunnels are being or will be constructed in close proximity to the existing operational subway tunnels. The execution plans for the new nearby shield tunnel construction calls for the development of a safety control framework-a set of control standards and best practices to help organizations manage the risks involved. Typical case studies and relevant key technical parameters are presented with a view to presenting the resulting safety control framework. The framework, created through collaboration among the relevant parties, addresses and manages the risks in a systematic way based on actual conditions of each tunnel crossing construction. The framework consists of six parts: (1) inspecting the operational subway tunnels; (2) deciding allowed movements of the existing tunnels and tracks; (3) simulating effects of the shield tunneling on the existing tunnels; (4) doing preparation work; (5) monitoring design and information management; and (6) measures and activation mechanism of the countermeasures. The six components are explained and demonstrated in detail. In the end, discussions made involve construction and post-construction settlement of the operational tunnel, application of the remedial grouting to rectify excessive settlements of the operational tunnel, and use of the innovative tool of the optical fiber measurement for tunnel movement monitoring. It is concluded that the construction movement of the tunnel can be controlled within 15 mm when the shield machine is <7 m in excavation diameter. The post-construction settlement of the tunnel buried in the very soft ground is much greater than its construction settlement, and last several years until reaching a final stable state. Two cases are outlined to demonstrate the

  13. Tunnel Propagation Following Defibrillation with ICD Shocks: Hidden Postshock Activations in the Left Ventricular Wall Underlie Isoelectric Window

    PubMed Central

    Constantino, Jason; Long, Yun; Ashihara, Takashi; Trayanova, Natalia A.

    2010-01-01

    Background Following near-defibrillation threshold (DFT) shocks from an ICD, the first postshock activation that leads to defibrillation failure arises focally after an isolelectric window (IW). The mechanisms underlying the IW remain incompletely understood. Objective The goal of this study was to provide mechanistic insight into the origins of postshock activations and IW following ICD shocks, and to link shock outcome to the preshock state of the ventricles. We hypothesized that the non-uniform ICD field results in the formation of an intramural excitable area (tunnel) only in the LV free wall, through which both pre-existing and new shock-induced wavefronts propagate during the IW. Methods Simulations were conducted using a realistic 3-D model of defibrillation in the rabbit ventricles. Biphasic ICD shocks of varying strengths were delivered to 27 different fibrillatory states. Results Following near-DFT shocks, regardless of preshock state, the main postshock excitable area was always located within LV free wall, creating an intramural tunnel. Either preexisting fibrillatory or shock-induced wavefronts propagated during the IW (duration of up to 74ms) in this tunnel and emerged as breakthroughs on LV epicardium. Preshock activity within the LV played a significant role in shock outcome: large number of preshock filaments resulted in an IW associated with tunnel propagation of preexisting rather than shock-induced wavefronts. Furthermore, shocks were more likely to succeed if LV excitable area was smaller. Conclusions The LV intramural excitable area is the primary reason for near-DFT failure. Any intervention that decreases the extent of this area will improve the likelihood of defibrillation success. PMID:20348028

  14. Minced Skin for Tissue Engineering of Epithelialized Subcutaneous Tunnels

    PubMed Central

    Fossum, Magdalena; Zuhaili, Baraa; Hirsch, Tobias; Spielmann, Malte; Reish, Richard G.; Mehta, Priyesh

    2009-01-01

    We used minced, autologous skin for neoepithelialization of surgically created subcutaneous tunnels in a large animal model. Partial-thickness skin grafts were harvested from the back region of five 50–60 kg Yorkshire pigs. The skin was minced to 0.8 × 0.8 × 0.3 mm particles. Silicone-latex tubes were covered with fibrin, rolled in minced skin, and placed in subcutaneous tunnels created in the abdominal area. For comparison, single cell suspensions of keratinocytes and fibroblasts in fibrin or fibrin only were transplanted on tubes. Tunnels were extracted after 14, 21, and 28 days for microscopic evaluation. All tubes transplanted with minced skin particles showed neoepithelialization. The epithelium was stratified and differentiated after 2 weeks in vivo, and the stratum corneum was directed toward the implanted tube. No epithelium formed from tubes transplanted with single cell suspensions, and only sparse keratinocytes could be detected by serial sectioning and immunostaining on day 14, but not later. No epithelial lining was found in tunnels with fibrin-only-coated tubes. Epithelial cysts could be found the first 2 weeks after transplantation in the minced skin group but not later. In conclusion, a minced skin technique could serve as a potential source for tissue engineering of tubular conduits for reconstructive purposes of the urethra and for cutaneous stomas for bladder catheterization, or intestinal irrigations. The method would have the advantage of being simple and expeditious and not requiring in vitro culturing. PMID:19292681

  15. Wind-Tunnel Study of Scalar Transfer Phenomena for Surfaces of Block Arrays and Smooth Walls with Dry Patches

    NASA Astrophysics Data System (ADS)

    Chung, Juyeon; Hagishima, Aya; Ikegaya, Naoki; Tanimoto, Jun

    2015-11-01

    We report the result of a wind-tunnel experiment to measure the scalar transfer efficiency of three types of surfaces, wet street surfaces of cube arrays, wet smooth surfaces with dry patches, and fully wet smooth surfaces, to examine the effects of roughness topography and scalar source allocation. Scalar transfer coefficients defined by the source area {C}_{E wet} for an underlying wet street surface of dry block arrays show a convex trend against the block density λ _p. Comparison with past data, and results for wet smooth surfaces including dry patches, reveal that the positive peak of {C}_{E wet} with increasing λ _p is caused by reduced horizontal advection due to block roughness and enhanced evaporation due to a heterogeneous scalar source distribution. In contrast, scalar transfer coefficients defined by a lot-area including wet and dry areas {C}_{E lot} for smooth surfaces with dry patches indicate enhanced evaporation compared to the fully wet smooth surface (the oasis effect) for all three conditions of dry plan-area ratio up to 31 %. Relationships between the local Sherwood and Reynolds numbers derived from experimental data suggest that attenuation of {C}_{E wet} for a wet street of cube arrays against streamwise distance is weaker than for a wet smooth surface because of canopy flow around the blocks. Relevant parameters of ratio of roughness length for momentum to scalar {B}^{-1} were calculated from observational data. The result implies that {B}^{-1} possibly increases with block roughness, and decreases with the partitioning of the scalar boundary layer because of dry patches.

  16. NIS tunnel junction as an x-ray photon sensor

    NASA Astrophysics Data System (ADS)

    Azgui, Fatma; Mears, Carl A.; Labov, Simon E.; Frank, Matthias A.; Sadoulet, Bernard; Brunet, E.; Hiller, Lawrence J.; Lindeman, Mark A.; Netel, Harrie

    1995-09-01

    This work presents the first results of our development of normal-insulating-superconducting tunnel junctions used as energy dispersive detectors for low energy particles. The device described here is a Ag/Al(subscript 2)O(subscript 3)/Al tunnel junction of area 1.5 multiplied by 10(superscript 4) micrometer squared with thicknesses of 200 nm for the normal Ag strip and 100 nm for the superconducting Al film. Two different high-speed SQUID systems manufactured by quantum magnetics and HYPRES, respectively, were used for the readout of this device. At 80 mK bath temperature we obtained an energy resolution DeltaE(subscript FWHM) equals 250 eV for 5.89 keV x rays absorbed directly in the normal metal. This energy resolution appears to be limited in large part by the observed strong position dependence of the device response.

  17. Resonant tunneling in frustrated total internal reflection.

    PubMed

    Longhi, Stefano

    2005-10-15

    Anomalous light transmission and resonant tunneling in frustrated total internal reflection (FTIR) are theoretically predicted to occur at periodically curved interfaces. For a low-contrast index and for grazing incidence, it is shown that FTIR resonant tunneling provides an optical realization of field-induced barrier transparency in quantum tunneling.

  18. Preliminary analysis of the hydrologic effects of temporary shutdowns of the Rondout-West Branch Water Tunnel on the groundwater-flow system in Wawarsing, New York

    USGS Publications Warehouse

    Stumm, Frederick; Chu, Anthony; Como, Michael D.; Noll, Michael L.

    2012-01-01

    Flooding of streets and residential basements, and bacterial contamination of private-supply wells with Escherichia coli (E. coli) are recurring problems in the Rondout Valley near the Town of Wawarsing, Ulster County, New York. Leakage from the Rondout-West Branch (RWB) Water Tunnel and above-normal precipitation have been suspected of causing elevated groundwater levels and basement flooding. The hydrology of a 12-square-mile study area within the Town of Wawarsing was studied during 2008-10. A network of 41 wells (23 unconsolidated-aquifer and 18 bedrock wells) and 2 surface-water sites was used to monitor the hydrologic effects of four RWB Water Tunnel shutdowns. The study area is underlain by a sequence of northeast-trending sedimentary rocks that include limestone, shale, and sandstone. The bedrock contains dissolution features, fractures, and faults. Inflows that ranged from less than 1 to more than 9,000 gallons per minute from the fractured bedrock were documented during construction of the 13.5-foot-diameter RWB Water Tunnel through the sedimentary-rock sequence 710 feet (ft) beneath the study-area valley. Glacial sediments infill the valley above the bedrock sequence and consist of clay, silt, sand, and gravel. The groundwater-flow system in the valley consists of both fractured-rock and unconsolidated aquifers. Water levels in both the bedrock and unconsolidated aquifers respond to variations in seasonal precipitation. During the past 9 years (2002-10), annual precipitation at Central Park, N.Y., has exceeded the 141-year mean. Potentiometric-surface maps indicate that groundwater in the bedrock flows from the surrounding hills on the east and west sides of the valley toward the center of the valley, and ultimately toward the northeast. On average, water levels in the bedrock aquifer had seasonal differences of 5.3 ft. Analysis of hydrographs of bedrock wells indicates that many of these wells are affected by the RWB Tunnel leakage. Tunnel

  19. Contact doping, Klein tunneling, and asymmetry of shot noise in suspended graphene

    NASA Astrophysics Data System (ADS)

    Laitinen, Antti; Paraoanu, G. S.; Oksanen, Mika; Craciun, Monica F.; Russo, Saverio; Sonin, Edouard; Hakonen, Pertti

    2016-01-01

    The inherent asymmetry of the electric transport in graphene is attributed to Klein tunneling across barriers defined by p n interfaces between positively and negatively charged regions. By combining conductance and shot noise experiments, we determine the main characteristics of the tunneling barrier (height and slope) in a high-quality suspended sample with Au/Cr/Au contacts. We observe an asymmetric resistance Rodd=100 -70 Ω across the Dirac point of the suspended graphene at carrier density | nG|=(0.3 -4 ) × 1011cm-2 , while the Fano factor displays a nonmonotonic asymmetry in the range Fodd˜0.03 -0.1. Our findings agree with analytical calculations based on the Dirac equation with a trapezoidal barrier. Comparison between the model and the data yields the barrier height for tunneling, an estimate of the thickness of the p n interface d <20 nm, and the contact region doping corresponding to a Fermi level offset of ˜-18 meV. The strength of pinning of the Fermi level under the metallic contact is characterized in terms of the contact capacitance Cc=19 ×10-6 F/cm2 . Additionally, we show that the gate voltage corresponding to the Dirac point is given by the difference in work functions between the backgate material and graphene.

  20. Voids at the tunnel-soil interface for calculation of ground vibration from underground railways

    NASA Astrophysics Data System (ADS)

    Jones, Simon; Hunt, Hugh

    2011-01-01

    Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.

  1. Hydrogeological impacts of a railway tunnel in fractured Precambrian gneiss rocks (south-eastern Norway)

    NASA Astrophysics Data System (ADS)

    Kværner, Jens; Snilsberg, Petter

    2013-11-01

    Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.

  2. Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes.

    PubMed

    Bessire, Cedric D; Björk, Mikael T; Schmid, Heinz; Schenk, Andreas; Reuter, Kathleen B; Riel, Heike

    2011-10-12

    We report on the electrical characterization of one-sided p(+)-si/n-InAs nanowire heterojunction tunnel diodes to provide insight into the tunnel process occurring in this highly lattice mismatched material system. The lattice mismatch gives rise to dislocations at the interface as confirmed by electron microscopy. Despite this, a negative differential resistance with peak-to-valley current ratios of up to 2.4 at room temperature and with large current densities is observed, attesting to the very abrupt and high-quality interface. The presence of dislocations and other defects that increase the excess current is evident in the first and second derivative of the I-V characteristics as distinct peaks arising from trap-and phonon-assisted tunneling via the corresponding defect levels. We observe this assisted tunneling mainly in the forward direction and at low reverse bias but not at higher reverse biases because the band-to-band generation rates are peaked in the InAs, which is also confirmed by modeling. This indicates that most of the peaks are due to dislocations and defects in the immediate vicinity of the interface. Finally, we also demonstrate that these devices are very sensitive to electrical stress, in particular at room temperature, because of the extremely high electrical fields obtained at the abrupt junction even at low bias. The electrical stress induces additional defect levels in the band gap, which reduce the peak-to-valley current ratios.

  3. Overview of the 1989 Wind Tunnel Calibration Workshop

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur, Jr.; Mckinney, L. Wayne

    1993-01-01

    An overview of the 1989 Wind Tunnel Calibration Workshop held at NASA LaRC in Hampton, VA on 19-20 Apr. 1989 is presented. The purpose of the Workshop was to explore wind tunnel calibration requirements as they relate to test quality and data accuracy, with the ultimate goal of developing wind tunnel calibration requirements for the major NASA wind tunnels at ARC, LaRC, and LeRC. The two sessions addressed the following topics: (1) what constitutes a properly calibrated wind tunnel; and (2) the status of calibration of NASA's major wind tunnels. The most significant contributions to the stated goals are highlighted, and the consensus of the Workshop's conclusions and recommendations regarding formulation and implementation of that goal are presented.

  4. The Langley Wind Tunnel Enterprise

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Kumar, Ajay; Kegelman, Jerome T.

    1998-01-01

    After 4 years of existence, the Langley WTE is alive and growing. Significant improvements in the operation of wind tunnels have been demonstrated and substantial further improvements are expected when we are able to truly address and integrate all the processes affecting the wind tunnel testing cycle.

  5. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

    DOEpatents

    Murray, Christopher S.; Wilt, David M.

    2000-01-01

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  6. Editorial Commentary: The All-Epiphyseal Anterior Cruciate Ligament Distal Femoral Approach: Sockets or Tunnels?

    PubMed

    Cordasco, Frank A

    2018-05-01

    I believe that the distal femoral approach for anterior cruciate ligament reconstruction in the skeletally immature athlete with 3 to 6 years of remaining growth is best performed with an all-inside, all-epiphyseal technique using sockets rather than an outside-in approach creating tunnels. A shorter socket rather than a longer tunnel exposes a smaller surface area of the lateral distal femoral physis to potential compromise and resultant valgus malalignment. In addition, exiting the lateral femoral aspect of the epiphysis with a full-diameter tunnel as compared with a smaller diameter drill hole used to prepare a socket places the posterior articular cartilage, the lateral collateral ligament and anterolateral ligament footprints, and the popliteus tendon insertion at risk. My preference for sockets is also related to my belief that they provide a superior biologic milieu for graft incorporation compared with a full-length tunnel with the attendant violation of the lateral femoral cortex of the epiphysis. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Micromachined electron tunneling infrared sensors

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.

    1993-01-01

    The development of an improved Golay cell is reported. This new sensor is constructed entirely from micromachined silicon components. A silicon oxynitride (SiO(x)N(y)) membrane is deflected by the thermal expansion of a small volume of trapped gas. To detect the motion of the membrane, an electron tunneling transducer is used. This sensor detects electrons which tunnel through the classically forbidden barrier between a tip and a surface; the electron current is exponentially dependent on the separation between the tip and the surface. The sensitivity of tunneling transducers constructed was typically better than 10(exp -3) A/square root of Hz. Through use of the electron tunneling transducer, the scaling laws which have prevented the miniaturization of the Golay cell are avoided. This detector potentially offers low cost fabrication, compatibility with silicon readout electronics, and operation without cooling. Most importantly, this detector may offer better sensitivity than any other uncooled infrared sensor, with the exception of the original Golay cell.

  8. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  9. Compressive fracture resistance of the marginal ridge in large Class II tunnels restored with cermet and composite resin.

    PubMed

    Ehrnford, L E; Fransson, H

    1994-01-01

    Compressive fracture resistance of the marginal ridge was studied in large tunnel preparations, before and after restoration with cermet (Ketac Silver, ESPE), a universal hybrid composite (Superlux, DMG) and an experimental composite. Each group was represented by six tunnels in extracted upper premolars. The tunnels were prepared by the use of round burs up to size #6. Remaining ridge width was 1.5 mm and ridge height 1.7 mm in the contact area. The ridge was loaded to fracture by a rod placed perpendicular to the ridge. Generally this resulted in a shear fracture of the restoration. There was no significant reinforcement of the ridge by the cermet whereas the composites both reinforced by the same magnitude, averaging 62%. It was concluded that the ridge could be considered a "megafiller" where contact need to be preserved and contour protected against proximal and occlusal wear of the restoration. Clinically there would therefore be good reasons to save even ridge areas with very low inherent strength. Based on the present study composite resin might therefore be the filling material of choice for such tunnel preparations.

  10. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.

    2016-05-01

    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  11. Experimental Evidence for Wigner’s Tunneling Time

    NASA Astrophysics Data System (ADS)

    Camus, N.; Yakaboylu, E.; Fechner, L.; Klaiber, M.; Laux, M.; Mi, Y.; Hatsagortsyan, K. Z.; Pfeifer, T.; Keitel, C. H.; Moshammer, R.

    2018-04-01

    Tunneling of a particle through a barrier is one of the counter-intuitive properties of quantum mechanical motion. Thanks to advances in the generation of strong laser fields, new opportunities to dynamically investigate this process have been developed. In the so-called attoclock measurements the electron’s properties after tunneling are mapped on its emission direction. We investigate the tunneling dynamics and achieve a high sensitivity thanks to two refinements of the attoclock principle. Using near-IR wavelength we place firmly the ionization process in the tunneling regime. Furthermore, we compare the electron momentum distributions of two atomic species of slightly different atomic potentials (argon and krypton) being ionized under absolutely identical conditions. Experimentally, using a reaction microscope, we succeed in measuring the 3D electron momentum distributions for both targets simultaneously. Theoretically, the time resolved description of tunneling in strong-field ionization is studied using the leading quantum-mechanical Wigner treatment. A detailed analysis of the most probable photoelectron emission for Ar and Kr allows testing the theoretical models and a sensitive check of the electron initial conditions at the tunnel exit. The agreement between experiment and theory provides a clear evidence for a non-zero tunneling time delay and a non-vanishing longitudinal momentum at this point.

  12. The Development of an 8-inch by 8-inch Slotted Tunnel for Mach Numbers up to 1.28

    NASA Technical Reports Server (NTRS)

    Little, B. H., Jr.; Cubbage, James J., Jr.

    1961-01-01

    An 8-inch by 8-inch transonic tunnel model with test section slotted on two opposite walls was constructed in which particular emphasis -was given to the development of slot geometry, slot-flow reentry section, and short-diffuser configurations for good test-region flow and minimum total-pressure losses. Center-line static pressures through the test section, wall static pressures through the other parts of the tunnel, and total-pressure distributions at the inlet and exit stations of the diffuser were measured- With a slot length equal to two tunnel heights and 1/14 open-area-ratio slotted walls) a test region one tunnel height in length was obtained in which the deviation from the mean Mach number was less than +/- 0.01 up to Mach number 1.15. With 1/7 open-area-ratio slotted walls, a test region 0.84 tunnel heights in length with deviation less than +/- O.01 was obtained up to Mach number 1.26. Increasing the tunnel diffuser angle from 6.4 to 10 deg. increased pressure loss through the tunnel at Mach number 1.20 from 15 percent to 20 percent of the total pressure. The use of other diffusers with equivalent angles of 10 deg. but contoured so that the initial diffusion angle was less than 10 deg. and the final angle was 200 reduced the losses to as low as 16 percent. A method for changing the test-section Mach number rapidly by controlling the flow through a bypass line from the tunnel settling chamber to the slot-flow plenum chamber of the test section was very effective. The test-section Mach number was reduced approximately 5 percent in 1/8 second by bleeding into the test section a flow of air equal to 2 percent of the mainstream flow and 30 percent in 1/4 second with bleed flow equal to 10 percent of the mainstream flow. The rate of reduction was largely determined by the opening rate of the bleed-flow-control valve.

  13. Engineering and fabrication cost considerations for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Boykin, R. M., Jr.; Davenport, J. B., Jr.

    1983-01-01

    Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.

  14. Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Brown, Christopher K.

    1988-01-01

    A computational design has been performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three planforms has been selected to be constructed as a wind tunnel model for testing in the NASA LaRC 7 x 10 High Speed Wind Tunnel. A design point of M = 0.8, CL approx = 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. This report summarizes the design process and the predicted transonic performance for each configuration.

  15. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year

    USGS Publications Warehouse

    Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.

    2011-01-01

    Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.

  16. High-temperature tunneling electroresistance in metal/ferroelectric/semiconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Xi, Zhongnan; Jin, Qiao; Zheng, Chunyan; Zhang, Yongcheng; Lu, Chaojing; Li, Qiang; Li, Shandong; Dai, Jiyan; Wen, Zheng

    2017-09-01

    Recently, ferroelectric tunnel junctions (FTJs) have attracted great attention due to promising applications in non-volatile memories. In this study, we report high-temperature tunneling electroresistance (TER) of metal/ferroelectric/semiconductor FTJs. Hysteretic resistance-voltage loops are observed in the Pt/BaTiO3/Nb:SrTiO3 tunnel junction from 300 to 513 K due to the modulation of interfacial Schottky barrier by polarization switching in the 4 u.c.-thick BaTiO3 barrier via a ferroelectric field effect. The Pt/BaTiO3/Nb:SrTiO3 device exhibits a giant ROFF/RON resistance ratio of ˜3 × 105 at 383 K and maintains bipolar resistance switching up to 513 K, suggesting excellent thermal endurance of the FTJs. The temperature-dependent TER behaviors are discussed in terms of the decrease of polarization in the BaTiO3 barrier, and the associated junction barrier profiles are deduced by transport and capacitance analyses. In addition, by extrapolating the retention time at elevated temperature in an Arrhenius-type relation, activation energy of ˜0.93 eV and room-temperature retention time of ˜70 years can be extracted.

  17. Femoral tunnel enlargement after anatomic ACL reconstruction: a biological problem?

    PubMed

    Silva, Alcindo; Sampaio, Ricardo; Pinto, Elisabete

    2010-09-01

    Tunnel enlargement after anterior cruciate ligament (ACL) reconstruction may compromise revision surgery. The cause of this tunnel enlargement is not yet fully understood, but it is thought to be multifactorial, with biomechanical and biological factors playing a role. Tunnel enlargement has been described particularly in patients who underwent ACL reconstruction with hamstring tendons with extracortical fixation devices. The purpose of our study was to evaluate prospectively with magnetic resonance imaging (MRI) the changes in femoral tunnel diameter following arthroscopic anatomic ACL reconstruction with hamstring tendons. At 3-month post-op, all tunnels had enlarged compared to the diameter of the drill and most tunnels enlarged more in the midsection than at the aperture. In the posterolateral tunnels, the entrance increased 16% in diameter and the middle of the tunnel increased 30% in diameter. In the anteromedial femoral tunnels, the tunnels enlarged 14% at the aperture and 35% in the midsection. All femoral tunnels enlarged and most of them enlarged in a fusiform manner. The biological factors explain better our findings than the mechanical theory, although mechanical factors may play a role and the cortical bone at the entrance of the tunnel may modify the way tunnels respond to mechanical stress.

  18. Laser-assisted electron tunneling in a STM junction

    NASA Astrophysics Data System (ADS)

    Chang, Shunhua Thomas

    2000-10-01

    Since its introduction in 1981, the Nobel prize-winning scanning tunneling microscope (STM) has been developed into a powerful yet conceptually simple instrument, replacing traditional scanning and transmission electron microscopes (SEM/TEM) in many of the microscopic surface phenomenon studies. The strength of the STM stems from the sensitive tunneling current-potential barrier width relationship of the electron tunneling process, and has been used to re-examine the frequency-mixing and harmonic generation properties of an non-linear metal- oxide-metal (MOM) tunneling junction. In this research, electron-tunneling events under polarized laser radiation at 514.5-nm argon and 10.6-μm carbon dioxide laser wavelengths were investigated. The objective is to understand the underlying interactive mechanisms between the tunneling junction and the external laser excitation. A commercial scanning tunneling microscope head and controller were incorporated into the experimental setup. Operation characteristics and the electrical properties of the STM junction were determined. Tunneling current and distance responses with respect to different laser polarization, modulation frequency, incident power, and tunneling distance were also conducted. From the experimental results it is shown that thermal expansion effect was the dominant source of response for laser modulation frequency up to about 100 kHz, in quantitative agreement with theoretical calculations. Different laser polarizations as the experiments demonstrated did not contribute significantly to the STM response in the investigated frequency range. The electric field induced by the laser beam was calculated to be one to two order of magnitudes lower than the field required to initiate field emission where the tunneling junction I- V curve is most non-linear. Also, the electrical coupling of the incident laser at the STM junction was determined to be non-critical at visible laser wavelength, and the reflected laser

  19. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  20. Radiometric dating of the Siloam Tunnel, Jerusalem.

    PubMed

    Frumkin, Amos; Shimron, Aryeh; Rosenbaum, Jeff

    2003-09-11

    The historical credibility of texts from the Bible is often debated when compared with Iron Age archaeological finds (refs. 1, 2 and references therein). Modern scientific methods may, in principle, be used to independently date structures that seem to be mentioned in the biblical text, to evaluate its historical authenticity. In reality, however, this approach is extremely difficult because of poor archaeological preservation, uncertainty in identification, scarcity of datable materials, and restricted scientific access into well-identified worship sites. Because of these problems, no well-identified Biblical structure has been radiometrically dated until now. Here we report radiocarbon and U-Th dating of the Siloam Tunnel, proving its Iron Age II date; we conclude that the Biblical text presents an accurate historic record of the Siloam Tunnel's construction. Being one of the longest ancient water tunnels lacking intermediate shafts, dating the Siloam Tunnel is a key to determining where and when this technological breakthrough took place. Siloam Tunnel dating also refutes a claim that the tunnel was constructed in the second century bc.

  1. Sourcebook of locations of geophysical surveys in tunnels and horizontal holes, including results of seismic refraction surveys, Rainier Mesa, Aqueduct Mesa, and Area 16, Nevada Test Site

    USGS Publications Warehouse

    Carroll, R.D.; Kibler, J.E.

    1983-01-01

    Seismic refraction surveys have been obtained sporadically in tunnels in zeolitized tuff at the Nevada Test Site since the late 1950's. Commencing in 1967 and continuing to date (1982), .extensive measurements of shear- and compressional-wave velocities have been made in five tunnel complexes in Rainier and Aqueduct Mesas and in one tunnel complex in Shoshone Mountain. The results of these surveys to 1980 are compiled in this report. In addition, extensive horizontal drilling was initiated in 1967 in connection with geologic exploration in these tunnel complexes for sites for nuclear weapons tests. Seismic and electrical surveys were conducted in the majority of these holes. The type and location of these tunnel and borehole surveys are indexed in this report. Synthesis of the seismic refraction data indicates a mean compressional-wave velocity near the nuclear device point (WP) of 23 tunnel events of 2,430 m/s (7,970 f/s) with a range of 1,846-2,753 m/s (6,060-9,030 f/s). The mean shear-wave velocity of 17 tunnel events is 1,276 m/s (4,190 f/s) with a range of 1,140-1,392 m/s (3,740-4,570 f/s). Experience indicates that these velocity variations are due chiefly to the extent of fracturing and (or) the presence of partially saturated rock in the region of the survey.

  2. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    NASA Astrophysics Data System (ADS)

    Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.

    2015-12-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.

  3. Low-temperature scanning tunneling microscopy of ring-like surface electronic structures around Co islands on InAs(110) surfaces.

    PubMed

    Muzychenko, D A; Schouteden, K; Savinov, S V; Maslova, N S; Panov, V I; Van Haesendonck, C

    2009-08-01

    We report on the experimental observation by scanning tunneling microscopy at low temperature of ring-like features that appear around Co metal islands deposited on a clean (110) oriented surface of cleaved p-type InAs crystals. These features are visible in spectroscopic images within a certain range of negative tunneling bias voltages due to the presence of a negative differential conductance in the current-voltage dependence. A theoretical model is introduced, which takes into account non-equilibrium effects in the small tunneling junction area. In the framework of this model the appearance of the ring-like features is explained in terms of interference effects between electrons tunneling directly and indirectly (via a Co island) between the tip and the InAs surface.

  4. A combustion driven shock tunnel to complement the free piston shock tunnel T5 at GALCIT

    NASA Technical Reports Server (NTRS)

    Belanger, Jacques; Hornung, Hans G.

    1992-01-01

    A combustion driven shock tunnel was designed and built at GALCIT to supply the hypersonic facility T5 with 'hot' hydrogen for mixing and combustion experiments. This system was chosen over other options for better flexibility and for safety reasons. The shock tunnel is described and the overall efficiency of the system is discussed. The biggest challenge in the design was to synchronize the combustion driven shock tunnel with T5. To do so, the main diaphragm of the combustion driven shock tunnel is locally melted by an electrical discharge. This local melting is rapidly followed by the complete collapse of the diaphragm in a very repeatable way. A first set of experiments on supersonic hydrogen transverse jets over a flat plate have just been completed with the system and some of the preliminary results are presented.

  5. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  6. Design of Intelligent Power Supply System for Expressway Tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Yutong; Lin, Zimian

    2018-01-01

    Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.

  7. Characterization of Magnetic Tunnel Junctions by IETS and STS

    NASA Astrophysics Data System (ADS)

    Yang, Hyunsoo; Yang, See-Hun

    2005-03-01

    Inelastic electron tunneling spectroscopy (IETS) and superconducting tunneling spectroscopy (STS) have been employed to investigate spin-dependent tunneling in magnetic tunnel junctions (MTJs). MTJs were studied in which the ferromagnetic electrodes were formed from the 3d transition metals, Fe, Co and Ni and their alloys, and the tunnel barriers were formed from various nitrides and oxides including MgO. MTJs with MgO barriers exhibit more than 220% tunneling magnetoresistance (TMR) at room temperature[1]. IETS was used to measure the contributions of defects and impurities, as well as phonons and magnons, to the tunneling current. These processes give rise to conductance peaks at characteristic voltages according to their excitation energies. STS was used to measure the spin polarization of the tunneling current as well as to explore the role of spin-flip scattering in the tunneling process. The goal of this research is a more complete understanding of the mechanisms which gives rise to the bias voltage dependence of the TMR as well as indirect tunneling through states in the barrier. [1] S. S. P. Parkin, C. Kaiser, A. Panchula, P. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nature Materials, vol. Published online: 31 October 2004, 2004.

  8. Proceedings - Workshop on Materials Handling for Tunnel Construction

    DOT National Transportation Integrated Search

    1977-08-01

    With the anticipated increases in tunnel construction in the next decade, greater demands will be made on transportation sytems to remove tunnel muck at rates consistent with tunnel excavation rates. This workshop discussed and noted that conventiona...

  9. Automatic control of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  10. Tunneling with a hydrodynamic pilot-wave model

    NASA Astrophysics Data System (ADS)

    Nachbin, André; Milewski, Paul A.; Bush, John W. M.

    2017-03-01

    Eddi et al. [Phys. Rev Lett. 102, 240401 (2009), 10.1103/PhysRevLett.102.240401] presented experimental results demonstrating the unpredictable tunneling of a classical wave-particle association as may arise when a droplet walking across the surface of a vibrating fluid bath approaches a submerged barrier. We here present a theoretical model that captures the influence of bottom topography on this wave-particle association and so enables us to investigate its interaction with barriers. The coupled wave-droplet dynamics results in unpredictable tunneling events. As reported in the experiments by Eddi et al. and as is the case in quantum tunneling [Gamow, Nature (London) 122, 805 (1928), 10.1038/122805b0], the predicted tunneling probability decreases exponentially with increasing barrier width. In the parameter regimes examined, tunneling between two cavities suggests an underlying stationary ergodic process for the droplet's position.

  11. Bell P-39 in the Icing Research Tunnel

    NASA Image and Video Library

    1944-11-21

    A Bell P-39 Airacobra in the NACA Aircraft Engine Research Laboratory’s Icing Research Tunnel for a propeller deicing study. The tunnel, which began operation in June 1944, was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight to aircraft, effects aerodynamics, and sometimes blocks airflow through engines. NACA design engineers added the Icing Research Tunnel to the new AERL’s original layout to take advantage of the massive refrigeration system being constructed for the Altitude Wind Tunnel. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. The tunnel can produce speeds up to 300 miles per hour and temperatures from about 30 to –45⁰ F. During World War II AERL researchers analyzed different ice protection systems for propeller, engine inlets, antennae, and wings in the icing tunnel. The P-39 was a vital low-altitude pursuit aircraft of the US during the war. NACA investigators investigated several methods of preventing ice buildup on the P-39’s propeller, including the use of internal and external electrical heaters, alcohol, and hot gases. They found that continual heating of the blades expended more energy than the aircraft could supply, so studies focused on intermittent heating. The results of the wind tunnel investigations were then compared to actual flight tests on aircraft.

  12. GdN nanoisland-based GaN tunnel junctions.

    PubMed

    Krishnamoorthy, Sriram; Kent, Thomas F; Yang, Jing; Park, Pil Sung; Myers, Roberto C; Rajan, Siddharth

    2013-06-12

    Tunnel junctions could have a great impact on gallium nitride and aluminum nitride-based devices such as light-emitting diodes and lasers by overcoming critical challenges related to hole injection and p-contacts. This paper demonstrates the use of GdN nanoislands to enhance interband tunneling and hole injection into GaN p-n junctions by several orders of magnitude, resulting in low tunnel junction specific resistivity (1.3 × 10(-3) Ω-cm(2)) compared to the previous results in wide band gap semiconductors. Tunnel injection of holes was confirmed by low-temperature operation of GaN p-n junction with a tunneling contact layer, and strong electroluminescence down to 20 K. The low tunnel junction resistance combined with low optical absorption loss in GdN is very promising for incorporation in GaN-based light emitters.

  13. Concurrent myotomy and tunneling after establishment of a half tunnel instead of myotomy after establishment of a full tunnel: a more efficient method of peroral endoscopic myotomy.

    PubMed

    Philips, George M; Dacha, Sunil; Keilin, Steve A; Willingham, Field F; Cai, Qiang

    2016-04-01

    Peroral endoscopic myotomy (POEM) is a time-consuming and challenging procedure. Traditionally, the myotomy is done after the submucosal tunnel has been completed. Starting the myotomy earlier, after submucosal tunneling is half completed (concurrent myotomy and tunneling), may be more efficient. This study aims to assess if the method of concurrent myotomy and tunneling may decrease the procedural time and be efficacious. This is a retrospective case series of patients who underwent modified POEM (concurrent myotomy and tunneling) or traditional POEM at a tertiary care medical center. Modified POEM or traditional POEM was performed at the discretion of the endoscopist in patients presenting with achalasia. The total procedural duration, myotomy duration, myotomy length, and time per unit length of myotomy were recorded for both modified and traditional POEM. Modified POEM was performed in 6 patients whose mean age (± standard deviation [SD]) was 58 ± 13.3 years. Of these, 5 patients had type II achalasia and 1 patient had esophageal dysmotility. The mean Eckardt score (± SD) before the procedure was 8.8 ± 1.3. The modified technique was performed in 47 ± 8 minutes, with 6 ± 1 minutes required per centimeter of myotomy and 3 ± 1 minutes required per centimeter of submucosal space. The Eckardt score was 3 ± 1.1 at 1 month and 3 ± 2.5 at 3 months. The procedure time for modified POEM was significantly shorter than that for traditional POEM. Modified POEM with short submucosal tunneling may be more efficient than traditional POEM with long submucosal tunneling, and outcomes may be equivalent over short-term follow-up. Long-term data and randomized controlled studies are needed to compare the clinical efficacy of modified POEM with that of the traditional method.

  14. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection

    PubMed Central

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-01-01

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn “photon-switches” to “OFF” state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. PMID:25797442

  15. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    PubMed

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  16. Quantum Tunnelling to the Origin and Evolution of Life

    PubMed Central

    Trixler, Frank

    2013-01-01

    Quantum tunnelling is a phenomenon which becomes relevant at the nanoscale and below. It is a paradox from the classical point of view as it enables elementary particles and atoms to permeate an energetic barrier without the need for sufficient energy to overcome it. Tunnelling might seem to be an exotic process only important for special physical effects and applications such as the Tunnel Diode, Scanning Tunnelling Microscopy (electron tunnelling) or Near-field Optical Microscopy operating in photon tunnelling mode. However, this review demonstrates that tunnelling can do far more, being of vital importance for life: physical and chemical processes which are crucial in theories about the origin and evolution of life can be traced directly back to the effects of quantum tunnelling. These processes include the chemical evolution in stellar interiors and within the cold interstellar medium, prebiotic chemistry in the atmosphere and subsurface of planetary bodies, planetary habitability via insolation and geothermal heat as well as the function of biomolecular nanomachines. This review shows that quantum tunnelling has many highly important implications to the field of molecular and biological evolution, prebiotic chemistry and astrobiology. PMID:24039543

  17. IR detection and energy harvesting using antenna coupled MIM tunnel diodes

    NASA Astrophysics Data System (ADS)

    Yesilkoy, Filiz

    The infrared (IR) spectrum lies between the microwave and optical frequency ranges, which are well suited for communication and energy harvesting purposes, respectively. The long wavelength IR (LWIR) spectrum, corresponding to wavelengths from 8microm to 15microm, includes the thermal radiation emitted by objects at room temperature and the Earth's terrestrial radiation. Therefore, LWIR detectors are very appealing for thermal imaging purposes. Thermal detectors developed so far either demand cryogenic operation for fast detection, or they rely on the accumulation of thermal energy in their mass and subsequent measurable changes in material properties. Therefore, they are relatively slow. Quantum detectors allow for tunable and instantaneous detection but are expensive and require complex processes for fabrication. Bolometer detectors are simple and cheap but do not allow for tunability or for rapid detection. Harvesting the LWIR radiation energy sourced by the Earth's heating/cooling cycle is very important for the development of mobile energy resources. While speed is not as significant an issue here, conversion efficiency is an eminent problem for cheap, large area energy transduction. This dissertation addresses the development of tunable, fast, and low cost wave detectors that can operate at room temperature and, when produced in large array format, can harvest Earth's terrestrial radiation energy. This dissertation demonstrates the design, fabrication and testing of Antenna Coupled Metal-Insulator-Metal (ACMIM) tunnel diodes optimized for 10microm wavelength radiation detection. ACMIM tunnel diodes operate as electromagnetic wave detectors: the incident radiation is coupled by an antenna and converted into a 30 terahertz signal that is rectified by a fast tunneling MIM diode. For efficient IR radiation coupling, the antenna geometry and its critical dimensions are studied using a commercial finite-element based multi-physics simulation tool, and the half

  18. Physics and Technology of Resonant-Tunneling Devices

    DTIC Science & Technology

    1992-07-01

    Negative differential resistance, quantum-well inductance, suppressed shot noise, superlattice tunneling, Type-Il heterostructures, lattice...of these deviations is carried out in the accompanying manuscript of Appendix C. 3.1.3. Superlattice Resonant Tunneling In the 1970s, interest in...resonant-tunneling was driven by the desire to observe long-range coherent transport phenomena, such as Bloch oscillations in superlattice structures. In

  19. Comparison of wind tunnel and field experiments to measure potential deposition of fenpropimorph following volatilisation from treated crops.

    PubMed

    Hassink, Jan; Platz, Klaus; Stadler, Reinhold; Zangmeister, Werner; Fent, Gunnar; Möndel, Martin; Kubiak, Roland

    2007-02-01

    The potential for short-range transport via air, i.e. volatilisation from the area of application and subsequent deposition on adjacent non-target areas, was investigated for the fungicide fenpropimorph in a wind tunnel system and under outdoor conditions in a higher-tier field study. Fenpropimorph 750 g L(-1) EC was applied post-emergence to cereal along with a reference standard lindane EC. Stainless steel containers of water were placed at different distances downwind of the application area to trap volatile residues during a study period of 24 h following application. Meteorological conditions in the wind tunnel as well as on the field were constantly monitored during the study period. The wind tunnel system was a partly standardised system on a semi-field scale, i.e. wind direction and wind speed (2 m s(-1)) were constant, but temperature and humidity varied according to the conditions outside. In the field experiment, the average wind speed over the 24 h study period was 3 m s(-1) and no rainfall occurred. Three different measuring lines were installed on the non-target area beside the treated field to cover potential variations in the wind direction. However, no significant differences were observed since the wind direction was generally constant. Fenpropimorph was detected in minor amounts of 0.01-0.05% of the applied material in the wind tunnel experiment. Even at a distance of 1 m beside the treated field, no significant deposition occurred (0.04% of applied material after 24 h). In the field, less than 0.1% of the applied fenpropimorph was detected at 0 m directly beside the treated field. At 5 m distance the deposition values were below 0.04%, and at 20 m distance about 0.01%. In general, the amounts of deposited fenpropimorph detected in the partly standardised wind tunnel system and the higher-tier field study were in good agreement.

  20. Insertion of a straight peritoneal catheter in an arcuate subcutaneous tunnel by a tunneler: long-term experience.

    PubMed

    Favazza, A; Petri, R; Montanaro, D; Boscutti, G; Bresadola, F; Mioni, G

    1995-01-01

    This study describes the results of the insertion of a straight Tenckhoff peritoneal catheter (PC) in an arcuate, caudally concave tunnel using a tunneler designed by the authors. It has a semicircular shape and a bending radius of 4.5 cm. A hospital renal unit. From June 1988 to February 1994, 112 straight Tenckhoff PCs, 62 with one deep cuff (single-cuff PC) and 50 with two cuffs (double-cuff PC), were inserted as first catheters in 112 patients (mean age 62 +/- 13 years), who underwent continuous ambulatory peritoneal dialysis (CAPD). The follow-up was 1099 months (mean 18 +/- 13 months) for single-cuff PCs and 1264 months (mean 25 +/- 15 months) for double-cuff PCs, respectively. After intraperitoneal placement of the PCs by median laparotomy, a 180 degrees arc bend tunnel, with both external and peritoneal exits directed downwards, was created by means of the tunneler. The rate of exit-site infection (ESI) was 0.27 episodes/year (epis/year). The probability of remaining ESI-free was 76%, 60%, and 55% at 1, 2, and 3 years. The rate of tunnel infection (TI) was 0.046 epis/year. The incidence of the double-cuff PC-related ESI and TI tended to be lower than the incidence observed with the single-cuff PC. Episodes of peritonitis were 60 (0.30 epis/year), where 6 were subsequent to ESI and/or TI. Two PCs were lost due to ESI, 3 due to TI, and 11 due to peritonitis. Drainage failure, due to displacement of the PC caused by straightening, involved 3 PCs; 2 were lost. PC survival was 92%, 82%, and 74% at 1, 2 and 3 years, respectively. By an easily used semicircular tunneler, the standard straight Tenckhoff PC can be stably positioned in an arcuate tunnel with both inner and outer exits directed downwards. This tunnel shape, as already suggested by some authors, appears to be an effective technical solution to reducing the PC-related complication rates.

  1. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.

    2016-01-01

    NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.

  2. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada; Palomares, A.

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinementmore » holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.« less

  3. Wind tunnel model and method

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Summerfield, D. G. (Inventor)

    1974-01-01

    The design and development of a wind tunnel model equipped with pressure measuring devices are discussed. The pressure measuring orifices are integrally constructed in the wind tunnel model and do not contribute to distortions of the aerodynamic surface. The construction of a typical model is described and a drawing of the device is included.

  4. Wind Tunnel Balance Calibration: Are 1,000,000 Data Points Enough?

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.

    2016-01-01

    Measurement systems are typically calibrated based on standard practices established by a metrology standards laboratory, for example the National Institute for Standards and Technology (NIST), or dictated by an organization's metrology manual. Therefore, the calibration is designed and executed according to an established procedure. However, for many aerodynamic research measurement systems a universally accepted standard, traceable approach does not exist. Therefore, a strategy for how to develop a calibration protocol is left to the developer or user to define based on experience and recommended practice in their respective industry. Wind tunnel balances are one such measurement system. Many different calibration systems, load schedules and procedures have been developed for balances with little consensus on a recommended approach. Especially lacking is guidance the number of calibration data points needed. Regrettably, the number of data points tends to be correlated with the perceived quality of the calibration. Often, the number of data points is associated with ones ability to generate the data rather than by a defined need in support of measurement objectives. Hence the title of the paper was conceived to challenge recent observations in the wind tunnel balance community that shows an ever increasing desire for more data points per calibration absent of guidance to determine when there are enough. This paper presents fundamental concepts and theory to aid in the development of calibration procedures for wind tunnel balances and provides a framework that is generally applicable to the characterization and calibration of other measurement systems. Questions that need to be answered are for example: What constitutes an adequate calibration? How much data are needed in the calibration? How good is the calibration? This paper will assist a practitioner in answering these questions by presenting an underlying theory on how to evaluate a calibration based on

  5. Ferroelectric tunneling element and memory applications which utilize the tunneling element

    DOEpatents

    Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN

    2010-07-20

    A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

  6. The Ames 12-Foot Pressure Tunnel: Tunnel Empty Flow Calibration Results and Discussion

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Banducci, David E. (Technical Monitor)

    1996-01-01

    An empty test section flow calibration of the refurbished NASA Ames 12-Foot Pressure Tunnel was recently completed. Distributions of total pressure, dynamic pressure, Mach number, flow angularity temperature, and turbulence are presented along with results obtained prior to facility demolition. Axial static pressure distributions along tunnel centerline are also compared. Test section model support geometric configurations will be presented along with a discussion of the issues involved with different model mounting schemes.

  7. Water-level, velocity, and dye measurements in the Chicago tunnels

    USGS Publications Warehouse

    Oberg, K.A.; Schmidt, A.R.; ,

    1993-01-01

    On April 13, 1992, a section of a 100-year-old underground freight tunnel in downtown Chicago, Illinois was breached where the tunnel crosses under the Chicago River, about 15 meters below land surface. The breach allowed water from the Chicago River to flow into the freight tunnels and into buildings connected to the tunnels. As a result, utility services to more than 100 buildings in downtown Chicago were lost, several hundred thousand workers were sent home, and the entire subway system and a major expressway in the Loop were shut down. The breach in the tunnel was sealed and the tunnel dewatered by the U.S. Army Corps of Engineers (Corps) and its contractors. The U.S. Geological Survey (USGS) assisted the Corps in their efforts to plug and dewater the freight tunnels and connected buildings. This assistance included the installation and operation of telemetered gages for monitoring water levels in the tunnel system and velocity measurements made in the vicinity of the tunnel breach. A fluorescent dye tracer was used to check for leaks in the plugs, which isolated the damaged portion of the Chicago freight tunnel from the remainder of the tunnel system.

  8. Demonstration of the Potential of Magnetic Tunnel Junctions for a Universal RAM Technology

    NASA Astrophysics Data System (ADS)

    Gallagher, William J.

    2000-03-01

    Over the past four years, tunnel junctions with magnetic electrodes have emerged as promising devices for future magnetoresistive sensing and for information storage. This talk will review advances in these devices, focusing particularly on the use of magnetic tunnel junctions for magnetic random access memory (MRAM). Exchange-biased versions of magnetic tunnel junctions (MTJs) in particular will be shown to have useful properties for forming magnetic memory storage elements in a novel cross-point architecture. Exchange-biased MTJ elements have been made with areas as small as 0.1 square microns and have shown magnetoresistance values exceeding 40 The potential of exchange-biased MTJs for MRAM has been most seriously explored in a demonstration experiment involving the integration of 0.25 micron CMOS technology with a special magnetic tunnel junction "back end." The magnetic back end is based upon multi-layer magnetic tunnel junction growth technology which was developed using research-scale equipment and one-inch size substrates. For the demonstration, the CMOS wafers processed through two metal layers were cut into one-inch squares for depositions of bottom-pinned exchange-biased magnetic tunnel junctions. The samples were then processed through four additional lithographic levels to complete the circuits. The demonstration focused attention on a number of processing and device issues that were addressed successfully enough that key performance aspects of MTJ MRAM were demonstrated in 1 K bit arrays, including reads and writes in less than 10 ns and nonvolatility. While other key issues remain to be addressed, these results suggest that MTJ MRAM might simultaneously provide much of the functionality now provided separately by SRAM, DRAM, and NVRAM.

  9. Methods for the fabrication of thermally stable magnetic tunnel junctions

    DOEpatents

    Chang, Y Austin [Middleton, WI; Yang, Jianhua J [Madison, WI; Ladwig, Peter F [Hutchinson, MN

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  10. Apportionment of NMHC tailpipe vs non-tailpipe emissions in the Fort McHenry and Tuscarora mountain tunnels

    NASA Astrophysics Data System (ADS)

    Gertler, Alan W.; Fujita, Eric M.; Pierson, William R.; Wittorff, David N.

    Measurements of on-road emissions of non-methane hydrocarbons (NMHCs) were made in the Fort McHenry Tunnel (Baltimore) and Tuscarora Mountain Tunnel (Pennsylvania) during the summer of 1992. Measurements were made during 11 one-hour periods in the Fort McHenry Tunnel and during 11 one-hour periods in the Tuscarora Mountain Tunnel. The observed light-duty fleets were quite new, with a median model year of approximately 1989. Speciated NMHC values were obtained from analyses of canister and Tenax samples, and light-duty speciated emission factors were calculated for the two tunnels. Fuel samples were collected in the area around the tunnels for use in constructing headspace and liquid fuel profiles for the chemical mass balance (CMB) receptor model. Profiles of tailpipe emissions were obtained from the literature. The CMB was used to apportion tailpipe from non-tailpipe emissions. Non-tailpipe sources were found to constitute approximately 15% of the light-duty NMHC emissions. The Federal automotive emission-rate models, MOBILE4.1 and MOBILE5, underpredicted non-tailpipe emissions, assigning approximately 9% and 6.5%, respectively, to non-tailpipe sources. In terms of total absolute emissions, MOBILE5 predictions were approximately a factor of 2 greater than MOBILE4.1 predictions. Both MOBILE4.1 and MOBILE5 underestimated the NMHC emissions in the Fort McHenry Tunnel and overpredicted the NMHC emissions in the Tuscarora Mountain Tunnel. In all cases, the MOBILE models underestimated the absolute value of the non-tailpipe emissions. The ability of the MOBILE models to account for observed emissions when conditions are more variable than those studies in the Fort McHenry and Tuscarora Mountain tunnels is still an open question.

  11. Tunneling : the State of the Industry

    DOT National Transportation Integrated Search

    1976-05-01

    Tunneling is examined as an industry. The demand for its services, the makeup of the industry, some history and its problems and prospects, are analyzed. Industry participants are listed: owners, engineer firms, tunnel builders and specialized suppli...

  12. Water flow in fractured rock masses: numerical modeling for tunnel inflow assessment

    NASA Astrophysics Data System (ADS)

    Gattinoni, P.; Scesi, L.; Terrana, S.

    2009-04-01

    characteristics are taken into account, very useful to identify the areas where in-depth studies are required. References Cesano D., Bagtzoglou A.C., Olofsson B. (2003). Quantifying fractured rock hydraulic heterogeneity and groundwater inflow prediction in underground excavations: the heterogeneity index. Tunneling and Underground Space Technology, 18, pp. 19-34. El Tani M. (2003). Circular tunnel in a semi-infinite aquifer. Tunnelling and Groundwater Space Technology, 18, pp. 49-55. Goodman R.E., Moye D.G., Van Schalkwyk A., Javandel I. (1965). Ground water inflow during tunnel driving. Eng. Geol., 2, pp. 39-56. Hwang J-H., Lu C-C. (2007). A semi-analytical method for analyzing the tunnel water inflow. Tunneling and Underground Space Technology, 22, pp. 39-46. Itasca (2001). UDEC, User's guide. Itasca Consultino Group Inc., Minneapolis, Minnesota. Knutsson G., Olofsson B., Cesano D. (1996). Prognosis of groundwater inflows and drawdown due to the construction of rock tunnels in heterogeneous media. Res. Proj. Rep. Kungl Tekniska, Stokholm. Park K-H., Owatsiriwong A., Lee G-G. (2008). Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit. Tunnelling and Underground Space Technology, 23, pp. 206-209. Perrochet P., Dematteis A. (2007). Modelling Transient Discharge into a Tunnel Drilled in Heterogeneous Formation. Ground Water, 45(6), pp. 786-790.

  13. Nonoccupational Risk Factors for Carpal Tunnel Syndrome

    PubMed Central

    Solomon, Daniel H; Katz, Jeffrey N; Bohn, Rhonda; Mogun, Helen; Avorn, Jerry

    1999-01-01

    OBJECTIVE To examine the relation between selected nonoccupational risk factors and surgery for carpal tunnel syndrome. DESIGN Case-control study using an administrative database. PARTICIPANTS Enrollees of New Jersey Medicare or Medicaid programs during 1989 to 1991. MEASUREMENTS The outcome of interest was open or endoscopic carpal tunnel release. We examined the relation between carpal tunnel release and diabetes mellitus, thyroid disease, inflammatory arthritis, hemodialysis, pregnancy, use of corticosteroids, and hormone replacement therapy. MAIN RESULTS In multivariate models, inflammatory arthritis was strongly associated with carpal tunnel release (odds ratio [OR] 2.9; 95% confidence interval [CI] 2.2, 3.8). However, corticosteroid use also appeared to be associated with a greater likelihood of undergoing carpal tunnel release, even in the absence of inflammatory arthritis (OR 1.6; 95% CI 1.2, 2.1). Diabetes had a weak but significant association with carpal tunnel release (OR 1.4; 95% CI 1.2, 1.8), as did hypothyroidism (OR 1.7; 95% CI 1.1, 2.8), although patients with hyperthyroidism did not have any change in risk. Women who underwent carpal tunnel release were almost twice as likely to be users of estrogen replacement therapy as controls (OR 1.8; 95% CI 1.0, 3.2). CONCLUSIONS Although inflammatory arthritis is the most important nonoccupational risk factor for carpal tunnel release, these data substantiate the increase in risk associated with diabetes and untreated hypothyroidism. Further investigation in detailed clinical studies will be necessary to confirm whether changes in corticosteroid use and hormone replacement therapy offer additional means of risk reduction for this common condition. PMID:10337041

  14. Location of the tibial tunnel aperture affects extrusion of the lateral meniscus following reconstruction of the anterior cruciate ligament.

    PubMed

    Kodama, Yuya; Furumatsu, Takayuki; Miyazawa, Shinichi; Fujii, Masataka; Tanaka, Takaaki; Inoue, Hiroto; Ozaki, Toshifumi

    2017-08-01

    The anterior root of the lateral meniscus provides functional stability to the meniscus. In this study, we evaluated the relationship between the position of the tibial tunnel and extrusion of the lateral meniscus after anterior cruciate ligament reconstruction, where extrusion provides a proxy measure of injury to the anterior root. The relationship between extrusion and tibial tunnel location was retrospectively evaluated from computed tomography and magnetic resonance images of 26 reconstructed knees, contributed by 25 patients aged 17-31 years. A measurement grid was used to localize the position of the tibial tunnel based on anatomical landmarks identified from the three-dimensional reconstruction of axial computed tomography images of the tibial plateaus. The reference point-to-tibial tunnel distance (mm) was defined as the distance from the midpoint of the lateral edge of the grid to the posterolateral aspect of the tunnel aperture. The optimal cutoff of this distance to minimize post-operative extrusion was identified using receiver operating curve analysis. Extrusion of the lateral meniscus was positively correlated to the reference point-to-tibial tunnel distance (r 2  = 0.64; p < 0.001), with a cutoff distance of 5 mm having a sensitivity to extrusion of 83% and specificity of 93%. The mean extrusion for a distance >5 mm was 0.40 ± 0.43 mm, compared to 1.40 ± 0.51 mm for a distance ≤5 mm (p < 0.001). Therefore, a posterolateral location of the tibial tunnel aperture within the footprint of the anterior cruciate ligament decreases the reference point-to-tibial tunnel distance and increases extrusion of the lateral meniscus post-reconstruction. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1625-1633, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Role of interface layers on Tunneling Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun; Samant, Mahesh; Parkin, Stuart S. P.

    2002-03-01

    Thin non-magnetic metallic layers inserted at the interface between tunneling barriers and the ferromagnetic electrodes in magnetic tunnel junctions quenches the magnetoresistance (TMR) exhibited by some structures[1]. Studies have been carried out on exchange biased magnetic tunnel junction structures in which one of the ferromagnetic electrodes is pinned by coupling to IrMn or PtMn antiferromagnetic layers. For metallic aluminum interface layers thicknesses of just a few angstrom completely suppress the TMR although this characteristic thickness depends on the roughness of the tunneling barrier. A variety of structures will be discussed in which a number of interface layers have been introduced. In particular results for insertion of Cu, Ru and Cr layers on either side of the tunnel barrier will be presented. A number of techniques including XANES, XMCD and high resolution cross-section transmission electron microscopy have been used to study the structure and morphology of the interface layers and to correlate the structure of these layers with the magneto-transport properties of the tunneling junctions. [1] S.S.P. Parkin, US patent 5,764,567 issued by the United States Patent and Trademark Office, June 9, 1998.

  16. Calibration of transonic and supersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Pope, T. C.; Cooksey, J. M.

    1977-01-01

    State-of-the art instrumentation and procedures for calibrating transonic (0.6 less than M less than 1.4) and supersonic (M less than or equal to 3.5) wind tunnels were reviewed and evaluated. Major emphasis was given to transonic tunnels. Continuous, blowdown and intermittent tunnels were considered. The required measurements of pressure, temperature, flow angularity, noise and humidity were discussed, and the effects of measurement uncertainties were summarized. A comprehensive review of instrumentation currently used to calibrate empty tunnel flow conditions was included. The recent results of relevant research are noted and recommendations for achieving improved data accuracy are made where appropriate. It is concluded, for general testing purposes, that satisfactory calibration measurements can be achieved in both transonic and supersonic tunnels. The goal of calibrating transonic tunnels to within 0.001 in centerline Mach number appears to be feasible with existing instrumentation, provided correct calibration procedures are carefully followed. A comparable accuracy can be achieved off-centerline with carefully designed, conventional probes, except near Mach 1. In the range 0.95 less than M less than 1.05, the laser Doppler velocimeter appears to offer the most promise for improved calibration accuracy off-centerline.

  17. Forecasting and prevention of water inrush during the excavation process of a diversion tunnel at the Jinping II Hydropower Station, China.

    PubMed

    Hou, Tian-Xing; Yang, Xing-Guo; Xing, Hui-Ge; Huang, Kang-Xin; Zhou, Jia-Wen

    2016-01-01

    Estimating groundwater inflow into a tunnel before and during the excavation process is an important task to ensure the safety and schedule during the underground construction process. Here we report a case of the forecasting and prevention of water inrush at the Jinping II Hydropower Station diversion tunnel groups during the excavation process. The diversion tunnel groups are located in mountains and valleys, and with high water pressure head. Three forecasting methods are used to predict the total water inflow of the #2 diversion tunnel. Furthermore, based on the accurate estimation of the water inrush around the tunnel working area, a theoretical method is presented to forecast the water inflow at the working area during the excavation process. The simulated results show that the total water flow is 1586.9, 1309.4 and 2070.2 m(3)/h using the Qshima method, Kostyakov method and Ochiai method, respectively. The Qshima method is the best one because it most closely matches the monitoring result. According to the huge water inflow into the #2 diversion tunnel, reasonable drainage measures are arranged to prevent the potential disaster of water inrush. The groundwater pressure head can be determined using the water flow velocity from the advancing holes; then, the groundwater pressure head can be used to predict the possible water inflow. The simulated results show that the groundwater pressure head and water inflow re stable and relatively small around the region of the intact rock mass, but there is a sudden change around the fault region with a large water inflow and groundwater pressure head. Different countermeasures are adopted to prevent water inrush disasters during the tunnel excavation process. Reasonable forecasting the characteristic parameters of water inrush is very useful for the formation of prevention and mitigation schemes during the tunnel excavation process.

  18. Study on the Fire Damage Characteristics of the New Qidaoliang Highway Tunnel: Field Investigation with Computational Fluid Dynamics (CFD) Back Analysis

    PubMed Central

    Lai, Hongpeng; Wang, Shuyong; Xie, Yongli

    2016-01-01

    In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations. PMID:27754455

  19. Study on the Fire Damage Characteristics of the New Qidaoliang Highway Tunnel: Field Investigation with Computational Fluid Dynamics (CFD) Back Analysis.

    PubMed

    Lai, Hongpeng; Wang, Shuyong; Xie, Yongli

    2016-10-15

    In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m³; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations.

  20. III-V heterostructure tunnel field-effect transistor.

    PubMed

    Convertino, C; Zota, C B; Schmid, H; Ionescu, A M; Moselund, K E

    2018-07-04

    The tunnel field-effect transistor (TFET) is regarded as one of the most promising solid-state switches to overcome the power dissipation challenge in ultra-low power integrated circuits. TFETs take advantage of quantum mechanical tunneling hence exploit a different current control mechanism compared to standard MOSFETs. In this review, we describe state-of-the-art development of TFET both in terms of performances and of materials integration and we identify the main remaining technological challenges such as heterojunction defects and oxide/channel interface traps causing trap-assisted-tunneling (TAT). Mesa-structures, planar as well as vertical geometries are examined. Conductance slope analysis on InAs/GaSb nanowire tunnel diodes are reported, these two-terminal measurements can be relevant to investigate the tunneling behavior. A special focus is dedicated to III-V heterostructure TFET, as different groups have recently shown encouraging results achieving the predicted sub-thermionic low-voltage operation.