Invariant recognition to position, rotation, and scale considering vectorial signatures
NASA Astrophysics Data System (ADS)
Lerma A., Jesús R.; Álvarez-Borrego, Josué; González-Fraga, José Ángel
2008-08-01
This work presents the development and utilization of vectorial signatures filters obtained from the application of properties of the scale and Fourier transform for images recognition. The filters were applied to different input scene, which consisted in the 26 letters of the alphabet. Each letter is an image of 256 × 256 pixels of black background with a centered white Arial letter. The image was rotated 360 degrees in increment of 1o and scaled from 70% to 130% in increment of 0.5%. In order to find a new invariant correlation digital system we obtained two unidimensional vector after to achieve different mathematical transformation in the target as well as the input scene. To recognize a target, signatures were compared, calculating the Euclidean distance between the target and the input scene; then, confidence levels are obtained. The results demonstrate that this system has a good performance to discriminate between letters.
M-theory, the signature theorem, and geometric invariants
NASA Astrophysics Data System (ADS)
Sati, Hisham
2011-06-01
The equations of motion and the Bianchi identity of the C-field in M-theory are encoded in terms of the signature operator. We then reformulate the topological part of the action in M-theory using the signature, which leads to connections to the geometry of the underlying manifold, including positive scalar curvature. This results in a variation on the miraculous cancellation formula of Alvarez-Gaumé and Witten in 12 dimensions and leads naturally to the Kreck-Stolz s-invariant in 11 dimensions. Hence M-theory detects the diffeomorphism type of 11-dimensional (and seven-dimensional) manifolds and in the restriction to parallelizable manifolds classifies topological 11 spheres. Furthermore, requiring the phase of the partition function to be anomaly-free imposes restrictions on allowed values of the s-invariant. Relating to string theory in ten dimensions amounts to viewing the bounding theory as a disk bundle, for which we study the corresponding phase in this formulation.
Isomonodromic deformations and SU 2-invariant instantons on S4
NASA Astrophysics Data System (ADS)
Manasliski, Richard Muñiz
2009-07-01
Anti-self-dual (ASD) solutions to the Yang-Mills equation (or instantons) over an anti-self-dual 4-manifold, which are invariant under an appropriate action of a three-dimensional Lie group, give rise, via twistor construction, to isomonodromic deformations of connections on CP having four simple singularities. As is well known, such deformations are governed by the sixth Painlevé equation P VI(α,β,γ,δ). We work out the particular case of the SU-action on S4, obtained from the irreducible representation on R5. In particular, we express the parameters (α,β,γ,δ) in terms of the instanton number. The present paper contains the proof of the result announced in [Richard Muñiz Manasliski, Painlevé VI equation from invariant instantons, in: Geometric and Topological Methods for Quantum field theory, Contemp. Math., vol. 434, Amer. Math. Soc., Providence, RI, 2007, pp. 215-222].
Object signature curve and invariant shape patches for geometric indexing into pictorial databases
NASA Astrophysics Data System (ADS)
Lei, Zhibin; Tasdizen, Tolga; Cooper, David B.
1997-10-01
Implicit polynomials (IPs) are among the most effective representations for modeling and recognition of complex geometric shape structures because of their stability, robustness and invariant characteristics. In this paper, we describe an approach for geometric indexing into pictorial databases using IP representations. We discuss in detail a breakthrough in invariant decomposition of a complex object shape into manageable pieces or patches. The self and mutual invariants of those invariant patches can be then used as geometric indexing features vectors. The new concept of invariant signature curve for complex shapes ins developed that captures the semi-global algebraic structure of the object and has the advantage of being able to deal with multi-scale and object occlusion.
Octupole Deformation and Signature Inversion in 145Ba
NASA Astrophysics Data System (ADS)
Zhu, Sheng-jiang; Sakhaee, M.; Hamilton H., J.; Ramayya V., A.; Gan, Cui-yun; Zhu, Ling-yan; Yang, Li-ming; Long, Gui-lu; Pau, San-li; Babu R. S., B.; Hwang K., J.; Ma C., W.; Komicki, J.; Zhang Q., X.; Jones F., E.; Cole D., J.; Aryaeinejad, R.; Drigert W., M.; Rasmussen O., J.; Stoyer A., M.; Chu Y., S.; Gregorich E., K.; Mohar F., M.; Prussin G., S.; Lee Y., I.; Yu., Oganessian Ts.; Ter-Akopian M., G.; Daniel V., A.
1999-10-01
High spin states in neutron-rich odd-N 145Ba nucleus have been investigated from study of prompt γ-rays in spontaneous fission of 252Cf. The alternating parity bands are identified indicating octupole deformation with simplex quantum number s = -i. The ground state band shows signature splitting and inversion at low spin. These collective band structures exhibit the competition and co-existence between symmetric and asymmetric shapes.
Tzagkarakis, George; Beferull-Lozano, Baltasar; Tsakalides, Panagiotis
2008-07-01
This paper addresses the construction of a novel efficient rotation-invariant texture retrieval method that is based on the alignment in angle of signatures obtained via a steerable sub-Gaussian model. In our proposed scheme, we first construct a steerable multivariate sub-Gaussian model, where the fractional lower-order moments of a given image are associated with those of its rotated versions. The feature extraction step consists of estimating the so-called covariations between the orientation subbands of the corresponding steerable pyramid at the same or at adjacent decomposition levels and building an appropriate signature that can be rotated directly without the need of rotating the image and recalculating the signature. The similarity measurement between two images is performed using a matrix-based norm that includes a signature alignment in angle between the images being compared, achieving in this way the desired rotation-invariance property. Our experimental results show how this retrieval scheme achieves a lower average retrieval error, as compared to previously proposed methods having a similar computational complexity, while at the same time being competitive with the best currently known state-of-the-art retrieval system. In conclusion, our retrieval method provides the best compromise between complexity and average retrieval performance. PMID:18586628
Compounding Local Invariant Features and Global Deformable Geometry for Medical Image Registration
Zhang, Jianhua; Chen, Lei; Wang, Xiaoyan; Teng, Zhongzhao; Brown, Adam J.; Gillard, Jonathan H.; Guan, Qiu; Chen, Shengyong
2014-01-01
Using deformable models to register medical images can result in problems of initialization of deformable models and robustness and accuracy of matching of inter-subject anatomical variability. To tackle these problems, a novel model is proposed in this paper by compounding local invariant features and global deformable geometry. This model has four steps. First, a set of highly-repeatable and highly-robust local invariant features, called Key Features Model (KFM), are extracted by an effective matching strategy. Second, local features can be matched more accurately through the KFM for the purpose of initializing a global deformable model. Third, the positional relationship between the KFM and the global deformable model can be used to precisely pinpoint all landmarks after initialization. And fourth, the final pose of the global deformable model is determined by an iterative process with a lower time cost. Through the practical experiments, the paper finds three important conclusions. First, it proves that the KFM can detect the matching feature points well. Second, the precision of landmark locations adjusted by the modeled relationship between KFM and global deformable model is greatly improved. Third, regarding the fitting accuracy and efficiency, by observation from the practical experiments, it is found that the proposed method can improve % of the fitting accuracy and reduce around 50% of the computational time compared with state-of-the-art methods. PMID:25165985
NASA Astrophysics Data System (ADS)
Deng, Zhipeng; Lei, Lin; Zhou, Shilin
2015-10-01
Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.
NASA Astrophysics Data System (ADS)
Xu, Feng-Jun; Yang, Fu-Zhong
2014-04-01
We calculate the D-brane superpotentials for two Calabi-Yau manifolds with three deformations by the generalized hypergeometric GKZ systems, which give rise to the flux superpotentials 𝒲GVW of the dual F-theory compactification on the relevant Calabi-Yau fourfolds in the weak decoupling limit. We also compute the Ooguri-Vafa invariants from A-model expansion with mirror symmetry, which are related to the open Gromov-Witten invariants.
Xu, Xuemiao; Jin, Qiang; Zhou, Le; Qin, Jing; Wong, Tien-Tsin; Han, Guoqiang
2015-01-01
We propose a novel biometric recognition method that identifies the inner knuckle print (IKP). It is robust enough to confront uncontrolled lighting conditions, pose variations and low imaging quality. Such robustness is crucial for its application on portable devices equipped with consumer-level cameras. We achieve this robustness by two means. First, we propose a novel feature extraction scheme that highlights the salient structure and suppresses incorrect and/or unwanted features. The extracted IKP features retain simple geometry and morphology and reduce the interference of illumination. Second, to counteract the deformation induced by different hand orientations, we propose a novel structure-context descriptor based on local statistics. To our best knowledge, we are the first to simultaneously consider the illumination invariance and deformation tolerance for appearance-based low-resolution hand biometrics. Settings in previous works are more restrictive. They made strong assumptions either about the illumination condition or the restrictive hand orientation. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of recognition accuracy, especially under uncontrolled lighting conditions and the flexible hand orientation requirement. PMID:25686317
Homotopy invariance of η-invariants
Weinberger, Shmuel
1988-01-01
Intersection homology and results related to the higher signature problem are applied to show that certain combinations of η-invariants of the signature operator are homotopy invariant in various circumstances. PMID:16593961
Age and gender-invariant features of handwritten signatures for verification systems
NASA Astrophysics Data System (ADS)
AbdAli, Sura; Putz-Leszczynska, Joanna
2014-11-01
Handwritten signature is one of the most natural biometrics, the study of human physiological and behavioral patterns. Behavioral biometrics includes signatures that may be different due to its owner gender or age because of intrinsic or extrinsic factors. This paper presents the results of the author's research on age and gender influence on verification factors. The experiments in this research were conducted using a database that contains signatures and their associated metadata. The used algorithm is based on the universal forgery feature idea, where the global classifier is able to classify a signature as a genuine one or, as a forgery, without the actual knowledge of the signature template and its owner. Additionally, the reduction of the dimensionality with the MRMR method is discussed.
NASA Astrophysics Data System (ADS)
Pipitone, Frank
2010-04-01
We introduce an approach to the efficient recognition of families of surface shapes in range images. This builds upon earlier work on Tripod Operators (TOs), a method for extracting small sets of N points from 3D surface data in a canonical way such that coordinate independent shape descriptions can be efficiently generated and compared. Using TOs, a specific surface shape generates a signature which is a manifold of dimension <= 3 in a feature space of dimension d = N - 3. A runtime application of a TO on surface data generates a d-vector whose distance from the signature manifold is closely related to the likelihood of a match. Ordnance identification is a motivating application. In order to use TOs for recognizing objects from large sets of known shapes, and families of shapes, we introduce the use of manifold learning to represent the signature manifolds with piecewise analytic descriptions instead of discrete point sets. We consider the example of generalizing the signatures of several artillery shells which are qualitatively the same in shape, but metrically different. This can yield a signature that is only slightly more complex than the originals, but enables efficient recognition of a continuous family of shapes.
Two signatures of implicit intergroup attitudes: developmental invariance and early enculturation.
Dunham, Yarrow; Chen, Eva E; Banaji, Mahzarin R
2013-06-01
Long traditions in the social sciences have emphasized the gradual internalization of intergroup attitudes and the putatively more basic tendency to prefer the groups to which one belongs. In four experiments (N = 883) spanning two cultures and two status groups within one of those cultures, we obtained new evidence that implicit intergroup attitudes emerge in young children in a form indistinguishable from adult attitudes. Strikingly, this invariance from childhood to adulthood holds for members of socially dominant majorities, who consistently favor their in-group, as well as for members of a disadvantaged minority, who, from the early moments of race-based categorization, do not show a preference for their in-group. Far from requiring a protracted period of internalization, implicit intergroup attitudes are characterized by early enculturation and developmental invariance. PMID:23558550
NASA Astrophysics Data System (ADS)
Paganelli, Chiara; Peroni, Marta; Riboldi, Marco; Sharp, Gregory C.; Ciardo, Delia; Alterio, Daniela; Orecchia, Roberto; Baroni, Guido
2013-01-01
Adaptive radiation therapy (ART) aims at compensating for anatomic and pathological changes to improve delivery along a treatment fraction sequence. Current ART protocols require time-consuming manual updating of all volumes of interest on the images acquired during treatment. Deformable image registration (DIR) and contour propagation stand as a state of the ART method to automate the process, but the lack of DIR quality control methods hinder an introduction into clinical practice. We investigated the scale invariant feature transform (SIFT) method as a quantitative automated tool (1) for DIR evaluation and (2) for re-planning decision-making in the framework of ART treatments. As a preliminary test, SIFT invariance properties at shape-preserving and deformable transformations were studied on a computational phantom, granting residual matching errors below the voxel dimension. Then a clinical dataset composed of 19 head and neck ART patients was used to quantify the performance in ART treatments. For the goal (1) results demonstrated SIFT potential as an operator-independent DIR quality assessment metric. We measured DIR group systematic residual errors up to 0.66 mm against 1.35 mm provided by rigid registration. The group systematic errors of both bony and all other structures were also analyzed, attesting the presence of anatomical deformations. The correct automated identification of 18 patients who might benefit from ART out of the total 22 cases using SIFT demonstrated its capabilities toward goal (2) achievement.
NON-CONTACT ACOUSTO-THERMAL SIGNATURES OF PLASTIC DEFORMATION IN TI-6AL-4V
Welter, J. T.; Jata, K. V.; Blodgett, M. P.; Malott, G.; Schehl, N.; Sathish, S.
2010-02-22
Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.
Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V
NASA Astrophysics Data System (ADS)
Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.
2010-02-01
Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.
Maule MW 8.8 Gravity and Deformation Signature in GRACE Range Data
NASA Astrophysics Data System (ADS)
Ivins, E. R.; Tanaka, Y.; Byun, S. H.; Watkins, M.; Yuan, D.; Klemann, V.
2011-12-01
Shortly after the Feb. 27, 2010 Maule, Chile subduction zone mega-thrust earthquake of energy scale magnitude 8.8, we began to use a data stacking method to examine the effects of the change in gravity field on the GRACE A-B intersatellite range accelerations. The initial discovery of the robust influence of the in co-seismic + afterslip deformational changes could be seen very clearly in the monthly JPL global mascon solution. Detection was, quite independently, reported by Han, Sauber and Luthcke. They also employed the raw ranging data (GRL, Dec., 9, 2010). The detection is important to advancing concepts for both the science and technical capabilities for potential earthquake studies in future space gravimetry experiments. The slip distribution and surface vertical displacements for the Maule quake are fairly well-constrained using terrestrial GPS, InSAR and broadband seismic wave analyses. Pollitz et al. (GRL, May 6, 2011) used a spherical self-gravitating layered earth model to provide a comprehensive simulation of the co-seismic deformation character of the event, noting that the slip distribution was roughly 8 meters over an area of about 1.2 x 105 km2. Much of the slip is projected to areas in the crust/lithosphere that are submarine. GPS recorded as much as 14.2 cm of negative vertical motion at the northern coastline of the rupture field (Delouis et al., GRL, Sept, 10, 2010), while other measurements suggest positive motions on off shore island which emerged by as much as 240 cm. Here we reexamine some of the detection and resolution issues of the gravitational signature, modeling both solid earth and ocean responses and sea-level equation using a layered compressible spherical self-gravitating model as described by Tanaka et al. (2009,2010). Such research helps determine the necessary spatio-temporal density of space and terrestrial gravity observations that are required for improving our understanding of the deformation in the off-shore subduction
Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)
NASA Astrophysics Data System (ADS)
Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo
2016-04-01
Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10‑2 ‑ 10‑1 Hz) and Ultra Long Period (ULP, 10‑4 ‑ 10‑2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10‑4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection
Scale invariance of the η-deformed AdS5 × S5 superstring, T-duality and modified type II equations
NASA Astrophysics Data System (ADS)
Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, A. A.
2016-02-01
We consider the ABF background underlying the η-deformed AdS5 ×S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R-R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS3 ×S3 ×T4and AdS2 ×S2 ×T6models.
Lee, You Jeong; Starrett, Gabriel J; Lee, Seungeun Thera; Yang, Rendong; Henzler, Christine M; Jameson, Stephen C; Hogquist, Kristin A
2016-08-15
Invariant NKT cells differentiate into three predominant effector lineages in the steady state. To understand these lineages, we sorted undifferentiated invariant NK T progenitor cells and each effector population and analyzed their transcriptional profiles by RNAseq. Bioinformatic comparisons were made to effector subsets among other lymphocytes, specifically Th cells, innate lymphoid cells (ILC), and γδ T cells. Myc-associated signature genes were enriched in NKT progenitors, like in other hematopoietic progenitors. Only NKT1 cells, but not NKT2 and NKT17 cells, had transcriptome similarity to NK cells and were also similar to other IFN-γ-producing lineages such as Th1, ILC1, and intraepithelial γδ T cells. NKT2 and NKT17 cells were similar to their analogous subsets of γδ T cells and ILCs, but surprisingly, not to Th2 and Th17 cells. We identified a set of genes common to each effector lineage regardless of Ag receptor specificity, suggesting the use of conserved regulatory cores for effector function. PMID:27385777
Stratigraphic signature of lithospheric deformation style in post-rift passive margin basins
NASA Astrophysics Data System (ADS)
Rouby, Delphine; Huismans, Ritske; Robin, Cecile; Braun, Jean; Granjeon, Didier
2016-04-01
We revise commonly accepted models explaining long-term stratigraphic trends along Atlantic-type passive margins by including the impact of complex lithosphere deformation at depth and it's coupling with surface processes. To achieve this, we simulated the evolution of a passive margin basin using a cascade of three modeling tools: a thermo-mechanical model of the syn-rift stretching of the lithosphere, a flexural and thermal model of the post-rift stage that includes coupling with surface processes and, finally, a stratigraphic model of the associated sedimentary basin architecture. We compare two necking styles that lead to different margin geometries: wide and narrow margins that form by heterogeneous stretching. Wide margins, forming thinner and wider sedimentary wedges, show significantly larger aggradation component and longer preservation duration, in more continental/proximal depositional facies. Narrow margins are characterized by enhanced erosion and by-pass during transgression. Through a parametric analysis we constrain the relative contribution of lithosphere deformation and surface processes on the stratigraphic trends and show that both may contribute equally to the stratigraphic architecture. For example, enhanced erosion in narrow margins impacts the volume of sediments delivered to the basin, which, in turn, significantly increases the subsidence. Our simulations also underline the importance of the assumed sediment transport length, which controls whether the main depocentres remain in the necking zone or reach the more distal parts of the margin.
Deformation signature from the Gamow-Teller decay of N=Z nuclei
Miehe, Ch.; Dessagne, Ph.; Huck, A.; Knipper, A.; Marguier, G.; Longour, C.; Rauch, V.; Giovinazzo, J.; Borge, M. J. G.; Piqueras, I.; Tengblad, O.; Jokinen, A.; Ramdhane, M.
1998-12-21
The {sup 76}Sr (N=Z=38) and the {sup 72}Kr (N=Z=36) {beta}{sup +} EC decay have been studied at the CERN/ISOLDE PSB facility where their beta-gamma and delayed particle decay modes have been investigated. The established decay schemes yield new information on the Gamow-Teller (GT) strength spread over the J{sup {pi}}=1{sup +} states in the daughter nuclei. The delayed proton emission of an N=Z nucleus is observed for the first time in the case of {sup 76}Sr. The experimental GT strength intensities and distributions are discussed in the light of the theoretical estimates for oblate and prolate deformations.
The Teton fault, Wyoming: Topographic signature, neotectonics, and mechanisms of deformation
NASA Technical Reports Server (NTRS)
Byrd, John O. D.; Smith, Robert B.; Geissman, John W.
1994-01-01
We integrated geophysical and geological methods to evalute the structural evolution of the active Teton normal fault, Wyoming, and its role in the development of the dramatic topography of Teton Range and Jackson Hole. Comparison of variations in surface offsets with the topographic expression of the Teton range crest and drainage divide, and the overall structure of the range, suggests that the effects ofpostglacial faulting cannot be discriminated from the influence of pre-extensional structures and differential; erosion on the footwall topography. In contrast, the effects of multiple scarp-forming normal faulting earthquakes are expressed by the anomalous drainage pattern and westward tilt of the hanging wall, Jackson Hole, toward the Teton fault. Kinematic boundary element fault models suggest that the westward tilt of the valley floor is the product of 110-125 m of displacement on a 45 deg-75 deg E dipping Teton fault in the past 25,000-75,000 years. Comparisons with historic normal faulting earthquake displacements imply that this range of displacement corresponds to 10-50, M greater than 7 scarp-forming earthquakes. A total throw of 2.5 to 3.5 km across the Teton fault is suggested by inverse ray-tracing and forward gravity models. These models also suggest that Laramide age structures have been offset across the Teton fault and obscure its geophysical signature but also continue to influence the structural and topographic expression of the footwall and hanging wall blocks. Paleomagnetic analyses of the approximately 2.0 Ma Huckelberry Ridge Tuff suggest that the overall westward tilt of the Teton Range is a result ofabout 10 deg of west side down tilt across the Teton fault since tuff emplacement. This suggests that much if not all of the throw across the Teton fault has accumulated in the past 2 m.y. Complex demagnetization and rock magnetic behavior and local emplacement of the Huckleberry Ridge Tuff on preexisting topogrpahy preclude determination of
Temporal shape analysis via the spectral signature.
Bernardis, Elena; Konukoglu, Ender; Ou, Yangming; Metaxas, Dimitris N; Desjardins, Benoit; Pohl, Kilian M
2012-01-01
In this paper, we adapt spectral signatures for capturing morphological changes over time. Advanced techniques for capturing temporal shape changes frequently rely on first registering the sequence of shapes and then analyzing the corresponding set of high dimensional deformation maps. Instead, we propose a simple encoding motivated by the observation that small shape deformations lead to minor refinements in the spectral signature composed of the eigenvalues of the Laplace operator. The proposed encoding does not require registration, since spectral signatures are invariant to pose changes. We apply our representation to the shapes of the ventricles extracted from 22 cine MR scans of healthy controls and Tetralogy of Fallot patients. We then measure the accuracy score of our encoding by training a linear classifier, which outperforms the same classifier based on volumetric measurements. PMID:23286031
NASA Astrophysics Data System (ADS)
Vilaseca, Géraud; Deplus, Christine; Escartin, Javier; Ballu, Valérie; Nomikou, Paraskevi; Mével, Catherine; Andreani, Muriel
2016-04-01
Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. In addition, we illustrate that tilt sensor can roughly record seismic induced ground motion which in our case led to a shift in sensors attitude for one seismic event. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.
NASA Astrophysics Data System (ADS)
Gomez, F. G.; Johnson, H. E., III; LeWinter, A. L.; Finnegan, D. C.; Sandvol, E. A.; Nayak, A.; Hurwitz, S.
2014-12-01
Geysers are important subjects for studying processes involved with multi-phase eruptions. As part of a larger field effort, this study applies imaging geodesy and seismology to study eruptive cycles of the Lone Star Geyser in Yellowstone National Park. Lone Star Geyser is an ideal candidate for such study, as it erupts with a nearly regular period of approximately 3 hours. The geyser includes a 5 m diameter cone that rises 2 meters above the sinter terrace, and the entire system can be viewed from a nearby hillside. Fieldwork was accomplished during April 2014. Ground-based interferometric radar (GBIR) and terrestrial laser scanning (TLS) were used to image possible surface deformations associated with Lone Star Geyer's eruption cycles. Additional observations were provided by global positioning system (GPS) measurements and six broad-band seismometers deployed in the immediate vicinity of the geyser. The GBIR and TLS were deployed approximately 65 meters from the sinter cone of the geyser. The GBIR involves a ku-band radar (1.7 cm wavelength) that is sensitive to approximately half-millimeter changes in the line-of-sight distance. Radar images were acquired every minute for 3 or more eruptions per day. Temporally redundant, overlapping interferograms were used to improve the sensitivity and interpolate a minute-wise time series of line-of-sight displacement, and efforts were made to account for possible path-delay effects resulting from water vapor around the geyser cone. Repeat (every minute) high-speed TLS scans were acquired for multiple eruption cycles over the course of two-days. Resulting measurement point spacing on the sinter cone was ~3cm. The TLS point-clouds were geo-referenced using static surveyed reflectors and scanner positions. In addition to measuring ground deformation, filtering and classification of the TLS point cloud was used to construct a mask that allows radar interferometry to exclude non-ground areas (vegetation, snow, sensors
NASA Astrophysics Data System (ADS)
Long, Maureen D.; Jackson, Kenneth G.; McNamara, John F.
2016-01-01
Seismic anisotropy in the upper mantle beneath continental interiors is generally complicated, with contributions from both the lithosphere and the asthenosphere. Previous studies of SKS splitting beneath the eastern United States have yielded evidence for complex and laterally variable anisotropy, but until the recent arrival of the USArray Transportable Array (TA) the station coverage has been sparse. Here we present SKS splitting measurements at TA stations in eastern North America and compare the measured fast directions with indicators such as absolute plate motion, surface geology, and magnetic lineations. We find few correlations between fast directions and absolute plate motion, except in the northeastern U.S. and southern Canada, where some stations exhibit variations in apparent splitting with backazimuth that would suggest multiple layers of anisotropy. A region of the southeastern U.S. is dominated by null SKS arrivals over a range of backazimuths, consistent with previous work. We document a pattern of fast directions parallel to the Appalachian mountain chain, suggesting a contribution from lithospheric deformation associated with Appalachian orogenesis. Overall, our measurements suggest that upper mantle anisotropy beneath the eastern United States is complex, with likely contributions from both asthenospheric and lithospheric anisotropy in many regions.
NASA Astrophysics Data System (ADS)
Agliardi, F.; Vinciguerra, S.; Dobbs, M. R.; Zanchetta, S.
2014-12-01
Fabric anisotropy is a key control of rock behavior in different geological settings and over different timescales. However, the effect of tectonically folded fabrics on the brittle strength and failure mode of metamorphic rocks is poorly understood. Recent data, obtained from uniaxial compression experiments on folded gneiss (Agliardi et al., 2014), demonstrated that their brittle failure modes depend upon the arrangement of two anisotropies (i.e. foliation and fold axial planes) and that rock strength correlates with failure mode. Since lithostatic pressure may significantly affect this rock behavior, we investigated its effect in triaxial compression experiments. We tested the Monte Canale Gneiss (Italian Alps), characterized by low phyllosilicate content and compositional layering folded at the cm-scale. We used a servo-controlled hydraulic loading system to test 19 air-dry cylindrical specimens (ø = 54 mm) that were characterized both in terms of fold geometry and orientation of foliation and fold axial planes to the axial load direction. The specimens were instrumented with direct contact axial and circumferential strain gauges. Acoustic emissions and P- and S-wave velocities were measured by piezoelectric transducers mounted in the compression platens. The tests were performed at confining pressures of 40 MPa and axial strain rates of 5*10-6 s-1. Post-failure study of fracture mechanisms and related microfabric controls was undertaken using X-ray CT, optical microscopy and SEM. Samples failed in three distinct brittle modes produced by different combinations of fractures parallel to foliation, fractures parallel to fold axial planes, or mm-scale shear bands. The failure modes, consistent with those described in uniaxial compression experiments, were found to be associated with distinct stress-strain and acoustic emission signatures. Failure modes involving quartz-dominated axial plane anisotropy correspond to higher peak strength and axial strain, less
View Invariant Gait Recognition
NASA Astrophysics Data System (ADS)
Seely, Richard D.; Goffredo, Michela; Carter, John N.; Nixon, Mark S.
Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on current large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group, the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated toward view-invariant gait recognition.
Geometry-invariant resonant cavities
NASA Astrophysics Data System (ADS)
Liberal, I.; Mahmoud, A. M.; Engheta, N.
2016-03-01
Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.
Geometry-invariant resonant cavities
Liberal, I.; Mahmoud, A. M.; Engheta, N.
2016-01-01
Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103
Neutrinos as Probes of Lorentz Invariance
Díaz, Jorge S.
2014-01-01
Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.
The classical Korteweg capillarity system: geometry and invariant transformations
NASA Astrophysics Data System (ADS)
Rogers, C.; Schief, W. K.
2014-08-01
A class of invariant transformations is presented for the classical Korteweg capillarity system. The invariance is an extension of a kind originally introduced in an anisentropic gasdynamics context. In a particular instance, application of the invariant transformation leads to a deformed one-parameter class of Kármán-Tsien-type capillarity laws associated with a deformation of an integrable nonlinear Schrödinger-type equation which incorporates a de Broglie-Bohm potential. The latter and another integrable case associated with the classical Boussinesq equation may be linked to the motion of curves in Euclidean and projective space so that both the invariant transformation and the Galilean invariance of the capillarity system may be interpreted in a geometric and soliton-theoretic manner. The work is set in the broader context of other connections of invariant transformations in gasdynamics with soliton theory.
Generalizing twisted gauge invariance
Duenas-Vidal, Alvaro; Vazquez-Mozo, Miguel A.
2009-05-01
We discuss the twisting of gauge symmetry in noncommutative gauge theories and show how this can be generalized to a whole continuous family of twisted gauge invariances. The physical relevance of these twisted invariances is discussed.
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Dos Santos Cardoso-Bihlo, Elsa Maria; Nave, Jean-Christophe; Popovych, Roman
2012-11-01
Various subgrid-scale closure models break the invariance of the Euler or Navier-Stokes equations and thus violate the geometric structure of these equations. A method is shown which allows one to systematically derive invariant turbulence models starting from non-invariant turbulence models and thus to correct artificial symmetry-breaking. The method is illustrated by finding invariant hyperdiffusion schemes to be applied in the two-dimensional turbulence problem.
Conformal Invariance of Graphene Sheets
Giordanelli, I.; Posé, N.; Mendoza, M.; Herrmann, H. J.
2016-01-01
Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces. PMID:26961723
Conformal Invariance of Graphene Sheets.
Giordanelli, I; Posé, N; Mendoza, M; Herrmann, H J
2016-01-01
Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces. PMID:26961723
NASA Astrophysics Data System (ADS)
Pyati, Vittal P.
The reduction of vehicle radar signature is accomplished by means of vehicle shaping, the use of microwave frequencies-absorbent materials, and either passive or active cancellation techniques; such techniques are also useful in the reduction of propulsion system-associated IR emissions. In some anticipated scenarios, the objective is not signature-reduction but signature control, for deception, via decoy vehicles that mimic the signature characteristics of actual weapons systems. As the stealthiness of airframes and missiles increases, their propulsion systems' exhaust plumes assume a more important role in detection by an adversary.
A position, rotation, and scale invariant image descriptor based on rays and circular paths
NASA Astrophysics Data System (ADS)
Solorza-Calderón, Selene
2015-09-01
In this paper a rotation, scale and translation (RST) invariant image descriptor based on 1D signatures is presented. The position invariant is obtained using the amplitude spectrum of the Fourier transform of the image. That spectrum is introduced in the analytical Fourier-Mellin transform (AFMT) to obtain the scale invariance. From the normalized AFMT amplitude spectrum two 1D signatures are constructed. To build a 1D circular signature, circular path binary masks are used to filter the spectrum image. On the other hand, ray path binary filters are utilized in the construction of the 1D ray signature. These 1D signatures are RST invariant image descriptors. The Latin alphabet letters in Arial font style were used to test the descriptor efficiency. According with the statistical analysis of bootstrap with a constant replacement B = 1000 and normal distribution, the descriptor has a confidence level at least of 95%.
Learning spectral descriptors for deformable shape correspondence.
Litman, R; Bronstein, A M
2014-01-01
Informative and discriminative feature descriptors play a fundamental role in deformable shape analysis. For example, they have been successfully employed in correspondence, registration, and retrieval tasks. In recent years, significant attention has been devoted to descriptors obtained from the spectral decomposition of the Laplace-Beltrami operator associated with the shape. Notable examples in this family are the heat kernel signature (HKS) and the recently introduced wave kernel signature (WKS). The Laplacian-based descriptors achieve state-of-the-art performance in numerous shape analysis tasks; they are computationally efficient, isometry-invariant by construction, and can gracefully cope with a variety of transformations. In this paper, we formulate a generic family of parametric spectral descriptors. We argue that to be optimized for a specific task, the descriptor should take into account the statistics of the corpus of shapes to which it is applied (the "signal") and those of the class of transformations to which it is made insensitive (the "noise"). While such statistics are hard to model axiomatically, they can be learned from examples. Following the spirit of the Wiener filter in signal processing, we show a learning scheme for the construction of optimized spectral descriptors and relate it to Mahalanobis metric learning. The superiority of the proposed approach in generating correspondences is demonstrated on synthetic and scanned human figures. We also show that the learned descriptors are robust enough to be learned on synthetic data and transferred successfully to scanned shapes. PMID:24231874
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity. PMID:12005620
Lorentz invariance in shape dynamics
NASA Astrophysics Data System (ADS)
Carlip, S.; Gomes, Henrique
2015-01-01
Shape dynamics is a reframing of canonical general relativity in which time reparametrization invariance is ‘traded’ for a local conformal invariance. We explore the emergence of Lorentz invariance in this model in three contexts: as a maximal symmetry, an asymptotic symmetry and a local invariance.
Digital system of invariant correlation to position and rotation
NASA Astrophysics Data System (ADS)
Solorza, Selene; Álvarez-Borrego, Josué
2010-10-01
A new correlation digital system invariant to position and rotation is presented. This new algorithm requires low computational cost, because it uses uni-dimensional signatures (vectors). The signature of the target so like the signature of the object to be recognized in the problem image is obtained using a binary ring mask constructed based on the real positive values of the Fourier transform of the corresponding image. In this manner, each image will have one unique binary ring mask, avoiding in this form the relevant information leak. Using linear and non-linear correlations, this methodology is applied first in the identification of the alphabet letters in Arial font style and then in the classification of fossil diatoms images. Also, this system is tested using the diatom images with additive Gaussian noise. The non-linear correlation results were excellent, obtaining in this way a simple but efficient method to achieve rotation and translation invariance pattern recognition.
Yang-Baxter invariance of the Nappi-Witten model
NASA Astrophysics Data System (ADS)
Kyono, Hideki; Yoshida, Kentaroh
2016-04-01
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical r-matrices satisfying (modified) classical Yang-Baxter equations. We show that the sigma-model metric is invariant under arbitrary deformations (while the coefficient of B-field is changed) by utilizing the most general classical r-matrix. Furthermore, the coefficient of B-field is determined to be the original value from the requirement that the one-loop β-function should vanish. After all, the Nappi-Witten model is the unique conformal theory within the class of the Yang-Baxter deformations preserving the conformal invariance.
Janse Van Rensburg, E.J.
1996-12-31
The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.
Reparametrization invariant collinear operators
Marcantonini, Claudio; Stewart, Iain W.
2009-03-15
In constructing collinear operators, which describe the production of energetic jets or energetic hadrons, important constraints are provided by reparametrization invariance (RPI). RPI encodes Lorentz invariance in a power expansion about a collinear direction, and connects the Wilson coefficients of operators at different orders in this expansion to all orders in {alpha}{sub s}. We construct reparametrization invariant collinear objects. The expansion of operators built from these objects provides an efficient way of deriving RPI relations and finding a minimal basis of operators, particularly when one has an observable with multiple collinear directions and/or soft particles. Complete basis of operators is constructed for pure glue currents at twist-4, and for operators with multiple collinear directions, including those appearing in e{sup +}e{sup -}{yields}3 jets, and for pp{yields}2 jets initiated via gluon fusion.
Funabashi, Masatoshi
2015-05-01
This study applies information geometry of normal distribution to model Japanese vowels on the basis of the first and second formants. The distribution of Kullback-Leibler (KL) divergence and its decomposed components were investigated to reveal the statistical invariance in the vowel system. The results suggest that although significant variability exists in individual KL divergence distributions, the population distribution tends to converge into a specific log-normal distribution. This distribution can be considered as an invariant distribution for the standard-Japanese speaking population. Furthermore, it was revealed that the mean and variance components of KL divergence are linearly related in the population distribution. The significance of these invariant features is discussed. PMID:25994716
Scale invariance in biophysics
NASA Astrophysics Data System (ADS)
Stanley, H. Eugene
2000-06-01
In this general talk, we offer an overview of some problems of interest to biophysicists, medical physicists, and econophysicists. These include DNA sequences, brain plaques in Alzheimer patients, heartbeat intervals, and time series giving price fluctuations in economics. These problems have the common feature that they exhibit features that appear to be scale invariant. Particularly vexing is the problem that some of these scale invariant phenomena are not stationary-their statistical properties vary from one time interval to the next or form one position to the next. We will discuss methods, such as wavelet methods and multifractal methods, to cope with these problems. .
Gauge invariants and bosonization
NASA Astrophysics Data System (ADS)
Kijowski, J.; Rudolph, G.; Rudolph, M.
1998-12-01
We present some results, which are part of our program of analyzing gauge theories with fermions in terms of local gauge invariant fields. In a first part the classical Dirac-Maxwell system is discussed. Next we develop a procedure which leads to a reduction of the functional integral to an integral over (bosonic) gauge invariant fields. We apply this procedure to the case of QED and the Schwinger model. In a third part we go some steps towards an analysis of the considered models. We construct effective (quantum) field theories which can be used to calculate vacuum expectation values of physical quantities.
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-01
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.
Idiographic Measurement Invariance?
ERIC Educational Resources Information Center
Willoughby, Michael T.; Sideris, John
2007-01-01
In this article, the authors comment on Nesselroade, Gerstorf, Hardy, and Ram's efforts (this issue) to grapple with the challenge of accommodating idiographic assessment as it pertains to measurement invariance (MI). Although the authors are in complete agreement with the motivation for Nesselroade et al.'s work, the authors have concerns about…
Pokhozhaev, Stanislav I
2011-06-30
The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.
Are there p-adic knot invariants?
NASA Astrophysics Data System (ADS)
Morozov, A. Yu.
2016-04-01
We suggest using the Hall-Littlewood version of the Rosso-Jones formula to define the germs of p-adic HOMFLY-PT polynomials for torus knots [ m, n] as coefficients of superpolynomials in a q-expansion. In this form, they have at least the [ m, n] ↔ [ n, m] topological invariance. This opens a new possibility to interpret superpolynomials as p-adic deformations of HOMFLY polynomials and poses a question of generalizing to other knot families, which is a substantial problem for several branches of modern theory.
... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...
Kozin, Scott H; Zlotolow, Dan A
2015-10-01
Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. PMID:26341718
Gauge invariant quantum cosmology
NASA Technical Reports Server (NTRS)
Berger, Beverly K.
1987-01-01
The study of boundary conditions, the Hamiltonian constraint, reparameterization-invariance, and quantum dynamics, is presently approached by means of the path-integral quantization of minisuperspace models. The separation of the wave functions for expansion and contraction by the Feynman boundary conditions is such that there can be no interference between them. This is implemented by the choice of a contour in the complex plane, in order to define the phase of the square-root Arnowitt, Deser, and Misner (1960) Hamiltonian for expansion, collapse, and the classically forbidden region.
The relation between the waveguide invariant and array invariant.
Song, H C; Cho, Chomgun
2015-08-01
The waveguide invariant β is based on the dependence of group speed on phase speed and summarizes the robust interference phenomenon in the range-frequency plane. Over the last decade the elegant approach has been utilized for various applications including passive source ranging. Separately, the array invariant approach [Lee and Makris, J. Acoust. Soc. Am. 119, 336-351 (2006)] has been proposed for a robust source-range estimator from beam-time intensity data using either a horizontal or vertical array. In this paper, it is shown that the array invariant can be derived from the waveguide invariant theory assuming β=1. PMID:26328705
M theory on deformed superspace
NASA Astrophysics Data System (ADS)
Faizal, Mir
2011-11-01
In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.
Entanglement, Invariants, and Phylogenetics
NASA Astrophysics Data System (ADS)
Sumner, J. G.
2007-10-01
This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.
On the new translational shape-invariant potentials
NASA Astrophysics Data System (ADS)
Ramos, Arturo
2011-08-01
Recently, several authors have found new translational shape-invariant potentials not present in classic classifications like those of Infeld and Hull. For example, Quesne on the one hand and Bougie, Gangopadhyaya and Mallow on the other have provided examples of them, consisting on deformations of the classical ones. We analyze the basic properties of the new examples and observe a compatibility equation which has to be satisfied by them. We study particular cases of such an equation and give more examples of new translational shape-invariant potentials.
Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory
Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H.; Gu, Xianfeng
2016-01-01
Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing
Invariants from classical field theory
Diaz, Rafael; Leal, Lorenzo
2008-06-15
We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
Tractors, mass, and Weyl invariance
NASA Astrophysics Data System (ADS)
Gover, A. R.; Shaukat, A.; Waldron, A.
2009-05-01
Deser and Nepomechie established a relationship between masslessness and rigid conformal invariance by coupling to a background metric and demanding local Weyl invariance, a method which applies neither to massive theories nor theories which rely upon gauge invariances for masslessness. We extend this method to describe massive and gauge invariant theories using Weyl invariance. The key idea is to introduce a new scalar field which is constant when evaluated at the scale corresponding to the metric of physical interest. This technique relies on being able to efficiently construct Weyl invariant theories. This is achieved using tractor calculus—a mathematical machinery designed for the study of conformal geometry. From a physics standpoint, this amounts to arranging fields in multiplets with respect to the conformal group but with novel Weyl transformation laws. Our approach gives a mechanism for generating masses from Weyl weights. Breitenlohner-Freedman stability bounds for Anti-de Sitter theories arise naturally as do direct derivations of the novel Weyl invariant theories given by Deser and Nepomechie. In constant curvature spaces, partially massless theories—which rely on the interplay between mass and gauge invariance—are also generated by our method. Another simple consequence is conformal invariance of the maximal depth partially massless theories. Detailed examples for spins s⩽2 are given including tractor and component actions, on-shell and off-shell approaches and gauge invariances. For all spins s⩾2 we give tractor equations of motion unifying massive, massless, and partially massless theories.
Kahler stabilized, modular invariant heterotic string models
Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.
2007-03-19
We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.
Dual superconformal invariance, momentum twistors and Grassmannians
NASA Astrophysics Data System (ADS)
Mason, Lionel; Skinner, David
2009-11-01
Dual superconformal invariance has recently emerged as a hidden symmetry of planar scattering amplitudes in Script N = 4 super Yang-Mills theory. This symmetry can be made manifest by expressing amplitudes in terms of `momentum twistors', as opposed to the usual twistors that make the ordinary superconformal properties manifest. The relation between momentum twistors and on-shell momenta is algebraic, so the translation procedure does not rely on any choice of space-time signature. We show that tree amplitudes and box coefficients are succinctly generated by integration of holomorphic δ-functions in momentum twistors over cycles in a Grassmannian. This is analogous to, although distinct from, recent results obtained by Arkani-Hamed et al. in ordinary twistor space. We also make contact with Hodges' polyhedral representation of NMHV amplitudes in momentum twistor space.
The scale invariant generator technique for quantifying anisotropic scale invariance
NASA Astrophysics Data System (ADS)
Lewis, G. M.; Lovejoy, S.; Schertzer, D.; Pecknold, S.
1999-11-01
Scale invariance is rapidly becoming a new paradigm for geophysics. However, little attention has been paid to the anisotropy that is invariably present in geophysical fields in the form of differential stratification and rotation, texture and morphology. In order to account for scaling anisotropy, the formalism of generalized scale invariance (GSI) was developed. Until now there has existed only a single fairly ad hoc GSI analysis technique valid for studying differential rotation. In this paper, we use a two-dimensional representation of the linear approximation to generalized scale invariance, to obtain a much improved technique for quantifying anisotropic scale invariance called the scale invariant generator technique (SIG). The accuracy of the technique is tested using anisotropic multifractal simulations and error estimates are provided for the geophysically relevant range of parameters. It is found that the technique yields reasonable estimates for simulations with a diversity of anisotropic and statistical characteristics. The scale invariant generator technique can profitably be applied to the scale invariant study of vertical/horizontal and space/time cross-sections of geophysical fields as well as to the study of the texture/morphology of fields.
Deformations of non-semisimple Poisson pencils of hydrodynamic type
NASA Astrophysics Data System (ADS)
Della Vedova, Alberto; Lorenzoni, Paolo; Savoldi, Andrea
2016-09-01
We study the deformations of two-component non-semisimple Poisson pencils of hydrodynamic type associated with Balinskiǐ–Novikov algebras. We show that in most cases the second order deformations are parametrized by two functions of a single variable. We find that one function is invariant with respect to the subgroup of Miura transformations, preserving the dispersionless limit, and another function is related to a one-parameter family of truncated structures. In two exceptional cases the second order deformations are parametrized by four functions. Among these two are invariants and two are related to a two-parameter family of truncated structures. We also study the lift of the deformations of n-component semisimple structures. This example suggests that deformations of non-semisimple pencils corresponding to the lifted invariant parameters are unobstructed.
Integrable amplitude deformations for N =4 super Yang-Mills and ABJM theory
NASA Astrophysics Data System (ADS)
Bargheer, Till; Huang, Yu-Tin; Loebbert, Florian; Yamazaki, Masahito
2015-01-01
We study Yangian-invariant deformations of scattering amplitudes in 4d N =4 super Yang-Mills theory and 3d N =6 Aharony-Bergman-Jafferis-Maldacena (ABJM) theory. In particular, we obtain the deformed Graßmannian integral for 4d N =4 supersymmetric Yang-Mills theory, both in momentum and momentum-twistor space. For 3d ABJM theory, we initiate the study of deformed scattering amplitudes. We investigate general deformations of on-shell diagrams, and find the deformed Graßmannian integral for this theory. We furthermore introduce the algebraic R-matrix construction of deformed Yangian invariants for ABJM theory.
Developing composite signatures
NASA Astrophysics Data System (ADS)
Hawley, Chadwick T.; Carpenter, Tom; Cappelaere, Patrice G.; Frye, Stu; Lemoigne-Stewart, Jacqueline J.; Mandle, Dan; Montgomery, Sarah; Williams-Bess, Autumn
2011-06-01
A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper explores the merits of using composite signatures, in lieu of waiting for opportunities for the more elusive diagnostic signatures, to satisfy key essential elements of information Keywords: signature, composite signature, civil disaster (EEI) associated with civil disaster-related problems. It discusses efforts to refine composite signature development methodology and quantify the relative value of composite vs. diagnostic signatures. The objectives are to: 1) investigate and develop innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral; 2) explore the feasibility of collecting representative composite signatures using current and emerging intelligence, surveillance, and reconnaissance (ISR) collection architectures leveraging civilian and commercial architectures; and 3) collaborate extensively with scientists and engineers from U.S. government organizations and laboratories, the defense industry, and academic institutions.
A Discussion of Population Invariance
ERIC Educational Resources Information Center
Brennan, Robert L.
2008-01-01
The discussion here covers five articles that are linked in the sense that they all treat population invariance. This discussion of population invariance is a somewhat broader treatment of the subject than simply a discussion of these five articles. In particular, occasional reference is made to publications other than those in this issue. The…
Invariant Measures for Cherry Flows
NASA Astrophysics Data System (ADS)
Saghin, Radu; Vargas, Edson
2013-01-01
We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.
Physical Invariants of Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
A program of research is dedicated to development of a mathematical formalism that could provide, among other things, means by which living systems could be distinguished from non-living ones. A major issue that arises in this research is the following question: What invariants of mathematical models of the physics of systems are (1) characteristic of the behaviors of intelligent living systems and (2) do not depend on specific features of material compositions heretofore considered to be characteristic of life? This research at earlier stages has been reported, albeit from different perspectives, in numerous previous NASA Tech Briefs articles. To recapitulate: One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Mathematical models of motor dynamics are used to simulate the observable physical behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. At the time of reporting the information for this article, the focus of this research was upon the following aspects of the formalism: Intelligence is considered to be a means by which a living system preserves itself and improves its ability to survive and is further considered to manifest itself in feedback from the mental dynamics to the motor dynamics. Because of the feedback from the mental dynamics, the motor dynamics attains quantum-like properties: The trajectory of the physical aspect of the system in the space of dynamical variables splits into a family of different trajectories, and each of those trajectories can be chosen with a probability prescribed by the mental dynamics. From a slightly different perspective
NASA Astrophysics Data System (ADS)
Goncharovskii, M. M.; Shirokov, I. V.
2015-05-01
We describe the relation between operators of invariant differentiation and invariant operators on orbits of Lie group actions. We propose a new effective method for finding differential invariants and operators of invariant differentiation and present examples.
Supertransvectants, cohomology, and deformations
NASA Astrophysics Data System (ADS)
Ben Fraj, Nizar; Laraiedh, Ismail; Omri, Salem
2013-02-01
Over the (1, N)-dimensional real superspace, N = 2, 3, we classify {osp}(N|2)-invariant binary differential operators acting on the superspaces of weighted densities, where {osp}(N|2) is the orthosymplectic Lie superalgebra. This result allows us to compute the first differential {osp}(N|2)-relative cohomology of the Lie superalgebra K(N) of contact vector fields with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We classify generic formal {osp}(3|2)-trivial deformations of the K(3)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal {osp}(3|2)-trivial deformation of this K(3)-module is equivalent to its infinitesimal part. This work is the simplest generalization of a result by the first author et al. [Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelbene, M., and Kammoun, K., "Cohomology of the Lie superalgebra of contact vector fields on {K}^{1|1} and deformations of the superspace of symbols," J. Nonlinear Math. Phys. 16, 373 (2009), 10.1142/S1402925109000431].
Shaping propagation invariant laser beams
NASA Astrophysics Data System (ADS)
Soskind, Michael; Soskind, Rose; Soskind, Yakov
2015-11-01
Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.
Invariant manifolds and global bifurcations.
Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn
2015-09-01
Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems. PMID:26428557
System of invariant correlation to rotation using a ring mask
NASA Astrophysics Data System (ADS)
Solorza, Selene; Álvarez-Borrego, Josué; Kober, Vitaly
2008-08-01
A new rotational invariance computational filter is presented. The filter was applied to a problem image, in this case, an image of 256 by 256 pixels of black background with a centered white Arial letter. The complete alphabet is represented in those images. The image is rotated one degree by one degree until complete 360 degrees; hence, for each alphabet letter we are generating 360 images. To achieve the rotational invariance, first of all, a translational invariance is applied and then a 256 by 256 binary mask of concentric circular rings of three pixels of thickness and separation is used. The sum of the information in the circular rings represents the signature of the image. The average of the signature of the 360 images of a selected letter is the filter used to compute the phase correlation with all alphabet letter and their rotated images. The confidence level is calculated by the mean value with two standard errors (2SE) of those 360 correlation values for each letter. The confidence level shows that this system works efficiently on the discrimination between letters.
Anonymous Signatures Revisited
NASA Astrophysics Data System (ADS)
Saraswat, Vishal; Yun, Aaram
We revisit the notion of the anonymous signature, first formalized by Yang, Wong, Deng and Wang [10], and then further developed by Fischlin [4] and Zhang and Imai [11]. We present a new formalism of anonymous signature, where instead of the message, a part of the signature is withheld to maintain anonymity. We introduce the notion unpretendability to guarantee infeasibility for someone other than the correct signer to pretend authorship of the message and signature. Our definition retains applicability for all previous applications of the anonymous signature, provides stronger security, and is conceptually simpler. We give a generic construction from any ordinary signature scheme, and also show that the short signature scheme by Boneh and Boyen [2] can be naturally regarded as such a secure anonymous signature scheme according to our formalism.
NASA Astrophysics Data System (ADS)
Hawley, Chadwick T.
2009-05-01
The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.
Orthosymplectically invariant functions in superspace
Coulembier, K.; De Bie, H.; Sommen, F.
2010-08-15
The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schroedinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally, the obtained machinery is used to prove the Funk-Hecke theorem and Bochner's relations in superspace.
Bunnell, W P
1986-12-01
Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010
Hidden scale invariance of metals
NASA Astrophysics Data System (ADS)
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.; Pedersen, Ulf R.
2015-11-01
Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general "hidden" scale invariance of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals (Ga, In, Sn, and Tl), and the metalloids Si and Ge cannot be explained by the IPL assumption. The virial-energy correlation coefficients of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules.
Jordanian deformation of the open sℓ(2) Gaudin model
NASA Astrophysics Data System (ADS)
António, N. Cirilo; Manojlović, N.; Nagy, Z.
2014-04-01
We derive a deformed sℓ( 2) Gaudin model with integrable boundaries. Starting from the Jordanian deformation of the SL( 2)-invariant Yang R-matrix and generic solutions of the associated reflection equation and the dual reflection equation, we obtain the corresponding inhomogeneous spin- 1/2 XXX chain. The semiclassical expansion of the transfer matrix yields the deformed sℓ( 2) Gaudin Hamiltonians with boundary terms.
Rotation invariant moments and transforms for geometrically invariant image watermarking
NASA Astrophysics Data System (ADS)
Singh, Chandan; Ranade, Sukhjeet K.
2013-01-01
We present invariant image watermarking based on a recently introduced set of polar harmonic transforms and angular radial transforms and their comparative analysis with state-of-art approaches based on Zernike moments and pseudo-Zernike moments (ZMs/PZMs). Similar to ZMs/PZMs, these transforms provide rotation invariance and resilience to noise while mitigating inherent limitations like numerical instability and computational cost at high order of moments. These characteristics motivate us to design invariant transform-based invariant image watermarking schemes that can withstand various intentional or unintentional attacks, handle large bitcarriers, and work in a limited computing environment. A comparative performance evaluation of watermarking systems regarding critical parameters like visual imperceptibility, embedding capacity, and watermark robustness against geometric transformations, common signal processing distortions, and Stirmark attacks is performed along with the empirical analysis of various inherent properties of transforms and moments such as magnitude invariance, reconstruction capabilities, and computational complexity to investigate relationships between the performance of watermarking schemes and inherent properties of transforms.
CPT violation implies violation of Lorentz invariance.
Greenberg, O W
2002-12-01
A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal. PMID:12484997
Brown, R.D. Jr.
1990-01-01
Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.
Machine learning strategies for systems with invariance properties
Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan
2016-01-01
Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.
Machine learning strategies for systems with invariance properties
NASA Astrophysics Data System (ADS)
Ling, Julia; Jones, Reese; Templeton, Jeremy
2016-08-01
In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.
Machine learning strategies for systems with invariance properties
Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan
2016-05-06
Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neuralmore » networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.« less
Uncertainty in hydrological signatures
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; McMillan, H. K.
2015-09-01
Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.
Uncertainty in hydrological signatures
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; McMillan, H. K.
2015-04-01
Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, including for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.
Invariants of triangular Lie algebras
NASA Astrophysics Data System (ADS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-07-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated.
Abelian link invariants and homology
Guadagnini, Enore; Mancarella, Francesco
2010-06-15
We consider the link invariants defined by the quantum Chern-Simons field theory with compact gauge group U(1) in a closed oriented 3-manifold M. The relation of the Abelian link invariants with the homology group of the complement of the links is discussed. We prove that, when M is a homology sphere or when a link--in a generic manifold M--is homologically trivial, the associated observables coincide with the observables of the sphere S{sup 3}. Finally, we show that the U(1) Reshetikhin-Turaev surgery invariant of the manifold M is not a function of the homology group only, nor a function of the homotopy type of M alone.
Dark coupling and gauge invariance
Gavela, M.B.; Honorez, L. Lopez; Rigolin, S. E-mail: llopezho@ulb.ac.be E-mail: stefano.rigolin@pd.infn.it
2010-11-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Ghatan, Andrew C; Hanel, Douglas P
2013-06-01
Madelung deformity is a rare congenital anomaly of the wrist caused by asymmetric growth at the distal radial physis secondary to a partial ulnar-sided arrest. The deformity is characterized by ulnar and palmar curvature of the distal radius, positive ulnar variance, and proximal subsidence of the lunate. It more commonly occurs in females than males and typically affects both wrists. The deformity can occur in isolation or as part of a genetic syndrome. The pattern of inheritance varies, with some cases following a pseudoautosomal pattern and many others lacking a clear family history. Nonsurgical management is typically advocated in asymptomatic patients. Few studies exist on the natural history of the condition; however, extensor tendon ruptures have been reported in severe and chronic cases. Stiffness, pain, and patient concerns regarding wrist cosmesis have been cited as indications for surgery. Various techniques for surgical management of Madelung deformity have been described, but clear evidence to support the use of any single approach is lacking. PMID:23728962
Optical tweezer for probing erythrocyte membrane deformability
NASA Astrophysics Data System (ADS)
Khan, Manas; Soni, Harsh; Sood, A. K.
2009-12-01
We report that the average rotation speed of optically trapped crenated erythrocytes is direct signature of their membrane deformability. When placed in hypertonic buffer, discocytic erythrocytes are subjected to crenation. The deformation of cells brings in chirality and asymmetry in shape that makes them rotate under the scattering force of a linearly polarized optical trap. A change in the deformability of the erythrocytes, due to any internal or environmental factor, affects the rotation speed of the trapped crenated cells. Here we show how the increment in erythrocyte membrane rigidity with adsorption of Ca++ ions can be exhibited through this approach.
Holographic signatures of cosmological singularities.
Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T
2014-09-19
To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function. PMID:25279620
Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms
NASA Astrophysics Data System (ADS)
Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.
2014-12-01
The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.
Thomas, Anthony W.
2008-10-13
We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between 'chiral' and 'invariant' spin. This is particularly significant with respect to the possible presence of polarized strange quarks.
Link invariants of electromagnetic fields.
von Bodecker, Hanno; Hornig, Gunnar
2004-01-23
The cross-helicity integral is known in fluid dynamics and plasma physics as a topological invariant which measures the mutual linkage of two divergence-free vector fields, e.g., magnetic fields, on a three-dimensional domain. Generalizing this concept, a new topological invariant is found which measures the mutual linkage of three closed two-forms, e.g., electromagnetic fields, on a four-dimensional domain. The integral is shown to detect a separation of the cross helicity between two of the fields with the help of the third field. It can be related to the triple linking number known in knot theory. Furthermore, it is shown that the well-known three-dimensional cross helicity and the new four-dimensional invariant are the first two examples of a series of topological invariants which are defined by n-1 field strengths F=dA on a simply connected n-dimensional manifold M(n). PMID:14753856
Thomas, Anthony
2008-11-01
We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between "chiral" and "invariant" spin. This is particularly significant with respect to the possible presence of polarized strange quarks.
Measuring polynomial invariants of multiparty quantum states
Leifer, M.S.; Linden, N.; Winter, A.
2004-05-01
We present networks for directly estimating the polynomial invariants of multiparty quantum states under local transformations. The structure of these networks is closely related to the structure of the invariants themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Specifically, our networks estimate the invariants under local unitary (LU) transformations and under stochastic local operations and classical communication (SLOCC). Our networks can estimate the LU invariants for multiparty states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants for multiqubit states. We analyze the statistical efficiency of our networks compared to methods based on estimating the state coefficients and calculating the invariants.
Perception of Invariance Over Perspective Transformations in Five Month Old Infants.
ERIC Educational Resources Information Center
Gibson, Eleanor; And Others
This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…
ERIC Educational Resources Information Center
Hassler, Vesna; Biely, Helmut
1999-01-01
Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods. PMID:26390453
Rotation Invariant Vortices for Flow Visualization.
Günther, Tobias; Schulze, Maik; Theisel, Holger
2016-01-01
We propose a new class of vortex definitions for flows that are induced by rotating mechanical parts, such as stirring devices, helicopters, hydrocyclones, centrifugal pumps, or ventilators. Instead of a Galilean invariance, we enforce a rotation invariance, i.e., the invariance of a vortex under a uniform-speed rotation of the underlying coordinate system around a fixed axis. We provide a general approach to transform a Galilean invariant vortex concept to a rotation invariant one by simply adding a closed form matrix to the Jacobian. In particular, we present rotation invariant versions of the well-known Sujudi-Haimes, Lambda-2, and Q vortex criteria. We apply them to a number of artificial and real rotating flows, showing that for these cases rotation invariant vortices give better results than their Galilean invariant counterparts. PMID:26390472
The solar system's invariable plane
NASA Astrophysics Data System (ADS)
Souami, D.; Souchay, J.
2012-07-01
Context. The dynamics of solar system objects, such as dwarf planets and asteroids, has become a well-established field of celestial mechanics in the past thirty years, owing to the improvements that have been made in observational techniques and numerical studies. In general, the ecliptic is taken as the reference plane in these studies, although there is no dynamical reason for doing so. In contrast, the invariable plane as originally defined by Laplace, seems to be a far more natural choice. In this context, the latest study of this plane dates back to Burkhardt. Aims: We define and determine the orientation of the invariable plane of the solar system with respect to both the ICRF and the equinox-ecliptic of J2000.0, and evaluate the accuracy of our determination. Methods: Using the long-term numerical ephemerides DE405, DE406, and INPOP10a over their entire available time span, we computed the total angular momentum of the solar system, as well as the individual contribution to it made by each of the planets, the dwarf planets Pluto and Ceres, and the two asteroids Pallas and Vesta. We then deduced the orientation of the invariable plane from these ephemerides. Results: We update the previous results on the determination of the orientation of the invariable plane with more accurate data, and a more complete analysis of the problem, taking into account the effect of the dwarf planet (1) Ceres as well as two of the biggest asteroids, (4) Vesta and (2) Pallas. We show that the inclusion of these last three bodies significantly improves the accuracy of determination of the invariable plane, whose orientation over a 100 y interval does not vary more than 0.1 mas in inclination, and 0.3 mas in longitude of the ascending node. Moreover, we determine the individual contributions of each body to the total angular momentum of the solar system, as well as the inclination and longitude of the node with respect to this latter plane. Conclusions: Owing to the high accuracy
Invariance of visual operations at the level of receptive fields.
Lindeberg, Tony
2013-01-01
The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the
Signature detection and matching for document image retrieval.
Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan
2009-11-01
As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches. PMID:19762928
SLOCC invariants for multipartite mixed states
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Li, Ming; Li-Jost, Xianqing; Zhang, Tinggui; Fei, Shao-Ming
2014-05-01
We construct a nontrivial set of invariants for any multipartite mixed states under the stochastic local operations and classical communication symmetry. These invariants are given by hyperdeterminants and independent of basis change. In particular, a family of d2 invariants for arbitrary d-dimensional even partite mixed states are explicitly given.
Measuring Scale Invariance between and within Subjects.
ERIC Educational Resources Information Center
Benson, Jeri; Hocevar, Dennis
The present paper represents a demonstration of how LISREL V can be used to investigate scale invariance (1) across time (its relationship to test-retest reliability), and (2) across groups. Five criteria were established to test scale invariance across time and four criteria were established to test scale invariance across groups. Using the…
Supergravity with broken Lorentz invariance
NASA Astrophysics Data System (ADS)
Marakulin, A. O.; Sibiryakov, S. M.
Incompatibility of the principles of quantum field theory with general relativity is one of the most important problems in modern theoretical physics. A potential way out of this situation consists in restricting the domain of validity of some basic postulates of general relativity and abandoning them at high energy scales. A promising approach to quantization of gravity based on abandoning the Lorentz invariance has been proposed by Horava. The low-energy limit of the Horava theory, called khrono-metric model, presents a special case of the Einstein-aether gravity. In the latter model violation of the Lorentz invariance is described by the time-like vector field um with unit norm (umum = -1) called aether that minimally couples to the Einstein-Hilbert action for gravity.
Quantum mechanics from invariance principles
NASA Astrophysics Data System (ADS)
Moldoveanu, Florin
2015-07-01
Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.
Emerging universe from scale invariance
Del Campo, Sergio; Herrera, Ramón; Guendelman, Eduardo I.; Labraña, Pedro E-mail: guendel@bgu.ac.il E-mail: plabrana@ubiobio.cl
2010-06-01
We consider a scale invariant model which includes a R{sup 2} term in action and show that a stable ''emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R{sup 2} term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.
Anisotropic invariance in minisuperspace models
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Sabido, Miguel
2016-06-01
In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.
Permutation-invariant quantum codes
NASA Astrophysics Data System (ADS)
Ouyang, Yingkai
2014-12-01
A quantum code is a subspace of a Hilbert space of a physical system chosen to be correctable against a given class of errors, where information can be encoded. Ideally, the quantum code lies within the ground space of the physical system. When the physical model is the Heisenberg ferromagnet in the absence of an external magnetic field, the corresponding ground space contains all permutation-invariant states. We use techniques from combinatorics and operator theory to construct families of permutation-invariant quantum codes. These codes have length proportional to t2; one family of codes perfectly corrects arbitrary weight t errors, while the other family of codes approximately correct t spontaneous decay errors. The analysis of our codes' performance with respect to spontaneous decay errors utilizes elementary matrix analysis, where we revisit and extend the quantum error correction criterion of Knill and Laflamme, and Leung, Chuang, Nielsen and Yamamoto.
Invariance of the Noether charge
NASA Astrophysics Data System (ADS)
Silagadze, Z. K.
2016-01-01
Surprisingly, an interesting property of the Noether charge that it is by itself invariant under the corresponding symmetry transformation is never discussed in quantum field theory or classical mechanics textbooks we have checked. This property is also almost never mentioned in articles devoted to Noether’s theorem. Nevertheless, to prove this property in the context of Lagrangian formalism is not quite trivial and the proof, outlined in this article, can constitute an useful and interesting exercise for students.
Holographic multiverse and conformal invariance
Garriga, Jaume; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu
2009-11-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.
Inflationary quasiscale-invariant attractors
NASA Astrophysics Data System (ADS)
Rinaldi, Massimiliano; Vanzo, Luciano; Zerbini, Sergio; Venturi, Giovanni
2016-01-01
In a series of recent papers Kallosh, Linde, and collaborators provide a unified description of single-field inflation with several types of potentials ranging from power law to supergravity, in terms of just one parameter α . These so-called α attractors predict a spectral index ns and a tensor-to-scalar ratio r , which are fully compatible with the latest Planck data. The only common feature of all α attractors is a noncanonical kinetic term with a pole, and a potential analytic around the pole. In this paper, starting from the same Einstein frame with a noncanonical scalar kinetic energy, we explore the case of nonanalytic potentials. We find the functional form that corresponds to quasiscale-invariant gravitational models in the Jordan frame characterized by a universal relation between r and ns that fits the observational data but is clearly distinct from the one of the α attractors. It is known that the breaking of the exact classical scale invariance in the Jordan frame can be attributed to one-loop corrections. Therefore we conclude that there exists a class of nonanalytic potentials in the noncanonical Einstein frame that is physically equivalent to a class of models in the Jordan frame, with scale invariance softly broken by one-loop quantum corrections.
2014-01-01
Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245
NASA Technical Reports Server (NTRS)
Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.
2000-01-01
Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).
NASA Astrophysics Data System (ADS)
Fujisaki, Eiichiro; Suzuki, Koutarou
The ring signature allows a signer to leak secrets anonymously, without the risk of identity escrow. At the same time, the ring signature provides great flexibility: No group manager, no special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social affair or an election. A ring member can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the member submits another signed opinion, possibly pretending to be another person who supports the first opinion, the identity of the member is immediately revealed. If the member submits the same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these two are linked. The traceable ring signature can suit to many applications, such as an anonymous voting on a BBS. We formalize the security definitions for this primitive and show an efficient and simple construction in the random oracle model.
NASA Technical Reports Server (NTRS)
Vincent, R. K.; Thomas, G. S.; Nalepka, R. F.
1974-01-01
The importance of specific spectral regions to signature extension is explored. In the recent past, the signature extension task was focused on the development of new techniques. Tested techniques are now used to investigate this spectral aspect of the large area survey. Sets of channels were sought which, for a given technique, were the least affected by several sources of variation over four data sets and yet provided good object class separation on each individual data set. Using sets of channels determined as part of this study, signature extension was accomplished between data sets collected over a six-day period and over a range of about 400 kilometers.
Shape invariant potentials in higher dimensions
Sandhya, R.; Sree Ranjani, S.; Kapoor, A.K.
2015-08-15
In this paper we investigate the shape invariance property of a potential in one dimension. We show that a simple ansatz allows us to reconstruct all the known shape invariant potentials in one dimension. This ansatz can be easily extended to arrive at a large class of new shape invariant potentials in arbitrary dimensions. A reformulation of the shape invariance property and possible generalizations are proposed. These may lead to an important extension of the shape invariance property to Hamiltonians that are related to standard potential problems via space time transformations, which are found useful in path integral formulation of quantum mechanics.
Are there molecular signatures?
Bennett, W.P.
1995-10-01
This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.
Transient events at the magnetopause and bipolar magnetic signatures
NASA Astrophysics Data System (ADS)
Kruparova, O.; Šafránková, J.; Němeček, Z.; Přech, L.
2015-09-01
Bipolar signatures in the magnetic field component perpendicular to a nominal magnetopause surface accompanied with an increase of the magnetic field strength are regularly attributed to flux transfer events (FTEs) crossing the spacecraft. The detailed analysis of one such event shows that the magnetic signatures are consistent with the FTE but the timing of multipoint observations and the interpretation of changes of plasma parameters in terms of FTEs requires additional assumptions. We argue that although the event exhibits clear FTE signatures, an explanation of the observations as a local magnetopause surface deformation associated with a change of the magnetosheath density better fits to the data. The deformation caused by this density depression at the magnetopause is associated with a rotation of the magnetosheath magnetic field.
Meteor signature interpretation
Canavan, G.H.
1997-01-01
Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.
Brash, Douglas E
2015-01-01
Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations—deviations from a random distribution of base changes to create a pattern typical of that mutagen—and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the nontranscribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; UV's nonsignature mutations may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
About Thinning Invariant Partition Structures
NASA Astrophysics Data System (ADS)
Starr, Shannon; Vermesi, Brigitta; Wei, Ang
2012-08-01
Bernoulli- p thinning has been well-studied for point processes. Here we consider three other cases: (1) sequences ( X 1, X 2,…); (2) gaps of such sequences ( X n+1- X 1) n∈ℕ; (3) partition structures. For the first case we characterize the distributions which are simultaneously invariant under Bernoulli- p thinning for all p∈(0,1]. Based on this, we make conjectures for the latter two cases, and provide a potential approach for proof. We explain the relation to spin glasses, which is complementary to important previous work of Aizenman and Ruzmaikina, Arguin, and Shkolnikov.
Quantum Weyl invariance and cosmology
NASA Astrophysics Data System (ADS)
Dabholkar, Atish
2016-09-01
Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Relativistic chaos is coordinate invariant.
Motter, Adilson E
2003-12-01
The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents. PMID:14683170
Invisibly Sanitizable Signature without Pairings
NASA Astrophysics Data System (ADS)
Yum, Dae Hyun; Lee, Pil Joong
Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.
Kappa Snyder deformations of Minkowski spacetime, realizations, and Hopf algebra
Meljanac, S.; Meljanac, D.; Samsarov, A.; Stojic, M.
2011-03-15
We present Lie-algebraic deformations of Minkowski space with undeformed Poincare algebra. These deformations interpolate between Snyder and {kappa}-Minkowski space. We find realizations of noncommutative coordinates in terms of commutative coordinates and derivatives. By introducing modules, it is shown that, although deformed and undeformed structures are not isomorphic at the level of vector spaces, they are isomorphic at the level of Hopf-algebraic action on corresponding modules. Invariants and tensors with respect to Lorentz algebra are discussed. A general mapping from {kappa}-deformed Snyder to Snyder space is constructed. The deformed Leibniz rule, the Hopf structure, and the star product are found. Special cases, particularly Snyder and {kappa}-Minkowski in Maggiore-type realizations, are discussed. The same generalized Hopf-algebraic structures are considered as well in the case of an arbitrary allowable kind of realization, and results are given perturbatively up to second order in deformation parameters.
Effect of alloy deformation on the average spacing parameters of non-deforming particles
Fisher, J; Gurland, J
1980-02-01
It is shown on the basis of stereological definitions and a few simple experiments that the commonly used average dispersion parameters, area fraction (A/sub A/)/sub ..beta../, areal particle density N/sub A..beta../ and mean free path lambda/sub ..cap alpha../, remain invariant during plastic deformation in the case of non-deforming equiaxed particles. Directional effects on the spacing parameters N/sub A..beta../ and lambda/sub ..cap alpha../ arise during uniaxial deformation by rotation and preferred orientation of nonequiaxed particles. Particle arrangement in stringered or layered structures and the effect of deformation on nearest neighbor distances of particles and voids are briefly discussed in relation to strength and fracture theories.
Invariant imbedding in two dimensions
Faber, V.; Seth, D.L.; Wing, G.M.
1988-01-01
J. Corones has noted that the doubling and addition formulas of invariant imbedding can be extended conceptually to very general situations. All that is needed is a black box ''process'' with n ''ports.'' The /ital i/th port has vector input I/sub i/ and vector output J/sub i/. Addition formulas result when two or more of these processes are joined together to form a new process in some regular way. For example, four congruent squares can be juxtaposed to form a larger square. At each join, the output of one process becomes the input of the other and vice versa. (We always suppose the join to occur at one or more ports.) Addition formulas result from the combination of these shared quantities. Corones has thus pointed out that invariant imbedding is not, as is sometimes asserted, an inherently one-dimensional (1-D) method, but works conceptually in any number of dimensions; some previous work that is conceptually along these lines, with references to other such works, can be found in Refs. 2-4. The details can, of course, become very complicated. We shall show that the method is computationally feasible for certain two-dimensional (2-D) problems. To conform to the thrust of these proceedings, we shall usually phrase our discussions in terms of transport theory rather than speaking of more abstract processes. 7 refs., 13 figs.
NASA Astrophysics Data System (ADS)
Lahamy, H.; Lichti, D.
2012-07-01
The automatic interpretation of human gestures can be used for a natural interaction with computers without the use of mechanical devices such as keyboards and mice. The recognition of hand postures have been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem even with the use of 2D images. The objective of the current study is to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. An heuristic and voxelbased signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process and the tracking procedure have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 98.24% recognition rate after testing 12723 samples of 12 gestures taken from the alphabet of the American Sign Language.
Reappraisal of a model for deformed special relativity
NASA Astrophysics Data System (ADS)
Gubitosi, Giulia; Magueijo, João
2016-06-01
We revisit one of the earliest proposals for deformed dispersion relations in the light of recent results on dynamical dimensional reduction and production of cosmological fluctuations. Depending on the specification of the measure of integration and the addition rule in momentum space the model may be completed so as to merely deform Lorentz invariance, or so as to introduce a preferred frame. Models which violate Lorentz invariance have a negative UV asymptotic dimension and a very red spectrum of quantum vacuum fluctuations. Instead, models which preserve frame independence can exhibit running to a UV dimension of two, and a scale-invariant spectrum of fluctuations. The bispectrum of the fluctuations is another point of divergence between the two casings proposed here for the original model.
A new affine-invariant image matching method based on SIFT
NASA Astrophysics Data System (ADS)
Wang, Peng-cheng; Chen, Qian; Chen, Hai-xin; Cheng, Hong-chang; Gong, Zhen-fei
2013-09-01
Local invariant feature extraction, as one of the main problems in the field of computer vision, has been widely applied to image matching, splicing and target recognition etc. Lowe's scale invariant feature transform (known as SIFT) algorithm has attracted much attention due to its invariance to scale, rotation and illumination. However, SIFT is not robust to affine deformations, because it is based on the DoG detector which extracts keypoints in a circle region. Besides, the feature descriptor is represented by a 128-dimensional vector, which means that the algorithm complexity is extremely large especially when there is a great quantity of keypoints in the image. In this paper, a new feature descriptor, which is robust to affine deformations, is proposed. Considering that circles turn to be ellipses after affine deformations, some improvements have been made. Firstly, the Gaussian image pyramids are constructed by convoluting the source image and the elliptical Gaussian kernel with two volatile parameters, orientation and eccentricity. In addition, the two parameters are discretely selected in order to imitate the possibilities of the affine deformation, which can make sure that anisotropic regions are transformed into isotropic ones. Next, all extreme points can be extracted as the candidates for the affine-invariant keypoints in the image pyramids. After accurate keypoints localization is performed, the secondary moment of the keypoints' neighborhood is calculated to identify the elliptical region which is affineinvariant, the same as SIFT, the main orientation of the keypoints can be determined and the feature descriptor is generated based on the histogram constructed in this region. At last, the PCA method for the 128-dimensional descriptor's reduction is used to improve the computer calculating efficiency. The experiments show that this new algorithm inherits all SIFT's original advantages, and has a good resistance to affine deformations; what's more, it
Practical quantum digital signature
NASA Astrophysics Data System (ADS)
Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing
2016-03-01
Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.
Uncertainty in hydrological signatures
NASA Astrophysics Data System (ADS)
McMillan, Hilary; Westerberg, Ida
2015-04-01
Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty
Wilson loop invariants from WN conformal blocks
NASA Astrophysics Data System (ADS)
Alekseev, Oleg; Novaes, Fábio
2015-12-01
Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern-Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU (N), which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.
Invariant length of a cosmic string
NASA Astrophysics Data System (ADS)
Anderson, Malcolm R.
1990-06-01
The world sheet of a cosmic string is characterized by a function l, invariant under both coordinate and gauge transformations, which can be interpreted as the ``invariant length'' of the string. In flat space, l reduces to the invariant length of Vachaspati and Vilenkin, and gives an upper bound for the actual length of the string, and a lower bound for its energy, as measured by any inertial observer. In curved spacetime, time variations in the invariant length divide naturally into two parts: one due to the tidal tensor at points exterior to the world sheet and one due to the tidal tensor at points on the world sheet itself.
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)
2005-01-01
A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Mario (Inventor); Bassignani, Karin E. (Inventor)
2005-01-01
A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.
Influence of Traxiality on the Signature Inversion in Odd Odd Nuclei
NASA Astrophysics Data System (ADS)
Zheng, Ren-Rong; Zhu, Shun-Quan; Luo, Xiang-Dong; Janos, Timár; Andree, Gizon; Jean, Gizon; Sohler, D.; Nyakó M., B.; Zolnai, L.; Paul S., E.
2004-08-01
The nature of signature inversion in the pig9/2nuh11/2 bands of odd-odd 98,102Rh nuclei is studied. Calculations are performed by using a triaxial rotor plus two-quasiparticle model and are compared with the experimentally observed signature inversions. The calculations reproduce well the observations and suggest that, in these bands, the signature inversion can be interpreted mainly as a competition between the Coriolis and the proton-neutron residual interactions in low K space. The triaxiality applied in the Hamiltonian enlarges the amplitudes of high spin signature zigzags at small triaxial deformation and might push the signature inversion point to higher spin at large triaxial deformation.
Invariants of DNA genomic signals
NASA Astrophysics Data System (ADS)
Cristea, Paul Dan A.
2005-02-01
For large scale analysis purposes, the conversion of genomic sequences into digital signals opens the possibility to use powerful signal processing methods for handling genomic information. The study of complex genomic signals reveals large scale features, maintained over the scale of whole chromosomes, that would be difficult to find by using only the symbolic representation. Based on genomic signal methods and on statistical techniques, the paper defines parameters of DNA sequences which are invariant to transformations induced by SNPs, splicing or crossover. Re-orienting concatenated coding regions in the same direction, regularities shared by the genomic material in all exons are revealed, pointing towards the hypothesis of a regular ancestral structure from which the current chromosome structures have evolved. This property is not found in non-nuclear genomic material, e.g., plasmids.
Sequence-invariant state machines
NASA Astrophysics Data System (ADS)
Whitaker, Sterling R.; Manjunath, Shamanna K.; Maki, Gary K.
1991-08-01
A synthesis method and an MOS VLSI architecture are presented to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. The design method utilizes binary tree structured (BTS) logic to implement regular and dense circuits. The desired state sequence can be hardwired with power supply connections or can be dynamically reallocated if stored in a register. This allows programmable VLSI controllers to be designed with a compact size and performance approaching that of dedicated logic. Results of ICV implementations are reported and an example sequence-invariant state machine is contrasted with implementations based on traditional methods.
Scale invariance in road networks
NASA Astrophysics Data System (ADS)
Kalapala, Vamsi; Sanwalani, Vishal; Clauset, Aaron; Moore, Cristopher
2006-02-01
We study the topological and geographic structure of the national road networks of the United States, England, and Denmark. By transforming these networks into their dual representation, where roads are vertices and an edge connects two vertices if the corresponding roads ever intersect, we show that they exhibit both topological and geographic scale invariance. That is, we show that for sufficiently large geographic areas, the dual degree distribution follows a power law with exponent 2.2⩽α⩽2.4 , and that journeys, regardless of their length, have a largely identical structure. To explain these properties, we introduce and analyze a simple fractal model of road placement that reproduces the observed structure, and suggests a testable connection between the scaling exponent α and the fractal dimensions governing the placement of roads and intersections.
Deforming the Maxwell-Sim algebra
Gibbons, G. W.; Gomis, Joaquim; Pope, C. N.
2010-09-15
The Maxwell algebra is a noncentral extension of the Poincare algebra, in which the momentum generators no longer commute, but satisfy [P{sub {mu}},P{sub {nu}}]=Z{sub {mu}{nu}}. The charges Z{sub {mu}{nu}} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincare, this being the symmetry algebra of very special relativity. It admits an analogous noncentral extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISim{sub b}, where b is a nontrivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force. In an appendix is it shown that the DISim{sub b} algebra is isomorphic to the extended Schroedinger algebra with its standard deformation parameter z, when b=(1/1-z).
Intrinsic geometry of a tidally deformed Kerr horizon
NASA Astrophysics Data System (ADS)
Poisson, Eric
2013-04-01
The intrinsic metric of a tidally deformed black-hole horizon can be presented in a coordinate system adapted to the horizon's null generators, with one coordinate acting as a running parameter along each generator, and two coordinates acting as constant generator labels. The metric is invariant under reparametrizations of the generators, and as such the horizon's intrinsic geometry is known to be gauge invariant. We consider a Kerr black hole deformed by a slowly-evolving external tidal field, and describe the intrinsic geometry of its event horizon in terms of the electric and magnetic tidal moments that characterize the tidal environment. When the black hole is slowly rotating, the horizon's geometry can be described in terms of a deviation from an otherwise spherical surface, and the deformation can be characterized by gauge invariant Love numbers. Some aspects of this tidal deformation have direct analogues in Newtonian physics. Some do not, and I will describe the similarities and differences between the tidal deformation of rotating black holes in general relativity and rotating fluid bodies in Newtonian physics.
Emergence of Lorentzian signature and scalar gravity
Girelli, F.; Liberati, S.; Sindoni, L.
2009-02-15
In recent years, a growing momentum has been gained by the emergent gravity framework. Within the latter, the very concepts of geometry and gravitational interaction are not seen as elementary aspects of nature but rather as collective phenomena associated to the dynamics of more fundamental objects. In this paper we want to further explore this possibility by proposing a model of emergent Lorentzian signature and scalar gravity. Assuming that the dynamics of the fundamental objects can give rise in first place to a Riemannian manifold and a set of scalar fields we show how time (in the sense of hyperbolic equations) can emerge as a property of perturbations dynamics around some specific class of solutions of the field equations. Moreover, we show that these perturbations can give rise to a spin-0 gravity via a suitable redefinition of the fields that identifies the relevant degrees of freedom. In particular, we find that our model gives rise to Nordstroem gravity. Since this theory is invariant under general coordinate transformations, this also shows how diffeomorphism invariance (albeit of a weaker form than the one of general relativity) can emerge from much simpler systems.
Measurement of rock mass deformation with grouted coaxial antenna cables
NASA Astrophysics Data System (ADS)
Dowding, C. H.; Su, M. B.; O'Connor, K.
1989-01-01
Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.
ERIC Educational Resources Information Center
Smiles, Robin V.
2005-01-01
This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…
Real-time pose invariant logo and pattern detection
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Kottmann, Michal; Benesova, Wanda
2011-01-01
The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.
Multipartite invariant states. I. Unitary symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2006-06-15
We propose a natural generalization of bipartite Werner and isotropic states to multipartite systems consisting of an arbitrary even number of d-dimensional subsystems (qudits). These generalized states are invariant under the action of local unitary operations. We study basic properties of multipartite invariant states and present necessary and sufficient separability criteria.
Renormalization for breakup of invariant tori
NASA Astrophysics Data System (ADS)
Apte, A.; Wurm, A.; Morrison, P. J.
2005-01-01
We present renormalization group operators for the breakup of invariant tori with winding numbers that are quadratic irrationals. We find the simple fixed points of these operators and interpret the map pairs with critical invariant tori as critical fixed points. Coordinate transformations on the space of maps relate these fixed points, and also induce conjugacies between the corresponding operators.
Lorentz invariance in loop quantum gravity
NASA Astrophysics Data System (ADS)
Pullin, Jorge; Rastgoo, Saeed; Gambini, Rodolfo
2011-04-01
We reconsider the argument of Collins, Perez, Sudarsky, Urrutia and Vucetich concerning violations of Lorentz invariance in the context of loop quantum gravity. We show that even if one introduces a lattice that violates Lorentz invariance at the Planck scale, this does not translate itself into large violations that would conflict with experiment.
Gauge theories in terms of invariants
NASA Astrophysics Data System (ADS)
Kijowski, J.; Rudolph, G.; Rudolph, M.
1997-12-01
We discuss some aspects of our programme of investigating gauge theories (with fermions) in terms of local gauge invariant quantities. In the first part, the functional integral for quantum electrodynamics is discussed within our formulation. Next, the algebra of Grassmann algebra-valued invariants for one-flavour chromodynamics is investigated and, finally, the functional integral for this theory is derived within our framework.
Cross-National Invariance of Children's Temperament
ERIC Educational Resources Information Center
Benson, Nicholas; Oakland, Thomas; Shermis, Mark
2009-01-01
Measurement of temperament is an important endeavor with international appeal; however, cross-national invariance (i.e., equivalence of test scores across countries as established by empirical comparisons) of temperament tests has not been established in published research. This study examines the cross-national invariance of school-aged…
Invariants of sets of linear varieties.
Huang, R Q
1990-01-01
A minimal set of generators of the ring of invariants for four linear subspaces of dimension n in a vector space of dimension 2n is computed, using the symbolic method introduced by Grosshans et al. [Grosshans, F., Rota, G.-C. & Stein, J. A. (1987) Invariant Theory and Superalgebras (Am. Math. Soc., Providence, RI)]. PMID:11607086
Rotation-invariant of Quantum Gross Laplacian
Horrigue, Samah; Ouerdiane, Habib
2010-05-04
In this paper, we prove that the quantum Gross Laplacian denoted DELTA{sub QG} is a rotation-invariant operator. For this purpose, we use the Schwartz-Grothendieck kernel theorem and the characterization theorem of rotation-invariant distributions and operators.
Invariance or Noninvariance, that Is the Question
ERIC Educational Resources Information Center
Widaman, Keith F.; Grimm, Kevin J.
2009-01-01
Nesselroade, Gerstorf, Hardy, and Ram developed a new and interesting way to enforce invariance at the second-order level in P-technique models, while allowing first-order structure to stray from invariance. We discuss our concerns with this approach under the headings of falsifiability, the nature of manifest variables included in models, and…
Geometric invariance of compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Gyro center invariant and associated diamagnetic current
Aaagren, O.; Moiseenko, V.; Johansson, C.; Savenko, N.
2005-12-15
The gyro center radial Clebsch coordinate r{sub 0} is an exact invariant in confining fields where the gyro center is restricted to move on a magnetic flux surface, and r{sub 0} could also be expected to be a useful approximating invariant in other confining magnetic fields. A radial drift invariant I{sub r} generalizes the invariance of r{sub 0} if there are oscillatory gyro center radial displacements off the magnetic surface. Expressions for r{sub 0}(x,v) and I{sub r}(x,v) are obtained for gyrating particles in the drift ordering. An exact energy integral is proven to exist for the first-order drift motion of the gyro center. The gyro center parallel motion is periodic with respect to a certain curve parameter {tau}{sub parallel} (the 'proper time' for the parallel motion) that deviates slightly, due to the slow perpendicular drift, from the ordinary time. A modification of the parallel invariant J{sub parallel} is derived which leads to an exact (not only adiabatic) invariant to first order. By using r{sub 0} in solutions of the Vlasov equation, it is demonstrated that the approximating gyro center invariant r{sub 0} determines the perpendicular plasma diamagnetic current. It is also shown that a fourth stationary motional invariant is required to calculate the parallel plasma current. Several systems with four time independent invariants are identified, and the general solution for straight cylindrical Vlasov equilibria with adiabatic particle motion is determined. A set ({epsilon},{mu},I{sub parallel},I{sub r}) of four invariants is proposed for adiabatic equilibria in general geometry, including systems where single valued flux surfaces may not exist.
Image signatures for place recognition and map construction
NASA Astrophysics Data System (ADS)
Engelson, Sean P.; McDermott, Drew V.
1992-04-01
For reliable navigation, a mobile robot needs to be able to recognize where it is in the world. We describe an efficient and effective image-based representation of perceptual information for place recognition. Each place is associated with a set of stored image signatures, each a matrix of numbers derived by evaluating some measurement function over large blocks of pixels. Measurements are chosen to be characteristic of a location yet reasonably invariant over different viewing conditions. Signature matching can be done quickly by element wise comparison. Additional stability can be gotten by matching signatures at offsets or across scales. Signatures can be stored in a k-d tree so that retrieval of similar signatures is fast. We can also use several types of measurements in tandem to enhance recognition accuracy. We present preliminary experimental results which show up to 90% recognition accuracy. When used together with prior position information, we suggest that this performance is good enough to support reliable place recognition from a series of images.
Deformation of vortex patches by boundaries
NASA Astrophysics Data System (ADS)
Crosby, A.; Johnson, E. R.; Morrison, P. J.
2013-02-01
The deformation of two-dimensional vortex patches in the vicinity of fluid boundaries is investigated. The presence of a boundary causes an initially circular patch of uniform vorticity to deform. Sufficiently far away from the boundary, the deformed shape is well approximated by an ellipse. This leading order elliptical deformation is investigated via the elliptic moment model of Melander, Zabusky, and Styczek [J. Fluid Mech. 167, 95 (1986), 10.1017/S0022112086002744]. When the boundary is straight, the centre of the elliptic patch remains at a constant distance from the boundary, and the motion is integrable. Furthermore, since the straining flow acting on the patch is constant in time, the problem is that of an elliptic vortex patch in constant strain, which was analysed by Kida [J. Phys. Soc. Jpn. 50, 3517 (1981), 10.1143/JPSJ.50.3517]. For more complicated boundary shapes, such as a square corner, the motion is no longer integrable. Instead, there is an adiabatic invariant for the motion. This adiabatic invariant arises due to the separation in times scales between the relatively rapid time scale associated with the rotation of the patch and the slower time scale associated with the self-advection of the patch along the boundary. The interaction of a vortex patch with a circular island is also considered. Without a background flow, the conservation of angular impulse implies that the motion is again integrable. The addition of an irrotational flow past the island can drive the patch towards the boundary, leading to the possibility of large deformations and breakup.
Stereo Correspondence Using Moment Invariants
NASA Astrophysics Data System (ADS)
Premaratne, Prashan; Safaei, Farzad
Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.
Pose-Invariant Face Recognition via RGB-D Images
Sang, Gaoli; Li, Jing; Zhao, Qijun
2016-01-01
Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions. PMID:26819581
NASA Astrophysics Data System (ADS)
Spedding, Geoffrey R.
2014-01-01
An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.
Feedback-Driven Dynamic Invariant Discovery
NASA Technical Reports Server (NTRS)
Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz
2014-01-01
Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.
Characterization of cerebral aneurysms using 3D moment invariants
NASA Astrophysics Data System (ADS)
Millan, Raul D.; Hernandez, Monica; Gallardo, Daniel; Cebral, Juan R.; Putman, Christopher; Dempere-Marco, Laura; Frangi, Alejandro F.
2005-04-01
The rupture mechanism of intracranial aneurysms is still not fully understood. Although the size of the aneurysm is the shape index most commonly used to predict rupture, some controversy still exists about its adequateness as an aneurysm rupture predictor. In this work, an automatic method to geometrically characterize the shape of cerebral saccular aneurysms using 3D moment invariants is proposed. Geometric moments are efficiently computed via application of the Divergence Theorem over the aneurysm surface using a non-structured mesh. 3D models of the aneurysm and its connected parent vessels have been reconstructed from segmentations of both 3DRA and CTA images. Two alternative approaches have been used for segmentation, the first one based on isosurface deformable models, and the second one based on the level set method. Several experiments were also conducted to both assess the influence of pre-processing steps in the stability of the aneurysm shape descriptors, and to know the robustness of the proposed method. Moment invariants have proved to be a robust technique while providing a reliable way to discriminate between ruptured and unruptured aneurysms (Sensitivity=0.83, Specificity=0.74) on a data set containing 55 aneurysms. Further investigation over larger databases is necessary to establish their adequateness as reliable predictors of rupture risk.
Holography beyond conformal invariance and AdS isometry?
Barvinsky, A. O.
2015-03-15
We suggest that the principle of holographic duality be extended beyond conformal invariance and AdS isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on its boundary, provided that the boundary operator represents the inverse propagators of the theory induced on the boundary by the Dirichlet boundary value problem in the bulk spacetime. This relation holds for operators of a general spin-tensor structure on generic manifolds with boundaries irrespective of their background geometry and conformal invariance, and it apparently underlies numerous O(N{sup 0}) tests of the AdS/CFT correspondence, based on direct calculation of the bulk and boundary partition functions, Casimir energies, and conformal anomalies. The generalized holographic duality is discussed within the concept of the “double-trace” deformation of the boundary theory, which is responsible in the case of large-N CFT coupled to the tower of higher-spin gauge fields for the renormalization group flow between infrared and ultraviolet fixed points. Potential extension of this method beyond the one-loop order is also briefly discussed.
Holography beyond conformal invariance and AdS isometry?
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2015-03-01
We suggest that the principle of holographic duality be extended beyond conformal invariance and AdS isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on its boundary, provided that the boundary operator represents the inverse propagators of the theory induced on the boundary by the Dirichlet boundary value problem in the bulk spacetime. This relation holds for operators of a general spin-tensor structure on generic manifolds with boundaries irrespective of their background geometry and conformal invariance, and it apparently underlies numerous O( N 0) tests of the AdS/CFT correspondence, based on direct calculation of the bulk and boundary partition functions, Casimir energies, and conformal anomalies. The generalized holographic duality is discussed within the concept of the "double-trace" deformation of the boundary theory, which is responsible in the case of large- N CFT coupled to the tower of higher-spin gauge fields for the renormalization group flow between infrared and ultraviolet fixed points. Potential extension of this method beyond the one-loop order is also briefly discussed.
Experimental breaking of an adiabatic invariant
NASA Astrophysics Data System (ADS)
Notte, J.; Fajans, J.; Chu, R.; Wurtele, J. S.
1993-06-01
When a cylindrical pure electron plasma is displaced from the center of the trap, it performs a bulk circular orbital motion known as the l=1 diocotron mode. The slow application of a perturbing potential to a patch on the trap wall distorts the orbit into a noncircular closed path. Experiments and a simple theoretical model indicate that the area by the loop is an adiabatic invariant. Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied. When the perturbation is applied with discontinuous time derivatives, the invariant breaking greatly exceeds the predictions of the standard theory for smooth perturbations.
Multiperiod Maximum Loss is time unit invariant.
Kovacevic, Raimund M; Breuer, Thomas
2016-01-01
Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant. PMID:27563531
Invariants of the local Clifford group
Nest, Maarten van den; Dehaene, Jeroen; Moor, Bart de
2005-02-01
We study the algebra of complex polynomials which remain invariant under the action of the local Clifford group under conjugation. Within this algebra, we consider the linear spaces of homogeneous polynomials degree by degree and construct bases for these vector spaces for each degree, thereby obtaining a generating set of polynomial invariants. Our approach is based on the description of Clifford operators in terms of linear operations over GF(2). Such a study of polynomial invariants of the local Clifford group is mainly of importance in quantum coding theory, in particular in the classification of binary quantum codes. Some applications in entanglement theory and quantum computing are briefly discussed as well.
Comment on ``Pairing interaction and Galilei invariance''
NASA Astrophysics Data System (ADS)
Arias, J. M.; Gallardo, M.; Gómez-Camacho, J.
1999-05-01
A recent article by Dussel, Sofia, and Tonina studies the relation between Galilei invariance and dipole energy weighted sum rule (EWSR). The authors find that the pairing interaction, which is neither Galilei nor Lorentz invariant, produces big changes in the EWSR and in effective masses of the nucleons. They argue that these effects of the pairing force could be realistic. In this Comment we stress the validity of Galilei invariance to a very good approximation in this context of low-energy nuclear physics and show that the effective masses and the observed change in the EWSR for the electric dipole operator relative to its classical value are compatible with this symmetry.
Moment Invariants for 2D Flow Fields via Normalization in Detail.
Bujack, Roxana; Hotz, Ingrid; Scheuermann, Gerik; Hitzer, Eckhard
2015-08-01
The analysis of 2D flow data is often guided by the search for characteristic structures with semantic meaning. One way to approach this question is to identify structures of interest by a human observer, with the goal of finding similar structures in the same or other datasets. The major challenges related to this task are to specify the notion of similarity and define respective pattern descriptors. While the descriptors should be invariant to certain transformations, such as rotation and scaling, they should provide a similarity measure with respect to other transformations, such as deformations. In this paper, we propose to use moment invariants as pattern descriptors for flow fields. Moment invariants are one of the most popular techniques for the description of objects in the field of image recognition. They have recently also been applied to identify 2D vector patterns limited to the directional properties of flow fields. Moreover, we discuss which transformations should be considered for the application to flow analysis. In contrast to previous work, we follow the intuitive approach of moment normalization, which results in a complete and independent set of translation, rotation, and scaling invariant flow field descriptors. They also allow to distinguish flow features with different velocity profiles. We apply the moment invariants in a pattern recognition algorithm to a real world dataset and show that the theoretical results can be extended to discrete functions in a robust way. PMID:26357255
Reversing the critical Casimir force by shape deformation
NASA Astrophysics Data System (ADS)
Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran
2015-04-01
The exact critical Casimir force between periodically deformed boundaries of a 2D semi-infinite strip is obtained for conformally invariant classical systems. Only two parameters (conformal charge, dimension of a boundary changing operator), along with the solution of an electrostatic problem, determine the Casimir force, rendering the theory practically applicable to any shape. The attraction between any two mirror symmetric objects follows directly from our general result. The possibility of purely shape induced reversal of the force, as well as occurrence of stable equilibrium is demonstrated for certain conformally invariant models, including the tricritical Ising model.
Synergy of plastic deformation and gas retention in tungsten
NASA Astrophysics Data System (ADS)
Terentyev, D.; De Temmerman, G.; Minov, B.; Zayachuk, Y.; Lambrinou, K.; Morgan, T. W.; Dubinko, A.; Bystrov, K.; Van Oost, G.
2015-01-01
Taking the example of tungsten, we demonstrate that high-flux plasma exposure of recrystallized and plastically deformed samples leads to principal differences in the gas trapping and associated surface modification. Surface of the exposed pre-deformed samples exhibits ruptured µm-sized blisters, a signature of bubbles nucleated close to the surface on the plastically induced dislocation network. Contrary to the recrystallized samples, no stage attributable to gas bubbles appeared in the desorption spectrum of the deformed samples demonstrating the strong impact of dislocations on hydrogen retention.
Injuries to law enforcement officers: the backface signature injury.
Wilhelm, Marianne; Bir, Cynthia
2008-01-15
In today's law enforcement community, one of the most vital tools an officer can possess is personal body armor. However, a recent Department of Justice investigation has raised important questions regarding the protection actually afforded officers through the use of personal body armor, and the current test methods used to assess the armor. Test results show that most Zylon-containing vests showed deformations in excess of the 0101.04 Standard's 44 mm backface signature limit. Such increased deformation can lead to serious injuries, including backface signature injuries, which have occurred in the field. Although the vest is successful in containing the round, it is not effectively dissipating the energy enough to prevent large amounts of vest deformation at the area of impact. Therefore, open, penetrating wounds occur even though the bullet did not penetrate the vest. The objective of the current study was to further define the backface signature injury through the use of case studies and laboratory experiments. Following the case study investigation, backface signature testing was conducted using a clay medium based on the NIJ 0101.04 Standard. The final component of this research involved the use of post-mortem human specimens (PMHS) for further investigation of the backface signature injury. Although the underlying cause of backface signature injuries is unknown, energy density is likely to play a role in the mechanism. Energy density (E/a) is defined as the energy per unit area and has been previously used in less lethal skin penetration research. Further research into the underlying causes of backface signature injuries is necessary. In addition to armor testing, the study of law enforcement personnel who have been shot while wearing soft body armor is also a valuable tool for determining the effectiveness of certification standards. Finally, it is important for medical personnel to recognize the backface signature injury and document this as a type of
Gauge invariance for a whole Abelian model
Chauca, J.; Doria, R.; Soares, W.
2012-09-24
Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.
New Invariants in the Theory of Knots.
ERIC Educational Resources Information Center
Kauffman, Louis H.
1988-01-01
A diagrammatic approach to invariants of knots is the focus. Connections with graph theory, physics, and other topics are included, along with an explanation of how proofs of some old conjectures about alternating knots emerge from this work. (MNS)
Invariance in the isoheptanes of petroleum
Mango, F.D.
1987-07-31
Four isoheptanes in petroleum display a remarkable invariance in a ratio of sums of concentrations. The isoheptanes are not at thermodynamic equilibrium, nor are they fixed to some constant composition. The four isomers display coherent change in relative amounts but maintain invariance in the ratio of sums. Within sets of genetically related petroleum samples, invariance reaches levels that approach the limits of their analytical precision. The invariance is inconsistent with a chemical origin that involves the thermal fragmentation of natural products or their derivatives. It suggests a reaction process at steady state, in which relative rates of product formation are constant. A mechanism is proposed in which the four isoheptanes are formed pairwise and sequentially through two intermediates in a catalytic process that operates at steady state. 13 references, 3 figures, 1 table.
Topological invariants and renormalization of Lorenz maps
NASA Astrophysics Data System (ADS)
Silva, Luis; Sousa Ramos, J.
2002-02-01
We prove that the invariants of the topological semiconjugation of Lorenz maps with β-transformations remains constant on the renormalization archipelagoes and analyze how the dynamics on the archipelagoes depends on its structure.
Position, rotation, and intensity invariant recognizing method
Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.
1989-01-01
A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.
Convecting reference frames and invariant numerical models
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Nave, Jean-Christophe
2014-09-01
In the recent paper by Bernardini et al. [1] the discrepancy in the performance of finite difference and spectral models for simulations of flows with a preferential direction of propagation was studied. In a simplified investigation carried out using the viscous Burgers equation the authors attributed the poorer numerical results of finite difference models to a violation of Galilean invariance in the discretization and propose to carry out the computations in a reference frame moving with the bulk velocity of the flow. Here we further discuss this problem and relate it to known results on invariant discretization schemes. Non-invariant and invariant finite difference discretizations of Burgers equation are proposed and compared with the discretization using the remedy proposed by Bernardini et al.
Invariant distributions on compact homogeneous spaces
Gorbatsevich, V V
2013-12-31
In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.
Genuine multiparticle entanglement of permutationally invariant states
NASA Astrophysics Data System (ADS)
Novo, Leonardo; Moroder, Tobias; Gühne, Otfried
2013-07-01
We consider the problem of characterizing genuine multiparticle entanglement for permutationally invariant states using the approach of positive partial transpose mixtures. We show that the evaluation of this necessary biseparability criterion scales polynomially with the number of particles. In practice, it can be evaluated easily up to ten qubits and improves existing criteria significantly. Finally, we show that our approach solves the problem of characterizing genuine multiparticle entanglement for permutationally invariant three-qubit states.
From scale invariance to Lorentz symmetry.
Sibiryakov, Sergey
2014-06-20
It is shown that a unitary translationally invariant field theory in 1+1 dimensions, satisfying isotropic scale invariance, standard assumptions about the spectrum of states and operators, and the requirement that signals propagate with finite velocity, possesses an infinite dimensional symmetry given by one or a product of several copies of conformal algebra. In particular, this implies the presence of one or several Lorentz groups acting on the operator algebra of the theory. PMID:24996083
Tests of Lorentz invariance with atomic clocks
NASA Astrophysics Data System (ADS)
Mohan, Lakshmi
Lorentz invariance has been the cornerstone of special relativity. Recent theories have been proposed which suggest violations of Lorentz invariance. Experiments have been conducted using clocks that place the strictest limits on these theories. The thesis focuses on the Mansouri and Sexl formulation and I calculate using this framework the Doppler effect, Compton effect, Maxwell's equations, Hydrogen energy levels and other effects. I conclude the thesis by suggesting a possible method of testing my results using atomic clocks.
Computer calculation of Witten's 3-manifold invariant
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Gompf, Robert E.
1991-10-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.
Preimpact porosity controls the gravity signature of lunar craters
NASA Astrophysics Data System (ADS)
Milbury, C.; Johnson, B. C.; Melosh, H. J.; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Nimmo, F.; Bierson, C. J.; Phillips, R. J.; Zuber, M. T.
2015-11-01
We model the formation of lunar complex craters and investigate the effect of preimpact porosity on their gravity signatures. We find that while preimpact target porosities less than ~7% produce negative residual Bouguer anomalies (BAs), porosities greater than ~7% produce positive anomalies whose magnitude is greater for impacted surfaces with higher initial porosity. Negative anomalies result from pore space creation due to fracturing and dilatant bulking, and positive anomalies result from destruction of pore space due to shock wave compression. The central BA of craters larger than ~215 km in diameter, however, are invariably positive because of an underlying central mantle uplift. We conclude that the striking differences between the gravity signatures of craters on the Earth and Moon are the result of the higher average porosity and variable porosity of the lunar crust.
Four motional invariants in axisymmetric tori equilibria
A ring gren, O.; Moiseenko, V.E.
2006-05-15
In addition to the standard set ({epsilon},{mu},p{sub {phi}}) of three invariants in axisymmetric tori, there exists a fourth independent radial drift invariant I{sub r}. For confined particles, the net radial drift has to be zero, whereby the drift orbit average I{sub r}=
Antiprotonic helium and CPT invariance
NASA Astrophysics Data System (ADS)
Hayano, Ryugo S.; Hori, Masaki; Horváth, Dezso; Widmann, Eberhard
2007-12-01
We review recent progress in the laser and microwave spectroscopy of antiprotonic helium atoms (\\barpHe^+ \\equiv \\rme^\\--\\barp - He^{++}) carried out at CERN's Antiproton Decelerator facility (AD). Laser transitions were here induced between Rydberg states (n, ell) and (n ± 1, ell - 1) of \\barpHe^+ (n ~ 40 and ell ≲ n - 1 being the principal and orbital angular momentum quantum numbers of the antiproton orbit). Successive refinements in the experimental techniques improved the fractional precision on the \\barpHe^+ frequencies from 3 parts in 106 to ~1 part in 108. These included a radiofrequency quadrupole decelerator, which reduced the energy of the antiprotons from 5.3 MeV (the energy of the beam emerging from AD) to ~100 keV. This enabled the production of \\barpHe^+ in ultra-low density targets, where collisional effects with other helium atoms are negligible. A continuous wave pulse-amplified dye laser, stabilized against a femtosecond optical frequency comb, was then used to measure the \\barpHe^+ frequencies with ppb-scale precision. This progress in the experimental field was matched by similar advances in computing methods for evaluating the expected transition frequencies in three-body QED calculations. The comparison of experimental (νexp) and theoretical (νth) frequencies for seven transitions in \\barp^4He^+ and five in \\barp^3 He^+ yielded an antiproton-to-electron mass ratio of m_\\bar p/m_{\\rme} = 1836.152\\,674(5) . This agrees with the known proton-to-electron mass ratio at the level of ~2 × 10-9. The experiment also set a limit on any CPT-violating difference between the antiproton and proton charges and masses, (Q_p - |Q_{\\barp}|)/Q_p \\sim (m_p - m_{\\barp})/m_p < 2 \\times 10^{-9} to a 90% confidence level. If on the other hand we assume the validity of the CPT invariance, the m_{\\barp}/m_{\\rme} result can be taken to be equal to mp/me. This can be used as an input to future adjustments of fundamental constants. The hyperfine
Signatures of nonthermal melting.
Zier, Tobias; Zijlstra, Eeuwe S; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E
2015-09-01
Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822
None
2011-04-25
Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.
Signatures of nonthermal melting
Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.
2015-01-01
Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822
A Bäcklund Transformation of the Restricted mKdV Flow with a Rosochatius Deformation
NASA Astrophysics Data System (ADS)
Zhou, Ru-Guang
2013-09-01
A Bäcklund transformation of the restricted mKdV flow with a Rosochatius deformation is constructed. Its Lax representation and thus N invariants in involution are presented. Such Bäcklund transformation is a Rosochatius deformation of that of the restricted mKdV flow.
On gauge-invariant and phase-invariant spinor analysis. II
NASA Astrophysics Data System (ADS)
Buchdahl, H. A.
1992-01-01
Granted customary definitions, the operations of juggling indices and covariant differentiation do not commute with one another in a Weyl space. The same noncommutativity obtains in the spinor calculus of Infeld and van der Waerden. Gauge-invariant and phase-invariant calculations therefore tend to be rather cumbersome. Here, a modification of the definition of covariant derivative leads immediately to a manifestly gauge-invariant and phase-invariant version of Weyl-Cartan space and of the two-spinor calculus associated with it in which the metric tensor and the metric spinor are both covariant constant.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Thomsen, P.
1988-01-01
A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.
Spatial Signature Estimation with an Uncalibrated Uniform Linear Array.
Cao, Xiang; Xin, Jingmin; Nishio, Yoshifumi; Zheng, Nanning
2015-01-01
In this paper, the problem of spatial signature estimation using a uniform linear array (ULA) with unknown sensor gain and phase errors is considered. As is well known, the directions-of-arrival (DOAs) can only be determined within an unknown rotational angle in this array model. However, the phase ambiguity has no impact on the identification of the spatial signature. Two auto-calibration methods are presented for spatial signature estimation. In our methods, the rotational DOAs and model error parameters are firstly obtained, and the spatial signature is subsequently calculated. The first method extracts two subarrays from the ULA to construct an estimator, and the elements of the array can be used several times in one subarray. The other fully exploits multiple invariances in the interior of the sensor array, and a multidimensional nonlinear problem is formulated. A Gauss-Newton iterative algorithm is applied for solving it. The first method can provide excellent initial inputs for the second one. The effectiveness of the proposed algorithms is demonstrated by several simulation results. PMID:26076405
Spatial Signature Estimation with an Uncalibrated Uniform Linear Array †
Cao, Xiang; Xin, Jingmin; Nishio, Yoshifumi; Zheng, Nanning
2015-01-01
In this paper, the problem of spatial signature estimation using a uniform linear array (ULA) with unknown sensor gain and phase errors is considered. As is well known, the directions-of-arrival (DOAs) can only be determined within an unknown rotational angle in this array model. However, the phase ambiguity has no impact on the identification of the spatial signature. Two auto-calibration methods are presented for spatial signature estimation. In our methods, the rotational DOAs and model error parameters are firstly obtained, and the spatial signature is subsequently calculated. The first method extracts two subarrays from the ULA to construct an estimator, and the elements of the array can be used several times in one subarray. The other fully exploits multiple invariances in the interior of the sensor array, and a multidimensional nonlinear problem is formulated. A Gauss–Newton iterative algorithm is applied for solving it. The first method can provide excellent initial inputs for the second one. The effectiveness of the proposed algorithms is demonstrated by several simulation results. PMID:26076405
Clustering signatures classify directed networks
NASA Astrophysics Data System (ADS)
Ahnert, S. E.; Fink, T. M. A.
2008-09-01
We use a clustering signature, based on a recently introduced generalization of the clustering coefficient to directed networks, to analyze 16 directed real-world networks of five different types: social networks, genetic transcription networks, word adjacency networks, food webs, and electric circuits. We show that these five classes of networks are cleanly separated in the space of clustering signatures due to the statistical properties of their local neighborhoods, demonstrating the usefulness of clustering signatures as a classifier of directed networks.
Advanced spectral signature discrimination algorithm
NASA Astrophysics Data System (ADS)
Chakravarty, Sumit; Cao, Wenjie; Samat, Alim
2013-05-01
This paper presents a novel approach to the task of hyperspectral signature analysis. Hyperspectral signature analysis has been studied a lot in literature and there has been a lot of different algorithms developed which endeavors to discriminate between hyperspectral signatures. There are many approaches for performing the task of hyperspectral signature analysis. Binary coding approaches like SPAM and SFBC use basic statistical thresholding operations to binarize a signature which are then compared using Hamming distance. This framework has been extended to techniques like SDFC wherein a set of primate structures are used to characterize local variations in a signature together with the overall statistical measures like mean. As we see such structures harness only local variations and do not exploit any covariation of spectrally distinct parts of the signature. The approach of this research is to harvest such information by the use of a technique similar to circular convolution. In the approach we consider the signature as cyclic by appending the two ends of it. We then create two copies of the spectral signature. These three signatures can be placed next to each other like the rotating discs of a combination lock. We then find local structures at different circular shifts between the three cyclic spectral signatures. Texture features like in SDFC can be used to study the local structural variation for each circular shift. We can then create different measure by creating histogram from the shifts and thereafter using different techniques for information extraction from the histograms. Depending on the technique used different variant of the proposed algorithm are obtained. Experiments using the proposed technique show the viability of the proposed methods and their performances as compared to current binary signature coding techniques.
Multimodal signature modeling of humans
NASA Astrophysics Data System (ADS)
Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan
2010-04-01
Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.
Invariant object recognition based on extended fragments.
Bart, Evgeniy; Hegdé, Jay
2012-01-01
Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects) can be used for invariant recognition. However, whether the human visual system is actually capable of using this strategy remains unknown. Here, we show that human observers can achieve illumination invariance by using object fragments that carry the relevant information. To determine this, we have used novel, but naturalistic, 3-D visual objects called "digital embryos." Using novel instances of whole embryos, not fragments, we trained subjects to recognize individual embryos across illuminations. We then tested the illumination-invariant object recognition performance of subjects using fragments. We found that the performance was strongly correlated with the mutual information (MI) of the fragments, provided that MI value took variations in illumination into consideration. This correlation was not attributable to any systematic differences in task difficulty between different fragments. These results reveal two important principles of invariant object recognition. First, the subjects can achieve invariance at least in part by compensating for the changes in the appearance of small local features, rather than of whole objects. Second, the subjects do not always rely on generic or pre-existing invariance of features (i.e., features whose appearance remains largely unchanged by variations in illumination), and are capable of using learning to compensate for appearance changes when necessary. These psychophysical results closely fit the predictions of earlier computational studies of fragment-based invariant object recognition. PMID:22936910
On the statistics of magnetotelluric rotational invariants
NASA Astrophysics Data System (ADS)
Chave, Alan D.
2014-01-01
The statistical properties of the Swift skew, the phase-sensitive skew and the WAL invariants I1-I7 and Q are examined through analytic derivation of their probability density functions and/or simulation based on a Gaussian model for the magnetotelluric response tensor. The WAL invariants I1-I2 are shown to be distributed as a folded Gaussian, and are statistically well behaved in the sense that all of their moments are defined. The probability density functions for Swift skew, phase-sensitive skew and the WAL invariants I3-I4, I7 and Q are derived analytically or by simulation, and are shown to have no moments of order 2 or more. Since their support is semi-infinite or infinite, they cannot be represented trigonometrically, and hence are inconsistent with a Mohr circle interpretation. By contrast, the WAL invariants I5-I6 are supported on [ - 1, 1], and are inferred to have a beta distribution based on analysis and simulation. Estimation of rotational invariants from data is described using two approaches: as the ratio of magnetotelluric responses that are themselves averages, and as averages of section-by-section estimates of the invariant. Confidence intervals on the former utilize either Fieller's theorem, which is preferred because it is capable of yielding semi-infinite or infinite confidence intervals, or the less accurate delta method. Because section-by-section averages of most of the rotational invariants are drawn from distributions with infinite variance, the classical central limit theorem does not pertain. Instead, their averaging is accomplished using the median in place of the mean for location and an order statistic model to bound the confidence interval of the median. An example using real data demonstrates that the ratio of averages approach has serious systematic bias issues that render the result physically inconsistent, while the average of ratios result is a smooth, physically interpretable function of period, and is the preferred approach.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
NASA Astrophysics Data System (ADS)
Nag, Amit; Sau, Jay
The observed zero bias peak in tunneling conductance experiments on semiconductor Rashba nanowire is a signature of presence of Majorana zero modes. Characteristics of zero bias conductance peak (ZBCP) namely, height, width and peak splitting, are a function of microscopic parameters. Zero modes have finite splitting as a result of finiteness of the nanowire rendering the ground state only approximately topological i.e. zero modes are only approximately Majoranas. We calculate the scattering matrix topological invariant to quantify the quality of approximate Majorana modes and study its relation to observed characteristics of ZBCP. Furthermore we study the effect of dephasing on the topological invariant. Finally, we draw connection between the characteristics of the ZBCP and probability of observing non-Abelian statistics in proposed future experiments involving braiding of Majorana modes. Work is done in collaboration with Sankar Das Sarma and supported by LPS-MPO-CMTC, Microsoft Q, Univ. of Maryland startup grants and JQI-NSF-PFC.
Position and rotation-invariant pattern recognition system by binary rings masks
NASA Astrophysics Data System (ADS)
Solorza, S.; Álvarez-Borrego, J.
2015-06-01
In this paper, algorithms invariant to position, rotation, noise and non-homogeneous illumination are presented. Here, several manners are studied to generate binary rings mask filters and the corresponding signatures associated to each image. Also, in this work it is shown that digital systems, which are based on the ?-law non-linear correlation, are ?-invariant for ?. The methodologies are tested using greyscale fossil diatoms digital images (real images), and considering the great similarity between those images the results obtained are excellent. The box plot statistical analysis and the computational cost times yield that the Bessel rings masks are the best option when the images contain a homogeneous illumination and the Fourier masks digital system is the right selection when the non-homogeneous illumination and noise is presented in the images.
Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Dual isomonodromic deformations and moment maps to loop algebras
NASA Astrophysics Data System (ADS)
Harnad, J.
1994-12-01
The Hamiltonian structure of the monodromy preserving deformation equations of Jimbo et al [JMMS] is explained in terms of parameter dependent pairs of moment maps from a symplectic vector space to the dual spaces of two different loop algebras. The nonautonomous Hamiltonian systems generating the deformations are obtained by pulling back spectral invariants on Poisson subspaces consisting of elements that are rational in the loop parameter and identifying the deformation parameters with those determining the moment maps. This construction is shown to lead to “dual” pairs of matrix differential operators whose monodromy is preserved under the same family of deformations. As illustrative examples, involving discrete and continuous reductions, a higher rank generalization of the Hamiltonian equations governing the correlation functions for an impenetrable Bose gas is obtained, as well as dual pairs of isomonodromy representations for the equations of the Painlevé transcendents P V and VI .
Deformable Nanolaminate Optics
Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K
2006-05-12
We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.
Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential
Bonatsos, Dennis; Georgoudis, P. E.; Lenis, D.; Minkov, N.; Quesne, C.
2011-04-15
Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.
NASA Astrophysics Data System (ADS)
Milton, Graeme Walter
2013-07-01
A complete characterization is given of the possible macroscopic deformations of periodic non-linear affine unimode metamaterials constructed from rigid bars and pivots. The materials are affine in the sense that their macroscopic deformations can only be affine deformations: on a local level the deformation may vary from cell to cell. Unimode means that macroscopically the material can only deform along a one dimensional trajectory in the six dimensional space of invariants describing the deformation (excluding translations and rotations). We show by explicit construction that any continuous trajectory is realizable to an arbitrarily high degree of approximation provided at all points along the trajectory the geometry does not collapse to a lower dimensional one. In particular, we present two and three dimensional dilational materials having an arbitrarily large flexibility window. These are perfect auxetic materials for which a dilation is the only easy mode of deformation. They are free to dilate to arbitrarily large strain with zero bulk modulus.
Dimensional Analysis Using Toric Ideals: Primitive Invariants
Atherton, Mark A.; Bates, Ronald A.; Wynn, Henry P.
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer matrix from the initial integer matrix holding the exponents for the derived quantities. The matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by . One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of , is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774
Defending the beauty of the Invariance Principle
NASA Astrophysics Data System (ADS)
Barkana, Itzhak
2014-01-01
Customary stability analysis methods for nonlinear nonautonomous systems seem to require a strict condition of uniform continuity. Although extensions of LaSalle's Invariance Principle to nonautonomous systems that mitigate this condition have been available for a long time, they have remained surprisingly unknown or open to misinterpretations. The large scope of the Principle might have misled the prospective users and its application to Control problems has been received with amazing yet clear uneasiness. Counterexamples have been used in order to claim that the Invariance Principle cannot be applied to nonlinear nonautonomous systems. Because the original formulation of the Invariance Principle still imposes conditions that are not necessarily needed, this paper presents a new Invariance Principle that further mitigates previous conditions and thus further expands the scope of stability analysis. A brief comparative review of various alternatives to stability analysis of nonautonomous nonlinear systems and their implications is also presented in order to illustrate that thorough analysis of same examples may actually confirm the efficiency of the Invariance Principle approach when dealing with stability of nonautonomous nonlinear systems problems that may look difficult or even unsolvable otherwise.
Local and gauge invariant observables in gravity
NASA Astrophysics Data System (ADS)
Khavkine, Igor
2015-09-01
It is well known that general relativity (GR) does not possess any non-trivial local (in a precise standard sense) and diffeomorphism invariant observable. We propose a generalized notion of local observables, which retain the most important properties that follow from the standard definition of locality, yet is flexible enough to admit a large class of diffeomorphism invariant observables in GR. The generalization comes at a small price—that the domain of definition of a generalized local observable may not cover the entire phase space of GR and two such observables may have distinct domains. However, the subset of metrics on which generalized local observables can be defined is in a sense generic (its open interior is non-empty in the Whitney strong topology). Moreover, generalized local gauge invariant observables are sufficient to separate diffeomorphism orbits on this admissible subset of the phase space. Connecting the construction with the notion of differential invariants gives a general scheme for defining generalized local gauge invariant observables in arbitrary gauge theories, which happens to agree with well-known results for Maxwell and Yang-Mills theories.
Kaiser, Martha D.; Hudac, Caitlin M.; Shultz, Sarah; Lee, Su Mei; Cheung, Celeste; Berken, Allison M.; Deen, Ben; Pitskel, Naomi B.; Sugrue, Daniel R.; Voos, Avery C.; Saulnier, Celine A.; Ventola, Pamela; Wolf, Julie M.; Klin, Ami; Vander Wyk, Brent C.; Pelphrey, Kevin A.
2010-01-01
Functional magnetic resonance imaging of brain responses to biological motion in children with autism spectrum disorder (ASD), unaffected siblings (US) of children with ASD, and typically developing (TD) children has revealed three types of neural signatures: (i) state activity, related to the state of having ASD that characterizes the nature of disruption in brain circuitry; (ii) trait activity, reflecting shared areas of dysfunction in US and children with ASD, thereby providing a promising neuroendophenotype to facilitate efforts to bridge genomic complexity and disorder heterogeneity; and (iii) compensatory activity, unique to US, suggesting a neural system–level mechanism by which US might compensate for an increased genetic risk for developing ASD. The distinct brain responses to biological motion exhibited by TD children and US are striking given the identical behavioral profile of these two groups. These findings offer far-reaching implications for our understanding of the neural systems underlying autism. PMID:21078973
NASA Astrophysics Data System (ADS)
Bethencourt, John; Shi, Elaine; Song, Dawn
Reputation systems have become an increasingly important tool for highlighting quality information and filtering spam within online forums. However, the dependence of a user's reputation on their history of activities seems to preclude any possibility of anonymity. We show that useful reputation information can, in fact, coexist with strong privacy guarantees. We introduce and formalize a novel cryptographic primitive we call signatures of reputation which supports monotonic measures of reputation in a completely anonymous setting. In our system, a user can express trust in others by voting for them, collect votes to build up her own reputation, and attach a proof of her reputation to any data she publishes, all while maintaining the unlinkability of her actions.
Drell, S.; Jeanloz, R.; Cornwall, J.; Dyson, F.; Eardley, D.
1998-03-18
This study is a follow-on to the review made by JASON during its 1997 Summer Study of what is known about the aging of critical constituents, particularly the high explosives, metals (Pu, U), and polymers in the enduring stockpile. The JASON report (JSR-97-320) that summarized the findings was based on briefings by the three weapons labs (LANL, LLNL, SNL). They presented excellent technical analyses covering a broad range of scientific and engineering problems pertaining to determining signatures of aging. But the report also noted: `Missing, however, from the briefings and the written documents made available to us by the labs and DOE, was evidence of an adequately sharp focus and high priorities on a number of essential near-term needs of maintaining weapons in the stockpile.
Forgoston, Eric; Billings, Lora; Yecko, Philip; Schwartz, Ira B.
2011-01-01
We consider the problem of stochastic prediction and control in a time-dependent stochastic environment, such as the ocean, where escape from an almost invariant region occurs due to random fluctuations. We determine high-probability control-actuation sets by computing regions of uncertainty, almost invariant sets, and Lagrangian coherent structures. The combination of geometric and probabilistic methods allows us to design regions of control, which provide an increase in loitering time while minimizing the amount of control actuation. We show how the loitering time in almost invariant sets scales exponentially with respect to the control actuation, causing an exponential increase in loitering times with only small changes in actuation force. The result is that the control actuation makes almost invariant sets more invariant. PMID:21456830
NASA Astrophysics Data System (ADS)
Graef, L. L.; Brandenberger, R.
2015-10-01
Standard inflationary models yield a characteristic signature of a primordial power spectrum with a red tensor and scalar tilt. Nevertheless, Cannone et al. [1] recently suggested that, by breaking the assumption of spatial diffeomorphism invariance in the context of the effective field theory of inflation, a blue tensor spectrum can be achieved without violating the Null Energy Condition. In this context, we explore in which cases the inflationary model of [2] can yield a blue tilt of the tensor modes along with a red tilt in the scalar spectrum. Ultimately, we analyze under which conditions the model of [3] can reproduce the specific consistency relation of String Gas Cosmology.
Multisensors signature prediction workbench
NASA Astrophysics Data System (ADS)
Latger, Jean; Cathala, Thierry
2015-10-01
Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.
NASA Astrophysics Data System (ADS)
Baltz, Edward Anthony
It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for
NASA Astrophysics Data System (ADS)
Wylezalek, D.; Zakamska, N.
2016-06-01
Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1
New online signature acquisition system
NASA Astrophysics Data System (ADS)
Oulefki, Adel; Mostefai, Messaoud; Abbadi, Belkacem; Djebrani, Samira; Bouziane, Abderraouf; Chahir, Youssef
2013-01-01
We present a nonconstraining and low-cost online signature acquisition system that has been developed to enhance the performances of an existing multimodal biometric authentication system (based initially on both voice and image modalities). A laboratory prototype has been developed and validated for an online signature acquisition.
The Grassmannian origin of dual superconformal invariance
NASA Astrophysics Data System (ADS)
Arkani-Hamed, Nima; Cachazo, Freddy; Cheung, Clifford
2010-03-01
A dual formulation of the S Matrix for mathcal {N} = 4 SYM has recently been presented, where all leading singularities of n-particle N k-2MHV amplitudes are given as an integral over the Grassmannian G( k, n), with cyclic symmetry, parity and superconformal invariance manifest. In this short note we show that the dual superconformal invariance of this object is also manifest. The geometry naturally suggests a partial integration and simple change of variable to an integral over G( k - 2, n). This change of variable precisely corresponds to the mapping between usual momentum variables and the “momentum twistors” introduced by Hodges, and yields an elementary derivation of the momentumtwistor space formula very recently presented by Mason and Skinner, which is manifestly dual superconformal invariant. Thus the G( k, n) Grassmannian formulation allows a direct understanding of all the important symmetries of mathcal {N} = 4 SYM scattering amplitudes.
Second-Order Invariants and Holography
NASA Astrophysics Data System (ADS)
Luongo, Orlando; Bonanno, Luca; Iannone, Gerardo
2012-12-01
Motivated by recent works on the role of the holographic principle in cosmology, we relate a class of second-order Ricci invariants to the IR cutoff characterizing the holographic dark energy density. The choice of second-order invariants provides an invariant way to account the problem of causality for the correct cosmological cutoff, since the presence of event horizons is not an a priori assumption. We find that these models work fairly well, by fitting the observational data, through a combined cosmological test with the use of SNeIa, BAO and CMB. This class of models is also able to overcome the fine-tuning and coincidence problems. Finally, to make a comparison with other recent models, we adopt the statistical tests AIC and BIC.
Tests of Lorentz invariance: a 2013 update
NASA Astrophysics Data System (ADS)
Liberati, S.
2013-07-01
We present an updated review of Lorentz invariance tests in effective field theories (EFTs) in the matter as well as in the gravity sector. After a general discussion of the role of Lorentz invariance and a derivation of its transformations along the so-called von Ignatovski theorem, we present the dynamical frameworks developed within local EFT and the available constraints on the parameters governing the Lorentz breaking effects. In the end, we discuss two specific examples: the OPERA ‘affaire’ and the case of Hořava-Lifshitz gravity. The first case will serve as an example, and a caveat, of the practical application of the general techniques developed for constraining Lorentz invariance violation to a direct observation potentially showing these effects. The second case will show how the application of the same techniques to a specific quantum gravity scenario has far-reaching implications not foreseeable in a purely phenomenological EFT approach.
Modular categories and 3-manifold invariants
Tureav, V.G. )
1992-06-01
The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds.
Extensive Adiabatic Invariants for Nonlinear Chains
NASA Astrophysics Data System (ADS)
Giorgilli, Antonio; Paleari, Simone; Penati, Tiziano
2012-09-01
We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.
Manifestly diffeomorphism invariant classical Exact Renormalization Group
NASA Astrophysics Data System (ADS)
Morris, Tim R.; Preston, Anthony W. H.
2016-06-01
We construct a manifestly diffeomorphism invariant Wilsonian (Exact) Renor-malization Group for classical gravity, and begin the construction for quantum gravity. We demonstrate that the effective action can be computed without gauge fixing the diffeo-morphism invariance, and also without introducing a background space-time. We compute classical contributions both within a background-independent framework and by perturbing around a fixed background, and verify that the results are equivalent. We derive the exact Ward identities for actions and kernels and verify consistency. We formulate two forms of the flow equation corresponding to the two choices of classical fixed-point: the Gaussian fixed point, and the scale invariant interacting fixed point using curvature-squared terms. We suggest how this programme may completed to a fully quantum construction.
Renormalization group invariant of lepton Yukawa couplings
NASA Astrophysics Data System (ADS)
Tsuyuki, Takanao
2015-04-01
By using quark Yukawa matrices only, we can construct renormalization invariants that are exact at the one-loop level in the standard model. One of them, Iq, is accidentally consistent with unity, even though quark masses are strongly hierarchical. We calculate a lepton version of the invariant Il for Dirac and Majorana neutrino cases and find that Il can also be close to unity. For the Dirac neutrino and inverted hierarchy case, if the lightest neutrino mass is 3.0 meV to 8.8 meV, an equality Iq=Il can be satisfied. These invariants are not changed even if new particles couple to the standard model particles, as long as those couplings are generation independent.
Lorentz invariance in chiral kinetic theory.
Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A; Yee, Ho-Ung; Yin, Yi
2014-10-31
We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1/2 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance. We also show how the classical action can be obtained by taking the classical limit of the path integral for a Weyl particle. PMID:25396362
Standard model with partial gauge invariance
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.; Kepuladze, Z.
2012-03-01
We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.
Gauge-Invariant Formulation of Circular Dichroism.
Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A
2016-07-12
Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment. PMID:27295541
Blurred image recognition by legendre moment invariants
Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis
2010-01-01
Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003
Scaling theory of {{{Z}}_{2}} topological invariants
NASA Astrophysics Data System (ADS)
Chen, Wei; Sigrist, Manfred; Schnyder, Andreas P.
2016-09-01
For inversion-symmetric topological insulators and superconductors characterized by {{{Z}}2} topological invariants, two scaling schemes are proposed to judge topological phase transitions driven by an energy parameter. The scaling schemes renormalize either the phase gradient or the second derivative of the Pfaffian of the time-reversal operator, through which the renormalization group flow of the driving energy parameter can be obtained. The Pfaffian near the time-reversal invariant momentum is revealed to display a universal critical behavior for a great variety of models examined.
Scale-invariant geometric random graphs
NASA Astrophysics Data System (ADS)
Xie, Zheng; Rogers, Tim
2016-03-01
We introduce and analyze a class of growing geometric random graphs that are invariant under rescaling of space and time. Directed connections between nodes are drawn according to influence zones that depend on node position in space and time, mimicking the heterogeneity and increased specialization found in growing networks. Through calculations and numerical simulations we explore the consequences of scale invariance for geometric random graphs generated this way. Our analysis reveals a dichotomy between scale-free and Poisson distributions of in- and out-degree, the existence of a random number of hub nodes, high clustering, and unusual percolation behavior. These properties are similar to those of empirically observed web graphs.
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Some cosmological consequences of Weyl invariance
Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario
2015-03-19
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.
Cosmological constant in scale-invariant theories
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.
2011-10-01
The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.
Approaching Moons from Resonance via Invariant Manifolds
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.
2012-01-01
In this work, the approach phase from the final resonance of the endgame scenario in a tour design is examined within the context of invariant manifolds. Previous analyses have typically solved this problem either by using numerical techniques or by computing a catalog of suitable trajectories. The invariant manifolds of a selected set of libration orbits and unstable resonant orbits are computed here to serve as guides for desirable approach trajectories. The analysis focuses on designing an approach phase that may be tied into the final resonance in the endgame sequence while also targeting desired conditions at the moon.
NASA Astrophysics Data System (ADS)
Khosravi, Nima; Sepangi, Hamid Reza; Vakili, Babak
2010-05-01
We employ the familiar canonical quantization procedure in a given cosmological setting to argue that it is equivalent to and results in the same physical picture if one considers the deformation of the phase-space instead. To show this we use a probabilistic evolutionary process to make the solutions of these different approaches comparable. Specific model theories are used to show that the independent solutions of the resulting Wheeler-DeWitt equation are equivalent to solutions of the deformation method with different signs for the deformation parameter. We also argued that since the Wheeler-DeWitt equation is a direct consequence of diffeomorphism invariance, this equivalence is only true provided that the deformation of phase-space does not break such an invariance.
NASA Technical Reports Server (NTRS)
Moreman, O. S., III (Inventor)
1977-01-01
A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.
Weak associativity and deformation quantization
NASA Astrophysics Data System (ADS)
Kupriyanov, V. G.
2016-09-01
Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
NASA Astrophysics Data System (ADS)
Arzano, Michele; Kowalski-Glikman, Jerzy
2016-09-01
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.
Fluctuations as stochastic deformation.
Kazinski, P O
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590
Fluctuations as stochastic deformation
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.
Scale invariant sheath folds in salt, sediments and shear zones
NASA Astrophysics Data System (ADS)
Alsop, G. I.; Holdsworth, R. E.; McCaffrey, K. J. W.
2007-10-01
Sheath folds are developed in a broad spectrum of geological environments in which material flow occurs, including gravity-driven surficial deformation in ignimbrites, unconsolidated sediments and salt, together with deeper level ductile shear zones in metamorphic rocks. This study represents the first geometric comparison of sheath folds in these different settings across a wide range of scales. Elliptical closures defining eye-folds represent ( y- z) cross sections through highly-curvilinear sheath folds. Our analysis of the published literature, coupled with field observations, reveals remarkably similar ellipticities ( R yz) for sheath folds in metamorphic shear zones ( R yz 4.23), salt ( R yz 4.29), sediment slumps ( R yz 4.34), glaciotectonites ( R yz 4.48), and ignimbrites ( R yz 4.34). Nested eye-folds across this range of materials ( N = 1800) reveal distinct and consistent differences in ellipticity from the outer- ( R yz) to the inner-most ( R y' z' ) elliptical "rings" of individual sheath folds. The variation in ratios from outer to inner rings ( R' = R yz/ R y' z' ) in gravity-driven surficial flows typically displays a relative increase in ellipticity to define cats-eye-folds ( R' < 1) similar to those observed during simple and general shear in metamorphic rocks. We show that sheath folds develop across a range of scales within these different environments, and display elliptical ratios ( R yz) that are remarkably constant ( R2 > 0.99) across 9 orders of magnitude (sheath y axes range from ˜0.1 mm to >75 km). Our findings lead us to conclude that the geometric properties of sheath folds are scale invariant and primarily controlled by the type and amount of strain, with R' also reflecting the rheological significance of layering associated with original buckle fold mechanisms. The scaling pattern of sheath folds reflects the length scales of the precursor buckle folds (and width of deformation zones) across a broad range of materials and
Disambiguating seesaw models using invariant mass variables at hadron colliders
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-01
We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.
Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming
2013-01-01
Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409
Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming
2013-01-01
Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409
NASA Astrophysics Data System (ADS)
Ollongren, Alexander
2010-12-01
Suppose the international SETI effort yields the discovery of some signal of evidently non-natural origin. Could it contain linguistic information formulated in some kind of Lingua Cosmica? One way to get insight into this matter is to consider what specific (bio) linguistic signature( s) could be attached to a cosmic language for interstellar communication—designed by humans or an alien society having reached a level of intelligence (and technology) comparable to or surpassing ours. For this purpose, we consider in the present paper the logico-linguistic system LINCOS for ( A)CETI, developed during a number of years by the author in several papers and a monograph [1]. The system has a two-fold signature, which distinguishes it significantly from natural languages. In fact abstract and concrete signatures can be distinguished. That an abstract kind occurs is due to the manner in which abstractions of reality are represented in LINCOS-texts. They can take compound forms because the system is multi-expressive—partly due to the availability of inductive (recursive) entities. On the other hand, the concrete signature of LINCOS is related to the distribution of delimiters and predefined tokens in texts. Assigning measures to concrete signatures will be discussed elsewhere. The present contribution concentrates on the abstract signature of the language. At the same time, it is realized that an alien Lingua Cosmica might, but not necessarily needs to have this kind of signatures.
Multipartite invariant states. II. Orthogonal symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2006-06-15
We construct a class of multipartite states possessing orthogonal symmetry. This new class contains multipartite states which are invariant under the action of local unitary operations introduced in our preceding paper [Phys. Rev. A 73, 062314 (2006)]. We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.
BRST invariance in Coulomb gauge QCD
NASA Astrophysics Data System (ADS)
Andraši, A.; Taylor, J. C.
2015-12-01
In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.
Permutation centralizer algebras and multimatrix invariants
NASA Astrophysics Data System (ADS)
Mattioli, Paolo; Ramgoolam, Sanjaye
2016-03-01
We introduce a class of permutation centralizer algebras which underly the combinatorics of multimatrix gauge-invariant observables. One family of such noncommutative algebras is parametrized by two integers. Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators, which were introduced in the physics literature to describe open strings attached to giant gravitons and were subsequently used to diagonalize the Gaussian inner product for gauge invariants of two-matrix models. The structure of the algebra, notably its dimension, its center and its maximally commuting subalgebra, is related to Littlewood-Richardson numbers for composing Young diagrams. It gives a precise characterization of the minimal set of charges needed to distinguish arbitrary matrix gauge invariants, which are related to enhanced symmetries in gauge theory. The algebra also gives a star product for matrix invariants. The center of the algebra allows efficient computation of a sector of multimatrix correlators. These generate the counting of a certain class of bicoloured ribbon graphs with arbitrary genus.
Invariance Properties for General Diagnostic Classification Models
ERIC Educational Resources Information Center
Bradshaw, Laine P.; Madison, Matthew J.
2016-01-01
In item response theory (IRT), the invariance property states that item parameter estimates are independent of the examinee sample, and examinee ability estimates are independent of the test items. While this property has long been established and understood by the measurement community for IRT models, the same cannot be said for diagnostic…
Broken Scale Invariance and Anomalous Dimensions
DOE R&D Accomplishments Database
Wilson, K. G.
1970-05-01
Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.
Rotation invariant features for wear particle classification
NASA Astrophysics Data System (ADS)
Arof, Hamzah; Deravi, Farzin
1997-09-01
This paper investigates the ability of a set of rotation invariant features to classify images of wear particles found in used lubricating oil of machinery. The rotation invariant attribute of the features is derived from the property of the magnitudes of Fourier transform coefficients that do not change with spatial shift of the input elements. By analyzing individual circular neighborhoods centered at every pixel in an image, local and global texture characteristics of an image can be described. A number of input sequences are formed by the intensities of pixels on concentric rings of various radii measured from the center of each neighborhood. Fourier transforming the sequences would generate coefficients whose magnitudes are invariant to rotation. Rotation invariant features extracted from these coefficients were utilized to classify wear particle images that were obtained from a number of different particles captured at different orientations. In an experiment involving images of 6 classes, the circular neighborhood features obtained a 91% recognition rate which compares favorably to a 76% rate achieved by features of a 6 by 6 co-occurrence matrix.
Scale invariance, conformality, and generalized free fields
NASA Astrophysics Data System (ADS)
Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina
2016-02-01
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.
Note on gauge invariance and causal propagation
NASA Astrophysics Data System (ADS)
Henneaux, Marc; Rahman, Rakibur
2013-09-01
Interactions of gauge-invariant systems are severely constrained by several consistency requirements. One is the preservation of the number of gauge symmetries, another is causal propagation. For lower-spin fields, the emphasis is usually put on gauge invariance that happens to be very selective by itself. We demonstrate with an explicit example, however, that gauge invariance, albeit indispensable for constructing interactions, may not suffice as a consistency condition. The chosen example that exhibits this feature is the theory of a massless spin-3/2 field coupled to electromagnetism. We show that this system admits an electromagnetic background in which the spin-3/2 gauge field may move faster than light. Requiring causal propagation rules out otherwise allowed gauge-invariant couplings. This emphasizes the importance of causality analysis as an independent test for a system of interacting gauge fields. We comment on the implications of allowing new degrees of freedom and nonlocality in a theory, on higher-derivative gravity and Vasiliev’s higher-spin theories.
Invariant algebraic surfaces for a virus dynamics
NASA Astrophysics Data System (ADS)
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
Parameter Invariance in the Rasch Model.
ERIC Educational Resources Information Center
Davison, Mark L.; Chen, Tsuey-Hwa
This paper explores a logistic regression procedure for estimating item parameters in the Rasch model and testing the hypothesis of item parameter invariance across several groups/populations. Rather than using item responses directly, the procedure relies on "pseudo-paired comparisons" (PC) statistics defined over all possible pairs of items.…
Testing local Lorentz invariance with gravitational waves
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Mewes, Matthew
2016-06-01
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.
Understanding Parameter Invariance in Unidimensional IRT Models
ERIC Educational Resources Information Center
Rupp, Andre A.; Zumbo, Bruno D.
2006-01-01
One theoretical feature that makes item response theory (IRT) models those of choice for many psychometric data analysts is parameter invariance, the equality of item and examinee parameters from different examinee populations or measurement conditions. In this article, using the well-known fact that item and examinee parameters are identical only…
Chromaticity space for illuminant invariant recognition.
Ratnasingam, Sivalogeswaran; McGinnity, T Martin
2012-08-01
In this paper an algorithm is proposed to extract two illuminant invariant chromaticity features from three image sensor responses. The algorithm extracts these chromaticity features at pixel level and therefore can perform well in scenes illuminated with non-uniform illuminant. An approach is proposed to use the algorithm with cameras of unknown sensitivity. The algorithm was tested for separability of perceptually similar colours under the International Commission on Illumination (CIE) standard illuminants and obtained a good performance. It was also tested for colour based object recognition by illuminating objects with typical indoor illuminants and obtained a better performance compared to other existing algorithms investigated in this paper. Finally, the algorithm was tested for skin detection invariant to illuminant, ethnic background and imaging device. In this investigation, daylight scenes under different weather conditions and scenes illuminated by typical indoor illuminants were used. The proposed algorithm gives a better skin detection performance compared to widely used standard colour spaces. Based on the results presented, the proposed illuminant invariant chromaticity space can be used for machine vision applications including illuminant invariant colour based object recognition and skin detection. PMID:22481826
Invariant of dynamical systems: A generalized entropy
Meson, A.M.; Vericat, F. |
1996-09-01
In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes. {copyright} {ital 1996 American Institute of Physics.}
Position, rotation, and intensity invariant recognizing method
Ochoa, E.; Schils, G.F.; Sweeney, D.W.
1987-09-15
A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.
Scale invariant density perturbations from cyclic cosmology
NASA Astrophysics Data System (ADS)
Frampton, Paul Howard
2016-04-01
It is shown how quantum fluctuations of the radiation during the contraction era of a comes back empty (CBE) cyclic cosmology can provide density fluctuations which re-enter the horizon during the subsequent expansion era and at lowest order are scale invariant, in a Harrison-Zel’dovich-Peebles sense. It is necessary to be consistent with observations of large scale structure.
NASA Astrophysics Data System (ADS)
Berezinsky, V.
2013-06-01
The signatures of Ultra High Energy (E ≳ 1 EeV) proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible characteristics of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E1/2 in integral spectrum. Measured by HiRes and Telescope Array (TA) these characteristics agree with theoretical predictions. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The models based on the Auger and HiRes/TA data are considered independently and classified using the transition from galactic to extragalactic cosmic rays. The ankle cannot provide this transition. since data of all three detector at energy (1-3) EeV agree with pure proton composition (or at least not heavier than Helium). If produced in Galaxy these particles result in too high anisotropy. This argument excludes or strongly disfavours all ankle models with ankle energy Ea > 3 EeV. The calculation of elongation curves, Xmax(E), for different ankle models strengthens further this conclusion. Status of other models, the dip, mixed composition and Auger based models are discussed.
NASA Astrophysics Data System (ADS)
Olson, J.
2012-09-01
This presentation reviews the work performed by our research group at the Geophysical Institute as we have applied the tools of infrasound research to rocket studies. This report represents one aspect of the effort associated with work done for the National Consortium for MASINT Research (NCMR) program operated by the National MASINT Office (NMO) of the Defense Intelligence Agency (DIA). Infrasound, the study of acoustic signals and their propagation in a frequency band below 15 Hz, enables an investigator to collect and diagnose acoustic signals from distant sources. Absorption of acoustic energy in the atmosphere decreases as the frequency is reduced. In the infrasound band signals can propagate hundreds and thousands of kilometers with little degradation. We will present an overview of signatures from rockets ranging from small sounding rockets such as the Black Brandt and Orion series to larger rockets such as Delta 2,4 and Atlas V. Analysis of the ignition transients provides information that can uniquely identify the motor type. After the rocket ascends infrasound signals can be used to characterize the rocket and identify the various events that take place along a trajectory such as staging and maneuvering. We have also collected information on atmospheric shocks and sonic booms from the passage of supersonic vehicles such as the shuttle. This review is intended to show the richness of the unique signal set that occurs in the low-frequency infrasound band.
Statistical clumped isotope signatures
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Statistical clumped isotope signatures.
Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Local sublattice symmetry breaking for graphene with a centrosymmetric deformation
NASA Astrophysics Data System (ADS)
Schneider, M.; Faria, D.; Viola Kusminskiy, S.; Sandler, N.
2015-04-01
We calculate the local density of states (LDOS) for an infinite graphene sheet with a single centrosymmetric out-of-plane deformation, in order to investigate measurable strain signatures on graphene. We focus on the regime of small deformations and show that the strain-induced pseudomagnetic field induces an imbalance of the LDOS between the two triangular graphene sublattices in the region of the deformation. Real-space imaging reveals a characteristic sixfold symmetry pattern where the sublattice symmetry is broken within each fold, consistent with experimental and tight-binding observations. The open geometry we study allows us to make use of the usual continuum model of graphene and to obtain results independent of boundary conditions. We provide an analytic perturbative expression for the contrast between the LDOS of each sublattice, showing a scaling law as a function of the amplitude and width of the deformation. We confirm our results by a numerically exact iterative scattering matrix method.
A proposed neutral line signature
NASA Technical Reports Server (NTRS)
Doxas, I.; Speiser, T. W.; Dusenbery, P. B.; Horton, W.
1992-01-01
An identifying signature is proposed for the existence and location of the neutral line in the magnetotail. The signature, abrupt density, and temperature changes in the Earthtail direction, was first discovered in test particle simulations. Such temperature variations have been observed in ISEE data (Huang et. al. 1992), but their connection to the possible existence of a neutral line in the tail has not yet been established. The proposed signature develops earlier than the ion velocity space ridge of Martin and Speiser (1988), but can only be seen by spacecraft in the vicinity of the neutral line, while the latter can locate a neutral line remotely.
Signature surveillance of nuclear fuel
Bernatowicz, H.; Schoenig, F.C.
1982-08-31
Typical nuclear fuel material contains tramp ferromagnetic particles of random size and distribution. Also, selected amounts of paramagnetic or ferromagnetic material can be added at random or at known positions in the fuel material. The fuel material in its nonmagnetic container can be scanned by magnetic susceptibility change detecting apparatus to provide a unique signal waveform of the container of fuel material as a signature thereof. At subsequent times in its life, the container similarly can be scanned to provide subsequent signatures. Comparison of the signatures reveals any alteration or tampering with the fuel material.
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774
Invariant visual object recognition: biologically plausible approaches.
Robinson, Leigh; Rolls, Edmund T
2015-10-01
Key properties of inferior temporal cortex neurons are described, and then, the biological plausibility of two leading approaches to invariant visual object recognition in the ventral visual system is assessed to investigate whether they account for these properties. Experiment 1 shows that VisNet performs object classification with random exemplars comparably to HMAX, except that the final layer C neurons of HMAX have a very non-sparse representation (unlike that in the brain) that provides little information in the single-neuron responses about the object class. Experiment 2 shows that VisNet forms invariant representations when trained with different views of each object, whereas HMAX performs poorly when assessed with a biologically plausible pattern association network, as HMAX has no mechanism to learn view invariance. Experiment 3 shows that VisNet neurons do not respond to scrambled images of faces, and thus encode shape information. HMAX neurons responded with similarly high rates to the unscrambled and scrambled faces, indicating that low-level features including texture may be relevant to HMAX performance. Experiment 4 shows that VisNet can learn to recognize objects even when the view provided by the object changes catastrophically as it transforms, whereas HMAX has no learning mechanism in its S-C hierarchy that provides for view-invariant learning. This highlights some requirements for the neurobiological mechanisms of high-level vision, and how some different approaches perform, in order to help understand the fundamental underlying principles of invariant visual object recognition in the ventral visual stream. PMID:26335743
Resurgent deformation quantisation
Garay, Mauricio; Goursac, Axel de; Straten, Duco van
2014-03-15
We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.
Deformation mechanisms in experimentally deformed Boom Clay
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures
An Invariant-Preserving ALE Method for Solids under Extreme Conditions
Sambasivan, Shiv Kumar; Christon, Mark A
2012-07-17
We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore
Intrusion detection using secure signatures
Nelson, Trent Darnel; Haile, Jedediah
2014-09-30
A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.
Signature-based image identification
NASA Astrophysics Data System (ADS)
Abdel-Mottaleb, Mohamed; Vaithilingam, Gandhimathi; Krishnamachari, Santhana
1999-11-01
The use of digital images and video is growing on the Internet and on consumer devices. Digital images and video are easy to manipulate, but this ease of manipulation makes tampering with digital content possible. Examples of the misuse of digital content include violating copyrights of the content and tampering with important material such as contents of video surveillance. In this paper we present an algorithm that extracts a binary signature from an image. This approach can be used to search for possible copyright violations by finding images with signatures close to that of a given image. The experimental results show that the algorithm can be very effective in helping users to retrieve sets of almost identical images from large collections of images. The signature can also be used for tamper detection. We will show that the signatures we extract are immune to quantization errors that result from compression and decompression.
Retail applications of signature verification
NASA Astrophysics Data System (ADS)
Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens
2004-08-01
The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.
Highly Deformed Rotational Bands in ^65Zn
NASA Astrophysics Data System (ADS)
Yu, C.-H.; Baktash, C.; Paul, S. D.; Radford, D. C.; Cameron, J. A.; Haslip, D. S.; Lampman, T.; Svensson, C. E.; Waddington, J. C.; Wilson, J. N.; Lafosse, D. R.; Lerma, F.; Sarantites, D. G.; Rudolph, D.; Eberth, J.; Lee, I. Y.; Macchiavelli, A. O.
1998-04-01
High spin states of ^65Zn were populated using the ^40Ca(^29Si, 4p) reaction at a beam energy of 130 MeV. The experiment was performed at the LBL 88" cyclotron using the Gammasphere in conjunction with the Microball. A total of about 88 million 4-proton gated events were collected from the experiment. Two highly deformed rotational bands were established in ^65Zn. Among the two bands, band 1 is more strongly populated and has only one signature. Band 2 is much weaker and has two signatures connected by M1 transitions. These highly deformed rotational bands are consistent with the excitation of the g_9/2 orbitals, which previously were associated(C.E. Svensson et al.,) Phys. Rev. Lett. 79, 1233 (1997). with the superdeformed band in ^62Zn. Lifetimes were also extracted for these bands in ^65Zn using the Centroid Shift Method. Average Qt values of the two bands were determined and will be compared with the Q_t's of the neighboring nuclei.
De Roover, Kim; Timmerman, Marieke E.; De Leersnyder, Jozefien; Mesquita, Batja; Ceulemans, Eva
2014-01-01
The issue of measurement invariance is ubiquitous in the behavioral sciences nowadays as more and more studies yield multivariate multigroup data. When measurement invariance cannot be established across groups, this is often due to different loadings on only a few items. Within the multigroup CFA framework, methods have been proposed to trace such non-invariant items, but these methods have some disadvantages in that they require researchers to run a multitude of analyses and in that they imply assumptions that are often questionable. In this paper, we propose an alternative strategy which builds on clusterwise simultaneous component analysis (SCA). Clusterwise SCA, being an exploratory technique, assigns the groups under study to a few clusters based on differences and similarities in the component structure of the items, and thus based on the covariance matrices. Non-invariant items can then be traced by comparing the cluster-specific component loadings via congruence coefficients, which is far more parsimonious than comparing the component structure of all separate groups. In this paper we present a heuristic for this procedure. Afterwards, one can return to the multigroup CFA framework and check whether removing the non-invariant items or removing some of the equality restrictions for these items, yields satisfactory invariance test results. An empirical application concerning cross-cultural emotion data is used to demonstrate that this novel approach is useful and can co-exist with the traditional CFA approaches. PMID:24999335
Ballastic signature identification systems study
NASA Technical Reports Server (NTRS)
Reich, A.; Hine, T. L.
1976-01-01
The results are described of an attempt to establish a uniform procedure for documenting (recording) expended bullet signatures as effortlessly as possible and to build a comprehensive library of these signatures in a form that will permit the automated comparison of a new suspect bullet with the prestored library. The ultimate objective is to achieve a standardized format that will permit nationwide interaction between police departments, crime laboratories, and other interested law enforcement agencies.
Topological invariants of magnetic fields, and the effect of reconnections
Ruzmaikin, A. ); Akhmetiev, P. )
1994-02-01
Properties of the second-order topological invariant (the helicity) and the third-order topological invariant for the Borromean rings'' (three linked rings no two of which link each other) are discussed. A fourth-order topological invariant of ideal magnetohydrodynamics is constructed in an integral form. This invariant is determined by the properties of Seifert surfaces bounded by two coupled flux tubes. In particular, for the Whitehead link, it represents the fourth-order Sato--Levine invariant. The effect of reconnections on the topological invariants in the limit of small diffusivity is considered. In this limit the helicity is approximately conserved and the higher-order invariants decay rapidly under the action of diffusivity. The destruction of the higher-order invariants, however, creates helicity fluctuations.
Scale invariant texture descriptors for classifying celiac disease
Hegenbart, Sebastian; Uhl, Andreas; Vécsei, Andreas; Wimmer, Georg
2013-01-01
Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods provide classification results improving the current state of the art. However, not each of the investigated scale invariant methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be. Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset. PMID:23481171
Geoid, topography, and convection-driven crustal deformation on Venus
NASA Technical Reports Server (NTRS)
Simons, Mark; Hager, Bradford H.; Solomon, Sean C.
1992-01-01
High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between surface topography, crustal deformation, and the observed gravity field.
Resistive Pulse Analysis of Microgel Deformation During Nanopore Translocation
Holden, Deric A.; Hendrickson, Grant; Lyon, L. Andrew; White, Henry S.
2012-01-01
Deformation of 570-nm radius poly(N-isopropylacrylamide-co-acrylic acid) microgels passing through individual 375- to 915-nm radius nanopores in glass has been investigated by the resistive-pulse method. Particle translocation through nanopores of dimensions smaller than the microgel yields electrical signatures reflecting the dynamics of microgel deformation. Translocation rates, and event duration and peak shape, are functions of the conductivities of microgel and electrolyte. Our results demonstrate that nanopore resistive-pulse methods provide new fundamental insights into microgel permeation through porous membranes.
Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2012-01-01
The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.
Time and space transformations in a scator deformed Lorentz metric
NASA Astrophysics Data System (ADS)
Fernández-Guasti, M.
2014-09-01
The invariant transformations of a deformed Lorentz metric are explored. These transformations are described by the product operation with a unit magnitude element in hyperbolic scator algebra. The real scator set forms a group under the addition and product operations in a restricted space. However, the product is not distributive over addition. The restricted space condition is equivalent to the time-like subspace in special relativity. In 1+1 dimensions (time and one spatial variable), the deformation vanishes and the scator metric becomes identical to the Lorentz metric. In higher dimensions, time dilation and parallel space contraction are preserved albeit with slight quantitative modification. However, the deformed transformation also exhibits a transverse spatial elongation.
Local Unitary Invariant Spin-Squeezing in Multiqubit States
NASA Astrophysics Data System (ADS)
Divyamani, B. G.; Sudha; Usha Devi, A. R.
2016-05-01
We investiage Local Unitary Invariant Spin Squeezing (LUISS) in symmetric and non-symmetric multiqubit states. On developing an operational procedure to evaluate Local Unitary Invariant Spin Squeezing parameters, we explicitly evaluate these parameters for pure as well as mixed non-symmetric multiqubit states. We show that the existence of local unitary invariant version of Kitegawa-Ueda spin squeezing may not witness pairwise entanglement whereas the local unitary invariant analogue of Wineland spin squeezing necessarily implies pairwise entanglement.
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex
Leibo, Joel Z.; Liao, Qianli; Anselmi, Fabio; Poggio, Tomaso
2015-01-01
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions. PMID:26496457
Code of Federal Regulations, 2010 CFR
2010-01-01
... 1 General Provisions 1 2010-01-01 2010-01-01 false Signature. 18.7 Section 18.7 General Provisions... PREPARATION AND TRANSMITTAL OF DOCUMENTS GENERALLY § 18.7 Signature. The original and each duplicate original... stamped beneath the signature. Initialed or impressed signatures will not be accepted. Documents...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 1 General Provisions 1 2011-01-01 2011-01-01 false Signature. 18.7 Section 18.7 General Provisions... PREPARATION AND TRANSMITTAL OF DOCUMENTS GENERALLY § 18.7 Signature. The original and each duplicate original... stamped beneath the signature. Initialed or impressed signatures will not be accepted. Documents...
Testing Factorial Invariance in Multilevel Data: A Monte Carlo Study
ERIC Educational Resources Information Center
Kim, Eun Sook; Kwok, Oi-man; Yoon, Myeongsun
2012-01-01
Testing factorial invariance has recently gained more attention in different social science disciplines. Nevertheless, when examining factorial invariance, it is generally assumed that the observations are independent of each other, which might not be always true. In this study, we examined the impact of testing factorial invariance in multilevel…
Multigroup Confirmatory Factor Analysis: Locating the Invariant Referent Sets
ERIC Educational Resources Information Center
French, Brian F.; Finch, W. Holmes
2008-01-01
Multigroup confirmatory factor analysis (MCFA) is a popular method for the examination of measurement invariance and specifically, factor invariance. Recent research has begun to focus on using MCFA to detect invariance for test items. MCFA requires certain parameters (e.g., factor loadings) to be constrained for model identification, which are…
Possible universal quantum algorithms for generalized Turaev-Viro invariants
NASA Astrophysics Data System (ADS)
Vélez, Mario; Ospina, Juan
2011-05-01
An emergent trend in quantum computation is the topological quantum computation (TQC). Briefly, TQC results from the application of quantum computation with the aim to solve the problems of quantum topology such as topological invariants for knots and links (Jones polynomials, HOMFLY polynomials, Khovanov polynomials); topological invariants for graphs (Tutte polynomial and Bollobás-Riordan polynomial); topological invariants for 3-manifolds (Reshetiskin-Turaev, Turaev-Viro and Turaer-Viro-Ocneanu invariants) and topological invariants for 4-manifolds( Crane-Yetter invariants). In a few words, TQC is concerned with the formulation of quantum algorithms for the computation of these topological invariants in quantum topology. Given that one of the fundamental achievements of quantum topology was the discovery of strong connections between monoidal categories and 3-dimensional manifolds, in TQC is possible and necessary to exploit such connections with the purpose to formulate universal quantum algorithms for topological invariants of 3-manifolds. In the present work we make an exploration of such possibilities. Specifically we search for universal quantum algorithms for generalized Turaev-Viro invariants of 3-manifolds such as the Turaev-Viro-Ocneanu invariants, the Kashaev-Baseilhac-Benedetti invariants of 3-manifolds with links and the Geer-Kashaev-Turaev invariants of 3-manifolds with a link and a principal bundle. We also look for physical systems (three dimensional topological insulators and three-dimensional gravity) over which implement the resulting universal topological quantum algorithms.
Permutation-invariant codes encoding more than one qubit
NASA Astrophysics Data System (ADS)
Ouyang, Yingkai; Fitzsimons, Joseph
2016-04-01
A permutation-invariant code on m qubits is a subspace of the symmetric subspace of the m qubits. We derive permutation-invariant codes that can encode an increasing amount of quantum information while suppressing leading-order spontaneous decay errors. To prove the result, we use elementary number theory with prior theory on permutation-invariant codes and quantum error correction.
Hiding Lorentz invariance violation with MOND
Sanders, R. H.
2011-10-15
Horava-Lifshitz gravity is an attempt to construct a renormalizable theory of gravity by breaking the Lorentz invariance of the gravitational action at high energies. The underlying principle is that Lorentz invariance is an approximate symmetry and its violation by gravitational phenomena is somehow hidden to present limits of observational precision. Here I point out that a simple modification of the low-energy limit of Horava-Lifshitz gravity in its nonprojectable form can effectively camouflage the presence of a preferred frame in regions where the Newtonian gravitational field gradient is higher than cH{sub 0}; this modification results in the phenomenology of modified Newtonian dynamics (MOND) at lower accelerations. As a relativistic theory of MOND, this modified Horava-Lifshitz theory presents several advantages over its predecessors.
Gauge-invariant approach to quark dynamics
NASA Astrophysics Data System (ADS)
Sazdjian, H.
2016-02-01
The main aspects of a gauge-invariant approach to the description of quark dynamics in the nonperturbative regime of quantum chromodynamics (QCD) are first reviewed. The role of the parallel transport operation in constructing gauge-invariant Green's functions is then presented, and the relevance of Wilson loops for the representation of the interaction is emphasized. Recent developments, based on the use of polygonal lines for the parallel transport operation, are presented. An integro-differential equation, obtained for the quark Green's function defined with a phase factor along a single, straight line segment, is solved exactly and analytically in the case of two-dimensional QCD in the large- N c limit. The solution displays the dynamical mass generation phenomenon for quarks, with an infinite number of branch-cut singularities that are stronger than simple poles.
Hidden invariance of the free classical particle
Garcia, S. )
1994-06-01
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group [ital G] is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under [ital G] leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by [ital U](1) leads to quantum mechanics.
Principles of Invariance in Radiative Transfer
NASA Astrophysics Data System (ADS)
Peraiah, A.
1999-09-01
We have reviewed the principle of invariance, its applications and its usefulness for obtaining the radiation field in semi-infinite and finite atmospheres. Various laws of scattering in dispersive media and the consequent radiation field are studied. The H-functions and X- and Y-functions in semi-infinite and finite media respectively are derived in a few cases. The Discrete Space Theory (DST) which is a general form of the Principle of Invariance is described. The method of addition of layers with general properties, is shown to describe all the properties of multiple scattering. A few examples of the application of DST such as polarization, line formation in expanding stellar atmospheres, etc., and a numerical analysis of DST are presented. Other developments in the theory of radiative transfer are briefly described.
Symmetric form-invariant dual Pearcey beams.
Ren, Zhijun; Fan, Changjiang; Shi, Yile; Chen, Bo
2016-08-01
We introduce another type of Pearcey beam, namely, dual Pearcey (DP) beams, based on the Pearcey function of catastrophe theory. DP beams are experimentally generated by applying Fresnel diffraction of bright elliptic rings. Form-invariant Bessel distribution beams can be regarded as a special case of DP beams. Subsequently, the basic propagation characteristics of DP beams are identified. DP beams are the result of the interference of two half DP beams instead of two classical Pearcey beams. Moreover, we also verified that half DP beams (including special-case parabolic-like beams) generated by half elliptical rings (circular rings) are a new member of the family of form-invariant beams. PMID:27505650
Natural inflation with hidden scale invariance
NASA Astrophysics Data System (ADS)
Barrie, Neil D.; Kobakhidze, Archil; Liang, Shelley
2016-05-01
We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns - 1 ≈ - 0.025(N⋆/60)-1 and r ≈ 0.0667(N⋆/60)-1, where N⋆ ≈ 30- 65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.
Adiabatic invariance of oscillons/I -balls
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki
2015-11-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.
Scale invariance in the spectral action
Chamseddine, Ali H.; Connes, Alain
2006-06-15
The arbitrary mass scale in the spectral action for the Dirac operator is made dynamical by introducing a dilaton field. We evaluate all the low-energy terms in the spectral action and determine the dilaton couplings. These results are applied to the spectral action of the noncommutative space defined by the standard model. We show that the effective action for all matter couplings is scale invariant, except for the dilaton kinetic term and Einstein-Hilbert term. The resulting action is almost identical to the one proposed for making the standard model scale invariant as well as the model for extended inflation and has the same low-energy limit as the Randall-Sundrum model. Remarkably, all desirable features with correct signs for the relevant terms are obtained uniquely and without any fine tuning.
Mutation, Witten index, and quiver invariant
NASA Astrophysics Data System (ADS)
Kim, Heeyeon; Lee, Seung-Joo; Yi, Piljin
2015-07-01
We explore Seiberg-like dualities, or mutations, for quiver quantum mechanics in the context of wall-crossing. In contrast to higher dimensions, the 1d Seiberg-duality must be performed with much care. With fixed Fayet-Iliopoulos constants, at most two nodes can be mutated, one left and the other right, mapping a chamber of a quiver into a chamber of a mutated quiver. We delineate this complex pattern for triangle quivers and show how the Witten indices are preserved under such finely chosen mutations. On the other hand, the quiver invariants, or wall-crossing-safe part of supersymmetric spectra, mutate more straightforwardly, whereby a quiver is mapped to a quiver. The mutation rule that preserves the quiver invariant is different from the usual one, however, which we explore and confirm numerically.
Simulating realistic predator signatures in quantitative fatty acid signature analysis
Bromaghin, Jeffrey F.
2015-01-01
Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.
Quantum messages with signatures forgeable in arbitrated quantum signature schemes
NASA Astrophysics Data System (ADS)
Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon
2015-02-01
Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.
Scale-invariant breaking of conformal symmetry
NASA Astrophysics Data System (ADS)
Dymarsky, Anatoly; Zhiboedov, Alexander
2015-10-01
Known examples of unitary relativistic scale but not conformal-invariant field theories (SFTs) can be embedded into conventional conformal field theories (CFTs). We show that any SFT which is a subsector of a unitary CFT is a free theory. Our discussion applies to an arbitrary number of spacetime dimensions and explains triviality of known SFTs in four spacetime dimensions. We comment on examples of unitary SFTs which are not captured by our construction.
Explicit travelling waves and invariant algebraic curves
NASA Astrophysics Data System (ADS)
Gasull, Armengol; Giacomini, Hector
2015-06-01
We introduce a precise definition of algebraic travelling wave solution of n-th order partial differential equations and prove that the only algebraic travelling waves solutions for the celebrated Fisher-Kolmogorov equation are the ones found in 1979 by Ablowitz and Zeppetella. This question is equivalent to study when an associated one-parameter family of planar ordinary differential systems has invariant algebraic curves.
Conformally invariant wave equations for massless particles
NASA Astrophysics Data System (ADS)
McLennan, James A.
1984-07-01
The invariance of wave equations for massless particles under conformal transformations of space-time is briefly summarized. Particular attention is given to a recent paper by Bracken and Jessup in which it is claimed that results obtained by the author are in error. Their paper contains several misleading statements based on a misreading of the author's paper, and in addition an argument of theirs, intended to show error, is itself invalid. Their claims of error on the author's part are therefore unfounded.
Permutation-invariant distance between atomic configurations
NASA Astrophysics Data System (ADS)
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-09-01
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.
Permutation-invariant distance between atomic configurations
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-09-14
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.
Spectrally Invariant Approximation within Atmospheric Radiative Transfer
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2011-01-01
Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These spectrally invariant relationships are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.
Signature effects in some [ital N]=90 odd-[ital Z] rare-earth nuclei
Rath, A.K.; Praharaj, C.R.; Khadkikar, S.B. Institute of Physics, Bhubaneswar 751005 )
1993-05-01
Using axially symmetric deformed configuration mixing and angular momentum projection techniques, we have studied the signature effects in the [pi][ital h][sub 11/2] bands of [sup 147]La, [sup 149]Pr, and [sup 151]Pm nuclei. Effects of rotation alignment on the signature splitting in energy and signature inversion in the [ital B]([ital E]2,[ital I][r arrow][ital I][minus]1) values are discussed. We find that transition from a strongly rotation-aligned limit to a weakly rotation-aligned (or more regular rotational behavior) regime or vice versa leads to signature inversion of the [ital B]([ital E]2) values.
A Graph Based Methodology for Temporal Signature Identification from EHR
Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang
2015-01-01
Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches. PMID:26958267
Principles of rock deformation
Nicolas, A.
1987-01-01
This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.
Figueroa-O'Farrill, Jose Miguel
2009-11-15
We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.
Signature molecular descriptor : advanced applications.
Visco, Donald Patrick, Jr.
2010-04-01
In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report
Scope and applications of translation invariant wavelets to image registration
NASA Technical Reports Server (NTRS)
Chettri, Samir; LeMoigne, Jacqueline; Campbell, William
1997-01-01
The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.
Passive estimation of the waveguide invariant per pair of modes.
Le Gall, Yann; Bonnel, Julien
2013-08-01
In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data. PMID:23927230
Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states
NASA Astrophysics Data System (ADS)
Slater, Paul B.
2016-05-01
Milz and Strunz (J Phys A 48:035306, 2015) recently studied the probabilities that two-qubit and qubit-qutrit states, randomly generated with respect to Hilbert-Schmidt (Euclidean/flat) measure, are separable. They concluded that in both cases, the separability probabilities (apparently exactly 8/33 in the two-qubit scenario) hold constant over the Bloch radii (r) of the single-qubit subsystems, jumping to 1 at the pure state boundaries (r=1 ). Here, firstly, we present evidence that in the qubit-qutrit case, the separability probability is uniformly distributed, as well, over the generalized Bloch radius (R) of the qutrit subsystem. While the qubit (standard) Bloch vector is positioned in three-dimensional space, the qutrit generalized Bloch vector lives in eight-dimensional space. The radii variables r and R themselves are the lengths/norms (being square roots of quadratic Casimir invariants) of these ("coherence") vectors. Additionally, we find that not only are the qubit-qutrit separability probabilities invariant over the quadratic Casimir invariant of the qutrit subsystem, but apparently also over the cubic one—and similarly the case, more generally, with the use of random induced measure. We also investigate two-qutrit (3 × 3 ) and qubit-qudit (2 × 4 ) systems—with seemingly analogous positive partial transpose-probability invariances holding over what has been termed by Altafini the partial Casimir invariants of these systems.
NASA Astrophysics Data System (ADS)
Antonellini, Marco; Mollema, Pauline Nella
2015-12-01
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.
Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers
Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton
2015-09-01
This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.
Calculations of signature for Dy, Er, Yb nuclei
Mueller, W.F.; Jensen, H.J.; Reviot, W.
1993-10-01
Energy signature splitting {Delta}e` of rotational bands depends sensitively on deformation, pair correlations, and Fermi level in the particular nucleus. Calculating {Delta}e` is therefore very useful in understanding the experimentally observed properties of such bands. In principal, one can extract {Delta}e` from Total Routhian Surface (TRS) calculations as well as from the Cranked Shell Model (CSM). However, the codes available are not based on a fully self-consistent treatment of all critical parameters, deformation, pairing, and Fermi level. The TRS calculations, while modeling the deformation in a {open_quote}realistic{close_quotes} manner as a function of rotational frequency and changes in the quasiparticle configuration, have deficiencies particularly in the treatment of pairing. The CSM codes, on the other hand, estimate pairing and the location of the Fermi level more precisely than the TRS codes, but work under the assumption of a constant deformation. We have developed a method to calculate {Delta}e` that utilizes the most advanced features of both types of codes. This ensures that the best parameter values are used as input for calculating the routhians. As a test, we have used a series of odd-A Dy, Er, and Yb nuclei around A = 160 and compared the results for the vi{sub 13/2} shell with experimental data on {Delta}e`. Details of our method will be discussed and the comparison will be presented.
Multidimensional signatures in antimicrobial peptides
Yount, Nannette Y.; Yeaman, Michael R.
2004-01-01
Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082
Graph Analytics for Signature Discovery
Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei
2013-06-01
Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.
Signature Visualization of Software Binaries
Panas, T
2008-07-01
In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.
NASA Astrophysics Data System (ADS)
Nakamura, K.
2007-01-01
Following the general framework of the gauge invariant perturbation theory developed in the papers [K. Nakamura, Prog. Theor. Phys. 110 (2003), 723; ibid. 113 (2005), 481], we formulate second-order gauge invariant cosmological perturbation theory in a four-dimensional homogeneous isotropic universe. We consider perturbations both in the universe dominated by a single perfect fluid and in that dominated by a single scalar field. We derive all the components of the Einstein equations in the case that the first-order vector and tensor modes are negligible. All equations are derived in terms of gauge invariant variables without any gauge fixing. These equations imply that second-order vector and tensor modes may be generated due to the mode-mode coupling of the linear-order scalar perturbations. We also briefly discuss the main progress of this work through comparison with previous works.
Invariant solutions and Noether symmetries in hybrid gravity
NASA Astrophysics Data System (ADS)
Borowiec, Andrzej; Capozziello, Salvatore; De Laurentis, Mariafelicia; Lobo, Francisco S. N.; Paliathanasis, Andronikos; Paolella, Mariacristina; Wojnar, Aneta
2015-01-01
Symmetries play a crucial role in physics and, in particular, the Noether symmetries are a useful tool both to select models motivated at a fundamental level, and to find exact solutions for specific Lagrangians. In this work, we apply Noether point symmetries to metric-Palatini hybrid gravity in order to select the f (R ) functional form and to find analytical solutions for the field equations and for the related Wheeler-DeWitt (WDW) equation. It is important to stress that hybrid gravity implies two definitions of curvature scalar: R for standard metric gravity and R for further degrees of freedom related to the Palatini formalism. We use conformal transformations in order to find out integrable f (R ) models. In this context, we explore two conformal transformations of the forms d τ =N (a )d t and d τ =N (ϕ )d t . For the former, we found two cases of f (R ) functions where the field equations admit Noether symmetries. In the second case, the Lagrangian reduces to a Brans-Dicke-like theory with a general coupling function. For each case, it is possible to transform the field equations by using normal coordinates to simplify the dynamical system and to obtain exact solutions. Furthermore, we perform quantization and derive the WDW equation for the minisuperspace model. The Lie point symmetries for the WDW equation are determined and used to find invariant solutions. In particular, hybrid gravity introduces a further term in cosmic dynamics whose interpretation is related to the signature of an auxiliary scalar field. Solutions are compared with Λ CDM .
On scale invariant features and sequential Monte Carlo sampling for bronchoscope tracking
NASA Astrophysics Data System (ADS)
Luó, Xióngbiao; Feuerstein, Marco; Kitasaka, Takayuki; Natori, Hiroshi; Takabatake, Hirotsugu; Hasegawa, Yoshinori; Mori, Kensaku
2011-03-01
This paper presents an improved bronchoscope tracking method for bronchoscopic navigation using scale invariant features and sequential Monte Carlo sampling. Although image-based methods are widely discussed in the community of bronchoscope tracking, they are still limited to characteristic information such as bronchial bifurcations or folds and cannot automatically resume the tracking procedure after failures, which result usually from problematic bronchoscopic video frames or airway deformation. To overcome these problems, we propose a new approach that integrates scale invariant feature-based camera motion estimation into sequential Monte Carlo sampling to achieve an accurate and robust tracking. In our approach, sequential Monte Carlo sampling is employed to recursively estimate the posterior probability densities of the bronchoscope camera motion parameters according to the observation model based on scale invariant feature-based camera motion recovery. We evaluate our proposed method on patient datasets. Experimental results illustrate that our proposed method can track a bronchoscope more accurate and robust than current state-of-the-art method, particularly increasing the tracking performance by 38.7% without using an additional position sensor.
Ballistic Signature Identification System Study
NASA Technical Reports Server (NTRS)
1976-01-01
The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.
Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia
2016-01-01
An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996
Experimental Deformation of Magnetite
NASA Astrophysics Data System (ADS)
Till, J. L.; Rybacki, E.; Morales, L. F. G.
2015-12-01
Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.
Learning How to Extract Rotation-Invariant and Scale-Invariant Features from Texture Images
NASA Astrophysics Data System (ADS)
Montoya-Zegarra, Javier A.; Papa, João Paulo; Leite, Neucimar J.; da Silva Torres, Ricardo; Falcão, Alexandre
2008-12-01
Learning how to extract texture features from noncontrolled environments characterized by distorted images is a still-open task. By using a new rotation-invariant and scale-invariant image descriptor based on steerable pyramid decomposition, and a novel multiclass recognition method based on optimum-path forest, a new texture recognition system is proposed. By combining the discriminating power of our image descriptor and classifier, our system uses small-size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz data set. High classification rates demonstrate the superiority of the proposed system.
Průša, Vít; Rajagopal, K R; Saravanan, U
2013-08-01
Practically all experimental measurements related to the response of nonlinear bodies that are made within a purely mechanical context are concerned with inhomogeneous deformations, though, in many experiments, much effort is taken to engender homogeneous deformation fields. However, in experiments that are carried out in vivo, one cannot control the nature of the deformation. The quantity of interest is the deformation gradient and/or its invariants. The deformation gradient is estimated by tracking positions of a finite number of markers placed in the body. Any experimental data-reduction procedure based on tracking a finite number of markers will, for a general inhomogeneous deformation, introduce an error in the determination of the deformation gradient, even in the idealized case, when the positions of the markers are measured with no error. In our study, we are interested in a quantitative description of the difference between the true gradient and its estimate obtained by tracking the markers, that is, in the quantitative description of the induced error due to the data reduction. We derive a rigorous upper bound on the error, and we discuss what factors influence the error bound and the actual error itself. Finally, we illustrate the results by studying a practically interesting model problem. We show that different choices of the tracked markers can lead to substantially different estimates of the deformation gradient and its invariants. It is alarming that even qualitative features of the material under consideration, such as the incompressibility of the body, can be evaluated differently with different choices of the tracked markers. We also demonstrate that the derived error estimate can be used as a tool for choosing the appropriate marker set that leads to the deformation gradient estimate with the least guaranteed error. PMID:23760183
Deformations of anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Detournay, Stephane
2006-11-01
This PhD thesis mainly deals with deformations of locally anti-de Sitter black holes, focusing in particular on BTZ black holes. We first study the generic rotating and (extended) non-rotating BTZ black holes within a pseudo-Riemannian symmetric spaces framework, emphasize on the role played by solvable subgroups of SL(2,R) in the black hole structure and derive their global geometry in a group-theoretical way. We analyse how these observations are transposed in the case of higher-dimensional locally AdS black holes. We then show that there exists, in SL(2,R), a family of twisted conjugacy classes which give rise to winding symmetric WZW D1-branes in a BTZ black hole background. The term "deformation" is then considered in two distinct ways. On the one hand, we deform the algebra of functions on the branes in the sense of (strict) deformation quantization, giving rise to a "noncommutative black hole". In the same context, we investigate the question of invariant deformations of the hyperbolic plane and present explicit formulae. On the other hand, we explore the moduli space of the (orbifolded) SL(2,R) WZW model by studying its marginal deformations, yielding namely a new class of exact black string solutions in string theory. These deformations also allow us to relate the D1-branes in BTZ black holes to D0-branes in the 2D black hole. A fair proportion of this thesis consists of (hopefully) pedagogical short introductions to various subjects: deformation quantization, string theory, WZW models, symmetric spaces, symplectic and Poisson geometry.
Transformation invariant on-line target recognition.
Iftekharuddin, Khan M
2011-06-01
Transformation invariant automatic target recognition (ATR) has been an active research area due to its widespread applications in defense, robotics, medical imaging and geographic scene analysis. The primary goal for this paper is to obtain an on-line ATR system for targets in presence of image transformations, such as rotation, translation, scale and occlusion as well as resolution changes. We investigate biologically inspired adaptive critic design (ACD) neural network (NN) models for on-line learning of such transformations. We further exploit reinforcement learning (RL) in ACD framework to obtain transformation invariant ATR. We exploit two ACD designs, such as heuristic dynamic programming (HDP) and dual heuristic dynamic programming (DHP) to obtain transformation invariant ATR. We obtain extensive statistical evaluations of proposed on-line ATR networks using both simulated image transformations and real benchmark facial image database, UMIST, with pose variations. Our simulations show promising results for learning transformations in simulated images and authenticating out-of plane rotated face images. Comparing the two on-line ATR designs, HDP outperforms DHP in learning capability and robustness and is more tolerant to noise. The computational time involved in HDP is also less than that of DHP. On the other hand, DHP achieves a 100% success rate more frequently than HDP for individual targets, and the residual critic error in DHP is generally smaller than that of HDP. Mathematical analyses of both our RL-based on-line ATR designs are also obtained to provide a sufficient condition for asymptotic convergence in a statistical average sense. PMID:21571610
The measurement invariance of schizotypy in Europe.
Fonseca-Pedrero, E; Ortuño-Sierra, J; Sierro, G; Daniel, C; Cella, M; Preti, A; Mohr, C; Mason, O J
2015-10-01
The short version of the Oxford-Liverpool Inventory of Feelings and Experiences (sO-LIFE) is a widely used measure assessing schizotypy. There is limited information, however, on how sO-LIFE scores compare across different countries. The main goal of the present study is to test the measurement invariance of the sO-LIFE scores in a large sample of non-clinical adolescents and young adults from four European countries (UK, Switzerland, Italy, and Spain). The scores were obtained from validated versions of the sO-LIFE in their respective languages. The sample comprised 4190 participants (M=20.87 years; SD=3.71 years). The study of the internal structure, using confirmatory factor analysis, revealed that both three (i.e., positive schizotypy, cognitive disorganisation, and introvertive anhedonia) and four-factor (i.e., positive schizotypy, cognitive disorganisation, introvertive anhedonia, and impulsive nonconformity) models fitted the data moderately well. Multi-group confirmatory factor analysis showed that the three-factor model had partial strong measurement invariance across countries. Eight items were non-invariant across samples. Significant statistical differences in the mean scores of the s-OLIFE were found by country. Reliability scores, estimated with Ordinal alpha ranged from 0.75 to 0.87. Using the Item Response Theory framework, the sO-LIFE provides more accuracy information at the medium and high end of the latent trait. The current results show further evidence in support of the psychometric proprieties of the sO-LIFE, provide new information about the cross-cultural equivalence of schizotypy and support the use of this measure to screen for psychotic-like features and liability to psychosis in general population samples from different European countries. PMID:26443051
Gauge invariant actions for string models
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.
A Note on Invariant Temporal Functions
NASA Astrophysics Data System (ADS)
Müller, Olaf
2016-07-01
The purpose of this article is to present a result on the existence of Cauchy temporal functions invariant by the action of a compact group of conformal transformations in arbitrary globally hyperbolic manifolds. Moreover, the previous results about the existence of Cauchy temporal functions with additional properties on arbitrary globally hyperbolic manifolds are unified in a very general theorem. To make the article more accessible for non-experts, and in the lack of an appropriate single reference for the Lorentzian geometry background of the result, the latter is provided in an introductory section.
A Note on Invariant Temporal Functions
NASA Astrophysics Data System (ADS)
Müller, Olaf
2016-05-01
The purpose of this article is to present a result on the existence of Cauchy temporal functions invariant by the action of a compact group of conformal transformations in arbitrary globally hyperbolic manifolds. Moreover, the previous results about the existence of Cauchy temporal functions with additional properties on arbitrary globally hyperbolic manifolds are unified in a very general theorem. To make the article more accessible for non-experts, and in the lack of an appropriate single reference for the Lorentzian geometry background of the result, the latter is provided in an introductory section.
Invariant rotational curves in Sitnikov's Problem
NASA Astrophysics Data System (ADS)
Martinez Alfaro, J.; Chiralt, Cristina
1993-04-01
The Sitnikov's Problem is a restricted three-body problem of celestial mechanics depending on the eccentricity, e. The Hamiltonian, H(z, v, t, e), does not depend on t if e = 0 and we have an integrable system; if e is small the KAM Theory proves the existence of invariant rotational curves, IRC. For larger eccentricities, we show that there exist two complementary sequences of intervals of values of e that accumulate to the maximum admissible value of the eccentricity, 1, and such that, for one of the sequences IRC around a fixed point persist. Moreover, they shrink to the plane z = 0 as e tends to 1.
Thermodynamic Entropy as a Noether Invariant.
Sasa, Shin-Ichi; Yokokura, Yuki
2016-04-01
We study a classical many-particle system with an external control represented by a time-dependent extensive parameter in a Lagrangian. We show that thermodynamic entropy of the system is uniquely characterized as the Noether invariant associated with a symmetry for an infinitesimal nonuniform time translation t→t+ηℏβ, where η is a small parameter, ℏ is the Planck constant, β is the inverse temperature that depends on the energy and control parameter, and trajectories in the phase space are restricted to those consistent with quasistatic processes in thermodynamics. PMID:27104690
Thermodynamic Entropy as a Noether Invariant
NASA Astrophysics Data System (ADS)
Sasa, Shin-ichi; Yokokura, Yuki
2016-04-01
We study a classical many-particle system with an external control represented by a time-dependent extensive parameter in a Lagrangian. We show that thermodynamic entropy of the system is uniquely characterized as the Noether invariant associated with a symmetry for an infinitesimal nonuniform time translation t →t +η ℏβ , where η is a small parameter, ℏ is the Planck constant, β is the inverse temperature that depends on the energy and control parameter, and trajectories in the phase space are restricted to those consistent with quasistatic processes in thermodynamics.
Invariant quantities of a nondepolarizing Mueller matrix
NASA Astrophysics Data System (ADS)
Gil, José J.; José, Ignacio San
2016-07-01
Orthogonal Mueller matrices can be considered either as corresponding to retarders or to generalized transformations of the polarization basis for the representation of Stokes vectors, so that they constitute the only type of Mueller matrices that preserve the degree of polarization and the intensity of any partially-polarized input Stokes vector. The physical quantities which remain invariant when a nondepolarizing Mueller matrix is transformed through its product by different types of orthogonal Mueller matrices are identified and interpreted, providing a better knowledge of the information contained in a nondepolarizing Mueller matrix.
Origin of gauge invariance in string theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Invariant mass spectroscopy of halo nuclei
Nakamura, Takashi
2008-11-11
We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.
Dowling, N. Maritza; Hermann, Bruce; La Rue, Asenath; Sager, Mark A.
2010-01-01
Objective To examine the latent structure of a test battery currently being used in a longitudinal study of asymptomatic middle-aged adults with a parental history of Alzheimer’s disease (AD) and test the invariance of the factor solution across subgroups defined by selected demographic variables and known genetic risk factors for AD. Method An exploratory factor analysis (EFA) and a sequence of confirmatory factor analyses (CFA) were conducted on 24 neuropsychological measures selected to provide a comprehensive estimate of cognitive abilities most likely to be affected in preclinical AD. Once the underlying latent model was defined and the structural validity established through model comparisons, a multi-group confirmatory factor analysis model was used to test for factorial invariance across groups. Results The EFA solution revealed a factor structure consisting of 5 constructs: verbal ability, visuo-spatial ability, speed & executive function, working memory, and verbal learning & memory. The CFA models provided support for the hypothesized 5-factor structure. Results indicated factorial invariance of the model across all groups examined. Conclusions Collectively, the results suggested a relatively strong psychometric basis for using the factor structure in clinical samples that match the characteristics of this cohort. This confirmed an invariant factor structure should prove useful in research aimed to detect the earliest cognitive signature of preclinical AD in similar middle aged cohorts. PMID:21038965
Geometric local invariants and pure three-qubit states
Williamson, Mark S.; Ericsson, Marie; Johansson, Markus; Sjoeqvist, Erik; Sudbery, Anthony; Vedral, Vlatko; Wootters, William K.
2011-06-15
We explore a geometric approach to generating local SU(2) and SL(2,C) invariants for a collection of qubits inspired by lattice gauge theory. Each local invariant or ''gauge'' invariant is associated with a distinct closed path (or plaquette) joining some or all of the qubits. In lattice gauge theory, the lattice points are the discrete space-time points, the transformations between the points of the lattice are defined by parallel transporters, and the gauge invariant observable associated with a particular closed path is given by the Wilson loop. In our approach the points of the lattice are qubits, the link transformations between the qubits are defined by the correlations between them, and the gauge invariant observable, the local invariants associated with a particular closed path, are also given by a Wilson looplike construction. The link transformations share many of the properties of parallel transporters, although they are not undone when one retraces one's steps through the lattice. This feature is used to generate many of the invariants. We consider a pure three-qubit state as a test case and find we can generate a complete set of algebraically independent local invariants in this way; however, the framework given here is applicable to generating local unitary invariants for mixed states composed of any number of d-level quantum systems. We give an operational interpretation of these invariants in terms of observables.
Geometric local invariants and pure three-qubit states
NASA Astrophysics Data System (ADS)
Williamson, Mark S.; Ericsson, Marie; Johansson, Markus; Sjöqvist, Erik; Sudbery, Anthony; Vedral, Vlatko; Wootters, William K.
2011-06-01
We explore a geometric approach to generating local SU(2) and SL(2,C) invariants for a collection of qubits inspired by lattice gauge theory. Each local invariant or “gauge” invariant is associated with a distinct closed path (or plaquette) joining some or all of the qubits. In lattice gauge theory, the lattice points are the discrete space-time points, the transformations between the points of the lattice are defined by parallel transporters, and the gauge invariant observable associated with a particular closed path is given by the Wilson loop. In our approach the points of the lattice are qubits, the link transformations between the qubits are defined by the correlations between them, and the gauge invariant observable, the local invariants associated with a particular closed path, are also given by a Wilson looplike construction. The link transformations share many of the properties of parallel transporters, although they are not undone when one retraces one’s steps through the lattice. This feature is used to generate many of the invariants. We consider a pure three-qubit state as a test case and find we can generate a complete set of algebraically independent local invariants in this way; however, the framework given here is applicable to generating local unitary invariants for mixed states composed of any number of d-level quantum systems. We give an operational interpretation of these invariants in terms of observables.
Topological Signatures for Population Admixture
Technology Transfer Automated Retrieval System (TEKTRAN)
Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...
Invisibly Sanitizable Digital Signature Scheme
NASA Astrophysics Data System (ADS)
Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki
A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.
Disaster relief through composite signatures
NASA Astrophysics Data System (ADS)
Hawley, Chadwick T.; Hyde, Brian; Carpenter, Tom; Nichols, Steve
2012-06-01
A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper builds on previous work developing innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral. For the composite signature approach to be successful it requires effective data fusion and visualization. This plays a key role in both preparedness and the response and recovery which are critical to saving lives. Visualization tools enhance the overall understanding of the crisis by pulling together and analyzing the data, and providing a clear and complete analysis of the information to the organizations/agencies dependant on it for a successful operation. An example of this, Freedom Web, is an easy-to-use data visualization and collaboration solution for use in homeland security, emergency preparedness, situational awareness, and event management. The solution provides a nationwide common operating picture for all levels of government through a web based, map interface. The tool was designed to be utilized by non-geospatial experts and is easily tailored to the specific needs of the users. Consisting of standard COTS and open source databases and a web server, users can view, edit, share, and highlight information easily and quickly through a standard internet browser.
Crustal deformation and earthquakes
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1984-01-01
The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.
Interfacial Bubble Deformations
NASA Astrophysics Data System (ADS)
Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert
Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.
Vaporization of Deforming Droplets
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Chen, Xiaodong; Ma, Dongjun; Yang, Vigor
2012-11-01
Droplet deformation is one of the most important factors influencing the evaporation rate. In the present study, high-fidelity numerical simulations of single evaporating droplets with deformation are carried out over a wide range of the Reynolds and Weber numbers. The formulation is based on a complete set of conservation equations for both the liquid and surrounding gas phases. A modified volume-of-fluid (VOF) technique that takes into account heat and mass transfer is used to track the behavior of the liquid/gas interface. Special attention is given to the property conservation, which can be realized by using an iterative algorithm that enforces a divergence constraint in cells containing the interface. The effect of the ambient flow on droplet dynamics and evaporation are investigated systematically. Various underlying mechanisms dictating the droplet characteristics in different deformation regimes are identified. Correlations for the droplet evaporation rate are established in terms of the Reynolds and Weber numbers.
A fractal model for crustal deformation
NASA Technical Reports Server (NTRS)
Turcotte, D. L.
1986-01-01
It is hypothesized that crustal deformation occurs on a scale-invariant matrix of faults. For simplicity, a two-dimensional pattern of hexagons on which strike-slip faulting occurs is considered. The behavior of the system is controlled by a single parameter, the fractal dimension. Deformation occurs on all scales of faults. The fractal dimension determines the fraction of the total displacement that occurs on the first-order or primary faults. The value of the fractal dimension can be obtained from the frequency-magnitude relation for earthquakes. The results are applied to the San Andreas fault system in central California. Earthquake studies give D = 1.90. The main strand of the San Andreas fault is associated with the primary faults of the fractal system. It is predicted that the relative velocity across the main strand is 2.93 cm/yr. The remainder of the relative velocity of 5.5 cm/yr between the Pacific and North American plates occurs on higher-order faults. The predicted value is in reasonably good agreement with the value 3.39 + or - 0.29 cm/yr obtained from geological studies.
Primordial fluctuations from deformed quantum algebras
Day, Andrew C.; Brown, Iain A.; Seahra, Sanjeev S. E-mail: ibrown@astro.uio.no
2014-03-01
We study the implications of deformed quantum algebras for the generation of primordial perturbations from slow-roll inflation. Specifically, we assume that the quantum commutator of the inflaton's amplitude and momentum in Fourier space gets modified at energies above some threshold M{sub *}. We show that when the commutator is modified to be a function of the momentum only, the problem of solving for the post-inflationary spectrum of fluctuations is formally equivalent to solving a one-dimensional Schr and quot;odinger equation with a time dependent potential. Depending on the class of modification, we find results either close to or significantly different from nearly scale invariant spectra. For the former case, the power spectrum is characterized by step-like behaviour at some pivot scale, where the magnitude of the jump is O(H{sup 2}/M{sub *}{sup 2}). (H is the inflationary Hubble parameter.) We use our calculated power spectra to generate predictions for the cosmic microwave background and baryon acoustic oscillations, hence demonstrating that certain types of deformations are incompatible with current observations.
Primordial fluctuations from deformed quantum algebras
NASA Astrophysics Data System (ADS)
Day, Andrew C.; Brown, Iain A.; Seahra, Sanjeev S.
2014-03-01
We study the implications of deformed quantum algebras for the generation of primordial perturbations from slow-roll inflation. Specifically, we assume that the quantum commutator of the inflaton's amplitude and momentum in Fourier space gets modified at energies above some threshold Mstar. We show that when the commutator is modified to be a function of the momentum only, the problem of solving for the post-inflationary spectrum of fluctuations is formally equivalent to solving a one-dimensional Schr"odinger equation with a time dependent potential. Depending on the class of modification, we find results either close to or significantly different from nearly scale invariant spectra. For the former case, the power spectrum is characterized by step-like behaviour at some pivot scale, where the magnitude of the jump is Script O(H2/Mstar2). (H is the inflationary Hubble parameter.) We use our calculated power spectra to generate predictions for the cosmic microwave background and baryon acoustic oscillations, hence demonstrating that certain types of deformations are incompatible with current observations.
Minster, B.; Prescott, W.; Royden, L.
1991-02-01
Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.
Topological Invariants and Detection of Periodic Orbits
NASA Astrophysics Data System (ADS)
Srzednicki, R.
1994-07-01
Let f be a smooth flow on a manifold M and C ⊆ M × (0, ∞) be an isolated compact set of periodic orbits of f. Here we consider the following topological invariants of the pair (f, C): the homology index I(f, C) ∈ H1(M), the Fuller index IF(f, C) ∈ Q, and the p-detection number Dp(f, C) ∈ Zp. The latter invariant is defined for a positive integer p which is relatively prime with the multiplicities of periodic orbits in C. Motivated by problems concerning numerical determination of periodic points, we introduce the notion of p-detectability. We prove that I(f, C) ≠ 0 implies that (f, C) is 1-detectable, but in general this is not the case if IF(f, C) is nontrivial. The condition Dp(f, C) ≠ 0 implies that (f, C) is p-detectable. As a consequence we prove that if IF(f, C) ≠ 0 then (f, C) is p-detectable, provided p is a sufficiently large prime number. We present some applications of these results.
Selective Frequency Invariant Uniform Circular Broadband Beamformer
NASA Astrophysics Data System (ADS)
Zhang, Xin; Ser, Wee; Zhang, Zhang; Krishna, AnoopKumar
2010-12-01
Frequency-Invariant (FI) beamforming is a well known array signal processing technique used in many applications. In this paper, an algorithm that attempts to optimize the frequency invariant beampattern solely for the mainlobe, and relax the FI requirement on the sidelobe is proposed. This sacrifice on performance in the undesired region is traded off for better performance in the desired region as well as reduced number of microphones employed. The objective function is designed to minimize the overall spatial response of the beamformer with a constraint on the gain being smaller than a pre-defined threshold value across a specific frequency range and at a specific angle. This problem is formulated as a convex optimization problem and the solution is obtained by using the Second Order Cone Programming (SOCP) technique. An analysis of the computational complexity of the proposed algorithm is presented as well as its performance. The performance is evaluated via computer simulation for different number of sensors and different threshold values. Simulation results show that, the proposed algorithm is able to achieve a smaller mean square error of the spatial response gain for the specific FI region compared to existing algorithms.
Casimir invariants for systems undergoing collective motion
Bishop, C. Allen; Byrd, Mark S.; Wu Lianao
2011-06-15
Dicke states are an important class of states which exhibit collective behavior in many-body systems. They are interesting because (1) the decay rates of these states can be quite different from a set of independently evolving particles and (2) a particular class of these states are decoherence-free or noiseless with respect to a set of errors. These noiseless states, or more generally subsystems, avoid certain types of errors in quantum-information-processing devices. Here we provide a method for determining a set of transformations of these states which leave the states in their subsystems but still enable them to evolve in particular ways. For subsystems of particles undergoing collective motions, these transformations can be calculated by using essentially the same construction which is used to determine the famous Casimir invariants for quantum systems. Such invariants can be used to determine a complete set of commuting observables for a class of Dicke states as well as to identify possible logical operations for decoherence-free-noiseless subsystems. Our method is quite general and provides results for cases where the constituent particles have more than two internal states.
Noise-assisted estimation of attractor invariants
NASA Astrophysics Data System (ADS)
Restrepo, Juan F.; Schlotthauer, Gastón
2016-07-01
In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D ), the correlation entropy (K2), and the noise level (σ ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U -correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (DmU), the correlation entropy (KmU), and the noise level (σmU). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators DmU and σmU behave in a similar manner to those based on the GCI. However, for the calculation of K2, the estimator KmU outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D ,K2, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants.
Are face representations depth cue invariant?
Dehmoobadsharifabadi, Armita; Farivar, Reza
2016-06-01
The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition. PMID:27271993
More modular invariant anomalous U(1) breaking
Gaillard, Mary K.; Giedt, Joel
2002-06-27
We consider the case of several scalar fields, charged under a number of U(1) factors, acquiring vacuum expectation values due to anomalous U(1). We demonstrate how to make redefinitions at the superfield level in order to account for tree-level exchange of vector supermultiplets in the effective supergravity theory of the light fields in the supersymmetric vacuum phase. Our approach builds up on previous results that we obtained in a more elementary case. We find that the modular weights of light fields are typically shifted from their original values, allowing an interpretation in terms of the preservation of modular invariance in the effective theory. We address various subtleties in defining unitary gauge that are associated with the noncanonical Kahler potential of modular invariant supergravity, the vacuum degeneracy, and the role of the dilaton field. We discuss the effective superpotential for the light fields and note how proton decay operators may be obtained when the heavy fields are integrated out of the theory at the tree-level. We also address how our formalism may be extended to describe the generalized Green-Schwarz mechanism for multiple anomalous U(1)'s that occur in four-dimensional Type I and Type IIB string constructions.
Solutions of q-deformed equations with quantum conformal symmetry
Dobrev, V. K.; Kostadinov, B. S.; Petrov, S. T.
1998-12-15
We consider the construction of explicit solutions of a hierarchy of q-deformed equations which are (conditionally) quantum conformal invariant. We give two types of solutions--polynomial solutions and solutions in terms of q-deformation of the plane wave. We give a q-deformation of the plane wave as a formal power series in the noncommutative coordinates of q-Minkowski space-time and four-momenta. This q-plane wave has analogous properties to the classical one, in particular, it has the properties of q-Lorentz covariance, and it satisfies the q-d'Alembert equation on the q-Lorentz covariant momentum cone. On the other hand, this q-plane wave is not an exponent or q-exponent. Thus, it differs conceptually from the classical plane wave and may serve as a its regularization. Using this we give also solutions of the massless Dirac equation involving two conjugated q-plane waves--one for the neutrino, the other for the antineutrino. It is also interesting that the neutrino solutions are deformed only through the q-pane wave, while the prefactor is classical. Thus, we can speak of a definite left-right asymmetry of the quantum conformal deformation of the neutrino-antineutrino system.
Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema
2014-01-01
Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2009-04-14
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2010-04-06
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
Nail Deformities and Injuries.
Tucker, James Rory J
2015-12-01
A variety of nail deformities commonly presents in the primary care office. An understanding of nail anatomy coupled with inspection of the nails at routine office visits can reveal undetected disorders. Some problems are benign, and treatment should be attempted by the primary care provider, such as onychomycosis, paronychia, or ingrown toenails. For conditions such as benign melanonychia, longitudinal ridges, isolated Beau lines, and onycholysis, clinicians may offer reassurance to patients who are concerned about the change in their nails. For deformities such as early pterygium or clubbing, a thorough evaluation and referral to an appropriate specialist may be warranted. PMID:26612379
Block truncation signature coding for hyperspectral analysis
NASA Astrophysics Data System (ADS)
Chakravarty, Sumit; Chang, Chein-I.
2008-08-01
This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.
Strength, Deformation and Fracture in Metallic Nanostructures
NASA Astrophysics Data System (ADS)
Gu, Xun Wendy
An understanding of the mechanics of nanoscale metals and semiconductors is necessary for the safe and prolonged operation of nanostructured devices from transistors to nanowire- based solar cells to miniaturized electrodes. This is a fascinating but challenging pursuit because mechanical properties that are size-invariant in conventional materials, such as strength, ductility and fracture behavior, can depend critically on sample size when materials are reduced to sub-micron dimensions. In this thesis, the effect of nanoscale sample size, microstructure and structural geometry on mechanical strength, deformation and fracture are explored for several classes of solid materials. Nanocrystalline platinum nano-cylinders with diameters of 60 nm to 1 μm and 12 nm sized grains are fabricated and tested in compression. We find that nano-sized metals containing few grains weaken as sample diameter is reduced relative to grain size due to a change from deformation governed by internal grains to surface grain governed deformation. Fracture at the nanoscale is explored by performing in-situ SEM tension tests on nanocrystalline platinum and amorphous, metallic glass nano-cylinders containing purposely introduced structural flaws. It is found that failure location, mechanism and strength are determined by the stress concentration with the highest local stress whether this is at the structural flaw or a microstructural feature. Principles of nano-mechanics are used to design and test mechanically robust hierarchical nanostructures with structural and electrochemical applications. 2-photon lithography and electroplating are used to fabricate 3D solid Cu octet meso-lattices with micron-scale features that exhibit strength higher than that of bulk Cu. An in-situ SEM lithiation stage is developed and used to simultaneously examine morphological and electrochemical changes in Si-coated Cu meso-lattices that are of interest as high energy capacity electrodes for Li-ion batteries.
Scale-invariant correlations and the distribution of prime numbers
NASA Astrophysics Data System (ADS)
Holdom, B.
2009-08-01
Negative correlations in the distribution of prime numbers are found to display a scale invariance. This occurs in conjunction with a nonstationary behavior. We compare the prime number series to a type of fractional Brownian motion which incorporates both the scale invariance and the nonstationary behavior. Interesting discrepancies remain. The scale invariance also appears to imply the Riemann hypothesis and we study the use of the former as a test of the latter.
Experimental investigation of cyclic thermomechanical deformation in torsion
NASA Technical Reports Server (NTRS)
Ellis, John R.; Castelli, Michael G.; Bakis, Charles E.
1992-01-01
An investigation of thermomechanical testing and deformation behavior of tubular specimens under torsional loading is described. Experimental issues concerning test accuracy and control specific to thermomechanical loadings under a torsional regime are discussed. A series of shear strain-controlled tests involving the nickel-base superalloy Hastelloy X were performed with various temperature excursions and compared to similar thermomechanical uniaxial tests. The concept and use of second invariants of the deviatoric stress and strain tensors as a means of comparing uniaxial and torsional specimens is also briefly presented and discussed in light of previous thermomechanical tests conducted under uniaxial conditions.
Deformation twins in Hornblende
Rooney, T.P.; Riecker, R.E.; Ross, M.
1970-01-01
Hornblende deformation twins with twin planes parallel to (101) are produced experimentally in single crystals by compression parallel to the c axis. Twinning occurs at confining pressures from 5 to 15 kilobars and temperatures from 400?? to 600??C (strain rate, 10-5 per second).
Transfer involving deformed nuclei
Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.
1985-03-01
Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.
MEMS Actuated Deformable Mirror
Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M
2005-11-10
This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.
Degenerative Spinal Deformity.
Ailon, Tamir; Smith, Justin S; Shaffrey, Christopher I; Lenke, Lawrence G; Brodke, Darrel; Harrop, James S; Fehlings, Michael; Ames, Christopher P
2015-10-01
Degenerative spinal deformity afflicts a significant portion of the elderly and is increasing in prevalence. Recent evidence has revealed sagittal plane malalignment to be a key driver of pain and disability in this population and has led to a significant shift toward a more evidence-based management paradigm. In this narrative review, we review the recent literature on the epidemiology, evaluation, management, and outcomes of degenerative adult spinal deformity (ASD). ASD is increasing in prevalence in North America due to an aging population and demographic shifts. It results from cumulative degenerative changes focused in the intervertebral discs and facet joints that occur asymmetrically to produce deformity. Deformity correction focuses on restoration of global alignment, especially in the sagittal plane, and decompression of the neural elements. General realignment goals have been established, including sagittal vertical axis <50 mm, pelvic tilt <22°, and lumbopelvic mismatch <±9°; however, these should be tailored to the patient. Operative management, in carefully selected patients, yields satisfactory outcomes that appear to be superior to nonoperative strategies. ASD is characterized by malalignment in the sagittal and/or coronal plane and, in adults, presents with pain and disability. Nonoperative management is recommended for patients with mild, nonprogressive symptoms; however, evidence of its efficacy is limited. Surgery aims to restore global spinal alignment, decompress neural elements, and achieve fusion with minimal complications. The surgical approach should balance the desired correction with the increased risk of more aggressive maneuvers. In well-selected patients, surgery yields excellent outcomes. PMID:26378361
Martin, S.E.; Newman, J.B.
1980-11-01
A thermomechanical theory of large deformation elastic-inelastic material behavior is developed which is based on a multiplicative decomposition of the strain. Very general assumptions are made for the elastic and inelastic constitutive relations and effects such as thermally-activated creep, fast-neutron-flux-induced creep and growth, annealing, and strain recovery are compatible with the theory. Reduced forms of the constitutive equations are derived by use of the second law of thermodynamics in the form of the Clausius-Duhem inequality. Observer invariant equations are derived by use of an invariance principle which is a generalization of the principle of material frame indifference.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Signatures. 232.302 Section 232.302 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Preparation of Electronic Submissions § 232.302 Signatures. (a) Required signatures to, or within,...
Vacuum plane waves: Cartan invariants and physical interpretation
NASA Astrophysics Data System (ADS)
Coley, A.; McNutt, D.; Milson, R.
2012-12-01
As an application of the Cartan invariants obtained using the Karlhede algorithm, we study a simple subclass of the PP-wave spacetimes, the gravitational plane waves. We provide an invariant classification of these spacetimes and then study a few notable subcases: the linearly polarized plane waves, the weak-field circularly polarized waves, and another class of plane waves found by imposing conditions on the set of invariants. As we study these spacetimes we relate the invariant structure (i.e., Cartan scalars) to the physical description of these spacetimes using the geodesic deviation equations relative to timelike geodesic observers.
Binary optical filters for scale invariant pattern recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Downie, John D.; Hine, Butler P.
1992-01-01
Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.
Global surpluses of spin-base invariant fermions
NASA Astrophysics Data System (ADS)
Gies, Holger; Lippoldt, Stefan
2015-04-01
The spin-base invariant formalism of Dirac fermions in curved space maintains the essential symmetries of general covariance as well as similarity transformations of the Clifford algebra. We emphasize the advantages of the spin-base invariant formalism both from a conceptual as well as from a practical viewpoint. This suggests that local spin-base invariance should be added to the list of (effective) properties of (quantum) gravity theories. We find support for this viewpoint by the explicit construction of a global realization of the Clifford algebra on a 2-sphere which is impossible in the spin-base non-invariant vielbein formalism.
Metric Ranking of Invariant Networks with Belief Propagation
Tao, Changxia; Ge, Yong; Song, Qinbao; Ge, Yuan; Omitaomu, Olufemi A
2014-01-01
The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A promising approach is to discover invariant relationships among the monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, because system faults usually propagate among the monitoring data and eventually lead to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. Thus, a critical challenge is how to effectively and efficiently rank metrics (nodes) of invariant networks according to the anomaly levels of metrics. The ranked list of metrics will provide system experts with useful guidance for them to localize and diagnose the system faults. To this end, we propose to model the nodes and the broken links as a Markov Random Field (MRF), and develop an iteration algorithm to infer the anomaly of each node based on belief propagation (BP). Finally, we validate the proposed algorithm on both realworld and synthetic data sets to illustrate its effectiveness.
Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2009-01-01
The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.
Signatures of topological Josephson junctions
NASA Astrophysics Data System (ADS)
Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix
2016-08-01
Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.
Polarization signatures of airborne particulates
NASA Astrophysics Data System (ADS)
Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.
2013-07-01
Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.
Invariant high resolution optical skin imaging
NASA Astrophysics Data System (ADS)
Murali, Supraja; Rolland, Jannick
2007-02-01
Optical Coherence Microscopy (OCM) is a bio-medical low coherence interferometric imaging technique that has become a topic of active research because of its ability to provide accurate, non-invasive cross-sectional images of biological tissue with much greater resolution than the current common technique ultrasound. OCM is a derivative of Optical Coherence Tomography (OCT) that enables greater resolution imposed by the implementation of an optical confocal design involving high numerical aperture (NA) focusing in the sample. The primary setback of OCM, however is the depth dependence of the lateral resolution obtained that arises from the smaller depth of focus of the high NA beam. We propose to overcome this limitation using a dynamic focusing lens design that can achieve quasi-invariant lateral resolution up to 1.5mm depth of skin tissue.
Onboard Image Registration from Invariant Features
NASA Technical Reports Server (NTRS)
Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C
2008-01-01
This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.
Bacterial phenotype identification using Zernike moment invariants
NASA Astrophysics Data System (ADS)
Bayraktar, Bulent; Banada, Padmapriya P.; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul; Rajwa, Bartek
2006-02-01
Pathogenic bacterial contamination in food products is costly to the public and to industry. Traditional methods for detection and identification of major food-borne pathogens such as Listeria monocytogenes typically take 3-7 days. Herein, the use of optical scattering for rapid detection, characterization, and identification of bacteria is proposed. Scatter patterns produced by the colonies are recognized without the need to use any specific model of light scattering on biological material. A classification system was developed to characterize and identify the scatter patterns obtained from colonies of various species of Listeria. The proposed classification algorithm is based on Zernike moment invariants (features) calculated from the scatter images. It has also been demonstrated that even a simplest approach to multivariate analysis utilizing principal component analysis paired with clustering or linear discriminant analysis can be successfully used to discriminate and classify feature vectors computed from the bacterial scatter patterns.
Spiking models for level-invariant encoding.
Brette, Romain
2011-01-01
Levels of ecological sounds vary over several orders of magnitude, but the firing rate and membrane potential of a neuron are much more limited in range. In binaural neurons of the barn owl, tuning to interaural delays is independent of level differences. Yet a monaural neuron with a fixed threshold should fire earlier in response to louder sounds, which would disrupt the tuning of these neurons. How could spike timing be independent of input level? Here I derive theoretical conditions for a spiking model to be insensitive to input level. The key property is a dynamic change in spike threshold. I then show how level invariance can be physiologically implemented, with specific ionic channel properties. It appears that these ingredients are indeed present in monaural neurons of the sound localization pathway of birds and mammals. PMID:22291634
Shape recognition with scale and rotation invariance
NASA Astrophysics Data System (ADS)
Schau, Harvey C.
1992-02-01
A technique for shape recognition test is invariant to scale and rotation is presented. This technique employs the number of bit quads, the basic 2 X 2 element of binary (0,1) imagery, of each object. The feature vector is a scaled version of the number of bit quads, which allows a distance to be defined between unknown objects and a collection of known prototypes. Recognition is accomplished by utilizing this distance metric as a classifier. An example is provided that recognizes an automobile shape from a set of six prototypes. Several experiments are performed that change the scale and relative rotation of the unknown. In all cases the correct automobile is identified from the set of six prototypes. A second example considers the effects of boundary noise on classification and points out the advantage of employing noise smoothing prior to feature extraction. The technique presented has the advantage of simplicity, pipeline implementation, and low storage requirements.
Invariant conserved currents in generalized gravity
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Portales-Oliva, Felipe; Puetzfeld, Dirk; Rubilar, Guillermo F.
2015-11-01
We study conservation laws for gravity theories invariant under general coordinate transformations. The class of models under consideration includes Einstein's general relativity theory as a special case as well as its generalizations to non-Riemannian spacetime geometry and nonminimal coupling. We demonstrate that an arbitrary vector field on the spacetime manifold generates a current density that is conserved under certain conditions, and find the expression of the corresponding superpotential. For a family of models including nonminimal coupling between geometry and matter, we discuss in detail the differential conservation laws and the conserved quantities defined in terms of covariant multipole moments. We show that the equations of motion for the multipole moments of extended microstructured test bodies lead to conserved quantities that are closely related to the conserved currents derived in the field-theoretic framework.
Rotationally invariant ensembles of integrable matrices
NASA Astrophysics Data System (ADS)
Yuzbashyan, Emil A.; Shastry, B. Sriram; Scaramazza, Jasen A.
2016-05-01
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)—a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N -M independent commuting N ×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.
The scale-invariant scotogenic model
NASA Astrophysics Data System (ADS)
Ahriche, Amine; McDonald, Kristian L.; Nasri, Salah
2016-06-01
We investigate a minimal scale-invariant implementation of the scotogenic model and show that viable electroweak symmetry breaking can occur while simultaneously generating one-loop neutrino masses and the dark matter relic abundance. The model predicts the existence of a singlet scalar (dilaton) that plays the dual roles of triggering electroweak symmetry breaking and sourcing lepton number violation. Important constraints are studied, including those from lepton flavor violating effects and dark matter direct-detection experiments. The latter turn out to be somewhat severe, already excluding large regions of parameter space. None the less, viable regions of parameter space are found, corresponding to dark matter masses below (roughly) 10 GeV and above 200 GeV.
Electromagnetic fields with vanishing scalar invariants
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Pravda, Vojtěch
2016-06-01
We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.
Discrete scale invariance in supercritical percolation
NASA Astrophysics Data System (ADS)
Schröder, Malte; Chen, Wei; Nagler, Jan
2016-01-01
Recently it has been demonstrated that the connectivity transition from microscopic connectivity to macroscopic connectedness, known as percolation, is generically announced by a cascade of microtransitions of the percolation order parameter (Chen et al 2014 Phys. Rev. Lett. 112 155701). Here we report the discovery of macrotransition cascades which follow percolation. The order parameter grows in discrete macroscopic steps with positions that can be randomly distributed even in the thermodynamic limit. These transition positions are, however, correlated and follow scaling laws which arise from discrete scale invariance (DSI) and non self-averaging, both traditionally unrelated to percolation. We reveal the DSI in ensemble measurements of these non self-averaging systems by rescaling of the individual realizations before averaging.
Invariant relationships deriving from classical scaling transformations
Bludman, Sidney; Kennedy, Dallas C.
2011-04-15
Because scaling symmetries of the Euler-Lagrange equations are generally not variational symmetries of the action, they do not lead to conservation laws. Instead, an extension of Noether's theorem reduces the equations of motion to evolutionary laws that prove useful, even if the transformations are not symmetries of the equations of motion. In the case of scaling, symmetry leads to a scaling evolutionary law, a first-order equation in terms of scale invariants, linearly relating kinematic and dynamic degrees of freedom. This scaling evolutionary law appears in dynamical and in static systems. Applied to dynamical central-force systems, the scaling evolutionary equation leads to generalized virial laws, which linearly connect the kinetic and potential energies. Applied to barotropic hydrostatic spheres, the scaling evolutionary equation linearly connects the gravitational and internal energy densities. This implies well-known properties of polytropes, describing degenerate stars and chemically homogeneous nondegenerate stellar cores.
Truesdell invariance in relativistic electromagnetic fields
NASA Astrophysics Data System (ADS)
Walwadkar, B. B.; Virkar, K. V.
1984-01-01
The Truesdell derivative of a contravariant tensor fieldX ab is defined with respect to a null congruencel a analogous to the Truesdell stress rate in classical continuum mechanics. The dynamical consequences of the Truesdell invariance with respect to a timelike vectoru a of the stress-energy tensor characterizing a charged perfect fluid with null conductivity are the conservation of pressure (p), charged density (e) an expansion-free flow, constancy of the Maxwell scalars, and vanishing spin coefficientsα+¯β = ¯σ - λ = τ = 0 (assuming freedom conditionsk = λ = ɛ ψ + ¯γ = 0). The electromagnetic energy momentum tensor for the special subcases of Ruse-Synge classification for typesA andB are described in terms of the spin coefficients introduced by Newman-Penrose.
A signal invariant wavelet function selection algorithm.
Garg, Girisha
2016-04-01
This paper addresses the problem of mother wavelet selection for wavelet signal processing in feature extraction and pattern recognition. The problem is formulated as an optimization criterion, where a wavelet library is defined using a set of parameters to find the best mother wavelet function. For estimating the fitness function, adopted to evaluate the performance of the wavelet function, analysis of variance is used. Genetic algorithm is exploited to optimize the determination of the best mother wavelet function. For experimental evaluation, solutions for best mother wavelet selection are evaluated on various biomedical signal classification problems, where the solutions of the proposed algorithm are assessed and compared with manual hit-and-trial methods. The results show that the solutions of automated mother wavelet selection algorithm are consistent with the manual selection of wavelet functions. The algorithm is found to be invariant to the type of signals used for classification. PMID:26253283
The Application of Spatial Signature Analysis to Electrical Test Data: Validation Study
Gleason, S.S.; Karnowski, T.P.; Lakhani, F.; Tobin, K.W.
1999-03-15
This paper presents the results of the Spatial Signature Analysis (SSA) Electrical-test (e-test) validation study that was conducted between February and June, 1998. SSA is an automated procedure developed by researchers at the Oak Ridge National Laboratory to address the issue of intelligent data reduction while providing feedback on current manufacturing processes. SSA was initially developed to automate the analysis of optical defect data. Optical defects can form groups, or clusters, which may have a distinct shape. These patterns can reveal information about the manufacturing process. Optical defect SSA uses image processing algorithms and a classifier system to interpret and identify these patterns, or signatures. SSA has been extended to analyze and interpret electrical test data. The algorithms used for optical defect SSA have been adapted and applied to e-test binmaps. An image of the binmap is created, and features such as geometric and invariant moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier. The classifier itself was prepared by manually training, which consists of storing example signatures of interest in a library, then executing an automated process which treats the examples as prototype signatures. The training process includes a procedure for automatically determining which features are most relevant to each class. The evaluation was performed by installing the SSA software as a batch process at three SEMATECH member company sites. Feedback from member company representatives was incorporated and classifiers were built to automatically assign labels to the binmap signatures. The three sites produced memory devices (DRAM) and microprocessors in a mature process fabrication environment. For all of these products, 5,620 signatures that encompassed approximately 552 wafers were human-classified and analyzed. The performance of the SSA E-test system indicates that the approach was successful in reliably classifying binmap
Robust optical alignment systems using geometric invariants
NASA Astrophysics Data System (ADS)
Ho, Tzung-Hsien; Rzasa, John; Milner, Stuart D.; Davis, Christopher C.
2007-09-01
Traditional coarse pointing, acquisition, and tracking (CPAT) systems are pre-calibrated to have the center pixel of the camera aligned to the laser pointing vector and the center pixel is manually moved to the target of interest to complete the alignment process. Such a system has previously demonstrated its capability in aligning with distant targets and the pointing accuracy is on the order of sensor resolution. However, aligning with targets at medium range where the distance between angular sensor and transceiver is not negligible is its Achilles Heel. This limitation can be resolved by imposing constraints, such as the trifocal tensor (TT), which is deduced from the geometrical dependence between cameras and transceivers. Two autonomous CPAT systems are introduced for FSO transceiver alignment in mid- and long-range scenarios. This work focuses on experimental results that validate the pointing performance for targets at different distances, backed up by the theoretical derivations. A mid-range CPAT system, applying a trifocal tensor as its geometric invariant, includes two perspective cameras as sensors to perceive target distances. The long-range CPAT system, applying linear mapping as the invariant, requires only one camera to determine the pointing angle. Calibration procedures for both systems are robust to measurement noise and the resulting system can autonomously point to a target of interest with a high accuracy, which is also on the order of sensor resolution. The results of this work are not only beneficial to the design of CPAT systems for FSO transceiver alignment, but also in new applications such as surveillance and navigation.
Noise-assisted estimation of attractor invariants.
Restrepo, Juan F; Schlotthauer, Gastón
2016-07-01
In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D), the correlation entropy (K_{2}), and the noise level (σ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U-correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (D_{m}^{U}), the correlation entropy (K_{m}^{U}), and the noise level (σ_{m}^{U}). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators D_{m}^{U} and σ_{m}^{U} behave in a similar manner to those based on the GCI. However, for the calculation of K_{2}, the estimator K_{m}^{U} outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D,K_{2}, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants. PMID:27575128
Time reversal invariance in polarized neutron decay
Wasserman, E.G.
1994-03-01
An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.
Lorentz invariance violation and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag
2016-01-01
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.
Scale invariance and universality of economic fluctuations
NASA Astrophysics Data System (ADS)
Stanley, H. E.; Amaral, L. A. N.; Gopikrishnan, P.; Plerou, V.
2000-08-01
In recent years, physicists have begun to apply concepts and methods of statistical physics to study economic problems, and the neologism “econophysics” is increasingly used to refer to this work. Much recent work is focused on understanding the statistical properties of time series. One reason for this interest is that economic systems are examples of complex interacting systems for which a huge amount of data exist, and it is possible that economic time series viewed from a different perspective might yield new results. This manuscript is a brief summary of a talk that was designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena - scale invariance and universality - can be useful in guiding research on economics. We shall see that while scale invariance has been tested for many years, universality is relatively less frequently discussed. This article reviews the results of two recent studies - (i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes - from tiny fluctuations to drastic events, such as market crashes. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ in size by as much as eight orders of magnitude. (ii) Quantifying business firm fluctuations: We analyze the Computstat database comprising all publicly traded United States manufacturing companies within the years 1974-1993. We find that the distributions of growth rates is different for different bins of firm size, with a width that varies inversely with a power of firm size. Similar variation is found for other complex organizations, including country size, university research budget size, and size of species of bird populations.
Developments in Signature Process Control
NASA Astrophysics Data System (ADS)
Keller, L. B.; Dominski, Marty
1993-01-01
Developments in the adaptive process control technique known as Signature Process Control for Advanced Composites (SPCC) are described. This computer control method for autoclave processing of composites was used to develop an optimum cure cycle for AFR 700B polyamide and for an experimental poly-isoimide. An improved process cycle was developed for Avimid N polyamide. The potential for extending the SPCC technique to pre-preg quality control, press modeling, pultrusion and RTM is briefly discussed.
Nonlinear control of magnetic signatures
NASA Astrophysics Data System (ADS)
Niemoczynski, Bogdan
Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and
NASA Astrophysics Data System (ADS)
Tavares, Gustavo Marques
The Standard Model of particle physics describes all known elementary particles and their interactions. Despite its great experimental success, we know that the Standard Model is not a complete description of Nature and therefore new phenomena should be observed at higher energies. In the coming years the Large Hadron Collider will test the Standard Model by colliding protons with center of mass energies of up to 14 TeV providing some of the most stringent tests on the Standard Model. Experimental searches for Dark Matter provide a complementary program to test physics at the weak scale. In the near future new experimental data coming from direct detection experiments, and from satellites and telescopes will drastically improve our sensitivity to weak scale dark matter. This could lead to the first direct observation of dark matter, and thus of physics beyond the Standard Model. In this thesis I propose different extensions of the Standard Model and discuss their experimental consequences. I first discuss models for Axigluons, which are spin one particles in the adjoint representation of the SU(3) color gauge group. These models were motivated by the measurement of higher than predicted forward-backward asymmetry in top quark pair production at the Tevatron. I study different scenarios for Axigluon models that can explain the Tevatron result and explore their signatures at the Large Hadron Collider. Second I discuss the implications of ultraviolet scale invariance for the Standard Model, which has been advocated as a solution to the hierarchy problem. I show that in order to solve the hierarchy problem with scale invariance, new physics is required not far from the weak scale. In the last part of this thesis I propose a new model for dark matter, in which dark matter is charged under a hidden non-Abelian gauge group. This leads to modifications in the sensitivity of the usual experimental searches for dark matter in addition to distinct signatures in the Cosmic
Functional Role of Ribosomal Signatures
Chen, Ke; Eargle, John; Sarkar, Krishnarjun; Gruebele, Martin; Luthey-Schulten, Zaida
2010-01-01
Although structure and sequence signatures in ribosomal RNA and proteins are defining characteristics of the three domains of life and instrumental in constructing the modern phylogeny, little is known about their functional roles in the ribosome. In this work, the largest coevolving RNA/protein signatures in the bacterial 30S ribosome are investigated both experimentally and computationally through all-atom molecular-dynamics simulations. The complex includes the N-terminal fragment of the ribosomal protein S4, which is a primary binding protein that initiates 30S small subunit assembly from the 5′ domain, and helix 16 (h16), which is part of the five-way junction in 16S rRNA. Our results show that the S4 N-terminus signature is intrinsically disordered in solution, whereas h16 is relatively stable by itself. The dynamic disordered property of the protein is exploited to couple the folding and binding process to the five-way junction, and the results provide insight into the mechanism for the early and fast binding of S4 in the assembly of the ribosomal small subunit. PMID:21156135
Electron Signatures and Alfven Waves
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Clemmons, J.; Namgaladze, A. A.; Gustavsson, B.; Wahlund, J.-E.; Eliasson, L.; Yurik, R. Y.
2000-01-01
The electron signatures which appear together with Alfven waves observed by the Freja satellite in the auroral region are reported. Precipitating electrons are detected both with and just before the wave. The observed Alfven waves must therefore be capable of accelerating electrons to higher energies than the local phase velocity of these waves in order for the electrons to move in advance of the wave. The characteristics of such electrons suggest electrons moving infront of the wave have characteristics of origin from warmer and lower density plasma while the electrons moving with the wave have characteristics of cooler and denser plasma. The pitch angle distribution of the electrons moving with the wave indicates that there is continuous acceleration of new particles by the wave, i.e. a propagating Alfven wave is the source of these electrons . A simple model of a propagating source is made to model the electrons that are moving in advance of the wave. Depending on whether accelerated electrons leave the wave above or below the altitude where the Alfven wave has the highest phase velocity, the detected electron signatures will be different; electron dispersion or potential drop like, respectively. It is shown that the Alfven wave acceleration can create electron signatures similar to inverted-V structures.
Selection signatures in Shetland ponies.
Frischknecht, M; Flury, C; Leeb, T; Rieder, S; Neuditschko, M
2016-06-01
Shetland ponies were selected for numerous traits including small stature, strength, hardiness and longevity. Despite the different selection criteria, Shetland ponies are well known for their small stature. We performed a selection signature analysis including genome-wide SNPs of 75 Shetland ponies and 76 large-sized horses. Based upon this dataset, we identified a selection signature on equine chromosome (ECA) 1 between 103.8 Mb and 108.5 Mb. A total of 33 annotated genes are located within this interval including the IGF1R gene at 104.2 Mb and the ADAMTS17 gene at 105.4 Mb. These two genes are well known to have a major impact on body height in numerous species including humans. Homozygosity mapping in the Shetland ponies identified a region with increased homozygosity between 107.4 Mb and 108.5 Mb. None of the annotated genes in this region have so far been associated with height. Thus, we cannot exclude the possibility that the identified selection signature on ECA1 is associated with some trait other than height, for which Shetland ponies were selected. PMID:26857482
Infrared signature studies of aerospace vehicles
NASA Astrophysics Data System (ADS)
Mahulikar, Shripad P.; Sonawane, Hemant R.; Arvind Rao, G.
2007-10-01
Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.
NASA Astrophysics Data System (ADS)
Solorza, S.; Álvarez-Borrego, J.
2013-11-01
The effects of illumination variations in digital images are a trend topic of the pattern recognition field. The luminance information of the objects help to classify them, however the environment illumination could cause a lot of problem if the system is not illumination invariant. Some applications of this topic include image and video quality, biometrics classification, etc. In this work an illumination analysis for a digital system invariant to position and rotation based on Fourier transform, Bessel masks, one-dimensional signatures and linear correlations are presented. The digital system was tested using a reference database of 21 fossil diatoms images of gray-scale and 307 x 307 pixels. The digital system has shown an excellent performance in the classification of 60,480 problem images which have different non-homogeneous illumination.
Spectral signature selection for mapping unvegetated soils
NASA Technical Reports Server (NTRS)
May, G. A.; Petersen, G. W.
1975-01-01
Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.
A new quantum blind signature with unlinkability
NASA Astrophysics Data System (ADS)
Shi, Wei-Min; Zhang, Jian-Biao; Zhou, Yi-Hua; Yang, Yu-Guang
2015-08-01
Recently, some quantum blind signature protocols have been proposed. However, the previous schemes cannot satisfy the unlinkability requirement. To overcome the drawback of unlinkability in the previous schemes, we propose a new quantum blind signature based on Bell states with the help of an authentic party. In this paper, we provide a method to inject a randomizing factor into a message when it is signed by the signer and then get rid of the blind factor from the blinded signature when it is verified by the verifier. Even when the message owner publishes the message-signature pair, the signer cannot identify the association between the message-signature pair and the blind signature he generated. Therefore, our scheme really realizes unlinkability property. At last, analysis results show that this scheme satisfies the basis security requirements of a weak signature such as no-counterfeiting, no-disavowing, blindness and traceability, and our total efficiency is not less than the previous schemes.
Quantum proxy signature scheme with public verifiability
NASA Astrophysics Data System (ADS)
Zhou, Jingxian; Zhou, Yajian; Niu, Xinxin; Yang, Yixian
2011-10-01
In recent years, with the development of quantum cryptography, quantum signature has also made great achievement. However, the effectiveness of all the quantum signature schemes reported in the literature can only be verified by a designated person. Therefore, its wide applications are limited. For solving this problem, a new quantum proxy signature scheme using EPR quantum entanglement state and unitary transformation to generate proxy signature is presented. Proxy signer announces his public key when he generates the final signature. According to the property of unitary transformation and quantum one-way function, everyone can verify whether the signature is effective or not by the public key. So the quantum proxy signature scheme in our paper can be public verified. The quantum key distribution and one-time pad encryption algorithm guarantee the unconditional security of this scheme. Analysis results show that this new scheme satisfies strong non-counterfeit and strong non-disavowal.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2011-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
Robust estimation of albedo for illumination-invariant matching and shape recovery.
Biswas, Soma; Aggarwal, Gaurav; Chellappa, Rama
2009-05-01
We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error statistics of surface normals and illumination direction for robust estimation of albedo, for images illuminated by single and multiple light sources. The albedo estimate obtained is subsequently used to generate albedo-free normalized images for recovering the shape of an object. Traditional Shape-from-Shading (SFS) approaches often assume constant/piecewise constant albedo and known light source direction to recover the underlying shape. Using the estimated albedo, the general problem of estimating the shape of an object with varying albedo map and unknown illumination source is reduced to one that can be handled by traditional SFS approaches. Experimental results are provided to show the effectiveness of the approach and its application to illumination-invariant matching and shape recovery. The estimated albedo maps are compared with the ground truth. The maps are used as illumination-invariant signatures for the task of face recognition across illumination variations. The recognition results obtained compare well with the current state-of-the-art approaches. Impressive shape recovery results are obtained using images downloaded from the Web with little control over imaging conditions. The recovered shapes are also used to synthesize novel views under novel illumination conditions. PMID:19299862
NASA Astrophysics Data System (ADS)
Chen, Jingyi; Zebker, Howard A.; Knight, Rosemary
2015-11-01
Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique for measuring surface deformation to millimeter-level accuracy at meter-scale resolution. Obtaining accurate deformation measurements in agricultural regions is difficult because the signal is often decorrelated due to vegetation growth. We present here a new algorithm for retrieving InSAR deformation measurements over areas with severe vegetation decorrelation using adaptive phase interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. We apply this algorithm to L-band ALOS interferograms acquired over the San Luis Valley, Colorado, and the Tulare Basin, California. In both areas, the pumping of groundwater for irrigation results in deformation of the land that can be detected using InSAR. We show that the PS-based algorithm can significantly reduce the artifacts due to vegetation decorrelation while preserving the deformation signature.
NASA Astrophysics Data System (ADS)
Ishida, H.; Wortmann, D.
2016-03-01
The embedding potential defined on the boundary surface of a semi-infinite crystal relates the value and normal derivative of generalized Bloch states propagating or decaying toward the interior of the crystal. It becomes Hermitian when the electron energy ɛ is located in a projected bulk band gap at a given wave vector k in the surface Brillouin zone (SBZ). If one plots the real eigenvalues of the embedding potential for a time-reversal invariant insulator in the projected bulk band gap along a path ɛ =ɛ0(k ) passing between two time-reversal invariant momentum (TRIM) points in the SBZ, then, they form Kramers doublets at both end points. We will demonstrate that the Z2 topological invariant, ν , which is either 0 or 1, depending on the product of time-reversal polarizations at the two TRIM points, can be determined from the two different ways these eigenvalues are connected between the two TRIM points. Furthermore, we will reveal a relation, ν =P mod 2, where P denotes the number of poles that the embedding potential exhibits along the path. We also discuss why gapless surface states crossing the bulk band gap inevitably occur on the surface of topological band insulators from the view point of the embedding theory.
Quantification of organ motion based on an adaptive image-based scale invariant feature method
Paganelli, Chiara; Peroni, Marta
2013-11-15
Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT
[Babies with cranial deformity].
Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J
2009-01-01
Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299
Partially segmented deformable mirror
Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.
1991-01-01
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.
Partially segmented deformable mirror
Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.
1991-05-21
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.
Probing deformed quantum commutators
NASA Astrophysics Data System (ADS)
Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.
2016-07-01
Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.
Dragging and Making Sense of Invariants in Dynamic Geometry
ERIC Educational Resources Information Center
Baccaglini-Frank, Anna E.
2012-01-01
Perceiving and interpreting invariants is a complex task for a nonexpert geometry student, as various studies have shown. Nevertheless, having students work through particular kinds of activities that involve perception and interpretation of invariants and engage in discussions with classmates, guided by the teacher, can help them learn…
Metacognitive Invariants as Psychological-Pedagogical Factors of Training
ERIC Educational Resources Information Center
Gein, Alexander G.; Nekrasov, Vladimir P.
2013-01-01
In this paper, we propose an approach to acquire by students the cognitive competencies. This approach is based on the inclusion of metacognitive invariants in a methodical system. It is verified experimentally that the quality of the learning increases if the proposed invariants are included into academic courses.
Breakup of an invariant curve in a dissipative standard mapping
NASA Astrophysics Data System (ADS)
Yamaguchi, Yoshihiro
1986-06-01
A critical value for the existence of an invariant curve in a dissipative standard mapping is calculated by a new method in relation to Arnold's tongue. It is shown that the golden mean invariant curve is not the last curve for the strongly dissipative parameter region.
Evaluation of the IRT Parameter Invariance Property for the MCAT.
ERIC Educational Resources Information Center
Kelkar, Vinaya; Wightman, Linda F.; Luecht, Richard M.
The purpose of this study was to investigate the viability of the property of parameter invariance for the one-parameter (1P), two-parameter (2P), and three-parameter (3P) item response theory (IRT) models for the Medical College Admissions Tests (MCAT). Invariance of item parameters across different gender, ethnic, and language groups and the…
Finding Mutual Exclusion Invariants in Temporal Planning Domains
NASA Technical Reports Server (NTRS)
Bernardini, Sara; Smith, David E.
2011-01-01
We present a technique for automatically extracting temporal mutual exclusion invariants from PDDL2.2 planning instances. We first identify a set of invariant candidates by inspecting the domain and then check these candidates against properties that assure invariance. If these properties are violated, we show that it is sometimes possible to refine a candidate by adding additional propositions and turn it into a real invariant. Our technique builds on other approaches to invariant synthesis presented in the literature, but departs from their limited focus on instantaneous discrete actions by addressing temporal and numeric domains. To deal with time, we formulate invariance conditions that account for both the entire structure of the operators (including the conditions, rather than just the effects) and the possible interactions between operators. As a result, we construct a technique that is not only capable of identifying invariants for temporal domains, but is also able to find a broader set of invariants for non-temporal domains than the previous techniques.
Invariances for states of light and their quasi-distributions
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Lehner, J.; Paul, H.
1996-02-01
We consider the states of a two-mode light field which are invariant under rotation of the coordinate axis. We derive the general form of Wigner, Q and P functions as well as the density matrix. On imposing further invariances we recover the results for the unpolarized radiation of different kinds.
Shape invariance and laddering equations for the associated hypergeometric functions
NASA Astrophysics Data System (ADS)
Fakhri, H.; Chenaghlou, A.
2004-03-01
Introducing the associated hypergeometric functions in terms of two non-negative integers, we factorize their corresponding differential equation into a product of first-order differential operators by four different ways as shape invariance equations. These shape invariances are realized by four different types of raising and lowering operators. This procedure gives four different pairs of recursion relations on the associated hypergeometric functions.
Rephasing invariants of the Cabibbo-Kobayashi- Maskawa matrix
NASA Astrophysics Data System (ADS)
Pérez R., H.; Kielanowski, P.; Juárez W., S. R.
2016-03-01
The paper is motivated by the importance of the rephasing invariance of the CKM (Cabibbo-Kobayashi-Maskawa) matrix observables. These observables appear in the discussion of the CP violation in the standard model (Jarlskog invariant) and also in the renormalization group equations for the quark Yukawa couplings. Our discussion is based on the general phase invariant monomials built out of the CKM matrix elements and their conjugates. We show that there exist 30 fundamental phase invariant monomials and 18 of them are a product of 4 CKM matrix elements and 12 are a product of 6 CKM matrix elements. In the main theorem we show that a general rephasing invariant monomial can be expressed as a product of at most five factors: four of them are fundamental phase invariant monomials and the fifth factor consists of powers of squares of absolute values of the CKM matrix elements. We also show that the imaginary part of any rephasing invariant monomial is proportional to the Jarlskog's invariant J or is 0.
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
New two-dimensional quantum models with shape invariance
Cannata, F.; Ioffe, M. V.; Nishnianidze, D. N.
2011-02-15
Two-dimensional quantum models which obey the property of shape invariance are built in the framework of polynomial two-dimensional supersymmetric quantum mechanics. They are obtained using the expressions for known one-dimensional shape invariant potentials. The constructed Hamiltonians are integrable with symmetry operators of fourth order in momenta, and they are not amenable to the conventional separation of variables.
Measurement Invariance: A Foundational Principle for Quantitative Theory Building
ERIC Educational Resources Information Center
Nimon, Kim; Reio, Thomas G., Jr.
2011-01-01
This article describes why measurement invariance is a critical issue to quantitative theory building within the field of human resource development. Readers will learn what measurement invariance is and how to test for its presence using techniques that are accessible to applied researchers. Using data from a LibQUAL+[TM] study of user…
Form factors in SU(3)-invariant integrable models
NASA Astrophysics Data System (ADS)
Belliard, S.; Pakuliak, S.; Ragoucy, E.; Slavnov, N. A.
2013-04-01
We study SU(3)-invariant integrable models solvable by a nested algebraic Bethe ansatz. We obtain determinant representations for form factors of diagonal entries of the monodromy matrix. This representation can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
Historical Perspectives on Invariant Measurement: Guttman, Rasch, and Mokken
ERIC Educational Resources Information Center
Engelhard, George, Jr.
2008-01-01
The purpose of this study is to describe how Guttman, Rasch, and Mokken approached issues related to invariant measurement. These measurement theorists were chosen to illustrate the evolution of our conceptualizations of invariant measurement during the 20th century within the research tradition of item response theory. Item response theory can be…
Model Misspecification and Invariance Testing Using Confirmatory Factor Analytic Procedures
ERIC Educational Resources Information Center
French, Brian F.; Finch, W. Holmes
2011-01-01
Confirmatory factor analytic procedures are routinely implemented to provide evidence of measurement invariance. Current lines of research focus on the accuracy of common analytic steps used in confirmatory factor analysis for invariance testing. However, the few studies that have examined this procedure have done so with perfectly or near…
Coordinate Projection-based Solver for ODE with Invariants
Serban, Radu
2008-04-08
CPODES is a general purpose (serial and parallel) solver for systems of ordinary differential equation (ODE) with invariants. It implements a coordinate projection approach using different types of projection (orthogonal or oblique) and one of several methods for the decompositon of the Jacobian of the invariant equations.
Remarks on screening in a gauge-invariant formalism
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Schmidt, Iván
2001-07-01
In this paper we display a direct and physically attractive derivation of the screening contribution to the interaction potential in the chiral Schwinger model and generalized Maxwell-Chern-Simons gauge theory. It is shown that these results emerge naturally when a correct separation between gauge-invariant and gauge degrees of freedom is made. Explicit expressions for gauge-invariant fields are found.
Factorial Invariance in Multiple Populations: A Multiple Testing Procedure
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E.
2013-01-01
A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…
Conformal Invariance of the 3D Self-Avoiding Walk
NASA Astrophysics Data System (ADS)
Kennedy, Tom
2013-10-01
We show that if the three-dimensional self-avoiding walk (SAW) is conformally invariant, then one can compute the hitting densities for the SAW in a half-space and in a sphere. We test these predictions by Monte Carlo simulations and find excellent agreement, thus providing evidence that the SAW is conformally invariant in three dimensions.
Putting a Classroom Spin on Invariance in Circles
ERIC Educational Resources Information Center
Staples, Ed
2009-01-01
An old chestnut goes something like this. The surface area of a pond in the form of an annulus is required, but the only measurement possible is the length of the chord across the outer circumference and tangent to the inner circumference. It is a beautiful example of invariance. Invariance in mathematics usually refers to a quantity that remains…
Factorial Invariance of a Pan-Hispanic Familism Scale
ERIC Educational Resources Information Center
Villarreal, Ricardo; Blozis, Shelley A.; Widaman, Keith F.
2005-01-01
This article considers the validity and factorial invariance of an attitudinal measure of familism. Using a large, nationally representative sample of U.S. Hispanics, the validity and factorial invariance of the measure was tested across country of origin (United States, Mexico, and Latin America) and the language in which the survey was conducted…
NASA Astrophysics Data System (ADS)
Lindsay, R. W.
2002-10-01
The deformation rate of sea ice is a key parameter for determining the evolution of the ice thickness distribution. It determines the rate of new ice formation through opening and the rate of ridging through closing and shear. An extensive suite of ground-based and satellite-based measurements of ice motion is used to construct a daily time series of the ice velocity and deformation in the vicinity of the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp that is suitable for forcing a model of the ice thickness distribution. The velocity is interpolated to a square grid that remains centered on the camp, has a spacing of 25 km, is 400 km on a side, and is determined for a 371-day period from 2 October 1997 to 7 October 1998. Velocity measurements from buoys, Advanced Very High Resolution Radiometer (AVHRR), Special Sensor Microwave/Imager (SSMI), and Radarsat Geophysical Processing System (RGPS) are merged using optimal interpolation and a Kalman filter approach. The deformation rate is taken directly from the RGPS measurements when available. The daily total deformation rate measured on a scale of 100 km near the camp averaged 2.21% d-1, and the standard deviation was 1.78% d-1. The divergence was positive in the early winter and negative through most of the spring and summer. There were two major opening/closing events, one in January and one at the end of July. The net divergence over the year was very near zero. The vorticity indicated a net rotation of 87° over the year, with the winter showing strong anticyclonic turning and the summer showing strong cyclonic turning.
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
Deformation of Wrinkled Graphene
2015-01-01
The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609
Treatment of Madelung's deformity.
Saffar, P; Badina, A
2015-12-01
Treatment of Madelung's deformity is still controversial. We reviewed retrospectively 19 patients with Madelung's deformity (two bilateral, 21 cases) who underwent surgery to the radius and ulna to improve range of motion, decrease pain and improve appearance of the wrist. Nineteen patients underwent 21 distal radial osteotomy procedures using three different techniques: subtraction, addition or dome osteotomy. Ulnar shortening and redirection of the distal ulna was performed in 12 cases; a long oblique osteotomy was used in 10 of these cases. The Sauvé-Kapandji technique was performed in five cases, an ulnar distal epiphysiodesis in two cases and a combination of osteotomy and epiphysiodesis in one case. The aim was to reduce the distal radial slope and to restore the orientation and congruity of the distal radio-ulnar joint and to improve its function. Pain was reduced as a result of the procedure: more than 75% of the cases had no or intermittent pain at the review. Pronation improved from 63° to 68° (P=0.467, not significant) and supination improved from 48° to 72° on average (P=0.034, significant). Grip strength increased from 11 to 18 kgf (P=0.013, significant). Madelung's deformity is not always a benign condition and it responds well to corrective osteotomies. PMID:26525609
Deformable micro torque swimmer
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke
2015-11-01
We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.
Evaluating the Impact of Partial Factorial Invariance on Selection in Two Populations
ERIC Educational Resources Information Center
Millsap, Roger E.; Kwok, Oi-Man
2004-01-01
Studies of factorial invariance examine whether a common factor model holds across multiple populations with identical parameter values. Partial factorial invariance exists when some, but not all, parameters are invariant. The literature on factorial invariance is unclear about what should be done if partial invariance is found. One approach to…
NASA Astrophysics Data System (ADS)
Zhang, Min-Cang
2013-11-01
The arbitrary l-wave solutions to the Schrödinger equation for the deformed hyperbolic Eckart potential is investigated analytically by using the Nikiforov—Uvarov method. The centrifugal term is treated with the improved Greene and Aldrich approximation scheme. The wave functions are expressed in terms of the Jacobi polynomial or the hypergeometric function. The discrete spectrum is obtained and it is shown that the deformed hyperbolic Eckart potential is a shape-invariant potential and the bound state energy is independent of the deformation parameter q.
Optical implementation of neocognitron and its applications to radar signature discrimination
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1991-01-01
A feature-extraction-based optoelectronic neural network is introduced. The system implementation approach applies the principle of the neocognitron paradigm first introduced by Fukushima et al. (1983). A multichannel correlator is used as a building block of a generic single layer of the neocognitron for shift-invariant feature correlation. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator. Successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved using this optoelectronic neocognitron. Detailed system analysis is described. Experimental demonstration of radar signature processing is also provided.
NASA Technical Reports Server (NTRS)
Strauss, Karl F.; Sheldon, Douglas J.
2011-01-01
Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic
The thermodynamics of deformed metamorphic rocks: A review
NASA Astrophysics Data System (ADS)
Hobbs, Bruce E.; Ord, Alison; Regenauer-Lieb, Klaus
2011-05-01
The deformation of rocks is a disequilibrium and strongly non-linear phenomenon with a number of interacting chemical, thermal and microstructural processes operating simultaneously. We review progress in this area over the past 30 years. Deforming-chemically reacting systems are dissipative systems and hence are characterised by highly ordered structures that develop through cooperative processes once parameters such as critical strains, strain-rates, fluid infiltration rates, damage densities or temperatures are attained. Such criticality is the hallmark of deformed rocks at all length scales and is the basis for a diverse range of structures such as foliations and lineations produced by metamorphic differentiation, rotation recrystallisation, folding, boudinage and micro to regional scale fracture systems. Criticality is identified with classical criticality and not self-organised criticality. The first and second laws of thermodynamics are used to show that such structural diversity arises from reaction-diffusion-deformation equations. Criticality of the system is associated with the stored energy becoming non-convex and structures arise in order to minimise this non-convex energy. These structures are scale invariant and hence are characterised by fractal and minimal surface geometries. Thermodynamics is a powerful discipline to integrate seemingly unrelated processes in structural geology and produce an integrated approach to the subject that crosses all length scales.
A non-linear elastic constitutive framework for replicating plastic deformation in solids.
Roberts, Scott Alan; Schunk, Peter Randall
2014-02-01
Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.
The deformation of Poincaré subgroups concerning very special relativity
NASA Astrophysics Data System (ADS)
Zhang, Lei; Xue, Xun
2014-05-01
We investigate here various kinds of semi-product subgroups of Poincaré group in the scheme of Cohen-Glashow's very special relativity along the deformation approach by Gibbons-Gomis-Pope. For each proper Poincaré subgroup which is a semi-product of proper lorentz group with the spacetime translation group T(4), we investigate all possible deformations and obtain all the possible natural representations inherited from the 5 - d representation of Poincaré group. We find from the obtained natural representation that rotation operation may have additional accompanied scale transformation when the original Lorentz subgroup is deformed and the boost operation gets the additional accompanied scale transformation in all the deformation cases. The additional accompanied scale transformation has a strong constrain on the possible invariant metric function of the corresponding geometry and the field theories in the spacetime with the corresponding geometry.
Genetic signatures of heroin addiction
Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang
2016-01-01
Abstract Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086
Infrared signatures for remote sensing
McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.
1994-04-01
PNL`s capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm{sup {minus}1} at <10-MHz bandwidth; a Bruker Fourier-transform infrared (FTIR) spectrometer for the near- to far-infrared at 50-MHz resolution; and a stable line-tunable, 12-w cw CO{sub 2} laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at {approximately}10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl{sub 4} at 770--800 cm{sup {minus}1}. This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO{sub 2} laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks.
Genetic signatures of heroin addiction.
Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang
2016-08-01
Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086
Quantum signatures of chimera states
NASA Astrophysics Data System (ADS)
Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.
2015-12-01
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.
Spectroscopic signature for ferroelectric ice
NASA Astrophysics Data System (ADS)
Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz
2014-09-01
Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.
Observational Signatures of Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Savage, Sabrina
2014-01-01
Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.
Quantum broadcasting multiple blind signature with constant size
NASA Astrophysics Data System (ADS)
Xiao, Min; Li, Zhenli
2016-06-01
Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.
Noninflationary model with scale invariant cosmological perturbations
Peter, Patrick; Pinho, Emanuel J. C.; Pinto-Neto, Nelson
2007-01-15
We show that a contracting universe which bounces due to quantum cosmological effects and connects to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations provided the perturbations are produced during an almost matter dominated era in the contraction phase. This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum (n{sub S}-1>0). Taking into account the spectral index constraint as well as the cosmic microwave background normalization measure yields an equation of state that should be less than {omega} < or approx. 8x10{sup -4}, implying n{sub S}-1{approx}O(10{sup -4}), and that the characteristic curvature scale of the Universe at the bounce is L{sub 0}{approx}10{sup 3}l{sub Pl}, a region where one expects that the Wheeler-DeWitt equation should be valid without being spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between the tensor-to-scalar ratio T/S and the scalar spectral index as T/S{approx}4.6x10{sup -2}{radical}(n{sub S}-1), leading to potentially measurable differences with inflationary predictions.
QCD breaks Lorentz invariance and colour
NASA Astrophysics Data System (ADS)
Balachandran, A. P.
2016-03-01
In the previous work [A. P. Balachandran and S. Vaidya, Eur. Phys. J. Plus 128, 118 (2013)], we have argued that the algebra of non-Abelian superselection rules is spontaneously broken to its maximal Abelian subalgebra, that is, the algebra generated by its completing commuting set (the two Casimirs, isospin and a basis of its Cartan subalgebra). In this paper, alternative arguments confirming these results are presented. In addition, Lorentz invariance is shown to be broken in quantum chromodynamics (QCD), just as it is in quantum electrodynamics (QED). The experimental consequences of these results include fuzzy mass and spin shells of coloured particles like quarks, and decay life times which depend on the frame of observation [D. Buchholz, Phys. Lett. B 174, 331 (1986); D. Buchholz and K. Fredenhagen, Commun. Math. Phys. 84, 1 (1982; J. Fröhlich, G. Morchio and F. Strocchi, Phys. Lett. B 89, 61 (1979); A. P. Balachandran, S. Kürkçüoğlu, A. R. de Queiroz and S. Vaidya, Eur. Phys. J. C 75, 89 (2015); A. P. Balachandran, S. Kürkçüoğlu and A. R. de Queiroz, Mod. Phys. Lett. A 28, 1350028 (2013)]. In a paper under preparation, these results are extended to the ADM Poincaré group and the local Lorentz group of frames. The renormalisation of the ADM energy by infrared gravitons is also studied and estimated.
Rotationally invariant ensembles of integrable matrices
NASA Astrophysics Data System (ADS)
Scaramazza, Jasen; Yuzbashyan, Emil; Shastry, Sriram
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT) - a counterpart of random matrix theory (RMT) for quantum integrable models. A type- M family of integrable matrices consists of exactly N - M independent commuting N × N matrices linear in a real parameter. We first develop a rotationally invariant parameterization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice-versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, in a manner similar to the construction of Gaussian ensembles in the RMT. This work was supported in part by the David and Lucille Packard Foundation. The work at UCSC was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # FG02-06ER46319.
ICECUBE Neutrinos and Lorentz Invariance Violation
NASA Astrophysics Data System (ADS)
Amelino-Camelia, Giovanni; Guetta, D.; Piran, Tsvi
2015-06-01
The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.
Trojan Horse particle invariance in fusion reactions
NASA Astrophysics Data System (ADS)
Pizzone, R. G.; Spitaleril, C.; Bertulani, C.; Mukhamedzhanov, A.; Blokhintsev, L.; La Cognata, M.; Lamia, L.; Spartá, R.; Tumino, A.
2015-01-01
Trojan Horse method plays an important part for the measurement of several charged particle induced reactions cross sections of astrophysical interest. In order to better understand its cornerstones and the related applications to different astrophysical scenarios several tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance for the binary reactions d(d,p)t, 6,7Li(p,α)3,4He was therefore tested using the appropriate quasi free break- ups, respectively. In the first cases results from 6Li and 3He break up were used, while for the lithium fusion reactions break-ups of 2H and 3He were compared. The astrophysical S(E)-factors for the different processes were then extracted in the framework of the PlaneWave Approximation applied to the different break-up schemes. The obtained results are compared with direct data as well as with previous indirect investigations. The very good agreement between data coming from different break-up schemes confirms the applicability of the plane wave approximation and suggests the independence of binary indirect cross section on the chosen Trojan Horse nucleus also for the present cases. Moreover the astrophysical implications of the results will also be discussed in details.
Magnetic monopoles, Galilean invariance, and Maxwell's equations
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, ``as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamics are Galilean invariant-i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities v<
Computing with scale-invariant neural representations
NASA Astrophysics Data System (ADS)
Howard, Marc; Shankar, Karthik
The Weber-Fechner law is perhaps the oldest quantitative relationship in psychology. Consider the problem of the brain representing a function f (x) . Different neurons have receptive fields that support different parts of the range, such that the ith neuron has a receptive field at xi. Weber-Fechner scaling refers to the finding that the width of the receptive field scales with xi as does the difference between the centers of adjacent receptive fields. Weber-Fechner scaling is exponentially resource-conserving. Neurophysiological evidence suggests that neural representations obey Weber-Fechner scaling in the visual system and perhaps other systems as well. We describe an optimality constraint that is solved by Weber-Fechner scaling, providing an information-theoretic rationale for this principle of neural coding. Weber-Fechner scaling can be generated within a mathematical framework using the Laplace transform. Within this framework, simple computations such as translation, correlation and cross-correlation can be accomplished. This framework can in principle be extended to provide a general computational language for brain-inspired cognitive computation on scale-invariant representations. Supported by NSF PHY 1444389 and the BU Initiative for the Physics and Mathematics of Neural Systems,.
Implications of conformal invariance in momentum space
NASA Astrophysics Data System (ADS)
Bzowski, Adam; McFadden, Paul; Skenderis, Kostas
2014-03-01
We present a comprehensive analysis of the implications of conformal invariance for 3-point functions of the stress-energy tensor, conserved currents and scalar operators in general dimension and in momentum space. Our starting point is a novel and very effective decomposition of tensor correlators which reduces their computation to that of a number of scalar form factors. For example, the most general 3-point function of a conserved and traceless stress-energy tensor is determined by only five form factors. Dilatations and special conformal Ward identities then impose additional conditions on these form factors. The special conformal Ward identities become a set of first and second order differential equations, whose general solution is given in terms of integrals involving a product of three Bessel functions (`triple- K integrals'). All in all, the correlators are completely determined up to a number of constants, in agreement with well-known position space results. In odd dimensions 3-point functions are finite without renormalisation while in even dimensions non-trivial renormalisation in required. In this paper we restrict ourselves to odd dimensions. A comprehensive analysis of renormalisation will be discussed elsewhere. This paper contains two parts that can be read independently of each other. In the first part, we explain the method that leads to the solution for the correlators in terms of triple- K integrals while the second part contains a self-contained presentation of all results. Readers interested only in results may directly consult the second part of the paper.
Generalized formalism in gauge-invariant gravitational perturbations
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Cao, Li-Ming
2013-10-01
By the use of the gauge-invariant variables proposed by Kodama and Ishibashi, we obtain the most general perturbation equations in the (m+n)-dimensional spacetime with a warped product metric. These equations do not depend on the spectral expansions of the Laplace-type operators on the n-dimensional Einstein manifold. These equations enable us to have a complete gauge-invariant perturbation theory and a well-defined spectral expansion for all modes, and the gauge invariance is kept for each mode. By studying perturbations of some projections of Weyl tensor in the case of m=2, we define three Teukolsky-like gauge-invariant variables and obtain the perturbation equations of these variables by considering the perturbations of the Penrose wave equations in the (2+n)-dimensional Einstein spectime. In particular, we find the relations between the Teukolsky-like gauge-invariant variables and the Kodama-Ishibashi gauge-invariant variables. These relations imply that the Kodama-Ishibashi gauge-invariant variables all come from the perturbations of the Weyl tensor of the spacetime.
Wall-crossing invariants: from quantum mechanics to knots
NASA Astrophysics Data System (ADS)
Galakhov, D.; Mironov, A.; Morozov, A.
2015-03-01
We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change of moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones ( N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.
Wall-crossing invariants: from quantum mechanics to knots
Galakhov, D. E-mail: galakhov@physics.rutgers.edu; Mironov, A. Morozov, A.
2015-03-15
We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change of moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones (N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.
NASA Astrophysics Data System (ADS)
Matyas, Vashek
We promised a year back some data on the experiment that we ran with chip and PIN. If you recall, it was the first phase that we reported on here last year, where we used the University bookstore, and two PIN pads, one with very solid privacy shielding, the other one without any. We ran 17 people through the first one, 15 people through the second one, and we also had the students do, about half of them forging the signature, half of them signing their own signature, on the back of the card that is used for purchasing books, or whatever.We had a second phase of the experiment, after long negotiations, and very complicated logistics, with a supermarket in Brno where we were able to do anything that we wanted through the experiment for five hours on the floor, with only the supermarket manager, the head of security, and the camera operators knowing about the experiment. So the shop assistants, the ground floor security, everybody basically on the floor, did not know about the experiment. That was one of the reasons why the supermarket, or management, agreed to take part, they wanted to control their own internal security procedures.
Theoretical Characterizaiton of Visual Signatures
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.
2015-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Tassi, E.; Morrison, P. J.
2011-03-15
Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving new infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium 'translated' pressure gradient, stable equilibria can either be energy stable, i.e., possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes. The ETG instability is then shown to arise through a Krein-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode, whereas the energy of the slow mode can have either positive or negative sign. A reduced model with stable equilibria shear flow that possess a continuous spectrum is also analyzed and brought to normal form by a special integral transform. In this way it is seen how continuous spectra can have signature as well.
Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L. )
1991-02-15
We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum ({ital k}) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like log{ital V} with the lattice volume {ital V}. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being {ital c}-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the {phi}{sup 4} model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator {l angle}{phi}({ital k}){phi}({ital k}{prime}){r angle} in the {phi}{sup 4} model, investigate Euclidean invariance, and extract {ital m}{sub {ital R}} as well as {ital Z}{sub {ital R}}. Moreover we compute {l angle}{ital F}{sub {mu}{nu}}({ital k}){ital F}{sub {mu}{nu}}({ital k}{prime}){r angle} in the SU(2) model.
Anisotropic scale invariant spacetimes and black holes in Zwei-Dreibein Gravity
NASA Astrophysics Data System (ADS)
Goya, A. F.
2014-09-01
We show that Zwei-Dreibein Gravity (ZDG), a bigravity theory recently proposed by Bergshoeff, de Haan, Hohm, Merbis, and Townsend in ref. [1], admits exact solutions with anisotropic scale invariance. These type of geometries are the three-dimensional analogues of the spacetimes which were proposed as gravity duals for condensed matter systems. In particular, we find Schrödinger invariant spaces as well as Lifshitz spaces with arbitrary dynamical exponent z. We also find black holes that are asymptotically Lifshitz with z = 3, showing that these (non-constant curvature) solutions of New Massive Gravity (NMG) are persistent after the introduction of the infinite tower of higher-curvature terms of ZDG, provided a renormalization of the parameters. Black holes in asymptotically warped Anti-de Sitter spaces are also found. Interestingly, in almost all the geometries studied in this work, the metric associated with the second dreibein turns out to be equivalent, up to a constant global factor, to the first one. This phenomenon has been previously observed in other bigravity theories in asymptotically flat and asymptotically Anti-de Sitter backgrounds. However, for the particular case of the z = 3 Lifshitz black hole, here we found that the second metric corresponds to a different black hole that coincides with the former only in the asymptotic region. In fact, we find a new family of z = 3 black holes that corresponds to a one-parameter deformation of the NMG solution.
On-demand generation of propagation-invariant photons with orbital angular momentum
NASA Astrophysics Data System (ADS)
Jerónimo-Moreno, Y.; Jáuregui, R.
2014-07-01
We study the generation of propagation invariant photons with orbital angular momentum by spontaneous parametric down conversion (SPDC) using a Bessel-Gauss pump beam. The angular and conditional angular spectra are calculated for an uniaxial crystal optimized for type I SPDC with standard Gaussian pump beams. It is shown that, as the mean value of the magnitude of the transverse wave vector of the pump beam increases, the emission cone is deformed into two non-coaxial cones that touch each other along a line determined by the orientation of the optical axis of the nonlinear crystal. At this location, the conditional spectrum becomes maximal for a pair of photons, one of which is best described by a Gaussian-like photon with a very small transverse wave vector, and the other a Bessel-Gauss photon with a distribution of transverse wave vectors similar in amplitude to that of the incident pump beam. A detailed analysis is then performed of the angular momentum content of SPDC photons by the evaluation of the corresponding transition amplitudes. As a result, we obtain conditions for the generation of heralded single photons which are approximately propagation invariant and have orbital angular momentum. A discussion is given about the difficulties in the interpretation of the results in terms of conservation of optical orbital angular momentum along the vector normal to the crystal surface. The angular spectra and the conditional angular spectra are successfully compared with available experimental data recently reported in the literature.
Vortex Partition Functions, Wall Crossing and Equivariant Gromov-Witten Invariants
NASA Astrophysics Data System (ADS)
Bonelli, Giulio; Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr
2015-01-01
In this paper we identify the problem of equivariant vortex counting in a (2,2) supersymmetric two dimensional quiver gauged linear sigma model with that of computing the equivariant Gromov-Witten invariants of the GIT quotient target space determined by the quiver. We provide new contour integral formulae for the and -functions encoding the equivariant quantum cohomology of the target space. Its chamber structure is shown to be encoded in the analytical properties of the integrand. This is explained both via general arguments and by checking several key cases. We show how several results in equivariant Gromov-Witten theory follow just by deforming the integration contour. In particular, we apply our formalism to compute Gromov-Witten invariants of the orbifold, of the Uhlembeck (partial) compactification of the moduli space of instantons on , and of A n and D n singularities both in the orbifold and resolved phases. Moreover, we analyse dualities of quantum cohomology rings of holomorphic vector bundles over Grassmannians, which are relevant to BPS Wilson loop algebrae.
Narrow terahertz attenuation signatures in Bacillus thuringiensis.
Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal
2014-10-01
Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection. PMID:23821459
Cryptanalysis of Quantum Blind Signature Scheme
NASA Astrophysics Data System (ADS)
Zuo, Huijuan
2013-01-01
In this paper, we study the cryptanalysis of two quantum blind signature schemes and one quantum proxy blind signature protocol. We show that in these protocols the verifier can forge the signature under known message attack. The attack strategies are described in detail respectively. This kind of problem deserves more research attention in the following related study. We further point out that the arbitrator should be involved in the procedure of any dispute and some discussions of these protocols are given.
Imaging radar polarization signatures - Theory and observation
NASA Technical Reports Server (NTRS)
Van Zyl, Jakob J.; Zebker, Howard A.; Elachi, Charles
1987-01-01
Radar polarimetry theory is reviewed, and comparison between theory and experimental results obtained with an imaging radar polarimeter employing two orthogonally polarized antennas is made. Knowledge of the scattering matrix permits calculation of the scattering cross section of a scatterer for any transmit and receive polarization combination, and a new way of displaying the resulting scattering cross section as a function of polarization is introduced. Examples of polarization signatures are presented for several theoretical models of surface scattering, and these signatures are compared with experimentally measured polarization signatures. The coefficient of variation, derived from the polarization signature, may provide information regarding the amount of variation in scattering properties for a given area.
Secure Obfuscation for Encrypted Group Signatures
Fan, Hongfei; Liu, Qin
2015-01-01
In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686