Science.gov

Sample records for defoliant thidiazuron gossypium

  1. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. [Gossypium hirsutum L. cv LG102

    SciTech Connect

    Suttle, J.C.

    1988-01-01

    The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of /sup 14/C-IAA transport in petiole segment isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDA response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of /sup 14/C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment.

  2. Involvement of Ethylene in the Action of the Cotton Defoliant Thidiazuron 1

    PubMed Central

    Suttle, Jeffrey C.

    1985-01-01

    The effect of the defoliant thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies. PMID:16664229

  3. Involvement of ethylene in the action of the cotton defoliant thidiazuron.

    PubMed

    Suttle, J C

    1985-06-01

    The effect of the defoliant thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies. PMID:16664229

  4. Effect of the Defoliant Thidiazuron on Ethylene Evolution from Mung Bean Hypocotyl Segments

    PubMed Central

    Suttle, Jeffrey C.

    1984-01-01

    The effect of the defoliant thidiazuron (N-phenyl-N′1,2,3-thiadiazol-5-ylurea) on ethylene evolution from etiolated mung bean hypocotyl segments was examined. Treatment of hypocotyl segments with concentrations of thidiazuron equal to or greater than 30 nanomolar stimulated ethylene evolution. Increased rates of ethylene evolution from thidiazuron-treated tissues could be detected within 90 minutes of treatment and persisted up to 30 hours after treatment. Radioactive methionine was readily taken up by thidiazuron-treated tissues and was converted to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and an acidic conjugate of ACC. Aminoethoxyvinylglycine, aminooxyacetic acid, cobalt chloride, and α-aminoisobutyric acid reduced ethylene evolution from treated tissues. An increase in the endogenous content of free ACC coincided with the increase in ethylene evolution following thidiazuron treatment. Uptake and conversion of exogenous ACC to ethylene were not affected by thidiazuron treatment. No increases in the extractable activities of ACC synthase were detected following thidiazuron treatment. PMID:16663757

  5. Effect of the defoliant thidiazuron on ethylene evolution from mung bean hypocotyl segments.

    PubMed

    Suttle, J C

    1984-08-01

    The effect of the defoliant thidiazuron (N-phenyl-N'1,2,3-thiadiazol-5-ylurea) on ethylene evolution from etiolated mung bean hypocotyl segments was examined. Treatment of hypocotyl segments with concentrations of thidiazuron equal to or greater than 30 nanomolar stimulated ethylene evolution. Increased rates of ethylene evolution from thidiazuron-treated tissues could be detected within 90 minutes of treatment and persisted up to 30 hours after treatment. Radioactive methionine was readily taken up by thidiazuron-treated tissues and was converted to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and an acidic conjugate of ACC. Aminoethoxyvinylglycine, aminooxyacetic acid, cobalt chloride, and alpha-aminoisobutyric acid reduced ethylene evolution from treated tissues. An increase in the endogenous content of free ACC coincided with the increase in ethylene evolution following thidiazuron treatment. Uptake and conversion of exogenous ACC to ethylene were not affected by thidiazuron treatment. No increases in the extractable activities of ACC synthase were detected following thidiazuron treatment. PMID:16663757

  6. Disruption of the Polar Auxin Transport System in Cotton Seedlings following Treatment with the Defoliant Thidiazuron.

    PubMed

    Suttle, J C

    1988-01-01

    The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of (14)C-IAA transport in petiole segments isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDZ response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of (14)C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment. PMID:16665874

  7. Microbial degradation of thidiazuron and its photoproduct.

    PubMed

    Benezet, H J; Knowles, C O

    1982-01-01

    Degradation of the cotton defoliant thidiazuron and its photoproduct photothidiazuron by soil and thirteen species of microorganisms was examined. Aspergillus versicolor, Torula rosea, and Flavobacter sp. were most active in degrading thidiazuron. Unknown water-soluble metabolites and phenylurea were the major products. A. versicolor and Penicillium cyclopium were most active in degrading photothidiazuron. 4-Hydroxyphenylphotothidiazuron was the major organosoluble product formed by A. versicolor; phenylurea and an unidentified metabolite constituted the major organosoluble products from P. cyclopium. Both microbes also formed appreciable water-soluble metabolites. Radioactive carbon dioxide was formed from thidiazuron-aniline-14C by Oscillatoria sp. but not by Chlorella sp., suggesting that the former algal species utilized the defoliant as an energy source. PMID:7073312

  8. Cotton defoliant runoff as a function of active ingredient and tillage.

    PubMed

    Potter, Thomas L; Truman, Clint C; Bosch, David D; Bednarz, Craig W

    2003-01-01

    Cotton (Gossypium hirsutum L.) defoliant runoff was recently identified as an ecological risk. However, assessments are not supported by field studies. Runoff potential of three defoliant active ingredients, dimethipin (2,3-dihydro-5,6-dimethyl-1,4-dithiin 1,1,4,4-tetraoxide), thidiazuron (N-phenyl-N-1,2,3-thidiazol-5-yl-urea), and tribufos (S,S,S-tributyl phosphorotrithioate) was investigated by rainfall simulation on strip (ST) and conventionally tilled (CT) cotton in south central Georgia. Simulated rainfall timing relative to defoliant application (1 h after) represented an extreme worst-case scenario; however, weather records indicate that it was not unrealistic for the region. Thidiazuron and tribufos losses were 12 to 15% of applied. Only 2 to 5% of the more water soluble dimethipin was lost. Although ST erosion rates were less, loss of tribufos, a strongly sorbing compound, was not affected. Higher sediment-water partition coefficients (kd) were measured in ST samples. This likely explains why no tillage related differences in loss rates were observed, but it is unknown whether this result can be generalized. The study was conducted in the first year following establishment of tillage treatments at the study site. As soil conditions stabilize, ST impacts may change. Data provide an estimate of the maximum amount of the defoliants that will run off during a single postapplication storm event. Use of these values in place of the default value in runoff simulation models used in pesticide risk assessments will likely improve risk estimate accuracy and enhance evaluation of comparative risk among these active ingredients. PMID:14674540

  9. The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton

    PubMed Central

    Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  10. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton.

    PubMed

    Du, Mingwei; Li, Yi; Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  11. Thidiazuron uptake, distribution and metabolism in bluegills and channel catfish.

    PubMed

    Knowles, C O; Benezet, H J; Mayer, F L

    1980-01-01

    Bluegills (Lepomis macrochirus) exposed to 0.1 ppm of thidiazuron-14C cotton defoliant for 28 days under continuous flow conditions accumulated relatively low levels of radiocarbon. The maximum detected was 5.4 ppm in fillet tissue after 1 day. During a 14 day depuration period, radioactivity declined to 1.0 ppm or less. Fractionation of offal and fillet tissues from bluegills collected at 28 days indicated that most of the radioactive material was water soluble, although appreciable amounts of organosoluble radioactive material also were present. When bluegills were injected intraperitoneally with thidiazuron-14C, metabolism and elimination were relatively rapid. Organosoluble radioactive material isolated from fish tissue included thidiazuron, its 2-hydroxyphenyl derivative, phenylurea, and several unknowns. Channel catfish (Ictalurus punctatus) exposed under static conditions to a system containing 0.15 ppm of thidiazuron-14C incorporated into soil also accumulated only low concentrations of radiocarbon. The maximum detected was 2.5 ppb in offal tissue at 7 days. In fillet tissue, radioactivity did not exceed 0.5 ppb. There was no evidence from these studies to indicate that thidiazuron would pose a hazard to the aquatic ecosystem. PMID:7400538

  12. Effects of selected defoliants in combination with insecticides on sweetpotato whitefly (Hemiptera: Aleyrodidae) and its parasitoids in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of two defoliants, Def (S, S, Stributylphosphorotrithioate) and Dropp (thidiazuron) alone and in combination with two commonly used insecticides, a pyrethroid, Karate (lambda-cyhalothrin) and an organophosphate, Guthion (azinphosmethyl) on sweetpotato whitefly, Bemisia tabaci Gennadius Bioty...

  13. Cytokinin activity induced by thidiazuron.

    PubMed

    Thomas, J C; Katterman, F R

    1986-06-01

    The diphenylurea derivative thidiazuron induces a variety of cytokinin responses. Levels above 5 x 10(-9) molar and 4 x 10(-7) molar stimulate maximum soybean callus growth and radish cotyledon expansion, respectively. A wider range of dose response related effects follows thidiazuron induced tobacco plant regeneration. Analysis of soybean callus extracts strongly suggests that thidiazuron treatment creates an accumulation and/or synthesis of purine cytokinins, able to induce the growth, expansion and regeneration, mentioned above. PMID:16664878

  14. THERMAL DEFOLIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An apparatus designed to defoliate cotton with hot air was tested in two varieties and two field conditions. Cotton defoliation using hot air was as effective as defoliation using tyical chemicals under some conditions. Aphid populations were eliminated by the thermal treatment, reducing the risk ...

  15. EVALUATION OF COTTON DEFOLIATION STRATEGIES USING AIRBORNE MULTISPECTRAL IMAGERY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visual observations and ground measurements are commonly used to evaluate cotton (Gossypium hirsutum L.) harvest aids for defoliation, boll opening, and re-growth control. This paper presents a remote sensing-based method for evaluating the effectiveness of different defoliation treatments. Field ...

  16. Thermal defoliation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative perception some consumers hold regarding agricultural chemicals has resulted in an increased demand for organic foods and fibers, and in increasing political pressure for the regulation of agricultural production practices. This has revived interest in thermal defoliation of cotton and ...

  17. Employing broadband spectra and cluster analysis to assess thermal defoliation of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers and field scouts need assistance in surveying cotton (Gossypium hirsutum L.) fields subjected to thermal defoliation to reap the benefits provided by this nonchemical defoliation method. A study was conducted to evaluate broadband spectral data and unsupervised classification as tools for s...

  18. Efficiency of Tank-Mixing Insecticide with Defoliant Against Adult Boll Weevil (Coleoptera:Curculionidae) Populations as Determined by Late-Season Field Disturbance Trapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large commercial field plots were used to assess the effect of tank-mixing cyfluthrin with a defoliant applied in preparation for cotton, Gossypium hirsutum L., harvest on adult boll weevil, Anthonomus grandis grandis Boheman, populations in south Texas during 2002 and 2003. The defoliant-insectici...

  19. SURVEYING THERMALLY-DEFOLIATED COTTON PLOTS WITH COLOR-INFRARED AERIAL PHOTOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers can use heated air (thermal defoliation) as a nonchemical alternative for terminating cotton (Gossypium hirsutum L.) growth and for preparing it for harvest, making this technique ideal for cotton grown in sustainable systems. For large cotton fields, growers need assistance in examining ...

  20. 40 CFR 180.403 - Thidiazuron; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Thidiazuron; tolerances for residues. 180.403 Section 180.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.403 Thidiazuron; tolerances for residues....

  1. Cotton thermal defoliation economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvest-aid chemical and application expenses are justified by increased quantity and value of harvested fiber, and decreased harvest costs. Chemical use may be restricted in certain production situations. Harvest preparation costs and producer returns were compared for thermal defoliation ...

  2. FUTURE RISK OF GYPSY MOTH DEFOLIATION

    EPA Science Inventory

    Data from the suitable habitit combined with forest density, and adjusted by prefered species basal area and the predicited geographic pattern of defoliation can be used to predict future potential for gypsy moth defoliation.

  3. HISTORICAL GYPSY MOTH DEFOLIATION FREQUENCY

    EPA Science Inventory

    Gypsy moth populations may exist for many years at low densities such that it may be difficult to find any life stages. Then, for reasons that are not completely understood, populations may rise to very high densities and substantial defoliation of the canopy may occur. These da...

  4. A Ve homologous gene from Gossypium barbadense, Gbvdr3, enhances the defense response against Verticillium dahliae.

    PubMed

    Chen, Tianzi; Kan, Jialiang; Yang, Yuwen; Ling, Xitie; Chang, Youhong; Zhang, Baolong

    2016-01-01

    The tomato Ve1 gene and several Ve1 homologues are involved in the resistance to Verticillium dahliae. Here, we report on another Ve homologous gene, Gbvdr3, from a Verticillium wilt-resistant cotton cultivar, Gossypium barbadense Hai7124, which has a 3207-bp region that encodes a predicted receptor-like protein. Transient expression analyses indicated that Gbvdr3 is localized in the plasma membrane, and virus-induced gene silencing of Gbvdr3 compromised the resistance of Hai7124 cotton to a defoliating strain of V. dahliae, V991, but not to a non-defoliating strain, BP2. This resistance pattern was further confirmed by over-expression of Gbvdr3 in transgenic Arabidopsis, which significantly elevated the expression of the ethylene-regulated gene GST2, the ethylene- and jasmonic acid-regulated defense-related genes PR3 and PDF1.2, and the salicylic acid-regulated genes PR1 and PR5, but not the PR2 gene. It also triggered the accumulation of hydrogen peroxide and callose at early time points during infection by the V991 defoliating strain. In contrast, elevated accumulation of hydrogen peroxide or callose in Gbvdr3-expressed Arabidopsis leaves was not apparent under infection by the non-defoliating strain, BP2. These results suggested that Gbvdr3 is involved in the resistance to a unique spectrum of defoliating V. dahliae strains. PMID:26686282

  5. Growth Regulator Changes in Cotton Associated with Defoliation Caused by Verticillium albo-atrum.

    PubMed

    Wiese, M V; Devay, J E

    1970-03-01

    Cotton plants, variety Acala 4-42 family 77 (Gossypium hirsutum L.,), were stem puncture-inoculated with either a defoliating isolate (T9) or a nondefoliating isolate (SS4) of Verticillium albo-atrum (Reinke and Berth.). As symptoms developed, growth regulators were assayed in diseased plants to discern their importance in the disease syndrome.An Avena coleoptile straight growth bioassay demonstrated the presence of several growth-regulatory compounds in cotton tissue extracts. Indoleacetic acid was among the compounds whose effects on coleoptile growth were influenced by disease development. Coleoptile growth due to indoleacetic acid was greater in extracts of diseased stems and leaves than in extracts of comparable healthy tissues. During the defoliation period the T9 and SS4 isolates appeared equally effective in increasing indoleacetic acid and reducing indoleacetic acid decarboxylation. Preceding defoliation, however, in plants showing equivalent symptoms the degradation of auxin was reduced more by infection with T9, the defoliating isolate. The reduced auxin degradation appeared to be releated to concomitant increases in caffeic acid and other indoleacetic acid-oxidase inhibitors in the affected tissues.Abscisic acid in tissue extracts strongly inhibited coleoptile growth. During the defoliation period gas-liquid chromatographic and ultraviolet absorption measurements revealed that abscisic acid levels were approximately doubled in T9-infected leaves but were relatively unaffected in leaves infected with the nondefoliating isolate and in stems infected with either isolate.The onset of epinasty and especially defoliation was also accompanied by increased ethylene production in diseased plants. Ethylene in gas samples taken from jars confining plants infected with SS4 or T9, respectively, was increased 2- and 5-fold over uninoculated controls. Ethylene supplied exogenously to healthy plants in concentrations as low as 0.2 microliter per liter induced both the

  6. Growth Regulator Changes in Cotton Associated with Defoliation Caused by Verticillium albo-atrum1

    PubMed Central

    Wiese, M. V.; Devay, J. E.

    1970-01-01

    Cotton plants, variety Acala 4-42 family 77 (Gossypium hirsutum L.,), were stem puncture-inoculated with either a defoliating isolate (T9) or a nondefoliating isolate (SS4) of Verticillium albo-atrum (Reinke and Berth.). As symptoms developed, growth regulators were assayed in diseased plants to discern their importance in the disease syndrome. An Avena coleoptile straight growth bioassay demonstrated the presence of several growth-regulatory compounds in cotton tissue extracts. Indoleacetic acid was among the compounds whose effects on coleoptile growth were influenced by disease development. Coleoptile growth due to indoleacetic acid was greater in extracts of diseased stems and leaves than in extracts of comparable healthy tissues. During the defoliation period the T9 and SS4 isolates appeared equally effective in increasing indoleacetic acid and reducing indoleacetic acid decarboxylation. Preceding defoliation, however, in plants showing equivalent symptoms the degradation of auxin was reduced more by infection with T9, the defoliating isolate. The reduced auxin degradation appeared to be releated to concomitant increases in caffeic acid and other indoleacetic acid-oxidase inhibitors in the affected tissues. Abscisic acid in tissue extracts strongly inhibited coleoptile growth. During the defoliation period gas-liquid chromatographic and ultraviolet absorption measurements revealed that abscisic acid levels were approximately doubled in T9-infected leaves but were relatively unaffected in leaves infected with the nondefoliating isolate and in stems infected with either isolate. The onset of epinasty and especially defoliation was also accompanied by increased ethylene production in diseased plants. Ethylene in gas samples taken from jars confining plants infected with SS4 or T9, respectively, was increased 2- and 5-fold over uninoculated controls. Ethylene supplied exogenously to healthy plants in concentrations as low as 0.2 microliter per liter induced both

  7. Multiresidue analysis of cotton defoliant, herbicide, and insecticide residues in water by solid-phase extraction and GC-NPD, GC-MS, and HPLC-diode array detection.

    PubMed

    Potter, T L; Marti, L; Belflower, S; Truman, C C

    2000-09-01

    A multiresidue procedure was developed for analysis of cotton pesticide and harvest-aid chemicals in water using solid-phase extraction and analysis by GC-NPD, GC-MS, and HPLC-DAD. Target compounds included the defoliants tribufos, dimethipin, thidiazuron; the herbicide diuron; and the insecticide methyl parathion. Three solid-phase extraction (SPE) media, octadecylsilyl (ODS), graphitized carbon black (GCB), and a divinylbenzene-N-vinyl pyrollidine copolymer (DVBVP), were evaluated. On GCB and ODS, recoveries varied depending on compound type. Recoveries were quantitative for all compounds on DVBVP, ranging from 87 to 115% in spiked deionized water and surface runoff. The method detection limit was less than 0.1 microg L(-)(1). SPE with DVBVP was applied to post-defoliation samples of surface runoff and tile drainage from a cotton research plot and surface runoff from a commercial field. The research plot was defoliated with a tank mixture of dimethipin and thidiazuron, and the commercial field, with tribufos. Dimethipin was detected (1.9-9.6 microg L(-)(1)) in all research plot samples. In the commercial field samples, tribufos concentration ranged from 0.1 to 135 microg L(-)(1). An exponentially decreasing concentration trend was observed with each successive storm event. PMID:10995322

  8. SOYBEAN.DEFOLIATION.1.SD.2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various chewing insects feed upon soybean plants, and their infestations may be economically significant in some years in the north-central United States. Soybean lines that are resistant to defoliation may be useful for management of chewing insect pests. Levels of defoliation from chewing insec...

  9. SOYBEAN.DEFOLIATION.2.SD.2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several types of chewing insects feed upon soybean plants, and their infestations may be economically significant in some years in the north-central United States. Soybean lines that are resistant to defoliation may be useful in the management of chewing insect pests. Levels of defoliation from c...

  10. The Pennsylvania defoliation application pilot test

    NASA Technical Reports Server (NTRS)

    Mcleod, R. G.; Zobrist, A. L.; Bryant, N. A.

    1983-01-01

    Satellite imagery for the State of Pennsylvania was digitally mosaicked to provide the seed data base for monitoring defoliation of hardwood trees by the gypsy moth. Two separate mosaics for the state were prepared, one before defoliation and one after defoliation, to determine the extent, direction, and impact of gypsy moth activity in the state. The digital mosaic technology used to construct the data base was transferred to Pennsylvania State University to permit periodic updates to the data base and to assist in planning and abatement activities. Participating agencies or institutions included Goddard Space Flight Center and the Pennsylvania State University Office for Remote Sensing of Earth Resources.

  11. [Determination of eight defoliant residues in cotton by accelerated solvent extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Wu, Gang; Dong, Suozhuai; Pan, Lulu; Zhao, Shanhong; Wang, Lijun; Guo, Fanglong; Li, Dan

    2013-07-01

    A novel method has been developed for the rapid extraction and determination of eight defoliants including thidiazuron, butiphos, methabenzthiazuron, abscisic acid, carfentra-zone-ethyl, diuron, paraquat, and pyrithiobac-sodium in cotton by accelerated solvent extraction (ASE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The defoliants in cotton were extracted by ASE and the extracts were dried by a rotavapor, then redissolved in the solvents of acetonitrile and water (1:9, v/v). The chromatographic analysis was performed on an Acquity UPLC HSS T3 column (50 mmx 2. 1 mm, 1. 8 microm) by a gradient elution employing of acetonitrile and 0.05% (v/v) formic acid as mobile phases. The analytes were detected by electrospray ionization (ESI) tandem mass spectrometry with multiple reaction monitoring (MRM) in positive ion mode. Good linearities (r >0.99) were observed between 0. 01 and 0. 3 mg/L for all the compounds. The recoveries and relative standard deviations (RSDs) were obtained by spiking untreated samples with the eight defoliants at 0. 1, 0. 5 and 1.0 mg/kg. The average recoveries of the eight defoliants were from (84. 18 +/- 8.04)% to (95.99 +/- 6.76)%. The precision values expressed as RSDs were from 7. 04% to 10. 60% (n = 6). The limits of detection were 0. 8 - 29 microg/kg and the limits of quantification were 2.5 - 96 1/4g/kg for the analytes. The results ahowed that the method is simple, rapid, sensitive and accurate, and is suitable for the quantitative determination and confirmation of the eight defoliants in cotton. PMID:24164041

  12. Genetic diversity in Gossypium genus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall objectives of this paper are to report on cotton germplasm resources, morphobiological and agronomic diversity of Gossypium genus and review efforts on molecular genetic diversity of cotton gene pools as well as on the challenges and perspectives of exploiting genetic diversity in cotton...

  13. Thidiazuron, a non-metablized cytokinin, shows promise in extending the life of potted plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of low concentrations of thidiazuron (N-phenyl-N’-1,2,3-thiadiazol-5-yl urea, TDZ) has been shown to be a very effective means of delaying leaf yellowing in cut flowers such as alstroemeria, stock, lilies and tulips. We examined the possible use of this compound for delaying leaf yellow...

  14. TREATMENT WITH THIDIAZURON IMPROVES OPENING AND VASE LIFE OF IRIS FLOWERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The marketability of Dutch iris (Iris × hollandica) cut flowers is limited by their short display life and frequent failure to open fully. We tested the ability of thidiazuron (TDZ), a phenyl urea compound with cytokinin-like activity, to improve iris flower opening and longevity. A postharvest pu...

  15. Simulated impacts of insect defoliation on forest carbon dynamics

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Clark, K. L.; Skowronski, N. S.; Schäfer, K. V. R.

    2012-12-01

    Many temperate and boreal forests are subject to insect epidemics. In the eastern US, over 41 million meters squared of tree basal area are thought to be at risk of gypsy moth defoliation. However, the decadal-to-century scale implications of defoliation events for ecosystem carbon dynamics are not well understood. In this study, the effects of defoliation intensity, periodicity and spatial pattern on the carbon cycle are investigated in a set of idealized model simulations. A mechanistic terrestrial biosphere model, ecosystem demography model 2, is driven with observations from a xeric oak-pine forest located in the New Jersey Pine Barrens. Simulations indicate that net ecosystem productivity (equal to photosynthesis minus respiration) decreases linearly with increasing defoliation intensity. However, because of interactions between defoliation and drought effects, aboveground biomass exhibits a nonlinear decrease with increasing defoliation intensity. The ecosystem responds strongly with both reduced productivity and biomass loss when defoliation periodicity varies from 5 to 15 yr, but exhibits a relatively weak response when defoliation periodicity varies from 15 to 60 yr. Simulations of spatially heterogeneous defoliation resulted in markedly smaller carbon stocks than simulations with spatially homogeneous defoliation. These results show that gypsy moth defoliation has a large effect on oak-pine forest biomass dynamics, functioning and its capacity to act as a carbon sink.

  16. Defoliation effects on pasture photosynthesis and respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecosystem C gain or loss from managed grasslands can depend on the type and intensity of management practices that are employed. However, limited information is available at the field scale on how the type of defoliation, specifically grazing vs. cutting, affects gross primary productivity (GPP) an...

  17. Differentiating pollen from four species of Gossypium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton, Gossypium (Malvaceae) has been spun, woven, and dyed since prehistoric times. Four cotton species are economically important, Gossypium arboreum (tree cotton), G. barbadense (American pima cotton), G. herbaceum (levant cotton), and G. hirsutum (American upland cotton). Some research has be...

  18. Aerial Photography: Use in Detecting Simulated Insect Defoliation in Corn

    NASA Technical Reports Server (NTRS)

    Chiang, H. C.; Latham, R.; Meyer, M. P.

    1973-01-01

    Artificial defoliation in corn was used to explore the usefulness of aerial photography in detecting crop insect infestations. Defoliation on the top of plants was easily detected, while that on the base was less so. Aero infrared film with Wratten 89B filter gave the best results, and morning flights at the scale of 1:15840 are recommended. Row direction, plant growth stage, and time elapse since defoliation were not important factors.

  19. SOURCE ASSESSMENT: DEFOLIATION OF COTTON, STATE-OF-THE ART

    EPA Science Inventory

    The report describes a study of air pollutants emitted during the defoliation or desiccation of cotton prior to harvest. (Defoliation is the process by which leaves are abscissed from the plant by the action of topically applied chemical agents. Desiccation by chemicals is the dr...

  20. Non-defoliating and defoliating strains from cotton correlate with races 1 and 2 of Verticillium dahliae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt caused by Verticillium dahliae is an important disease of cotton worldwide. Isolates of V. dahliae can be characterized as race 1 or race 2 based on the responses of differential cultivars of tomato and lettuce or as defoliating or non-defoliating based on symptom expression in cot...

  1. Collinearity analysis of allotetraploid Gossypium tomentosum and Gossypium darwinii.

    PubMed

    Liu, F; Zhou, Z L; Wang, C Y; Wang, Y H; Cai, X Y; Wang, X X; Wang, K B; Zhang, Z S

    2016-01-01

    Gossypium tomentosum and G. darwinii are wild allotetraploid cotton species, characterized by many excellent traits, including fiber fineness, drought tolerance, and Fusarium and Verticillium wilt resistance. Based on the construction of F2 linkage groups of G. hirsutum x G. tomentosum and G. hirsutum x G. darwinii, two genetic linkage maps were compared. As a result, we found a total of seven inverted fragments on chr02, chr05, chr08, chr12, chr14, chr16, and chr25, and three translocated fragments on chr05, chr14, and chr26. In addition, comparison of the inverted and translocated fragments revealed that the orientation of four of seven markers in G. tomentosum were consistent with G. hirsutum or G. raimondii. The orientation of one of seven inverted markers of G. darwinii was consistent with G. hirsutum, and the orientation of one of three translocated markers of G. tomentosum was consistent with G. raimondii. These results indicate that, in comparison to G. darwinii, G. tomentosum has a closer genetic relationship to G. hirsutum. These findings will be important for our understanding on the genome structure of G. tomentosum and G. darwinii, and set the scene for further in-depth genome research such as fine mapping, tagging genes of interest from wild relatives, and evolutionary study. PMID:27525913

  2. Monitoring Tamarisk Defoliation and Scaling Evapotranspiration Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Hultine, K. R.; Nagler, P. L.; Miura, T.; Glenn, E. P.; Ehleringer, J. R.

    2008-12-01

    Non-native tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States. Another non-native species, the saltcedar leaf beetle (Diorhabda elongata), has been released in an attempt to control tamarisk infestations. Most efforts directed towards monitoring tamarisk defoliation by Diorhabda have focused on changes in leaf area or sap flux, but these measurements only give a local view of defoliation impacts. We are assessing the ability of remote sensing data for monitoring tamarisk defoliation and measuring resulting changes in evapotranspiration over space and time. Tamarisk defoliation by Diorhabda has taken place during the past two summers along the Colorado River and its tributaries near Moab, Utah. We are using 15 meter spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 250 meter spatial resolution Moderate Resolution Imaging Spectrometer (MODIS) data to monitor tamarisk defoliation. An ASTER normalized difference vegetation index (NDVI) time series has revealed large drops in index values associated with loss of leaf area due to defoliation. MODIS data have superior temporal monitoring abilities, but at the sacrifice of much lower spatial resolution. A MODIS enhanced vegetation index time series has revealed that for pixels where the percentage of riparian cover is moderate or high, defoliation is detectable even at 250 meter spatial resolution. We are comparing MODIS vegetation index time series to site measurements of leaf area and sap flux. We are also using an evapotranspiration model to scale potential water savings resulting from the biocontrol of tamarisk.

  3. Ethylene: a factor in defoliation induced by auxins.

    PubMed

    Hallaway, M; Osborne, D J

    1969-03-01

    Aerial sprays of synthetic auxins defoliate many species of tropical trees. Treatment of Euonymus japonica leaves with the n-butyl ester of 2,4-dichlorophenoxyacetic acid causes premature senescence and leaf fall and stimulates ethylene production by the blade 5-to 25-fold. Exposure to ethylene alone similarly accelerates senescence and leaf fall. Evidence indicates that the defoliant action of auxin is mediated through the enhanced amounts of ethylene in the blade. PMID:5764868

  4. Gossypium Germplasm Resources for Cotton Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a very small fraction of the genetic diversity residing in the Gossypium genus is represented in improved, elite cotton germplasm. Although genetic diversity in elite germplasm is reported to be narrow, diversity on the farm is narrower, due to preferential planting of successful cultivars, an...

  5. Assessing MODIS-based Products and Techniques for Detecting Gypsy Moth Defoliation

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Smoot, James C.; Prados, Don; McKellip, Rodney; Sader, Steven A.; Gasser, Jerry; May, George

    2008-01-01

    The project showed potential of MODIS and VIIRS time series data for contributing defoliation detection products to the USFS forest threat early warning system. This study yielded the first satellite-based wall-to-wall 2001 gypsy moth defoliation map for the study area. Initial results led to follow-on work to map 2007 gypsy moth defoliation over the eastern United States (in progress). MODIS-based defoliation maps offer promise for aiding aerial sketch maps either in planning surveys and/or adjusting acreage estimates of annual defoliation. More work still needs to be done to assess potential of technology for "now casts"of defoliation.

  6. Growth and mortality of trembling aspen (Populus tremuloides) in response to artificial defoliation

    NASA Astrophysics Data System (ADS)

    Moulinier, Julien; Lorenzetti, François; Bergeron, Yves

    2014-02-01

    To simulate the effects of forest tent caterpillar (FTC) defoliation on trembling aspen growth and mortality, an artificial defoliation experiment was performed over three years in young aspen stands of northwestern Quebec. Defoliation plots of 15 × 15 m were established on three sites, together with associated control stands of pure trembling aspen. In 2007, root collar diameters were measured and positions of all trees were mapped prior defoliation. Severe FTC defoliation was simulated for three successive years (2007-2009) by manually removing all leaves from all but 7-10% of the trees present in the defoliation plots. Yearly surveys of growth and mortality were conducted until 2010 to evaluate defoliation effects on defoliated as well as surrounding undefoliated trees. In absence of other factors, growth and mortality of trembling aspen decreased and increased, respectively, after defoliation. Our study further revealed that small diameter trees died after one year of artificial defoliation, while larger-diameter trees died after repeated defoliations. Distributions of tree mortality tended to be aggregated at small scales (<5 m), corroborating gap patterns observed in mature stands following FTC outbreaks. This experiment revealed that trembling aspen mortality can be directly attributed solely to defoliation. Repeated defoliations during FTC outbreaks have the potential to profoundly modify stand productivity and structure by reducing tree growth and increasing tree mortality in the absence of predisposing factors.

  7. An Experimental Comparison of Two Methods on Photosynthesis Driving Soil Respiration: Girdling and Defoliation

    PubMed Central

    Jing, Yanli; Guan, Dexin; Wu, Jiabing; Wang, Anzhi; Jin, Changjie; Yuan, Fenghui

    2015-01-01

    Previous studies with different experimental methods have demonstrated that photosynthesis significantly influences soil respiration (RS). To compare the experimental results of different methods, RS after girdling and defoliation was measured in five-year-old seedlings of Fraxinus mandshurica from June to September. Girdling and defoliation significantly reduced RS by 33% and 25% within 4 days, and 40% and 32% within the entire treatment period, respectively. The differential response of RS to girdling and defoliation was a result of the over-compensation for RS after girdling and redistribution of stored carbon after defoliation. No significant effect on RS was observed between girdling and defoliation treatment, while the soluble sugar content in fine roots was higher in defoliation than in girdling treatment, indicating that defoliation had less compensation effect for RS after interrupting photosynthates supply. We confirm the close coupling of RS with photosynthesis and recommend defoliation for further studies to estimate the effect of photosynthesis on RS. PMID:26177498

  8. Defining the temporal window for monitoring forest canopy defoliation using Landsat

    NASA Technical Reports Server (NTRS)

    Nelson, R. F.

    1981-01-01

    An analysis of Landsat imagery of forested areas near Williamsport, Pennsylvania shows that the effects of defoliation by insects can be assessed over a two month period beginning in early June. Within this window heavily defoliated forest can be successfully delineated from moderately defoliated and healthy forest. Consequently, the effects of insect damage can be assessed at times other than peak defoliation, doubling the probability that useful satellite data can be acquired in the Williamsport area.

  9. Crested Wheatgrass Defoliation Intensity and Season of Use on Medusahead Invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effects of crested wheatgrass defoliation intensity and timing on medusahead density and biomass. Eighteen treatments (six defoliation levels, three seasons of defoliation) were applied to 21.5-ft2 plots on two sites with varying clay content. Plant...

  10. Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation

    PubMed Central

    Fang, Weiping; Xie, Deyi; Zhu, Heqin; Li, Wu; Xu, Zhenzhen; Yang, Lirong; Li, Zhifang; Sun, Li; Wang, Jinxia; Nie, Lihong; Tang, Zhongjie; Lv, Shuping; Zhao, Fu’an; Sun, Yao; Zhao, Yuanming; Hou, Jianan; Yang, Xiaojie

    2015-01-01

    Verticillium wilt is threatening cotton productivity globally. This disease is caused by soil-borne Verticillium dahliae which directly infects cotton roots, and exclusively colonizes and occludes xylem vessels, finally resulting in necrosis, defoliation, and most severely, plant death. For the first time, iTRAQ (isobaric tags for relative and absolute quantification) was applied to screen the differentially expressed proteins of Gossypium thurberi inoculated with V. dahliae. A total of 6533 proteins were identified from the roots of G. thurberi after inoculation with V. dahliae, and 396 showed up- and 279 down-regulated in comparison to a mock-inoculated roots. Of these identified proteins, the main functional groups were those involved in cell wall organization and reinforcement, disease-resistant chemicals of secondary metabolism, phytohormone signaling, pathogenesis-related proteins, and disease-resistant proteins. Physiological and biochemical analysis showed that peroxidase activity, which promotes the biosynthesis and accumulation of lignin, was induced early in the hypocotyl after inoculation with V. dahliae. Similarly, salicylic acid also accumulated significantly in hypocotyl of the seedlings after inoculation. These findings provide an important knowledge of the molecular events and regulatory networks occurring during G. thurberi-V. dahliae interaction, which may provide a foundation for breeding disease-resistance in cotton. PMID:26506344

  11. Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation.

    PubMed

    Fang, Weiping; Xie, Deyi; Zhu, Heqin; Li, Wu; Xu, Zhenzhen; Yang, Lirong; Li, Zhifang; Sun, Li; Wang, Jinxia; Nie, Lihong; Tang, Zhongjie; Lv, Shuping; Zhao, Fu'an; Sun, Yao; Zhao, Yuanming; Hou, Jianan; Yang, Xiaojie

    2015-01-01

    Verticillium wilt is threatening cotton productivity globally. This disease is caused by soil-borne Verticillium dahliae which directly infects cotton roots, and exclusively colonizes and occludes xylem vessels, finally resulting in necrosis, defoliation, and most severely, plant death. For the first time, iTRAQ (isobaric tags for relative and absolute quantification) was applied to screen the differentially expressed proteins of Gossypium thurberi inoculated with V. dahliae. A total of 6533 proteins were identified from the roots of G. thurberi after inoculation with V. dahliae, and 396 showed up- and 279 down-regulated in comparison to a mock-inoculated roots. Of these identified proteins, the main functional groups were those involved in cell wall organization and reinforcement, disease-resistant chemicals of secondary metabolism, phytohormone signaling, pathogenesis-related proteins, and disease-resistant proteins. Physiological and biochemical analysis showed that peroxidase activity, which promotes the biosynthesis and accumulation of lignin, was induced early in the hypocotyl after inoculation with V. dahliae. Similarly, salicylic acid also accumulated significantly in hypocotyl of the seedlings after inoculation. These findings provide an important knowledge of the molecular events and regulatory networks occurring during G. thurberi-V. dahliae interaction, which may provide a foundation for breeding disease-resistance in cotton. PMID:26506344

  12. Comparative phenotypic analysis of Gossypium raimondii with Upland cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gossypium raimondii Ulbr., a wild species with a diploid genome, has been sequenced due to its small genome size and sequence similarity with the polyploidy cultivated Gossypium species. Accessibility of the G. raimondii genome has made the species a reference used extensively in cotton genomic and...

  13. Gossypolhemiquinone, a dimeric sesquiterpenoid identified in cotton (Gossypium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The report that the cotton leaf perforator, Bucculatrix thurberiella, is one of the few insect herbivores to attack Gossypium thurberi prompted an investigation of the terpenoids present in the leaves of this wild species of cotton. Members of Gossypium produce subepidermal pigment glands in their ...

  14. Gypsy moth defoliation assessment: Forest defoliation in detectable from satellite imagery. [New England, New York, Pennsylvania, and New Jersey

    NASA Technical Reports Server (NTRS)

    Moore, H. J. (Principal Investigator); Rohde, W. G.

    1975-01-01

    The author has identified the following significant results. ERTS-1 imagery obtained over eastern Pennsylvania during July 1973, indicates that forest defoliation is detectable from satellite imagery and correlates well with aerial visual survey data. It now appears that two damage classes (heavy and moderate-light) and areas of no visible defoliation can be detected and mapped from properly prepared false composite imagery. In areas where maple is the dominant species or in areas of small woodlots interspersed with agricultural areas, detection and subsequent mapping is more difficult.

  15. Linkage mapping of Gossypium longicalyx resistance to reniform nematode during introgression into cotton Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) poses significant problems for US cultivated Upland cottons (Gossypium hirsutum L., 2n=52), all of which lack high resistance. The African species G. longicalyx (Hutch. and Lee), however, is extremely resistant. We used three pr...

  16. Effects of Invasive Winter Moth Defoliation on Tree Radial Growth in Eastern Massachusetts, USA

    PubMed Central

    Simmons, Michael J.; Lee, Thomas D.; Ducey, Mark J.; Elkinton, Joseph S.; Boettner, George H.; Dodds, Kevin J.

    2014-01-01

    Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been defoliating hardwood trees in eastern Massachusetts since the 1990s. Native to Europe, winter moth has also been detected in Rhode Island, Connecticut, eastern Long Island (NY), New Hampshire, and Maine. Individual tree impacts of winter moth defoliation in New England are currently unknown. Using dendroecological techniques, this study related annual radial growth of individual host (Quercus spp. and Acer spp.) trees to detailed defoliation estimates. Winter moth defoliation was associated with up to a 47% reduction in annual radial growth of Quercus trees. Latewood production of Quercus was reduced by up to 67% in the same year as defoliation, while earlywood production was reduced by up to 24% in the year following defoliation. Winter moth defoliation was not a strong predictor of radial growth in Acer species. This study is the first to document impacts of novel invasions of winter moth into New England. PMID:26462685

  17. Canada thistle (Cirsium arvense) suppession by sudangrass interference and defoliation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canada thistle is difficult to manage in farming systems with reduced reliance on herbicides, including organic and low-external input systems. Previous field studies found that defoliation or sudangrass interference suppressed Canada thistle. Our objective was to understand the factors causing supp...

  18. Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration

    SciTech Connect

    Reichenbacker, R.R.; Hart, E.R.; Schultz, R.C.

    1996-06-01

    The impact of artificial defoliation on Populus growth, biomass production, and total nonstructural carbohydrate concentration was examined. Four Populus clones were field planted and artificially defoliated. Assigned defoliation levels (0, 25, 50, or 75%) were applied to leaves of leaf plastochron index 0 through 8 during a 6-d period in a 3-step incremental manner to simulate cottonwood leaf beetle, Chrysomela scripta F., larval feeding patterns. Artificial defoliations were timed to coincide with the outbreaks of natural beetle populations in adjacent areas. After 2 growing seasons, trees were measured for height, diameter, and biomass accumulation. Root samples were collected from 0 and 75% defoliation treatments for each clone. Biomass was reduced an average of 33% as defoliation level increased from 0 to 75%. As defoliation level increased from 0 to 75%, a consistent allocation ratio of biomass to 2/3 above and 1/3 below ground components continued in all clones. An overcompensation response occurred in above ground biomass when a defoliation level of 25% was applied. Between 25 and 75% a strong linear trend of decreasing biomass as defoliation increased was indicated. Vitality of the tree, as indicated by total nonstructural carbohydrate content, was affected only slightly by increasing defoliation. 26 refs., 1 fig., 6 tabs.

  19. Photosynthetic responses of field-grown Pinus radiata trees to artificial and aphid-induced defoliation.

    PubMed

    Eyles, Alieta; Smith, David; Pinkard, Elizabeth A; Smith, Ian; Corkrey, Ross; Elms, Stephen; Beadle, Chris; Mohammed, Caroline

    2011-06-01

    The phloem-feeding aphid Essigella californica represents a potential threat to the productivity of Pinus radiata plantations in south-eastern Australia. Five- and nine-year-old field trials were used to characterize the effects of artificial and natural aphid-induced (E. californica) defoliation, respectively, on shoot photosynthesis and growth. Photosynthetic capacity (A(max)) was significantly greater following a 25% (D25) (13.8 µmol m(-2) s(-1)) and a 50% (D50) (15.9 µmol m(-2) s(-1)) single-event upper-crown artificial defoliation, 3 weeks after defoliation than in undefoliated control trees (12.9 µmol m(-2) s(-1)). This response was consistently observed for up to 11 weeks after the defoliation event; by Week 16, there was no difference in A(max) between control and defoliated trees. In the D50 treatment, this increased A(max) was not sufficient to fully compensate for the foliage loss as evidenced by the reduced diameter increment (by 15%) in defoliated trees 36 weeks after defoliation. In contrast, diameter increment of trees in the D25 treatment was unaffected by defoliation. The A(max) of trees experiencing upper-crown defoliation by natural and repeated E. californica infestations varied, depending on host genotype. Despite clear differences in defoliation levels between resistant and susceptible genotypes (17 vs. 35% of tree crown defoliated, respectively), growth of susceptible genotypes was not significantly different from that of resistant genotypes. The observed increases in A(max) in the lower crown of the canopy following attack suggested that susceptible genotypes were able to partly compensate for the loss of foliage by compensatory photosynthesis. The capacity of P. radiata to regulate photosynthesis in response to natural aphid-induced defoliation provides evidence that the impact of E. californica attack on stem growth will be less than expected, at least for up to 35% defoliation. PMID:21697147

  20. Biochemical characterization of embryogenic calli of Vanilla planifolia in response to two years of thidiazuron treatment.

    PubMed

    Kodja, Hippolyte; Noirot, Michel; Khoyratty, Shahnoo S; Limbada, Hafsah; Verpoorte, Robert; Palama, Tony Lionel

    2015-11-01

    Vanilla planifolia embryogenic calli were cultured for two years on a medium containing thidiazuron (TDZ). Due to the presence of TDZ, these calli were under permanent chemical treatment and the differentiation of adventitious shoots from protocorm-like-bodies (PLBs) was blocked. When embryogenic calli were transferred onto a medium without TDZ, shoot organogenesis and plantlet regeneration occurred. To gain better knowledge about the biochemical and molecular processes involved in the morphoregulatory role of TDZ, hormonal and metabolomic analyses were performed. Our results indicate that in the presence of TDZ, embryogenic calli contained a high amount of abscisic acid (ABA) essentially metabolized into abscisic acid glucosyl ester (ABAGE) and phaseic acid (PA), which was the most abundant. When transferred onto a medium without TDZ, shoot regeneration and development take place in four stages that include: embryogenic calli growth, differentiation of PLBs from meristmatic cells zones (MCZ), shoot organogenesis from PLBs and the elongation of well-formed shoots. From a hormonal perspective, the significant reduction in ABA metabolism and its readjustment in the ABAGE pathway triggered PLBs formation. However, this first morphogenesis was stimulated by a strong reduction in IAA metabolism. The organogenesis of PLBs into shoots is associated with an increase in ABA catabolism and a gradual shift in cellular metabolism towards shoot differentiation. Thus, the initiation of the elongation process in shoots is correlated with an alteration in metabolite composition, including an increase in energy reserves (sucrose/starch) and a rapid decrease in alanine content. Our data highlighted the relationship between endogenous hormone signalling, carbohydrate metabolism and shoot organogenesis in Orchid plants. PMID:26351150

  1. Polyploidy and the petal transcriptome of Gossypium

    PubMed Central

    2014-01-01

    Background Genes duplicated by polyploidy (homoeologs) may be differentially expressed in plant tissues. Recent research using DNA microarrays and RNAseq data have described a cacophony of complex expression patterns during development of cotton fibers, petals, and leaves. Because of its highly canalized development, petal tissue has been used as a model tissue for gene expression in cotton. Recent advances in cotton genome annotation and assembly now permit an enhanced analysis of duplicate gene deployment in petals from allopolyploid cotton. Results Homoeologous gene expression levels were quantified in diploid and tetraploid flower petals of Gossypium using the Gossypium raimondii genome sequence as a reference. In the polyploid, most homoeologous genes were expressed at equal levels, though a subset had an expression bias of AT and DT copies. The direction of gene expression bias was conserved in natural and recent polyploids of cotton. Conservation of direction of bias and additional comparisons between the diploids and tetraploids suggested different regulation mechanisms of gene expression. We described three phases in the evolution of cotton genomes that contribute to gene expression in the polyploid nucleus. Conclusions Compared to previous studies, a surprising level of expression homeostasis was observed in the expression patterns of polyploid genomes. Conserved expression bias in polyploid petals may have resulted from cis-acting modifications that occurred prior to polyploidization. Some duplicated genes were intriguing exceptions to general trends. Mechanisms of gene regulation for these and other genes in the cotton genome warrants further investigation. PMID:24393201

  2. Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation.

    PubMed

    De Marco, Alessandra; Proietti, Chiara; Cionni, Irene; Fischer, Richard; Screpanti, Augusto; Vitale, Marcello

    2014-11-01

    Defoliation is an indicator for forest health in response to several stressors including air pollutants, and one of the most important parameters monitored in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). The study aims to estimate crown defoliation in 2030, under three climate and one nitrogen deposition scenarios, based on evaluation of the most important factors (meteorological, nitrogen deposition and chemical soil parameters) affecting defoliation of twelve European tree species. The combination of favourable climate and nitrogen fertilization in the more adaptive species induces a generalized decrease of defoliation. On the other hand, severe climate change and drought are main causes of increase in defoliation in Quercus ilex and Fagus sylvatica, especially in Mediterranean area. Our results provide information on regional distribution of future defoliation, an important knowledge for identifying policies to counteract negative impacts of climate change and air pollution. PMID:25118942

  3. Effects of Artificial Defoliation on Growth and Biomass Accumulation in Short-Rotation Sweetgum (Liquidambar styraciflua) in North Carolina

    PubMed Central

    Jetton, Robert M.; Robison, Daniel J.

    2014-01-01

    Sweetgum, Liquidambar styraciflua L. (Hamamelidales: Hamamelidaceae), is a species of interest for short-rotation plantation forestry in the southeastern United States. Despite its high levels of resistance to many native insects and pathogens, the species is susceptible to generalist defoliators during outbreak epidemics. The objective of this field study was to evaluate the potential impact of defoliation on sweetgum growth and productivity within the context of an operational plantation. Over three growing seasons, trees were subjected to artificial defoliation treatments of various intensity (control = 0% defoliation; low intensity = 33% defoliation; moderate intensity = 67% defoliation; high intensity = 99% defoliation) and frequency (not defoliated; defoliated once in April of the first growing season; defoliated twice, once in April of the first growing season and again in April of the second growing season). The responses of stem height, stem diameter, stem volume, crown volume, total biomass accumulation, and branch growth were measured in November of each growing season. At the end of the first growing season, when trees had received single defoliations, significant reductions in all growth traits followed the most severe (99%) defoliation treatment only. After the second and third growing seasons, when trees had received one or two defoliations of varying intensity, stem diameter and volume and total tree biomass were reduced significantly by 67 and 99% defoliation, while reductions in stem height and crown volume followed the 99% treatment only. All growth traits other than crown volume were reduced significantly by two defoliations but not one defoliation. Results indicate that sweetgum is highly resilient to single defoliations of low, moderate, and high intensity. However, during the three-year period of the study, repeated high-intensity defoliation caused significant reductions in growth and productivity that could have lasting impacts on yield

  4. Condensed tannins increase nitrogen recovery by trees following insect defoliation.

    PubMed

    Madritch, Michael D; Lindroth, Richard L

    2015-10-01

    While the importance of plant secondary metabolites to belowground functioning is gaining recognition, the perception remains that secondary metabolites are produced for herbivore defense, whereas their belowground impacts are ecological by-products, or 'afterlife' effects. However, plants invest a significant amount of resources into production of secondary metabolites that have minimal effects on herbivore resistance (e.g. condensed tannins and insect herbivores). We show that genetically mediated variation in condensed tannin concentration is correlated with plant nitrogen recovery following a severe defoliation event. We used single-tree mesocosms labeled with (15) N to track nitrogen through both the frass and litter cycling pathways. High concentrations of leaf tannins in Populus tremuloides were correlated with (15) N recovery from frass within the same growing season and in the following growing season. Likewise, leaf tannin concentrations were also correlated with (15) N recovery from the litter of defoliated trees in the growing season following the defoliation event. Conversely, tannins were not well correlated with nitrogen uptake under conditions of nominal herbivory. Our results suggest that tannins may confer benefits in response to herbivore pressure through conserved belowground nitrogen cycling, rather than via defensive properties. Consequently, tannins may be considered as chemical mediators of tolerance rather than resistance. PMID:25952793

  5. Defoliation reduces soil biota - and modifies stimulating effects of elevated CO2.

    PubMed

    Dam, Marie; Christensen, Søren

    2015-11-01

    To understand the responses to external disturbance such as defoliation and possible feedback mechanisms at global change in terrestrial ecosystems, it is necessary to examine the extent and nature of effects on aboveground-belowground interactions. We studied a temperate heathland system subjected to experimental climate and atmospheric factors based on prognoses for year 2075 and further exposed to defoliation. By defoliating plants, we were able to study how global change modifies the interactions of the plant-soil system. Shoot production, root biomass, microbial biomass, and nematode abundance were assessed in the rhizosphere of manually defoliated patches of Deschampsia flexuosa in June in a full-factorial FACE experiment with the treatments: increased atmospheric CO 2, increased nighttime temperatures, summer droughts, and all of their combinations. We found a negative effect of defoliation on microbial biomass that was not apparently affected by global change. The negative effect of defoliation cascades through to soil nematodes as dependent on CO 2 and drought. At ambient CO 2, drought and defoliation each reduced nematodes. In contrast, at elevated CO 2, a combination of drought and defoliation was needed to reduce nematodes. We found positive effects of CO 2 on root density and microbial biomass. Defoliation affected soil biota negatively, whereas elevated CO 2 stimulated the plant-soil system. This effect seen in June is contrasted by the effects seen in September at the same site. Late season defoliation increased activity and biomass of soil biota and more so at elevated CO 2. Based on soil biota responses, plants defoliated in active growth therefore conserve resources, whereas defoliation after termination of growth results in release of resources. This result challenges the idea that plants via exudation of organic carbon stimulate their rhizosphere biota when in apparent need of nutrients for growth. PMID:26640664

  6. Analysis of forchlorfenuron and thidiazuron in fruits and vegetables by surface-enhanced Raman spectroscopy after selective solid-phase extraction with modified β-cyclodextrin.

    PubMed

    Chen, Xiaoman; Yan, Kuanglin; Xiao, Xiaohua; Li, Gongke

    2016-06-01

    β-Cyclodextrin and its derivatives can selectively bind to various organic molecules in its cavity and provide good applications in sample preparation. Surface-enhanced Raman spectroscopy is a sensitive technique and has received increasing attention in the last decade. Herein, 3,5-dimethyl phenyl carbamoylated β-cyclodextrin bonded silica gel was used as a ssorbent in solid-phase extraction to selectively enrich forchlorfenuron and thidiazuron followed by determination with surface-enhanced Raman spectroscopy. It showed excellent selectivity for forchlorfenuron and thidiazuron and the adsorption capacities were 40.0 and 30.0 μg/g, respectively. A rapid and sensitive method based on the modified β-cyclodextrin solid-phase extraction coupled with surface-enhanced Raman spectroscopy was developed. The linear ranges were 30.0-300.0 μg/L for forchlorfenuron and thidiazuron at 1005 and 640 cm(-1) , respectively. Both of the limits of detection were 15.0 μg/L, which were significantly lower than the maximum permitted by the National Standard. The recoveries of forchlorfenuron and thidiazuron were 78.9-87.9% for the spiked grape, kiwi, cucumber and tomato, with relative standard deviations of 8.1-13.2%. The results show that this method is sensitive, selective, and relatively time saving, and has great potential in the analysis of trace amounts of plant growth regulators in fruits and vegetables. PMID:27120042

  7. Monitoring the defoliation of hardwood forests in Pennsylvania using LANDSAT. [gypsy moth surveys

    NASA Technical Reports Server (NTRS)

    Dottavio, C. L.; Nelson, R. F.; Williams, D. L. (Principal Investigator)

    1983-01-01

    An automated system for conducting annual gypsy moth defoliation surveys using LANDSAT MSS data and digital processing techniques is described. A two-step preprocessing procedure was developed that uses multitemporal data sets representing forest canopy conditions before and after defoliation to create a digital image in which all nonforest cover types are eliminated or masked out of a LANDSAT image that exhibits insect defoliation. A temporal window for defoliation assessment was identified and a statewide data base was established. A data management system to interface image analysis software with the statewide data base was developed and a cost benefit analysis of this operational system was conducted.

  8. Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladière.

    PubMed

    Barry, Karen M; Quentin, Audrey; Eyles, Alieta; Pinkard, Elizabeth A

    2012-01-01

    Recovery following defoliation can be modified by co-occurring site resource limitations. The growth response of young Eucalyptus globulus saplings to two defoliation events was examined in an experimental plantation with combinations of low (-) or high (+) water (W) and nitrogen (N) resources. Artificial defoliation was applied at 3 and 9 months of age to remove ~40 and 55% of leaf area in the upper crown, respectively. At 18 months of age, height, stem diameter and leaf area were not significantly different between control and defoliated saplings, across all resource treatments. However, stem volume, bark volume and branch number were significantly increased in defoliated saplings, including a significant interaction with resource treatment. Total above-ground biomass of saplings in response to defoliation was significantly higher (almost double) than controls for the low water (N + W-) treatment only. Significantly increased foliar starch content (and a trend for increased soluble sugars) in the upper crown zone was found in the defoliated saplings of the N + W- treatment compared with the upper zone of control saplings. Foliar total non-structural carbohydrates were significantly correlated to stem biomass regardless of resource treatment or defoliation, and we suggest that foliar resources are most important for stem growth in E. globulus rather than stored carbon (C) from other tissues. After repeated defoliation and several months recovery, E. globulus saplings were generally not C limited in this study. PMID:22174093

  9. Thidiazuron Triggers Morphogenesis in Rosa canina L. Protocorm-Like Bodies by Changing Incipient Cell Fate

    PubMed Central

    Kou, Yaping; Yuan, Cunquan; Zhao, Qingcui; Liu, Guoqin; Nie, Jing; Ma, Zhimin; Cheng, Chenxia; Teixeira da Silva, Jaime A.; Zhao, Liangjun

    2016-01-01

    Thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa. PMID:27200031

  10. Differential Effects of Thidiazuron on Production of Anticancer Phenolic Compounds in Callus Cultures of Fagonia indica.

    PubMed

    Khan, Tariq; Abbasi, Bilal Haider; Khan, Mubarak Ali; Shinwari, Zabta Khan

    2016-04-01

    Fagonia indica, a very important anticancer plant, has been less explored for its in vitro potential. This is the first report on thidiazuron (TDZ)-mediated callogenesis and elicitation of commercially important phenolic compounds. Among the five different plant growth regulators tested, TDZ induced comparatively higher fresh biomass, 51.0 g/100 mL and 40.50 g/100 mL for stem and leaf explants, respectively, after 6 weeks of culture time. Maximum total phenolic content (202.8 μg gallic acid equivalent [GAE]/mL for stem-derived callus and 161.3 μg GAE/mL for leaf-derived callus) and total flavonoid content (191.03 μg quercetin equivalent [QE]/mL for stem-derived callus and 164.83 μg QE/mL for leaf-derived callus) were observed in the optimized callus cultures. The high-performance liquid chromatography (HPLC) data indicated higher amounts of commercially important anticancer secondary metabolites such as gallic acid (125.10 ± 5.01 μg/mL), myricetin (32.5 ± 2.05 μg/mL), caffeic acid (12.5 ± 0.52 μg/mL), catechin (9.4 ± 1.2 μg/mL), and apigenin (3.8 ± 0.45 μg/mL). Owing to the greater phenolic content, a better 2-2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity (69.45 % for stem explant and 63.68 % for leaf explant) was observed in optimized calluses. The unusually higher biomass and the enhanced amount of phenolic compounds as a result of lower amounts of TDZ highlight the importance of this multipotent hormone as elicitor in callus cultures of F. indica. PMID:26758711

  11. Thidiazuron Triggers Morphogenesis in Rosa canina L. Protocorm-Like Bodies by Changing Incipient Cell Fate.

    PubMed

    Kou, Yaping; Yuan, Cunquan; Zhao, Qingcui; Liu, Guoqin; Nie, Jing; Ma, Zhimin; Cheng, Chenxia; Teixeira da Silva, Jaime A; Zhao, Liangjun

    2016-01-01

    Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa. PMID:27200031

  12. Responses of Medicago sativa and M. falcata type alfalfas to different defoliation times and grass competition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporating alfalfa into rangelands can enhance the quantity and quality of forage production. We evaluated the impact of defoliation timing and selective defoliation on two grazing- (Anik and SCMF 3713) and one hay-type alfalfas (Vernal) near Mandan, North Dakota, USA. Entries were space-plante...

  13. Defoliation effects on Bromus tectorum seed production: Implications for grazing

    USGS Publications Warehouse

    Hempy-Mayer, K.; Pyke, D.A.

    2008-01-01

    Cheatgrass (Bromus tectorum L.) is an invasive annual grass that creates near-homogenous stands in areas throughout the Intermountain sagebrush steppe and challenges successful native plant restoration in these areas. A clipping experiment carried out at two cheatgrass-dominated sites in eastern Oregon (Lincoln Bench and Succor Creek) evaluated defoliation as a potential control method for cheatgrass and a seeding preparation method for native plant reseeding projects. Treatments involved clipping plants at two heights (tall = 7.6 cm, and short = 2.5 cm), two phenological stages (boot and purple), and two frequencies (once and twice), although purple-stage treatments were clipped only once. Treatments at each site were replicated in a randomized complete block design that included a control with no defoliation. End-of-season seed density (seeds??m-2) was estimated by sampling viable seeds from plants, litter, and soil of each treatment. Undipped control plants produced an average of approximately 13 000 and 20 000 seeds??m-2 at Lincoln Bench and Succor Creek, respectively. Plants clipped short at the boot stage and again 2 wk later had among the lowest mean seed densities at both sites, and were considered the most successful treatments (Lincoln Bench: F 6,45 = 47.07, P < 0.0001; Succor Creek: F6,40 = 19.60, P < 0.0001). The 95% confidence intervals for seed densities were 123-324 seeds??m-2 from the Lincoln Bench treatment, and 769-2256 seeds??m-2 from the Succor Creek treatment. Literature suggests a maximum acceptable cheatgrass seed density of approximately 330 seeds??m-2 for successful native plant restoration through reseeding. Thus, although this study helped pinpoint optimal defoliation parameters for cheatgrass control, it also called into question the potential for livestock grazing to be an effective seed-bed preparation technique in native plant reseeding projects in cheatgrass-dominated areas.

  14. Topolins and Hydroxylated Thidiazuron Derivatives Are Substrates of Cytokinin O-Glucosyltransferase with Position Specificity Related to Receptor Recognition1

    PubMed Central

    Mok, Machteld C.; Martin, Ruth C.; Dobrev, Petre I.; Vanková, Radomira; Ho, P. Shing; Yonekura-Sakakibara, Keiko; Sakakibara, Hitoshi; Mok, David W.S.

    2005-01-01

    Glucosides of trans-zeatin occur widely in plant tissues, formed either by O-glucosylation of the hydroxylated side chain or N-glucosylation of the purine ring structure. O-Glucosylation is stereo-specific: the O-glucosyltransferase encoded by the Phaseolus lunatus ZOG1 gene has high affinity for trans-zeatin as the substrate, whereas the enzyme encoded by the maize (Zea mays) cisZOG1 gene prefers cis-zeatin. Here we show that hydroxylated derivatives of benzyladenine (topolins) are also substrates of ZOG1 and cisZOG1. The m-OH and o-OH derivatives are the preferred substrate of ZOG1 and cisZOG1, respectively. Among the hydroxylated derivatives of thidiazuron tested, the only enzyme/substrate combination resulting in conversion was cisZOG1/(o-OH) thidiazuron. The abilities of these cytokinins to serve as substrates to the glucosyltransferases were in a large part correlated with their biological activities in the P. lunatus callus bioassay, indicating that there may be similarities between cytokinin-binding sites on the enzymes and cytokinin receptors. Further support for this interpretation is provided by cytokinin recognition studies involving the Arabidopsis (Arabidopsis thaliana) CRE1/WOL/AHK4 and maize ZmHK1 receptors. The AHK4 receptor responded to trans-zeatin and m-topolin, while the ZmHK1 receptor responded also to cis-zeatin and o-topolin. Three-dimensional molecular models of the substrates were applied to explain the results. PMID:15728338

  15. Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir

    PubMed Central

    Deslauriers, Annie; Caron, Laurie; Rossi, Sergio

    2015-01-01

    During repetitive defoliation events, carbon can become limiting for trees. To maintain growth and survival, the resources have to be shared more efficiently, which could result in a trade-off between the different physiological processes of a plant. The objective of this study was to assess the effect of defoliation in carbon allocation of balsam fir [Abies balsamea (L.) Mill.] to test the presence of a trade-off between allocation to growth, carbon storage, and defense. Three defoliation intensities [control (C-trees, 0% defoliation), moderately (M-trees, 41–60%), and heavily (H-trees, 61–80%) defoliated] were selected in order to monitor several variables related to stem growth (wood formation in xylem), carbon storage in stem and needle (non-structural soluble sugars and starch), and defense components in needles (terpenoids compound) from May to October 2011. The concentration of starch was drastically reduced in both wood and leaves of H-trees with a quasi-absence of carbon partitioning to storage in early summer. Fewer kinds of monoterpenes and sesquiterpenes were formed with an increasing level of defoliation indicating a lower carbon allocation for the production of defense. The carbon allocation to wood formation gradually reduced at increasing defoliation intensities, with a lower growth rate and fewer tracheids resulting in a reduced carbon sequestration in cell walls. The hypothesis of a trade-off between the allocations to defense components and to non-structural (NCS) and structural (growth) carbon was rejected as most of the measured variables decreased with increasing defoliation. The starch amount was highly indicative of the tree carbon status at different defoliation intensity and future research should focus on the mechanism of starch utilization for survival and growth following an outbreak. PMID:26029235

  16. Nutrients and defoliation increase soil carbon inputs in grassland.

    PubMed

    Ziter, Carly; MacDougall, Andrew S

    2013-01-01

    Given the regulatory impact of resources and consumers on plant production, decomposition, and soil carbon sequestration, anthropogenic changes to nutrient inputs and grazing have likely transformed how grasslands process atmospheric CO2. The direction and magnitude of these changes, however, remain unclear in this system, whose soils contain -20% of the world's carbon pool. Nutrients stimulate production but can also increase tissue palatability and decomposition. Grazing variously affects tissue quality and quantity, decreasing, standing biomass, but potentially increasing leaf nutrient concentrations, root production, or investment in tissue defenses that slow litter decay. Here, we quantified individual and interactive impacts of nutrient addition and simulated grazing (mowing) on above- and belowground production, tissue quality, and soil carbon inputs in a western North American grassland with globally distributed agronomic species. Given that nutrients and grazing are often connected with increased root production and higher foliar tissue quality, we hypothesized that these treatments would combine to reduce inputs of recalcitrant-rich litter critical for C storage. This hypothesis was unsupported. Nutrients and defoliation combined to significantly increase belowground production but did not affect root tissue quality. There were no significant interactions between nutrients and defoliation for any measured response. Three years of nutrient addition increased root and shoot biomass by 37% and 23%, respectively, and had no impact on decomposition, resulting in a -15% increase in soil organic matter and soil carbon. Defoliation triggered a significant burst of short-lived lignin-rich roots, presumably a compensatory response to foliar loss, which increased root litter inputs by 33%. The majority of root and shoot responses were positively correlated, with aboveground biomass a reasonable proxy for whole plant responses. The exceptions were decomposition, with

  17. Sequencing of the cultivated tetraploid cotton genome - Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is an important cash crop in the world and it plays an irreplaceable role in China’s national economy. Cultivated upland cotton (Gossypium hirsutum L.) represents 95% of world cotton production but it has a complex allotetraploid genome that contains at least 30,000 genes in 2,500 Mb DNA. S...

  18. Molecular Diversity of Gossypium herbaceum L. and G. arboreum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diploid Asiatic cotton species (Gossypium herbaceum L. and G. arboreum L.) are a valuable source of genetic variation in modern cotton improvement. In this study, the genetic diversity of selected G. herbaceum and G. arboreum accessions collected from different regions all around the world accor...

  19. The draft genome of a diploid cotton Gossypium raimondii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have sequenced and assembled the draft genome of Gossypium raimondii, whose progenitor is considered the contributor of the D-subgenome to the economically important natural textile fiber producer, G. hirsutum. Next-generation Illumina pair-end (PE) sequencing strategies were employed to obtain ...

  20. Enhancement and diversity of primitive cotton, Gossypium hirsutum L., accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton, Gossypium hirsutum L., is an important cultivated crop that is grown throughout the world. Improvements in agronomic performance and fiber quality are needed to ensure its economic viability. Primitive accessions of cotton offer a wealth of genetic variability; however, since most of these...

  1. Localization of Allotetraploid Gossypium SNPs Using Physical Mapping Resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent efforts in Gossypium SNP development have produced thousands of putative SNPs for G. barbadense, G. mustelinum, and G. tomentosum relative to G. hirsutum. Here we report on current efforts to localize putative SNPs using physical mapping resources. Recent advances in physical mapping resour...

  2. Variability in four diverse cotton (Gossypium hirsutum L.) germplasm populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A broad range of cotton (Gossypium hirsutum L.) germplasm resources exist with characteristics useful for improving modern cotton cultivars. However, much of this germplasm is not well utilized. The objective of this study was to evaluate agronomic and fiber traits of four germplasm populations to...

  3. Molecular confirmation of Gossypium hirsutum chromosome substitution lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary gene pool for tetraploid cotton species includes G. hirsutum L., as well as the other four 2n=52 species of Gossypium (G. barbadense, G. mustellinum, G. tomentosum and G. darwinii). To help overcome barriers to effective introgression, we have developed a number of alien chromosome subst...

  4. The Impact of Drought on Cotton (Gossypium Hirsutum) Fiber Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inadequate moisture during the growing season has been shown to reduce cotton (Gossypium hirsutum) lint yields. Little is known, however, as to how in-season growing conditions alter cotton fiber quality. Here, we show the impact of irrigation on cotton fiber quality. Cotton was grown in large repli...

  5. Portable DNA markers tailored for systematic characterization of Gossypium germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many small-scale ad-hoc studies on characterization of Gossypium germplasm have been conducted that use different sets of markers. Coordination with the cotton community is needed to reach a consensus on the appropriate initial set of DNA markers. In consultation with the cotton community, a set o...

  6. Genome-Wide Gossypium SNP development and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts toward development of cotton SNPs have been few and mostly small-scale. Novel cotton fiber ESTs were developed from normalized non-clonal cDNA libraries of Gossypium species that were sequenced using complementary 454 and Illumina technologies. A hybrid de novo assembly of G. hirsutum cv. ...

  7. Genome-wide SNP development and validation for allotetraploid Gossypium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts toward development of cotton SNPs have been few and mostly small-scale. Novel cotton fiber ESTs were developed from normalized non-clonal cDNA libraries of Gossypium species that were sequenced using complementary 454 and Illumina technologies. A hybrid de novo assembly of G. hirsutum cv. ...

  8. Extreme defoliation reduces tree growth but not C and N storage in a winter-deciduous species

    PubMed Central

    Piper, Frida I.; Gundale, Michael J.; Fajardo, Alex

    2015-01-01

    Background and Aims There is a growing concern about how forests will respond to increased herbivory associated with climate change. Carbon (C) and nitrogen (N) limitation are hypothesized to cause decreasing growth after defoliation, and eventually mortality. This study examines the effects of a natural and massive defoliation by an insect on mature trees’ C and N storage, which have rarely been studied together, particularly in winter-deciduous species. Methods Survival, growth rate, carbon [C, as non-structural carbohydrate (NSC) concentration] and nitrogen (N) storage, defences (tannins and total polyphenols), and re-foliation traits were examined in naturally defoliated and non-defoliated adult trees of the winter-deciduous temperate species Nothofagus pumilio 1 and 2 years after a massive and complete defoliation caused by the caterpillar of Ormiscodes amphimone (Saturniidae) during summer 2009 in Patagonia. Key Results Defoliated trees did not die but grew significantly less than non-defoliated trees for at least 2 years after defoliation. One year after defoliation, defoliated trees had similar NSC and N concentrations in woody tissues, higher polyphenol concentrations and lower re-foliation than non-defoliated trees. In the second year, however, NSC concentrations in branches were significantly higher in defoliated trees while differences in polyphenols and re-foliation disappeared and decreased, respectively. Conclusions The significant reduction in growth following defoliation was not caused by insufficient C or N availability, as frequently assumed; instead, it was probably due to growth limitations due to factors other than C or N, or to preventative C allocation to storage. This study shows an integrative approach to evaluating plant growth limitations in response to disturbance, by examining major resources other than C (e.g. N), and other C sinks besides storage and growth (e.g. defences and re-foliation). PMID:25851136

  9. Fire, defoliation, and competing species alter Aristida purpurea biomass, tiller, and axillary bud production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aristida purpurea (threeawn) is a competitive native perennial grass with monoculturistic tendencies and poor palatability. We examined effects of fire, defoliation, and interspecific/intraspecific planting for 1) threeawn responses in the presence of threeawn, Bouteloua gracilis, or Pascopyrum smi...

  10. cis-3-Chloroacrylic Acid: A New Cotton Defoliant and Crop Desiccant.

    PubMed

    Herrett, R A; Kurtz, A N

    1963-09-20

    cis-3-Chloroacrylic acid is a potent cotton defoliant and a crop desiccant. Relationships between structure and activity indicate a relatively high degree of specificity, since minor modifications in structure result in loss of activity. PMID:17751800

  11. The Virgin River Tamarisk Defoliation by Diorhabda carinulata: It's Effects on Evapotranspiration Rates and Groundwater Consumption

    NASA Astrophysics Data System (ADS)

    Sueki, S.; Healey, J. M.; Acharya, K.

    2013-12-01

    Saltcedar (tamarisk; Tamarix spp) has become the most widespread invasive plant species in the western United States. Waterways and their corridors have evolved into mono-species stands of saltcedar. Chemical and mechanical methods of tamarisk eradication have been partially effective and prove to be expensive and cause irrepressible damage to natural resources. In the late 1960s, biological control program began in order to reduce the risk of damaging native plants. In 2001, Diorhabda elongate (leaf beetles) was released for open field tests followed by other releases in several locations in the western United States. One of the successful releases occurred in St. George, UT along the Virgin River in 2006. The last few years has seen establishment of large scale populations in the lower Virgin River. Eddy covariance (EC) tower including groundwater monitoring well was set up along the Virgin River near Mesquite, NV in 2010 to monitor effects of tamarisk defoliation on evapotranspiration (ET). Initial 2010 data (pre-beetle) established a baseline for characterization of tamarisk ET and groundwater consumption prior to defoliation of tamarisk. The beetles arrived at the site in late 2010 and established a healthy population at the growing season of 2011. 2010 data compared to the episodic herbivore events, observed at the site in 2011 and 2012, clearly show the direct impact of tamarisk defoliation. The results show that the post-defoliation ET values along with magnitude of diurnal fluctuations, found in the water level record, decreased compared to the pre-defoliation values. However, magnitude of the effects of defoliation seemed to be dependent on growth stage of tamarisk at the time of defoliation. Also, the defoliation periods are short lived as tamarisk quickly recovered and establish new growth. In 2012, the defoliation occurred twice since tamarisk re-foliated quickly after the first defoliation by late summer before beetles started overwintering

  12. Resource allocation in an annual herb: Effects of light, mycorrhizal fungi, and defoliation

    NASA Astrophysics Data System (ADS)

    Aguilar-Chama, Ana; Guevara, Roger

    2016-02-01

    Concurrent interactions and the availability of resources (e.g., light) affect the cost/benefit balance during mutualistic and antagonistic interactions, as well as plant resource allocation patterns. Mycorrhizal interactions and herbivory concur in most plants, where mycorrhizae can enhance the uptake of soil nutrients by plants as well as consuming a large fraction of the plant's carbon, and defoliation usually reduces light interception and photosynthesis, thereby causing direct losses to the hosts of mycorrhizal fungi. Both types of interactions affect the carbon budget of their host plants and thus we predict that the relative costs of herbivory and mycorrhizal colonization will increase when photosynthesis is reduced, for instance in light limited environments. We conducted a greenhouse experiment using Datura stramonium to investigate the effects of defoliation and mycorrhizal inoculation on the resource allocation patterns in two different light environments. Defoliated plants overcompensated in terms of leaf mass in both light environments, but total seed mass per fruit was negatively affected by defoliation in both light environments. Mycorrhizal inoculation had a positive effect on vegetative growth and the leaf nitrogen content, but defoliation negates the benefit of mycorrhizal interactions in terms of the leaf nitrogen content. In general, D. stramonium compensated for the relative costs of concurrent mycorrhizal interactions and defoliation; plants that lacked both interactions exhibited the same performance as plants with both types of interactions.

  13. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil.

    PubMed

    García, I; Mendoza, R

    2012-11-01

    The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline-sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non-defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non-defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na(+) concentration in shoots of non-defoliated and moderately defoliated plants was similar. Non-defoliated and moderately defoliated plants prevented increases of Na(+) concentration in shoots through both reducing Na(+) uptake and Na(+) transport to shoots by accumulating Na(+) in roots. At high defoliation, the salinity tolerance mechanism is altered and Na(+) concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil. PMID:22512871

  14. High-Frequency Regeneration of the Drought-Tolerant Tree Melia volkensii Gurke Using Low-Cost Agrochemical Thidiazuron

    PubMed Central

    Mulanda, Eliud Sagwa; Adero, Mark Ochieng; Amugune, Nelson Onzere; Akunda, Elijah; Kinyamario, Jenesio I.

    2012-01-01

    Melia volkensii Gurke is a drought-tolerant tree native to East Africa's arid and semiarid lands (ASALs), with vast but underutilized potential for agroforestry and sustainable livelihoods in the ASALs. Its cultivation is limited by difficulties in propagation via conventional means. Full exploitation of the ability of thidiazuron (TDZ) to elicit regeneration in plant tissue cultures, as sole plant growth regulator (PGR), is hampered by high costs. This study tested the effectiveness of a low-cost agrochemical TDZ for in vitro propagation of M. volkensii. Zygotic embryos from mature seeds were cultured on Gamborg's B5 medium containing 0 to 4 mg/L of agrochemical TDZ from Kingtai Chemicals Co.,Ltd., China. Callus induction frequency was 96.67 to 100%. Significantly large callus fresh mass was produced at 0.05 mg/L TDZ concentration (ANOVA, P < 0.001). The effect of TDZ on embryogenicity was significant over certain ranges of concentrations (Anova, P < 0.001). Multiple somatic embryos developed within 14 days of subculture to hormone-free B5 medium. Somatic embryos developed into microshoots which elongated when transferred to 1/2 MS medium supplemented with 0.1 mg/L 6-benzylaminopurine plus 10% coconut water. The Kingtai-TDZ showed a high potency and suitability for use in M. volkensii tissue culture. PMID:23227344

  15. Is growth reduction in defoliated trees a consequence of prioritized carbon allocation to reserves?

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Schmid, Sandra; Palacio, Sara

    2015-04-01

    Tissue concentrations of carbon reserve compounds are frequently used as proxies for the carbon balance of trees, but the mechanisms regulating the formation of carbon reserves are still under debate. It is often assumed that carbon storage in trees is largely a consequence of surplus carbon supply (reserve accumulation). In contrast, carbon storage might also occur against prevailing carbon demand from other sink activities, like growth (reserve formation), in which case carbon reserve pools might increase even at carbon limitation, and thus, cannot be used as indicators for a tree's carbon supply status. Such a situation might be severe defoliation by herbivores. Especially in evergreen tree species, it has been shown that natural and experimental defoliation leads to a reduction of growth that is proportional to the lost leaf area. Compared to this strong effect on growth, carbon reserve pools (i.e. sugars, starch and storage lipids) of defoliated trees often exert only a temporary decrease immediately after defoliation, while tissue concentrations of carbon reserves return to those of undefoliated trees by the end of the growing season. Within a recent experiment, we investigated, if the growth decline in trees following early season defoliation is the consequence of prioritized carbon allocation to carbon reserves over growth. To test this hypothesis we grew seedlings of evergreen Quecus ilex and deciduous Quercus petraea trees under low (140 ppm), medium (280 ppm) and high (560 ppm) CO2 concentrations and completely defoliated half of the seedlings in each CO2 treatment at the beginning of the growing season. In undefoliated control trees, CO2 had a significant positive effect on the seasonal growth in both species. Defoliation had a strong negative impact on growth in the evergreen Q. illex, but less in the deciduous Q. petraea. In both species, the growth reduction after defoliation relative to undefoliated controls was very similar at all three CO2

  16. Defoliation by pastoralists affects savanna tree seedling dynamics by limiting the facilitative role of canopy cover.

    PubMed

    Bufford, Jennifer L; Gaoue, Orou G

    2015-07-01

    Recurrent tree defoliation by pastoralists, akin to herbivory, can negatively affect plant reproduction and population dynamics. However, our understanding of the indirect role of defoliation in seedling recruitment and tree-grass dynamics in tropical savanna is limited. In West African savanna, Fulani pastoralists frequently defoliate several fodder tree species to feed livestock in the dry season. We investigated the direct and indirect effects of recurrent defoliation of African mahogany (Khaya senegalensis) by Fulani people on seedling (< 2 cm basal diameter) and sapling dynamics in West Africa using four years of demographic data on seedling and sapling density, growth, and survival, coupled with fruit production and microhabitat data over the same time period. Tree canopy cover facilitated seedlings but had negative effects on sapling growth possibly via intraspecific competition with adult plants. Interspecific competition with grasses strongly reduced seedling survival but had a weak effect on sapling growth. Fire reduced seedling survival and weakly reduced growth of seedlings and saplings, but did not affect sapling survival. These results indicate that the effect of fire on seedlings and saplings is distinct, a mechanism suitable for an episodic recruitment of seedlings into the sapling stage and consistent with predictions from the demographic bottleneck model. Defoliation affected seedling density and sapling growth through changes in canopy cover, but had no effect on seedling growth and sapling survival. In the moist region, sapling density was higher in sites with low-intensity defoliation, indicating that defoliation may strengthen the tree recruitment bottleneck. Our study suggests that large-scale defoliation can alter the facilitative role of nurse trees on seedling dynamics and tree-sapling competition. Given that tree defoliation by local people is a widespread activity throughout savanna-forest systems in West Africa, it has the potential to

  17. Spraying Hydrangea Leaves with Chemical Defoliants, Urea, and GA in the Autumn Alters Defoliation Efficiency and Growth and Flowering Performance of Hydrangea during Forcing.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In two separate experiments, Hydrangea macrophylla ‘Merritt’s Supreme’ plants were used to study the effects of foliar sprays of Def-6 (Def, 2500, 5000, 7500 and 10000ppm), giberellic acid, (GA, 50ppm), copper-EDTA (CuEDTA, 0.5% and 1.0%), Florel (F, 2000ppm) and urea (U, 3%) on defoliation in the a...

  18. Dissipation of the defoliant tribufos in cotton-producing soils.

    PubMed

    Potter, Thomas L; Reddy, Krishna N; Millhollen, Eddie P; Bednarz, Craig W; Bosch, David D; Truman, Clint C; Strickland, Timothy

    2002-06-19

    Soil dissipation of the cotton defoliant tribufos was measured in laboratory incubations and on 0.2-ha research plots. Computed 50% dissipation time (DT(50)) using nonlinear and linear kinetic models ranged from 1 to 19 days. Data indicated that exchangeable soil aluminum inhibited tribufos-degrading soil organisms. Nevertheless, measured DT(50) values were 40 to 700 times less than the aerobic soil half-life (t(1/2)) values used in recent tribufos risk assessments. DT(50) values suggest that risk estimates were overstated. However, edge-of-field runoff concentrations measured on research plots exceeded invertebrate LOECs, thus some aquatic risk is indicated. Field data also suggested that volatilization may be a significant soil dissipation pathway. From this result, we conclude that volatilization should be included in simulation models used for pesticide registration. This will likely improve the accuracy of model outputs for products such as tribufos. Potential volatilization losses indicate a need to evaluate the atmospheric behavior of tribufos. PMID:12059162

  19. Canopy Defoliation has More Impact on Carbohydrate Availability than on Hydraulic Function in Declining Scots Pine Populations

    NASA Astrophysics Data System (ADS)

    Poyatos, R.; Aguadé, D.; Gómez, M.; Mencuccini, M.; Martínez-Vilalta, J.

    2013-12-01

    Drought-induced defoliation has recently been associated with depletion of carbohydrate reserves and increased mortality risk in Scots pine (Pinus sylvestris L.) at its dry limit. Are defoliated pines hydraulically impaired compared to non-defoliated pines? Moreover, how do defoliated pines cope with potentially lethal droughts, as compared to non-defoliated pines in the same population? In order to address these questions, we measured the seasonal dynamics of sap flow and needle water potentials (2010-2012), hydraulic function and non-structural carbohydrates (NSC) (2012) in healthy and defoliated pines in the Prades mountains (NE Spain). The summer drought was mild in 2010, intense in 2012 and extremely long in 2011. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but they were more sensitive to summer drought (Figure 1). This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance, which could not be explained by differences in branch vulnerability to embolism across defoliation classes. Accordingly, the native loss of xylem conductivity in branches, measured in 2012, remained similar across defoliation classes and reached >65% at the peak of the drought. However, a steeper vulnerability curve was observed for root xylem of defoliated pines. Xylem diameter variations (2011-2012) will be used to further investigate possible differences in the aboveground/belowground partitioning of hydraulic resistance across defoliation classes. NSC levels varied across tree organs (leaves>branches>roots>trunk) and strongly declined with drought. Defoliated pines displayed reduced NSC levels throughout the study period, despite enhanced water transport capacity and increased gas exchange rates during spring. Overall, the defoliated vs. healthy status seems to be more associated to differences in carbohydrate storage and dynamics than to hydraulic differences per se. However, starch conversion to soluble sugars during

  20. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species.

    PubMed

    Guada, Guillermo; Camarero, J Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  1. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species

    PubMed Central

    Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  2. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.

    PubMed

    Quentin, A G; O'Grady, A P; Beadle, C L; Mohammed, C; Pinkard, E A

    2012-08-01

    Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E(max)) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K(P)) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation. PMID:22874831

  3. A Detailed RFLP Map of Cotton, Gossypium Hirsutum X Gossypium Barbadense: Chromosome Organization and Evolution in a Disomic Polyploid Genome

    PubMed Central

    Reinisch, A. J.; Dong, J. M.; Brubaker, C. L.; Stelly, D. M.; Wendel, J. F.; Paterson, A. H.

    1994-01-01

    We employ a detailed restriction fragment length polymorphism (RFLP) map to investigate chromosome organization and evolution in cotton, a disomic polyploid. About 46.2% of nuclear DNA probes detect RFLPs distinguishing Gossypium hirsutum and Gossypium barbadense; and 705 RFLP loci are assembled into 41 linkage groups and 4675 cM. The subgenomic origin (A vs. D) of most, and chromosomal identity of 14 (of 26), linkage groups is shown. The A and D subgenomes show similar recombinational length, suggesting that repetitive DNA in the physically larger A subgenome is recombinationally inert. RFLPs are somewhat more abundant in the D subgenome. Linkage among duplicated RFLPs reveals 11 pairs of homoeologous chromosomal regions-two appear homosequential, most differ by inversions, and at least one differs by a translocation. Most homoeologies involve chromosomes from different subgenomes, putatively reflecting the n = 13 to n = 26 polyploidization event of 1.1-1.9 million years ago. Several observations suggest that another, earlier, polyploidization event spawned n = 13 cottons, at least 25 million years ago. The cotton genome contains about 400-kb DNA per cM, hence map-based gene cloning is feasible. The cotton map affords new opportunities to study chromosome evolution, and to exploit Gossypium genetic resources for improvement of the world's leading natural fiber. PMID:7851778

  4. Mortality following cotton defoliation: San Joaquin Valley, California, 1970-1990.

    PubMed

    Ames, R G; Gregson, J

    1995-07-01

    A proportional mortality study comparing the cotton-growing areas of the San Joaquin Valley with the rest of the State of California was performed by the Office of Environmental Health Hazard Assessment as a continuation of earlier studies related to mercaptan-releasing pesticides. This mortality study found a pattern of increased proportion of "respiratory causes" mortality (ICD codes 460-519), statistically significant at less than the .05 probability level, for 15 of 21 years between 1970 and 1990, for the time period during and immediately following cotton defoliation. Defoliants which have the potential to produce acute symptoms include DEF and Folex, both of which release odorous butyl mercaptan gas as a degradation product. This paper tests the hypothesis that exposure to cotton defoliant breakdown products may be associated with a disproportionate increase in mortality. Prediction of the mortality proportions by pounds of DEF and Folex used was not statistically significant in the unadjusted models or in models adjusted for air pollution variables. One air pollution adjustment factor, total suspended particulates, was a statistically significant independent mortality proportion predictor. This finding suggests that total suspended particulates, not defoliants, may be related to mortality differentials during defoliation season. Possible confounding by demographic variation of the counties was not controlled in the analysis. PMID:7552465

  5. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 Gossypium barbadense L. accessions of...

  6. Gossypolone and Gossypolhemiquinone: Biological activity of terpenoids found in cotton (Gossypium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild cotton plant, Gossypium thurberi grows in the Sonoran Desert in northern Mexico and southern Arizona, and is attacked by few herbivorous insects (Korban, 1999). In general, members of Gossypium produce a rich assortment of sesquiterpenoid and sesterterpenoids in the subepidermal pigment gl...

  7. The tolerance of grain amaranth (Amaranthus cruentus L.) to defoliation during vegetative growth is compromised during flowering.

    PubMed

    Vargas-Ortiz, Erandi; Délano-Frier, John Paul; Tiessen, Axel

    2015-06-01

    The biochemical processes underlying variations of tolerance are often accompanied by source-sink transitions affecting carbon (C) metabolism. We investigated the tolerance of Amaranthus cruentus L. to total mechanical defoliation through development and in different growing seasons. Defoliated A. cruentus recovered ∼80% of their above-ground biomass and ∼100% of grain yield compared to intact plants if defoliation occurred early during ontogeny, but could not compensate when defoliation occurred during flowering. Tolerance index was higher in the summer season (-0.3) than in the winter season (-0.7). Overall, defoliation tolerance was closely related to phosphoenolpyruvate carboxylase (PEPC) activity in leaves and the subsequent accumulation of starch (∼500 μmol/gDW) and sucrose (∼140 μmol/gDW) in stems and roots. Thus, A. cruentus accumulated sufficient C in roots and stem to allow branching and shoot re-growth after defoliation, but it only possessed sufficient C reserves to maintain <19% seed yield in the absence of new vegetative tissue. Seed size was larger during the warm season but it was not affected by foliar damage. Seed chemical composition was altered by defoliation at flowering. We conclude that A. cruentus defoliation tolerance depends on both, the re-allocation of starch from stem and roots, and the activation of dormant meristems before flowering to generate new photosynthetic capacity to sustain seed filling. PMID:25863889

  8. Consequences of Repeated Defoliation on Belowground Bud Banks of Carex brevicuspis (Cyperaceae) in the Dongting Lake Wetlands, China.

    PubMed

    Chen, Xin-Sheng; Deng, Zheng-Miao; Xie, Yong-Hong; Li, Feng; Hou, Zhi-Yong; Wu, Chao

    2016-01-01

    Despite the predominant role of bud banks in the regeneration of clonal macrophyte populations, few studies have examined the way in which clonal macrophytes adjust the demographic features of bud banks to regulate population dynamics in response to defoliation in wetlands. We investigated the density and composition of bud banks under repeated defoliation in the wetland sedge Carex brevicuspis C. B. Clarke in the Dongting Lake wetlands, China. The density and biomass of rhizome buds and shoots did not decrease significantly in response to repeated defoliation over two consecutive years. The composition of bud banks, which consisted of long and short rhizome buds, also did not change significantly in response to repeated defoliation. Nevertheless, the ramet height and the shoot, root, and rhizome mass of C. brevicuspis declined significantly under repeated defoliation. Our findings suggest that bud banks are a conservative reproductive strategy that enables C. brevicuspis to tolerate a certain amount of defoliation. The maintenance of large bud banks after repeated defoliation may enable C. brevicuspis populations to regenerate and persist in disturbed habitats. However, bud bank density of C. brevicuspis might decline in the long term because the amount of carbon stored in rhizome buds and plants is reduced by frequent defoliation. PMID:27524993

  9. Multiple-level defoliation assessment with hyperspectral data: integration of continuum-removed absorptions and red edges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral data were collected from 40 canopies of saltcedar (Tamarix ramosissima), 10 healthy canopies and 30 canopies defoliated by an introduced biological control agent, the saltcedar leaf beetle (Diorhabda elongata). These data were assessed to detect categories of defoliation in response to...

  10. Consequences of Repeated Defoliation on Belowground Bud Banks of Carex brevicuspis (Cyperaceae) in the Dongting Lake Wetlands, China

    PubMed Central

    Chen, Xin-Sheng; Deng, Zheng-Miao; Xie, Yong-Hong; Li, Feng; Hou, Zhi-Yong; Wu, Chao

    2016-01-01

    Despite the predominant role of bud banks in the regeneration of clonal macrophyte populations, few studies have examined the way in which clonal macrophytes adjust the demographic features of bud banks to regulate population dynamics in response to defoliation in wetlands. We investigated the density and composition of bud banks under repeated defoliation in the wetland sedge Carex brevicuspis C. B. Clarke in the Dongting Lake wetlands, China. The density and biomass of rhizome buds and shoots did not decrease significantly in response to repeated defoliation over two consecutive years. The composition of bud banks, which consisted of long and short rhizome buds, also did not change significantly in response to repeated defoliation. Nevertheless, the ramet height and the shoot, root, and rhizome mass of C. brevicuspis declined significantly under repeated defoliation. Our findings suggest that bud banks are a conservative reproductive strategy that enables C. brevicuspis to tolerate a certain amount of defoliation. The maintenance of large bud banks after repeated defoliation may enable C. brevicuspis populations to regenerate and persist in disturbed habitats. However, bud bank density of C. brevicuspis might decline in the long term because the amount of carbon stored in rhizome buds and plants is reduced by frequent defoliation. PMID:27524993

  11. Effect of defoliation prior to a frost on postharvest respiration rate, extractable sucrose, and invert sugar concentration of sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effect of defoliation prior to a frost on postharvest storage properties of sugarbeet (Beta vulgaris L.). Roots of plants with canopies intact until harvest were compared to roots of plants that had been defoliated prior to a frost on multiple harvest dates following a da...

  12. Tamarisk (Tamarix spp.) water fluxes before, during and after episodic defoliation by the saltcedar leaf beetle

    USGS Publications Warehouse

    Hultine, K.R.; Nagler, P.L.; Dennison, P.E.; Bush, S.E.; Ehleringer, J.R.

    2009-01-01

    Tamarisk (Tamarix) species are among the most successful and economically costly plant invaders in the western United States, in part due to its potential to remove large amounts of water from shallow aquifers. Accordingly, local, state and federal agencies have released a new biological control - the saltcedar leaf beetle (Diorhabda elongata) along many watersheds in the western United States to reduce the spread of tamarisk. The beetle defoliates tamarisk for much of the growing season resulting in potentially large seasonal declines in productivity, fitness, and water loss from tamarisk stands. We measured sap flux density (Js) using heat dissipation sensors to investigate water use patterns of tamarisk before, during and after a single, six week beetle-induced defoliation event in southeastern, Utah, USA. Granier-style probes were installed on 20 dominant trees from May through September 2008, a period that covers almost the entire growing season. As the beetle emerged from dormancy in mid-June, daytime and nighttime Js measurably increased for approximately two weeks before declining to less than 20% of predicted values (predicted by modeling Js with atmospheric vapor pressure deficit in May and June before defoliation). Tamarisk trees in mid-August produced new leaves and Js returned to pre-defoliation levels. Total Js, summed over the duration of the study was 13% lower than predicted values. These data suggest that defoliation results in only small changes in seasonal water loss from tamarisk stands. Current research is focusing on long-term ecohydrological impacts of tamarisk defoliation over multiple growing seasons.

  13. Mapping Historic Gypsy Moth Defoliation with MODIS Satellite Data: Implications for Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spurce, Joseph P.; Hargrove, William; Ryan, Robert E.; Smooth, James C.; Prados, Don; McKellip, Rodney; Sader, Steven A.; Gasser, Jerry; May, George

    2008-01-01

    This viewgraph presentation reviews a project, the goal of which is to study the potential of MODIS data for monitoring historic gypsy moth defoliation. A NASA/USDA Forest Service (USFS) partnership was formed to perform the study. NASA is helping USFS to implement satellite data products into its emerging Forest Threat Early Warning System. The latter system is being developed by the USFS Eastern and Western Forest Threat Assessment Centers. The USFS Forest Threat Centers want to use MODIS time series data for regional monitoring of forest damage (e.g., defoliation) preferably in near real time. The study's methodology is described, and the results of the study are shown.

  14. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?

    PubMed

    Wiley, Erin; Huepenbecker, Sarah; Casper, Brenda B; Helliker, Brent R

    2013-11-01

    There is no consensus about how stresses such as low water availability and temperature limit tree growth. Sink limitation to growth and survival is often inferred if a given stress does not cause non-structural carbohydrate (NSC) concentrations or levels to decline along with growth. However, trees may actively maintain or increase NSC levels under moderate carbon stress, making the pattern of reduced growth and increased NSCs compatible with carbon limitation. To test this possibility, we used full and half defoliation to impose severe and moderate carbon limitation on 2-year-old Quercus velutina Lam. saplings grown in a common garden. Saplings were harvested at either 3 weeks or 4 months after treatments were applied, representing short- and longer-term effects on woody growth and NSC levels. Both defoliation treatments maintained a lower total leaf area than controls throughout the experiment with no evidence of photosynthetic up-regulation, and resulted in a similar total biomass reduction. While fully defoliated saplings had lower starch levels than controls in the short term, half defoliated saplings maintained control starch levels in both the short and longer term. In the longer term, fully defoliated saplings had the greatest starch concentration increment, allowing them to recover to near-control starch levels. Furthermore, between the two harvest dates, fully and half defoliated saplings allocated a greater proportion of new biomass to starch than did controls. The maintenance of control starch levels in half defoliated saplings indicates that these trees actively store a substantial amount of carbon before growth is carbon saturated. In addition, the allocation shift favouring storage in defoliated saplings is consistent with the hypothesis that, as an adaptation to increasing carbon stress, trees can prioritize carbon reserve formation at the expense of growth. Our results suggest that as carbon limitation increases, reduced growth is not necessarily

  15. Adventitious bud regeneration from leaf expiants of the shrubby ornamental honeysuckle, Lonicera nitida Wils. cv. 'Maigrün': effects of thidiazuron and 2,3,5-triiodobenzoic acid.

    PubMed

    Cambecèdes, J; Duron, M; Decourtye, L

    1991-11-01

    Different combinations of auxins and cytokinins were employed to assess the regeneration capacity from in vitro leaf explants of Lonicera nitida Wils. cv 'Maïgrün'. A high frequency of rhizogenesis was noticed, with 2.3 μM thidiazuron plus 2.9 μM indole-3-acetic acid as the only hormonal combination to support caulogenic responses. Increasing thidiazuron concentration and/or suppressing auxin did not improve caulogenesis. Combining thidiazuron with 2,3,5-triiodobenzoic acid produced a dramatic increase in the percentage of caulogenic explants. A maximum of 74% of adventitious bud forming explants was obtained with 2.3 μM thidiazuron plus 20 μM 2,3,5-triiodobenzoic acid. Buds were often in a rosette form and were vitreous, so that shoot elongation was difficult to obtain. The effect of the duration of the 2,3,5-triiodobenzoic acid treatment on shoot elongation was investigated. PMID:24221854

  16. Natural hybridization between Gossypium mustelinum and exotic allotetraploid cotton species.

    PubMed

    de Menezes, I P P; da Silva, J O; Malafaia, G; Silveira, R D D; Barroso, P A V

    2015-01-01

    Cotton has been collected in Brazil for decades for its conservation, evaluation, and the use of its genetic resources. Gossypium mustelinum is an allotetraploid cotton species that only occurs in Brazil, and little is known about its genetic potential for improvement. However, the species is threatened by habitat fragmentation and interspecific hybridization with exotic species of cotton. In this study, we investigated the rate of natural hybridization in two populations of G. mustelinum in Bahia, Brazil, with G. hirsutum and G. barbadense using a set of microsatellite markers. PMID:26535735

  17. Interaction of Insect Defoliation, Wildfires and Climate Change on Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Hom, J.; van Tuyl, S.; Scheller, R.; Pan, Y.; Clark, K.; Cole, J.; Foster, J.; Patterson, M.; Gallagher, M.

    2009-05-01

    We assess and predict the interactive effects of gypsy moth defoliation, fire management, and climate change on carbon uptake, forest productivity, species composition, and tree mortality in the New Jersey Pine Barrens. This effort will combine carbon flux measurements, a forest landscape disturbance model, and field monitoring data. We will determine how interactions among these disturbances affect current management and potential carbon management goals. The LANDIS-II forest landscape simulation model in this study uses three model extensions or modules: the Dynamic Fire System (DFS) extension, the Biomass Succession extension, and an insect defoliation extension. Parameterization of the DFS and the Biomass Succession extension uses new and existing data sources for the study area. This includes flux tower data from three upland forest types, for annual net ecosystem exchange of carbon taken before and after defoliation as well as during prescribed burns. An intensified grid of FIA-type plots around each tower (up to 24 plots per tower) provides additional biometric information. The study conducted a field mortality survey and canopy foliar analysis to understand the process of forest decline with insect defoliation. This project provides a predictive framework for working through landscape to regional management scenarios in areas with multiple, interacting management priorities that can be applied across the US, especially in areas where both insect and fire disturbances occur.

  18. The Use of Internal Nitrogen Stores in the Rhizomatous Grass Calamagrostis epigejos During Regrowth After Defoliation

    PubMed Central

    KAVANOVÁ, MONIKA; GLOSER, VÍT

    2004-01-01

    • Background and Aims The regrowth dynamics after defoliation of the invasive grass Calamagrostis epigejos were studied. As nitrogen (N) reserves have been shown to play an important role during plant regrowth, the identity, location and relative importance for regrowth of N stores were determined in this rhizomatous grass. • Methods Plant growth, nitrate uptake and root respiration were followed during recovery from defoliation. Water soluble carbohydrates, nitrate, free amino acids and soluble proteins were analysed in the remaining organs. • Key Results Nitrate uptake and root respiration were severely reduced during the first days of regrowth. Roots were the main net source of mobilized N. The quantitatively dominant N storage compounds were free amino acids. Free amino acids and soluble proteins in the roots decreased by 55 and 50 %, respectively, and a substantial (∼38 %) decrease in stubble protein was also observed. Although the relative abundance of several soluble proteins in roots decreased during the initial recovery from defoliation, no evidence was found for vegetative storage protein (VSP). Furthermore, rhizomes did not act as a N storage compartment. • Conclusions Production of new leaf area was entirely reliant, during the first week after defoliation, on N stores present in the plant. Mobilized N originated mainly from free amino acids and soluble proteins located in roots, and less so from proteins in stubble. Presence of VSP in the roots was not confirmed. The data suggest that rhizomes played an important role in N transport but not in N storage. PMID:15598700

  19. Remote sensing for assessing cotton defoliation, regrowth control and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton defoliation and post-harvest destruction are important cultural practices for cotton production. Cotton root rot is a serious and destructive disease that affects cotton yield and lint quality. This paper presents exemplary applications of remote sensing technology for evaluating cotton def...

  20. Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels

    NASA Astrophysics Data System (ADS)

    Adelabu, Samuel; Mutanga, Onisimo; Adam, Elhadi

    2014-09-01

    The prospect of regular assessments of insect defoliation using remote sensing technologies has increased in recent years through advances in the understanding of the spectral reflectance properties of vegetation. The aim of the present study was to evaluate the ability of the red edge channel of Rapideye imagery to discriminate different levels of insect defoliation in an African savanna by comparing the results of obtained from two classifiers. Random Forest and Support vector machine classification algorithms were applied using different sets of spectral analysis involving the red edge band. Results show that the integration of information from red edge increases classification accuracy of insect defoliation levels in all analysis performed in the study. For instance, when all the 5 bands of Rapideye imagery were used for classification, the overall accuracies increases about 19% and 21% for SVM and RF, respectively, as opposed to when the red edge channel was excluded. We also found out that the normalized difference red-edge index yielded a better accuracy result than normalized difference vegetation index. We conclude that the red-edge channel of relatively affordable and readily available high-resolution multispectral satellite data such as Rapideye has the potential to considerably improve insect defoliation classification especially in sub-Saharan Africa where data availability is limited.

  1. EFFECT OF DEFOLIATION AND ROOT-FEEDING ON MAMEY SAPOTE YIELD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mamey sapote, Pouteria sapota (Sapotaceae), is a valuable fruit crop that grows well in Puerto Rico. Unfortunately it is a preferred host of Phyllophaga vandinei (Coleoptera: Scarabaeidae). The adults of this beetle can defoliate trees and the larvae feed on the roots, in some cases resulting in the...

  2. Defoliation Management of Bahiagrass Germplasm Affects Dry Matter Yeild and Herbage Nutritive Value

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bahiagrass (Paspalum notatum Flügge) cultivars are daylength-sensitive and have minimal cool-season production. A new genotype is less daylength sensitive and more cold tolerant, but its dry matter (DM) yield and nutritive value responses to defoliation treatments are unknown. A 3-yr field experimen...

  3. Responses of African Grasses in the Genus Sporobolus to Defoliation and Sodium Stress: Tradeoffs, Cross-Tolerance, or Independent Responses?

    PubMed Central

    Griffith, Daniel M.; Anderson, T. Michael

    2013-01-01

    In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses possess traits which: (i) confer tolerance to both Na and defoliation (cross-tolerance); (ii) display a tradeoff; or (iii) act independently in their tolerances. Our expectation was that related grasses would exhibit cross-tolerance when simultaneously subjected to Na and defoliation. Instead, we found that physiological tolerances and growth responses to Na and defoliation did not correlate but instead acted independently: species characterized by intense grazing in the field showed no growth or photosynthetic compensation for combined Na and defoliation. Additionally, in all but the highest Na dosage, mortality was higher when species were exposed to both Na and defoliation together. Across species, mortality rates were greater in short-statured species which occur on sodic soils in heavily grazed areas. Mortality among species was positively correlated with specific leaf area, specific root length, and relative growth rate, suggesting that rapidly growing species which invest in low cost tissues have higher rates of mortality when exposed to multiple stressors. We speculate that the prevalence of these species in areas of high Na and disturbance is explained by alternative strategies, such as high fecundity, a wide range of germination conditions, or further dispersal, to compensate for the lack of additional tolerance mechanisms. PMID:27137400

  4. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae)

    PubMed Central

    Narbona, Eduardo; Dirzo, Rodolfo

    2010-01-01

    Background and Aims Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant's pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest. Methods Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined. Key Results Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation. Conclusions The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant's pollination success in the face of leaf herbivory stress. PMID:20519239

  5. Detection of tamarisk defoliation by the northern tamarisk beetle based on multitemporal Landsat 5 thematic mapper imagery

    USGS Publications Warehouse

    Meng, Ran; Dennison, Philip E.; Jamison, Levi R.; van Riper, Charles, III; Nager, Pamela; Hultine, Kevin R.; Bean, Dan W.; Dudley, Tom

    2012-01-01

    The spread of tamarisk (Tamarix spp., also known as saltcedar) is a significant ecological disturbance in western North America and has long been targeted for control, leading to the importation of the northern tamarisk beetle (Diorhabda carinulata) as a biological control agent. Following its initial release along the Colorado River near Moab, Utah in 2004, the beetle has successfully established and defoliated tamarisk across much of the upper Colorado River Basin. However, the spatial distribution and seasonal timing of defoliation are complex and difficult to quantify over large areas. To address this challenge, we tested and compared two remote sensing approaches to mapping tamarisk defoliation: Disturbance Index (DI) and a decision tree method called Random Forest (RF). Based on multitemporal Landsat 5 TM imagery for 2006-2010, changes in DI and defoliation probability from RF were calculated to detect tamarisk defoliation along the banks of Green, Colorado, Dolores and San Juan rivers within the Colorado Plateau area. Defoliation mapping accuracy was assessed based on field surveys partitioned into 10 km sections of river and on regions of interest created for continuous riparian vegetation. The DI method detected 3711 ha of defoliated area in 2007, 7350 ha in 2008, 10,457 ha in 2009 and 5898 ha in 2010. The RF method detected much smaller areas of defoliation but proved to have higher accuracy, as demonstrated by accuracy assessment and sensitivity analysis, with 784 ha in 2007, 960 ha in 2008, 934 ha in 2009, and 1008 ha in 2010. Results indicate that remote sensing approaches are likely to be useful for studying spatiotemporal patterns of tamarisk defoliation as the tamarisk leaf beetle spreads throughout the western United States.

  6. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl).

    PubMed

    Mithila, J; Hall, J C; Victor, J M R; Saxena, P K

    2003-01-01

    Regeneration via shoot organogenesis and somatic embryogenesis was observed from thidiazuron (TDZ)-treated leaf and petiole explants of greenhouse- and in vitro-grown African violet plants. The response of cultures to other growth regulators over a range of 0.5 microM to 10 microM was 50% less than that observed with TDZ. A comparative study among several cultivars of African violet indicated that "Benjamin" and "William" had the highest regeneration potential. In "Benjamin", higher frequencies of shoot organogenesis (twofold) and somatic embryogenesis (a 50% increase) were observed from in vitro- and greenhouse-grown plants, respectively. At concentrations lower than 2.5 microM, TDZ induced shoot organogenesis, whereas at higher doses (5-10 microM) somatic embryos were formed. These findings provide the first report of simultaneous shoot organogenesis and somatic embryogenesis of African violet explants in response to TDZ. PMID:12789442

  7. Gossypium accessions resistant to Rotylenchulus reniformis vary in sensitivity to the herbicide fluometuron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reniform nematode (Rotylenchulus reniformis) resistance is being transferred to Upland cotton (Gossypium hirsutum) from its distant relatives. Anecdotal observations of fluometuron damage to LONREN lines with resistance from G. longicalyx raised concerns about introducing herbicide sensitivity from ...

  8. Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.

    PubMed

    Anjum, Sumaira; Abbasi, Bilal Haider

    2016-01-01

    Green synthesis of silver nanoparticles (AgNPs) by using plants is an emerging class of nanobiotechnology. It revolutionizes all domains of medical sciences by synthesizing chemical-free AgNPs for various biomedical applications. In this report, AgNPs were successfully synthesized by using whole plant extract (WPE) and thidiazuron-induced callus extract (CE) of Linum usitatissimum. The phytochemical analysis revealed that the total phenolic and flavonoid contents were higher in CE than that in WPE. Ultraviolet-visible spectroscopy of synthesized AgNPs showed a characteristic surface plasmon band in the range of 410-426 nm. Bioreduction of CE-mediated AgNPs was completed in a shorter time than that of WPE-mediated AgNPs. Scanning electron microscopy showed that both types of synthesized AgNPs were spherical in shape, but CE-mediated AgNPs were smaller in size (19-24 nm) and more scattered in distribution than that of WPE-mediated AgNPs (49-54 nm). X-ray diffraction analysis confirmed crystalline nature (face-centered cubic) of both types of AgNPs. Fourier-transform infrared spectroscopy revealed that the polyphenols and flavonoids were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further confirmed the successful synthesis of AgNPs. Moreover, the synthesized AgNPs were found to be stable over months with no change in the surface plasmon bands. More importantly, CE-mediated AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens than WPE-mediated AgNPs. The present work highlighted the potent role of thidiazuron in in vitro-derived cultures for enhanced biosynthesis of chemical-free AgNPs, which can be used as nanomedicines in many biomedical applications. PMID:26955271

  9. Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.

    PubMed Central

    Anjum, Sumaira; Abbasi, Bilal Haider

    2016-01-01

    Green synthesis of silver nanoparticles (AgNPs) by using plants is an emerging class of nanobiotechnology. It revolutionizes all domains of medical sciences by synthesizing chemical-free AgNPs for various biomedical applications. In this report, AgNPs were successfully synthesized by using whole plant extract (WPE) and thidiazuron-induced callus extract (CE) of Linum usitatissimum. The phytochemical analysis revealed that the total phenolic and flavonoid contents were higher in CE than that in WPE. Ultraviolet-visible spectroscopy of synthesized AgNPs showed a characteristic surface plasmon band in the range of 410–426 nm. Bioreduction of CE-mediated AgNPs was completed in a shorter time than that of WPE-mediated AgNPs. Scanning electron microscopy showed that both types of synthesized AgNPs were spherical in shape, but CE-mediated AgNPs were smaller in size (19–24 nm) and more scattered in distribution than that of WPE-mediated AgNPs (49–54 nm). X-ray diffraction analysis confirmed crystalline nature (face-centered cubic) of both types of AgNPs. Fourier-transform infrared spectroscopy revealed that the polyphenols and flavonoids were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further confirmed the successful synthesis of AgNPs. Moreover, the synthesized AgNPs were found to be stable over months with no change in the surface plasmon bands. More importantly, CE-mediated AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens than WPE-mediated AgNPs. The present work highlighted the potent role of thidiazuron in in vitro-derived cultures for enhanced biosynthesis of chemical-free AgNPs, which can be used as nanomedicines in many biomedical applications. PMID:26955271

  10. Feast and famine: previous defoliation limiting survival of pine processionary caterpillar Thaumetopoea pityocampa in Scots pine Pinus sylvestris

    NASA Astrophysics Data System (ADS)

    Hódar, José A.; Zamora, Regino; Castro, Jorge; Baraza, Elena

    2004-12-01

    This study analyses the consequences of previous defoliation on the survival of the larvae of the pine processionary moth Thaumetopoea pityocampa (Denis and Schiffermüller) feeding on relict Scots pine Pinus sylvestris (L.) ssp. nevadensis Christ in the Sierra Nevada mountains (SE Spain). Egg batches of the pine processionary moth were placed on four groups of Scots pines that underwent different periods of herbivory. The larval survival was related to the nitrogen content, fibre, phenolics and terpenes in the needles. Larval survival was higher in undefoliated pines, lower in pines defoliated two consecutive years, and intermediate in pines defoliated only one year, suggesting a direct relationship between previous defoliation and larval survival. In contrast, none of the characteristics of the needles showed a clear relationship with larval survival. The resulting reduction in larval number also affects the capacity of the larvae to develop during winter, because it hampered nest warming. Thus, previous defoliation limits, although it does not impede, the possibility of repeated defoliation on Scots pine.

  11. Gibberellin stimulates regrowth after defoliation of sheepgrass (Leymus chinensis) by regulating expression of fructan-related genes.

    PubMed

    Cai, Yueyue; Shao, Linhui; Li, Xiuqing; Liu, Gongshe; Chen, Shuangyan

    2016-09-01

    Gibberellins (GAs) affect forage growth and development; however, it is largely unknown how GAs regulate the metabolism of fructan (an important polysaccharide reserve in many cereals) and the regrowth of forage plants after defoliation. To explore the mechanism of the responses of defoliated sheepgrass [Leymus chinensis (Trin.) Tzvel] to GA, we sprayed defoliated sheepgrass with GA3 and/or paclobutrazol (PAC; an inhibitor of GA biosynthesis) and analyzed the growth characteristics, carbohydrate contents, and transcript levels of genes related to GA metabolism, GA signal transduction, and fructan metabolism. The results showed that spraying exogenous GA3 onto defoliated sheepgrass promoted leaf and internode elongation, while spraying with PAC inhibited leaf and internode elongation, compared with the control. Spraying GA3 onto defoliated sheepgrass also altered the fructan content by extending the period of fructan utilization. At the transcriptional level, exogenous GA3 increased the transcript levels of genes related to GA metabolism in the sheath. Taken together, our results suggest that exogenous GA3 stimulates the regrowth of defoliated sheepgrass regrowth by regulating GA and fructan-related genes, and by promoting endogenous GA synthesis, fructan metabolism, and signaling. PMID:27216422

  12. Exudation of alcohol and aldehyde sugars from roots of defoliated Lolium perenne L. grown under sterile conditions.

    PubMed

    Clayton, Stephen J; Read, Derek B; Murray, Philip J; Gregory, Peter J

    2008-11-01

    Root exudates were collected over a 27 day period from defoliated and non-defoliated Lolium perenne L. plants grown under sterile conditions in microlysimeters. Eleven individual sugars, including both aldehyde and alcohol sugars, were identified and quantified with a gas chromatograph-mass spectrometer (GC-MS). There was no change in the number of sugars present between 7 and 27 days, but the exudation of alcohol sugars decreased rapidly at about day 12. Xylose and glucose were present in the largest amounts. Defoliation initially increased the total amount of sugars in the exudates, but continuous defoliation reduced total sugar exudation by 16% and induced changes in the exudation patterns of individual sugars. Defoliation enhanced exudation of erythritol, threitol, and xylitol, reduced exudation of glucose and arabitol, but had little effect on the amounts of other sugars exuded. The more complex 6 C, 5 OH aldehyde sugars, especially glucose, showed changes earlier and to a greater extent (17 days), than the 5 C, 4 OH (xylose and ribose) and 6 C 4 OH (fucose) aldehyde groups. These findings confirm the general finding that repeated defoliation reduces the quantity of total sugars exuded, but the pattern of release of individual sugars is complex and variable. PMID:18815840

  13. Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: Role of insect defoliation

    NASA Astrophysics Data System (ADS)

    Eshleman, Keith N.; Morgan, Raymond P.; Webb, James R.; Deviney, Frank A.; Galloway, James N.

    1998-08-01

    Fluxes of dissolved nitrogen (N) as nitrate from forested watersheds in the mid-Appalachian region have important water quality ramifications for small acid-sensitive streams and for downstream receiving waters such as the Chesapeake Bay. Previous studies of N leakage have suggested that annual dissolved N fluxes from small watersheds can vary by several orders of magnitude and may be increasing as second-growth forests gradually become N saturated from the accrual of atmospheric N loadings. In this study, we examined the temporal (intra-annual and interannual) variability in dissolved nitrate fluxes from five small (area < 15 km2) forested watersheds in the mid-Appalachian region from 1988 to 1995. At all sites, nitrate concentrations were observed to increase dramatically during storm flow events, with nitric acid contributing significantly to depressions in pH and acid-neutralizing capacity; annual nitrate fluxes were dominated by high-discharge periods. Interannually, the fluxes at each site varied by 1-2 orders of magnitude, but the patterns of N leakage displayed considerable synchrony with outbreaks of gypsy moth caterpillar defoliation that began in the late 1980s and early 1990s in this region. N leakage from forested watersheds apparently lagged the initial defoliation by several months to perhaps a year or more. Defoliation outbreaks by the gypsy moth caterpillar (or other herbivorous pests) thus provide an alternative explanation of N leakage from forest ecosystems. Poorly documented insect defoliations, rather than premature N saturation of intact forest ecosystems, need to be considered as a possible explanation of N leakage from forested watersheds in the mid-Appalachian region and elsewhere.

  14. [Effects of Litchi chinensis Defoliation on Growth and Photosynthesis of Microcystis aeruginosa].

    PubMed

    Wang, Xiao-xiong; Jiang, Chen-chun; Li, Jin-weiz; Wang, Xiao-ju

    2015-05-01

    The growth and physiology of bloom-forming cyanobacterium Microcystis aeruginosa were determined by the pulse amplitude modulated fluorimetry when exposed to different concentrations of Litchi chinensis defoliation extract for 15 d. The growth, maximal efficiency (Fv/Fm), effective quantum yield (YII) of PSII photochemistry, photosynthesis efficiency (α) , maximum electron transport rate (rETRmax) and light saturation coefficient (Ik) were used to evaluate the growth and photosynthesis in M. aeruginosa. It was found that the extract of L. chinensis defoliation stored for 5 days significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. After a long time of exposure, stimulation effect disappeared gradually. Fv/Fm fluorescence parameters, YII and alpha changed from negative correlation to positive correlation or kept positive correlation with the extract of L. chinensis defoliation, which might affect the photosynthesis of M. aeruginosa at early time or help the cyanobacterium to survive in the stress environment by improving the efficiency of light energy. Ik, rETRmax and the content of algal chlorophyll-a changed from negative to significant negative correlation with the extract. Three-dimensional fluorescence spectra showed that the peak intensities of tryptophan and tyrosine fluorescence were only about one third in 2.0 g · L(-1) extract treatment when compared to the 1.2 g · L(-1) extract treatment on day 15. At the same time, the peak intensity of humic acid fluorescence was weaker than that on day 1. Further study showed that the EC50 of algal growth was smaller than that of the traditional crops straw, which might achieve good effect to control the growth of algae with lower concentration of L. chinensis defoliation extract due to its strong allelopathy. PMID:26314111

  15. Effect of defoliant (butiphose) on morpho-physiological properties and enzyme systems of natural membranes.

    PubMed

    Mirakhmedov, A K; Ochilov, K R; Sagatova, G A; Khan, M Z; Khole, V

    1989-03-01

    Butiphose (Tributyltritiophosphate, (C4H9S)3PO) a commonly used defoliant in cotton growing regions of USSR, caused extensive alterations in morphological features of erythrocyte and nuclear membranes and affected the permeability properties of rat liver mitochondrial membrane. It disrupted Ca2+ transport system and other energy dependent processes in mitochondria. A reduction in the activity of cytochrome-c-oxidase and NAD.H-oxidase was also observed. PMID:2606532

  16. Cotton Fiber Cell Walls of Gossypium hirsutum and Gossypium barbadense Have Differences Related to Loosely-Bound Xyloglucan

    PubMed Central

    Avci, Utku; Pattathil, Sivakumar; Singh, Bir; Brown, Virginia L.; Hahn, Michael G.; Haigler, Candace H.

    2013-01-01

    Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species. PMID:23457548

  17. Activation of sucrose transport in defoliated Lolium perenne L.: an example of apoplastic phloem loading plasticity.

    PubMed

    Berthier, Alexandre; Desclos, Marie; Amiard, Véronique; Morvan-Bertrand, Annette; Demmig-Adams, Barbara; Adams, William W; Turgeon, Robert; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie

    2009-07-01

    The pathway of carbon phloem loading was examined in leaf tissues of the forage grass Lolium perenne. The effect of defoliation (leaf blade removal) on sucrose transport capacity was assessed in leaf sheaths as the major carbon source for regrowth. The pathway of carbon transport was assessed via a combination of electron microscopy, plasmolysis experiments and plasma membrane vesicles (PMVs) purified by aqueous two-phase partitioning from the microsomal fraction. Results support an apoplastic phloem loading mechanism. Imposition of an artificial proton-motive force to PMVs from leaf sheaths energized an active, transient and saturable uptake of sucrose (Suc). The affinity of Suc carriers for Suc was 580 microM in leaf sheaths of undefoliated plants. Defoliation induced a decrease of K(m) followed by an increase of V(max). A transporter was isolated from stubble (including leaf sheaths) cDNA libraries and functionally expressed in yeast. The level of L.perenne SUcrose Transporter 1 (LpSUT1) expression increased in leaf sheaths in response to defoliation. Taken together, the results indicate that Suc transport capacity increased in leaf sheaths of L. perenne in response to leaf blade removal. This increase might imply de novo synthesis of Suc transporters, including LpSUT1, and may represent one of the mechanisms contributing to rapid refoliation. PMID:19520670

  18. Potential of VIIRS Data for Regional Monitoring of Gypsy Moth Defoliation: Implications for Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J. P.; Ryan, R. E.; Smoot, J. C.; Prados, D. L.; McKellip, R. D.; Sader, S. A.; Gasser, G.; May, G.; Hargrove, W.

    2007-12-01

    A NASA RPC (Rapid Prototyping Capability) experiment was conducted to assess the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) data for monitoring non-native gypsy moth (Lymantria dispar) defoliation of forests. This experiment compares defoliation detection products computed from simulated VIIRS and from MODIS (Moderate Resolution Imaging Spectroradiometer) time series products as potential inputs to a forest threat EWS (Early Warning System) being developed for the USFS (USDA Forest Service). Gypsy moth causes extensive defoliation of broadleaved forests in the United States and is specifically identified in the Healthy Forest Restoration Act (HFRA) of 2003. The HFRA mandates development of a national forest threat EWS. This system is being built by the USFS, and NASA is aiding integration of needed satellite data products into this system, including MODIS products. This RPC experiment enabled the MODIS follow-on, VIIRS, to be evaluated as a data source for EWS forest monitoring products. The experiment included 1) assessment of MODIS-simulated VIIRS NDVI products, and 2) evaluation of gypsy moth defoliation mapping products from MODIS-simulated VIIRS and from MODIS NDVI time series data. This experiment employed MODIS data collected over the approx. 15 million acre mid-Appalachian Highlands during the annual peak defoliation time frame (June 10 through July 27) during 2000-2006. NASA Stennis Application Research Toolbox software was used to produce MODIS-simulated VIIRS data and NASA Stennis Time Series Product Tool software was employed to process MODIS and MODIS-simulated VIIRS time series data scaled to planetary reflectance. MODIS-simulated VIIRS data was assessed through comparison to Hyperion-simulated VIIRS data using data collected during gypsy moth defoliation. Hyperion- simulated MODIS data showed a high correlation with actual MODIS data. MODIS-simulated VIIRS data for the same date showed moderately high correlation with Hyperion

  19. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  20. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.).

    PubMed

    Aguadé, D; Poyatos, R; Gómez, M; Oliva, J; Martínez-Vilalta, J

    2015-03-01

    Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. PMID

  1. Consequences of enriched atmospheric CO{sub 2} and defoliation for foliar chemistry and gypsy moth performance

    SciTech Connect

    Lindroth, R.L.; Kinney, K.K.

    1998-10-01

    Elevated concentrations of atmospheric CO{sub 2} are likely to interact with other factors affecting plant physiology to alter plant chemical profiles and plant-herbivore interactions. The authors evaluated the independent and interactive effects of enriched CO{sub 2} and artificial defoliation on foliar chemistry of quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum), and the consequences of such changes for short-term performance of the gypsy moth (Lymantria dispar). They grew aspen and maple seedlings in ambient and enriched CO{sub 2} environments at the University of wisconsin Biotron. Seven weeks after budbreak, trees in half of the rooms were subjected to 50% defoliation. Afterwards, foliage was collected for chemical analyses, and feeding trials were conducted with fourth-stadium gypsy moths. Enriched CO{sub 2} altered foliar levels of water, nitrogen, carbohydrates, and phenolics, and responses generally differed between the two tree species. Defoliation induced chemical changes only in aspen. They found no significant interactions between CO{sub 2} and defoliation for levels of carbon-based defenses (phenolic glycosides and tannins). CO{sub 2} treatment altered the performance of larvae fed aspen, but not maple, whereas defoliation had little effect on performance on insects. In general, results from this experimental system do not support the hypothesis that induction of carbon-based chemical defenses, and attendant effects on insects, will be stronger in a CO{sub 2}-enriched world.

  2. Effect of alpha-naphthalene acetic acid and thidiazuron on seedling of economic crops grown in endosulfan sulfate-spiked sand.

    PubMed

    Somtrakoon, Khanitta; Kruatrachue, Maleeya

    2014-11-01

    The effect of two plant growth regulators, alpha-naphthalene acetic acid (NAA) and thidiazuron (TDZ) on the growth of sweet corn (Zea mays), cowpea (Vigna sinensis) and cucumber (Cucurmis sativus) seedling planted in 1-100 mg kg(-1) of endosulfan sulfate spiked sand was investigated. Endosulfan sulfate had no apparent toxicity as seedlings of these crop plants grew normally in endosulfan sulfate spiked sand. Concentration of endosulfan sulfate in sand affected the response of seedling induction by NAA or TDZ. Induction of crop seeds by NAA or TDZ did not promote growth of sweet corn, cowpea and cucumber to an appreciable extent. Both plant regulators at concentration of 10 mg l(-1) seemed to exert adverse effect on crop seedling. TDZ decreased shoot length, root length and chlorophyll contents in leaves of sweet corn and cowpea growing in endosulfan sulfate spiked sand. In contrast, NAA was not toxic and promoted growth of sweet corn and cowpea seedling. However, cucumber was affected by NAA and TDZ more than other plants. TDZ significantly decreased biomass and root length of cucumber. Also, NAA significantly decreased cucumber root length and tended to increase cucumber root dried weight when grown in 100 mg kg(-1) of endosulfan sulfate spiked sand. PMID:25522501

  3. Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos.

    PubMed

    Tang, Wei; Newton, Ronald J

    2005-08-01

    We reported establishment of an efficient plant regeneration procedure through direct adventitious shoot (DAS) formation from cotyledons and hypocotyls of eastern white pine (Pinus strobus L.) mature embryos in this investigation. Multiple DASs were initiated from cotyledons of embryos on PS medium containing N6-benzyladenine (BA), thidiazuron (TDZ), or kinetin (KIN). Among different concentrations of casein enzymatic hydrosylate (CH) and glutamine used in this study, 500 mg l(-1) CH or 600 mg l(-1) glutamine induced the highest frequency of DAS formation. Rooting of regenerated shoots was obtained on PS medium supplemented with 0.01-0.1 microM indole-3-acetic acid (IAA) with the highest frequency on medium containing 0.01 muM IAA. No DASs were obtained on medium without TDZ. Measurement of peroxidase (POD) and catalase (CAT) activity during direct shoot induction and differentiation demonstrated that the lowest POD activity appeared in the 5-6th week of culture and lowest CAT activity occurred in the 7-8th week of culture on medium with TDZ. No such a change in POD and CAT activities was observed on medium without TDZ. These results demonstrated that POD and CAT activities were involved in DAS formation induced by TDZ in eastern white pine. PMID:16129608

  4. Elevated CO2, not defoliation, enhances N cycling and increases short-term soil N immobilization regardless of N addition in a semiarid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated CO2 and defoliation effects on nitrogen (N) cycling in rangeland soils remain poorly understood. Here we tested whether effects of elevated CO2 and defoliation (clipping to 2.5 cm height) on N cycling depended on soil N availability (addition of 1 vs. 11 g N/m2) in intact mesocosms extracte...

  5. Long-term shifts in the cyclicity of outbreaks of a forest-defoliating insect.

    PubMed

    Allstadt, Andrew J; Haynes, Kyle J; Liebhold, Andrew M; Johnson, Derek M

    2013-05-01

    Recent collapses of population cycles in several species highlight the mutable nature of population behavior as well as the potential role of human-induced environmental change in causing population dynamics to shift. We investigate changes in the cyclicity of gypsy moth (Lymantria dispar) outbreaks by applying wavelet analysis to an 86-year time series of forest defoliation in the northeastern United States. Gypsy moth population dynamics shifted on at least four occasions during the study period (1924-2009); strongly cyclical outbreaks were observed between ca. 1943-1965 and ca. 1978-1996, with noncyclical dynamics in the intervening years. During intervals of cyclical dynamics, harmonic oscillations at cycle lengths of 4-5 and 8-10 years co-occurred. Cross-correlation analyses indicated that the intensity of suppression efforts (area treated by insecticide application) did not significantly reduce the total area of defoliation across the region in subsequent years, and no relationship was found between insecticide use and the cyclicity of outbreaks. A gypsy moth population model incorporating empirically based trophic interactions produced shifting population dynamics similar to that observed in the defoliation data. Gypsy moth cycles were the result of a high-density limit cycle driven by a specialist pathogen. Though a generalist predator did not produce an alternative stable equilibrium, cyclical fluctuations in predator density did generate extended intervals of noncyclical behavior in the gypsy moth population. These results suggest that changes in gypsy moth population behavior are driven by trophic interactions, rather than by changes in climatic conditions frequently implicated in other systems. PMID:23073635

  6. Monitoring gypsy moth defoliation by applying change detection techniques to Landsat imagery

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Stauffer, M. L.

    1978-01-01

    The overall objective of a research effort at NASA's Goddard Space Flight Center is to develop and evaluate digital image processing techniques that will facilitate the assessment of the intensity and spatial distribution of forest insect damage in Northeastern U.S. forests using remotely sensed data from Landsats 1, 2 and C. Automated change detection techniques are presently being investigated as a method of isolating the areas of change in the forest canopy resulting from pest outbreaks. In order to follow the change detection approach, Landsat scene correction and overlay capabilities are utilized to provide multispectral/multitemporal image files of 'defoliation' and 'nondefoliation' forest stand conditions.

  7. Population dynamics of the Teak defoliator (Hyblaea puera Cramer) in Nilambur teak plantations using Randomly Amplified Gene Encoding Primers (RAGEP)

    PubMed Central

    Chandrasekhar, N; Sajeev, TV; Sudheendrakumar, VV; Banerjee, Moinak

    2005-01-01

    Background The Teak defoliator (Hyblaea puera) is a pest moth of teak woodlands in India and other tropical regions (e.g. Thailand) and is of major economic significance. This pest is of major concern as it is involved in complete defoliation of trees during the early part of the growing season. Defoliation does not kill teak trees, but it results in huge amount of timber loss. Teak defoliator outbreaks are a regular annual feature in most teak plantations in India and it is extremely difficult to predict the exact time and place of occurrence of these outbreaks. Evidence from the study of the population dynamics of H. puera indicated habitual, short range movements of emerging moth populations, suggesting that these populations have spread to larger areas, generation after generation, affecting the entire teak plantations. We were therefore interested in investigating the temporal and spatial relationship among various population groups in Nilambur, Kerala (India) and address the cause of outbreak at the landscape level. Results The populations were classified into 'endemic', 'epicenter' and 'epidemic' populations based on the time of occurrence and size of infestation. We devised a novel method of screening nuclear and mitochondrial DNA polymorphisms using Randomly Amplified Gene Encoding Primers (RAGEP). We have used this method extensively to evaluate the species specificity, reproducibility and to discriminate among the three different characterised populations of teak defoliator. Conclusions This method also allowed us to comment with some certainty that the endemic teak defoliator, H. puera do not play a major role in contributing to large-scale infestations. With respect to the hypotheses put forward regarding the origin of outbreaks of the moth, this study confirms the role of migration in outbreak causation, while negating the belief that endemic populations aggregate to cause an epidemic. PMID:15689236

  8. Optimising the spatial resolution of WorldView-2 pan-sharpened imagery for predicting levels of Gonipterus scutellatus defoliation in KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Lottering, Romano; Mutanga, Onisimo

    2016-02-01

    Gonipterus scutellatus Gyllenhal is a leaf feeding weevil that is a major defoliator of the genus Eucalyptus. Understanding the relationship between levels of weevil induced vegetation defoliation and the optimal spatial resolution of satellite images is essential for effective management of plantation resources. The objective of this study was to identify appropriate spatial resolutions for predicting levels of weevil induced defoliation. We resampled the Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and Enhanced Vegetation Index (EVI) images computed from a WorldView-2 pan-sharpened image, which is characterised with a 0.5 m spatial resolution and 8 spectral bands. Within each plantation compartment 30 × 30 m plots were established, representing different levels of defoliation. From the centre of each plot, the spatial resolution of the original image was progressively resampled from 1.5 to 8.5 m, with 1 m increments. The minimal variance for each level of defoliation was then established and used as an indicator for quantitatively selecting the optimal spatial resolution. Results indicate that an appropriate spatial resolution was established at 1.25, 1.25, 1.75 and 2.25 m for low, medium, high and severe levels of defoliation, respectively. In addition, an Artificial Neural Network was run to determine the relationship between the appropriate spatial resolution and levels of Gonipterus scutellatus induced defoliation. The model yielded an R2 of 0.80, with an RMSE of 1.28 (2.45% of the mean measured defoliation) based on an independent test dataset. We then compared this model to a model developed using the original 0.5 m image spatial resolution. Our results suggest that optimising the spatial resolution of remotely sensed imagery essentially improves the prediction of vegetation defoliation. In essence, this study provides the foundation for multi-scale defoliation mapping using high spatial resolution imagery.

  9. Novosphingobium gossypii sp. nov., isolated from Gossypium hirsutum.

    PubMed

    Kämpfer, Peter; Martin, Karin; McInroy, John A; Glaeser, Stefanie P

    2015-09-01

    A Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain JM-1396(T)) producing a yellow pigment, was isolated from the healthy internal stem tissue of post-harvest cotton (Gossypium hirsutum, cultivar 'DES-119') grown at the Plant Breeding Unit at the E.V. Smith Research Center in Tallassee (Macon county), AL, USA. 16S rRNA gene sequence analysis of strain JM-1396(T) showed high sequence similarity values to the type strains of Novosphingobium mathurense, Novosphingobium panipatense (both 98.6%) and Novosphingobium barchaimii (98.5%); sequence similarities to all other type strains of species of the genus Novosphingobium were below 98.3%. DNA-DNA pairing experiments of the DNA of strain JM-1396(T) and N. mathurense SM117(T), N. panipatense SM16(T) and N. barchaimii DSM 25411(T) showed low relatedness values of 8% (reciprocal 7%), 24% (reciprocal 26%) and 19% (reciprocal 25%), respectively. Ubiquinone Q-10 was detected as the dominant quinone; the fatty acids C18 : 1ω7c (71.0%) and the typical 2-hydroxy fatty acid, C14 : 0 2-OH (11.7%), were detected as typical components. The polar lipid profile contained the diagnostic lipids diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. The polyamine pattern contained the major compound spermidine and only minor amounts of other polyamines. All these data revealed that strain JM-1396(T) represents a novel species of the genus Novosphingobium. For this reason we propose the name Novosphingobium gossypii sp. nov. with the type strain JM-1396(T) ( = LMG 28605(T) = CCM 8569(T) = CIP 110884(T)). PMID:25985829

  10. Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase.

    PubMed Central

    Kunce, C M; Trelease, R N; Turley, R B

    1988-01-01

    As part of our research on peroxisome biogenesis, catalase was purified from cotyledons of dark-grown cotton (Gossypium hirsutum L.) seedlings and monospecific antibodies were raised in rabbits. Purified catalase appeared as three distinct electrophoretic forms in non-denaturing gels and as a single protein band (with a subunit Mr of 57,000) on silver-stained SDS/polyacrylamide gels. Western blots of crude extracts and isolated peroxisomes from cotton revealed one immunoreactive polypeptide with the same Mr (57,000) as the purified enzyme, indicating that catalase did not undergo any detectable change in Mr during purification. Synthesis in vitro, directed by polyadenylated RNA isolated from either maturing seeds or cotyledons of dark-grown cotton seedlings, revealed a predominant immunoreactive translation product with a subunit Mr of 57,000 and an additional minor immunoreactive product with a subunit Mr of 64000. Labelling studies in vivo revealed newly synthesized monomers of both the 64000- and 57,000-Mr proteins present in the cytosol and incorporation of both proteins into the peroxisome without proteolytic processing. Within the peroxisome, the 57,000-Mr catalase was found as an 11S tetramer; whereas the 64,000-Mr protein was found as a relatively long-lived 20S aggregate (native Mr approx. 600,000-800,000). The results strongly indicate that the 64,000-Mr protein (catalase?) is not a precursor to the 57,000-Mr catalase and that cotton catalase is translated on cytosolic ribosomes without a cleavable transit or signal sequence. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:3134010

  11. Potential of VIIRS Data for Regional Monitoring of Gypsy Moth Defoliation: Implications for Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ryan, Robert E.; Smoot, James C.; Prados, Donald; McKellip, Rodney; Sader. Steven A.; Gasser, Jerry; May, George; Hargrove, William

    2007-01-01

    A NASA RPC (Rapid Prototyping Capability) experiment was conducted to assess the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) data for monitoring non-native gypsy moth (Lymantria dispar) defoliation of forests. This experiment compares defoliation detection products computed from simulated VIIRS and from MODIS (Moderate Resolution Imaging Spectroradiometer) time series products as potential inputs to a forest threat EWS (Early Warning System) being developed for the USFS (USDA Forest Service). Gypsy moth causes extensive defoliation of broadleaved forests in the United States and is specifically identified in the Healthy Forest Restoration Act (HFRA) of 2003. The HFRA mandates development of a national forest threat EWS. This system is being built by the USFS and NASA is aiding integration of needed satellite data products into this system, including MODIS products. This RPC experiment enabled the MODIS follow-on, VIIRS, to be evaluated as a data source for EWS forest monitoring products. The experiment included 1) assessment of MODIS-simulated VIIRS NDVI products, and 2) evaluation of gypsy moth defoliation mapping products from MODIS-simulated VIIRS and from MODIS NDVI time series data. This experiment employed MODIS data collected over the approximately 15 million acre mid-Appalachian Highlands during the annual peak defoliation time frame (approximately June 10 through July 27) during 2000-2006. NASA Stennis Application Research Toolbox software was used to produce MODIS-simulated VIIRS data and NASA Stennis Time Series Product Tool software was employed to process MODIS and MODIS-simulated VIIRS time series data scaled to planetary reflectance. MODIS-simulated VIIRS data was assessed through comparison to Hyperion-simulated VIIRS data using data collected during gypsy moth defoliation. Hyperion-simulated MODIS data showed a high correlation with actual MODIS data (NDVI R2 of 0.877 and RMSE of 0.023). MODIS-simulated VIIRS data for the same

  12. LANDSAT Digital Data Base Preparation for the Pennsylvania Defoliation Application Pilot Test

    NASA Technical Reports Server (NTRS)

    Mcleod, R. G.; Zobrist, A. L.

    1982-01-01

    A LANDSAT digital mosaic data base for the State of Pennsylvania was prepared for use in the development of an automated system to annually estimate the extent and severity of Gypsy Moth defoliation of hardward forests. The techniques for detecting the defoliation and development of a geographic information system (GIS) to assess damage is being developed jointly by NASA/Goddard Space Flight Center and Pennsylvania State University using the JPL prepared mosaic base. The JPL processing involved the use of ground control points from the Master Data Processor for planimetric control, resampling of the LANDSAT data to 57 x 57 meter pixels, realignment to north, and reprojection to the Universal Transverse Mercator (UTM) projection in UTM zones 17 and 18. The completed mosaic for each UTM zone was subdivided into 1 degree of latitude by 2 degrees of longitude quadrangles for easy data handling. Consideration is given to the issues of mapping standards, sensor and spacecraft platform characteristics, and their implication to geographic information systems operation. Methods for obtaining measures of accuracy for LANDSAT mosaics are reviewed.

  13. CHARACTERIZATION OF 656 NEW SSR MARKERS DEVELOPED FROM GOSSYPIUM HIRSUTUM SEQUENCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to contribute valuable marker resources to the cotton research community we are making available the sequences 656 SSR markers captured from Gossypium hirsutum (GH) cultivar TAMCot Sphinx. A total of 4,512 clones, from two independent (GA)n, (AGA)n, and (CA)n microsatellite-enriched li...

  14. Selection of Gossypium hirsutum genotypes for interspecific introgression from G. arboreum using ovule culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ovule culture is one of the techniques currently used to introgress desirable traits from Gossypium arboreum germplasm into G. hirsutum cultivars. Twenty-six G. hirsutum breeding lines were used as female parents in crosses with five G. arboreum accessions to determine if the G. hirsutum parent inf...

  15. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid ...

  16. Genetic diversity of the two commercial tetraploid cotton species in the Gossypium Diversity Reference Set

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diversity reference set has been constructed for the Gossypium accessions in the U.S. National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers were used to study the alleli...

  17. Measuring diversity in Gossypium hirsutum using the CottonSNP63K Array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A CottonSNP63K array and accompanying cluster file has been developed and includes 45,104 intra-specific SNPs and 17,954 inter-specific SNPs for automated genotyping of cotton (Gossypium spp.) samples. Development of the cluster file included genotyping of 1,156 samples, a subset of which were iden...

  18. Registration of Four Upland Cotton (Gossypium hirsutum L.) Genetic Stock Mutants with Tolerance to Imazamox

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few mutants conferring herbicide tolerance in cotton (Gossypium hirsutum L.) have been developed. Imazamox is a broad spectrum imidazolinone herbicide that could give growers a new tool to control many troublesome annual broadleaf and grass weeds. The objective was to identify imazamox tolerance in ...

  19. CURRENT STATUS OF THE COTTON DB, A GENOME DATABASE FOR GOSSYPIUM SPP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cotton genome database, CottonDB, is a publicly available resource for cotton genome research ranging from the collections of Gossypium germplasm, molecular markers, to the functions of cotton genes. Curation of CottonDB is currently maintained in our Research Unit (http://algodon.tamu.edu/cotto...

  20. CURRENT STATUS OF THE COTTONDB, A GENOME DATABASE FOR GOSSYPIUM SPP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cotton genome database, CottonDB, is a publicly available resource for cotton genome research ranging from the collections of Gossypium germplasm, molecular markers, to the functions of cotton genes. Curation of CottonDB is currently maintained in our Research Unit(http://algodon.tamu.edu/cotton...

  1. Analyses of Fusarium wilt race 3 resistance in upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Uzbekistan, the most northern cotton country, as well as in many others worldwide, Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represents a serious threat to cotton (Gossypium spp.) production. At least eight genotypes of FOV, called races, have been described. Thes...

  2. Development of Single Nucleotide Polymorphism Markers via Sequence-based Genotyping in Cotton (Gossypium spp)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput single nucleotide polymorphism (SNP) genotyping has become the dominant approach to genomic analysis and genetic manipulation in many crop plants. In cotton (Gossypium spp), however, only a very limited number of loci and a dearth of information have been generated from SNP genotypi...

  3. Percent Artropisomers of Gossypol in Seeds from Accessions of Gossypium barbadense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gossypol occurs naturally in the seed, leaves and roots of the cotton plant (Gossypium) as two atropisomers due to restricted rotation around the binaphthyl bond. The atropisomers differ in their biological activity. (-)-(R)-Gossypol exhibits significantly greater anti-cancer activity than the (+)...

  4. New DNA Markers for the Use in Cotton (Gossypium spp.) Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SSR markers, also known as DNA microsatellite markers, are proving to be very useful for saturation of the large and complex upland cotton (Gossypium hirsutum genetic linkage map. Monsanto Company has invested heavily in development of cotton SSRs and has implemented molecular breeding technologies ...

  5. Evaluating protective terpenoid aldehyde compounds in cotton (Gossypium hirsutum L.) roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) has epidermal glands containing terpenoid aldehyde (TA) compounds that help protect the cotton plant from pests and diseases. One terpenoid aldehyde called gossypol, is found predominantly in seed and roots and has two forms, plus (+) and minus (-) present in varying a...

  6. Registration of Five Exotic Germplasm Lines of Cotton Derived From Multiple Crosses Among Gossypium Tetraploid Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SP (Species Polycross) germplasm was developed from multiple crosses among Gossypium tetraploid species. SP156, SP177, SP179, SP205, and SP225 were released by Agriculture Research Service, United States Department of Agriculture for their highly desirable combinations of yield, yield components, a...

  7. Comparative Next-Generation Sequencing for Transcriptome Definition and SNP Development in Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current databases for cotton include 269,657 ESTs for Gossypium hirsutum representing 98,420 unigenes with a large proportion representing singletons. However, few lines are sequenced, each at a limited depth. Consequently, mining ESTs for single nucleotide polymorphisms (SNPs) results in a high rat...

  8. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and genomic analyses of Upland cotton (Gossypium hirsutum) are difficult because it has a complex allotetraploid (AADD; 2n = 4x = 52) genome. Here we sequenced, assembled and analyzed the world's most important cultivated cotton genome with 246.2 gigabase (Gb) clean data obtained using whol...

  9. QTL Analysis of Resistance to Reniform Nematode in Gossypium barbadense L. Accession GB713

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reniform nematode (RN), Rotylenchulus reniformis Linford & Oliveria, is a major pathogen of Upland cotton (Gossypium hirsutum L.). The identification of molecular markers closely linked to RN resistance gene(s) in the G. barbadense L. accession GB713 would be very useful in cotton breeding prog...

  10. Molecular confirmation of Gossypium hirsutum chromosome substitution lines and interspecific F1 hypoaneuploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tetraploid Gossypium species G. barbadense, G. tomentosum, and G. mustelinum (2n=52) are useful sources of important genes for pest and disease resistance, and for improved agronomic and fiber traits in Upland cotton (G. hirsutum). Cytological analyses of hybrids and comparative linkage mapping...

  11. Molecular evolution of the clustered MMIC-3 multigene family of Gossypium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniqueness, content, localization, and defense-related features of the root-knot nematode resistance-associated MIC-3 supergene cluster in the genus Gossypium are all of interest for molecular evolutionary studies of duplicate supergenes in allopolyploids. Here we report molecular evolutionary rates...

  12. Molecular Evolution of Clustered MIC-3 (Meloidogyne Induced Cotton -3) Multigene Family of Gossypium Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniqueness, content, localization, and defense-related features of the root-knot nematode resistance-associated MIC-3 multigene cluster in the genus Gossypium are all of interest for molecular evolutionary studies of duplicate genes in allopolyploids. Here we report molecular evolutionary rates of t...

  13. WIDE-CROSS WHOLE-GENOME RADIATION HYBIRD MAPPING OF THE COTTON (GOSSYPIUM BARBADENSE L.) GENOME

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-genome radiation hybrid mapping has been applied extensively to human and certain animal species but little to plants. We recently demonstrated an alternative mapping approach in cotton (Gossypium hirsutum L.) based on segmentation by 5-krad gamma-irradiation and derivation of wild-cross whol...

  14. Breeding implications of boll distribution responses to water stress deficits in Upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify the impact of different water stress deficits on the boll distribution of elite Upland cotton (Gossypium hirsutum L.) cultivars in the Texas High Plains, cultivars which represent the diverse gene-pools of the private sector were subjected to three different water deficit regimes. This s...

  15. Development of a core set of SSR markers for the characterization of Gossypium germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular markers such as simple sequence repeats (SSR) are a useful tool for characterizing genetic diversity of Gossypium germplasm collections. Genetic profiles by DNA fingerprinting of cotton accessions can only be compared among different collections if a common set of molecular markers are us...

  16. Registration of mutant population of MD 15 M4 Gossypium hirsutum L. with enhanced fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutant population of MD 15 M4 (Reg. No. ,PI ) is a unique germplasm population of upland cotton (Gossypium hirsutum L.). This germplasm was developed by USDA-ARS, Stoneville, MS in 2008 and released in June, 2012. About 5000 seeds of a Mississippi Delta line, MD 15 were chemically mutagenized with 3...

  17. Molecular characterization of the Gossypium diversity reference set of the US National Cotton Germplasm Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the genetic diversity of cotton (Gossypium spp.) is essential to develop strategies for collection, conservation, and utilization of these germplasm resources. The US National Cotton Germplasm Collection is one of the largest world collections and includes not only accessions wi...

  18. Modifying gossypol in cotton (Gossypium hirsutum L.): a cost effective method for small seed samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) has pigment glands throughout the vegetative and reproductive parts of the plant and these glands contain a polyphenolic compound called gossypol. This compound has been reported to have anti-tumor activity. However, it also acts as an anti-nutritional factor that can ...

  19. New HPLC methods to quantitate terpenoid aldehydes in foliage of cotton (Gossypium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cotton plant (Gossypium) produces protective terpenoid aldehydes in lysigenous pigment glands. These terpenoids include hemigossypolone, hemigossypolone-6-methyl ether, gossypol, gossypol-6-methyl ether, gossypol-6,6'-dimethyl ether, heliocides H1, H2, H3 and H4, and heliocides B1, B2, B3 and B4...

  20. Water use, yield, and fiber quality differences of diverse cotton (gossypium spp.) genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining levels of available water for irrigation use in the Ogallala, TX, San Joaquin Valley, CA, and other aquifers has led to the need to identify and develop cotton (Gossypium spp.) cultivars that can more efficiently use available soil water. Elite upland (G. hirsutum L.) commercial cultivars,...

  1. Introgression of Resistance to Nematode Rotylenchulus reniformis into Upland Cotton Gossypium hirsutum from G. longicalyx

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absence of sources of resistance to the reniform nematode, Rotylenchulus reniformis, is a major impediment to the production of upland cotton (Gossypium hirsutum) in the United States. In this study, two triple hybrids of G. hirsutum, G. longiclalyx, and either G. armourianum or G. herbaceum were u...

  2. Performance and combining ability in cotton (Gossypium hirsutum L.) populations with diverse parents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving fiber quality properties of cotton (Gossypium hirsutum L.) is important for increasing the efficiency of manufacturing textiles, including enhancing yarn quality and spinning performance. This study was conducted to determine if we could identify useful cotton cultivars to use as parents ...

  3. Severed stems of Amaranthus palmeri are capable of regrowth and seed production in Gossypium hirsuium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted to evaluate the capacity of Amaranthus palmeri to grow and reproduce following incomplete physical control in Gossypium hirsutum fields. Amaranthus palmeri plants that emerged simultaneously with a G. hirsutum crop were selected for use. Treatments included severing the ...

  4. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is the world’s most important natural textile fibre and a significant oilseed crop. Upland cotton (Gossypium hirsutum L.), an allotetraploid derived from A- and D-genome progenitors, accounts for >95% of world production. Here, we sequenced and assembled 88% of the 2.5-gigabase genome of the ...

  5. The diploid D genome cottons (Gossypium spp.) of the new world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diploid D genome cottons (Gossypium spp.) of the New World are part of a great reservoir of important genes for improving fiber quality, pest and disease resistance, and drought and salt tolerance in the modern cultivated Upland/Acala (G. hirsutum) and Pima [also known as Sea Island or Egyptian ...

  6. Plant-herbivore-carnivore interactions in cotton, Gossypium hirsutum: Linking belowground and aboveground

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most studies on plant-herbivore interactions focus on either root or shoot herbivory in isolation, but above- and belowground herbivores may interact on a shared host plant. Cotton (Gossypium spp.) produces a variety of terpenoid aldehydes that exhibit toxicity to a wide range of herbivores and pat...

  7. Assessing Genetic Diversity in Gossypium Arboreum L. Cultivars Using Genomic and EST-Derived Microsatellites.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cultivated diploid, Gossypium arboreum L., (A genome) is an invaluable genetic resource for improving modern tetraploid cotton (G. hirsutum L. and G. barbadense L.) cultivars. The objective of this research is to select a set of informative and robust microsatellites for studying genetic relatio...

  8. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium species)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function ...

  9. Plant-herbivore-carnivore interactions in cotton, Gossypium hirsutum linking below ground and above ground

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most studies on plant-herbivore interactions have focused on either root or shoot herbivory in isolation, but recent studies show how above- and below ground herbivores may interact via a shared host plant. Cotton (Gossypium spp.) produces a variety of terpenoid aldehydes that exhibit toxicity to a...

  10. The World Gene Pool of Gossypium barbadense L. and Its Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the improved and unimproved gene pools of Gossypium barbadense. Section one discusses the taxonomic and geographic structure of species diversity. Section two describes the origin and development of modern improved germplasm pools, beginning with Sea Island cottons deve...

  11. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emergent phenotypes are common in polyploids relative to their diploid progenitors, a phenomenon exemplified by spinnable cotton fibers. Following 15-18 fold paleopolyploidy, allopolyploidy 1-2 million years ago reunited divergent Gossypium genomes, imparting new combinatorial complexity that might ...

  12. Influence of defoliation date and gin-drying temperature on oven moisture and KFT water within cotton cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water measured in lint cotton by Karl Fischer Titration was compared to moisture content measured by standard oven-drying in two cultivars. The cultivars had been defoliated at different times and ginned at two possible temperatures. Ginned lint was further processed to produce mechanically cleaned,...

  13. Effects of Defoliating Insect Resistance QTLs and a crylAc Transgene in Soybean Near-Isogenic Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additional sources of resistance would be desirable to manage defoliating insect resistance to crystal proteins coded by transgenes from Bacillus thuringiensis (Bt) and to sustain the deployment of Bt crops. The objective of this study was to evaluate the effects and interactions of three soybean (G...

  14. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks.

    PubMed

    Song, Yuan Yuan; Simard, Suzanne W; Carroll, Allan; Mohn, William W; Zeng, Ren Sen

    2015-01-01

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF 'donor' and ponderosa pine 'receiver' seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance. PMID:25683155

  15. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks

    PubMed Central

    Song, Yuan Yuan; Simard, Suzanne W.; Carroll, Allan; Mohn, William W.; Zeng, Ren Sen

    2015-01-01

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF ‘donor’ and ponderosa pine ‘receiver’ seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance. PMID:25683155

  16. Grain amaranths are defoliation tolerant crop species capable of utilizing stem and root carbohydrate reserves to sustain vegetative and reproductive growth after leaf loss.

    PubMed

    Vargas-Ortiz, Erandi; Espitia-Rangel, Eduardo; Tiessen, Axel; Délano-Frier, John Paul

    2013-01-01

    Tolerance to defoliation can be defined as the degree to which productivity is affected by photosynthetic area reduction. This trait was studied in grain amaranth (Amaranthus cruentus and A. hypochondriacus), which are considered to be a highly defoliation-tolerant species. The physiological and biochemical responses to increasing levels of mechanical leaf removal up to total defoliation were quantified. Tolerance appeared to be dependent on various factors: ( i) amount of lost tissue; (ii) mechanics of leaf tissue removal; (iii) environment, and (iv) species tested. Thus, grain amaranth was found to be a highly tolerant species under green-house conditions when leaf tissue loss was performed by gradual perforation. However, tolerance was compromised under similar conditions when defoliation was done by gradual cutting of the leaf. Also tolerance in completely defoliated plants tended to decrease under field conditions, where differences between A. cruentus and A. hypochondriacus were observed. All non-structural carbohydrate (NSC) levels were reduced in stems and roots of totally defoliated amaranths one day after treatment. Such depletion probably provided the carbon (C) resources needed to sustain the early recovery process in the absence of photosynthetic capacity. This was corroborated by shading of intact plants, which produced the same rapid and drastic reduction of NSC levels in these tissues. These results emphasize the role of stored NSCs, particularly starch, in buffering the impact of severe defoliation in amaranth. The fall in sucrose synthase and cell wall invertase activity observed in stems and roots soon after defoliation was consistent with their predicted shift from sink to source tissues. It is concluded that mobilization of C stores in stems and roots, is a physiologically important trait underlying tolerance to defoliation in grain amaranth. PMID:23861825

  17. Forest defoliators and climatic change: Potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera: Lymantriidae)

    SciTech Connect

    Williams, D.W.; Liebhold, A.M.

    1995-02-01

    Changes in geographical ranges and spatial extent of outbreaks of pest species are likely consequences of climatic change. We investigated potential changes in spatial distribution of outbreaks of western spruce budworm, Choristoneura occidentalis Freeman, and gypsy moth, Lymantria dispar (L.), in Oregon and Pennsylvania, respectively using maps of historial defoliation, climate, and forest type in a geographic information system. Maps of defoliation frequency at a resolution of 2 x 2 km were assembled from historical aerial survey data. Weather maps for mean monthly temperature maxima and minima and precipitation over 30 yr were developed by interpolation. Relationships between defoliation status and environmental variables were estimated using linear discriminant analysis. Five climatic change scenarios were investigated: an increase of 2{degrees}C, a 2{degrees}C increase with a small increase and a small decrease in precipitation, and projections of two general circulation models (GCMs) after 100 yr at doubled carbon dioxide. With an increase in temperature alone, the projected defoliated area decreased relative to ambient conditions for budworm and increased slightly for gypsy moth. With an increase in temperature and precipitation, defoliated area increased for both species. Conversely, defoliated area decreased for both when temperature increased and precipitation decreased. Results for the GCM scenarios contrasted sharply. For one GCM, defoliation by budworm was projected to cover Oregon completely, whereas no defoliation was projected by gypsy moth in Pennsylvania. For the other, defoliation disappeared completely for budworm and slightly exceeded that under ambient conditions for gypsy moth. The results are discussed in terms of current forest composition and its potential changes. 36 refs., 5 figs., 4 tabs.

  18. Grain Amaranths Are Defoliation Tolerant Crop Species Capable of Utilizing Stem and Root Carbohydrate Reserves to Sustain Vegetative and Reproductive Growth after Leaf Loss

    PubMed Central

    Vargas-Ortiz, Erandi; Espitia-Rangel, Eduardo; Tiessen, Axel; Délano-Frier, John Paul

    2013-01-01

    Tolerance to defoliation can be defined as the degree to which productivity is affected by photosynthetic area reduction. This trait was studied in grain amaranth (Amaranthus cruentus and A. hypochondriacus), which are considered to be a highly defoliation-tolerant species. The physiological and biochemical responses to increasing levels of mechanical leaf removal up to total defoliation were quantified. Tolerance appeared to be dependent on various factors: ( i) amount of lost tissue; (ii) mechanics of leaf tissue removal; (iii) environment, and (iv) species tested. Thus, grain amaranth was found to be a highly tolerant species under green-house conditions when leaf tissue loss was performed by gradual perforation. However, tolerance was compromised under similar conditions when defoliation was done by gradual cutting of the leaf. Also tolerance in completely defoliated plants tended to decrease under field conditions, where differences between A. cruentus and A. hypochondriacus were observed. All non-structural carbohydrate (NSC) levels were reduced in stems and roots of totally defoliated amaranths one day after treatment. Such depletion probably provided the carbon (C) resources needed to sustain the early recovery process in the absence of photosynthetic capacity. This was corroborated by shading of intact plants, which produced the same rapid and drastic reduction of NSC levels in these tissues. These results emphasize the role of stored NSCs, particularly starch, in buffering the impact of severe defoliation in amaranth. The fall in sucrose synthase and cell wall invertase activity observed in stems and roots soon after defoliation was consistent with their predicted shift from sink to source tissues. It is concluded that mobilization of C stores in stems and roots, is a physiologically important trait underlying tolerance to defoliation in grain amaranth. PMID:23861825

  19. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.

    PubMed

    Zhang, Jun; Cai, Lin; Cheng, Jiaqin; Mao, Huizhu; Fan, Xiaoping; Meng, Zhaohong; Chan, Ka Man; Zhang, Huijun; Qi, Jianfei; Ji, Lianghui; Hong, Yan

    2008-04-01

    While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA, 24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB) ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences, 12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences. Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology between target sites and the T-DNA (8/8), deletions to

  20. Nitrate variability in hydrological flow paths for three mid-Appalachian forested watersheds following a large-scale defoliation

    NASA Astrophysics Data System (ADS)

    Riscassi, Ami L.; Scanlon, Todd M.

    2009-06-01

    Nitrate (NO3-) leakage from forested watersheds due to disturbance is a well documented but not well understood process that can contribute to the degradation of receiving waters through eutrophication. Several studies have shown that large-scale defoliation and deforestation events in small forested watersheds in the eastern United States cause immediate and dramatic increases in NO3- flux to steams, with large differences in recovery time. Water quality and discharge data collected from 1992 to 2004 following a large-scale gypsy moth defoliation were used to investigate hydrological controls on long-term NO3- leakage from three forested watersheds in Shenandoah National Park, Virginia. During storm events, a conventional two-component hydrograph separation in conjunction with an inverse solution technique was employed to determine the concentrations of NO3- in groundwater and soil water. Following defoliation, groundwater NO3- concentrations declined exponentially with a distinct seasonal pattern. A rank-order relationship between the rate constants associated with the exponential declines in groundwater NO3- concentrations and groundwater recession constants indicates a hydrological control on long-term watershed recovery for these defoliated systems. Comparisons to deforested systems in Hubbard Brook, New Hampshire, and Coweeta, North Carolina, indicate hydrological controls are similarly present. Biogeochemical differences, however, need to be considered to account for the more attenuated recovery observed in defoliated systems. No long-term trend was found in the model-derived soil water NO3- concentrations, which suggests the presence of some form of rate limitation on the transformation of the nitrogen pool introduced during the disturbance and/or reduced nutrient uptake due to tree mortality.

  1. The Role of Forest Tent Caterpillar Defoliations and Partial Harvest in the Decline and Death of Sugar Maple

    PubMed Central

    Hartmann, Henrik; Messier, Christian

    2008-01-01

    Background and Aims Natural and anthropogenic disturbances can act as stresses on tree vigour. According to Manion's conceptual model of tree disease, the initial vigour of trees decreases as a result of predisposing factors that render these trees more vulnerable to severe inciting stresses, stresses that can then cause final vigour decline and subsequent tree death. This tree disease model was tested in sugar maple (Acer saccharum) by assessing the roles of natural and anthropogenic disturbances in tree decline and death. Methods Radial growth data from 377 sugar maple trees that had undergone both defoliations by insects and partial harvest were used to estimate longitudinal survival probabilities as a proxy for tree vigour. Radial growth rates and survival probabilities were compared among trees subjected to different levels of above- and below-ground disturbances, between periods of defoliation and harvest, and between live and dead trees. Key Results Manion's tree disease model correctly accounts for vigour decline and tree death in sugar maple; tree growth and vigour were negatively affected by a first defoliation, predisposing these trees to death later during the study period due to a second insect outbreak that initiated a final vigour decline. This decline was accelerated by the partial harvest disturbance in 1993. Even the most severe anthropogenic disturbances from partial harvest did not cause, unlike insect defoliation, any growth or vigour declines in live sugar maple. Conclusions Natural disturbances acted as predisposing and inciting stresses in tree sugar maple decline and death. Anthropogenic disturbances from a partial harvest at worst accelerated a decline in trees that were already weakened by predisposing and inciting stresses (i.e. repeated insect defoliations). Favourable climatic conditions just before and after the partial harvest may have alleviated possible negative effects on growth resulting from harvesting. PMID:18660493

  2. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings.

    PubMed

    Eyles, Alieta; Pinkard, Elizabeth A; Davies, Noel W; Corkrey, Ross; Churchill, Keith; O'Grady, Anthony P; Sands, Peter; Mohammed, Caroline

    2013-04-01

    Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source-sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses. PMID:23382548

  3. Employing citizen science to study defoliation impacts on arthropod communities on tamarisk

    NASA Astrophysics Data System (ADS)

    Kruse, Audrey L.

    The invasive tamarisk tree is widespread across the southwestern landscape of the United States and has been dominant in regulated river reaches, outcompeting native vegetation and impacting trophic webs in riparian ecosystems. The changes in riparian habitat and recreation opportunities along southwestern rivers, like the San Juan River in Utah, led to the implementation of a biocontrol program in the form of the tamarisk leaf beetle (Diorhabda spp.). It is unknown what the long term effects on riparian ecosystems are as a result of the beetles' defoliation of tamarisk each summer. This study sought to identify the current arthropod community composition and abundance over one growing season on the San Juan River between Bluff and Mexican Hat, UT and second, to involve the public in this research through a citizen science component. I found that non-native insects, including the tamarisk leaf beetle, dominated the arboreal arthropod communities within the tamarisk and there are relatively few native arthropods residing in tamarisk throughout the summer season. Foliation levels (the quantity of leaves in the canopy of tamarisk) were inconclusive predictors of arthropod abundances but varied by species and by feeding guild. This may indicate that the defoliation of the tamarisk is not necessarily negatively impacting trophic interactions in tamarisk. I incorporated youth participants on educational river rafting trips to assist in data collection of arthropods from tamarisk trees as a way to educate and bring attention to the issue of invasive species in the Southwest. After completing my own citizen science project and after doing a literature review of other, similar citizen science projects, I found that striving for both rigorous scientific data and quality educational programming is challenging for a small scale project that does not target broad spatial, geographic, or temporal data. Citizen science project developers should clearly identify their objectives

  4. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences.

    PubMed

    Zhang, Meiping; Rong, Ying; Lee, Mi-Kyung; Zhang, Yang; Stelly, David M; Zhang, Hong-Bin

    2015-10-01

    Cotton is the world's leading textile fiber crop and is also grown as a bioenergy and food crop. Knowledge of the phylogeny of closely related species and the genome origin and evolution of polyploid species is significant for advanced genomics research and breeding. We have reconstructed the phylogeny of the cotton genus, Gossypium L., and deciphered the genome origin and evolution of its five polyploid species by restriction fragment analysis of repeated sequences. Nuclear DNA of 84 accessions representing 35 species and all eight genomes of the genus were analyzed. The phylogenetic tree of the genus was reconstructed using the parsimony method on 1033 polymorphic repeated sequence restriction fragments. The genome origin of its polyploids was determined by calculating the diploid-polyploid restriction fragment correspondence (RFC). The tree is consistent with the morphological classification, genome designation and geographic distribution of the species at subgenus, section and subsection levels. Gossypium lobatum (D7) was unambiguously shown to have the highest RFC with the D-subgenomes of all five polyploids of the genus, while the common ancestor of Gossypium herbaceum (A1) and Gossypium arboreum (A2) likely contributed to the A-subgenomes of the polyploids. These results provide a comprehensive phylogenetic tree of the cotton genus and new insights into the genome origin and evolution of its polyploid species. The results also further demonstrate a simple, rapid and inexpensive method suitable for phylogenetic analysis of closely related species, especially congeneric species, and the inference of genome origin of polyploids that constitute over 70 % of flowering plants. PMID:25877517

  5. Effects of insecticide treatments on subsequent defoliation by western spruce budworm in Oregon and Washington: 1982-92. Forest Service general technical report

    SciTech Connect

    Sheehan, K.A.

    1996-03-01

    Effects of insecticide treatments conducted in Oregon and Washington from 1982 through 1992 on subsequent defoliation by western spruce budworm (Choristoneura occidentalis Freeman) were evaluated by using aerial sketchmaps and a geographic information system. For each treatment, the extent and severity of defoliation was calculated for the treated areas and a set of four nested rings surrounding the treated area (0-0.5 mile, 0.5.1 mile, 1-2 miles) for up to 8 years: 3 years prior to treatment, the year of treatment, and 4 years following treatment, insecticide treatments applied in 1982 and 1983 coincided with reduced percentages of defoliation by western spruce budworm during the year following treatment. However, the percentage of defoliation usually returned to pretreatment levels by the second year, and defoliation severity in treated and adjacent untreated areas was nearly identical following treatment. For the period from 1985 through 1992, defoliation patterns (including both extent and severity) following treatment were generally similar in treated and adjacent untreated areas.

  6. Ecotypic variation in growth responses to simulated herbivory: trade-off between maximum relative growth rate and tolerance to defoliation in an annual plant

    PubMed Central

    Camargo, Iván D.; Tapia-López, Rosalinda; Núñez-Farfán, Juan

    2015-01-01

    It has been hypothesized that slow-growing plants are more likely to maximize above-ground biomass and fitness when defoliated by herbivores than those with an already high relative growth rate (RGR). Some populations of the annual herb Datura stramonium L. can tolerate foliar damage better than others. The physiological basis of this difference is examined here in a comparative study of two ecotypes that differ in tolerance and maximum growth rate, using a growth analytical approach. One hundred and fifty-four plants of each ecotype grown under controlled conditions were suddenly defoliated (35 % of total leaf area removed) and a similar sample size of plants remained undefoliated (control). Ontogenetic plastic changes in RGR and its growth components [net assimilation rate (NAR), specific leaf area and leaf weight ratio (LWR)] after defoliation were measured to determine whether these plastic changes maximize plant growth and fitness. Different ontogenetic phases of the response were discerned and increased RGR of defoliated plants was detected at the end of the experimental period, but brought about by a different growth component (NAR or LWR) in each ecotype. These changes in RGR are putatively related to increases in fitness in defoliated environments. At the intra-specific scale, data showed a trade-off between the ability to grow under benign environmental conditions and the ability to tolerate resource limitation due to defoliation. PMID:25725085

  7. Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings.

    PubMed

    Cerasoli, S; Scartazza, A; Brugnoli, E; Chaves, M M; Pereira, J S

    2004-01-01

    At the end of the growing season in late July, 20-month-old cork oak (Quercus suber L.) saplings were partially defoliated (63% of leaf area) to evaluate their ability to recover leaf area after defoliation. At 18 and 127 days after defoliation, changes in starch and nitrogen pools were determined in leaves and perennial organs, and variations in photosynthetic carbon uptake were investigated. To determine the role of stored nitrogen in regrowth after defoliation, plant nitrogen was labeled in the previous winter by enriching the nutrient solution with 15N. Plants recovered the lost leaf area in 127 days. Although there was remobilization of starch and nitrogen from leaves and perennial organs, the availability of resources for growth in the following spring was not decreased by defoliation. On the contrary, starch concentration in coarse roots was higher in defoliated saplings than in control saplings, presumably as a result of the higher net CO2 exchange rate in newly developed leaves compared with pre-existing leaves. PMID:14652217

  8. Effect of drought and defoliation on the susceptibility of eucalypts to cankers caused by Endothia gyrosa and Botryosphaeria ribis

    SciTech Connect

    Old, K.M.; Gibbs, R.; Craig, I.; Myers, B.J. ); Yuan, Z.Q. )

    1990-01-01

    Seedlings, saplings and mature eucalypts were susceptible to infection by Endothia gyrosa and Botryosphaeria ribis. Eucalyptus regnans and E. delegatensis were more susceptible than E. grandis and E. saligna. In trees not subjected to stress, cankers were limited in extent and often healed. When trees were defoliated, either manually or by severe insect attack, stem concentrations of both starch and soluble carbohydrates were reduced and canker development in some pathogen/host combinations was increased. Seedlings subjected to water stress were not predisposed to canker formation. The association of E. gyrosa with branch dieback of rural eucalypts suffering from chronic defoliation suggests that canker fungi contribute to the crown dieback syndrome in south-eastern Australia.

  9. Estimation of scots pine defoliation by the common pine sawfly (Diprion pini L.) using multi-temporal radar data

    NASA Astrophysics Data System (ADS)

    Latva-Kayra, Petri T.

    In 1998-2001 Finland suffered the most severe insect outbreak ever recorded, over 500,000 hectares. The outbreak was caused by the common pine sawfly ( Diprion pini L.). The outbreak has continued in the study area, Palokangas, ever since. To find a good method to monitor this type of outbreaks, the purpose of this study was to examine the efficacy of multi-temporal ERS-2 and ENVISAT SAR imagery for estimating Scots pine (Pinus sylvestris L.) defoliation. Three methods were tested: unsupervised k-means clustering, supervised linear discriminant analysis (LDA) and logistic regression. In addition, I assessed if harvested areas could be differentiated from the defoliated forest using the same methods. Two different speckle filters were used to determine the effect of filtering on the SAR imagery and subsequent results. The logistic regression performed best, producing a classification accuracy of 81.6% (kappa 0.62) with two classes (no defoliation, >20% defoliation). LDA accuracy was with two classes at best 77.7% (kappa 0.54) and k-means 72.8 (0.46). In general, the largest speckle filter, 5 x 5 image window, performed best. When additional classes were added the accuracy was usually degraded on a step-by-step basis. The results were good, but because of the restrictions in the study they should be confirmed with independent data, before full conclusions can be made that results are reliable. The restrictions include the small size field data and, thus, the problems with accuracy assessment (no separate testing data) as well as the lack of meteorological data from the imaging dates.

  10. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum.

    PubMed

    Xin, Shan; Tao, Chengcheng; Li, Hongbin

    2016-01-01

    Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a

  11. Predicted effects of gypsy moth defoliation and climate change on forest carbon dynamics in the New Jersey pine barrens.

    PubMed

    Kretchun, Alec M; Scheller, Robert M; Lucash, Melissa S; Clark, Kenneth L; Hom, John; Van Tuyl, Steve

    2014-01-01

    Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years. PMID:25119162

  12. Predicted Effects of Gypsy Moth Defoliation and Climate Change on Forest Carbon Dynamics in the New Jersey Pine Barrens

    PubMed Central

    Kretchun, Alec M.; Scheller, Robert M.; Lucash, Melissa S.; Clark, Kenneth L.; Hom, John; Van Tuyl, Steve

    2014-01-01

    Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years. PMID:25119162

  13. Abundance and Frequency of the Asiatic Oak Weevil (Coleoptera: Curculionidae) and Defoliation on American, Chinese, and Hybrid Chestnut (Castanea)

    PubMed Central

    Case, Ashley E.; Mayfield, Albert E.; Clark, Stacy L.; Schlarbaum, Scott E.; Reynolds, Barbara C.

    2016-01-01

    The Asiatic oak weevil, Cyrtepistomus castaneus Roelofs (Coleoptera: Curculionidae), is a nonnative defoliator of trees in the Fagaceae family in the United States but has not been studied on Castanea species in the southern Appalachian Mountains. Planted trees of Castanea dentata (Marsh.) Borkh. (Fagales: Fagaceae), Castanea mollissima Blume (Fagales: Fagaceae), and four hybrid breeding generations were evaluated in 2012 for insect defoliation and C. castaneus abundance and frequency. Defoliation was visually assessed throughout the growing season at two sites in the southern Appalachian Mountains (western North Carolina and eastern Tennessee). C. castaneus abundance and frequency were monitored on trees using beat sheets and emergence was recorded from ground traps. Asiatic oak weevils were more abundant and more frequently collected on American chestnut (Ca. dentata) and its most closely related BC3F3 hybrid generation than on the Asian species Ca. mollissima. In most months, C. castaneus colonization of hybrid generations was not significantly different than colonization of parental species. Frequency data for C. castaneus suggested that adults were distributed relatively evenly throughout the study sites rather than in dense clusters. Emergence of C. castaneus was significantly higher under a canopy dominated by Quercus species than under non-Quercus species or open sky. C. castaneus emergence began in May and peaked in late June and early July. These results may be useful for resource managers trying to restore blight-resistant chestnut to the Southern Appalachians while minimizing herbivory by insect pests. PMID:27001964

  14. Remote sensing of tamarisk biomass, insect herbivory, and defoliation: Novel methods in the Grand Canyon Region, Arizona

    USGS Publications Warehouse

    Sankey, Temuulen Ts.; Sankey, Joel B.; Horne, Rene; Bedford, Ashton

    2016-01-01

    Tamarisk is an invasive, riparian shrub species in the southwestern USA. The northern tamarisk beetle (Diorhabda carinulata) has been introduced to several states to control tamarisk. We classified tamarisk distribution in the Glen Canyon National Recreation Area, Arizona using a 0.2 m resolution, airborne multispectral data and estimated tamarisk beetle effects (overall accuracy of 86 percent) leading to leaf defoliation in a 49,408 m2 area. We also estimated individual tamarisk tree biomass and their uncertainties using airbonre liday data (100 points/m2). On average, total above ground tamarisk biomass was 8.67 kg/m2 (SD=17.6). The tamarisk beetle defoliation resulted in a mean leaf biomass loss of 0.52 kg/m2 and an equivalent of 25,692 kg across the entire study area. Our defoliated tamarisk map and biomass estimates can help inform restoration treatments to reduce tamarisk. Continued monitoring of tamarisk and tamarisk beetle effects are recommended to understand the currently-unknown eventual equilibrium between the two species and the cascading effects on ecosystem processes.

  15. Remote sensing of spruce budworm defoliation using EO-1 Hyperion hyperspectral data: an example in Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Zhang, Y.

    2016-04-01

    Each year, the spruce budworm (SBW) causes severe, widespread damage to spruces and fir in east coast Canada. Early estimation of the defoliation can provide crucial support to mitigate the socio-economic impact on vulnerable forests. Remote sensing techniques are suitable to investigate the affected regions that usually consist of large and inaccessible forestry areas. Using satellite images, surface reflectance values at two or more wavelengths are combined to generate vegetation indices (VIs), revealing a relative abundance of features of interest. Forest health analysis based on VIs is considered as one of the primary information sources for monitoring vegetation conditions. Especially the spectral resolution of Hyperion hyperspectral satellite imagery used in this study allows for a detailed examination of the red to near-infrared portion of the spectrum to identify areas of stressed vegetation. Several narrow-band vegetation indices are used to indicate the overall amount and quality of photosynthetic material and moisture content in vegetation. By integrating the information from VIs that focus on different aspects of overall health and vigour in forested areas, the study aims at detecting defoliated condition in a forested region in the Province of Quebec, Canada. In June and August of 2014 two Hyperion images were acquired by NASA's EO-1 satellite for this study. Changes in vegetation health and vigour are observed and quantitatively compared using the multi-temporal remote sensing images. The experimental results suggest that the VI- based forest health analysis is effective in estimating SBW defoliation in the study area.

  16. Abundance and Frequency of the Asiatic Oak Weevil (Coleoptera: Curculionidae) and Defoliation on American, Chinese, and Hybrid Chestnut (Castanea).

    PubMed

    Case, Ashley E; Mayfield, Albert E; Clark, Stacy L; Schlarbaum, Scott E; Reynolds, Barbara C

    2016-01-01

    The Asiatic oak weevil, Cyrtepistomus castaneus Roelofs (Coleoptera: Curculionidae), is a nonnative defoliator of trees in the Fagaceae family in the United States but has not been studied on Castanea species in the southern Appalachian Mountains. Planted trees of Castanea dentata (Marsh.) Borkh. (Fagales: Fagaceae), Castanea mollissima Blume (Fagales: Fagaceae), and four hybrid breeding generations were evaluated in 2012 for insect defoliation and C. castaneus abundance and frequency. Defoliation was visually assessed throughout the growing season at two sites in the southern Appalachian Mountains (western North Carolina and eastern Tennessee). C. castaneus abundance and frequency were monitored on trees using beat sheets and emergence was recorded from ground traps. Asiatic oak weevils were more abundant and more frequently collected on American chestnut (Ca. dentata) and its most closely related BC3F3 hybrid generation than on the Asian species Ca. mollissima. In most months, C. castaneus colonization of hybrid generations was not significantly different than colonization of parental species. Frequency data for C. castaneus suggested that adults were distributed relatively evenly throughout the study sites rather than in dense clusters. Emergence of C. castaneus was significantly higher under a canopy dominated by Quercus species than under non-Quercus species or open sky. C. castaneus emergence began in May and peaked in late June and early July. These results may be useful for resource managers trying to restore blight-resistant chestnut to the Southern Appalachians while minimizing herbivory by insect pests. PMID:27001964

  17. Survey of 42,000 Gossypium hirsutum cv. Maxxa BAC-End Sequences and Frequency, Type, and Annotation of BAC-derived SSRs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quest for more molecular markers is a major initiative in cotton, which lags behind crops such as soybean, maize, and rice in this type of research. In an effort to increase the number of microsatellite markers in Gossypium, BAC-end sequences from a publicly available Gossypium hirsutum cv. Maxx...

  18. Clonal Expansion and Migration of a Highly Virulent, Defoliating Lineage of Verticillium dahliae.

    PubMed

    Milgroom, Michael G; Del Mar Jiménez-Gasco, María; Olivares-García, Concepción; Jiménez-Díaz, Rafael M

    2016-09-01

    We used a population genomics approach to test the hypothesis of clonal expansion of a highly fit genotype in populations of Verticillium dahliae. This fungal pathogen has a broad host range and can be dispersed in contaminated seed or other plant material. It has a highly clonal population structure, with several lineages having nearly worldwide distributions in agricultural crops. Isolates in lineage 1A are highly virulent and cause defoliation in cotton, okra, and olive (denoted 1A/D), whereas those in other lineages cause wilting but not defoliation (ND). We tested whether the highly virulent lineage 1A/D could have spread from the southwestern United States to the Mediterranean basin, as predicted from historical records. We found 187 single-nucleotide polymorphisms (SNPs), determined by genotyping by sequencing, among 91 isolates of lineage 1A/D and 5 isolates in the closely related lineage 1B/ND. Neighbor-joining and maximum-likelihood analyses on the 187 SNPs showed a clear divergence between 1A/D and 1B/ND haplotypes. Data for only 77 SNPs were obtained for all 96 isolates (no missing data); lineages 1A/D and 1B/ND differed by 27 of these 77 SNPs, confirming a clear divergence between the two lineages. No evidence of recombination was detected within or between these two lineages. Phylogenetic and genealogical analyses resulted in five distinct subclades of 1A/D isolates that correlated closely with geographic origins in the Mediterranean basin, consistent with the hypothesis that the D pathotype was introduced at least five times in independent founder events into this region from a relatively diverse source population. The inferred ancestral haplotype was found in two isolates sampled before 1983 from the southwestern United States, which is consistent with historical records that 1A/D originated in North America. The five subclades coalesce with the ancestral haplotype at the same time, consistent with a hypothesis of rapid population expansion in the

  19. Nitrate Variability in Hydrological Flowpaths for a Mid-Appalachian Forested Catchment Following a Large-Scale Defoliation

    NASA Astrophysics Data System (ADS)

    Riscassi, A. L.; Scanlon, T. M.

    2007-12-01

    Nitrogen (N) leakage from forested watersheds due to disturbance is a well-documented, but not well understood process that contributes to the degradation of receiving waters through eutrophication. Several studies have shown that large scale defoliation events in small forested watersheds in the Eastern U.S. cause immediate and dramatic increases in N flux to streams. Recovery times can differ dramatically depending upon location. Reasons for these differences are not well understood, however, because N transport and transformation processes are difficult to track over these long recovery timescales. This research focuses on a large-scale gypsy moth defoliation event that impacted Shenandoah National Park (SNP) in the late 1980s to early 1990s. Water chemistry and discharge have been monitored at a number of catchments within SNP over the timeframe since the defoliation. Recovery of these systems to pre-defoliation N levels has been observed to be unusually slow, lasting over a decade. Availability of high-frequency (i.e. hourly) stream chemistry and discharge data during storm events throughout the period of recovery allows us to investigate short- and long-term mechanisms for N "leaks" from forested watersheds. Through geochemical hydrograph separation techniques, we can determine how nitrate concentrations vary between event, soil, and groundwater during and in the years following a disturbance. Analyses focus on Paine Run, a 12.4 km2 catchment where over 50 storms have been characterized since the 1990-1992 defoliation. Standard geochemical hydrograph separation is performed using conservative tracers to determine the relative flow contributions from the three flow components for each measurement time step. Computed discharge components, along with measured steam nitrate concentrations (NO3 -) at each time-step, were used to solve for the relative concentration of NO3 - in each of the hydrologic zones for storms by solving the over-determined set of mixing

  20. Tamarisk Water Flux Patterns Before, During and After Episodic Defoliation by the Salt Cedar Leaf Beetle on the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Hultine, K. R.; Nagler, P. L.; Dennison, P. E.

    2008-12-01

    Tamarisk (Tamarix) species are among the most successful plant invaders in the western United States, and has had significant impacts on watershed hydrology and water resources. Accordingly, local, state and federal agencies have undertaken considerable efforts to eradicate tamarisk and restore riparian habitats to pre-invasion status. A biological control - the saltcedar leaf beetle (Diorhabda elongata) - was released in the summer of 2004 at several locations in eastern Utah, USA to control the spread and impact of tamarisk within the Colorado River watershed. Beginning in April of 2008, sap flux techniques were used to monitor changes in transpiration fluxes in response to canopy defoliation by the beetle. Specifically we installed modified (10 mm length) heat dissipation probes into the main stem of 20 mature tamarisk trees within a single stand on the Colorado Plateau. In July, the saltcedar leaf beetle reduced the total leaf area to near 0% of pre-beetle invasion status. Consequently, sap flux declined by up to 80% compared to pre-beetle invasion fluxes. By mid-August, refoliation of the canopy occurred, and sap flux rates returned to pre- defoliation status. Sap flux rates prior to defoliation were modeled against atmospheric vapor pressure deficit in order to predict the amount of water salvage from defoliation. Sap flux from June 1 through September 1 was on average 36% lower than predicted values. Combined with scaling techniques, the heat dissipation approach shows a high potential for monitoring changes in watershed hydrology in response to tamarisk defoliation by the saltcedar leaf beetle. Nevertheless, tamarisk sap flux studies with heat dissipation probes presents several challenges, including, narrow sapwood depth, low flux rates in response to defoliation, and large thermal gradients that are inevitable in warm climates (particularly after defoliation removes canopy shading). We will present results from ongoing research to address these potential

  1. Framework for video-based monitoring of forest insect defoliation and discoloration

    NASA Astrophysics Data System (ADS)

    Zhao, Feifei; Wang, Yafei; Qiao, Yanyou

    2015-01-01

    Pest damage is a general problem that disturbs the growth of forests, influencing carbon sequestration and causing economic losses. In the past decades, many studies have been conducted to monitor and detect forest insect damage using satellite remote sensing technology. Satellite remote sensing has a satellite or aerial vision allowing the monitoring of extensive forest areas, but it usually requires constant time periods and is prone to cloud interference. To enable more efficient and effective monitoring of forest pest damage, a video-based monitoring framework is presented. This framework comprises three key parts: (1) video positioning of forest insect damage based on digital elevation model (DEM) and the parameters obtained from the pan-tilt-zoom camera, (2) integration of two-dimensional/three-dimensional geographic information system and video surveillance to provide more intuitionistic monitoring and assistance for positioning, (3) on-site verification conducted by ground surveys and guided through global positioning system (GPS) integrated in the embedded devices. The experiment was carried out over two forest areas to validate the proposed method. Results showed that the framework bears a sound positioning accuracy and high detection ratio, which could be effectively used in detecting and monitoring forest insect defoliation and discoloration.

  2. Molecular data and phylogeny of Nosema infecting lepidopteran forest defoliators in the genera Choristoneura and Malacosoma.

    PubMed

    Kyei-Poku, George; Gauthier, Debbie; van Frankenhuyzen, Kees

    2008-01-01

    Nosema isolates from five lepidopteran forest defoliators, Nosema fumiferanae from spruce budworm, Choristoneura fumiferana; a Nosema sp. from jack pine budworm, Choristoneura pinus pinus and western spruce budworm, Choristoneura occidentalis (Nosema sp. CPP and Nosema sp. CO, respectively); Nosema thomsoni from large aspen tortrix, Choristoneura conflictana; and Nosema disstriae, from the forest tent caterpillar, Malacosoma disstria were compared based on their small subunit (SSU) ribosomal RNA (rRNA) gene sequences. Four of the species sequenced, N. fumiferanae, Nosema sp. CPP, Nosema sp. CO, and N. disstriae have a high SSU rDNA sequence identity (0.6%-1.5%) and are members of the "true Nosema" clade. They all showed the reverse arrangement of the (large subunit [LSU]-internal transcribed spacer [ITS]-SSU) of the rRNA gene. The fifth species, N. thomsoni has the usual (SSU-ITS-LSU) arrangement and is not a member of this clade showing only an 82% sequence similarity. We speculate, therefore, that a genetic reversal may have occurred in the common ancestor to the "true Nosema" clade. Although, the mechanism for rearrangement of the rRNA gene subunits is not known we provide a possible explanation for the localization. N. fumiferanae, Nosema sp. CPP, and Nosema sp. CO clustered together on the inferred phylogenetic tree. The high sequence similarities, the reverse arrangement in the rRNA gene subunits, and the phylogenetic clustering suggest that these three species are closely related but separate species. PMID:18251803

  3. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    USGS Publications Warehouse

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  4. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    PubMed Central

    Williams, Wyatt I; Friedman, Jonathan M; Gaskin, John F; Norton, Andrew P

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others. PMID:24665340

  5. Effects of Dracontomelon duperreanum defoliation extract on Microcystis aeruginosa: physiological and morphological aspects.

    PubMed

    Wang, Xiaoxiong; Jiang, Chenchun; Szeto, Yim-Tong; Li, Ho-Kin; Yam, Kwei-Lam; Wang, Xiaojun

    2016-05-01

    Harmful cyanobacteria bloom contributes to economic loss as well as the threat to human health. Agricultural waste products, particularly straw, have been used to control bloom while arbor plant is the potential candidate for limiting antialgal activity. This study investigated the use of Dracontomelon duperreanum defoliation extract (DDDE) to inhibit the activity of Microcystis aeruginosa. The primary goal of the research was to explore the solution to control cyanobacterial bloom. The photosynthetic activity, cell morphology, membrane integrity, and esterase activity of M. aeruginosa were determined using phytoplankton analyzer pulse amplitude modulation (Phyto-PAM) and flow cytometry before and after exposure to DDDE. The inhibitory rate of M. aeruginosa was about 99.6 % on day 15 when exposed to 2.0 g L(-1). A reduction of chlorophyll a (Chl-a) activity and changes in cell membrane suggested the algistatic property of DDDE. Inhibition of photosynthetic activity was reflected by changing mean Chl-a fluorescence intensity (MFI) which was about 52.5 % on day 15 when exposed to 2.0 g L(-1) DDDE as well as relative electron transport rates (rETRs) of algal cell. These changes might contribute to the suppression of M. aeruginosa. Algal cell exposed to DDDE may lead to cell volume reduction or slow growth. This resulted in a decreased proportion of normal or swollen granular cells after DDDE treatment. PMID:26803752

  6. Effects of defoliation and shading on the physiological cost of reproduction in silky locoweed Oxytropis sericea

    PubMed Central

    Ida, Takashi Y.; Harder, Lawrence D.; Kudo, Gaku

    2012-01-01

    Background The production of flowers, fruits and seeds demands considerable energy and nutrients, which can limit the allocation of these resources to other plant functions and, thereby, influence survival and future reproduction. The magnitude of the physiological costs of reproduction depends on both the factors limiting seed production (pollen, ovules or resources) and the capacity of plants to compensate for high resource demand. Methods To assess the magnitude and consequences of reproductive costs, we used shading and defoliation to reduce photosynthate production by fully pollinated plants of a perennial legume, Oxytropis sericea (Fabaceae), and examined the resulting impact on photosynthate allocation, and nectar, fruit and seed production. Key Results Although these leaf manipulations reduced photosynthesis and nectar production, they did not alter photosynthate allocation, as revealed by 13C tracing, or fruit or seed production. That photosynthate allocation to reproductive organs increased >190 % and taproot mass declined by 29 % between flowering and fruiting indicates that reproduction was physiologically costly. Conclusions The insensitivity of fruit and seed production to leaf manipulation is consistent with either compensatory mobilization of stored resources or ovule limitation. Seed production differed considerably between the two years of the study in association with contrasting precipitation prior to flowering, perhaps reflecting contrasting limits on reproductive performance. PMID:22021817

  7. Potential of VIIRS Time Series Data for Aiding the USDA Forest Service Early Warning System for Forest Health Threats: A Gypsy Moth Defoliation Case Study

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ryan, Robert E.; Smoot, James; Kuper, Phillip; Prados, Donald; Russell, Jeffrey; Ross, Kenton; Gasser, Gerald; Sader, Steven; McKellip, Rodney

    2007-01-01

    This report details one of three experiments performed during FY 2007 for the NASA RPC (Rapid Prototyping Capability) at Stennis Space Center. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria dispar). The intent of the RPC experiment was to assess the degree to which VIIRS data can provide forest disturbance monitoring information as an input to a forest threat EWS (Early Warning System) as compared to the level of information that can be obtained from MODIS data. The USDA Forest Service (USFS) plans to use MODIS products for generating broad-scaled, regional monitoring products as input to an EWS for forest health threat assessment. NASA SSC is helping the USFS to evaluate and integrate currently available satellite remote sensing technologies and data products for the EWS, including the use of MODIS products for regional monitoring of forest disturbance. Gypsy moth defoliation of the mid-Appalachian highland region was selected as a case study. Gypsy moth is one of eight major forest insect threats listed in the Healthy Forest Restoration Act (HFRA) of 2003; the gypsy moth threatens eastern U.S. hardwood forests, which are also a concern highlighted in the HFRA of 2003. This region was selected for the project because extensive gypsy moth defoliation occurred there over multiple years during the MODIS operational period. This RPC experiment is relevant to several nationally important mapping applications, including agricultural efficiency, coastal management, ecological forecasting, disaster management, and carbon management. In this experiment, MODIS data and VIIRS data simulated from MODIS were assessed for their ability to contribute broad, regional geospatial information on gypsy moth defoliation. Landsat and ASTER (Advanced Spaceborne Thermal Emission

  8. Genome-wide comparison of AP2/ERF superfamily genes between Gossypium arboreum and G. raimondii.

    PubMed

    Lei, Z P; He, D H; Xing, H Y; Tang, B S; Lu, B X

    2016-01-01

    The APETALA2/ethylene response factor (AP2/ERF) transcription factor superfamily is known to regulate diverse processes of plant development and stress responses. We conducted a genome-wide analysis of the AP2/ERF gene in Gossypium arboreum and G. raimondii. Using RPSBLAST and HMMsearch, a total of 271 and 269 AP2/ERF genes were identified in the G. arboreum and G. raimondii genomes, respectively. A phylogenetic analysis classified diploid Gossypium spp AP2/ERF genes into 4 families and 16 subfamilies. Orthologous genes predominated the terminal branch of the phylogenetic tree. Physical mapping showed at least 30% of AP2/ERF genes clustered together. A high level of intra- and inter-species collinearity involving AP2/ERF genes was observed, indicating common (before species divergence) or parallel (after species divergence) segmental duplications, along with tandem duplications, resulting in the species-specific expansion of AP2/ERF genes in diploid Gossypium species. Motif analyses of the AP2/ERF proteins revealed that motif arrangements were highly diverse among subfamilies, but shared by orthologous gene pairs. An examination of nucleotide divergence of AP2/ERF coding regions identified small and non-significant sequence differences among orthologs. Expression profiling of AP2/ERF orthologous gene pairs showed similar abundance levels of orthologous copies between G. arboreum and G. raimondii. Thus, cotton species possess abundant and diverse AP2/ERF genes, resulting from tandem and segmental duplications. Protein and nucleotide sequence and mRNA expression analyses revealed symmetrical evolution, indicating that most AP2/ ERF genes may not have undergone significant biochemical and morphological divergence between sister species. Our study provides detailed insights into the evolutionary characteristics and functional importance of AP2/ERF genes, and could aid in the genetic improvement of agriculturally significant crops in this genus. PMID:27525884

  9. The cell-wall phosphatase of cotton (Gossypium) is inhibited by kelthane.

    PubMed Central

    Daley, L S; Carroll, P; Mussell, H

    1979-01-01

    Kelthane [4,4'-dichloro-alpha-(trichloromethyl)benzhydrol] was previously shown to decrease the limited tolerance of susceptible varieties of cotton (Gossypium) to Verticillium wilt. Kelthane was shown in the present study to inhibit the cell-wall p-nitrophenyl phosphatase of cotton. In view of information already establishing the cell wall as a primary site of action of Verticillium wilt, the data are interpreted as suggesting an as yet undefined interaction between Kelthane, cell-wall phosphatase and verticillium-resistance mechanisms of the cell wall. PMID:224864

  10. Using remote sensing to assess stand loss and defoliation in maize

    NASA Astrophysics Data System (ADS)

    Erickson, Bruce Joel

    Accurate assessment of hail and wind damage to crops has long been a difficult task. Yield effects of stand loss and defoliation at various crop stages are well known, but getting accurate damage information across a field has been problematic. A quick and accurate method of determining losses such as using remote sensing techniques could lead to more efficient crop management and more accurate insurance claims adjustment. New satellites with spatial and temporal resolution capable of assessing crop damage could provide data for producing maps of field damage. Field plots of maize, Zea mays L. were established in Indiana and Nebraska in 1997, 1998, and 1999 and were subjected to various levels of stand loss and leaf loss during vegetative and early reproductive growth stages. Remote sensing data were collected using a variety of imaging spectroradiometers mounted in airplanes and field spectrometers mounted on boom trucks. Radiometric data compiled by wavelength to produce spectral response curves showed light reflectance level directly related to damage level across a broad range of wavelengths. Using feature selection, a function of the image processing software MultiSpec, the red and near infrared (NIR) wavelength bands provided the most distinction among levels of damage. Classification of images by damage level was accomplished using a combination of red and near infrared bands and using Discriminate Analysis Feature Extraction (DAFE) to utilize the contribution of all sensor bands and attempt high accuracy. Classification accuracies achievable for discriminating four levels of damage inflicted on a particular date ranged from 72% to 100%, with accuracy depending on the band combination used and level of damage. In a field after a storm, remote sensing images could be used to extrapolate information collected by insurance adjusters, and produce damage maps of a field. Fewer ground checks would be needed to get an accurate damage estimate.

  11. [Ecological and biological features of soils in the forests defoliated by the siberian moth in the southern taiga of middle Siberia].

    PubMed

    Krasnoshchekov, Iu N; Vishniakova, Z V; Perevoznikova, V D; Baranchikov, Iu N

    2003-01-01

    Experimental data are analyzed that concern the effect of zoogenic debris on the properties of soddy deep podzolic soils and raw-humus brown soils characteristic of southern taiga forests in the Yenisei region of Siberia. It is shown that the influence of excrements of Siberian moth larvae on the soil microflora lasts for two or, at most, three growing seasons. Zoogenic plant debris falling on the ground surface during tree stand defoliation is a short-acting but powerful stimulant of biological activity in the litter; hence, it has a considerable effect on soil properties. This effect is enhanced by changes in ecological conditions that occur upon defoliation. The influence of the cenotic factor on biogenic soil properties is manifested more strongly in the organogenic horizons. The communities of microorganisms involved in the nitrogen and carbon cycles are dominated by prototrophic forms in the normal fir forest and by pedotrophic forms in the forest defoliated by pests. PMID:14735796

  12. Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory

    PubMed Central

    2012-01-01

    Background Amaranthus cruentus and A. hypochondriacus are crop plants grown for grain production in subtropical countries. Recently, the generation of large-scale transcriptomic data opened the possibility to study representative genes of primary metabolism to gain a better understanding of the biochemical mechanisms underlying tolerance to defoliation in these species. A multi-level approach was followed involving gene expression analysis, enzyme activity and metabolite measurements. Results Defoliation by insect herbivory (HD) or mechanical damage (MD) led to a rapid and transient reduction of non-structural carbohydrates (NSC) in all tissues examined. This correlated with a short-term induction of foliar sucrolytic activity, differential gene expression of a vacuolar invertase and its inhibitor, and induction of a sucrose transporter gene. Leaf starch in defoliated plants correlated negatively with amylolytic activity and expression of a β-amylase-1 gene and positively with a soluble starch synthase gene. Fatty-acid accumulation in roots coincided with a high expression of a phosphoenolpyruvate/phosphate transporter gene. In all tissues there was a long-term replenishment of most metabolite pools, which allowed damaged plants to maintain unaltered growth and grain yield. Promoter analysis of ADP-glucose pyrophosphorylase and vacuolar invertase genes indicated the presence of cis-regulatory elements that supported their responsiveness to defoliation. HD and MD had differential effects on transcripts, enzyme activities and metabolites. However, the correlation between transcript abundance and enzymatic activities was very limited. A better correlation was found between enzymes, metabolite levels and growth and reproductive parameters. Conclusions It is concluded that a rapid reduction of NSC reserves in leaves, stems and roots followed by their long-term recovery underlies tolerance to defoliation in grain amaranth. This requires the coordinate action of genes

  13. Phosphorus and Defoliation Interact and Improve the Growth and Composition of the Plant Community and Soil Properties in an Alpine Pasture of Qinghai-Tibet Plateau.

    PubMed

    Qi, Juan; Nie, Zhongnan; Jiao, Ting; Zhang, Degang

    2015-01-01

    Pasture degradation caused by overgrazing and inappropriate fertiliser management is a major production and environmental threat in Qinghai-Tibet Plateau. Previous research has focused on the effects of mixed nitrogen (N) and phosphorus (P) fertiliser and reduced grazing pressure on the plant community of the grassland; however, the role of P and how it interacts with various defoliation (the process of the complete or partial removal of the above-ground parts of plants by grazing or cutting) intensities on the plant and soil of the grassland ecosystem have not been quantified. A field experiment was conducted to quantify how P application in combination of defoliation pressure could impact the dynamic change of the plant and soil in a native alpine grassland ecosystem of the Qinghai-Tibet Plateau, China, from May 2012 to September 2014. A split-plot design with 4 replicates and repeated measures was used to determine the growth and composition of plant community and soil physical and chemical properties under various levels of P fertiliser and defoliation intensity. The results showed that applying 20 kg P/ha increased the herbage yield of Melissitus ruthenica by 68% and total pasture yield by 25%. Close defoliation favoured the growth and plant frequency of the shorter species, whereas lax defoliation favoured that of the taller plant species. Medium P rate and cutting to 3 cm above ground gave an overall best outcome in pasture yield, quality and frequency and soil moisture and nutrient concentration. Application of P fertiliser with a moderate defoliation pressure to promote legume growth and N fixation has the potential to achieve multiple benefits in increasing pasture and livestock production and improving environmental sustainability in the alpine pasture of Qinghai-Tibet Plateau, a fragile and P-deficient ecosystem zone in China and its western neighbouring countries. PMID:26513363

  14. Phosphorus and Defoliation Interact and Improve the Growth and Composition of the Plant Community and Soil Properties in an Alpine Pasture of Qinghai-Tibet Plateau

    PubMed Central

    Qi, Juan; Nie, Zhongnan; Jiao, Ting; Zhang, Degang

    2015-01-01

    Pasture degradation caused by overgrazing and inappropriate fertiliser management is a major production and environmental threat in Qinghai-Tibet Plateau. Previous research has focused on the effects of mixed nitrogen (N) and phosphorus (P) fertiliser and reduced grazing pressure on the plant community of the grassland; however, the role of P and how it interacts with various defoliation (the process of the complete or partial removal of the above-ground parts of plants by grazing or cutting) intensities on the plant and soil of the grassland ecosystem have not been quantified. A field experiment was conducted to quantify how P application in combination of defoliation pressure could impact the dynamic change of the plant and soil in a native alpine grassland ecosystem of the Qinghai-Tibet Plateau, China, from May 2012 to September 2014. A split-plot design with 4 replicates and repeated measures was used to determine the growth and composition of plant community and soil physical and chemical properties under various levels of P fertiliser and defoliation intensity. The results showed that applying 20 kg P/ha increased the herbage yield of Melissitus ruthenica by 68% and total pasture yield by 25%. Close defoliation favoured the growth and plant frequency of the shorter species, whereas lax defoliation favoured that of the taller plant species. Medium P rate and cutting to 3 cm above ground gave an overall best outcome in pasture yield, quality and frequency and soil moisture and nutrient concentration. Application of P fertiliser with a moderate defoliation pressure to promote legume growth and N fixation has the potential to achieve multiple benefits in increasing pasture and livestock production and improving environmental sustainability in the alpine pasture of Qinghai-Tibet Plateau, a fragile and P-deficient ecosystem zone in China and its western neighbouring countries. PMID:26513363

  15. The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 librari...

  16. Next Generation Genetic Mapping of the Ligon-lintless-2 (Li2) Locus in Upland Cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing offers new ways to identify the genetic mechanisms that underlie mutant phenotypes. The release of a reference diploid Gossypium raimondii (D5) genome and bioinformatics tools to sort tetraploid reads into subgenomes has brought cotton genetic mapping into the genomics er...

  17. Warm Root Temperature Mitigates the Effect of Chilling in the Dark on Photosynthesis in Cotton (Gossypium hirsutum) Seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Productivity of warm season crops such as cotton (Gossypium hirsutum L.) can be reduced by untimely episodes of chilling temperature that often occur during the first weeks after planting. We examined the impact of chilling stress on cotton seedlings two weeks after planting by chilling both shoots...

  18. Detection, validation and application of genotyping-by-sequencing based single nucleotide polymorphisms in upland cotton (Gossypium hirsutum L.).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of two closely related sub-genomes in the allotetraploid Upland cotton (Gossypium hirsutum L.) combined with a narrow genetic base of the cultivated varieties has hindered the identification of polymorphic genetic markers and their utilization in improving this important crop. Genotypi...

  19. Diurnal pollen tube growth is exceptionally sensitive to high temperature in field-grown Gossypium hirsutum pistils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For Gossypium hirsutum L. pollination, germination, and pollen tube growth must occur in a highly concerted fashion on the day of flowering for fertilization to occur. Because reproductive success is influenced by photosynthetic activity of major source leaves, we hypothesized that high temperatures...

  20. Identification of QTL Regions and SSR Markers Associated with Resistance to Reniform Nematode in Gossypium barbadense L. accession GB713

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of molecular markers, closely linked to gene(s)in Gossypium barbadense L., accession GB713 that confer a high level of resistance to reniform nematode (RN), Rotylenchulus reniformis Linford & Oliveria, would be very useful in cotton breeding programs. Our objectives were to determ...

  1. A Transgressive Segregation Factor (RKN2) in Gossypium barbadense for Nematode Resistance Clusters with Gene rkn1 in G. hirsutum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host plant resistance is an important strategy for managing root-knot nematode (Meloidogyne incognita) in cotton (Gossypium L.). Here we report evidence for enhanced resistance in interspecific crosses resulting from transgressive segregation of clustered gene loci. Recently, a major gene, rkn1, on ...

  2. Transmission of cotton (Gossypium hirsutum) seed and boll rotting bacteria by southern green stink bugs (Nezara viridula L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study is to determine the ability of the southern green stink bug (Nezara viridula L.) to transmit an opportunistic Pantoea agglomerans strain into unopened, green cotton (Gossypium hirsutum) bolls. Southern green stink bug (SGSB) colonies were reared on fresh green beans in the labo...

  3. Year One Results for Tolerance Screening of Selected Gossypium hirsutum Varieties to Rotylenchulus Reniformis in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen varieties of Gossypium hirsutum were screened for tolerance to the reniform nematode in 2006 at the Delta Research and Extension Center, Stoneville, MS. The trials were arranged in a split plot design, with four rows of untreated and four rows of Temik 15G, 7 lb/acre for each variety. This ...

  4. Population structure and genetic diversity of the boll weevil, Anthonomus grandis (Coleoptera: Curculionidae), on Gossypium in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the boll weevil, Anthonomus grandis, has been identified as one of the most devastating pests in U.S. history, its origin and activity in Mexico, both on wild and cultivated cotton hosts (genus Gossypium), is poorly understood. Three forms (geographical or host-associated races) of A. grandis ...

  5. SSR markers for marker assisted selection of root-knot nematode (Meloidogyne incognita) resistant plants in cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L) cultivars highly resistant to the southern root-knot nematode (RKN) [Meloidogyne incognita (Kofoid & White) Chitwood] are not available. Recently, molecular markers on chromosomes 11 and 14 have been associated with RKN resistance, thus opening the way for marker assis...

  6. Reniform nematode (Rotylenchulus reniformis) resistance locus from Gossypium aridum identified and introgressed into upland cotton (G. hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SSR markers associated with reniform nematode (Rotylenchulus reniformis) resistance were identified and mapped using progeny from a cross between a tri-species hybrid [Gossypium arboreum × (G 371 - G. hirsutum × G. aridum -)] and G. hirsutum MD51ne. The 50 most resistant and 26 most susceptible prog...

  7. Registration of RMBUP-C4, a random mated population with Gossypium hirsutum L. alleles, introgresssed into Upland cotton germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RMBUP-C4 (Random Mated Barbadense Upland Population Cycle 4) (Reg. No. GP_____: PI______) is a unique random mated germplasm population of Upland cotton (Gossypium hirsutum L.) which has introgression of G. barbadense L. alleles. This population involved five cycles of random mating beginning ...

  8. Cotton (Gossypium hirsutum L.) boll rotting bacteria vectored by the brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determine the capacity of the brown stink bug (Euschistus servus) to transmit an infective Pantoea agglomerans into cotton (Gossypium hirsutum, L.) bolls. A laboratory colony of the brown stink bug (BSB) was maintained on fresh green beans. The P. agglomerans mutant strain Sc 1-R that holds rifamp...

  9. GENETIC EFFECTS OF THIRTEEN GOSSYPIUM BARBADENSE L. CHROMOSOME SUBSTITUTION LINES IN TOPCROSSES WITH UPLAND COTTON CULTIVARS: II. FIBER QUALITY TRAITS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen chromosome substitution lines (CS-B) lines with individual 3-79 Gossypium barbadense L. chromosome or arms substituted into TM-1, G. hirsutum L., were crossed with 5 upland cultivars and additive and dominance effects for fiber micronaire, elongation, length, and strength were measured over...

  10. Seed oil and protein diversity among Gossypium accessions in the U.S. National Cotton Germplasm Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying and reporting genetic variability is an important tool to increase the utilization of germplasm collections. In an effort to further realize the potential of cottonseed, we have characterized seed composition traits of Gossypium spp. accessions available in the U.S. National Cotton Germ...

  11. Genetic Dissection of Chromosome Substitution Lines of Cotton to Discover Novel Gossypium barbadense L. Alleles for Improvement of Agronomic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to combine the best features of high-yielding Upland cultivars of Gossypium hirsutum (2n=52) with the superior fiber characteristics of G. barbadense (2n=52) have generally fallen well short of desired goals. In this study, we have used hypoaneuploid-based chromosome substitution as a means ...

  12. Genetics of the ovule fiberless and foliar glabrous traits in the Gossypium arboreum germplasm line in PI 529740

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accession PI 529740 from the Gossypium arboreum (G. arboreum) germplasm collection and characterized by fiberless seeds and glabrous leaves and stems was crossed with two G. arboreum accessions, PI 417890 or PI 529729, to develop F2 populations for genetic analysis. Segregation data indicated these...

  13. Association of flowering time genes with simple sequence repeat markers in a primitive cotton accession (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Primitive cotton (Gossypium hirsutum L.) race stocks represent resources for genetic improvement for fiber quality, pathogen resistance, and increased tolerance to environment stresses. Most tropical primitive accessions are photoperiod sensitive and do not flower under the long days of the U.S. cot...

  14. An integrated genetic, physical, and transcript map of homoeologous chromosomes 12 and 26 in Upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Upland cotton (Gossypium hirsutum L.) represents 95% of the world production, its genetic improvement is hindered by the shortage of effective genomic tools and resources. The complex allotetraploid genome of the Upland cotton presents a unique challenge to such research efforts including int...

  15. Association Between Yield, Yield Components, and Fiber Properties Exotic Germplasm Derived from Multiple Crosses Between Gossypium hirsutum and G. barbadense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broadening genetic base is essential for genetic improvement of lint yield and fiber quality in upland cotton. An exotic germplasm population derived from multiple crosses between Gossypium barbadense L. and Acala 1517 types was obtained from USDA-ARS at Las Cruces, NM, USA. This germplasm was desi...

  16. Identification of the unsaturated heptadecyl fatty acids in the seed oils of Thespesia populnea and Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid composition of the seed oils of Thespesia populnea and cotton variety SG-747 (Gossypium hirsutum) were studied to identity their 17-carbon fatty acids. With a combination of chemical derivatization, gas chromatography, and mass spectrometry, 8-heptadecenoic acid, 9-heptadecenoic acid...

  17. Genetic changes in plant growth and their associations with chromosomes from Gossypium hirsutum L. in G. hirsutum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton, Gossypium hirsutum L., plant growth is an important time-specific agronomic character that supports the development of squares, flower production, boll retention, and yield. With the use of a mixed linear model approach, we investigated 14 cotton chromosome substitution lines and their chrom...

  18. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose synthase catalytic subunits (CesAs) are the catalytic sites within a multisubunit complex for cellulose biosynthesis in plants. CesAs have been extensively studied in diploid plants, but are not well characterized in polyploid plants. Gossypium hirsutum is an allotetraploid cotton specie...

  19. Resistant Germplasm in Gossypium Species and Related Plants to Rotylenchulus reniformis

    PubMed Central

    Yik, Choi-Pheng; Birchfield, Wray

    1984-01-01

    Gossypium hirsutum, G. herbaceum, G. arboreum, G. barbadense, wild Gossypium spp., Hibiscus spp, and other Malvaceae were tested in the greenhouse to identify germplasm resistant to Rotylenchulus reniformis (Rr). Host resistance was based on Rr egg production per gram of root compared with known G. hirsutum susceptible 'Deltapine 16' as check. G. longicalyx and Sida rhombifolia were nonhosts. High levels of resistance were found in G. stocksii, G. somalense, and G. barbadense 'Texas 110.' Other cotton lines with potential value in breeding for Rr resistance were G. herbaceum P.I. 408775; G. arboreum P.I. 41895, P.I, 417891, CB 3839; and G. hirsutum 893. All these supported less than 20% of the egg production on the check. Seventy-three percent of the Hibiscus spp. tested were resistant. Female development and egg production reflected host resistance; healthy females and large egg masses were observed on susceptible plants, and degenerated females and small egg masses on resistant plants. Females penetrating nonhost G. longicalyx never matured to kidney shape. PMID:19295892

  20. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species.

    PubMed

    Buyyarapu, Ramesh; Kantety, Ramesh V; Yu, John Z; Saha, Sukumar; Sharma, Govind C

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum  EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps. PMID:22315588

  1. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species

    PubMed Central

    Buyyarapu, Ramesh; Kantety, Ramesh V.; Yu, John Z.; Saha, Sukumar; Sharma, Govind C.

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum  EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps. PMID:22315588

  2. Construction and characterization of a bacterial artificial chromosome library for the allotetraploid Gossypium tomentosum.

    PubMed

    Liu, F; Wang, Y H; Gao, H Y; Wang, C Y; Zhou, Z L; Cai, X Y; Wang, X X; Zhang, Z S; Wang, K B

    2015-01-01

    Gossypium tomentosum is a wild allotetraploid species with the (AD)5 genome. It is characterized by many useful traits including finer fiber fineness, drought tolerance, and Fusarium and Verticillium resistance. We constructed the first bacterial artificial chromosome library for Gossypium tomentosum. With high quality and broad coverage, this library includes 200,832 clones, with an average insert size of about 122 kb and fewer than 3% empty clones. Our library is approximately 10-fold the size of the (AD)5-genome (2400 Mb) and provides a 99.7% probability of isolating genes of interest or their sequences. Seven of eight simple sequence repeats markers that are located on five different chromosomes and linked with resistance to Verticillium wilt could amplify the 50 superpools and obtained one to five hits. This high capacity library will be an important genomic resource for classifying and analyzing the evolution of allotetraploid cotton species as well as for isolating disease-resistance and drought-tolerance genes. PMID:26681044

  3. GraP: platform for functional genomics analysis of Gossypium raimondii

    PubMed Central

    Zhang, Liwei; Guo, Jinyan; You, Qi; Yi, Xin; Ling, Yi; Xu, Wenying; Hua, Jinping; Su, Zhen

    2015-01-01

    Cotton (Gossypium spp.) is one of the most important natural fiber and oil crops worldwide. Improvement of fiber yield and quality under changing environments attract much attention from cotton researchers; however, a functional analysis platform integrating omics data is still missing. The success of cotton genome sequencing and large amount of available transcriptome data allows the opportunity to establish a comprehensive analysis platform for integrating these data and related information. A comprehensive database, Platform of Functional Genomics Analysis in Gossypium raimondii (GraP), was constructed to provide multi-dimensional analysis, integration and visualization tools. GraP includes updated functional annotation, gene family classifications, protein–protein interaction networks, co-expression networks and microRNA–target pairs. Moreover, gene set enrichment analysis and cis-element significance analysis tools are also provided for gene batch analysis of high-throughput data sets. Based on these effective services, GraP may offer further information for subsequent studies of functional genes and in-depth analysis of high-throughput data. GraP is publically accessible at http://structuralbiology.cau.edu.cn/GraP/, with all data available for downloading. PMID:25982315

  4. Suppression of Rotylenchulus reniformis 122-cm Deep Endorses Resistance Introgression in Gossypium

    PubMed Central

    Robinson, A. F.; Akridge, J. R.; Bradford, J. M.; Cook, C. G.; Gazaway, W. S.; McGawley, E. C.; Starr, J. L.; Young, L. D.

    2006-01-01

    Nine sources of resistance to Rotylenchulus reniformis in Gossypium (cotton) were tested by measuring population density (Pf) and root-length density 0 to 122 cm deep. A Pf in the plow layer less than the autumn sample treatment threshold used by consultants was considered the minimum criterion for acceptable resistance, regardless of population density at planting (Pi). Other criteria were ample roots and a Pf lower than on the susceptible control, as in pot studies. In a Texas field in 2001 and 2002, no resistant accessions had Pf less than the control but all did in microplots into which nematodes from Louisiana were introduced. An environmental chamber experiment ruled out nematode genetic variance and implicated unknown soil factors. Pf in field experiments in Louisiana, Mississippi, and Alabama were below threshold for zero, six and four of the accessions and above threshold in the control. Gossypium arboreum A2–87 and G. barbadense GB-713 were the most resistant accessions. Results indicate that cultivars developed from these sources will suppress R. reniformis populations but less than in pots in a single season. PMID:19259448

  5. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.).

    PubMed

    Wang, Maojun; Yuan, Daojun; Tu, Lili; Gao, Wenhui; He, Yonghui; Hu, Haiyan; Wang, Pengcheng; Liu, Nian; Lindsey, Keith; Zhang, Xianlong

    2015-09-01

    Long noncoding RNAs (lncRNAs) are transcripts of at least 200 bp in length, possess no apparent coding capacity and are involved in various biological regulatory processes. Until now, no systematic identification of lncRNAs has been reported in cotton (Gossypium spp.). Here, we describe the identification of 30 550 long intergenic noncoding RNA (lincRNA) loci (50 566 transcripts) and 4718 long noncoding natural antisense transcript (lncNAT) loci (5826 transcripts). LncRNAs are rich in repetitive sequences and preferentially expressed in a tissue-specific manner. The detection of abundant genome-specific and/or lineage-specific lncRNAs indicated their weak evolutionary conservation. Approximately 76% of homoeologous lncRNAs exhibit biased expression patterns towards the At or Dt subgenomes. Compared with protein-coding genes, lncRNAs showed overall higher methylation levels and their expression was less affected by gene body methylation. Expression validation in different cotton accessions and coexpression network construction helped to identify several functional lncRNA candidates involved in cotton fibre initiation and elongation. Analysis of integrated expression from the subgenomes of lncRNAs generating miR397 and its targets as a result of genome polyploidization indicated their pivotal functions in regulating lignin metabolism in domesticated tetraploid cotton fibres. This study provides the first comprehensive identification of lncRNAs in Gossypium. PMID:25919642

  6. Composition and Expression of Conserved MicroRNA Genes in Diploid Cotton (Gossypium) Species

    PubMed Central

    Gong, Lei; Kakrana, Atul; Arikit, Siwaret; Meyers, Blake C.; Wendel, Jonathan F.

    2013-01-01

    MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5′-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus. PMID:24281048

  7. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    PubMed

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources. PMID:26774060

  8. Asynchrony between Host Plant and Insects-Defoliator within a Tritrophic System: The Role of Herbivore Innate Immunity.

    PubMed

    Martemyanov, Vyacheslav V; Pavlushin, Sergey V; Dubovskiy, Ivan M; Yushkova, Yuliya V; Morosov, Sergey V; Chernyak, Elena I; Efimov, Vadim M; Ruuhola, Teija; Glupov, Victor V

    2015-01-01

    The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects' fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content) on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula--gypsy moth Lymantria dispar--nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus. PMID:26115118

  9. Asynchrony between Host Plant and Insects-Defoliator within a Tritrophic System: The Role of Herbivore Innate Immunity

    PubMed Central

    Martemyanov, Vyacheslav V.; Pavlushin, Sergey V.; Dubovskiy, Ivan M.; Yushkova, Yuliya V.; Morosov, Sergey V.; Chernyak, Elena I.; Efimov, Vadim M.; Ruuhola, Teija; Glupov, Victor V.

    2015-01-01

    The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects’ fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content) on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula—gypsy moth Lymantria dispar—nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus. PMID:26115118

  10. Quantitative estimation of Hyblaea puera NPV production in three larval stages of the teak defoliator, Hyblaea puera (Cramer).

    PubMed

    Biji, C P; Sudheendrakumar, V V; Sajeev, T V

    2006-09-01

    Hyblaea puera nucleoployhedrovirus (HpNPV) is a potential biocontrol agent of the teak defoliator, Hyblaea puera (Cramer) (Lepidoptera: Hyblaeidae). To quantify the growth of the virus in the host larvae, three larval stages of the teak defoliator were subjected to quantitative bioassays using specified dilutions of HpNPV. The HpNPV production was found to be dependent on the dose, incubation period as well as stage specific responses of the host insect used. As larvae matured, production of the virus per mg body weight was not found to be in a constant proportion to the increase in the body weight. The combination which yielded the greatest virus production of 3.55 x 10(9) polyhedral occlusion bodies (POBs) was that in which larva weighing 26-37 mg was fed with 1 x 10(6) POBs, incubated for 6 h and harvested at 72 h post infection (h p.i.). The response of the fourth instar larvae was found to be more productive than the third and fifth instar larvae, which makes it an ideal candidate for mass production of the virus in vivo. PMID:16687178

  11. Small mammal abundance and habitat relationships on deciduous forested sites with different susceptibility to gypsy moth defoliation

    NASA Astrophysics Data System (ADS)

    Yahner, Richard H.; Smith, Harvey R.

    1991-01-01

    Small mammals are important predators of gypsy moths ( Lymantria dispar L.), which are major defoliators of deciduous forests in the northeastern United States. Abundance and habitat relationships of small mammals were studied during summers 1984 and 1985 on forested sites at Moshannon and Rothrock state forests in two physiographic regions of Pennsylvania (Allegheny High Plateaus Province and Valley and Ridge Province, respectively) that varied in potential susceptibility to defoliation. The white-footed mouse ( Peromyscus leucopus), which is a major vertebrate predator of gypsy moths, was the most common small mammal on all sites. Of the four common species, northern short-tailed shrews ( Blarina brevicauda), southern red-backed voles ( Clethrionomys gapperi), and white-footed mice were more abundant at Moshannon compared to Rothrock State Forest, but masked shrews ( Sorex cinereus) were more abundant at Rothrock. Elevation was a major factor affecting abundance and distribution of small mammals. Because of the greater abundance of small mammals and more suitable physiographic features at Moshannon compared to Rothrock State Forest, small mammals may be more effective as predators on gypsy moths in the Allegheny High Plateaus than the Valley and Ridge Province of Pennsylvania.

  12. Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Feedbacks between herbivory and plant-microbe interactions may also be affected by increasing atmospheric CO2, through plant responses to changes in carbon and nit...

  13. Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata)

    USGS Publications Warehouse

    Hultine, K.R.; Nagler, P.L.; Morino, K.; Bush, S.E.; Burtch, K.G.; Dennison, P.E.; Glenn, E.P.; Ehleringer, J.R.

    2010-01-01

    The release of the saltcedar beetle (Diorhabda carinulata) has resulted in the periodic defoliation of tamarisk (Tamarix spp.) along more than 1000 river km in the upper Colorado River Basin and is expected to spread along many other river reaches throughout the upper basin, and possibly into the lower Colorado River Basin. Identifying the impacts of these release programs on tamarisk water use and subsequent water cycling in arid riparian systems are largely unknown, due in part to the difficulty of measuring water fluxes in these systems. We used lab-calibrated, modified heat-dissipation sap flux sensors to monitor tamarisk water use (n=20 trees) before, during and after defoliation by the saltcedar leaf beetle during the 2008 and 2009 growing seasons (May-October) in southeastern Utah. We incorporated a simple model that related mean stem sap flux density (Js) with atmospheric vapor pressure deficit (vpd) before the onset of defoliation in 2008. The model was used to calculate differences between predicted Js and Js measured throughout the two growing seasons. Episodic defoliation resulted in a 16% reduction in mean annual rates of Js in both 2008 and 2009, with decreases occurring only during the periods in which the trees were defoliated (about 6-8 weeks per growing season). In other words, rates of Js rebounded to values predicted by the model when the trees produced new leaves after defoliation. Sap flux data were scaled to stand water use by constructing a tamarisk-specific allometric equation to relate conducting sapwood area to stem diameter, and by measuring the size distribution of stems within the stand. Total water use in both years was 0.224m, representing a reduction of about 0.04myr-1. Results showed that repeated defoliation/refoliation cycles did not result in a progressive decrease in either leaf production or water use over the duration of the study. This investigation improves ground-based estimates of tamarisk water use, and will support

  14. Some Ultrastructural and Enzymatic Effects of Water Stress in Cotton (Gossypium hirsutum L.) Leaves

    PubMed Central

    Da Silva, Jorge Vieira; Naylor, Aubrey W.; Kramer, Paul J.

    1974-01-01

    Water stress induced by floating discs cut from cotton leaves (Gossypium hirsutum L. cultivar Stoneville) on a polyethylene glycol solution (water potential, -10 bars) was associated with marked alteration of ultrastructural organization of both chloroplasts and mitochondria. Ultrastructural organization of chloroplasts was sometimes almost completely destroyed; peroxisomes seemed not to be affected; and chloroplast ribosomes disappeared. Also accompanying water stress was a sharp increase in activity of acid phosphatase [orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2], and acid and alkaline lipase [glycerol ester hydrolase EC 3.1.1.3] within chloroplasts. Only acid lipase activity was detected inside mitochondria of stressed discs. These alterations in cell organization and enzymology may account for at least part of the previously reported effects of water stress on the CO2 compensation point, photochemical reactions, and photorespiration. Images PMID:4528731

  15. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  16. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  17. Dirigent Proteins from Cotton (Gossypium sp.) for the Atropselective Synthesis of Gossypol.

    PubMed

    Effenberger, Isabelle; Zhang, Bin; Li, Ling; Wang, Qiang; Liu, Yuxiu; Klaiber, Iris; Pfannstiel, Jens; Wang, Qingmin; Schaller, Andreas

    2015-12-01

    Gossypol is a defense compound in cotton plants for protection against pests and pathogens. Gossypol biosynthesis involves the oxidative coupling of hemigossypol and results in two atropisomers owing to hindered rotation around the central binaphthyl bond. (+)-Gossypol predominates in vivo, thus suggesting stereochemically controlled biosynthesis. The aim was to identify the factors mediating (+)-gossypol formation in cotton and to investigate their potential for asymmetric biaryl synthesis. A dirigent protein from Gossypium hirsutum (GhDIR4) was found to confer atropselectivity to the coupling of hemigossypol in presence of laccase and O2 as an oxidizing agent. (+)-Gossypol was obtained in greater than 80% enantiomeric excess compared to racemic gossypol in the absence of GhDIR4. The identification of GhDIR4 highlights a broader role for DIRs in plant secondary metabolism and may eventually lead to the development of DIRs as tools for the synthesis of axially chiral binaphthyls. PMID:26460165

  18. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.

    PubMed

    Zhang, Tianzhen; Hu, Yan; Jiang, Wenkai; Fang, Lei; Guan, Xueying; Chen, Jiedan; Zhang, Jinbo; Saski, Christopher A; Scheffler, Brian E; Stelly, David M; Hulse-Kemp, Amanda M; Wan, Qun; Liu, Bingliang; Liu, Chunxiao; Wang, Sen; Pan, Mengqiao; Wang, Yangkun; Wang, Dawei; Ye, Wenxue; Chang, Lijing; Zhang, Wenpan; Song, Qingxin; Kirkbride, Ryan C; Chen, Xiaoya; Dennis, Elizabeth; Llewellyn, Danny J; Peterson, Daniel G; Thaxton, Peggy; Jones, Don C; Wang, Qiong; Xu, Xiaoyang; Zhang, Hua; Wu, Huaitong; Zhou, Lei; Mei, Gaofu; Chen, Shuqi; Tian, Yue; Xiang, Dan; Li, Xinghe; Ding, Jian; Zuo, Qiyang; Tao, Linna; Liu, Yunchao; Li, Ji; Lin, Yu; Hui, Yuanyuan; Cao, Zhisheng; Cai, Caiping; Zhu, Xiefei; Jiang, Zhi; Zhou, Baoliang; Guo, Wangzhen; Li, Ruiqiang; Chen, Z Jeffrey

    2015-05-01

    Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines. PMID:25893781

  19. Do elevations in temperature, CO2, and nutrient availability modify belowground carbon gain and root morphology in artificially defoliated silver birch seedlings?

    PubMed Central

    Huttunen, Liisa; Saravesi, Karita; Markkola, Annamari; Niemelä, Pekka

    2013-01-01

    Climate warming increases the risk of insect defoliation in boreal forests. Losses in photosynthetically active surfaces cause reduction in net primary productivity and often compromise carbon reserves of trees. The concurrent effects of climate change and removal of foliage on root growth responses and carbohydrate dynamics are poorly understood, especially in tree seedlings. We investigated if exposures to different combinations of elevated temperature, CO2, and nutrient availability modify belowground carbon gain and root morphology in artificially defoliated 1-year-old silver birches (Betula pendula). We quantified nonstructural carbohydrates (insoluble starch as a storage compound; soluble sucrose, fructose, and glucose) singly and in combination in fine roots of plants under winter dormancy. Also the total mass, fine root proportion, water content, and length of roots were defined. We hypothesized that the measured properties are lower in defoliated birch seedlings that grow with ample resources than with scarce resources. On average, fertilization markedly decreased both the proportion and the carbohydrate concentrations of fine roots in all seedlings, whereas the effect of fertilization on root water content and dry mass was the opposite. However, defoliation mitigated the effect of fertilization on the root water content, as well as on the proportion of fine roots and their carbohydrate concentrations by reversing the outcomes. Elevation in temperature decreased and elevation in CO2 increased the absolute contents of total nonstructural carbohydrates, whereas fertilization alleviated both these effects. Also the root length and mass increased by CO2 elevation. This confirms that surplus carbon in birch tissues is used as a substrate for storage compounds and for cell wall synthesis. To conclude, our results indicate that some, but not all elements of climate change alter belowground carbon gain and root morphology in defoliated silver birch seedlings. PMID

  20. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.)

    PubMed Central

    2010-01-01

    Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via

  1. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L.

    PubMed

    Zhu, Qian-Hao; Zhang, Jian; Liu, Dexin; Stiller, Warwick; Liu, Dajun; Zhang, Zhengsheng; Llewellyn, Danny; Wilson, Iain

    2016-02-01

    Diverse leaf morphology has been observed among accessions of Gossypium hirsutum, including okra leaf, which has advantages and disadvantages in cotton production. The okra leaf locus has been mapped to chromosome 15 of the Dt subgenome, but the underlying gene has yet to be identified. In this study, we used a combination of targeted association analysis, F2 population-based fine mapping, and comparative sequencing of orthologues to identify a candidate gene underlying the okra leaf trait in G. hirsutum. The okra leaf gene identified, GhOKRA, encoded a homeodomain leucine-zipper class I protein, whose closely related genes in several other plant species have been shown to be involved in regulating leaf morphology. The transcript levels of GhOKRA in shoot apices were positively correlated with the phenotypic expression of the okra leaf trait. Of the multiple sequence variations observed in the coding region among GrOKRA of Gossypium raimondii and GhOKRA-Dt of normal and okra/superokra leaf G. hirsutum accessions, a non-synonymous substitution near the N terminus and the variable protein sequences at the C terminus may be related to the leaf shape difference. Our results suggest that both transcription and protein activity of GhOKRA may be involved in regulating leaf shape. Furthermore, we found that non-reciprocal homoeologous recombination, or gene conversion, may have played a role in the origin of the okra leaf allele. Our results provided tools for further investigating and understanding the fundamental biological processes that are responsible for the cotton leaf shape variation and will help in the design of cotton plants with an ideal leaf shape for enhanced cotton production. PMID:26567355

  2. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L

    PubMed Central

    Zhu, Qian-Hao; Zhang, Jian; Liu, Dexin; Stiller, Warwick; Liu, Dajun; Zhang, Zhengsheng; Llewellyn, Danny; Wilson, Iain

    2016-01-01

    Diverse leaf morphology has been observed among accessions of Gossypium hirsutum, including okra leaf, which has advantages and disadvantages in cotton production. The okra leaf locus has been mapped to chromosome 15 of the Dt subgenome, but the underlying gene has yet to be identified. In this study, we used a combination of targeted association analysis, F2 population-based fine mapping, and comparative sequencing of orthologues to identify a candidate gene underlying the okra leaf trait in G. hirsutum. The okra leaf gene identified, GhOKRA, encoded a homeodomain leucine-zipper class I protein, whose closely related genes in several other plant species have been shown to be involved in regulating leaf morphology. The transcript levels of GhOKRA in shoot apices were positively correlated with the phenotypic expression of the okra leaf trait. Of the multiple sequence variations observed in the coding region among GrOKRA of Gossypium raimondii and GhOKRA-D t of normal and okra/superokra leaf G. hirsutum accessions, a non-synonymous substitution near the N terminus and the variable protein sequences at the C terminus may be related to the leaf shape difference. Our results suggest that both transcription and protein activity of GhOKRA may be involved in regulating leaf shape. Furthermore, we found that non-reciprocal homoeologous recombination, or gene conversion, may have played a role in the origin of the okra leaf allele. Our results provided tools for further investigating and understanding the fundamental biological processes that are responsible for the cotton leaf shape variation and will help in the design of cotton plants with an ideal leaf shape for enhanced cotton production. PMID:26567355

  3. Declines in dissolved silica concentrations in western Virginia streams (1988-2003): Gypsy moth defoliation stimulates diatoms?

    NASA Astrophysics Data System (ADS)

    Grady, Amy E.; Scanlon, Todd M.; Galloway, James N.

    2007-03-01

    Dissolved silica concentrations in western Virginia streams showed a significant bias toward declines (p < 0.0001) over the time period from 1988 to 2003. Streams with the greatest declines were those that had the highest mean dissolved silica concentrations, specific to watersheds underlain by basaltic and granitic bedrock. We examined potential geochemical, hydrological, and biological factors that could account for the observed widespread declines, focusing on six core watersheds where weekly stream chemistry data were available. No relationships were evident between stream water dissolved silica concentrations and pH, a finding supported by the results from a geochemical model applied to the dominant bedrock mineralogy. Along with changes in watershed acidity, changes in precipitation and discharge were also discounted since no significant trends were observed over the study period. Analyses of two longer-term data sets that extend back to 1979 revealed that the initiation of the dissolved silica declines coincided with the timing of a gypsy moth (Lymantria dispar) defoliation event. We develop a conceptual model centered on benthic diatoms, which are found within each of the six core watersheds but in greater abundance in the more silica-rich streams. Gypsy moth defoliation led to greater sunlight penetration and enhanced nitrate concentrations in the streams, which could have spurred population growth and silica uptake. The model can explain why the observed declines are primarily driven by decreased concentrations during low-flow conditions. This study illustrates lasting effects of disturbance on watershed biogeochemistry, in this case causing decadal-scale variability in stream water dissolved silica concentrations.

  4. Breeding Potential of Introgression Lines Developed from Interspecific Crossing between Upland Cotton (Gossypium hirsutum) and Gossypium barbadense: Heterosis, Combining Ability and Genetic Effects

    PubMed Central

    Li, Xingli; Pei, Wenfeng

    2016-01-01

    Upland cotton (Gossypium hirstum L.), which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs) in Upland cotton with G. barbadense germplasm integration has not been well addressed. This study involved six ILs developed from an interspecific crossing and backcrossing between Upland cotton and G. barbadense and represented one of the first studies to investigate breeding potentials of a set of ILs using a full diallel analysis. High mid-parent heterosis was detected in several hybrids between ILs and a commercial cultivar, which also out-yielded the high-yielding cultivar parent in F1, F2 and F3 generations. A further analysis indicated that general ability (GCA) variance was predominant for all the traits, while specific combining ability (SCA) variance was either non-existent or much lower than GCA. The estimated GCA effects and predicted additive effects for parents in each trait were positively correlated (at P<0.01). Furthermore, GCA and additive effects for each trait were also positively correlated among generations (at P<0.05), suggesting that F2 and F3 generations can be used as a proxy to F1 in analyzing combining abilities and estimating genetic parameters. In addition, differences between reciprocal crosses in F1 and F2 were not significant for yield, yield components and fiber quality traits. But maternal effects appeared to be present for seed oil and protein contents in F3. This study identified introgression lines as good general combiners for yield and fiber quality improvement and hybrids with high heterotic vigor in yield, and therefore provided useful information for further utilization of introgression lines in cotton breeding. PMID:26730964

  5. Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum.

    PubMed

    Zheng, J Y; Oluoch, G; Riaz Khan, M K; Wang, X X; Cai, X Y; Zhou, Z L; Wang, C Y; Wang, Y H; Li, X Y; Liu, F; Wang, K B

    2016-01-01

    Cotton is one of the most important natural fiber crops in the world. Its growth and yield is greatly limited by drought. A quantitative trait locus (QTL) analysis was therefore conducted to investigate the genetic basis of drought tolerance in cotton (Gossypium spp) using 188 F2:3 lines developed from an inter-specific cross between a wild cotton species, G. tomentosum, and an upland cotton, G. hirsutum (CRI-12). A genetic map was constructed using 1295 simple sequence repeat markers, which amplified 1342 loci, distributed on 26 chromosomes, covering 3328.24 cM. A field experiment was conducted in two consecutive years (2014 and 2015) and 11 morphological and physiological traits were recorded under water-limited (W1)/well-watered (W2) regimes at three growth stages (bud, flowering, and full boll). The traits measured included chlorophyll content, plant height, leaf area, leaf number, leaf fresh weight, leaf dry weight, boll weight, number of bolls per plant, and the number of fruiting branches. Sixty-seven and 35 QTLs were found under the W1 and W2 conditions, respectively. Of these, the majority exhibited partial dominance or over-dominance genetic effects for increasing the trait values. Four consistent QTLs were found under the W1 treatment on chromosomes 5, 8, 9, and 16, whereas no consistent QTL was found in W2. Thirteen QTL clusters were also identified on nine chromosomes (2, 3, 5, 6, 9, 14, 15, 16, and 21). These results will help to elucidate the genetic basis of drought tolerance in cotton. PMID:27525919

  6. A comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium hirsutum × Gossypium barbadense population.

    PubMed

    Man, Wu; Zhang, Liyuan; Li, Xihua; Xie, Xiaobing; Pei, Wenfeng; Yu, Jiwen; Yu, Shuxun; Zhang, Jinfa

    2016-08-01

    Upland cotton (Gossypium hirsutum L.) is the most important fiber crop, and its lint-yield improvement is impeded due to its narrow genetic base and the lack of understanding of the genetic basis of yield. Backcross inbred lines (BILs) or near-isogenic lines (NILs) in the same genetic background differing in lint yield, developed through advanced backcrossing, provide an important genomic resource to study the molecular genetic basis of lint yield. In the present study, a high-yield (HY) group and a low-yield (LY) group each with three BILs were selected from a BIL population between G. hirsutum and G. barbadense. Using a microarray-based comparative transcriptome analysis on developing fibers at 10 days post-anthesis (DPA) between the two groups, 1486 differentially expressed genes (DEGs) were identified. A total of 212 DEGs were further mapped in the regions of 24 yield QTL and 11 yield trait QTL hotspots as reported previously, and 81 DEGs mapped with the 7 lint-yield QTL identified in the BIL population from which the two sets of BILs were selected. Gene Ontology annotations and Blast-Mapping-Annotation-KEGG analysis via Blast2GO revealed that more DEGs were associated with catalytic activity and binding, followed by transporters, nucleic acid binding transcription factors, structural molecules and molecular transducer activities. Six DEGs were chosen for a quantitative RT-PCR assay, and the results were consistent with the microarray analysis. The development of DEGs-based markers revealed that 7 single strand conformation polymorphism-based single nucleotide polymorphic (SSCP-SNP) markers were associated with yield traits, and 3 markers with lint yield. In the present study, we identified a number of yield and yield component QTL-co-localizing DEGs and developed several DEG-based SSCP-SNP markers for the traits, thereby providing a set of candidate genes for molecular breeding and genetic manipulation of lint yield in cotton. PMID:27256327

  7. Breeding Potential of Introgression Lines Developed from Interspecific Crossing between Upland Cotton (Gossypium hirsutum) and Gossypium barbadense: Heterosis, Combining Ability and Genetic Effects.

    PubMed

    Zhang, Jinfa; Wu, Man; Yu, Jiwen; Li, Xingli; Pei, Wenfeng

    2016-01-01

    Upland cotton (Gossypium hirstum L.), which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs) in Upland cotton with G. barbadense germplasm integration has not been well addressed. This study involved six ILs developed from an interspecific crossing and backcrossing between Upland cotton and G. barbadense and represented one of the first studies to investigate breeding potentials of a set of ILs using a full diallel analysis. High mid-parent heterosis was detected in several hybrids between ILs and a commercial cultivar, which also out-yielded the high-yielding cultivar parent in F1, F2 and F3 generations. A further analysis indicated that general ability (GCA) variance was predominant for all the traits, while specific combining ability (SCA) variance was either non-existent or much lower than GCA. The estimated GCA effects and predicted additive effects for parents in each trait were positively correlated (at P<0.01). Furthermore, GCA and additive effects for each trait were also positively correlated among generations (at P<0.05), suggesting that F2 and F3 generations can be used as a proxy to F1 in analyzing combining abilities and estimating genetic parameters. In addition, differences between reciprocal crosses in F1 and F2 were not significant for yield, yield components and fiber quality traits. But maternal effects appeared to be present for seed oil and protein contents in F3. This study identified introgression lines as good general combiners for yield and fiber quality improvement and hybrids with high heterotic vigor in yield, and therefore provided useful information for further utilization of introgression lines in cotton breeding. PMID:26730964

  8. Plot- and landscape-level changes in climate and vegetation following defoliation of exotic saltcedar (Tamarix sp.) from the biocontrol agent Diorhabda carinulata along a stream in the Mojave Desert (USA)

    USGS Publications Warehouse

    Bateman, H.L.; Nagler, P.L.; Glenn, E.P.

    2013-01-01

    The biocontrol agent, northern tamarisk beetle (Diorhabda carinulata), has been used to defoliate non-native saltcedar (Tamarix spp.) in USA western riparian systems since 2001. Biocontrol has the potential to impact biotic communities and climatic conditions in affected riparian areas. To determine the relationships between biocontrol establishment and effects on vegetation and climate at the plot and landscape scales, we measured temperature, relative humidity, foliage canopy, solar radiation, and used satellite imagery to assess saltcedar defoliation and evapotranspiration (ET) along the Virgin River in the Mojave Desert. Following defoliation solar radiation increased, daily humidity decreased, and maximum daily temperatures tended to increase. MODIS and Landsat satellite imagery showed defoliation was widespread, resulting in reductions in ET and vegetation indices. Because biocontrol beetles are spreading into new saltcedar habitats on arid western rivers, and the eventual equilibrium between beetles and saltcedar is unknown, it is necessary to monitor trends for ecosystem functions and higher trophic-level responses in habitats impacted by biocontrol.

  9. Sister-chromatid exchanges and cell-cycle delay in Chinese hamster V79 cells treated with 9 organophosphorus compounds (8 pesticides and 1 defoliant).

    PubMed

    Chen, H H; Sirianni, S R; Huang, C C

    1982-03-01

    Significant increase of sister-chromatid exchanges (SCE) in V79 cells treated with 2 organophosphorus pesticides (OPP), fenthion and oxydemeton-methyl, was observed. The other 7 compounds (6 OPP and 1 defoliant) namely, amaze, azinphos-methyl, bolstar, DEF-defoliant, fensulfothion, monitor and nemacur caused no increase of SCE frequencies at the doses tested. All the compounds except fensulfothion and oxydemeton-methyl induced cell-cycle delay in varying degrees. Cell-cycle delay caused by an OPP was found to be dose-dependent. Based on these data as well as others reported, it would appear that OPP which induce no SCE increase and no or slight cell-cycle delay could be considered as good candidates to substitute the pesticides that have been found to be harmful to the environment. PMID:6211614

  10. Development of a data management front end for use with a LANDSAT based information system. [assessing gypsy moth defoliation damage in Pennsylvania

    NASA Technical Reports Server (NTRS)

    Turner, B. J. (Principal Investigator)

    1982-01-01

    A user friendly front end was constructed to facilitate access to the LANDSAT mosaic data base supplied by JPL and to process both LANDSAT and ancillary data. Archieval and retrieval techniques were developed to efficiently handle this data base and make it compatible with requirements of the Pennsylvania Bureau of Forestry. Procedures are ready for: (1) forming the forest/nonforest mask in ORSER compressed map format using GSFC-supplied classification procedures; (2) registering data from a new scene (defoliated) to the mask (which may involve mosaicking if the area encompasses two LANDSAT scenes; (3) producing a masked new data set using the MASK program; (4) analyzing this data set to produce a map showing degrees of defoliation, output on the Versatec plotter; and (5) producing color composite maps by a diazo-type process.

  11. Pp6-FEH1 encodes an enzyme for degradation of highly polymerized levan and is transcriptionally induced by defoliation in timothy (Phleum pratense L.).

    PubMed

    Tamura, Ken-ihi; Sanada, Yasuharu; Tase, Kazuhiro; Komatsu, Toshinori; Yoshida, Midori

    2011-06-01

    The ability of grasses to regrow after defoliation by cutting or grazing is a vital factor in their survival and an important trait when they are used as forage crops. In temperate grass species accumulating fructans, defoliation induces the activity of a fructan exohydrolase (FEH) that degrades fructans to serve as a carbon source for regrowth. Here, a cDNA from timothy was cloned, named Pp6-FEH1, that showed similarity to wheat fructan 6-exohydrolase (6-FEH). The recombinant enzyme expressed in Pichia pastoris completely degraded fructans that were composed mainly of β(2,6)-linked and linear fructans (levan) with a high degree of polymerization (DP) in the crown tissues of timothy. The substrate specificity of Pp6-FEH1 differed from previously characterized enzymes with 6-FEH activity in fructan-accumulating plants: (i) Pp6-FEH1 showed 6-FEH activity against levan (mean DP 20) that was 4-fold higher than against 6-kestotriose (DP 3), indicating that Pp6-FEH1 has a preference for β(2,6)-linked fructans with high DP; (ii) Pp6-FEH1 had significant activity against β(2,1)-linked fructans, but considerably less than against β(2,6)-linked fructans; (iii) Pp6-FEH1 had weak invertase activity, and its 6-FEH activity was inhibited slightly by sucrose. In the stubble of seedlings and in young haplocorms from adult timothy plants, transcripts of Pp6-FEH1 were significantly increased within 3 h of defoliation, followed by an increase in 6-FEH activity and in the degradation of fructans. These results suggest that Pp6-FEH1 plays a role in the degradation of fructans and the mobilization of carbon sources for regrowth after defoliation in timothy. PMID:21317211

  12. Pp6-FEH1 encodes an enzyme for degradation of highly polymerized levan and is transcriptionally induced by defoliation in timothy (Phleum pratense L.)

    PubMed Central

    Tamura, Ken-ichi; Sanada, Yasuharu; Tase, Kazuhiro; Komatsu, Toshinori; Yoshida, Midori

    2011-01-01

    The ability of grasses to regrow after defoliation by cutting or grazing is a vital factor in their survival and an important trait when they are used as forage crops. In temperate grass species accumulating fructans, defoliation induces the activity of a fructan exohydrolase (FEH) that degrades fructans to serve as a carbon source for regrowth. Here, a cDNA from timothy was cloned, named Pp6-FEH1, that showed similarity to wheat fructan 6-exohydrolase (6-FEH). The recombinant enzyme expressed in Pichia pastoris completely degraded fructans that were composed mainly of β(2,6)-linked and linear fructans (levan) with a high degree of polymerization (DP) in the crown tissues of timothy. The substrate specificity of Pp6-FEH1 differed from previously characterized enzymes with 6-FEH activity in fructan-accumulating plants: (i) Pp6-FEH1 showed 6-FEH activity against levan (mean DP 20) that was 4-fold higher than against 6-kestotriose (DP 3), indicating that Pp6-FEH1 has a preference for β(2,6)-linked fructans with high DP; (ii) Pp6-FEH1 had significant activity against β(2,1)-linked fructans, but considerably less than against β(2,6)-linked fructans; (iii) Pp6-FEH1 had weak invertase activity, and its 6-FEH activity was inhibited slightly by sucrose. In the stubble of seedlings and in young haplocorms from adult timothy plants, transcripts of Pp6-FEH1 were significantly increased within 3 h of defoliation, followed by an increase in 6-FEH activity and in the degradation of fructans. These results suggest that Pp6-FEH1 plays a role in the degradation of fructans and the mobilization of carbon sources for regrowth after defoliation in timothy. PMID:21317211

  13. Does gibberellin biosynthesis play a critical role in the growth of Lolium perenne? Evidence from a transcriptional analysis of gibberellin and carbohydrate metabolic genes after defoliation

    PubMed Central

    Liu, Qianhe; Jones, Chris S.; Parsons, Anthony J.; Xue, Hong; Rasmussen, Susanne

    2015-01-01

    Global meat and milk production depends to a large extent on grazed pastures, with Lolium perenne being the major forage grass in temperate regions. Defoliation and subsequent regrowth of leaf blades is a major and essential event with respect to L. perenne growth and productivity. Following defoliation, carbohydrates (mainly fructans and sucrose) have to be mobilized from heterotrophic tissues to provide energy and carbon for regrowth of photosynthetic tissues. This mobilization of reserve carbohydrates requires a substantial change in the expression of genes coding for enzymes involved in carbohydrate metabolism. Here we tested the hypothesis that gibberellins (GA) are at the core of the processes regulating the expression of these genes. Thus, we examined the transcript profiles of genes involved in carbohydrate and GA metabolic pathways across a time course regrowth experiment. Our results show that following defoliation, the immediate reduction of carbohydrate concentrations in growing tissues is associated with a concomitant increase in the expression of genes encoding carbohydrate mobilizing invertases, and was also associated with a strong decrease in the expression of fructan synthesizing fructosyltransferase genes. We also show that the decrease in fructan levels is preceded by increased expression of the GA activating gene GA3-oxidase and decreased expression of the GA inactivating gene GA2-oxidase in sheaths. GA3-oxidase expression was negatively, while GA2-oxidase positively linked to sucrose concentrations. This study provides indicative evidence that gibberellins might play a role in L. perenne regrowth following defoliation and we hypothesize that there is a link between gibberellin regulation and sugar metabolism in L. perenne. PMID:26579182

  14. Fluxes of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Perennial Ryegrass Recovering from Defoliation. The Regrowing Tiller and Its Component Functionally Distinct Zones1

    PubMed Central

    Schnyder, Hans; de Visser, Ries

    1999-01-01

    The quantitative significance of reserves and current assimilates in regrowing tillers of severely defoliated plants of perennial ryegrass (Lolium perenne L.) was assessed by a new approach, comprising 13C/12C and 15N/14N steady-state labeling and separation of sink and source zones. The functionally distinct zones showed large differences in the kinetics of currently assimilated C and N. These are interpreted in terms of ”substrate” and ”tissue” flux among zones and C and N turnover within zones. Tillers refoliated rapidly, although C and N supply was initially decreased. Rapid refoliation was associated with (a) transient depletion of water-soluble carbohydrates and dilution of structural biomass in the immature zone of expanding leaves, (b) rapid transition to current assimilation-derived growth, and (c) rapid reestablishment of a balanced C:N ratio in growth substrate. This balance (C:N, approximately 8.9 [w/w] in new biomass) indicated coregulation of growth by C and N supply and resulted from complementary fluxes of reserve- and current assimilation-derived C and N. Reserves were the dominant N source until approximately 3 d after defoliation. Amino-C constituted approximately 60% of the net influx of reserve C during the first 2 d. Carbohydrate reserves were an insignificant source of C for tiller growth after d 1. We discuss the physiological mechanisms contributing to defoliation tolerance. PMID:10198102

  15. Increase of cold tolerance in cotton plant (Gossypium hirsutum L.) by mepiquat chloride

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Rodriguez, R. R. (Principal Investigator); Huang, S. Y.; Rittig, F. R.

    1982-01-01

    Three mepiquat chloride (MC) concentrations - 40, 70, and 100 g a.i./ha - were used to spray cotton (Gossypium hirsutum L., cultival McNair 220) plants to determine whether or not MC would increase their cold tolerance. Seven to ten days after the spray, the plants were exposed to three different cold treatments. No important difference in cold damage was noticed between the control and the MC-treated plants when they were exposed repeatedly to 4.5 C. No plants died when exposed to 0.5 C for 12 h; however, 90% of the 1st and 2nd leaves of the control plants were damaged. This was three times more damage than those leaves of plants treated with 70 and 100 g a.i./ha MC concentrations; 60% f the control and 10-20% of the MC-treated plants died when the plants were subjected to a cold hardening process with 15.5 C day (12 h) and 1.7 C night (12 h) for 10 days, and then, held at -2.2 C for 24 hours. The electrolyte leakage and reflectance measurement data showed that the cell membranes of the MC-treated plants sustained much less damage than those of the control. Freezing injury was easily assessed by reflectance measurements at the 1.65 micrometer wavelength.

  16. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    PubMed

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications. PMID:26965558

  17. Analysis of upland cotton (Gossypium hirsutum) response to Verticillium dahliae inoculation by transcriptome sequencing.

    PubMed

    Shao, B X; Zhao, Y L; Chen, W; Wang, H M; Guo, Z J; Gong, H Y; Sang, X H; Cui, Y L; Wang, C H

    2015-01-01

    Verticillium wilt is one of the main diseases in cotton (Gossypium hirsutum), severely reduces yield and fiber quality, and is difficult to be con-trolled effectively. At present, the molecular mechanism that confers resistance to this disease is unclear. Transcriptome sequencing is an important method to detect resistance genes, explore metabolic pathways, and study resistance mechanisms. In this study, the transcriptome of a disease-resistant inbred cot-ton line inoculated with Verticillium dahliae was sequenced. A total of 126,402 unigenes were obtained using de novo assembly and data analysis, 99,712 (78.88%) of which were annotated into the Nr, Nt, Swiss-Prot, KEGG, COG, and GO databases. The expression patterns of 16 candidate disease-resis-tance genes showed that some genes were upregulated soon after V. dahliae inoculation and others were upregulated later, which may indicate instanta-neous basal defense and lagged specific defense, respectively. We conducted a preliminary analysis of the transcriptome database, which will contribute to further research regarding the cloning of disease-resistance genes. PMID:26535625

  18. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum

    PubMed Central

    Fan, Kai; Bibi, Noreen; Gan, Susheng; Li, Feng; Yuan, Shuna; Ni, Mi; Wang, Ming; Shen, Hao; Wang, Xuede

    2015-01-01

    Premature leaf senescence has a negative influence on the yield and quality of cotton, and several genes have been found to regulate leaf senescence. Howeer, many underlying transcription factors are yet to be identified. In this study, a NAP-like transcription factor (GhNAP) was isolated from Gossypium hirsutum. GhNAP has the typical NAC structure and a conserved novel subdomain in its divergent transcription activation region (TAR). GhNAP was demonstrated to be a nuclear protein, and it showed transcriptional activation activity in yeast. Furthermore, the expression of GhNAP was closely associated with leaf senescence. GhNAP could rescue the delayed-senescence phenotype of the atnap null mutant. Overexpression of GhNAP could cause precocious senescence in Arabidopsis. However, down-regulation of GhNAP delayed leaf senescence in cotton, and affected cotton yield and its fibre quality. Moreover, the expression of GhNAP can be induced by abscisic acid (ABA), and the delayed leaf senescence phenotype in GhNAPi plants might be caused by the decreased ABA level and reduced expression level of ABA-responsive genes. All of the results suggested that GhNAP could regulate the leaf senescence via the ABA-mediated pathways and was further related to the yield and quality in cotton. PMID:25991739

  19. SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing1

    PubMed Central

    Logan-Young, Carla Jo; Yu, John Z.; Verma, Surender K.; Percy, Richard G.; Pepper, Alan E.

    2015-01-01

    Premise of the study: Single-nucleotide polymorphism (SNP) marker discovery in plants with complex allotetraploid genomes is often confounded by the presence of homeologous loci (along with paralogous and orthologous loci). Here we present a strategy to filter for SNPs representing orthologous loci. Methods and Results: Using Illumina next-generation sequencing, 54 million reads were collected from restriction enzyme–digested DNA libraries of a diversity of Gossypium taxa. Loci with one to three SNPs were discovered using the Stacks software package, yielding 25,529 new cotton SNP combinations, including those that are polymorphic at both interspecific and intraspecific levels. Frequencies of predicted dual-homozygous (aa/bb) marker polymorphisms ranged from 6.7–11.6% of total shared fragments in intraspecific comparisons and from 15.0–16.4% in interspecific comparisons. Conclusions: This resource provides dual-homozygous (aa/bb) marker polymorphisms. Both in silico and experimental validation efforts demonstrated that these markers are enriched for single orthologous loci that are homozygous for alternative alleles. PMID:25798340

  20. Genome-Wide Mining, Characterization, and Development of Microsatellite Markers in Gossypium Species

    PubMed Central

    Wang, Qiong; Fang, Lei; Chen, Jiedan; Hu, Yan; Si, Zhanfeng; Wang, Sen; Chang, Lijing; Guo, Wangzhen; Zhang, Tianzhen

    2015-01-01

    Although much research has been conducted to characterize microsatellites and develop markers, the distribution of microsatellites remains ambiguous and the use of microsatellite markers in genomic studies and marker-assisted selection is limited. To identify microsatellites for cotton research, we mined 100,290, 83,160, and 56,937 microsatellites with frequencies of 41.2, 49.1, and 74.8 microsatellites per Mb in the recently sequenced Gossypium species: G. hirsutum, G. arboreum, and G. raimondii, respectively. The distributions of microsatellites in their genomes were non-random and were positively and negatively correlated with genes and transposable elements, respectively. Of the 77,996 developed microsatellite markers, 65,498 were physically anchored to the 26 chromosomes of G. hirsutum with an average marker density of 34 markers per Mb. We confirmed 67,880 (87%) universal and 7,705 (9.9%) new genic microsatellite markers. The polymorphism was estimated in above three species by in silico PCR and validated with 505 markers in G. hirsutum. We further predicted 8,825 polymorphic microsatellite markers within G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124. In our study, genome-wide mining and characterization of microsatellites, and marker development were very useful for the saturation of the allotetraploid genetic linkage map, genome evolution studies and comparative genome mapping. PMID:26030481

  1. Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in Chado.

    PubMed

    Jung, Sook; Lee, Taein; Ficklin, Stephen; Yu, Jing; Cheng, Chun-Huai; Main, Dorrie

    2016-01-01

    The Genome Database for Rosaceae (GDR) and CottonGen are comprehensive online data repositories that provide access to integrated genomic, genetic and breeding data through search, visualization and analysis tools for Rosaceae crops and Gossypium (cotton). These online databases use Chado, an open-source, generic and ontology-driven database schema for biological data, as the primary data storage platform. Chado is highly normalized and uses ontologies to indicate the 'types' of data. Therefore, Chado is flexible such that it has been used to house genomic, genetic and breeding data for GDR and CottonGen. These data include whole genome sequence and annotation, transcripts, molecular markers, genetic maps, Quantitative Trait Loci, Mendelian Trait Loci, traits, germplasm, pedigrees, large scale phenotypic and genotypic data, ontologies and publications. We provide information about how to store these types of data in Chado using GDR and CottonGen as examples sites that were converted from an older legacy infrastructure. Database URL: GDR (www.rosaceae.org), CottonGen (www.cottongen.org). PMID:26989146

  2. Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in Chado

    PubMed Central

    Jung, Sook; Lee, Taein; Ficklin, Stephen; Yu, Jing; Cheng, Chun-Huai; Main, Dorrie

    2016-01-01

    The Genome Database for Rosaceae (GDR) and CottonGen are comprehensive online data repositories that provide access to integrated genomic, genetic and breeding data through search, visualization and analysis tools for Rosaceae crops and Gossypium (cotton). These online databases use Chado, an open-source, generic and ontology-driven database schema for biological data, as the primary data storage platform. Chado is highly normalized and uses ontologies to indicate the ‘types’ of data. Therefore, Chado is flexible such that it has been used to house genomic, genetic and breeding data for GDR and CottonGen. These data include whole genome sequence and annotation, transcripts, molecular markers, genetic maps, Quantitative Trait Loci, Mendelian Trait Loci, traits, germplasm, pedigrees, large scale phenotypic and genotypic data, ontologies and publications. We provide information about how to store these types of data in Chado using GDR and CottonGen as examples sites that were converted from an older legacy infrastructure. Database URL: GDR (www.rosaceae.org), CottonGen (www.cottongen.org) PMID:26989146

  3. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  4. Surface plasmon resonance detection of transgenic Cry1Ac cotton ( Gossypium spp.).

    PubMed

    Zhao, Zhuoya; Chen, Yanshan; Xu, Wenzhong; Ma, Mi

    2013-03-27

    The detection and identification of genetically modified (GM) plants are challenging issues that have arisen from the potential negative impacts of extensive cultivation of transgenic plants. The screening process is a long-term focus and needs specific detection strategies. Surface plasmon resonance (SPR) has been used to detect a variety of biomolecules including proteins and nucleic acids due to its ability to monitor specific intermolecular interactions. In the present study, two high-throughput, label-free, and specific methods based on SPR technology were developed to detect transgenic Cry1Ac cotton ( Gossypium spp.) by separately targeting protein and DNA. In the protein-based detection system, monoclonal anti-Cry1Ac antibodies were immobilized on the surface of a CM5 sensor chip. Conventional cotton samples were used to define the detection threshold. Transgenic cotton was easily identified within 5 min per sample. For the DNA-based model, a 25-mer biotinylated oligonucleotide probe was immobilized on an SA sensor chip. PCR products of Cry1Ac (230 bp) were used to investigate the reaction conditions. The sensitivity of the constructed sensor chip was identified at concentrations as low as 0.1 nM based on its complementary base pairing. PMID:23470135

  5. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.).

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Pathak, Dharminder; Chen, Sixue; Wendel, Jonathan F

    2014-12-01

    Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution. PMID:25156487

  6. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development

    PubMed Central

    Ma, Jun; Liu, Fang; Wang, Qinglian; Wang, Kunbo; Jones, Don C.; Zhang, Baohong

    2016-01-01

    TCP proteins are plant-specific transcription factors implicated to perform a variety of physiological functions during plant growth and development. In the current study, we performed for the first time the comprehensive analysis of TCP gene family in a diploid cotton species, Gossypium arboreum, including phylogenetic analysis, chromosome location, gene duplication status, gene structure and conserved motif analysis, as well as expression profiles in fiber at different developmental stages. Our results showed that G. arboreum contains 36 TCP genes, distributing across all of the thirteen chromosomes. GaTCPs within the same subclade of the phylogenetic tree shared similar exon/intron organization and motif composition. In addition, both segmental duplication and whole-genome duplication contributed significantly to the expansion of GaTCPs. Many these TCP transcription factor genes are specifically expressed in cotton fiber during different developmental stages, including cotton fiber initiation and early development. This suggests that TCP genes may play important roles in cotton fiber development. PMID:26857372

  7. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  8. Generation of transcriptome profiling and gene functional analysis in Gossypium hirsutum upon Verticillium dahliae infection.

    PubMed

    Zhang, Wenwei; Zhang, Huachong; Qi, Fangjun; Jian, Guiliang

    2016-05-13

    Verticillium wilt caused by the soil-borne fungus Verticillium dahliae, is a devastating disease in cotton. To get more candidate genes related to wilt resistance, a normalized, full-length cDNA library was used to generate the transcriptome profile from a wilt-resistant Gossypium hirsutum variety (Zhongzhimian KV3) upon V. dahliae strain V991 infection. Total 3486 high-quality ESTs were focused from randomly selected 4000 clones, which included 3065 singletons and 421 contigs. To categorize these unigenes, they were compared to functional domain databases. Total 106 unigenes were found to be homologous to known defense-related genes. Among them, PR genes were the major group. Furthermore, knockdown of GhWRKY22, GhWRKY33, GhChitinase, GhCML, and GhDirigent resulted in increased susceptibility of resistant cotton to V. dahliae infection. The results of transcriptome profiles and virus induced gene silencing (VIGS) analysis laid a good foundation for further investigation of cotton resistance to wilt disease. PMID:27038549

  9. Global analysis of the developmental dynamics of Gossypium hirsutum based on strand-specific transcriptome.

    PubMed

    Ma, Lei; Wang, Yanqin; Yan, Gentu; Wei, Shoujun; Zhou, Dayun; Kuang, Meng; Fang, Dan; Xu, Shuangjiao; Yang, Weihua

    2016-09-01

    Cotton is an economically important crop that provides both natural fiber and by-products such as oil and protein. Its global gene expression could provide insight into the biological processes underlying growth and development, which involve suites of genes expressed with temporal and spatial control by regulatory networks. Generally, the goal for cotton breeding is improvement of the fiber; thus, most previous research has focused on identifying genes specific to the fiber. However, seeds may also play an important role in fiber development. In this study, we constructed and systematically analyzed 21 strand-specific RNA-Seq libraries for Gossypium hirsutum, covering different tissues, organs and development stages, from which approximately 970 million reads were generated to provide a global view of gene expression during cotton development. The organ (tissue)-specific gene expression patterns were investigated, providing further insight into the dynamic programming associated with developmental processes and a way to study the coordination of development between fiber cells and ovules. Series of transcription factors and seed-specific genes have been identified as candidate genes that could elucidate key mechanisms and regulatory networks in nutrient accumulation during ovule development and in fiber development. This study reports comprehensive transcriptome dynamics at various stages of cotton development and will serve as a valuable genome-wide transcriptome resource for initial gene discovery and functional characterization of genes in cotton. PMID:26892265

  10. Genome-wide analysis and expression profiling of the phospholipase D gene family in Gossypium arboreum.

    PubMed

    Tang, Kai; Dong, Chunjuan; Liu, Jinyuan

    2016-02-01

    The plant phospholipase D (PLD) plays versatile functions in multiple aspects of plant growth, development, and stress responses. However, until now, our knowledge concerning the PLD gene family members and their expression patterns in cotton has been limited. In this study, we performed for the first time the genome-wide analysis and expression profiling of PLD gene family in Gossypium arboretum, and finally, a total of 19 non-redundant PLD genes (GaPLDs) were identified. Based on the phylogenetic analysis, they were divided into six well-supported clades (α, β/γ, δ, ε, ζ and φ). Most of the GaPLD genes within the same clade showed the similar exon-intron organization and highly conserved motif structures. Additionally, the chromosomal distribution pattern revealed that GaPLD genes were unevenly distributed across 10 of the 13 cotton chromosomes. Segmental duplication is the major contributor to the expansion of GaPLD gene family and estimated to have occurred from 19.61 to 20.44 million years ago when a recent large-scale genome duplication occurred in cotton. Moreover, the expression profiling provides the functional divergence of GaPLD genes in cotton and provides some new light on the molecular mechanisms of GaPLDα1 and GaPLDδ2 in fiber development. PMID:26718354

  11. Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.).

    PubMed Central

    Gao, Wenxiang; Chen, Z Jeffrey; Yu, John Z; Raska, Dwaine; Kohel, Russell J; Womack, James E; Stelly, David M

    2004-01-01

    We report the development and characterization of a "wide-cross whole-genome radiation hybrid" (WWRH) panel from cotton (Gossypium hirsutum L.). Chromosomes were segmented by gamma-irradiation of G. hirsutum (n = 26) pollen, and segmented chromosomes were rescued after in vivo fertilization of G. barbadense egg cells (n = 26). A 5-krad gamma-ray WWRH mapping panel (N = 93) was constructed and genotyped at 102 SSR loci. SSR marker retention frequencies were higher than those for animal systems and marker retention patterns were informative. Using the program RHMAP, 52 of 102 SSR markers were mapped into 16 syntenic groups. Linkage group 9 (LG 9) SSR markers BNL0625 and BNL2805 had been colocalized by linkage analysis, but their order was resolved by differential retention among WWRH plants. Two linkage groups, LG 13 and LG 9, were combined into one syntenic group, and the chromosome 1 linkage group marker BNL4053 was reassigned to chromosome 9. Analyses of cytogenetic stocks supported synteny of LG 9 and LG 13 and localized them to the short arm of chromosome 17. They also supported reassignment of marker BNL4053 to the long arm of chromosome 9. A WWRH map of the syntenic group composed of linkage groups 9 and 13 was constructed by maximum-likelihood analysis under the general retention model. The results demonstrate not only the feasibility of WWRH panel construction and mapping, but also complementarity to traditional linkage mapping and cytogenetic methods. PMID:15280245

  12. Photosynthesis and water-use efficiency of sugar maple (Acer saccharum) in relation to pear thrips defoliation.

    PubMed

    Ellsworth, D S; Tyree, M T; Parker, B L; Skinner, M

    1994-06-01

    An experimental introduction of pear thrips (Taeniothrips inconsequens Uzel), a major defoliator in sugar maple (Acer saccharum Marsh.) forests in northeastern North America, was conducted in a field plantation to determine if compensatory gas exchange occurs in response to feeding damage by this piercing-sucking insect. Sugar maple trees were enclosed in netting (167 micro m mesh) and pear thrips adults were introduced before leaf expansion in the spring. Pear thrips reduced whole-tree leaf area by approximately 23% and reduced leaf size (both mass and area) by 20% in the upper crown. Measurements of net CO(2) assimilation rate (A(net)) and stomatal conductance (g(s)) were made on tagged foliage that was later analyzed for stable carbon isotope composition (delta(13)C) to provide estimates of short- and long-term leaf water use efficiency (WUE). Pear thrips feeding reduced A(net) for fully expanded leaves by approximately 20%, although leaf chlorophyll content and leaf mass per unit area were apparently not affected. Comparison of A(net), g(s), instantaneous WUE and leaf delta(13)C between damaged and control trees as well as visibly undamaged versus moderately damaged foliage on pear thrips-infested trees indicated that there were no effects of pear thrips feeding damage on WUE or leaf delta(13)C. Long-term WUE among sugar maple trees in the field plantation, indicated by leaf delta(13)C analysis, was related to shorter-term estimates of leaf gas exchange behavior such as g(s) and calculated leaf intercellular CO(2) concentration (C(i)). We conclude that pear thrips feeding has no effect on leaf WUE, but at the defoliation levels in our experiment, it may reduce leaf A(net), as a result of direct tissue damage or through reduced g(s). Therefore, even small reductions in leaf A(net) by pear thrips feeding damage may have an important effect on the seasonal carbon balance of sugar maple when integrated over the entire growing season. PMID:14967678

  13. Interannual variation in leaf expansion and outbreak of a teak defoliator at a teak stand in northern Thailand.

    PubMed

    Tanaka, Katsunori; Tantasirin, Chatchai; Suzuki, Masakazu

    2011-07-01

    The leaf area index (LAI) is a key factor affecting tree growth in forests. Following the outbreak of a defoliator, the LAI declines, serving as a useful indicator in forest management. In this study, daily radiative transmittance from above the canopy, which decreases exponentially with increasing LAI, was measured in a teak plantation (Tectona grandis L. f.) in northern Thailand from March through July in 2001-2008. Volumetric soil moisture was also measured at depths of 0.1, 0.2, 0.4, and 0.6 m. The negative logarithmic value of the ratio of daily downward solar radiation on the forest floor to that above the canopy (NLR; -ln[Sb decrease/Sdecrease]), was calculated as an indicator of leaf flush and subsequent leaf expansion. The NLR data indicated that leaf expansion began in late March and continued to the beginning of May during all eight years (with the day the leaves began to expand defined as D(B)). In addition, the peak in NLR values (NLR(P)), corresponding to the lowest value of a 99% confidence interval, occurred in July. The day when NLR first reached NLR(P) was defined as D(P), which always occurred in June, 31-85 days after D(B). The NLR indicated an increase in the population of Hyblaea puera (a teak defoliator) that was associated with greatly decreased leaf areas during two growth periods (D(B)-D(P)): the earliest D(B)-D(P) in 2001 and the second-earliest D(B)-D(P) in 2008. In almost all cases, soil moisture data indicated that leaf expansion occurred after increases in soil moisture at depths of 0.1-0.4 m even without increases at 0.6 m; in contrast, increases in shallow soil moisture (0.1-0.2 m) were insufficient to trigger leaf expansion at the stand level. Periods of soil drought at 0.1-0.4-m soil depths inhibited leaf expansion, resulting in prolongation of the interval between D(B) and D(P) during those years in which the D(B)'s occurred chronologically close to one another. Moreover, when drought did not limit leaf expansion, the D

  14. Wood Anatomy and Insect Defoliator Systems: Is there an anatomical response to sustained feeding by the western spruce budworm (Choristoneura occidentalis) on Douglas-fir (Pseudotusga menziesii)?

    NASA Astrophysics Data System (ADS)

    Axelson, Jodi; Gärtner, Holger; Alfaro, René; Smith, Dan

    2013-04-01

    The western spruce budworm (Choristoneura occidentalis Freeman) is the most widespread and destructive defoliator of coniferous forests in western North America, and has a long-term coexistence with its primary host tree, Douglas-fir (Pseudotsuga menziesii Franco). Western spruce budworm (WSB) outbreaks usually last for several years, and cause reductions in annual growth, stem defects, and regeneration delays. In British Columbia, the WSB is the second most damaging insect after the mountain pine beetle, and sustained and/or severe defoliation can result in the mortality of host trees. Numerous studies have used tree rings to reconstruct WSB outbreaks across long temporal scales, to evaluate losses in stand productivity, and examine isotope ratios. Although some studies have looked at the impacts of artificial defoliation on balsam fir in eastern North America, there has been no prior research on how WSB outbreaks affect the anatomical structure of the stem as described by intra-annual wood density and potential cell size variations. The objective of this study was to anatomically examine the response of Douglas-fir to sustained WSB outbreaks in two regions of southern British Columbia. We hypothesize that the anatomical intra-annual characteristics of the tree rings, such as cell wall thickness, latewood cell size, and/or lumen area changes during sustained WSB outbreaks. To test this hypothesis we sampled four permanent sample plots in coastal and dry interior sites, which had annually resolved defoliation data collected over a 7-12 year period. At each site diameter-at-breast height (cm), height (m), and crown position were recorded and three increment cores were extracted from 25 trees. Increment cores were prepared to permit anatomical and x-ray density analyses. For each tree, a 15µm thick micro section was cut from the radial plane. Digital images of the micro sections were captured and processed. In each annual ring, features such as cell lumen area (µm2

  15. The state of microbial complexes in soils of forest ecosystems after fires and defoliation of stands by gypsy moths

    NASA Astrophysics Data System (ADS)

    Bogorodskaya, A. V.; Baranchikov, Yu. N.; Ivanova, G. A.

    2009-03-01

    The state of microbial cenoses in the soils of forest ecosystems damaged by fires of different strengths and gypsy moth outbreaks (Central Siberia) was assessed by the intensity of the basal respiration, the content of carbon of the microbial biomass, and the microbial metabolic quotient. The degree of the disturbance of the microbial cenoses in the soils under pine forests after fires was higher than that in the soils under the forests defoliated by gypsy moths. The greatest changes of the microbial complexes were recorded after the fires of high and medium intensity. In the litters, the content of the microbial biomass, the intensity of basal respiration, and the microbial metabolic quotient value were restored on the fifth year after the fires, whereas in the upper (0-10 cm) soil layer, these parameters still differed from those in the control variant, especially after the highly intense fires. After the weak fires, the ecophysiological state of the microbial complexes was restored within two-three years.

  16. Enzymatic response of the eucalypt defoliator Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae) to a bis-benzamidine proteinase Inhibitor. i.

    PubMed

    Marinho-Prado, Jeanne Scardini; Lourenção, A L; Guedes, R N C; Pallini, A; Oliveira, J A; Oliveira, M G A

    2012-10-01

    Ingestion of proteinase inhibitors leads to hyperproduction of digestive proteinases, limiting the bioavailability of essential amino acids for protein synthesis, which affects insect growth and development. However, the effects of proteinase inhibitors on digestive enzymes can lead to an adaptive response by the insect. In here, we assessed the biochemical response of midgut proteinases from the eucalypt defoliator Thyrinteina arnobia (Stoll) to different concentrations of berenil, a bis-benzamidine proteinase inhibitor, on eucalyptus. Eucalyptus leaves were immersed in berenil solutions at different concentrations and fed to larvae of T. arnobia. Mortality was assessed daily. The proteolytic activity in the midgut of T. arnobia was assessed after feeding on plants sprayed with aqueous solutions of berenil, fed to fifth instars of T. arnobia for 48 h before midgut removal for enzymatic assays. Larvae of T. arnobia were able to overcome the effects of the lowest berenil concentrations by increasing their trypsin-like activity, but not as berenil concentration increased, despite the fact that the highest berenil concentration resulted in overproduction of trypsin-like proteinases. Berenil also prevented the increase of the cysteine proteinases activity in response to trypsin inhibition. PMID:23950094

  17. Identification and expression of cotton (Gossypium hirsutum L.) plastidial carbonic anhydrase.

    PubMed

    Hoang, C V; Wessler, H G; Local, A; Turley, R B; Benjamin, R C; Chapman, K D

    1999-12-01

    Four carbonic anhydrase (CA) cDNA clones were isolated from a 48 h dark-grown cotton (Gossypium hirsutum L.) seedling cDNA library. Nucleotide sequence analysis revealed two different CA isoforms designated GhCA1 and GhCA2. The encoded polypeptides possess N-terminal serine/threonine-rich regions indicative of plastid transit peptides, and approximately 80% sequence identity to other plant plastidial beta-CAs. The GhCA1 cDNA encodes a nearly complete preprotein of 323 amino acids with a molecular mass of 34.9 kDa and a predicted mature protein of 224 amino acids with a molecular mass of 24.3 kDa. Eleven nucleotide differences within ORFs of GhCA1 and GhCA2 result in 5 conservative amino acid substitutions. The 3' GhCA2 untranslated region contains five additional substitutions and one single nucleotide addition. GhCA1 clones, nearly full-length or with 70% of the transit peptide deleted, were expressed as LacZ alpha fusion proteins in E. coli. Lysates of these strains contained 9-fold higher levels of CA activity as compared to untransformed controls and this activity was inhibited by CA-specific inhibitors. Sulfanilamide, acetazolamide, ethoxyzolamide, each at 10 mM, inhibited recombinant CA activity approximately 50%, 65%, and 75%, respectively. In plant tissue homogenates these inhibitors reduced CA activity by 50%, 70%, and 95%, respectively. Although CA activity was bighest in extracts of mature cotton leaves, probing total RNA with GhCA1 revealed CA transcript levels to be highest in the cotyledons of dark-grown cotton seedlings. Collectively, our data indicate the presence of a plastid-localized CA in cotyledons of germinated seeds, suggesting a role for CA in postgerminative growth. PMID:10682348

  18. Spatial and Temporal Variation in Fungal Endophyte Communities Isolated from Cultivated Cotton (Gossypium hirsutum)

    PubMed Central

    Ek-Ramos, María J.; Zhou, Wenqing; Valencia, César U.; Antwi, Josephine B.; Kalns, Lauren L.; Morgan, Gaylon D.; Kerns, David L.; Sword, Gregory A.

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  19. Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Bao-Hong; Pan, Xiao-Ping; Guo, Teng-Long; Wang, Qing-Lian; Anderson, Todd A

    2005-09-01

    Transgenic Bt cotton NewCott 33B and transgenic tfd A cotton TFD were chosen to evaluate pollen dispersal frequency and distance of transgenic cotton (Gossypium hirsutum L.) in the Huanghe Valley Cotton-producing Zone, China. The objective was to evaluate the efficacy of biosafety procedures used to reduce pollen movement. A field test plot of transgenic cotton (6 x 6 m) was planted in the middle of a nontransgenic field measuring 210 x 210 m. The results indicated that the pollen of Bt cotton or tfd A cotton could be dispersed into the environment. Out-crossing was highest within the central test plot where progeny from nontransgenic plants, immediately adjacent to transgenic plants, had resistant plant progeny at frequencies up to 10.48%. Dispersal frequency decreased significantly and exponentially as dispersal distance increased. The flow frequency and distance of tfd A and Bt genes were similar, but the pollen-mediated gene flow of tfd A cotton was higher and further to the transgenic block than that of Bt cotton (chi2 = 11.712, 1 degree of freedom, p < 0.001). For the tfd A gene, out-crossing ranged from 10.13% at 1 m to 0.04% at 50 m from the transgenic plants. For the Bt gene, out-crossing ranged from 8.16% at 1 m to 0.08% at 20 m from the transgenic plants. These data were fit to a power curve model: y = 10.1321x-1.4133 with a correlation coefficient of 0.999, and y = 8.0031x-1.483 with a correlation coefficient of 0.998, respectively. In this experiment, the farthest distance of pollen dispersal from transgenic cotton was 50 m. These results indicate that a 60-m buffer zone would serve to limit dispersal of transgenic pollen from small-scale field tests. PMID:16118411

  20. Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase.

    PubMed Central

    Ni, W; Trelease, R N; Eising, R

    1990-01-01

    Five charge isoforms of tetrameric catalase were isolated from cotyledons of germinated cotton (Gossypium hirsutum L.) seedlings. Denaturing isoelectric focusing of the individual isoforms in polyacrylamide gels indicated that isoforms A (most anodic) and E (most cathodic) consisted of one subunit of different charge, whereas isoforms B, C and D each consisted of a mixture of these two subunits. Thus the five isoforms apparently were formed through combinations of two subunits in different ratios. Labelling cotyledons in vivo with [35S]methionine at three daily intervals in the dark, and translation in vivo of polyadenylated RNA isolated from cotyledons at the same ages, revealed synthesis of two different subunits. One of the subunits was synthesized in cotyledons at all ages studied (days 1-3), whereas the other subunit was detected only at days 2 and 3. This differential expression of two catalase subunits helped explain previous results from this laboratory showing that the two anodic forms (A and B) found in maturing seeds were supplemented with three cathodic forms (C-E) after the seeds germinated. These subunit data also helped clarify our new findings that proteins of isoforms A, B and C (most active isoforms) accumulated in cotyledons of plants kept in the dark for 3 days, then gradually disappeared during the next several days, whereas isoforms D and E (least active isoforms) remained in the cells. This shift in isoform pattern occurred whether seedlings were kept in the dark or exposed to continuous light after day 3, although exposure to light enhanced this process. These sequential molecular events were responsible for the characteristic developmental changes (rise and fall) in total catalase activity. We believe that the isoform changeover is physiologically related to the changeover in glyoxysome to leaf-type-peroxisome metabolism. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1695843

  1. Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii.

    PubMed

    Hegde, Mahabaleshwar; Oliveira, Janser N; da Costa, Joao G; Bleicher, Ervino; Santana, Antonio E G; Bruce, Toby J A; Caulfield, John; Dewhirst, Sarah Y; Woodcock, Christine M; Pickett, John A; Birkett, Michael A

    2011-07-01

    The cotton aphid, Aphis gossypii (Homoptera: Aphididae), is increasing in importance as a pest worldwide since the introduction of Bt-cotton, which controls lepidopteran but not homopteran pests. The chemical ecology of interactions between cotton, Gossypium hirsutum (Malvaceae), A. gossypii, and the predatory lacewing Chrysoperla lucasina (Neuroptera: Chrysopidae), was investigated with a view to providing new pest management strategies. Behavioral tests using a four-arm (Pettersson) olfactometer showed that alate A. gossypii spent significantly more time in the presence of odor from uninfested cotton seedlings compared to clean air, but significantly less time in the presence of odor from A. gossypii infested plants. A. gossypii also spent significantly more time in the presence of headspace samples of volatile organic compounds (VOCs) obtained from uninfested cotton seedlings, but significantly less time with those from A. gossypii infested plants. VOCs from uninfested and A. gossypii infested cotton seedlings were analyzed by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS), leading to the identification of (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), which were produced in larger amounts from A. gossypii infested plants compared to uninfested plants. In behavioral tests, A. gossypii spent significantly more time in the control (solvent) arms when presented with a synthetic blend of these four compounds, with and without the presence of VOCs from uninfested cotton. Coupled GC-electroantennogram (EAG) recordings with the lacewing C. lucasina showed significant antennal responses to VOCs from A. gossypii infested cotton, suggesting they have a role in indirect defense and indicating a likely behavioral role for these compounds for the predator as well as the aphid. PMID:21671083

  2. Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy.

    PubMed

    Kakani, V G; Reddy, K R; Zhao, D; Mohammed, A R

    2003-06-01

    Cotton (Gossypium hirsutum L.) crop, cultivated between 40 degrees N and 40 degrees S, is currently experiencing 2-11 kJ m-2 d-1 of UV-B radiation. This is predicted to increase in the near future. An experiment was conducted to study the effect of enhanced UV-B radiation on vegetative and reproductive morphology and leaf anatomy of cotton in sunlit, controlled environment chambers. From emergence to harvest, cotton plants were exposed to 0, 8 or 16 kJ m-2 d-1 of UV-B in a square wave approach for 8 h from 0800 to 1600 h. Changes in plant height, internode and branch length, mainstem node number, leaf area, length and area of petals and bracts, and anther number per flower were recorded. Epidermal cell and stomatal density, stomatal index, leaf thickness, and epidermal, palisade and mesophyll tissue thickness were also measured. Initial chlorotic symptoms on leaves turned into necrotic patches on continued exposure to enhanced UV-B. Exposure to high UV-B reduced both vegetative and reproductive parameters and resulted in a smaller canopy indicating sensitivity of cotton to UV-B radiation. Enhanced UV-B radiation increased epicuticular wax content on adaxial leaf surfaces, and stomatal index on both adaxial and abaxial leaf surfaces. Leaf thickness was reduced following exposure to UV-B owing to a decrease in thickness of both the palisade and mesophyll tissue, while the epidermal thickness remained unchanged. The vegetative parameters studied were affected only by high levels of UV-B (16 kJ m-2 d-1), whereas the reproductive parameters were reduced at both ambient (8 kJ m-2 d-1) and high UV-B levels. The study shows that cotton plants are sensitive to UV-B at both the whole plant and anatomical level. PMID:12770842

  3. Identification and analysis of the TIFY gene family in Gossypium raimondii.

    PubMed

    He, D H; Lei, Z P; Tang, B S; Xing, H Y; Zhao, J X; Jing, Y L

    2015-01-01

    The highly conserved TIFY domain is included in the TIFY protein family of transcription factors, which is important in plant development. Here, 28 TIFY family genes were identified in the Gossypium raimondii genome and classified into JAZ (15 genes), ZML (8), PPD (3), and TIFY (2). The normal (TIF[F/Y]XG) motif was dominant in the TIFY family, excluding the ZML subfamily, in which TLSFXG was prevalent. TIFY family genes were unevenly distributed in the G. raimondii genome, with TIFY clusters present on chromosome 9. Phylogenetic analysis indicated abundant variations in the G. raimondii TIFY family, which were most closely related to those in Theobroma cacao among 5 species. Exon-intron organization and intron phases were homologous within each subfamily, correlating with their phylogeny. Intra-species synteny analyses indicated that genomic duplication contributed to the expansion of the TIFY family. Inter-species synteny analyses indicated that synteny regions involved in G. raimondii TIFY family genes were also present in the comparison of G. raimondii vs Arabidopsis thaliana or T. cacao, signifying that these genes had common ancestors and play the same or similar roles in biological processes. Greater synteny was present in the comparison of G. raimondii vs T. cacao than of G. raimondii vs A. thaliana. The expression patterns of TIFY family genes were characterized and most TIFY family genes were indicated to be involved in fiber development. Our study provides new data related to the evolution of TIFYs and their role as important regulators of transcription; these data can be useful for fiber development. PMID:26345949

  4. Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum).

    PubMed

    Wang, Min; Li, Chengqi; Wang, Qinglian

    2014-08-01

    Lint percentage is an important character of cotton yield components and it is also correlated with cotton fibre development. In this study, we used a high lint percentage variety, Baimian1, and a low lint percentage, TM-1 genetic standard for Gossypium hirsutum, as parents to construct a mapping populations in upland cotton (G. hirsutum). A quantitative trait locus/loci (QTL) analysis of lint percentage was performed by using two mapping procedures; composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and the F2:3 populations in 2 years. Six main-effect QTL (M-QTL) for lint percentage (four significant and two suggestive) were detected in both years by CIM, and were located on chr. 3, chr. 19, chr. 26 and chr. 5/chr. 19. Of the six QTL, marker intervals and favourable gene sources of the significant M-QTL, qLP-3(2010) and qLP-3(2011) were consistent. These QTL were also detected by ICIM, and therefore, should preferentially be used for markerassisted selection (MAS) of lint percentage. Another M-QTL, qLP-19(2010), was detected by two mapping procedures, and it could also be a candidate for MAS. We detected the interaction between two M-QTL and environment, and 11 epistatic QTL (E-QTL) and their interaction with environment by using ICIM. The study also found two EST-SSRs, NAU1187 and NAU1255, linked to M-QTL for lint percentage that could be candidate markers affecting cotton fibre development. PMID:25189232

  5. The damaging effects of nitrogen ion beam implantation on upland cotton ( Gossypium hirsutum L.) pollen grains

    NASA Astrophysics Data System (ADS)

    Yu, Yanjie; Wu, Lijun; Wu, Yuejin; Wang, Qingya; Tang, Canming

    2008-09-01

    With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar "Sumian 22" pollen grains were irradiated in vacuum (7.8 × 10-3 Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 × 1016 to 0.78 × 1016 N+/cm2. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N+ ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton.

  6. Phenotypic Expression of rkn1-Mediated Meloidogyne incognita Resistance in Gossypium hirsutum Populations

    PubMed Central

    Wang, C.; Matthews, W. C.; Roberts, P. A.

    2006-01-01

    The root-knot nematode Meloidogyne incognita is a damaging pest of cotton (Gossypium hirsutum) worldwide. A major gene (rkn1) conferring resistance to M. incognita was previously identified on linkage group A03 in G. hirsutum cv. Acala NemX. To determine the patterns of segregation and phenotypic expression of rkn1, F1, F2, F2:3, BC1F1 and F2:7 recombinant inbred lines (RIL) from intraspecific crosses between Acala NemX and a closely related susceptible cultivar Acala SJ-2 were inoculated in greenhouse tests with M. incognita race 3. The resistance phenotype was determined by the extent of nematode-induced root galling and nematode egg production on roots. Suppression of root galling and egg production was highly correlated among individuals in all tests. Root galling and egg production on heterozygous plants did not differ from the susceptible parent phenotype 125 d or more after inoculation, but were slightly suppressed with shorter screening (60 d), indicating that rkn1 behaved as a recessive gene or an incompletely recessive gene, depending on the screening condition. In the RIL, rkn1 segregated in an expected 1 resistant: 1 susceptible ratio for a major resistance gene. However, within the resistant class, 21 out of 34 RIL were more resistant than the resistant parent Acala NemX, indicating transgressive segregation. These results suggest that rkn1-based resistance in G. hirsutum can be enhanced in progenies of crosses with susceptible genotypes. Allelism tests and molecular genetic analysis are needed to determine the relationship of rkn1 to other M. incognita resistance sources in cotton. PMID:19259455

  7. Comparative Transcriptome Analysis of Short Fiber Mutants Ligon-lintless 1 And 2 Reveals Common Mechanisms Pertinent to Fiber Elongation in Cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular processes affecting cotton (Gossypium hirsutum) fiber development is important for developing tools aimed at improving fiber quality. Short fiber cotton mutants Ligon-lintless 1 (Li1) and Ligon-lintless 2 (Li2) are naturally occurring, monogenic mutations residing on diff...

  8. QTL analysis for transgressive resistance to root-knot nematode in a cotton RIL population derived from interspecific susceptible parents (Gossypium spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The root-knot nematode (RKN, Meloidogyne incognita) is a major parasite of cotton, causing significant yield losses in most production areas. A genetic standard recombinant inbred population of 138 lines developed from a cross between Upland cotton TM-1 (Gossypium hirsutum L.) and Sea island cotton ...

  9. Registration of three germplasm lines of cotton derived from Gossypium barbadense L. accession GB713 with resistance to the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three reniform nematode, Rotylenchulus reniformis Linford and Oliveria, resistant upland cotton, Gossypium hirsutum L., germplasm lines, M713 Ren1, M713 Ren2, and M713 Ren5, were developed and jointly released by USDA-ARS and the Mississippi Agricultural and Forestry Experiment Station. The day-neu...

  10. Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. x G. barbadense L.) RIL population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantitative trait loci (QTL) analysis was conducted to better understand the genetic control of plant architecture (PA), yield components (YC), and fiber properties (FP) in the two cultivated tetraploid species of cotton (Gossypium hirsutum L. and G. barbadense L.). Genomic regions were identifi...

  11. Yield and Fiber Quality of an Exotic Germplasm Population Derrived from Multiple Crosses Among Gossypium Tetraploid Species Assessed by Cluster Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broadening the genetic base is essential for continuous genetic improvement of cotton’s (Gossypium hirsutum L.) yield, fiber quality, and pest resistance. A germplasm population was developed by crossing twelve cultivars and strains of G. hirsutum with four wild tetraploid species in the genus. This...

  12. Total and Percent Atropisomers of Gossypol and Gossypol-6-methyl Ether in Seeds from Pima Cottons and Accessions from the Gossypium barbadense L. Germplasm Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gossypol occurs naturally in the seed, foliage and roots of the cotton plant (Gossypium) as atropisomers due to restricted rotation around the binaphthyl bond. The atropisomers differ in their biological activity. That is, (R)-( ) gossypol is more toxic than (S)-(+)-gossypol. Most commercial Upla...

  13. Ovule Rescue Efficiency of Gossypium hirsutum x G. arboreum Progeny from Field-Grown Fruit is Affected by Media Composition and Antimicrobial Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upland cotton (Gossypium hirsutum L.) is reproductively isolated from G. arboreum L. via post-zygotic breeding barriers. Literature on somatic embryogenesis of cotton suggests a number of media modifications that might also prove useful for ovule rescue of interspecific crosses. Additionally, endo...

  14. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To Identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode and fungal disease resistance traits, a series of interspecific cotton (Gossypium spp.) chromosome substitution (CS) lines were used in this study. The CS lines were developed in ...

  15. Clustering, haplotype diversity and locations of MIC-3: a unique root-specific defense-related gene family in upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MIC-3-related genes of cotton (Gossypium spp.) were identified and shown to have root-specific expression, associated with pathogen defense-related function and specifically increased expression in root-knot nematode (RKN) resistant plants after nematode infection. Here we cloned and sequenced MIC-...

  16. Delineation of Interspecific Epistasis on Fiber Quality Traits in Gossypium hirsutum by ADAA Analysis of Intermated G. barbadense Chromosome Substitution Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity is the foundation of any crop improvement program, but the cultivated Upland cotton (Gossypium hirsutum L.) has a very narrow gene pool resulting from its origin and domestication history. G. hirsutum L., the most extensively cultivated cotton species, is characterized by agronomi...

  17. A transcript profiling approach reveals an abscisic acid specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed i...

  18. Molecular markers associated with the immature fiber (im) gene affecting the degree of fiber cell wall thickening in cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber fineness and maturity measured indirectly as micronaire (MIC) are important properties of determining fiber grades in the textile market. To understand the genetic control and molecular mechanisms of fiber fineness and maturity, we studied two near isogenic lines (NILs), Gossypium hirs...

  19. High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the infl...

  20. QTL for node of first fruiting branch in a cross of an Upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Primitive cottons (Gossypium spp.) represent resources for genetic improvement for fiber quality, pathogen resistance, and increased tolerances to environmental stresses. Most primitive accessions are photoperiod sensitive and do not flower under the long days of the U.S. cotton belt. Molecular mark...

  1. BAC-end sequence-based SNP mining in Allotetraploid Cotton (Gossypium) utilizing re-sequencing data, phylogenetic inferences and perspectives for genetic mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bacterial artificial chromosome (BAC) library and BAC-end sequences for Gossypium hirsutum L. have recently been developed. Here we report on genomic-based genome-wide SNP mining utilizing re-sequencing data with a BAC-end sequence reference for twelve G. hirsutum L. lines, one G. barbadense L. li...

  2. A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the genetic diversity of the cultivated Upland cotton (Gossypium hirsutum L.) and its structure at the molecular level, 193 Upland cotton cultivars collected from 26 countries were genotyped using 448 microsatellite markers. These markers were selected based on their mapping po...

  3. Developing hybrid cotton (Gossypium spp.) using honey bees as pollinators and the Roundup Ready® Phenotype as the selection trait

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium spp.) is the most important textile fiber crop in the United States (US). Hybrid cotton is grown in several countries but the use of hybrids in the US has been limited due to seed production costs. The objective of this study was to investigate a novel method for the production of ...

  4. A major locus for fusarium wilt race 4 resistance identified in Gossypium Hirsutum Acala NemX using an interspecific progeny with g barbadense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4), is a vascular disease of cotton (Gossypium spp.) which causes plant injury and yield loss in most Pima (G. barbadense L.) and Acala or Upland (G. hirsutum L.) cultivars without co-infection with roo...

  5. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 (Li2) mutant cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li2) and results in extremely shortened lint fibers on mature ...

  6. Constitutively overexpressing a tomato fructokinase gene (lefrk1) in cotton (Gossypium hirsutum L. cv. coker 312) positively affects plant vegetative growth, boll number and seed cotton yield.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing fructokinase (FRK) activity in cotton (Gossypium hirsutum L.) plants may reduce fructose inhibition of sucrose synthase (Sus) and lead to improved fibre yield and quality. Cotton was transformed with a tomato (Solanum lycopersicum L.) fructokinase gene (LeFRK1) under the control of the C...

  7. Elevated growing degree days influence transition stage timing during cotton (Gossypium hirsutum L.) fiber development and result in increased fiber strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing degree days required for cotton (Gossypium hirsutum L.) growth and development were recorded for four growing seasons and compared with fiber quality measurements and gene expression data indicative of different stages of fiber development. Comparative fiber bundle strength differences betw...

  8. Total and Percent Atropisomers of Gossypol and Gossypol-6-methyl Ether in Seeds from Pima Cottons and Accessions of Gossypium barbadense L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gossypol occurs naturally in the seed, foliage and roots of the cotton plant (Gossypium) as atropisomers due to restricted rotation around the binaphthyl bond. The atropisomers differ in their biological activity. ( ) (R)-Gossypol is more toxic and exhibits significantly greater anti-cancer activi...

  9. Genetic effects of nine Gossypium barbadense L. chromosome substitution lines in topcrosses with five elite Upland cotton G. hirsutum L. cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crosses between Gossypium barbadense L. and Upland (G. hirsutum L.) have produced limited success in introgressing fiber quality genes into Upland cotton. Chrosome substitution lines (CSL) have chromosomes or arms from G. barbadense, line 3-79, substituted for the corresponding chromosome or arm in ...

  10. Registration of three germplasm lines of cotton derived from Gossypium hirsutum L. accession T2468 with moderate resistance to the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three reniform nematode, Rotylenchulus reniformis Linford and Oliveria, moderately resistant upland cotton, Gossypium hirsutum L., germplasm lines, MT2468 Ren1 (Reg. No. ________, PI ________), MT2468 Ren2 (Reg. No. ________, PI ________), and MT2468 Ren3 (Reg. No. ________, PI ________), were devel...

  11. RNAi-mediated resistance against Cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha.

    PubMed

    Khatoon, Sameena; Kumar, Abhinav; Sarin, Neera B; Khan, Jawaid A

    2016-08-01

    Cotton leaf curl disease (CLCuD) is caused by several distinct begomovirus species in association with disease-specific betasatellite essential for induction of disease symptoms. CLCuD is a serious threat for the cultivation of cotton (Gossypium sp.) and several species in the family Malvaceae. In this study, RNAi-based approach was applied to generate transgenic cotton (Gossypium hirsutum) plants resistant to Cotton leaf curl Rajasthan virus (CLCuRV). An intron hairpin (ihp) RNAi construct capable of expressing dsRNA homologous to the intergenic region (IR) of CLCuRV was designed and developed. Following Agrobacterium tumefaciens-mediated transformation of cotton (G. hirsutum cv. Narasimha) plants with the designed ihpRNAi construct, a total of 9 independent lines of transformed cotton were obtained. The presence of the potential stretch of IR in the transformed cotton was confirmed by PCR coupled with Southern hybridization. Upon inoculation with viruliferous whiteflies, the transgenic plants showed high degree of resistance. None of them displayed any CLCuD symptoms even after 90 days post inoculation. The transformed cotton plants showed the presence of siRNAs. The present study demonstrated that ihp dsRNA-mediated resistance strategy of RNAi is an effective means to combat the CLCuD infection in cotton. PMID:27028623

  12. Plant vigour at establishment and following defoliation are both associated with responses to drought in perennial ryegrass (Lolium perenne L.)

    PubMed Central

    Hatier, Jean-Hugues B.; Faville, Marty J.; Hickey, Michael J.; Koolaard, John P.; Schmidt, Jana; Carey, Brandi-Lee; Jones, Chris S.

    2014-01-01

    Periodic drought events present a significant and, with climate change, increasing constraint on temperate forage plants’ production. Consequently, improving plants’ adaptive response to abiotic stress is a key goal to ensure agricultural productivity in these regions. In this study we developed a new methodology, using both area-based comparison and soil water content measurements of individual non-irrigated and irrigated clones, to assess performance of perennial ryegrass (Lolium perenne L.) genotypes subjected to moisture stress in a simulated competitive environment. We applied this method to the evaluation of a full-sibling population from a pair cross between genotypes from a New Zealand cultivar and a Moroccan ecotype. Our hypothesis was that: (i) both leaf lamina regrowth after defoliation (LR) and plant vigour affect plant performance during drought and rehydration; and (ii) quantitative trait loci (QTLs) associated with plant performance under moisture stress could be identified. Differences amongst genotypes in dry matter (DM) production, early vigour at establishment, leaf elongation rate and LR were measured. LR explained most of the variation in DM production during exposure to moisture deficit and rehydration followed by plant vigour, indicated by initial DM production in both treatments and subsequent measures of DM production of irrigated clones. We identified two main QTL regions associated with DM production and LR, both during drought exposure and rehydration. Further research focused on these regions should improve our understanding of the genetic control of drought response in this forage crop and potentially other grass species with significant synteny, and support improvement in performance through molecular breeding approaches. PMID:25104762

  13. Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.

    PubMed

    Portes, Maria Teresa; Figueiredo-Ribeiro, Rita de Cássia L; de Carvalho, Maria Angela M

    2008-10-01

    In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions

  14. The importance of wood nutrient storage in tropical forest nitrogen and phosphorus cycles: Insights from a sapling defoliation experiment in Panama

    NASA Astrophysics Data System (ADS)

    Heineman, K.; Dalling, J. W.

    2015-12-01

    The availability of soil nutrients limits productivity and influences tree species distribution in tropical forests. Given the scarcity of soil resources, trees in tropical forests should be under selection to store nutrients for periods when nutrient demand exceeds supply. However, little is known about the capacity of trees to remobilize nutrients from long-lived woody biomass in tropical forests, despite wood sequestering a large proportion of bioavailable nutrients in tropical ecosystems. We evaluated nitrogen (N) and phosphorus (P) remobilization from woody biomass via experimental defoliation of saplings from four widely distributed genera of tropical trees in Panama. Focal saplings were sampled in high and low fertility habitats in both montane and lowland forests to maximize contrast in the availability and identity of limiting nutrients. N and P concentrations of stem wood were measured before defoliation and after subsequent re-foliation response to calculate wood remobilization efficiency. Initial wood P concentrations differed significantly within taxa between low and high fertility habitats, whereas initial wood N differed significantly within taxa between lowland and montane forests, but not among soil fertility habitats. In three of four genera studied, wood P concentrations declined after refoliation at both elevations, and the proportion of wood P remobilized was greater on low fertility compared to high fertility sites. In contrast, significant N remobilization was restricted to the low fertility montane site, where nitrogen is most likely to limit plant growth. These findings provide evidence that a significant fraction of N and P in woody biomass is can be remobilized in response to asymmetry in nutrient supply and demand, as opposed consisting primarily of recalcitrant structural material. Furthermore, variation in remobilization responses of species to defoliation provides additional evidence that multiple nutrient-limitation in tropical

  15. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    NASA Technical Reports Server (NTRS)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P < 0.001); the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P < 0.001) in the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  16. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE PAGESBeta

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; Inmon, Jay J.; Millhollon, Jon C.; Liechty, Zach; Page, Justin T.; Jenks, Matthew A.; Chapman, Kent D.; Udall, Joshua A.; et al

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior

  17. Data for proteomic profiling of Anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Ji; Pang, Chaoyou; Wei, Hengling; Song, Meizhen; Meng, Yanyan; Ma, Jianhui; Fan, Shuli; Yu, Shuxun

    2015-09-01

    Cotton is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To study the male sterile mechanisms of CCRI9106, histological and iTRAQ-facilitated proteomic analyses of anthers were performed. This data article contains data related to the research article titled iTRAQ-Facilitated Proteomic Profiling of Anthers From a Photosensitive Male Sterile Mutant and Wild-type Cotton (Gossypium hirsutum L.)[1]. This research article describes the iTRAQ-facilitated proteomic analysis of the wild-type and a photosensitive male sterile mutant in cotton. The report indicated that exine formation defect is the key reason for male sterility in mutant plant. The information presented here represents the tables and figures that detail the processing of the raw data obtained from iTRAQ analysis. PMID:26958592

  18. RNA-Seq Transcriptome Profiling of Upland Cotton (Gossypium hirsutum L.) Root Tissue under Water-Deficit Stress

    PubMed Central

    Bowman, Megan J.; Park, Wonkeun; Bauer, Philip J.; Udall, Joshua A.; Page, Justin T.; Raney, Joshua; Scheffler, Brian E.; Jones, Don. C.; Campbell, B. Todd

    2013-01-01

    An RNA-Seq experiment was performed using field grown well-watered and naturally rain fed cotton plants to identify differentially expressed transcripts under water-deficit stress. Our work constitutes the first application of the newly published diploid D5 Gossypium raimondii sequence in the study of tetraploid AD1 upland cotton RNA-seq transcriptome analysis. A total of 1,530 transcripts were differentially expressed between well-watered and water-deficit stressed root tissues, in patterns that confirm the accuracy of this technique for future studies in cotton genomics. Additionally, putative sequence based genome localization of differentially expressed transcripts detected A2 genome specific gene expression under water-deficit stress. These data will facilitate efforts to understand the complex responses governing transcriptomic regulatory mechanisms and to identify candidate genes that may benefit applied plant breeding programs. PMID:24324815

  19. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis)

    PubMed Central

    Li, Ruijuan; Rashotte, Aaron M.; Singh, Narendra K.; Lawrence, Kathy S.; Weaver, David B.; Locy, Robert D.

    2015-01-01

    Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm. PMID:26571375

  20. A Melting Pot of Old World Begomoviruses and Their Satellites Infecting a Collection of Gossypium Species in Pakistan

    PubMed Central

    Nawaz-ul-Rehman, Muhammad Shah; Briddon, Rob W.; Fauquet, Claude M.

    2012-01-01

    CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses) in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB). A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production) that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa) DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India) DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed. PMID:22899988

  1. Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton (Gossypium hirsutum L.).

    PubMed

    Gao, Jun-Shan; Wu, Nan; Shen, Zhi-Lin; Lv, Kai; Qian, Sen-He; Guo, Ning; Sun, Xu; Cai, Yong-Ping; Lin, Yi

    2016-02-01

    Transparent Testa 12 (TT12) is a kind of transmembrane transporter of proanthocyanidins (PAs), which belongs to a membrane-localized multidrug and toxin efflux (MATE) family, but the molecular basis of PAs transport is still poorly understood. Here, we cloned a full-length TT12 cDNA from the fiber of brown cotton (Gossypium hirsutum), named GhTT12 (GenBank accession No. KF240564), which comprised 1733 bp with an open reading frame (ORF) of 1503 bp and encoded a putative protein containing 500 amino acid residues with a typical MATE conserved domain. The GhTT12 gene had 96.8% similarity to AA genome in Gossypium arboretum. Quantitative RT-PCR analysis denoted that the relative expression of GhTT12 in brown cotton was 1-5 folds higher than that in white cotton. The mRNA level was the highest at 5 days post anthesis (DPA) and reduced gradually during the fiber development. Expressing GhTT12-fused green fluorescent protein (GFP) in Nicotiana tabacum showed that GhTT12-GFP was localized in the vacuole membrane. The content of PAs increased firstly and decreased afterwards, and reached the maximum at 15 DPA in brown cotton. But for white cotton, the content of PAs remained at a low level during the fiber development. We speculate that GhTT12 may participate in the transportation of PAs from the cytoplasmic matrix to the vacuole. Taken together, our data revealed that GhTT12 was functional as a PAs transmembrane transporter. PMID:26548815

  2. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement

    PubMed Central

    2013-01-01

    Background Verticillium wilt, caused by the fungal pathogen Verticillium dahliae, is the most severe disease in cotton (Gossypium spp.), causing great lint losses worldwide. Disease management could be achieved in the field if genetically improved, resistant plants were used. However, the interaction between V. dahliae and cotton is a complicated process, and its molecular mechanism remains obscure. To understand better the defense response to this pathogen as a means for obtaining more tolerant cultivars, we monitored the transcriptome profiles of roots from resistant plants of G. barbadense cv. Pima90-53 that were challenged with V. dahliae. Results In all, 46,192 high-quality expressed sequence tags (ESTs) were generated from a full-length cDNA library of G. barbadense. They were clustered and assembled into 23126 unigenes that comprised 2661 contigs and 20465 singletons. Those unigenes were assigned Gene Ontology terms and mapped to 289 KEGG pathways. A total of 3027 unigenes were found to be homologous to known defense-related genes in other plants. They were assigned to the functional classification of plant–pathogen interactions, including disease defenses and signal transduction. The branch of "SA→NPR1→TGA→PR-1→Disease resistance" was first discovered in the interaction of cotton–V. dahliae, indicating that this wilt process includes both biotrophic and necrotrophic stages. In all, 4936 genes coding for putative transcription factors (TF) were identified in our library. The most abundant TF family was the NAC group (527), followed by G2-like (440), MYB (372), BHLH (331), bZIP (271) ERF, C3H, and WRKY. We also analyzed the expression of genes involved in pathogen-associated molecular pattern (PAMP) recognition, the activation of effector-triggered immunity, TFs, and hormone biosynthesis, as well as genes that are pathogenesis-related, or have roles in signaling/regulatory functions and cell wall modification. Their differential expression

  3. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH

    PubMed Central

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution. PMID:23826377

  4. Potential of VIIRS Time Series Data for Aiding the USDA Forest Service Early Warning System for Forest Health Threats: A Gypsy Moth Defoliation Case Study

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ryan, Robert E.; McKellip, Rodney

    2008-01-01

    The Healthy Forest Restoration Act of 2003 mandated that a national forest threat Early Warning System (EWS) be developed. The USFS (USDA Forest Service) is currently building this EWS. NASA is helping the USFS to integrate remotely sensed data into the EWS, including MODIS data for monitoring forest disturbance at broad regional scales. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for contribution to the EWS. In doing so, the RPC project employed multitemporal simulated VIIRS and MODIS data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria despar). Gypsy moth is an invasive species threatening eastern U.S. hardwood forests. It is one of eight major forest insect threats listed in the Healthy Forest Restoration Act of 2003. This RPC experiment is relevant to several nationally important mapping applications, including carbon management, ecological forecasting, coastal management, and disaster management

  5. Effects of ozone and sulfur dioxide on forage and range species. Volume 2. Under simulated grazing (defoliation). Final report Oct 80-Jun 83

    SciTech Connect

    Younger, V.B.; Shropshire, F.M.; Thompson, C.R.

    1983-06-30

    Soft chess and broadleaf filaree plants were grown in pots and exposed to sulfur dioxide in open-top field chambers. Plants were fumigated with 0.0 ppm, 0.1 ppm or 0./sub 2/'' ppm sulfur dioxide for six hours per day, five days per week over an 18 week period. Plants were harvested at week 9, week 13 and week 18. Defoliation treatments were carried out on one-half of the plants. Chronic exposure of nonclipped soft chess to SO/sub 2/ led to reduced yield. Clipping of soft chess usually cancelled the SO/sub 2/ effects. Broadleaf filaree appeared more tolerant to SO/sub 2/ than soft chess.

  6. Measuring Phenological Changes due to Defoliation of the Non-Native Species, Saltcedar (Tamarisk) Following Episodic Foliage Removal by the Beetle Diorhabda elongate and Phenological Impacts on Forage Quality for Insectivorous Birds on the Dolores River

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Dennison, P. E.; Hultine, K. R.; van Riper, C.; Glenn, E. P.

    2008-12-01

    Since its introduction to the western U.S. more than a century ago, tamarisk (Tamarix spp.) has become dominant or sub-dominant over many major arid, and semi-arid river systems and their tributaries. The presence of tamarisk has been cited for reducing water availability for human enterprise and biodiversity, displacing native vegetation and for reducing habitat quality for wildlife. With increasing emphasis by public and private sectors on controlling saltcedar (Tamarix chinensis) in the western US, there will likely be a dramatic change in riparian vegetation composition over the course of the next several decades. The rates at which these changes will occur, and the resultant effects on riparian insects and birds that utilize insects for food, are presently unknown. Effects on riparian vegetation communities, resulting from changes in host plant species composition, will likely include changes in plant biomass, microclimate changes, and plant species diversity. These changes could potentially have a profound impact on migratory and breeding birds within riparian corridors throughout the southwest. Recently, the saltcedar leaf beetle (Diorhabda elongata) was released as a tamarisk biocontrol agent. This beetle has successfully defoliated tamarisk where it has been introduced, but there are currently no comprehensive programs in place for monitoring the rapid spread of Diorhabda, the impact of defoliation on habitat and water resources, or the long-term impact of defoliation on tamarisk. We used higher spatial resolution ASTER data and coarser MODIS data for monitoring defoliation caused by Diorhabda elongata and subsequent changes in evapotranspiration (ET). Widespread tamarisk defoliation was observed in an eastern Utah study area during summers 2007, 2008. We measured stem sap flux, leaf carbon isotope ratios, leaf area, LAI, and vegetation indices from mounted visible and infrared cameras and satellite imagery. The cameras were paired on towers installed 30

  7. Egyptian cotton ( Gossypium barbadense) flower and boll production as affected by climatic factors and soil moisture status

    NASA Astrophysics Data System (ADS)

    Sawan, Zakaria M.; Hanna, Louis I.; McCuistion, Willis L.; Foote, Richard J.

    2010-01-01

    The information on impact of climatic factors on cotton production is not generally available, or at least not available in the required form. Understanding this impact may help physiologists determine a possible control of the flowering mechanism in the cotton plant. Two field trials were conducted to investigate the relationships between climatic factors, soil moisture status, and flower and boll production of Gossypium barbadense. The climatic factors considered were daily maximum air temperature (°C), minimum air temperature (°C), maximum-minimum temperature (diurnal temperature range) (°C), sunshine duration (h day-1), maximum relative humidity (%), minimum relative humidity (%), and wind speed (m s-1). Minimum relative humidity and sunshine duration were the most significant climatic factors affecting flower and boll retention and production. Temperature appeared to be less important in the reproduction growth stage of cotton in Egypt than minimum relative humidity and sunshine duration. The soil moisture status showed low and insignificant correlation to flower and boll production. High minimum relative humidity, short period of sunshine duration, and low temperatures enhanced flower and boll formation.

  8. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites.

    PubMed

    Liu, Xia; Zhao, Bo; Zheng, Hua-Jun; Hu, Yan; Lu, Gang; Yang, Chang-Qing; Chen, Jie-Dan; Chen, Jun-Jian; Chen, Dian-Yang; Zhang, Liang; Zhou, Yan; Wang, Ling-Jian; Guo, Wang-Zhen; Bai, Yu-Lin; Ruan, Ju-Xin; Shangguan, Xiao-Xia; Mao, Ying-Bo; Shan, Chun-Min; Jiang, Jian-Ping; Zhu, Yong-Qiang; Jin, Lei; Kang, Hui; Chen, Shu-Ting; He, Xu-Lin; Wang, Rui; Wang, Yue-Zhu; Chen, Jie; Wang, Li-Jun; Yu, Shu-Ting; Wang, Bi-Yun; Wei, Jia; Song, Si-Chao; Lu, Xin-Yan; Gao, Zheng-Chao; Gu, Wen-Yi; Deng, Xiao; Ma, Dan; Wang, Sen; Liang, Wen-Hua; Fang, Lei; Cai, Cai-Ping; Zhu, Xie-Fei; Zhou, Bao-Liang; Jeffrey Chen, Z; Xu, Shu-Hua; Zhang, Yu-Gao; Wang, Sheng-Yue; Zhang, Tian-Zhen; Zhao, Guo-Ping; Chen, Xiao-Ya

    2015-01-01

    Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11-20 Mya, which likely contributed to genomic divergences. Among the 2,483 genes preferentially expressed in fiber, a cell elongation regulator, PRE1, is strikingly At biased and fiber specific, echoing the A-genome origin of spinnable fiber. The expansion of the PRE members implies a genetic factor that underlies fiber elongation. Mature cotton fiber consists of nearly pure cellulose. G. barbadense and G. hirsutum contain 29 and 30 cellulose synthase (CesA) genes, respectively; whereas most of these genes (>25) are expressed in fiber, genes for secondary cell wall biosynthesis exhibited a delayed and higher degree of up-regulation in G. barbadense compared with G. hirsutum, conferring an extended elongation stage and highly active secondary wall deposition during extra-long fiber development. The rapid diversification of sesquiterpene synthase genes in the gossypol pathway exemplifies the chemical diversity of lineage-specific secondary metabolites. The G. barbadense genome advances our understanding of allopolyploidy, which will help improve cotton fiber quality. PMID:26420475

  9. The Li2 Mutation Results in Reduced Subgenome Expression Bias in Elongating Fibers of Allotetraploid Cotton (Gossypium hirsutum L.)

    PubMed Central

    Naoumkina, Marina; Thyssen, Gregory; Fang, David D.; Hinchliffe, Doug J.; Florane, Christopher; Yeater, Kathleen M.; Page, Justin T.; Udall, Joshua A.

    2014-01-01

    Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G. raimondii) for homeologous gene expression analysis. The majority of homeologous genes, 83.6% according to the reference genome, were expressed during fiber elongation. Our results revealed: 1) approximately two times more genes were induced in the AT subgenome comparing to the DT subgenome in wild type and mutant fiber; 2) the subgenome expression bias was significantly reduced in the Li2 fiber transcriptome; 3) Li2 had a significantly greater effect on the DT than on the AT subgenome. Transcriptional regulators and cell wall homeologous genes significantly affected by the Li2 mutation were reviewed in detail. This is the first report to explore the effects of a single mutation on homeologous gene expression in allotetraploid cotton. These results provide deeper insights into the evolution of allotetraploid cotton gene expression and cotton fiber development. PMID:24598808

  10. Antisense expression of Gossypium hirsutum UDP-glucuronate decarboxylase in Arabidopsis leads to changes in cell wall components.

    PubMed

    Zhang, D M; Pan, Y X; Zhang, Y; Li, Z K; Wu, L Q; Liu, H W; Zhang, G Y; Wang, X F; Ma, Z Y

    2016-01-01

    UDP-glucuronate decarboxylase (UDP-xylose synthase; UXS, EC 4.1.1.35) is an essential enzyme of the non-cellulosic polysaccharide biosynthetic pathway. In the present study, using transient expression of fluorescently labeled Gossypium hirsutum UXS (GhUXS3) protein in onion epidermal cells, we observed that this protein was distributed in the cytoplasm. The GhUXS3 cDNA of cotton was expressed in an antisense orientation in Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation. Homozygous plants showing down-regulation of UXS were analyzed with northern blots. Compared to the untransformed control, transgenic plant showed shorter roots, earlier blossom formation, and delayed senescence. Biochemical analysis indicated that levels of rhamnose, mannose, galactose, glucose, xylose, and cellulose were reduced in some of the down-regulated antisense plants. These results suggest that GhUXS3 regulates the conversion of non-cellulosic polysaccharides and modulates their composition in plant cell walls. We also discuss a possible cellular function for GhUXS in determining the quality of cotton fibers. PMID:26909959

  11. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii

    PubMed Central

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-01-01

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress. PMID:26838812

  12. Comprehensive Analysis of the COBRA-Like (COBL) Gene Family in Gossypium Identifies Two COBLs Potentially Associated with Fiber Quality

    PubMed Central

    Niu, Erli; Shang, Xiaoguang; Cheng, Chaoze; Bao, Jianghao; Zeng, Yanda; Cai, Caiping; Du, Xiongming; Guo, Wangzhen

    2015-01-01

    COBRA-Like (COBL) genes, which encode a plant-specific glycosylphosphatidylinositol (GPI) anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O. sativa, Z. mays and S. lycopersicum, but little in Gossypium. Here we identified 19, 18 and 33 candidate COBL genes from three sequenced cotton species, diploid cotton G. raimondii, G. arboreum and tetraploid cotton G. hirsutum acc. TM-1, respectively. These COBL members were anchored onto 10 chromosomes in G. raimondii and could be divided into two subgroups. Expression patterns of COBL genes showed highly developmental and spatial regulation in G. hirsutum acc. TM-1. Of them, GhCOBL9 and GhCOBL13 were preferentially expressed at the secondary cell wall stage of fiber development and had significantly co-upregulated expression with cellulose synthase genes GhCESA4, GhCESA7 and GhCESA8. Besides, GhCOBL9 Dt and GhCOBL13 Dt were co-localized with previously reported cotton fiber quality quantitative trait loci (QTLs) and the favorable allele types of GhCOBL9 Dt had significantly positive correlations with fiber quality traits, indicating that these two genes might play an important role in fiber development. PMID:26710066

  13. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana.

    PubMed

    Zhang, Yan; Wang, Xingfen; Yang, Shuo; Chi, Jina; Zhang, Guiyin; Ma, Zhiying

    2011-11-01

    Verticillium wilt causes enormous loss to yield or quality in many crops. In an effort to help controlling this disease through genetic engineering, we first cloned and characterized a Verticillium wilt resistance gene (GbVe) from cotton (Gossypium barbadense) and analyzed its function in Arabidopsis thaliana. Its nucleotide sequence is 3,819 bp long, with an open reading frame of 3,387 bp, and encoding an 1,128-aa protein precursor. Sequence analysis shows that GbVe produces a leucine-rich repeat receptor-like protein. It shares identities of 55.9% and 57.4% with tomato Ve1 and Ve2, respectively. Quantitative real-time PCR indicated that the Ve gene expression pattern was different between the resistant and susceptible cultivars. In the resistant Pima90-53, GbVe was quickly induced and reached to a peak at 2 h after inoculation, two-fold higher than that of control. We localized the GbVe-GFP fusion protein to the cytomembrane in onion epidermal cells. By inserting GbVe into Arabidopsis via Agrobacterium-mediated transformation, T(3) transgenic lines were obtained. Compared with the wild-type control, GbVe-overexpressing plants had greater levels of resistance to V. dahliae. This suggests that GbVe is a useful gene for improving the plant resistance against fungal diseases. PMID:21739145

  14. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites

    PubMed Central

    Liu, Xia; Zhao, Bo; Zheng, Hua-Jun; Hu, Yan; Lu, Gang; Yang, Chang-Qing; Chen, Jie-Dan; Chen, Jun-Jian; Chen, Dian-Yang; Zhang, Liang; Zhou, Yan; Wang, Ling-Jian; Guo, Wang-Zhen; Bai, Yu-Lin; Ruan, Ju-Xin; Shangguan, Xiao-Xia; Mao, Ying-Bo; Shan, Chun-Min; Jiang, Jian-Ping; Zhu, Yong-Qiang; Jin, Lei; Kang, Hui; Chen, Shu-Ting; He, Xu-Lin; Wang, Rui; Wang, Yue-Zhu; Chen, Jie; Wang, Li-Jun; Yu, Shu-Ting; Wang, Bi-Yun; Wei, Jia; Song, Si-Chao; Lu, Xin-Yan; Gao, Zheng-Chao; Gu, Wen-Yi; Deng, Xiao; Ma, Dan; Wang, Sen; Liang, Wen-Hua; Fang, Lei; Cai, Cai-Ping; Zhu, Xie-Fei; Zhou, Bao-Liang; Jeffrey Chen, Z.; Xu, Shu-Hua; Zhang, Yu-Gao; Wang, Sheng-Yue; Zhang, Tian-Zhen; Zhao, Guo-Ping; Chen, Xiao-Ya

    2015-01-01

    Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11–20 Mya, which likely contributed to genomic divergences. Among the 2,483 genes preferentially expressed in fiber, a cell elongation regulator, PRE1, is strikingly At biased and fiber specific, echoing the A-genome origin of spinnable fiber. The expansion of the PRE members implies a genetic factor that underlies fiber elongation. Mature cotton fiber consists of nearly pure cellulose. G. barbadense and G. hirsutum contain 29 and 30 cellulose synthase (CesA) genes, respectively; whereas most of these genes (>25) are expressed in fiber, genes for secondary cell wall biosynthesis exhibited a delayed and higher degree of up-regulation in G. barbadense compared with G. hirsutum, conferring an extended elongation stage and highly active secondary wall deposition during extra-long fiber development. The rapid diversification of sesquiterpene synthase genes in the gossypol pathway exemplifies the chemical diversity of lineage-specific secondary metabolites. The G. barbadense genome advances our understanding of allopolyploidy, which will help improve cotton fiber quality. PMID:26420475

  15. Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement

    PubMed Central

    Moore, Jocelyn A.; Chlan, Caryl A.

    2013-01-01

    Plant genomes are larger and more complex than other eukaryotic organisms, due to small and large duplication events, recombination and subsequent reorganization of the genetic material. Commercially important cotton is the result of a polyploidization event between Old and New World cottons that occurred over one million years ago. Allotetraploid cotton has properties that are dramatically different from its progenitors—most notably, the presence of long, spinnable fibers. Recently, the complete genome of a New World cotton ancestral species, Gossypium raimondii, was completed. Future genome sequencing efforts are focusing on an Old World progenitor, G. arboreum. This sequence information will enable us to gain insights into the evolution of the cotton genome that may be used to understand the evolution of other plant species. The chloroplast genomes of multiple cotton species and races have been determined. This information has also been used to gain insight into the evolutionary history of cotton. Analysis of the database of nuclear and organellar sequences will facilitate the identification of potential genes of interest and subsequent development of strategies for improving cotton. PMID:24833222

  16. A Genetic Map Between Gossypium hirsutum and the Brazilian Endemic G. mustelinum and Its Application to QTL Mapping.

    PubMed

    Wang, Baohua; Liu, Limei; Zhang, Dong; Zhuang, Zhimin; Guo, Hui; Qiao, Xin; Wei, Lijuan; Rong, Junkang; May, O Lloyd; Paterson, Andrew H; Chee, Peng W

    2016-01-01

    Among the seven tetraploid cotton species, little is known about transmission genetics and genome organization in Gossypium mustelinum, the species most distant from the source of most cultivated cotton, G. hirsutum In this research, an F2 population was developed from an interspecific cross between G. hirsutum and G. mustelinum (HM). A genetic linkage map was constructed mainly using simple sequence repeat (SSRs) and restriction fragment length polymorphism (RFLP) DNA markers. The arrangements of most genetic loci along the HM chromosomes were identical to those of other tetraploid cotton species. However, both major and minor structural rearrangements were also observed, for which we propose a parsimony-based model for structural divergence of tetraploid cottons from common ancestors. Sequences of mapped markers were used for alignment with the 26 scaffolds of the G. hirsutum draft genome, and showed high consistency. Quantitative trait locus (QTL) mapping of fiber elongation in advanced backcross populations derived from the same parents demonstrated the value of the HM map. The HM map will serve as a valuable resource for QTL mapping and introgression of G. mustelinum alleles into G. hirsutum, and help clarify evolutionary relationships between the tetraploid cotton genomes. PMID:27172208

  17. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    PubMed Central

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  18. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wei, Jianghui; Fan, Shuli; Song, Meizhen; Pang, Chaoyou; Wei, Hengling; Wang, Chengshe; Yu, Shuxun

    2016-01-01

    In Arabidopsis flowering pathway, MADS-box genes encode transcription factors, with their structures and functions highly conserved in many species. In our study, two MADS-box genes GhSOC1 and GhMADS42 (Gossypium hirsutum L.) were cloned from upland cotton CCRI36 and transformed into Arabidopsis. GhSOC1 was additionally transformed into upland cotton. Comparative analysis demonstrated sequence conservation between GhSOC1 and GhMADS42 and genes of other plant species. Tissue-specific expression analysis of GhSOC1 and GhMADS42 revealed spatiotemporal expression patterns involving high transcript levels in leaves, shoot apical buds, and flowers. In addition, overexpression of both GhSOC1 and GhMADS42 in Arabidopsis accelerated flowering, with GhMADS42 transgenic plants showing abnormal floral organ phenotypes. Overexpression of GhSOC1 in upland cotton also produced variations in floral organs. Furthermore, chromatin immunoprecipitation assay demonstrated that GhSOC1 could regulate GhMADS41 and GhMADS42, but not FLOWERING LOCUS T, by directly binding to the genes promoter. Finally, yeast two-hybrid and bimolecular fluorescence complementation approaches were undertaken to better understand the interaction of GhSOC1 and other MADS-box factors. These experiments showed that GhSOC1 can interact with APETALA1/FRUITFULL-like proteins in cotton. PMID:26566835

  19. Introgression of cotton leaf curl virus-resistant genes from Asiatic cotton (Gossypium arboreum) into upland cotton (G. hirsutum).

    PubMed

    Ahmad, S; Mahmood, K; Hanif, M; Nazeer, W; Malik, W; Qayyum, A; Hanif, K; Mahmood, A; Islam, N

    2011-01-01

    Cotton is under the constant threat of leaf curl virus, which is a major constraint for successful production of cotton in the Pakistan. A total of 3338 cotton genotypes belonging to different research stations were screened, but none were found to be resistant against the Burewala strain of cotton leaf curl virus (CLCuV). We explored the possibility of transferring virus-resistant genes from Gossypium arboreum (2n = 26) into G. hirsutum (2n = 52) through conventional breeding techniques. Hybridization was done manually between an artificial autotetraploid of G. arboreum and an allotetraploid G. hirsutum, under field conditions. Boll shedding was controlled by application of exogenous hormones, 50 mg/L gibberellic acid and 100 mg/L naphthalene acetic acid. Percentage pollen viability in F(1) hybrids was 1.90% in 2(G. arboreum) x G. hirsutum and 2.38% in G. hirsutum x G. arboreum. Cytological studies of young buds taken from the F(1) hybrids confirmed that they all were sterile. Resistance against CLCuV in the F(1) hybrids was assessed through grafting, using the hybrid plant as the scion; the stock was a virus susceptible cotton plant, tested under field and greenhouse conditions. All F(1) cotton hybrids showed resistance against CLCuV, indicating that it is possible to transfer resistant genes from the autotetraploid of the diploid donor specie G. arboreum into allotetraploid G. hirsutum through conventional breeding, and durable resistance against CLCuV can then be deployed in the field. PMID:22002133

  20. A Genetic Map Between Gossypium hirsutum and the Brazilian Endemic G. mustelinum and Its Application to QTL Mapping

    PubMed Central

    Wang, Baohua; Liu, Limei; Zhang, Dong; Zhuang, Zhimin; Guo, Hui; Qiao, Xin; Wei, Lijuan; Rong, Junkang; May, O. Lloyd; Paterson, Andrew H.; Chee, Peng W.

    2016-01-01

    Among the seven tetraploid cotton species, little is known about transmission genetics and genome organization in Gossypium mustelinum, the species most distant from the source of most cultivated cotton, G. hirsutum. In this research, an F2 population was developed from an interspecific cross between G. hirsutum and G. mustelinum (HM). A genetic linkage map was constructed mainly using simple sequence repeat (SSRs) and restriction fragment length polymorphism (RFLP) DNA markers. The arrangements of most genetic loci along the HM chromosomes were identical to those of other tetraploid cotton species. However, both major and minor structural rearrangements were also observed, for which we propose a parsimony-based model for structural divergence of tetraploid cottons from common ancestors. Sequences of mapped markers were used for alignment with the 26 scaffolds of the G. hirsutum draft genome, and showed high consistency. Quantitative trait locus (QTL) mapping of fiber elongation in advanced backcross populations derived from the same parents demonstrated the value of the HM map. The HM map will serve as a valuable resource for QTL mapping and introgression of G. mustelinum alleles into G. hirsutum, and help clarify evolutionary relationships between the tetraploid cotton genomes. PMID:27172208

  1. Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton (Gossypium hirsutum L.).

    PubMed

    Thyssen, Gregory N; Song, Xianliang; Naoumkina, Marina; Kim, Hee-Jin; Fang, David D

    2014-07-01

    The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary independently between different cell types and developmental stages. Our objective was to determine the relationship between mitochondrial gene copy number and transcript abundance in the elongating fiber cells of Upland cotton (Gossypium hirsutum L.). We compared RNA and DNA from cotton fiber cells at five developmental time points from early elongation through secondary cell wall thickening from the Ligon-lintless 2 (Li2) short fiber mutant and its wild type near isogenic line (NIL) DP5690. Mitochondrial gene copy number decreased from 3 to 8-DPA in the developing cotton fiber cells while transcript levels remained low. As secondary cell wall biosynthesis began in developing fibers, the expression levels and copy numbers of mitochondrial genes involved in energy production and respiration were up-regulated in wild type cotton DP5690. However, the short fiber mutant Li2, failed to increase expression of these genes, which include three subunits of ATP synthase, atp1, atp8 and atp9 and two cytochrome genes cox1 and cob. At the same time, Li2 failed to increase the copy numbers of these highly expressed genes. Surprisingly, we found that when mitochondrial genes were highly transcribed, they also had very high copy numbers. This observation suggests that in developing cotton fibers, increased mitochondrial sublimon replication may support increases in gene transcription. PMID:24768176

  2. Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils.

    PubMed

    Snider, John L; Oosterhuis, Derrick M; Kawakami, Eduardo M

    2011-03-15

    For Gossypium hirsutum pollination, germination, and pollen tube growth must occur in a highly concerted fashion on the day of flowering for fertilization to occur. Because reproductive success could be influenced by the photosynthetic activity of major source leaves, we hypothesized that increased temperatures under field conditions would limit fertilization by inhibiting diurnal pollen tube growth through the style and decreasing subtending leaf photosynthesis. To address this hypothesis, G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures while at the same developmental stage (node 8 above the cotyledons). Collection and measurement were conducted at 06:00, 09:00, 12:00, 15:00, and 18:00h on August 4 (34.6°C maximum air temperature) and 14, 2009 (29.9°C maximum air temperature). Microclimate measurements included photosynthetically active radiation, relative humidity, and air temperature. Pistil measurements included pistil surface temperature, pollen germination, pollen tube growth through the style, fertilization efficiency, fertilized ovule number, and total number of ovules per ovary. Subtending leaf measurements included leaf temperature, photosynthesis, and stomatal conductance. Under high temperatures the first measurable pollen tube growth through the style was observed earlier in the day (12:00h) than under cooler conditions (15:00h). Also, high temperature resulted in slower pollen tube growth through the style (2.05mmh(-1)) relative to cooler conditions (3.35mmh(-1)), but there were no differences in fertilization efficiency, number of fertilized ovules, or ovule number. There was no effect of sampling date on diurnal photosynthetic patterns, where the maximum photosynthetic rate was observed at 12:00h on both dates. It is concluded that, of the measured physiological and reproductive processes, pollen tube growth rate showed the greatest sensitivity to high temperature under field conditions

  3. Macromolecular organization and genetic mapping of a rapidly evolving chromosome-specific tandem repeat family (B77) in cotton (Gossypium).

    PubMed

    Zhao, X; Ji, Y; Ding, X; Stelly, D M; Paterson, A H

    1998-12-01

    Isolation and characterization of the most prominent repetitive element families in the genome of tetraploid cotton (Gossypium barbadense L; [39]) revealed a small subset of families that showed very different properties in tetraploids than in their diploid progenitors, separated by 1-2 million years. One element, B77, was characterized in detail, and compared to the well-conserved 5S and 45S rRNA genes. The 572 bp B77 repeat was found to be concentrated in several discontinuous tandem arrays confined to a single 550 kb SalI fragment in tetraploid cotton. Genetic mapping based on the absence of the pentameric 'rung' in the G. barbadense 'ladder' showed that B77 maps to a D-subgenome chromosome. In situ hybridization supports the contention that the array is confined largely to a single chromosomal site in the D-subgenome. The B77 repeat has undergone a substantial increase in copy number since formation of tetraploid cotton from its diploid relatives. RFLPs observed among tetraploid cotton species suggest that amplification and/or rearrangement of the repeat may have continued after divergence of the five tetraploid cotton species. B77 contains many short direct repeats and shares significant DNA sequence homology with a Nicotiana alata retrotransposon Tna1-2 integrase motif. The recent amplification of B77 on linkage group D04 suggests that the D-subgenome of tetraploid cotton may be subject to different evolutionary constraints than the D-genome diploid chromosomes, which exhibit few genome-specific elements. Further, the abundance of B77 in G. gossypioides supports independent evidence that it may be the closest extant relative of the D-genome ancestor of cotton. PMID:9869409

  4. GhPSY, a phytoene synthase gene, is related to the red plant phenotype in upland cotton (Gossypium hirsutum L.).

    PubMed

    Cai, Caiping; Zhang, Xueying; Niu, Erli; Zhao, Liang; Li, Nina; Wang, Liman; Ding, Linyun; Guo, Wangzhen

    2014-08-01

    Carotenoids are important accessory pigments in plants that are essential for photosynthesis. Phytoene synthase (PSY), a rate-controlling enzyme in the carotenoid biosynthesis pathway, has been widely characterized in rice, maize, and sorghum, but at present there are no reports describing this enzyme in cotton. In this study, GhPSY was identified as a candidate gene for the red plant phenotype via a combined strategy using: (1) molecular marker data for loci closely linked to R1; (2) the whole-genome scaffold sequence from Gossypium raimondii; (3) gene expression patterns in cotton accessions expressing the red plant and green plant phenotypes; and (4) the significant correlation between a single nucleotide polymorphisms (SNP) in GhPSY and leaf phenotypes of progeny in the (Sub16 × T586) F2 segregating population. GhPSY was relatively highly expressed in leaves, and the protein was localized to the plastid where it appeared to be mostly attached to the surface of thylakoid membranes. GhPSY mRNA was expressed at a significantly higher level in T586 and SL1-7-1 red plants than TM-1 and Hai7124 green plants. SNP analysis in the GhPSY locus showed co-segregation with the red and green plant phenotypes in the (Sub16 × T586) F2 segregating population. A phylogenetic analysis showed that GhPSY belongs to the PSY2 subfamily, which is related to photosynthesis in photosynthetic tissues. Using a reverse genetics approach based on Tobacco rattle virus-induced gene silencing, we showed that the knockdown of GhPSY caused a highly uniform bleaching of the red color in newly-emerged leaves in both T586 and SL1-7-1 plants with a red plant phenotype. These findings indicate that GhPSY is important for engineering the carotenoid metabolic pathway in pigment production. PMID:24718783

  5. Identification of SET Domain-Containing Proteins in Gossypium raimondii and Their Response to High Temperature Stress

    PubMed Central

    Huang, Yong; Mo, Yijia; Chen, Pengyun; Yuan, Xiaoling; Meng, Funing; Zhu, Shengwei; Liu, Zhi

    2016-01-01

    SET (Su(var), E(z), and Trithorax) domain-containing proteins play an important role in plant development and stress responses through modifying lysine methylation status of histone. Gossypium raimondii may be the putative contributor of the D-subgenome of economical crops allotetraploid G. hirsutum and G. barbadense and therefore can potentially provide resistance genes. In this study, we identified 52 SET domain-containing genes from G. raimondii genome. Based on conserved sequences, these genes are grouped into seven classes and are predicted to catalyze the methylation of different substrates: GrKMT1 for H3K9me, GrKMT2 and GrKMT7 for H3K4me, GrKMT3 for H3K36me, GrKMT6 for H3K27me, but GrRBCMT and GrS-ET for nonhistones substrate-specific methylation. Seven pairs of GrKMT and GrRBCMT homologous genes are found to be duplicated, possibly one originating from tandem duplication and five from a large scale or whole genome duplication event. The gene structure, domain organization and expression patterns analyses suggest that these genes’ functions are diversified. A few of GrKMTs and GrRBCMTs, especially for GrKMT1A;1a, GrKMT3;3 and GrKMT6B;1 were affected by high temperature (HT) stress, demonstrating dramatically changed expression patterns. The characterization of SET domain-containing genes in G. raimondii provides useful clues for further revealing epigenetic regulation under HT and function diversification during evolution. PMID:27601353

  6. Analysis of [Gossypium capitis-viridis × (G.hirsutum × G.australe)2] Trispecific Hybrid and Selected Characteristics

    PubMed Central

    Zhang, Xiling; Li, Fuguang

    2015-01-01

    Speciation is always a contentious and challenging issue following with the presence of gene flow. In Gossypium, there are many valuable resources and wild diploid cotton especially C and B genome species possess some excellent traits which cultivated cotton always lacks. In order to explore character transferring rule from wild cotton to upland tetraploid cotton, the [G. capitis-viridis × (G. hirsutum × G. australe)2] triple hybrid was synthesized by interspecies hybridization and chromosome doubling. Morphology comparisons were measured among this hybrid and its parents. It showed that trispecific hybrid F1 had some intermediate morphological characters like leaf style between its parents and some different characters from its parents, like crawl growth characteristics and two kind flower color. It is highly resistant to insects comparing with other cotton species by four year field investigation. By cytogenetic analysis, triple hybrid was further confirmed by meiosis behavior of pollen mother cells. Comparing with regular meiosis of its three parents, it was distinguished by the occurrence of polyads with various numbers of unbalanced microspores and finally generating various abnormal pollen grains. All this phenomenon results in the sterility of this hybrid. This hybrid was further identified by SSR marker from DNA molecular level. It showed that 98 selected polymorphism primers amplified effective bands in this hybrids and its parents. The genetic proportion of three parents in this hybrid is 47.8% from G. hirsutum, 14.3% from G. australe, 7.0% from G. capitis-viridis, and 30.9% recombination bands respectively. It was testified that wild genetic material has been transferred into cultivated cotton and this new germplasm can be incorporated into cotton breeding program. PMID:26035817

  7. Transcriptome-Wide Identification of Salt-Responsive Members of the WRKY Gene Family in Gossypium aridum

    PubMed Central

    Fan, Xinqi; Guo, Qi; Xu, Peng; Gong, YuanYong; Shu, Hongmei; Yang, Yang; Ni, Wanchao; Zhang, Xianggui; Shen, Xinlian

    2015-01-01

    WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I–III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and –GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance. PMID:25951083

  8. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wang, Yumei; Hua, Jinping

    2015-01-01

    Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in F2: 3 and F2: 4 populations derived from a hybrid ‘Xinza No. 1’. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F1 for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F2: 3 and F2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F2:3 population, and 19 QTLs showed overdominance in F2:4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive × additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary two-locus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at single-locus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton. PMID:26618635

  9. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    PubMed

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop. PMID

  10. The Effects of Fruiting Positions on Cellulose Synthesis and Sucrose Metabolism during Cotton (Gossypium hirsutum L.) Fiber Development

    PubMed Central

    Ma, Yina; Wang, Youhua; Liu, Jingran; Lv, Fengjuan; Chen, Ji; Zhou, Zhiguo

    2014-01-01

    Cotton (Gossypium hirsutum L.) boll positions on a fruiting branch vary in their contribution to yield and fiber quality. Fiber properties are dependent on deposition of cellulose in the fiber cell wall, but information about the enzymatic differences in sucrose metabolism between these fruiting positions is lacking. Therefore, two cotton cultivars with different sensitivities to low temperature were tested in 2010 and 2011 to quantify the effect of fruit positions (FPs) on fiber quality in relation to sucrose content, enzymatic activities and sucrose metabolism. The indices including sucrose content, sucrose transformation rate, cellulose content, and the activities of the key enzymes, sucrose phosphate synthase (SPS), acid invertase (AI) and sucrose synthase (SuSy) which inhibit cellulose synthesis and eventually affect fiber quality traits in cotton fiber, were determined. Results showed that as compared with those of FP1, cellulose content, sucrose content, and sucrose transformation rate of FP3 were all decreased, and the variations of cellulose content and sucrose transformation rate caused by FPs in Sumian 15 were larger than those in Kemian 1. Under FP effect, activities of SPS and AI in sucrose regulation were decreased, while SuSy activity in sucrose degradation was increased. The changes in activities of SuSy and SPS in response to FP effect displayed different and large change ranges between the two cultivars. These results indicate that restrained cellulose synthesis and sucrose metabolism in distal FPs are mainly attributed to the changes in the activities of these enzymes. The difference in fiber quality, cellulose synthesis and sucrose metabolism in response to FPs in fiber cells for the two cotton cultivars was mainly determined by the activities of both SuSy and SPS. PMID:24586807

  11. Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium)

    PubMed Central

    2009-01-01

    Background Reactive oxygen species (ROS) play a prominent role in signal transduction and cellular homeostasis in plants. However, imbalances between generation and elimination of ROS can give rise to oxidative stress in growing cells. Because ROS are important to cell growth, ROS modulation could be responsive to natural or human-mediated selection pressure in plants. To study the evolution of oxidative stress related genes in a single plant cell, we conducted comparative expression profiling analyses of the elongated seed trichomes ("fibers") of cotton (Gossypium), using a phylogenetic approach. Results We measured expression changes during diploid progenitor species divergence, allopolyploid formation and parallel domestication of diploid and allopolyploid species, using a microarray platform that interrogates 42,429 unigenes. The distribution of differentially expressed genes in progenitor diploid species revealed significant up-regulation of ROS scavenging and potential signaling processes in domesticated G. arboreum. Similarly, in two independently domesticated allopolyploid species (G. barbadense and G. hirsutum) antioxidant genes were substantially up-regulated in comparison to antecedent wild forms. In contrast, analyses of three wild allopolyploid species indicate that genomic merger and ancient allopolyploid formation had no significant influences on regulation of ROS related genes. Remarkably, many of the ROS-related processes diagnosed as possible targets of selection were shared among diploid and allopolyploid cultigens, but involved different sets of antioxidant genes. Conclusion Our data suggests that parallel human selection for enhanced fiber growth in several geographically widely dispersed species of domesticated cotton resulted in similar and overlapping metabolic transformations of the manner in which cellular redox levels have become modulated. PMID:19686594

  12. Identification of SET Domain-Containing Proteins in Gossypium raimondii and Their Response to High Temperature Stress.

    PubMed

    Huang, Yong; Mo, Yijia; Chen, Pengyun; Yuan, Xiaoling; Meng, Funing; Zhu, Shengwei; Liu, Zhi

    2016-01-01

    SET (Su(var), E(z), and Trithorax) domain-containing proteins play an important role in plant development and stress responses through modifying lysine methylation status of histone. Gossypium raimondii may be the putative contributor of the D-subgenome of economical crops allotetraploid G. hirsutum and G. barbadense and therefore can potentially provide resistance genes. In this study, we identified 52 SET domain-containing genes from G. raimondii genome. Based on conserved sequences, these genes are grouped into seven classes and are predicted to catalyze the methylation of different substrates: GrKMT1 for H3K9me, GrKMT2 and GrKMT7 for H3K4me, GrKMT3 for H3K36me, GrKMT6 for H3K27me, but GrRBCMT and GrS-ET for nonhistones substrate-specific methylation. Seven pairs of GrKMT and GrRBCMT homologous genes are found to be duplicated, possibly one originating from tandem duplication and five from a large scale or whole genome duplication event. The gene structure, domain organization and expression patterns analyses suggest that these genes' functions are diversified. A few of GrKMTs and GrRBCMTs, especially for GrKMT1A;1a, GrKMT3;3 and GrKMT6B;1 were affected by high temperature (HT) stress, demonstrating dramatically changed expression patterns. The characterization of SET domain-containing genes in G. raimondii provides useful clues for further revealing epigenetic regulation under HT and function diversification during evolution. PMID:27601353

  13. Influence of virus inoculation method and host larval age on productivity of the nucleopolyhedrovirus of the teak defoliator, Hyblaea puera (Cramer).

    PubMed

    Biji, C P; Sudheendrakumar, V V; Sajeev, T V

    2006-04-01

    Hyblaea puera nucleopolyhedrovirus (HpNPV) is a potential biocontrol agent against the teak defoliator H. puera (Cramer) (Lepidoptera: Hyblaeidae). As part of optimization of the mass production of this nucleopolyhedrovirus, three methods of inoculation were evaluated against the host larvae with various yield parameters as selection criteria. The inoculation methods compared were controlled dose on diet in rearing tubes using a micropipette, controlled dose on leaf discs (prepared from teak leaves) using a micropipette and spraying onto diet filled rearing tubes using an atomizer. Fifth instar H. puera larvae of the weight classes 75-100, 101-125, 126-150, 151-175 and 176-200mg were used for the bioassay. With reference to percentage of harvested larvae, virus production per larva and virus production per inoculated larva (VPIL), spraying viral suspension into rearing tubes filled with artificial diet using a hand sprayer was found to be the most efficient method of inoculation. It was observed that the method of inoculation and age of the larvae has discrete as well as interactive influence on the virus yield parameters. PMID:16384613

  14. Evaluating host plant resistance in cotton (Gossypium hirsutum L.) with varying gland densities to tobacco budworm (heliothis virescens F.) and bollworm (Heliocoverpa zea Boddie) in the field and laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) produces a number of toxic terpenoid aldehyde (TA) compounds contained in epidermal glands that help protect the plant from pests and diseases. In the seed, one of these toxic compounds, gossypol, limits the use of the seed to ruminants such as dairy cows. There are br...

  15. Submission to NCBI Sequence Read Archive (SRA): Raw read files from manuscript “RNA-seq transcriptome profiling of upland cotton (Gossypium hirsutum) root tissue under water deficit stress” NCBI SRA Accession No. PRJNA210770

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gossypium hirsutum L. cultivar Siokra L-23 was grown under rainfed and irrigated treatments in a field with very sandy soil. Root samples were collected for each treatment during the reproductive growth period. The RNA of all root tissues was used in an RNA-seq transcriptome profiling study with an ...

  16. Submission to GenBank a set of differentially expressed transcript derived fragments (TDFs) upon water deficit stress in Gossypium hirsutum L - GenBank Accession No. JK512212-JK512358

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field plots of Gossypium hirsutum L. cultivar Siokra L-23 were grown under rainfed and irrigated treatments in a field with very sandy soil. During the reproductive growth period, root and leaf tissues were collected from each treatment. The RNA of all root and leaf tissues was used as a template in...

  17. Identification of drought-responsive genes in a drought-tolerant cotton (Gossypium hirsutum L.) cultivar under reduced irrigation field conditions and development of candidate gene markers for drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton productivity is affected by water deficit, and little is known about the molecular basis of drought tolerance in cotton. In this study, microarray analysis was conducted to identify drought-responsive genes in the third topmost leaves of the field-grown drought-tolerant cotton (Gossypium hirs...

  18. BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (Gossypium) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping

    PubMed Central

    Hulse-Kemp, Amanda M.; Ashrafi, Hamid; Stoffel, Kevin; Zheng, Xiuting; Saski, Christopher A.; Scheffler, Brian E.; Fang, David D.; Chen, Z. Jeffrey; Van Deynze, Allen; Stelly, David M.

    2015-01-01

    A bacterial artificial chromosome library and BAC-end sequences for cultivated cotton (Gossypium hirsutum L.) have recently been developed. This report presents genome-wide single nucleotide polymorphism (SNP) mining utilizing resequencing data with BAC-end sequences as a reference by alignment of 12 G. hirsutum L. lines, one G. barbadense L. line, and one G. longicalyx Hutch and Lee line. A total of 132,262 intraspecific SNPs have been developed for G. hirsutum, whereas 223,138 and 470,631 interspecific SNPs have been developed for G. barbadense and G. longicalyx, respectively. Using a set of interspecific SNPs, 11 randomly selected and 77 SNPs that are putatively associated with the homeologous chromosome pair 12 and 26, we mapped 77 SNPs into two linkage groups representing these chromosomes, spanning a total of 236.2 cM in an interspecific F2 population (G. barbadense 3-79 × G. hirsutum TM-1). The mapping results validated the approach for reliably producing large numbers of both intraspecific and interspecific SNPs aligned to BAC-ends. This will allow for future construction of high-density integrated physical and genetic maps for cotton and other complex polyploid genomes. The methods developed will allow for future Gossypium resequencing data to be automatically genotyped for identified SNPs along the BAC-end sequence reference for anchoring sequence assemblies and comparative studies. PMID:25858960

  19. BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (Gossypium) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Stoffel, Kevin; Zheng, Xiuting; Saski, Christopher A; Scheffler, Brian E; Fang, David D; Chen, Z Jeffrey; Van Deynze, Allen; Stelly, David M

    2015-06-01

    A bacterial artificial chromosome library and BAC-end sequences for cultivated cotton (Gossypium hirsutum L.) have recently been developed. This report presents genome-wide single nucleotide polymorphism (SNP) mining utilizing resequencing data with BAC-end sequences as a reference by alignment of 12 G. hirsutum L. lines, one G. barbadense L. line, and one G. longicalyx Hutch and Lee line. A total of 132,262 intraspecific SNPs have been developed for G. hirsutum, whereas 223,138 and 470,631 interspecific SNPs have been developed for G. barbadense and G. longicalyx, respectively. Using a set of interspecific SNPs, 11 randomly selected and 77 SNPs that are putatively associated with the homeologous chromosome pair 12 and 26, we mapped 77 SNPs into two linkage groups representing these chromosomes, spanning a total of 236.2 cM in an interspecific F2 population (G. barbadense 3-79 × G. hirsutum TM-1). The mapping results validated the approach for reliably producing large numbers of both intraspecific and interspecific SNPs aligned to BAC-ends. This will allow for future construction of high-density integrated physical and genetic maps for cotton and other complex polyploid genomes. The methods developed will allow for future Gossypium resequencing data to be automatically genotyped for identified SNPs along the BAC-end sequence reference for anchoring sequence assemblies and comparative studies. PMID:25858960

  20. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt.

    PubMed

    Yang, Jun; Ma, Qing; Zhang, Yan; Wang, Xingfen; Zhang, Guiyin; Ma, Zhiying

    2016-01-10

    Most of the disease resistance genes already characterized in plants encode nucleotide-binding site-leucine rich repeat (NBS-LRR) proteins that have key roles in resistance to Verticillium dahliae. Using a cDNA library and RACE protocols, we cloned a coiled-coil (CC)-NBS-LRR-type gene, GbRVd, from a resistant tetraploid cotton species, Gossypium barbadense (RVd=Resistance to V. dahliae). We also applied RT-qPCR and VIGS technologies to analyze how expression of GbRVd was induced upon attack by V. dahliae. Its 2862-bp ORF encodes a predicted protein containing 953 amino acid residues, with a predicted molecular weight of 110.17kDa and an isoelectric point of 5.87. GbRVd has three domains - CC, NBS, and LRR - and is most closely related to Gossypium raimondii RVd (88% amino acid identity). Profiling demonstrated that GbRVd is constitutively expressed in all tested tissues, and transcript levels are especially high in the leaves. In plants inoculated with V. dahliae, GbRVd was significantly up-regulated when compared with the control, with expression peaking at 48h post-inoculation. Silencing of GbRVd in cotton through VIGS dramatically down-regulated SA, NO, and H2O2 production, resulting in greater susceptibility to V. dahliae. Taken together, these results suggest that GbRVd has an important role in protecting G. barbadense against infection by V. dahliae. PMID:26407869

  1. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization.

    PubMed

    Yan, Qian; Liu, Hou-Sheng; Yao, Dan; Li, Xin; Chen, Han; Dou, Yang; Wang, Yi; Pei, Yan; Xiao, Yue-Hua

    2015-01-01

    Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus. PMID:25992947

  2. Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population

    PubMed Central

    2010-01-01

    Background Cotton fibers (produced by Gossypium species) are the premier natural fibers for textile production. The two tetraploid species, G. barbadense (Gb) and G. hirsutum (Gh), differ significantly in their fiber properties, the former having much longer, finer and stronger fibers that are highly prized. A better understanding of the genetics and underlying biological causes of these differences will aid further improvement of cotton quality through breeding and biotechnology. We evaluated an inter-specific Gh × Gb recombinant inbred line (RIL) population for fiber characteristics in 11 independent experiments under field and glasshouse conditions. Sites were located on 4 continents and 5 countries and some locations were analyzed over multiple years. Results The RIL population displayed a large variability for all major fiber traits. QTL analyses were performed on a per-site basis by composite interval mapping. Among the 651 putative QTLs (LOD > 2), 167 had a LOD exceeding permutation based thresholds. Coincidence in QTL location across data sets was assessed for the fiber trait categories strength, elongation, length, length uniformity, fineness/maturity, and color. A meta-analysis of more than a thousand putative QTLs was conducted with MetaQTL software to integrate QTL data from the RIL and 3 backcross populations (from the same parents) and to compare them with the literature. Although the global level of congruence across experiments and populations was generally moderate, the QTL clustering was possible for 30 trait x chromosome combinations (5 traits in 19 different chromosomes) where an effective co-localization of unidirectional (similar sign of additivity) QTLs from at least 5 different data sets was observed. Most consistent meta-clusters were identified for fiber color on chromosomes c6, c8 and c25, fineness on c15, and fiber length on c3. Conclusions Meta-analysis provided a reliable means of integrating phenotypic and genetic mapping data across

  3. Transcriptome Sequencing and Differential Gene Expression Analysis of Delayed Gland Morphogenesis in Gossypium australe during Seed Germination

    PubMed Central

    Tao, Tao; Zhao, Liang; Lv, Yuanda; Chen, Jiedan; Hu, Yan; Zhang, Tianzhen; Zhou, Baoliang

    2013-01-01

    The genus Gossypium is a globally important crop that is used to produce textiles, oil and protein. However, gossypol, which is found in cultivated cottonseed, is toxic to humans and non-ruminant animals. Efforts have been made to breed improved cultivated cotton with lower gossypol content. The delayed gland morphogenesis trait possessed by some Australian wild cotton species may enable the widespread, direct usage of cottonseed. However, the mechanisms about the delayed gland morphogenesis are still unknown. Here, we sequenced the first Australian wild cotton species (Gossypiumaustrale) and a diploid cotton species (Gossypiumarboreum) using the Illumina Hiseq 2000 RNA-seq platform to help elucidate the mechanisms underlying gossypol synthesis and gland development. Paired-end Illumina short reads were de novo assembled into 226,184, 213,257 and 275,434 transcripts, clustering into 61,048, 47,908 and 72,985 individual clusters with N50 lengths of 1,710 bp, 1544 BP and 1,743 bp, respectively. The clustered Unigenes were searched against three public protein databases (TrEMBL, SwissProt and RefSeq) and the nucleotide and protein sequences of Gossypiumraimondii using BLASTx and BLASTn. A total of 21,987, 17,209 and 25,325 Unigenes were annotated. Of these, 18,766 (85.4%), 14,552 (84.6%) and 21,374 (84.4%) Unigenes could be assigned to GO-term classifications. We identified and analyzed 13,884 differentially expressed Unigenes by clustering and functional enrichment. Terpenoid-related biosynthesis pathways showed differentially regulated expression patterns between the two cotton species. Phylogenetic analysis of the terpene synthases family was also carried out to clarify the classifications of TPSs. RNA-seq data from two distinct cotton species provide comprehensive transcriptome annotation resources and global gene expression profiles during seed germination and gland and gossypol formation. These data may be used to further elucidate various mechanisms and help

  4. Crystal Structure of (+)-[delta]-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis

    SciTech Connect

    Gennadios, Heather A.; Gonzalez, Veronica; Di Costanzo, Luigi; Li, Amang; Yu, Fanglei; Miller, David J.; Allemann, Rudolf K.; Christianson, David W.

    2009-09-11

    (+)-{delta}-Cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 {angstrom} resolution and the structure of its complex with three putative Mg{sup 2+} ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 {angstrom} resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D{sup 307}DTYD{sup 311} motif on helix D that interacts with Mg{sub A}{sup 2+} and Mg{sub C}{sup 2+}. However, DCS appears to be unique among terpenoid cyclases in that it does not contain the 'NSE/DTE' motif on helix H that specifically chelates Mg{sub B}{sup 2+}, which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg{sub B}{sup 2+} ligands). Instead, DCS contains a second aspartate-rich motif, D{sup 451}DVAE{sup 455}, that interacts with Mg{sub B}{sup 2+}. In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg{sub B}{sup 2+} binding motif. Analyses of DCS mutants with alanine substitutions in the D{sup 307}DTYD{sup 311} and D{sup 451}DVAE{sup 455} segments reveal the contributions of these segments to catalysis.

  5. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization

    PubMed Central

    Yan, Qian; Liu, Hou-Sheng; Yao, Dan; Li, Xin; Chen, Han; Dou, Yang; Wang, Yi; Pei, Yan; Xiao, Yue-Hua

    2015-01-01

    Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus. PMID:25992947

  6. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    SciTech Connect

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; Inmon, Jay J.; Millhollon, Jon C.; Liechty, Zach; Page, Justin T.; Jenks, Matthew A.; Chapman, Kent D.; Udall, Joshua A.; Gore, Michael A.; Dyer, John M.

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level

  7. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae

    PubMed Central

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2nd and 3rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2nd and 3rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi, respectively. Conclusion: Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management. PMID:25629069

  8. Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton (Gossypium hirsutum L.) stalks.

    PubMed

    Li, Qiang; Lei, Jiandu; Zhang, Rongyue; Li, Juan; Xing, Jianmin; Gao, Fei; Gong, Fangling; Yan, Xiaofeng; Wang, Dan; Su, Zhiguo; Ma, Guanghui

    2013-05-01

    Bio-waste cotton (Gossypium hirsutum L.) stalks were converted into succinic acid by simultaneous saccharification and fermentation (SSF) using Actinobacillus succinogenes 130Z. After 54 h SSF at 40 °C and pH 7.0, the production of succinic acid was 63 g/L, with 1.17 g/L/h productivity and 64% conversion yield. After SSF, a simple method for the decolorization and deproteinization of crude SSF broth was developed through adsorption tests of polystyrene (PSt) microspheres. Under optimized conditions (5% PSt loading (w/v), pH 4.0, 60 °C and adsorption time of 40 min), the ratios of decolorization, deproteinization and succinic acid loss ratios were 96.6, 84.5 and 4.1%, respectively. The method developed will provide a potential approach for large-scale production of succinic acid from the biomass waste. PMID:22985822

  9. Distribution and Differentiation of Wild, Feral, and Cultivated Populations of Perennial Upland Cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean

    PubMed Central

    Coppens d'Eeckenbrugge, Geo; Lacape, Jean-Marc

    2014-01-01

    Perennial forms of Gossypium hirsutum are classified under seven races. Five Mesoamerican races would have been derived from the wild race ‘yucatanense’ from northern Yucatán. ‘Marie-Galante’, the main race in the Caribbean, would have developed from introgression with G. barbadense. The racial status of coastal populations from the Caribbean has not been clearly defined. We combined Ecological Niche Modeling with an analysis of SSR marker diversity, to elucidate the relationships among cultivated, feral and wild populations of perennial cottons. Out of 954 records of occurrence in Mesoamerica and the Caribbean, 630 were classified into four categories cultivated, feral (disturbed and secondary habitats), wild/feral (protected habitats), and truly wild cotton (TWC) populations. The widely distributed three first categories cannot be differentiated on ecological grounds, indicating they mostly belong to the domesticated pool. In contrast, TWC are restricted to the driest and hottest littoral habitats, in northern Yucatán and in the Caribbean (from Venezuela to Florida), as confirmed by their climatic envelope in the factorial analysis. Extrapolating this TWC climatic model to South America and the Pacific Ocean points towards places where other wild representatives of tetraploid Gossypium species have been encountered. The genetic analysis sample comprised 42 TWC accessions from 12 sites and 68 feral accessions from 18 sites; at nine sites, wild and feral accessions were collected in close vicinity. Principal coordinate analysis, neighbor joining, and STRUCTURE consistently showed a primary divergence between TWC and feral cottons, and a secondary divergence separating ‘Marie-Galante’ from all other feral accessions. This strong genetic structure contrasts strikingly with the absence of geographic differentiation. Our results show that TWC populations of Mesoamerica and the Caribbean constitute a homogenous gene pool. Furthermore, the relatively low

  10. Cotton (Gossypium hirsutum L.).

    PubMed

    Rathore, Keerti S; Campbell, LeAnne M; Sherwood, Shanna; Nunes, Eugenia

    2015-01-01

    Cotton continues to be a crop of great economic importance in many developing and some developed countries. Cotton plants expressing the Bt gene to deter some of the major pests have been enthusiastically and widely accepted by the farmers in three of the major producing countries, i.e., China, India, and the USA. Considering the constraints related to its production and the wide variety of products derived from the cotton plant, it offers several target traits that can be improved through genetic engineering. Thus, there is a great need to accelerate the application of biotechnological tools for cotton improvement. This requires a simple, yet robust gene delivery/transformant recovery system. Recently, a protocol, involving large-scale, mechanical isolation of embryonic axes from germinating cottonseeds followed by direct transformation of the meristematic cells has been developed by an industrial laboratory. However, complexity of the mechanical device and the patent restrictions are likely to keep this method out of reach of most academic laboratories. In this chapter, we describe the method developed in our laboratory that has undergone further refinements and involves Agrobacterium-mediated transformation of cotton cells, selection of stable transgenic callus lines, and recovery of plants via somatic embryogenesis. PMID:25416245

  11. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs

    PubMed Central

    Hu, Hongtao; Rashotte, Aaron M.; Singh, Narendra K.; Weaver, David B.; Goertzen, Leslie R.; Singh, Shree R.; Locy, Robert D.

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3’-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a

  12. Ground measured evapotranspiration scaled to stand level using MODIS and Landsat sensors to study Tamarix spp.response to repeated defoliation by the Tamarix leaf beetle at two sites

    NASA Astrophysics Data System (ADS)

    Pearlstein, S.; Nagler, P. L.; Glenn, E. P.; Hultine, K. R.

    2012-12-01

    The Dolores River in Southern Utah and the Virgin River in Southern Nevada are ecosystems under pressure from increased groundwater withdrawal due to growing populations and introduced riparian species. We studied the impact of the biocontrol Tamarix leaf beetles (Dirohabda carinulata and D. elongata) on the introduced riparian species, Tamarix spp., phenology and water use over multiple cycles of annual defoliation. Heat balance sap flow measurements, leaf area index (LAI), well data, allometry and satellite imagery from Landsat Thematic Mapper 5 and EOS-1 Moderate Resolution Imaging Spectrometer (MODIS) sensors were used to assess the distribution of beetle defoliation and its effect on evapotranspiration (ET). Study objectives for the Virgin River were to measure pre-beetle arrival ET, while the Dolores River site has had defoliation since 2004 and is a site of long-term beetle effect monitoring. This study focuses on measurements conducted over two seasons, 2010 and 2011. At the Dolores River site, results from 2010 were inconclusive due to sensor malfunctions but plant ET by sap flow in 2011 averaged 1.02 mm/m^2 leaf area/day before beetle arrival, dropping to an average of 0.75 mm/m^2 leaf area/day after beetle arrival. Stand level estimations from May - December, 2010 by MODIS were about 0.63 mm/ day, results from Landsat were 0.51 mm/day in June and 0.78 in August. For January -September, 2011, MODIS values were about 0.6 mm/day, and Landsat was 0.57 mm/day in June and 0.62 mm/day in August. These values are lower than previously reported ET values for this site meaning that repeated defoliation does diminish stand level water use. The Virgin River site showed plant ET from sap flow averaged about 3.9-4 mm/m^2 leaf area/day from mid-May - September, 2010. In 2011, ET from sap flow averaged 3.83 mm/m^2 leaf area/day during June - July, but dropped to 3.73 mm/ m^2 leaf area/day after beetle arrival in August. The slight drop in plant ET is not significant

  13. Characterization of 19 Genes Encoding Membrane-Bound Fatty Acid Desaturases and their Expression Profiles in Gossypium raimondii Under Low Temperature.

    PubMed

    Liu, Wei; Li, Wei; He, Qiuling; Daud, Muhammad Khan; Chen, Jinhong; Zhu, Shuijin

    2015-01-01

    To produce unsaturated fatty acids, membrane-bound fatty acid desaturases (FADs) can be exploited to introduce double bonds into the acyl chains of fatty acids. In this study, 19 membrane-bound FAD genes were identified in Gossypium raimondii through database searches and were classified into four different subfamilies based on phylogenetic analysis. All 19 membrane-bound FAD proteins shared three highly conserved histidine boxes, except for GrFAD2.1, which lost the third histidine box in the C-terminal region. In the G. raimondii genome, tandem duplication might have led to the increasing size of the FAD2 cluster in the Omega Desaturase subfamily, whereas segmental duplication appeared to be the dominant mechanism for the expansion of the Sphingolipid and Front-end Desaturase subfamilies. Gene expression analysis showed that seven membrane-bound FAD genes were significantly up-regulated and that five genes were greatly suppressed in G. raimondii leaves exposed to low temperature conditions. PMID:25894196

  14. Characterization of 19 Genes Encoding Membrane-Bound Fatty Acid Desaturases and their Expression Profiles in Gossypium raimondii Under Low Temperature

    PubMed Central

    He, Qiuling; Daud, Muhammad Khan; Chen, Jinhong; Zhu, Shuijin

    2015-01-01

    To produce unsaturated fatty acids, membrane-bound fatty acid desaturases (FADs) can be exploited to introduce double bonds into the acyl chains of fatty acids. In this study, 19 membrane-bound FAD genes were identified in Gossypium raimondii through database searches and were classified into four different subfamilies based on phylogenetic analysis. All 19 membrane-bound FAD proteins shared three highly conserved histidine boxes, except for GrFAD2.1, which lost the third histidine box in the C-terminal region. In the G. raimondii genome, tandem duplication might have led to the increasing size of the FAD2 cluster in the Omega Desaturase subfamily, whereas segmental duplication appeared to be the dominant mechanism for the expansion of the Sphingolipid and Front-end Desaturase subfamilies. Gene expression analysis showed that seven membrane-bound FAD genes were significantly up-regulated and that five genes were greatly suppressed in G. raimondii leaves exposed to low temperature conditions. PMID:25894196

  15. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    PubMed

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers. PMID:25534543

  16. Glutathione S-Transferase Gene Family in Gossypium raimondii and G. arboreum: Comparative Genomic Study and their Expression under Salt Stress

    PubMed Central

    Dong, Yating; Li, Cong; Zhang, Yi; He, Qiuling; Daud, Muhammad K.; Chen, Jinhong; Zhu, Shuijin

    2016-01-01

    Glutathione S-transferases (GSTs) play versatile functions in multiple aspects of plant growth and development. A comprehensive genome-wide survey of this gene family in the genomes of G. raimondii and G. arboreum was carried out in this study. Based on phylogenetic analyses, the GST gene family of both two diploid cotton species could be divided into eight classes, and approximately all the GST genes within the same subfamily shared similar gene structure. Additionally, the gene structures between the orthologs were highly conserved. The chromosomal localization analyses revealed that GST genes were unevenly distributed across the genome in both G. raimondii and G. arboreum. Tandem duplication could be the major driver for the expansion of GST gene families. Meanwhile, the expression analysis for the selected 40 GST genes showed that they exhibited tissue-specific expression patterns and their expression were induced or repressed by salt stress. Those findings shed lights on the function and evolution of the GST gene family in Gossypium species. PMID:26904090

  17. Predawn respiration rates during flowering are highly predictive of yield response in Gossypium hirsutum when yield variability is water-induced.

    PubMed

    Snider, John L; Chastain, Daryl R; Meeks, Calvin D; Collins, Guy D; Sorensen, Ronald B; Byrd, Seth A; Perry, Calvin D

    2015-07-01

    Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesized that predawn respiration rates (RPD) would be (1) more sensitive to drought than photosynthetic processes and (2) highly predictive of water-induced yield variability in Gossypium hirsutum. Two studies (at Tifton and Camilla Georgia) addressed these hypotheses. At Tifton, drought was imposed beginning at the onset of flowering (first flower) and continuing for three weeks (peak bloom) followed by a recovery period, and predawn water potential (ΨPD), RPD, net photosynthesis (AN) and maximum quantum yield of photosystem II (Fv/Fm) were measured throughout the study period. At Camilla, plants were exposed to five different irrigation regimes throughout the growing season, and average ΨPD and RPD were determined between first flower and peak bloom for all treatments. For both sites, fiber yield was assessed at crop maturity. The relationships between ΨPD, RPD and yield were assessed via non-linear regression. It was concluded for field-grown G. hirsutum that (1) RPD is exceptionally sensitive to progressive drought (more so than AN or Fv/Fm) and (2) average RPD from first flower to peak bloom is highly predictive of water-induced yield variability. PMID:26125121

  18. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Cai, Juan; Jia, Fei; Shi, Yuzhen; Gong, Juwu; Shang, Haihong; Liu, Aiying; Chen, Tingting; Ge, Qun; Palanga, Koffi Kibalou; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Li, Wei; Sun, Linyang; Gong, Wankui; Yuan, Youlu

    2015-01-01

    Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0–153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0–153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0–153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%–11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection. PMID:26262992

  19. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum).

    PubMed

    Nazeer, W; Ahmad, S; Mahmood, K; Tipu, A L; Mahmood, A; Zhou, B

    2014-01-01

    Cotton leaf curl virus disease is a major hurdle for successful cotton production in Pakistan. There has been considerable economic loss due to this disease during the last decade. It would be desirable to have cotton varieties resistant to this disease. We explored the possibility of transferring virus resistant genes from the wild species Gossypium stocksii into MNH-786, a cultivar of G. hirsutum. Hybridization was done under field condition at the Cotton Research Station, Multan, during 2010-11. Boll shedding was controlled by application of exogenous hormones. F1 seeds were treated with 0.03% colchicine solution for 6 h and germinated. Cytological observations at peak squaring/flowering stage showed that these plants were hexaploid, having 2n = 6x = 78 chromosomes. The F1 plants showed intermediate expression for leaf size, leaf area, petiole length, bracteole number and size, bracteole area, bracteole dentation, flower size, pedicel size, and petal number and size. Moreover it possessed high fiber strength of 54.4 g/tex, which is 54% greater than that of the check variety, i.e. MNH-786 (G. hirsutum). The F1 population did not show any symptom of CLCuVD in the field, tested by grafting with CLCuVD susceptible rootstock (var. S12). We conclude that it is possible to transfer CLCuVD resistance and high fiber strength from G. stocksii to G. hirsutum. PMID:24634169

  20. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs.

    PubMed

    McGarry, Roisin C; Prewitt, Sarah F; Culpepper, Samantha; Eshed, Yuval; Lifschitz, Eliezer; Ayre, Brian G

    2016-10-01

    Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization. PMID:27292411

  1. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres

    PubMed Central

    Yuan, Daojun; Tang, Zhonghui; Wang, Maojun; Gao, Wenhui; Tu, Lili; Jin, Xin; Chen, Lingling; He, Yonghui; Zhang, Lin; Zhu, Longfu; Li, Yang; Liang, Qiqi; Lin, Zhongxu; Yang, Xiyan; Liu, Nian; Jin, Shuangxia; Lei, Yang; Ding, Yuanhao; Li, Guoliang; Ruan, Xiaoan; Ruan, Yijun; Zhang, Xianlong

    2015-01-01

    Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853 Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a “relay race”-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus. PMID:26634818

  2. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    PubMed Central

    Thyssen, Gregory N.; Fang, David D.; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D.; Condon, Tracy L.; Li, Ping; Kim, Hee Jin

    2016-01-01

    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. PMID:27172184

  3. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid.

    PubMed

    Wang, Li; Mu, Chun; Du, Mingwei; Chen, Yin; Tian, Xiaoli; Zhang, Mingcai; Li, Zhaohu

    2014-08-01

    The growth regulator mepiquat chloride (MC) is globally used in cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield loss. However, little information is available as to whether the modification of plant architecture by MC is related to alterations in gibberellic acid (GA) metabolism and signaling. Here, the role of GA metabolism and signaling was investigated in cotton seedlings treated with MC. The MC significantly decreased endogenous GA3 and GA4 levels in the elongating internode, which inhibited cell elongation by downregulating GhEXP and GhXTH2, and then reducing plant height. Biosynthetic and metabolic genes of GA were markedly suppressed within 2-10d of MC treatment, which also downregulated the expression of DELLA-like genes. A remarkable feedback regulation was observed at the early stage of MC treatment when GA biosynthetic and metabolic genes expression was evidently upregulated. Mepiquat chloride action was controlled by temporal translocation and spatial accumulation which regulated GA biosynthesis and signal expression for maintaining GA homeostasis. The results suggested that MC application could reduce endogenous GA levels in cotton through controlled GA biosynthetic and metabolic genes expression, which might inhibit cell elongation, thereby shortening the internode and reducing plant height. PMID:25017155

  4. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene.

    PubMed

    Thyssen, Gregory N; Fang, David D; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D; Condon, Tracy L; Li, Ping; Kim, Hee Jin

    2016-01-01

    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. PMID:27172184

  5. Changes during leaf expansion of ΦPSII temperature optima in Gossypium hirsutum are associated with the degree of fatty acid lipid saturation.

    PubMed

    Hall, Trent D; Chastain, Daryl R; Horn, Patrick J; Chapman, Kent D; Choinski, John S

    2014-03-15

    In this project, we hypothesize that cotton (Gossypium hirsutum) leaf temperature and the responses of leaf photosynthesis to temperature will change as the leaves expand and that differences between young and mature leaves will be associated with the proportion of saturated fatty acids in thylakoid and other membrane lipids. To that end, we studied main stem leaves obtained from plants growing in a temperature controlled greenhouse and at different times in the field season. We found that young leaves (∼5d old) had higher mid day temperatures, lower stomatal conductance and higher thermal optima as measured by ΦPSII temperature curves than did more mature leaves (∼13d old). Young leaves also had significant differences in fatty acid saturation with the warmer, young leaves having a higher proportion of palmitic acid (16:0) and lower linoleic acid (18:3) in total lipid extracts and higher 16:0 and lower palmitoleic acid (16:1) in the chloroplast membrane phosphoglycerides, digalactosyldiacylglycerol (in the greenhouse) and phosphatidylglycerol when compared with cooler, more mature leaves. Later in the growing season, leaf temperature, stomatal conductance and ΦPSII temperature curves for young and more mature leaves were similar and the proportion of 16:0 fatty acids decreased and 16:1 increased in phosphatidylglycerol. We conclude that changes in temperature as cotton leaves expand leads to alterations in the fatty acid composition of thylakoid and other membranes and, consequently, influence photosynthesis/temperature responses. PMID:24594393

  6. Polyamine and Its Metabolite H2O2 Play a Key Role in the Conversion of Embryogenic Callus into Somatic Embryos in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Cheng, Wen-Han; Wang, Fan-Long; Cheng, Xin-Qi; Zhu, Qian-Hao; Sun, Yu-Qiang; Zhu, Hua-Guo; Sun, Jie

    2015-01-01

    The objective of this study was to increase understanding about the mechanism by which polyamines (PAs) promote the conversion of embryogenic calli (EC) into somatic embryos in cotton (Gossypium hirsutum L.). We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE), and investigated the effects of exogenous PAs and H2O2 on differentiation and development of EC. Putrescine (Put), spermidine (Spd), and spermine (Spm) significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm, and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of PA synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton. PMID:26697030

  7. 40 CFR 180.403 - Thidiazuron; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metabolites in or on the following food commodities: Commodity Parts per million Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 0.4 Cotton, gin byproducts 24.0 Cotton, undelinted seed 0.3 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 0.4 Hog, fat 0.4 Hog, meat 0.4 Hog, meat byproducts 0.4...

  8. 40 CFR 180.403 - Thidiazuron; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metabolites in or on the following food commodities: Commodity Parts per million Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 0.4 Cotton, gin byproducts 24.0 Cotton, undelinted seed 0.3 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 0.4 Hog, fat 0.4 Hog, meat 0.4 Hog, meat byproducts 0.4...

  9. 40 CFR 180.403 - Thidiazuron; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metabolites in or on the following food commodities: Commodity Parts per million Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 0.4 Cotton, gin byproducts 24.0 Cotton, undelinted seed 0.3 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 0.4 Hog, fat 0.4 Hog, meat 0.4 Hog, meat byproducts 0.4...

  10. 40 CFR 180.403 - Thidiazuron; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., fat 0.4 Horse, meat 0.4 Horse, meat byproducts 0.4 Milk 0.05 Sheep, fat 0.4 Sheep, meat 0.4...

  11. Individual chromosome identification, chromosomal collinearity and genetic-physical integrated map in Gossypium darwinii and four D genome cotton species revealed by BAC-FISH.

    PubMed

    Gan, Yimei; Liu, Fang; Peng, Renhai; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2012-01-01

    The study was conducted on the individual chromosome identification in Gossypium darwinii (A(d)D(d)), G. klotzschianum (D(3k)), G. davidsonii (D(3d)), G. armourianum (D(2-1)) and G. aridum (D(4)) using a multi-probe fluorescence of in situ hybridization (FISH) system. Comparative analysis on their genetic maps with that of physical maps was made as well. The FISH probes used contained two sets of bacterial artificial chromosome (BAC) clones [one is specific to 26 individual chromosomes from A and D subgenomes of G. hirsutum (A(h) and D(h)) while the other is a D genome centromere-specific BAC clone 150D24], 45S and 5S rDNA clones. The results showed that all A(d) chromosomes were marked with the 13 A(h) chromosome-specific BAC clones, whilst all D(d), D(3k), D(3d), D(2-1) and D(4) chromosomes and chromosomal arms were identified with the 13 D(h) chromosome-specific BAC clones and the D genome centromere-specific BAC. According to the homology within D subgenomes which are between A (D) genome and A (D) subgenome, the systematic nomenclature for individual chromosome in the five species was established. The chromosomes of A (D) subgenomes in G. darwinii were named as A(d)01-A(d)13 (D(d)01-D(d)13). The chromosomes in D(3k), D(3d), D(2-1) and D(4) were named as D(3k)01-D(3k)13, D(3d)01-D(3d)13, D(2-1)01-D(2-1)13 and D(4)01-D(4)13, respectively. Based on the successful identification for individual chromosomes, 45S and 5S rDNA were located to the special chromosomes and chromosomal arms for all five species. And there appeared chromosomal collinearity from the BAC clones among different species by comparing BACs positions, which suggested that the majority of chromosome segment homology may exist between D genomes and D subgenome. Moreover, as the genetic map and physical map were integrated, the orientations of genetic maps for D(d) and D genomes of diploid cotton were established. The orientations of some of chromosomes in genetic maps (D(d)03, D(d)04, D(d)06, D(d)09

  12. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutum L.)

    PubMed Central

    2013-01-01

    Background The length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li2) and results in extremely shortened lint fibers on mature seeds with no visible pleiotropic effects on vegetative growth and development. The Li2 mutant phenotype provides an ideal model system to study fiber elongation. To understand metabolic processes involved in cotton fiber elongation, changes in metabolites and transcripts in the Li2 mutant fibers were compared to wild-type fibers during development. Results Principal component analysis of metabolites from GC-MS data separated Li2 mutant fiber samples from WT fiber samples at the WT elongation stage, indicating that the Li2 mutation altered the metabolome of the mutant fibers. The observed alterations in the Li2 metabolome included significant reductions in the levels of detected free sugars, sugar alcohols, sugar acids, and sugar phosphates. Biological processes associated with carbohydrate biosynthesis, cell wall loosening, and cytoskeleton were also down-regulated in Li2 fibers. Gamma-aminobutyric acid, known as a signaling factor in many organisms, was significantly elevated in mutant fibers. Higher accumulation of 2-ketoglutarate, succinate, and malate suggested higher nitrate assimilation in the Li2 line. Transcriptional activation of genes involved in nitrogen compound metabolism along with changes in the levels of nitrogen transport amino acids suggested re-direction of carbon flow into nitrogen metabolism in Li2 mutant fibers. Conclusions This report provides the first comprehensive analysis of metabolite and transcript changes in response to the Li2 mutation in elongating fibers. A number of factors associated with cell elongation found in this study will facilitate further research in understanding metabolic processes of cotton fiber elongation. PMID

  13. Individual chromosome assignment and chromosomal collinearity in Gossypium thurberi, G. trilobum and D subgenome of G. barbadense revealed by BAC-FISH.

    PubMed

    Gan, Yimei; Chen, Dan; Liu, Fang; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Peng, Renhai; Wang, Kunbo

    2011-01-01

    The experiment on individual chromosome assignments and chromosomal diversity was conducted using a multi-probe fluorescence in situ hybridization (FISH) system in D subgenome of tetraploid Gossypium barbadense (D(b)), G. thurberi (D(1)) and G. trilobum (D(8)), which the later two were the possible subgenome donors of tetraploid cottons. The FISH probes contained a set of bacterial artificial chromosome (BAC) clones specific to 13 individual chromosomes from D subgenome of G. hirsutum (D(h)), a D genome centromere-specific BAC clone 150D24, 45S and 5S ribosomal DNA (rDNA) clones, respectively. All tested chromosome orientations were confirmed by the centromere-specific BAC probe. In D(1) and D(8), four 45S rDNA loci were found assigning at the end of the short arm of chromosomes 03, 07, 09 and 11, while one 5S rDNA locus was successfully marked at pericentromeric region of the short arm of chromosome 09. In D(b), three 45S rDNA loci and two 5S rDNA loci were found out. Among them, two 45S rDNA loci were located at the terminal of the short arm of chromosomes D(b)07 and D(b)09, whilst one 5S rDNA locus was found situating near centromeric region of the short arm of chromosome D(b)09. The positions of the BAC clones specific to the 13 individual chromosomes from D(h) were compared between D(1), D(8) and D(b). The result showed the existence of chromosomal collinearity within D(1) and D(8), and as well between them and D(b). The results will serve as a base for understanding chromosome structure of cotton and polyploidy evolution of cotton genome and will provide bio-information for assembling the sequences of finished and the on-going cotton whole genome sequencing projects. PMID:21952206

  14. High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils.

    PubMed

    Snider, John L; Oosterhuis, Derrick M; Loka, Dimitra A; Kawakami, Eduardo M

    2011-07-15

    It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the influence of heat-induced changes in pistil biochemistry on in vivo pollen tube growth rates are lacking. We hypothesized that high temperature would alter diurnal pistil biochemistry and that pollen tube growth rates would be dependent upon the soluble carbohydrate content of the pistil during pollen tube growth. G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures but at the same developmental stage. Diurnal pistil measurements included carbohydrate balance, glutathione reductase (GR; EC 1.8.1.7), soluble protein, superoxide dismutase (SOD; EC 1.15.1.1), NADPH oxidase (NOX; EC 1.6.3.1), adenosine triphosphate (ATP), and water-soluble calcium. Soluble carbohydrate levels in cotton pistils were as much as 67.5% lower under high temperature conditions (34.6 °C maximum air temperature; August 4, 2009) than under cooler conditions (29.9 °C maximum air temperature; August 14, 2009). Regression analysis revealed that pollen tube growth rates were highly correlated with the soluble carbohydrate content of the pistil during pollen tube growth (r² = 0.932). Higher ambient temperature conditions on August 4 increased GR activity in the pistil only during periods not associated with in vivo pollen tube growth; pistil protein content declined earlier in the day under high temperatures; SOD and NOX were unaffected by either sample date or time of day; pistil ATP and water soluble calcium were unaffected by the warmer temperatures. We conclude that moderate heat stress significantly alters diurnal carbohydrate balance in the pistil and suggest that pollen tube growth rate through the style may be limited by soluble carbohydrate

  15. Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp.

    PubMed Central

    Hulse-Kemp, Amanda M.; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D.; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L.; Kochan, Kelli J.; Riggs, Penny K.; Scheffler, Jodi A.; Udall, Joshua A.; Ulloa, Mauricio; Wang, Shirley S.; Zhu, Qian-Hao; Bag, Sumit K.; Bhardwaj, Archana; Burke, John J.; Byers, Robert L.; Claverie, Michel; Gore, Michael A.; Harker, David B.; Islam, Md S.; Jenkins, Johnie N.; Jones, Don C.; Lacape, Jean-Marc; Llewellyn, Danny J.; Percy, Richard G.; Pepper, Alan E.; Poland, Jesse A.; Mohan Rai, Krishan; Sawant, Samir V.; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M.; Wang, Fei; Yourstone, Scott M.; Zheng, Xiuting; Lawley, Cindy T.; Ganal, Martin W.; Van Deynze, Allen; Wilson, Iain W.; Stelly, David M.

    2015-01-01

    High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569

  16. Demonstration of a diel trend in sensitivity of Gossypium to ozone: a step toward relating O₃ injury to exposure or flux.

    PubMed

    Grantz, D A; Vu, H-B; Heath, R L; Burkey, K O

    2013-04-01

    Plant injury by ozone (O3) occurs in three stages, O3 entrance through stomata, overcoming defences, and attack on bioreceptors. Concentration, deposition, and uptake of O3 are accessible by observation and modelling, while injury can be assessed visually or through remote sensing. However, the relationship between O3 metrics and injury is confounded by variation in sensitivity to O3. Sensitivity weighting parameters have previously been assigned to different plant functional types and growth stages, or by differentially weighting O3 concentrations, but diel and seasonal variability have not been addressed. Here a plant sensitivity parameter (S) is introduced, relating injury to O3 dose (uptake) using three independent injury endpoints in the crop species, Pima cotton (Gossypium barbadense). The diel variability of S was determined by assessment at 2h intervals. Pulses of O3 (15 min) were used to assess passive (constitutive) defence mechanisms and dose was used rather than concentration to avoid genetic or environmental effects on stomatal regulation. A clear diel trend in S was apparent, with maximal sensitivity in mid-afternoon, not closely related to gas exchange, whole leaf ascorbate, or total antioxidant capacity. This physiologically based sensitivity parameter provides a novel weighting factor to improve modelled relationships between either flux or exposure to O3, and O3 impacts. This represents a substantial improvement over concentration- or phenology-based weighting factors currently in use. Future research will be required to characterize the variability and metabolic drivers of diel changes in S, and the performance of this parameter in prediction of O3 injury. PMID:23404900

  17. A New Synthetic Amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought.

    PubMed

    Chen, Yu; Wang, Yingying; Zhao, Ting; Yang, Jianwei; Feng, Shouli; Nazeer, Wajad; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium arboreum, a cultivated cotton species (2n = 26, AA) native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD) and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mg l(-1) kinetin and 250 mg(-1) casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination) hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs. PMID:26061996

  18. A New Synthetic Amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought

    PubMed Central

    Chen, Yu; Wang, Yingying; Zhao, Ting; Yang, Jianwei; Feng, Shouli; Nazeer, Wajad; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium arboreum, a cultivated cotton species (2n = 26, AA) native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD) and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mgl-1 kinetin and 250 mg-1 casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination) hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs. PMID:26061996

  19. Identification and analyses of miRNA genes in allotetraploid Gossypium hirsutum fiber cells based on the sequenced diploid G. raimondii genome.

    PubMed

    Li, Qin; Jin, Xiang; Zhu, Yu-Xian

    2012-07-20

    The plant genome possesses a large number of microRNAs (miRNAs) mainly 21-24 nucleotides in length. They play a vital role in regulation of target gene expression at various stages throughout the whole plant life cycle. Here we sequenced and analyzed ≈ 10 million non-coding RNAs (ncRNAs) derived from fiber tissue of the allotetraploid cotton (Gossypium hirsutum) 7 days post-anthesis using ncRNA-seq technology. In terms of distinct reads, 24 nt ncRNA is by far the dominant species, followed by 21 nt and 23 nt ncRNAs. Using ab initio prediction, we identified and characterized a total of 562 candidate miRNA gene loci on the recently assembled D(5) genome of the diploid cotton G. raimondii. Of all the 562 predicted miRNAs, 22 were previously discovered in cotton species and 187 had sequence conservation and homology to homologous miRNAs of other plant species. Nucleotide bias analysis showed that the 9th and 1st positions were significantly conserved among different types of miRNA genes. Among the 463 putative miRNA target genes, most significant up/down-regulation occurred in 10-20 days post-anthesis, indicating that miRNAs played an important role during the elongation and secondary cell wall synthesis stages of cotton fiber development. The discovery of new miRNA genes will help understand the mechanisms of miRNA generation and regulation in cotton. PMID:22835981

  20. Promoter isolation and characterization of GhAO-like1, a Gossypium hirsutum gene similar to multicopper oxidases that is highly expressed in reproductive organs.

    PubMed

    Lambret-Frotté, Julia; Artico, Sinara; Muniz Nardeli, Sarah; Fonseca, Fernando; Brilhante Oliveira-Neto, Osmundo; Grossi-de-Sá, Maria Fatima; Alves-Ferreira, Marcio

    2016-01-01

    Cotton is one of the most economically important cultivated crops. It is the major source of natural fiber for the textile industry and an important target for genetic modification for both biotic stress and herbicide tolerance. Therefore, the characterization of genes and regulatory regions that might be useful for genetic transformation is indispensable. The isolation and characterization of new regulatory regions is of great importance to drive transgene expression in genetically modified crops. One of the major drawbacks in cotton production is pest damage; therefore, the most promising, cost-effective, and sustainable method for pest control is the development of genetically resistant cotton lines. Considering this scenario, our group isolated and characterized the promoter region of a MCO (multicopper oxidase) from Gossypium hirsutum, named GhAO-like1 (ascorbate oxidase-like1). The quantitative expression, together with the in vivo characterization of the promoter region reveals that GhAO-like1 has a flower- and fruit-specific expression pattern. The GUS activity is mainly observed in stamens, as expected considering that the GhAO-like1 regulatory sequence is enriched in cis elements, which have been characterized as a target of reproductive tissue specific transcription factors. Both histological and quantitative analyses in Arabidopsis thaliana have confirmed flower (mainly in stamens) and fruit expression of GhAO-like1. In the present paper, we isolated and characterized both in silico and in vivo the promoter region of the GhAO-like1 gene. The regulatory region of GhAO-like1 might be useful to confer tissue-specific expression in genetically modified plants. PMID:26692462

  1. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus

    PubMed Central

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research. PMID:26366857

  2. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    PubMed

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research. PMID:26366857

  3. Identification of Chromosome Segment Substitution Lines of Gossypium barbadense Introgressed in G. hirsutum and Quantitative Trait Locus Mapping for Fiber Quality and Yield Traits.

    PubMed

    Zhai, Huanchen; Gong, Wankui; Tan, Yunna; Liu, Aiying; Song, Weiwu; Li, Junwen; Deng, Zhuying; Kong, Linglei; Gong, Juwu; Shang, Haihong; Chen, Tingting; Ge, Qun; Shi, Yuzhen; Yuan, Youlu

    2016-01-01

    Chromosome segment substitution lines MBI9804, MBI9855, MBI9752, and MBI9134, which were obtained by advanced backcrossing and continuously inbreeding from an interspecific cross between CCRI36, a cultivar of upland cotton (Gossypium hirsutum) as the recurrent parent, and Hai1, a cultivar of sea island cotton (G. barbadense) as the donor parent, were used to construct a multiple parent population of (MBI9804×MBI9855)×(MBI9752×MBI9134). The segregating generations of double-crossed F1 and F2 and F2:3 were used to map the quantitative trait locus (QTL) for fiber quality and yield-related traits. The recovery rate of the recurrent parent CCRI36 in the four parental lines was from 94.3%-96.9%. Each of the parental lines harbored 12-20 introgressed segments from Hai1across 21 chromosomes. The number of introgressed segments ranged from 1 to 27 for the individuals in the three generations, mostly from 9 to 18, which represented a genetic length of between 126 cM and 246 cM. A total of 24 QTLs controlling fiber quality and 11 QTLs controlling yield traits were detected using the three segregating generations. These QTLs were distributed across 11 chromosomes and could collectively explain 1.78%-20.27% of the observed phenotypic variations. Sixteen QTLs were consistently detected in two or more generations, four of them were for fiber yield traits and 12 were for fiber quality traits. One introgressed segment could significantly reduce both lint percentage and fiber micronaire. This study provides useful information for gene cloning and marker-assisted breeding for excellent fiber quality. PMID:27603312

  4. Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp.

    PubMed

    Hulse-Kemp, Amanda M; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L; Kochan, Kelli J; Riggs, Penny K; Scheffler, Jodi A; Udall, Joshua A; Ulloa, Mauricio; Wang, Shirley S; Zhu, Qian-Hao; Bag, Sumit K; Bhardwaj, Archana; Burke, John J; Byers, Robert L; Claverie, Michel; Gore, Michael A; Harker, David B; Islam, Md S; Jenkins, Johnie N; Jones, Don C; Lacape, Jean-Marc; Llewellyn, Danny J; Percy, Richard G; Pepper, Alan E; Poland, Jesse A; Mohan Rai, Krishan; Sawant, Samir V; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M; Wang, Fei; Yourstone, Scott M; Zheng, Xiuting; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen; Wilson, Iain W; Stelly, David M

    2015-06-01

    High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569

  5. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L

    PubMed Central

    2014-01-01

    Background The immature fiber (im) mutant of Gossypium hirsutum L. is a special cotton fiber mutant with non-fluffy fibers. It has low dry weight and fineness of fibers due to developmental defects in fiber secondary cell wall (SCW). Results We compared the cellulose content in fibers, thickness of fiber cell wall and fiber transcriptional profiling during SCW development in im mutant and its near-isogenic wild-type line (NIL) TM-1. The im mutant had lower cellulose content and thinner cell walls than TM-1 at same fiber developmental stage. During 25 ~ 35 day post-anthesis (DPA), sucrose content, an important carbon source for cellulose synthesis, was also significantly lower in im mutant than in TM-1. Comparative analysis of fiber transcriptional profiling from 13 ~ 25 DPA indicated that the largest transcriptional variations between the two lines occurred at the onset of SCW development. TM-1 began SCW biosynthesis approximately at 16 DPA, whereas the same fiber developmental program in im mutant was delayed until 19 DPA, suggesting an asynchronous fiber developmental program between TM-1 and im mutant. Functional classification and enrichment analysis of differentially expressed genes (DEGs) between the two NILs indicated that genes associated with biological processes related to cellulose synthesis, secondary cell wall biogenesis, cell wall thickening and sucrose metabolism, respectively, were significantly up-regulated in TM-1. Twelve genes related to carbohydrate metabolism were validated by quantitative reverse transcription PCR (qRT-PCR) and confirmed a temporal difference at the earlier transition and SCW biosynthesis stages of fiber development between TM-1 and im mutant. Conclusions We propose that Im is an important regulatory gene influencing temporal differences in expression of genes related to fiber SCW biosynthesis. This study lays a foundation for cloning the Im gene, elucidating molecular mechanism of fiber SCW development and further

  6. Final report on the safety assessment of Hydrogenated Cottonseed Oil, Cottonseed (Gossypium) Oil, Cottonseed Acid, Cottonseed Glyceride, and Hydrogenated Cottonseed Glyceride.

    PubMed

    2001-01-01

    Hydrogenated Cottonseed Oil, Cottonseed (Gossypium) Oil, Cottonseed Acid, Cottonseed Glyceride, and Hydrogenated Cottonseed Glyceride are cosmetic ingredients derived from Cottonseed Oil and used as skin-conditioning agents and surfactants. Nonoils known to be toxic that may be found in cottonseed oils include gossypol, aflatoxin, and cyclopropenoid fatty acids (CPFA). Toxic heavy metal and/or polychlorinated biphenyl (PCB) or other pesticide contamination is also possible. Cottonseed Oil was nontoxic in acute oral toxicity studies in rats. In a short-term study, rabbits that had been fed 2% Cottonseed Oil for 7 weeks had significantly lower blood chemistry parameters (compared to wheat bran controls) and significantly more stored hepatic vitamin A (compared to rabbits fed other fats). Cottonseed Oil controls used as vehicles in two parenteral studies produced negative results. Hydrogenated Cottonseed Oil tested in formulation did not produce dermal or ocular irritation in rabbits. An oral-dose reproductive study tested up to 30% Cottonseed Oil (with 1% CPFAs) and reported no adverse effects on sexual maturity and reproductive performance of the F0 generation; changes were noted in the F1 generation but reproductive capacity was not altered. Parenteral-dose reproductive studies reported no adverse effects. Cottonseed Oil was not mutagenic. Cottonseed Oil did not induce aberrant crypt foci when given orally to mice, but in other studies, it increased the incidence of spontaneous mammary tumors in rats and mice. Mice fed 20% Hydrogenated Cottonseed Oil during induction and promotion of photocarcinogenesis had significantly lower tumor incidence compared to mice fed 20% sunflower oil. Hydrogenated Cottonseed Oil in formulation (up to approximately 21%) was neither an irritant nor sensitizer in clinical studies. Limited clinical data indicated that Cottonseed Oil does not contain allergic protein. Based on the available data, it was concluded that these ingredients may

  7. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.

    PubMed

    Chastain, Daryl R; Snider, John L; Collins, Guy D; Perry, Calvin D; Whitaker, Jared; Byrd, Seth A

    2014-11-01

    Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton. PMID:25151126

  8. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage.

    PubMed

    Hu, Wei; Zhao, Wenqing; Yang, Jiashuo; Oosterhuis, Derrick M; Loka, Dimitra A; Zhou, Zhiguo

    2016-04-01

    The nitrogen (N) metabolism of the leaf subtending the cotton boll (LSCB) was studied with two cotton (Gossypium hirsutum L.) cultivars (Simian 3, low-K tolerant; Siza 3, low-K sensitive) under three levels of potassium (K) fertilization (K0: 0 g K2O plant(-1), K1: 4.5 K2O plant(-1) and K2: 9.0 g K2O plant(-1)). The results showed that total dry matter increased by 13.1-27.4% and 11.2-18.5% under K supply for Simian 3 and Siza 3. Boll biomass and boll weight also increased significantly in K1 and K2 treatments. Leaf K content, leaf N content and nitrate (NO3(-)) content increased with increasing K rates, and leaf N content or NO3(-) content had a significant positive correlation with leaf K content. Free amino acid content increased in the K0 treatment for both cultivars, due to increased protein degradation caused by higher protease and peptidase activities, resulting in lower protein content in the K0 treatment. The critical leaf K content for free amino acid and soluble protein content were 14 mg g(-1) and 15 mg g(-1) in Simian 3, and 17 mg g(-1) and 18 mg g(-1) in Siza 3, respectively. Nitrate reductase (NR), glutamic-oxaloace transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities increased in the K1 and K2 treatments for both cultivars, while glutamine synthetase (GS) and glutamate synthase (GOGAT) activities increased under K supply treatments only for Siza 3, and were not affected in Simian 3, indicating that this was the primary difference in nitrogen-metabolizing enzymes activities for the two cultivars with different sensitivity to low-K. PMID:26874296

  9. Identification of Multiple Stress Responsive Genes by Sequencing a Normalized cDNA Library from Sea-Land Cotton (Gossypium barbadense L.)

    PubMed Central

    Zhou, Bin; Zhang, Lin; Ullah, Abid; Jin, Xin; Yang, Xiyan; Zhang, Xianlong

    2016-01-01

    Background Plants often face multiple stresses including drought, extreme temperature, salinity, nutrition deficiency and biotic stresses during growth and development. All the stresses result in a series of physiological and metabolic reactions and then generate reversible inhibition of metabolism and growth and can cause seriously irreversible damage, even death. At each stage of cotton growth, environmental stress conditions pose devastating threats to plant growth and development, especially yield and quality. Due to the complex stress conditions and unclear molecular mechanisms of stress response, there is an urgent need to explore the mechanisms of cotton response against abiotic stresses. Methodology and Principal Findings A normalized cDNA library was constructed using Gossypium barbadense Hai-7124 treated with different stress conditions (heat, cold, salt, drought, potassium and phosphorus deficit and Verticillium dahliae infection). Random sequencing of this library generated 6,047 high-quality expressed sequence tags (ESTs). The ESTs were clustered and assembled into 3,135 uniESTs, composed of 2,497 contigs and 638 singletons. The blastx results demonstrated 2,746 unigenes showing significant similarity to known genes, 74 uniESTs displaying significant similarity to genes of predicted proteins, and 315 uniESTs remain uncharacterized. Functional classification unveiled the abundance of uniESTs in binding, catalytic activity, and structural molecule activity. Annotations of the uniESTs by the plant transcription factor database (PlantTFDB) and Plant Stress Protein Database (PSPDB) disclosed that transcription factors and stress-related genes were enriched in the current library. The expression of some transcription factors and specific stress-related genes were verified by RT-PCR under various stress conditions. Conclusions/Significance Annotation results showed that a huge number of genes respond to stress in our study, such as MYB-related, C2H2, FAR1, b

  10. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    PubMed

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A

    2016-04-01

    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  11. A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.)

    PubMed Central

    2011-01-01

    Background Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The cotton (Gossypium hirsutum L.) fiber mutation Ligon lintless-2 is controlled by a single dominant gene (Li2) that results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, Li2 is a model system with which to study fiber elongation. Results Two near-isogenic lines of Ligon lintless-2 (Li2) cotton, one mutant and one wild-type, were developed through five generations of backcrosses (BC5). An F2 population was developed from a cross between the two Li2 near-isogenic lines and used to develop a linkage map of the Li2 locus on chromosome 18. Five simple sequence repeat (SSR) markers were closely mapped around the Li2 locus region with two of the markers flanking the Li2 locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays suggested roles of reactive oxygen species (ROS) homeostasis and cytokinin regulation in the Li2 mutant phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991) that displayed complete linkage to the Li2 locus. Conclusions In the field of cotton genomics, we report the first successful conversion of gene expression data into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-derived SSR marker NAU3991 displayed complete linkage to the Li2 locus on chromosome 18 and resided in a

  12. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique

    PubMed Central

    Li, Wu; Zhao, Fu'an; Fang, Weiping; Xie, Deyi; Hou, Jianan; Yang, Xiaojie; Zhao, Yuanming; Tang, Zhongjie; Nie, Lihong; Lv, Shuping

    2015-01-01

    Soil salinity is a major abiotic stress that limits plant growth and agricultural productivity. Upland cotton (Gossypium hirsutum L.) is highly tolerant to salinity; however, large-scale proteomic data of cotton in response to salt stress are still scant. Here, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic technique was employed to identify the early differentially expressed proteins (DEPs) from salt-treated cotton roots. One hundred and twenty-eight DEPs were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. The majority of the proteins have functions related to carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction, in addition to stress and defense. It is worth emphasizing that some novel salt-responsive proteins were identified, which are involved in cell cytoskeleton metabolism (actin-related protein2, ARP2, and fasciclin-like arabinogalactan proteins, FLAs), membrane transport (tonoplast intrinsic proteins, TIPs, and plasma membrane intrinsic proteins, PIPs), signal transduction (leucine-rich repeat receptor-like kinase encoding genes, LRR-RLKs) and stress responses (thaumatin-like protein, TLP, universal stress protein, USP, dirigent-like protein, DIR, desiccation-related protein PCC13-62). High positive correlation between the abundance of some altered proteins (superoxide dismutase, SOD, peroxidase, POD, glutathione S-transferase, GST, monodehydroascorbate reductase, MDAR, and malate dehydrogenase, MDH) and their enzyme activity was evaluated. The results demonstrate that the iTRAQ-based proteomic technique is reliable for identifying and quantifying a large number of cotton root proteins. qRT-PCR was used to study the gene expression levels of the five above-mentioned proteins; four patterns are consistent with those of induced protein. These results showed that the proteome

  13. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis.

    PubMed

    Guo, Weifeng; Jin, Li; Miao, Yuhuan; He, Xin; Hu, Qin; Guo, Kai; Zhu, Longfu; Zhang, Xianlong

    2016-06-01

    An ethylene response-related factor, GbERF1-like, from Gossypium barbadense cv. '7124' involved in the defence response to Verticillium dahliae was characterized. GbERF1-like transcripts present ubiquitously in various tissues, with higher accumulation in flower organs. GbERF1-like was also responsive to defence-related phytohormones and V. dahliae infection. The downregulation of GbERF1-like increased the susceptibility of cotton plants to V. dahliae infection, while overexpression of this gene improved disease resistance in both cotton and Arabidopsis, coupled with activation of the pathogenesis-related proteins. Further analysis revealed that genes involved in lignin synthesis, such as PAL, C4H, C3H, HCT, CCoAOMT, CCR and F5H, showed higher expression levels in the overexpressing cotton and Arabidopsis lines and lower expression levels in the RNAi cotton lines. The expression levels of these genes increased obviously when the GbERF1-like-overexpressing plants were inoculated with V. dahliae. Meanwhile, significant differences in the content of whole lignin could be found in the stems of transgenic and wild-type plants after inoculation with V. dahliae, as revealed by metabolic and histochemical analysis. More lignin could be detected in GbERF1-like-overexpressing cotton and Arabidopsis but less in GbERF1-like-silencing cotton compared with wild-type plants. The ratio of S and G monomers in GbERF1-like-overexpressing cotton and Arabidopsis increased significantly after infection by V. dahliae. Moreover, our results showed that the promoters of GhHCT1 and AtPAL3 could be transactivated by GbERF1-like in vivo based on yeast one-hybrid assays and dual-luciferase reporter assays. Knockdown of GhHCT1 in GbERF1-like over-expressing cotton decreases resistance to V. dahliae. Collectively, our results suggest that GbERF1-like acts as a positive regulator in lignin synthesis and contributes substantially to resistance to V. dahliae in plants. PMID:26971283

  14. Generation and Analysis of a Large-Scale Expressed Sequence Tag Database from a Full-Length Enriched cDNA Library of Developing Leaves of Gossypium hirsutum L

    PubMed Central

    Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Yu, Shuxun

    2013-01-01

    Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation

  15. Influence of ultranarrow row and conventional row cotton on the last effective boll population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The last effective boll population is the basis for many cotton (Gossypium hirsutum L.) management decisions such as defoliation timing. The objective of this research was to determine the last effective boll population for both ultra-narrow row cotton (UNRC), grown in rows spaced 25 cm or less, an...

  16. A Transcript Profiling Approach Reveals an Abscisic Acid-Specific Glycosyltransferase (UGT73C14) Induced in Developing Fiber of Ligon lintless-2 Mutant of Cotton (Gossypium hirsutum L.)

    PubMed Central

    Gilbert, Matthew K.; Bland, John M.; Shockey, Jay M.; Cao, Heping; Hinchliffe, Doug J.; Fang, David D.; Naoumkina, Marina

    2013-01-01

    Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed in developing fibers of the mutant Ligon lintless-2 was isolated. The predicted amino acid sequence showed ~53% similarity with Arabidopsis UGT73C sub-family members and the UDP-glycosyltransferase was designated as UGT73C14. When expressed in Escherichia coli as a recombinant protein with a maltose binding protein tag, UGT73C14 displayed enzymatic activity toward ABA and utilized UDP-glucose and UDP-galactose as the sugar donors. The recombinant UGT73C14 converted natural occurring isoform (+)-cis, trans-ABA better than (+)-trans, trans-ABA and (-)-cis, trans-ABA. Transgenic Arabidopsis plants constitutively overexpressing UGT73C14 did not show phenotypic changes under standard growth conditions. However, the increased glycosylation of ABA resulted in phenotypic changes in post-germinative growth and seedling establishment, confirming in vivo activity of UGT73C14 for ABA. This suggests that the expression level of UGT73C14 is regulated by the observed elevated levels of ABA in developing fibers of the Li2 mutant line and may be involved in the regulation of ABA homeostasis. PMID:24086489

  17. A New Synthetic Allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: Bridging for Simultaneously Transferring Favorable Genes from These Two Diploid Species into Upland Cotton

    PubMed Central

    Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization. PMID:25879660

  18. A new synthetic allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: bridging for simultaneously transferring favorable genes from these two diploid species into upland cotton.

    PubMed

    Liu, Quan; Chen, Yu; Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization. PMID:25879660

  19. Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes

    PubMed Central

    Brugnoli, Enrico; Lauteri, Marco

    1991-01-01

    The effects of salinity on growth, stomatal conductance, photosynthetic capacity, and carbon isotope discrimination (Δ) of Gossypium hirsutum L. and Phaseolus vulgaris L. were evaluated. Plants were grown at different NaCl concentrations from 10 days old until mature reproductive structures were formed. Plant growth and leaf area development were strongly reduced by salinity, in both cotton and bean. Stomatal conductance also was reduced by salinity. The Δ always declined with increasing external salinity concentration, indicating that stomatal limitation of photosynthesis was increased. In cotton plant dry matter, Δ correlated with the ratio of intercellular to atmospheric CO2 partial pressures (pl/pa) calculated by gas exchange. This correlation was not clear in bean plants, although Δ showed a more pronounced salt induced decline in bean than in cotton. Possible effects of heterogeneity of stomatal aperture and consequent overestimation of pl as determined from gas exchange could explain these results. Significant differences of Δ between leaf and seed material were observed in cotton and bean. This suggests different patterns of carbon allocation between leaves and seeds. The photon yield of O2 evolution determined at rate-limiting photosynthetic photon flux density was insensitive to salinity in both species analyzed. The light- and CO2-saturated rate of CO2 uptake and O2 evolution showed a salt induced decline in both species. Possible explanations of this observation are discussed. O2 hypersensitivity was observed in salt stressed cotton plants. These results clearly demonstrate that the effect of salinity on assimilation rate was mostly due to the reduction of stomatal conductance, and that calculation of pl may be overestimated in salt stressed plants, because of heterogeneity of stomatal aperture over the leaf surface. PMID:16668029

  20. H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity.

    PubMed

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A Egrinya; Li, Weijiang

    2016-04-01

    Non-uniform root salinity increases the Na(+)efflux, water use, and growth of the root in non-saline side, which may be regulated by some form of signaling induced by the high-salinity side. However, the signaling and its specific function have remained unknown. Using a split-root system to simulate a non-uniform root zone salinity inGossypium hirsutumL., we showed that the up-regulated expression of sodium efflux-related genes (SOS1,SOS2,PMA1, andPMA2) and water uptake-related genes (PIP1andPIP2) was possibly involved in the elevated Na(+)efflux and water use in the the roots in the non-saline side. The increased level of indole acetic acid (IAA) in the non-saline side was the likely cause of the increased root growth. Also, the abscisic acid (ABA) and H2O2contents in roots in the non-saline side increased, possibly due to the increased expression of their key biosynthesis genes,NCEDandRBOHC, and the decreased expression of ABA catabolicCYP707Agenes. Exogenous ABA added to the non-saline side induced H2O2generation by up-regulating theRBOHCgene, but this was decreased by exogenous fluridone. Exogenous H2O2added to the non-saline side reduced the ABA content by down-regulatingNCEDgenes, which can be induced by diphenylene iodonium (DPI) treatment in the non-saline side, suggesting a feedback mechanism between ABA and H2O2.Both exogenous ABA and H2O2enhanced the expression ofSOS1,PIP1;7,PIP2;2, andPIP2;10genes, but these were down-regulated by fluridone and DPI, suggesting that H2O2and ABA are important signals for increasing root Na(+)efflux and water uptake in the roots in the non-saline side. PMID:26862153

  1. Cloning of Gossypium hirsutum Sucrose Non-Fermenting 1-Related Protein Kinase 2 Gene (GhSnRK2) and Its Overexpression in Transgenic Arabidopsis Escalates Drought and Low Temperature Tolerance

    PubMed Central

    Bello, Babatunde; Zhang, Xueyan; Liu, Chuanliang; Yang, Zhaoen; Yang, Zuoren; Wang, Qianhua; Zhao, Ge; Li, Fuguang

    2014-01-01

    The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic Arabidopsis. We further elucidated the function of this gene in transgenic cotton using virus-induced gene silencing (VIGS) techniques. We hypothesized that GhSnRK2 participates in the stress signaling pathway and elucidated its role in enhancing stress tolerance in plants via various stress-related pathways and stress-responsive genes. We determined that the subcellular localization of the GhSnRK2-green fluorescent protein (GFP) was localized in the nuclei and cytoplasm. In contrast to wild-type plants, transgenic plants overexpressing GhSnRK2 exhibited increased tolerance to drought, cold, abscisic acid and salt stresses, suggesting that GhSnRK2 acts as a positive regulator in response to cold and drought stresses. Plants overexpressing GhSnRK2 displayed evidence of reduced water loss, turgor regulation, elevated relative water content, biomass, and proline accumulation. qRT-PCR analysis of GhSnRK2 expression suggested that this gene may function in diverse tissues. Under normal and stress conditions, the expression levels of stress-inducible genes, such as AtRD29A, AtRD29B, AtP5CS1, AtABI3, AtCBF1, and AtABI5, were increased in the GhSnRK2-overexpressing plants compared to the wild-type plants. GhSnRK2 gene silencing alleviated drought tolerance in cotton plants, indicating that VIGS technique can certainly be used as an effective means to examine gene function by knocking down the expression of distinctly expressed genes. The results of this study suggested that the GhSnRK2 gene, when incorporated into Arabidopsis, functions in positive responses to drought stress and in low temperature tolerance. PMID:25393623

  2. THERMAL COTTON DEFOLIATION: IMPACT ON LATE-SEASON WHITEFLIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential upper thermal limits of the silverleaf whitefly were evaluated in the laboratory. Leaves infested with whitefly nymphs and pupae were collected from the field and exposed to a series of increasing temperatures in a drying oven. Heat treatments began at ~158°F (~70°C) and increased at...

  3. [Cytogenetic activity of the butylcaptax defoliant transformation product].

    PubMed

    Vesmanova, O Ia; Semykina, E E; Koblov, R K; Ergashev

    1989-01-01

    Cytogenetical activity of the product of metabolitic butylcaptax transformations in cells of cotton plants G. barbadense has been studied. It is shown that butylcaptax, with a significant mutagenicity, looses its mutagenic activity, metabolizing in low mutagenic 2-oxyamylthiobenzthiazole. Low water solubility prevents its concentration to exceed 0.005% in tissue liquids and to exert a mutagenic action on cotton plants. PMID:2773061

  4. Defoliation Management Effects on Meadow Fescue, Tall Fescue, and Orchardgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meadow fescue [Schedonorus pratensis (Huds.) P. Beauv.] represents an alternative to temperate grasses typically used in forage-livestock systems. Our objective was to compare the productivity, nutritive value, and persistence of diverse meadow fescue cultivars with that of tall fescue [Lolium arund...

  5. Water, temperature, and defoliation effects on perennial grassland respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in respiration can have a profound effect on ecosystem C balance. This talk will present results from eddy covariance studies describing environment and management effects on ecosystem C flux from cool- and warm-season perennial grasslands. In addition, stable C isotope studies that partitio...

  6. High Efficiency Direct Shoot Organogenesis from Leaf Segments of Aerva lanata (L.) Juss. Ex Schult by Using Thidiazuron

    PubMed Central

    Varutharaju, K.; Soundar Raju, C.; Thilip, C.; Aslam, A.; Shajahan, A.

    2014-01-01

    An efficient protocol for direct shoot organogenesis has been developed for the medicinal plant Aerva lanata (L.) Juss. ex Schult. Regeneration was achieved from leaf segments of 20 days old in vitro plantlets raised on Murashige and Skoog (MS) medium containing 0.25–2.0 mg L−1 thiadiazuron (TDZ), 3% sucrose, and 0.8% agar. After 21 days of culture incubation, maximum number of shoot organogenesis (23.6 ± 0.16) was obtained on medium containing 1.0 mg L−1 TDZ. The shoots were able to produce in vitro flowers on medium containing 1.0 mg L−1 TDZ in combination with 0.25–0.5 mg L−1  α-naphthaleneacetic acid (NAA). Histological observation showed that the epidermal cells of the leaf explants exhibited continuous cell division led to formation of numerous dome shaped meristematic protrusions and subsequently developed into adventitious shoots. Upon transfer of shootlets to half strength MS medium containing 1.0 mg L−1 indole-3-butyric acid (IBA), around 86% of the regenerated shoots formed roots and plantlets. Rooted plants were hardened and successfully established in the soil at the survival rate of 92%. The regeneration protocol developed in this study provides an important method of micropropagation of this plant. Furthermore, this protocol may be used for a large scale production of its medicinally active compounds and genetic transformations for further improvement. PMID:24672349

  7. Cytokinin-Induced Ethylene Biosynthesis in Nonsenescing Cotton Leaves

    PubMed Central

    Suttle, Jeffrey C.

    1986-01-01

    The influence of cytokinins on ethylene production was examined using cotton leaf tissues. Treatment of intact cotton (Gossypium hirsutum L. cv LG 102) seedlings with both natural and synthetic cytokinins resulted in an increase in ethylene production by excised leaves. The effectiveness of the cytokinins tested was as follows: thidiazuron ≫ BA ≫ isopentyladenine ≥ zeatin ≫ kinetin. Using 100 micromolar thidiazuron (TDZ), an initial increase in ethylene production was observed 7 to 8 hours post-treatment, reached a maximum by 24 hours and then declined. Inhibitors of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis and its oxidation to ethylene reduced ethylene production 24 hours post-treatment; however, by 48 hours only inhibitors of ACC oxidation were effective. The increase in ethylene production was accompanied by a massive accumulation of ACC and its acid-labile conjugate. TDZ treatment resulted in a significant increase in the capacity of tissues to oxidize ACC to ethylene. Endogenous levels of methionine remained constant following TDZ treatment. It was concluded that the stimulation of ethylene production in cotton leaves following cytokinin treatment was the result of an increase in both the formation and oxidation of ACC. Images Fig. 4 PMID:16665168

  8. Cultural practices in cotton (Gossypium hirsutum) affect weed seed production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Billions of dollars are lost annually due to weeds or weed control, but weeds persist. Successful weed management systems must reduce weed populations. The objectives of this research were to 1) determine if cotton row spacing has an impact on weed growth and seed production and 2) evaluate the infl...

  9. Association mapping of fiber quality traits in Gossypium arboreum accessions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of association mapping to germplasm resources has a potential to revolutionize plant genetics. Information about the genome distribution of linkage disequilibrium (LD) is of fundamental importance for association mapping. In addition, genetic diversity is desirable for long-term crop imp...

  10. Hemigossypol is present in glanded cottonseed (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gossypol is a dimeric sesquiterpenoid first identified in cottonseed, but found in various tissues in the cotton plant including the seed. From its first discovery, it was assumed that hemigossypol was the biosynthetic precursor of gossypol. Previous studies established that peroxidase (either fro...

  11. Development of core SSR markers for Gossypium germplasm characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of 105 portable DNA markers were carefully developed to provide a common basis for systematic characterization of cotton germplasm collections in the U.S. and throughout the world. The 105 PCR-based SSR markers of different origins were evenly distributed on each of the 26 cotton chromosomes ...

  12. Fiber initiation in eighteen gossypium cultivars and experimental lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new technique was developed to study the fiber initiation process and fiber initial densities. The objectives were to assess whether the fiber initiation patterns reported for some G. hirsutum and G. barbadense cultivars extend to a more diverse range of cultivars/lines; and to test if there is a...

  13. Genome sequence of the cultivated cotton Gossypium arboreum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is one of the most economically important natural fiber crops in the world, and the complex tetraploid nature of its genome (AADD, 2n = 52) makes genetic, genomic and functional analyses extremely challenging. Here we sequenced and assembled 98.3% of the 1.7-gigabase G. arboreum (AA, 2n = 26...

  14. Polyploidization altered gene functions in cotton (Gossypium spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that a large set of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across the At and ...

  15. Genome Wide SSR High Density Genetic Map Construction from an Interspecific Cross of Gossypium hirsutum × Gossypium tomentosum

    PubMed Central

    Khan, Muhammad K. R.; Chen, Haodong; Zhou, Zhongli; Ilyas, Muhammad K.; Wang, Xingxing; Cai, Xiaoyan; Wang, Chunying; Liu, Fang; Wang, Kunbo

    2016-01-01

    A high density genetic map was constructed using F2 population derived from an interspecific cross of G. hirsutum × G. tomentosum. The map consisted of 3093 marker loci distributed across all the 26 chromosomes and covered 4365.3 cM of cotton genome with an average inter-marker distance of 1.48 cM. The maximum length of chromosome was 218.38 cM and the minimum was 122.09 cM with an average length of 167.90 cM. A sub-genome covers more genetic distance (2189.01 cM) with an average inter loci distance of 1.53 cM than D sub-genome which covers a length of 2176.29 cM with an average distance of 1.43 cM. There were 716 distorted loci in the map accounting for 23.14% and most distorted loci were distributed on D sub-genome (25.06%), which were more than on A sub-genome (21.23%). In our map 49 segregation hotspots (SDR) were distributed across the genome with more on D sub-genome as compared to A genome. Two post-polyploidization reciprocal translocations of “A2/A3 and A4/A5” were suggested by seven pairs of duplicate loci. The map constructed through these studies is one of the three densest genetic maps in cotton however; this is the first dense genome wide SSR interspecific genetic map between G. hirsutum and G. tomentosum. PMID:27148280

  16. Effects of Fall Applications of Chemical Defoliants, Urea, and Gibberellic Acid on Defoliation in the Fall and Performance of Hydrangeas during Forcing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In two separate experiments, Hydrangea macrophylla (Thunb.) Ser. ‘Merritt’s Supreme’ plants were used to study the effects of foliar sprays of Def 6 (tributyl phosphorotrithioate, 2500, 5000, 7500 and 10000 mg·L-1), gibberellic acid, (GA, 50 mg·L-1), copper-EDTA (CuEDTA, 0.5% and 1.0%), Florel (2000...

  17. [Polyphase character of the dependence of Brassica napus germ root and hypocotyl growth on zeatin and thidiazuron concentrations with view of applicability to biological life support systems].

    PubMed

    Komarova, G I; Babosha, A V

    2010-01-01

    Physiologically active substances are considered as a potential component of plant cultivation technologies for biological life support systems. In spacelight, plant reactions to growth-regulating agents may be changed by the specific stress factors such as microgravity, radiation, and trace admixtures in cabin air. Complex character of the concentration dependence of PAS efficiency and consequent variability generate a need to optimize plant growth regulating technologies in order to stabilize the wanted effect. Pattern of the concentration dependence of zeatin and tidiazurone effects on roots and hypocotyls growth was analyzed in rape germs. 24-hour Brassica napus germs grown in the dark in thermostat at 24 degrees C were transferred to Petri dishes with solutions of cytokinins under study for continued incubation under the same conditions for the next 24 hours. Roots and hypocotyls were measured. Zeatin concentration curve for roots was multiphase and, in addition to the general trend towards greater inhibition with increase of phyto-hormone concentration and had clearly defined minimum and maximum. The dependence of root growth inhibition on tidiazurone concentration also was not monotonic and had a distinct similarity with the zeatin curve. Gradual increase of tidiazurone concentration used in combination with zeatin brought about a predictable gradual twist of the zeatin curve; however, in most of the instances no additive cytokinin effect was observed. A supposition can be made that PAS interaction with the phytohormone regulation system may be a factor in variability of activity of these substances. PMID:20799663

  18. Biomass production and net ecosystem exchange following defoliation in a wet sedge community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian ecosystems provide a multitude of ecosystem services, maintenance of which is tied to sustainable management of stream-side plant communities that provide important forage resources for livestock grazing operations. The objectives of this study were to evaluate above- and below-ground grow...

  19. NATIVE AND INTRODUCED MYCORRHIZAL FUNGI EFFECT ON SWITCHGRASS RESPONSE TO WATER AND DEFOLIATION STRESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The belowground microbial community and mycorrhizal fungi in particular may assist potential bioenergy crop production from switchgrass. An earlier growth chamber experiment conducted at the Northern Great Plains Research Laboratory USDA-ARS in Mandan, North Dakota suggested that above- and belowgro...

  20. Relationships between defoliation by late leaf spot and yield in new runner-type peanut cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early and late leaf spot caused by Cercospora arachidicola and Cercosporidium personatum, respectively, can cause severe losses on susceptible peanut (Arachis hypogaea) cultivars. Losses are primarily due to loss of peg integrity and loss of mature pods when peanut plants are inverted. Losses to bo...

  1. Defoliation Impacts on Above and Below-ground Production in a Riparian Sedge Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of the interest in grazing impacts on riparian systems, there is limited information on root response of riparian sedges to grazing. We evaluated both above-ground and below-ground productivity in plots clipped in either June or July to a 4 inch stubble height. The study was designed as ...

  2. Possible role of ozone in tree defoliation by the gypsy moth (Lepidoptera: Lymantriidae)

    SciTech Connect

    Jeffords, M.R.; Endress, A.G.

    1984-10-01

    Third-instar gypsy moth larvae were used to assess their feeding preference for white oak foliage which had been exposed to three concentrations of ozone. In separate experiments the insects preferred to feed on plant material exposed to the highest concentration of ozone (15 pphm). However, plant material exposed to the median concentration (9 pphm) was less preferred than the control (ambient air), which indicated a change in the chemistry of the foliage, making it less suitable as a host plant. A further experiment showed that this switch from preference to lack of preference occurred between 6 and 9 pphm ozone and reversed itself between 9 and 12 pphm.

  3. Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator.

    PubMed

    Mason, Charles J; Couture, John J; Raffa, Kenneth F

    2014-07-01

    Phytophagous insects must contend with numerous secondary defense compounds that can adversely affect their growth and development. The gypsy moth (Lymantria dispar) is a polyphagous herbivore that encounters an extensive range of hosts and chemicals. We used this folivore and a primary component of aspen chemical defenses, namely, phenolic glycosides, to investigate if bacteria detoxify phytochemicals and benefit larvae. We conducted insect bioassays using bacteria enriched from environmental samples, analyses of the microbial community in the midguts of bioassay larvae, and in vitro phenolic glycoside metabolism assays. Inoculation with bacteria enhanced larval growth in the presence, but not absence, of phenolic glycosides in the artificial diet. This effect of bacteria on growth was observed only in larvae administered bacteria from aspen foliage. The resulting midgut community composition varied among the bacterial treatments. When phenolic glycosides were included in diet, the composition of midguts in larvae fed aspen bacteria was significantly altered. Phenolic glycosides increased population responses by bacteria that we found able to metabolize these compounds in liquid growth cultures. Several aspects of these results suggest that vectoring or pairwise symbiosis models are inadequate for understanding microbial mediation of plant-herbivore interactions in some systems. First, bacteria that most benefitted larvae were initially foliar residents, suggesting that toxin-degrading abilities of phyllosphere inhabitants indirectly benefit herbivores upon ingestion. Second, assays with single bacteria did not confer the benefits to larvae obtained with consortia, suggesting multi- and inter-microbial interactions are also involved. Our results show that bacteria mediate insect interactions with plant defenses but that these interactions are community specific and highly complex. PMID:24798201

  4. Resource Allocation to Flight in an Outbreaking Forest Defoliator Malacosoma disstria.

    PubMed

    Evenden, M L; Whitehouse, C M; Jones, B C

    2015-06-01

    Allocation of larval nutrients affects adult life history traits in insects. This study assessed the effect of moth age and wing loading on flight capacity in an outbreaking forest lepidopteran, Malacosoma disstria Hübner . Insects were collected from high and low density populations after larval feeding, and flight capacity was tested directly with flight mills and indirectly through the allometric relationship between wing area and body size. Insects from these same populations collected as eggs and fed with a synthetic diet in the laboratory were tested in a separate experiment. Male moth propensity to fly increased with wing loading only when moths were collected as pupae after feeding in the field at high population densities. Moth age and wing loading did not affect the distance flown by male moths in any of the population density-nutrient regime combinations tested. Energy use increased with flight distance in both experiments. The slope of the allometric relationship between wing area and body mass did not differ from isometry when moths were collected as pupae after feeding at low and high population densities in the field. The slope of this relationship was steeper for males collected from high than low population densities. There was no allometric relationship between wing area and body mass of moths collected from these same populations as eggs and fed ad libitum in the laboratory as larvae. The results suggest that male M. disstria can allocate resources to different life history traits in response to differences in population density. PMID:26313990

  5. DEFOLIATION IMPACTS ON ABOVE AND BELOW-GROUND PRODUCTION IN A RIPARIAN SEDGE COMMUNITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of the interest in grazing impacts on riparian systems, there is limited information on root response of riparian sedges to grazing. We evaluated both above-ground and below-ground productivity in plots clipped in either June or July to a 10.2 cm stubble height. The study was designed as ...

  6. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the importation of highly specific inse...

  7. DEFOLIATING BROAD NOSED WEEVIL, Plectrophoroides lutra; NOT SUITABLE FOR BIOLOGICAL CONTROL OF BRAZILIAN PEPPER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adults of the weevil Plectrophoroides lutra were evaluated for potential as an agent for biological control of Schinus terebinthifolius. Our Brazilian field observations indicated that the adults were only collected from S. terebinthifolius, however when tested on North American and other valued...

  8. A Florida defoliator found: Nystalea ebalea (Lepidoptera: Notodontidae) feeding on Brazilian peppertree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A species of Notodontidae, Nystalea ebalea was discovered feeding on leaflets of the invasive weed Schinus terebinthifolius in south Florida. The larvae of this species have generally 5 instars and require 20-22 d to reach the pupal stage. Discovery of wild populations of this Neotropical species in...

  9. Consequences of asymmetric competition between resident and invasive defoliators: a novel empirically based modelling approach.

    PubMed

    Ammunét, Tea; Klemola, Tero; Parvinen, Kalle

    2014-03-01

    Invasive species can have profound effects on a resident community via indirect interactions among community members. While long periodic cycles in population dynamics can make the experimental observation of the indirect effects difficult, modelling the possible effects on an evolutionary time scale may provide the much needed information on the potential threats of the invasive species on the ecosystem. Using empirical data from a recent invasion in northernmost Fennoscandia, we applied adaptive dynamics theory and modelled the long term consequences of the invasion by the winter moth into the resident community. Specifically, we investigated the outcome of the observed short-term asymmetric preferences of generalist predators and specialist parasitoids on the long term population dynamics of the invasive winter moth and resident autumnal moth sharing these natural enemies. Our results indicate that coexistence after the invasion is possible. However, the outcome of the indirect interaction on the population dynamics of the moth species was variable and the dynamics might not be persistent on an evolutionary time scale. In addition, the indirect interactions between the two moth species via shared natural enemies were able to cause asynchrony in the population cycles corresponding to field observations from previous sympatric outbreak areas. Therefore, the invasion may cause drastic changes in the resident community, for example by prolonging outbreak periods of birch-feeding moths, increasing the average population densities of the moths or, alternatively, leading to extinction of the resident moth species or to equilibrium densities of the two, formerly cyclic, herbivores. PMID:24380810

  10. Dispelling the 'bitter fog': fighting chemical defoliation in the American West.

    PubMed

    Hay, Amy M

    2012-12-01

    Little doubt remains about the influence of Rachel Carson's Silent Spring in changing the consciousness of not just Americans, but citizens around the world, regarding the relationship between human beings and the natural world. Less has been done about the specific ways Carson's book inspired individual activists to continue challenging pesticide policy within the United States in the decades after the book's publication. The stories of three western women fighting the use of Agent Orange herbicides - the phenoxy herbicides 2,4-D and 2,4,5-T - illustrate the influence and mixed success of environmental activism after Silent Spring. PMID:23178090

  11. Long-distance dispersal helps germinating mahogany seedlings escape defoliation by a specialist caterpillar.

    PubMed

    Norghauer, Julian M; Grogan, James; Malcolm, Jay R; Felfili, Jeanine M

    2010-02-01

    Herbivores and pathogens with acute host specificity may promote high tree diversity in tropical forests by causing distance- and density-dependent mortality of seedlings, but evidence is scarce. Although Lepidoptera larvae are the most abundant and host-specific guild of herbivores in these forests, their impact upon seedling distributions remains largely unknown. A firm test of the mechanism underpinning the Janzen-Connell hypothesis is difficult, even for a single tree species, because it requires more than just manipulating seeds and seedlings and recording their fates. Experimental tests require: (1) an insect herbivore that is identified and highly specialised, (2) linkage to an in situ measure (or prevention) of herbivory, and (3) evaluation and confirmation among many conspecific adult trees across years. Here we present experimental evidence for a spatially explicit interaction between newly germinating seedlings of a Neotropical emergent tree, big-leaf mahogany (Swietenia macrophylla, Meliaceae), and caterpillars of a noctuid moth (Steniscadia poliophaea). In the understory of a southeastern Amazon forest, the proportion of attacks, leaf area lost, and seedling mortality due to this specialised herbivore peaked near Swietenia trees, but declined significantly with increasing distance from mature fruiting trees, as predicted by the Janzen-Connell hypothesis. We conclude that long-distance dispersal events (>50 m) provided an early survival advantage for Swietenia seedlings, and propose that the role of larval Lepidoptera as Janzen-Connell vectors may be underappreciated in tropical forests. PMID:19885680

  12. Defoliation of Flourensia cernua (tarbush) with high-density mixed-species stocking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in shrub use by livestock is increasing along with the rising demands placed on rangelands worldwide. Historically, Flourensia cernua (tarbush) has increased in the Chihuahuan Desert but receives limited use by cattle. Cattle, sheep and goats co-grazed eight 0.6 ha tarbush-dominated paddock...

  13. Defoliation Management of Bahiagrass Germplasm Affects Cover and Persistence-Related Responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bahiagrass (Paspalum notatum Flügge) cultivars are daylength-sensitive and have minimal cool-season production, resulting in high winter feeding costs in forage-based livestock systems. A new genotype is less daylength-sensitive, possesses greater cold tolerance, and is more productive during the co...

  14. Response of Broom Snakeweed (Gutierrezia sarothrae) and Cool-Season Grasses to Defoliation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock poisoning can occur on short-grass prairies when locoweeds (Astragalus and Oxytropis spp.) are actively growing in spring before warm-season grasses begin growth. White locoweed grows in early spring, completes flowering and seed production by early summer, and goes dormant. Perennial co...

  15. Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As carbon sinks, forests are increasingly becoming important trading commodities in carbon trading markets. However, disturbances such as fire, hurricanes and herbivory can lead to forests being sources rather than sinks of carbon. Here, we investigate the carbon balance of an oak/pine forest in the...

  16. Three new species of genus Sinophorus Förster (Hymenoptera, Ichneumonidae) parasitizing twig and defoliating Lepidoptera.

    PubMed

    Sheng, Mao-Ling; Li, Tao; Cao, Jiang-Feng

    2015-01-01

    Three new wasp species are described from the subfamily Campopleginae (Hymenoptera: Ichneumonidae), Sinophorus bazariae Sheng, sp. n., reared from Bazaria turensis Ragonot (Lepidoptera, Pyralidae) in Dulan County, Qinghai Province, China, S. nigrus Sheng, sp. n., reared from Epinotia rubiginosana rubiginosana (Herrich-Schäffer) (Lepidoptera, Tortricidae) in Weichang, Hebei Province, and S. zeirapherae Sheng, sp. n., reared from Zeiraphera grisecana (Hübner) (Lepidoptera, Tortricidae) in Liupanshan, Ningxia Hui Autonomous Region. A key to the species of Chinese Sinophorus is provided. PMID:25947806

  17. Compensatory photosynthesis, water-use efficiency, and biomass allocation of defoliated exotic and native bunchgrass seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compensatory increases in net photosynthetic assimilation rates (Anet) following herbivory are well-documented in adult rangeland grasses, but have not been quantified in bunchgrass seedlings, which may be more sensitive to tissue loss than established plants. To address this, we twice removed 30% ...

  18. Response of invasive swallow-worts (Vincetoxicum spp.) to repeated artificial defoliation or clipping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian vines pale swallow-wort (Vincetoxicum rossicum) (PSW) and black swallow-wort (V. nigrum) (BSW) are invasive perennials that have infested natural areas in the northeastern United States and southern Canada. A biological control program is being developed, though it is unclear how thes...

  19. Quantitative trait locus mapping for Verticillium wilt resistance in a backcross inbred line population of cotton (Gossypium hirsutum × Gossypium barbadense) based on RGA-AFLP analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt (VW), caused by Verticillium dahliae, is one of the most important diseases in cotton. Development and growing of VW resistant cultivars is the most effective and economic strategy in controlling the disease. However, little is currently known on the genetic basis of VW resistanc...

  20. Genetic Effects and Heterosis of Yield and Yield Component Traits Based on Gossypium Barbadense Chromosome Segment Substitution Lines in Two Gossypium Hirsutum Backgrounds

    PubMed Central

    Gong, Juwu; Li, Junwen; Liu, Aiying; Shang, Haihong; Gong, Wankui; Chen, Tingting; Ge, Qun; Jia, Chaoyang; Lei, Yake; Hu, Yushu; Yuan, Youlu

    2016-01-01

    We hybridized 10 chromosome segment substitution lines (CSSLs) each from two CSSL populations and produced 50 F1 hybrids according to North Carolina Design II. We analyzed the genetic effects and heterosis of yield and yield components in the F1 hybrids and parents in four environments via the additive-dominance genetic model. Yield and yield components of the CSSLs were controlled by combined additive and dominance effects, and lint percentage was mainly controlled by additive effects, but boll weight, boll number, seedcotton yield and lint yield were mainly controlled by dominance effects. We detected significant interaction effects between genetics and the environment for all yields traits. Similar interactions were detected between two CSSL populations (Pop CCRI 36 and Pop CCRI 45). Significant positive mid-parent heterosis was detected for all yield traits in both populations, and significant positive better-parent heterosis was also detected for all yield traits except lint percentage. The differences among parents were relatively small, but significant heterosis was detected for yield and yield components. Therefore, the relationship between heterosis and genetic distance for yield traits is complicated and requires further study. These CSSLs represent useful tools for improving yield and yield components in cotton. PMID:27348815