Transfer involving deformed nuclei
Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.
1985-03-01
Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.
Casten, R.F.; Warner, D.D.
1982-01-01
The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for /sup 168/Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong ..beta.. ..-->.. ..gamma.. transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the ..beta.. ..-->.. ..gamma.. transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ..delta..K=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics.
Neutron scattering on deformed nuclei
NASA Astrophysics Data System (ADS)
Hansen, L. F.; Haight, R. C.; Pohl, B. A.; Wong, C.; Lagrange, Ch.
1985-01-01
Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9Be, C, 181Ta, 232Th, 238U, and 239Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune, and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonably good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP.
Clusterization and quadrupole deformation in nuclei
Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.
2006-04-26
We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.
Clusterization and Deformation in Heavy Nuclei
Algora, A.; Cseh, J.; Darai, J.; Hess, P.O.; Antonenko, N.V.; Jolos, R.V.; Scheid, W.
2005-11-21
The deformation-dependence of clusterization in heavy nuclei is investigated. In particular, allowed and forbidden cluster-configurations are determined for the ground, superdeformed, and hyperdeformed states of some nuclei, based on a microscopic (effective SU(3)) selection rule. The stability of the different cluster configurations from the viewpoint of the binding energy and the dinuclear system model (DNS) is also investigated.
{alpha} Decay of Deformed Actinide Nuclei
Stewart, T.L.; Kermode, M.W.; Beachey, D.J.; Rowley, N.; Grant, I.S.; Kruppa, A.T.
1996-07-01
{alpha} decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semiclassical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which is essentially constant for all even-even actinide nuclei. These same amplitudes also give good results for the known anisotropic {alpha}-particle emission of the favored decays of odd nuclei in the same mass region. {copyright} {ital 1996 The American Physical Society.}
Effective field theory for deformed atomic nuclei
NASA Astrophysics Data System (ADS)
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
Papenbrock, Thomas F.; Weidenmüller, H. A.
2016-04-13
In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Quasielastic (e,e'p) reactions and proton propagation through nuclei
NASA Astrophysics Data System (ADS)
van Westrum, Derek
Coincidence (e,e'p) cross sections for the quasielastic scattering of electrons from hydrogen, carbon, iron, and gold nuclei were measured at squared four-momentum transfers of 0.64, 1.28, 1.79, and 3.25 (GeV/c)2. By dividing the experimental cross section for a given momentum transfer and target by the cross section calculated in the Plane Wave Impulse Approximation, the transparency of the nuclear medium to the recoiling proton can be defined. This transparency is studied as a function of momentum transfer and nuclear size. The goal of the experiment is to study both the quasielastic scattering reaction mechanism and the propagation of protons through atomic nuclei. Where they overlap, the results agree with those measured in previous experiments. The results are used to identify important aspects of the final state interactions between the recoiling proton and residual nucleus, to verify the single-nucleon knockout picture of the reaction, and to provide a baseline for future experiments at higher momentum transfers.
M1 excitation scheme in deformed nuclei
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Morrison, Iain
1991-10-01
We present the M1 excitation scheme in even-even deformed nuclei from the sum-rule viewpoint based on the Nilsson+BCS approach. The sum-rule states are introduced for the Scissors, spin and spin-flip modes. The functional form of the B(M1) sum rule of the Scissors mode is obtained, and its actual value is shown to be 4˜6(μN2). The spin excitation B(M1) is 10˜15(μN2) including the spin-flip transitions. The total B(M1) is 15˜20(μN2). The effect of the SD and SDG pair truncation is studied to test IBM-2 for M1 excitations. The SDG truncation reproduces very well the calculation without truncation. The SD truncation reproduces the orbital excitation, whereas yields some deviations for the spin excitation.
Mass extrapolations in the region of deformed rare Earth nuclei
Borcea, C.; Audi, G.
1998-12-21
A procedure based on the regularity property of the mass surface is proposed to make predictions for the masses of neutron rich deformed nuclei in the rare earth region. Tables are given for the estimated masses; they extend up to the presumed limit of the deformation region.
New approach for alpha-decay calculations of deformed nuclei
Ni Dongdong; Ren Zhongzhou
2010-06-15
We present a new theoretical approach to evaluate alpha-decay properties of deformed nuclei, namely the multichannel cluster model (MCCM). The deformed alpha-nucleus potential is taken into full account, and the coupled-channel Schroedinger equation with outgoing wave boundary conditions is employed for quasibound states. Systematic calculations are carried out for well-deformed even-even nuclei with Z>=98 and isospin dependence of nuclear potentials is included in the calculations. Fine structure observed in alpha decay is well described by the four-channel microscopic calculation, which is performed for the first time in alpha-decay studies. The good agreement between experiment and theory is achieved for both total alpha-decay half-lives and branching ratios to the ground-state rotational band of daughter nuclei. Predictions on the branching ratios to high-spin daughter states are presented for superheavy nuclei, which may be important to interpret future observations.
The Subtleties of Pairing and Collective Structures in Deformed Nuclei
NASA Astrophysics Data System (ADS)
Sharpey-Schafer, J. F.
2015-11-01
It is well known that simple monopole pairing is a pretty crude approximation. It can account for the observations that the ground states of all even-even nuclei have spin-parity 01+ and that there is a pairing gap above the ground state in deformed nuclei before particle-hole configurations can be excited. As an approximation it is best for proton and neutron mid-shell nuclei where the available single particle Nilsson wavefunctions have large overlaps. However at the beginning of regions of deformation, where high-K orbitals can be bought to the Fermi surface from a lower shell, simple monopole pairing is inadequate in describing the physics of the observed data. More recently, with a considerable increase in the quantity and quality of experimental data available, configuration dependent pairing has been used to account for the properties of low-lying first excited 02+ states in N = 88 and 90 nuclei at the onset of deformation in the rare earths. The properties of 02+ states in these and other nuclei at the start of regions of deformation and the effects of blocking of pairing leading to a decrease in the backbending critical frequencies in odd nuclei are presented.
Polarization of the nuclear surface in deformed nuclei
NASA Astrophysics Data System (ADS)
Scamps, Guillaume; Lacroix, Denis; Adamian, G. G.; Antonenko, N. V.
2013-12-01
The density profiles of around 750 nuclei are analyzed using the Skyrme energy density functional theory. Among them, more than 350 nuclei are found to be deformed. In addition to rather standard properties of the density, we report a nontrivial behavior of the nuclear diffuseness as the system becomes more and more deformed. Besides the geometric effects expected in a rigid body, the diffuseness acquires a rather complex behavior leading to a reduction of the diffuseness along the main axis of deformation simultaneously with an increase of the diffuseness along the other axis. The possible isospin dependence of this polarization is studied. This effect, which is systematically seen in medium and heavy nuclei, can affect the nuclear dynamical properties. A quantitative example is given with the fusion barrier in the 40Ca+238U reaction.
Recent Studies Of Correlations In Nuclei Using (e,e'p) Reactions
Gilad, Shalev; Monaghan, Peter
2008-10-13
New measurements of the reaction {sup 12}C(e,e'p) at high missing energies and momenta, at Q{sup 2} = 2(GeV/c){sup 2}, and at x{sub B}>1 are described. Preliminary cross sections for a large range of missing energies and momenta are presented and display a relation between the missing energies and momenta which takes into account the recoil and excitation of the residual nucleus. Distorted spectral functions were extracted. They display badly-broken factorization and raise doubt about knowledge of the elementary off-shell electron-nucleon cross sections for x{sub B}>1.
Assigning {gamma} deformation from fine structure in exotic nuclei
Ferreira, L. S.; Maglione, E.; Arumugam, P.
2011-10-28
The nonadiabatic quasiparticle model for triaxial shapes is used to perform calculations for decay of {sup 141}Ho, the only known odd-Z even-N deformed nucleus for which fine structure in proton emission from both ground and isomeric states has been observed. All experimental data corresponding to this unique case namely, the rotational spectra of parent and daughter nuclei, decay widths and branching ratios for ground and isomeric states, could be well explained with a strong triaxial deformation {gamma}{approx}20. The recent experimental observation of fine structure decay from the isomeric state, can be explained only with an assignment of I{sup {pi}} = 3/2{sup +} as the decaying state, in contradiction with the previous assignment, of I{sup {pi}} 1/2{sup +}, based on adiabatic calculations. This study reveals that proton emission measurements could be a precise tool to probe triaxial deformations and other structural properties of exotic nuclei beyond the proton dripline.
Modeling level structures of odd-odd deformed nuclei
Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.
1985-01-15
A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earch region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed.
Modeling level structures of odd-odd deformed nuclei
Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.
1984-09-07
A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs.
Collisions of deformed nuclei and superheavy-element production
Iwamoto, Akira; Moeller, P. |||; Nix, J.R.; Sagawa, Hiroyuki, Sagawa
1995-09-01
A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 {micro}s.
The Onset of Deformation in Neutron-Deficient At Nuclei
Smith, M.B.; Chapman, R.; Cocks, J.F.C.; Dorvaux, O.; Helariutta, K.; Jones, P.M.; Julin, R.; Juutinen, S.; Kankaanpaa, H.; Kettunen, H.; Kuusiniemi, P.; Le Coz, Y.; Leino, M.; Middleton, D.J.; Muikku, M.; Nieminen, P.; Rahkila, P.; Savelius, A.; Spohr, K.-M.
1999-12-31
Excited states in the {sup 197}At nucleus have been identified for the first time using the recoil-decay-tagging technique. The excitation energy of these states is found to be consistent with the systematics of neutron-deficient At nuclei and with calculations indicating that the nucleus may be deformed in its ground state. A more recent experiment, to study states in {sup 195}At, is discussed.
The onset of deformation in neutron-deficient At nuclei
Smith, M. B.; Chapman, R.; Middleton, D. J.; Spohr, K.-M.; Cocks, J. F. C.; Dorvaux, O.; Helariutta, K.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Nieminen, P.; Rahkila, P.; Savelius, A.; Coz, Y. Le
1999-11-16
Excited states in the {sup 197}At nucleus have been identified for the first time using the recoil-decay-tagging technique. The excitation energy of these states is found to be consistent with the systematics of neutron-deficient. At nuclei and with calculations indicating that the nucleus may be deformed in its ground state. A more recent experiment, to study states in {sup 195}At, is discussed.
Microscopic and self-consistent description for neutron halo in deformed nuclei
Li Lulu; Meng Jie; Zhao Enguang; Zhou Shangui
2013-05-06
A deformed relativistic Hartree-Bogoliubov theory in continuum has been developed for the study of neutron halos in deformed nuclei and the halo phenomenon in deformed weakly bound nuclei is investigated. Magnesium and neon isotopes are studied and some results are presented for the deformed neutron-rich and weakly bound nuclei {sup 44}Mg and {sup 36}Ne. The core of the former nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the existence of halos in deformed nuclei and for the occurrence of this decoupling effect are discussed.
The energy dependence of nucleon propagation in nuclei as measured in the (e,e{prime}p) reaction
Geesaman, D.F.; Fedchak, J.A.; Hansen, J.O.
1995-08-01
A proposal was approved by the CEBAF PAC-5 to continue (e,e`p) studies of proton propagation in nuclei for protons in the energy range of 400-2000 MeV. In this energy range the nature of the N-N interaction changes from elastic to highly inelastic once the pion-production threshold is crossed. The theoretical description of proton propagation also changes considerably from nonrelativistic optical potentials to relativistic potentials to Glauber models. Information on proton propagation in this energy range is quite important to the CEBAF coincidence program. At higher energies, this reaction is used to study manifestations of more exotic mechanisms, such as increased transparency for hard collisions - color transparency. The experiment will be carried out in the CEBAF Hall C using the HMS 6-GeV spectrometer and the SOS 1.8-GeV spectrometer. Electrons in the quasifree region will be detected in coincidence with protons with missing energies of less than 100 MeV. At two proton energies, Tp = 400 MeV and Tp = 1000 MeV, Rosenbluth separations will be performed to study the A dependence of the longitudinal and transverse coincidence response independently. Since this proposal concentrates on the quasifree region, the projected count rates are relatively high and the background rates are calculated to be quite low. The collaboration developing the equipment for Hall C has chosen this experiment to be the tune-up experiment and the first experiment to be performed at CEBAF. It is expected to receive beam in Spring 1995.
Deformed Brueckner-Hartree-Fock calculation for light nuclei
NASA Technical Reports Server (NTRS)
Braley, R. C.; Ford, W. F.; Becker, R. L.; Patterson, M. R.
1971-01-01
For the first time the Brueckner-Hartree-Fock (BHF) method was applied to nuclei whose intrinsic structure is nonspherical. One aim was to investigate whether the energy dependent reaction matrix calculated from a realistic nucleon-nucleon interaction leads to deformations similar to, or different from, those obtained from energy independent interactions in Hartree-Fock (HF) calculations. Reaction matrix elements were calculated as a function of starting energy for the Hamada-Johnston interaction, using a Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single-particle energies, radii, and shape deformations of the intrinsic state in unrenormalized as well as renormalized BHF are discussed and compared with previous HF studies. Results are presented for C-12, O-16, and Ne-20.
Tunneling from super- to normal-deformed minima in nuclei.
Khoo, T. L.
1998-01-08
An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.
The nuclear structure of deformed odd-odd nuclei: Experimental and theoretical investigations
Hoff, R.W.; Jain, A.K.; Sood, P.C.; Sheline, R.K.
1988-06-06
Previous surveys of experimental level structure in deformed odd-odd nuclei have been updated with recent results for the lanthanide and actinide regions. The relative strengths of the effective neutron-proton interaction derived from these data are compared. The predictive power of a semi-empirical model for level structure in deformed odd-odd nuclei is demonstrated. Comparison is made with recent Hartree-Fock calculations of selected nuclei.
Two-neutron transfer reactions with heavy-deformed nuclei
Price, C.; Landowne, S.; Esbensen, H.
1988-01-01
In a recent communication we pointed out that one can combine the macroscopic model for two-particle transfer reactions on deformed nuclei with the sudden limit approximation for rotational excitation, and thereby obtain a practical method for calculating transfer reactions leading to high-spin states. As an example, we presented results for the reaction WSDy(VYNi,WNi) WDy populating the ground-state rotational band up to the spin I = 14 state. We have also tested the validity of the sudden limit for the inelastic excitation of high spin states and we have noted how the macroscopic model may be modified to allow for more microscopic nuclear structure effects in an application to diabolic pair-transfer processes. This paper describes our subsequent work in which we investigated the systematic features of pair-transfer reactions within the macroscopic model by using heavier projectiles to generate higher spins and by decomposing the cross sections according to the multipolarity of the transfer interaction. Particular attention is paid to characteristic structures in the angular distributions for the lower spin states and how they depend on the angular momentum carried by the transferred particles. 11 refs., 3 figs.
Possible octupole deformation in Cs and Ba nuclei from their differential radii
Sheline, R.K.; Jain, A.K.; Jain, K.
1988-12-01
The odd-even staggering of the differential radii of Fr and Ra and the Cs and Ba nuclei is compared. This staggering is inverted in the region of known octupole deformation in the Fr and Ra nuclei. The normal staggering is eliminated in the Cs nuclei and attenuated in the Ba nuclei for neutron numbers 85--88. This fact is used to suggest the possible existence of octupole deformation and its neutron number range in the Cs and Ba nuclear ground states.
{Delta}I = 2 energy staggering in normal deformed dysprosium nuclei
Riley, M.A.; Brown, T.B.; Archer, D.E.
1996-12-31
Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.
Coupled-channels study of fine structure in the {alpha} decay of well deformed nuclei
Ni Dongdong; Ren Zhongzhou
2011-06-15
We formulate a theoretical model for the {alpha} decay of well-deformed even-even nuclei based on the coupled-channel Schroedinger equation. The {alpha}-decay half-lives and fine structures observed in {alpha} decay are well described by the five-channel microscopic calculations. Since the branching ratios to high-spin states are hard to understand in the traditional {alpha}-decay theories, this success could be important to interpret future observations of heavier nuclei. It is also found that the {alpha} transition to high-spin states is a powerful tool to probe the energy spectrum and deformation of daughter nuclei.
Study of the (e,e'p) quasi-elastic reaction in complex nuclei: theory and experiment
Herraiz, Joaquin Lopez
2010-03-01
Experimental coincidence cross section and transverse-longitudinal asymmetry _{ATL} have been obtained for the quasielastic (e,e'p) reaction in ^{16}O, ^{12}C, and {sup 208}Pb in constant q-ω kinematics in the missing momentum range -350 < p_{miss} < 350 MeV/c. In these experiments, performed in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB), the beam energy and the momentum and angle of the scattered electrons were kept fixed, while the angle between the proton momentum and the momentum transfer q was varied in order to map out the missing momentum distribution. The experimental cross section and A_{TL} asymmetry have been compared with Monte Carlo simulations based on Distorted Wave Impulse Approximation (DWIA) calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factors obtained for both models are in agreement with previous experimental values, while A_{TL} measurements favor the relativistic DWIA calculation. This thesis describes the details of the experimental setup, the calibration of the spectrometers, the techniques used in the data analysis to derive the final cross sections and the A_{TL}, the ingredients of the theoretical calculations employed and the comparison of the results with the simulations based on these theoretical models.
Evolution of surface deformations of weakly bound nuclei in the continuum
NASA Astrophysics Data System (ADS)
Pei, J. C.; Zhang, Y. N.; Xu, F. R.
2013-05-01
We study weakly bound deformed nuclei based on the coordinate-space Skyrme Hartree-Fock-Bogoliubov (HFB) approach, in which a large box is employed for treating the continuum and large spatial extensions. When the limit of the core-halo deformation decoupling is approached, calculations found an exotic “egg”-like structure consisting of a spherical core plus a prolate halo in 38Ne, in which the near-threshold nonresonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei can be hindered by high level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible as the negative-parity levels are sparse, e.g., in 110Ge. The deformation decoupling has also been demonstrated in pairing density distributions.
Proximity potential for heavy ion reactions on deformed nuclei
Baltz, A. J.; Bayman, B. F.
1982-01-01
The usual treatment of the deformed optical model for analysis of heavy ion induced inelastic scattering data involves a deformed (target) radius, a spherical (projectile) radius and a potential strength dependent on the surface separation along the line between the two centers. Several authors using various approaches have shown that this center line potential is geometrically inadequate especially for description of higher L deformation parameters probed in heavy ion induced inelastic scattering experiments. A quantitatively adequate form of the deformed proximity potential suitable for use with a coupled channels reaction code in the analysis of inelastic scattering data above the Coulomb barrier is described. A major objective is to be able to extract reliably higher deformed multipole moments from such data. The deformed potential calculated in the folding model will serve as a geometrically exact benchmark to evaluate the accuracy of the proximity potential prescriptions. (WHK)
Samarin, V. V.
2010-08-15
A new method for numerically solving the Schroedinger equation for an arbitrary axisymmetric field with allowance for spin-orbit interaction is used to study neutron and proton states in strongly deformed nuclei and dinuclear systems produced at the first step of the fusion of nuclei. A quadrupole-octupole parametrization is proposed for the shape of a dinuclear system and for the potential energy of nucleons in this system. The experimentally observed deformations of the {sup 26,27,28}Mg nuclei and the difference in the cross sections for the fusion of nuclei in the {sup 18}O + {sup 58}Ni and {sup 16}O + {sup 60}Ni systems are explained qualitatively.
Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei
NASA Astrophysics Data System (ADS)
Praharaj, Choudhury
2016-03-01
We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.
Effects of high-order deformation on high-K isomers in superheavy nuclei
Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.
2011-01-15
Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of {beta}{sub 6} deformation, we find remarkable effects of the high-order deformation on the high-K isomers in {sup 254}No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of {beta}{sub 6} deformation significantly improves the description of the very heavy high-K isomers.
NASA Astrophysics Data System (ADS)
Nazarewicz, W.; Riley, M. A.; Garrett, J. D.
1990-05-01
Noncollective single-proton states in odd- Z (Eu, Tb, Ho, Tm, Lu, Ta, Ir and Au) rare-earth nuclei have been calculated using the shell correction method with an average Woods-Saxon potential and a monopole pairing residual interaction. Calculated equilibrium deformations of the lowest single-proton states are presented, and calculated band head excitation energies are compared with experimental proton band heads for odd- Z rare-earth nuclei. Good agreement is found between the experimental and calculated band heads. We find that strong polarisation effects due to the odd proton explain many of the systematic trends of known band heads. Different deformation driving forces of the odd-proton orbitals can also partly explain deviations seen in high-spin data. Shape co-existence effects in Ir and Au isotopes are discussed. In addition, equilibrium deformations of even-even rare-earth nuclei are computed and compared with experimental values.
The Discoveries of Bohrium, Hassium, Meitnerium, and the New Region of Deformed Shell Nuclei
NASA Astrophysics Data System (ADS)
Muenzenberg, Gottfried
2003-03-01
The investigation of the light trans-actinide elements was not only exciting as it included the discovery of a number of new chemical elements. It led also to the discovery of a new region of shell nuclei existing beyond the macroscopic stability limit. Theory explained this in terms of a new shell region of deformed nuclei which bridge the trans-uranium nuclei and the predicted superheavy elements. This contribution will give a brief historic overview over these discoveries, experimental developments, and the impact on ongoing and future superheavy-element research.
Cluster radioactivity with effects of deformations and orientations of nuclei included
Arun, Sham K.; Gupta, Raj K.; Kanwar, Shefali; Singh, BirBikram; Sharma, Manoj K.
2009-09-15
Based on the preformed cluster model (PCM) of Gupta and collaborators, we have extended our recent study on ground-state cluster decays to parent nuclei resulting in daughters other than spherical {sup 208}Pb, i.e., to deformed daughters, and the very new cases of {sup 14}C and {sup 15}N decays of {sup 223}Ac, and {sup 34}Si decay of {sup 238}U, taking nuclei as spherical, quadrupole deformed ({beta}{sub 2}) alone, and with higher multipole deformations up to hexadecapole ({beta}{sub 2}, {beta}{sub 3}, {beta}{sub 4}) together with the 'optimum' orientations of cold decay process. Except for {sup 14}C decays of {sup 221}Fr, {sup 221-224,226}Ra, and {sup 225}Ac where higher multipole deformations up to {beta}{sub 4} are found essential, the quadrupole deformation {beta}{sub 2} alone is found good enough to fit the experimental data. Because the PCM treats the cluster-decay process as the tunneling of a preformed cluster, the deformations and orientations of nuclei modify both the preformation probability P{sub 0} and tunneling probability P, and hence the decay half-life, considerably.
Projected shell model for Gamow-Teller transitions in heavy, deformed nuclei
NASA Astrophysics Data System (ADS)
Wang, Long-Jun; Sun, Yang; Gao, Zao-Chun; Kiran Ghorui, Surja
2016-02-01
Calculations of Gamow-Teller (GT) transition rates for heavy, deformed nuclei, which are useful input for nuclear astrophysics studies, are usually done with the quasiparticle random-phase approximation. We propose a shell-model method by applying the Projected Shell Model (PSM) based on deformed bases. With this method, it is possible to perform a state-by-state calculation for nuclear matrix elements for β-decay and electron-capture in heavy nuclei. Taking β- decay from 168Dy to 168Ho as an example, we show that the known experimental B(GT) from the ground state of the mother nucleus to the low-lying states of the daughter nucleus could be well described. Moreover, strong transitions to high-lying states are predicted to occur, which may considerably enhance the total decay rates once these nuclei are exposed to hot stellar environments.
Exotic modes of excitation in deformed neutron-rich nuclei
Yoshida, Kenichi
2011-05-06
Low-lying dipole excitation mode in neutron-rich Mg isotopes close to the drip line is investigated in the framework of the Hartree-Fock-Bogoliubov and the quasiparticle random-phase approximation employing the Skyrme and the pairing energy-density functionals. It is found that the low-lying dipole-strength distribution splits into the K{sup {pi}} = 0{sup -} and 1{sup -} components due to the nuclear deformation. The low-lying dipole strength increases as the neutron drip-line is approached.
Sharipov, Sh.; Ermamatov, M. J.
2009-01-15
The previously developed rotationally single-particle and vibrational model of the triaxial deformable odd nuclei is extended to the case where the total angular momentum of an external nucleon is not conserved. The calculated ratios of the excitation energies of the {sup 157,159}Tb nuclei are compared with the existing experimental data. The ratios of E2-transition probabilities and those of quadrupole moments of the above nuclei are calculated using parameters determined from the spectra of these nuclei.
Orientation effects of deformed nuclei on the production of superheavy elements
Wang Nan; Li Junqing; Zhao Enguang
2008-11-15
Within the dinuclear system model, the effects of the relative orientations of interacting deformed nuclei on the interaction potential energy surfaces, the evaporation residue cross sections of some cold fusion reactions leading to superheavy elements are investigated. The competition between fusion and quasifission is studied to show the effect of the orientation. It turns out that the belly-belly orientation is in favor of the production of superheavy nuclei, because in the case a barrier has suppressed the quasifission and thus helped fusion.
High Spin States and Octupole Deformation in Neutron-Rich ^145,147La Nuclei
NASA Astrophysics Data System (ADS)
Zhu, S. J.; Hamilton, J. H.; Ramayya, A. V.; Babu, B. R. S.; Jones, E. F.; Kormicki, J.; Daniel, A. V.; Hwang, J. K.; Beyer, C. J.; Wang, M. G.; Long, G. L.; Li, M.; Zhu, L. Y.; Gan, C. Y.; Ma, W. C.; Cole, J. D.; Aryaeinejad, R.; Dardenne, Y. X.; Drigert, M. W.; Rasmussen, J. O.; Asztalos, S.; Lee, I. Y.; Macchiavelli, A. O.; Chu, S. Y.; Gregorich, K. E.; Mohar, M. F.; Stoyer, M. A.; Lougheed, R. W.; Moody, K. J.; Wild, J. F.; Prussin, S. G.
1998-04-01
High spin states in neutron-rich odd-Z nuclei ^145,147La have been investigated from the study of prompt γ- rays in spontaneous fission of ^252Cf by using γ-γ- and γ-γ-γ- coincidence techniques. Alternating parity bands are extended up to spins I=(41/2) and I=(43/2) in ^145La and ^147La, respectively. Strong E1 transitions between the negative and positive parity bands give evidence for stable octupole deformation. The new higher spin levels give evidence for rotational enhancement of the stability of the octupole deformation. These collective bands show competition and co-existence between symmetric and asymmetric shapes in ^145La. Band crossing was found around hbarω≈ 0.26 ~0.30 MeV in both nuclei and these backbends are related to the alignment of two i_13/2 neutron from cranked shell model calculations.
Effective field theory of emergent symmetry breaking in deformed atomic nuclei
Papenbrock, Thomas F.; Weidenmüller, H. A.
2015-09-03
Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. In this study, we extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. Lastly, in deformed nuclei these are vibrational modes each of which serves as band head of a rotational band.
Losa, C.; Doessing, T.; Pastore, A.; Vigezzi, E.; Broglia, R. A.
2010-06-15
We present a calculation of the properties of vibrational states in deformed, axially-symmetric even-even nuclei, within the framework of a fully self-consistent quasiparticle random phase approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self-consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed {sup 24-26}Mg, {sup 34}Mg isotopes are presented and compared to experimental findings.
Effective field theory of emergent symmetry breaking in deformed atomic nuclei
Papenbrock, Thomas F.; Weidenmüller, H. A.
2015-09-03
Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. In this study, we extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. Lastly, in deformed nuclei these are vibrational modes each of whichmore » serves as band head of a rotational band.« less
Gamow-Teller {beta}{sup +} decay of deformed nuclei near the proton drip line
Frisk, F.; Hamamoto, I.; Zhang, X.Z. |
1995-11-01
Using a quasiparticle Tamm-Dancoff approximation (TDA) based on deformed Hartree-Fock (HF) calculations with Skyrme interactions, the distribution of the Gamow-Teller (GT) {beta}{sup +} decay strength is estimated for the HF local minima of even-even deformed nuclei near the proton drip line in the region of 28{lt}{ital Z}{lt}66. The distribution often depends sensitively on the nuclear shape (namely, oblate or prolate). In the region of {ital Z}{lt}50 the possibility of observing {beta}-delayed proton emission depends sensitively on the excess of {ital Z} over {ital Z}={ital N}. In the region of {ital Z}{gt}50 almost the entire estimated GT strength is found to lie below the ground states of the even-even mother nuclei, and the observation of the total GT strength by {beta}-delayed charged-particle(s) emission will be of essential importance.
Proximity potential for deformed, oriented nuclei: 'Gentle' fusion and 'hugging' fusion
Manhas, Monika; Gupta, Raj K.
2005-08-01
The proximity potential is obtained in the form of the generalized 'pocket formula' for a collision between any two symmetric or asymmetric mass, deformed and noncoplanar (including also the case of coplanar) nuclei, having the fixed orientations {theta}{sub 1} and {theta}{sub 2} and any azimuthal angle {phi}(=0 deg. - 90 deg.). The method is applied first to some illustrative axially symmetric noncoplanar nuclei with the known 'gentle'- and 'hugging'-fusion configurations ({theta}{sub 1}={theta}{sub 2}=90 deg., {phi}=90 deg.). The very general case of noncoplanar nuclei having any orientation and azimuthal angles is also discussed. Application of the method to a specific reaction that has been used in experiments for synthesizing a superheavy nucleus is also made.
{sup 208}Pb-daughter cluster radioactivity and the deformations and orientations of nuclei
Arun, Sham K.; Gupta, Raj K.; Singh, BirBikram; Kanwar, Shefali; Sharma, Manoj K.
2009-06-15
The role of deformations and orientations of nuclei is studied for the first time in cluster decays of various radioactive nuclei, particularly those decaying to doubly closed shell, spherical {sup 208}Pb daughter nucleus. Also, the significance of using the correct Q-value of the decay process is pointed out. The model used is the preformed cluster model (PCM) of Gupta and collaborators [R. K. Gupta et al., Proc. Int. Conf. on Nuclear Reactions Mechanisms, Varenna, 1988, p. 416; Phys. Rev. C 39, 1992 (1989); 55, 218 (1997); Heavy Elements and Related New Phenomena, edited by W. Greiner and R. K. Gupta, World Sc. 1999, Vol. II, p. 731]. In this model, cluster emission is treated as a tunneling of the confining interaction barrier by a cluster considered already preformed with a relative probability P{sub 0}. Since both the scattering potential and potential energy surface due to the fragmentation process in the ground state of the parent nucleus change significantly with the inclusion of deformation and orientation effects, both the penetrability P and preformation probability P{sub 0} of clusters change accordingly. The calculated decay half-lives for all the cluster decays investigated here are generally in good agreement with measured values for the calculation performed with quadrupole deformations {beta}{sub 2} alone and 'optimum' orientations of cold elongated configurations. In some cases, particularly for {sup 14}C decay of Ra nuclei, the inclusion of multipole deformations up to hexadecapole {beta}{sub 4} is found to be essential for a comparison with data. However, the available {beta}{sub 4}-values, particularly for nuclei in the mass region 16{<=}A{<=}26, need be used with caution.
QRPA Calculations for Spherical and Deformed Nuclei With the Gogny Force
Peru, S.
2009-08-26
Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed with the D1S Gogny force. Dipole responses have been calculated in Ne isotopes to study the existence of soft dipole modes in exotic nuclei. A comparison between QRPA and generator coordinate method with Gaussian overlap approximation results is done for low lying 2{sup +} states in N = 16 isotones and Ni isotopes.
Deformed shell model results for neutrinoless double beta decay of nuclei in A = 60 - 90 region
NASA Astrophysics Data System (ADS)
Sahu, R.; Kota, V. K. B.
2015-03-01
Nuclear transition matrix elements (NTME) for the neutrinoless double beta decay (Oνββ or OνDBD) of 70Zn, 80Se and 82Se nuclei are calculated within the framework of the deformed shell model (DSM) based on Hartree-Fock (HF) states. For 70Zn, jj44b interaction in 2p3/2, 1f5/2, 2p1/2 and 1g9/2 space with 56Ni as the core is employed. However, for 80Se and 82Se nuclei, a modified Kuo interaction with the above core and model space are employed. Most of our calculations in this region were performed with this effective interaction. However, jj44b interaction has been found to be better for 70Zn. The above model space was used in many recent shell model (SM) and interacting boson model (IBM) calculations for nuclei in this region. After ensuring that DSM gives good description of the spectroscopic properties of low-lying levels in these three nuclei considered, the NTME are calculated. The deduced half-lives with these NTME, assuming neutrino mass is 1 eV, are 1.1 × 1026, 2.3 × 1027 and 2.2 × 1024 yr for 70Zn, 80Se and 82Se, respectively.
Octupole Deformation Bands of πh11/2 in Neutron-Rich 145,147La Nuclei
NASA Astrophysics Data System (ADS)
Zhu, Sheng-jiang; S, Zhu J.; Wang, Mu-ge; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; W, Ma C.; Long, Gui-lu; Zhu, Ling-yan; Li, Ming; A, Sakhaee; Gan, Cui-yun; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; Yu, Oganessian Ts; G, Ter-Akopian M.; A, Daniel V.
1999-03-01
Octupole deformation bands built on πh11/2 orbital in neutron-rich odd-Z 145,147La nuclei have been investigated by measuring the prompt γ-rays emitted from the 252Cf source. The alternating parity band structures and strong E1 transitions observed between negative- and positive-parity bands in both nuclei indicate the octupole deformation enhanced by the h11/2 single proton coupling. According to observed energy displacements the octupole deformation becomes stable at the intermediate spin states.
Skyrme random-phase-approximation description of lowest Kπ=2γ+ states in axially deformed nuclei
NASA Astrophysics Data System (ADS)
Nesterenko, V. O.; Kartavenko, V. G.; Kleinig, W.; Kvasil, J.; Repko, A.; Jolos, R. V.; Reinhard, P.-G.
2016-03-01
The lowest quadrupole γ -vibrational Kπ=2+ states in axially deformed rare-earth (Nd, Sm, Gd, Dy, Er, Yb, Hf, W) and actinide (U) nuclei are systematically investigated within the separable random-phase-approximation (SRPA) based on the Skyrme functional. The energies Eγ and reduced transition probabilities B (E 2 ) of 2γ+ states are calculated with the Skyrme forces SV-bas and SkM*. The energies of two-quasiparticle configurations forming the SRPA basis are corrected by using the pairing blocking effect. This results in a systematic downshift of Eγ by 0.3-0.5 MeV and thus in a better agreement with the experiment, especially in Sm, Gd, Dy, Hf, and W regions. For other isotopic chains, a noticeable overestimation of Eγ and too weak collectivity of 2γ+ states still persist. It is shown that domains of nuclei with low and high 2γ+ collectivity are related to the structure of the lowest two-quasiparticle states and conservation of the Nilsson selection rules. The description of 2γ+ states with SV-bas and SkM* is similar in light rare-earth nuclei but deviates in heavier nuclei. However SV-bas much better reproduces the quadrupole deformation and energy of the isoscalar giant quadrupole resonance. The accuracy of SRPA is justified by comparison with exact RPA. The calculations suggest that a further development of the self-consistent calculation schemes is needed for a systematic satisfactory description of the 2γ+ states.
Probing resonances in deformed nuclei by using the complex-scaled Green's function method
NASA Astrophysics Data System (ADS)
Shi, Xin-Xing; Shi, Min; Niu, Zhong-Ming; Heng, Tai-Hua; Guo, Jian-You
2016-08-01
Resonance plays a key role in the formation of many physical phenomena. The complex-scaled Green's function method provides a powerful tool for exploring resonance. In this paper, we combine this method with the theory describing deformed nuclei with the formalism presented. Taking 45S as an example, we elaborate numerical details and demonstrate how to determine the resonance parameters. The results are compared with those obtained by the complex scaling method and the coupled-channel method and satisfactory agreement is obtained. In particular, the present scheme focuses on the advantages of the complex scaling method and the Green's function method and is more suitable for the exploration of resonance.
Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei
Martini, M.; Goriely, S.; Péru, S.
2014-06-15
In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.
Interplay between proton-neutron pairing and deformation in self-conjugated medium mass nuclei
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo; Lacroix, Denis
2016-05-01
We employ a model combining self-consistent mean-field and shell model techniques to study the competition between particle-like and proton-neutron pairing correlations in fp-shell even-even self-conjugate nuclei. Deformation effects are realistically and microscopically described. The resulting approach can give a precise description of pairing correlations and eventually treat the coexistence of different condensate formed of pairs with different total spin/ isospin. The standard BCS calculations are systematically compared with approaches including correlation effects beyond the independent quasi-particle picture. The competition between proton-neutron correlations in the isoscalar and isovector channels is also analyzed, as well as their dependence on the deformation properties.
Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.; Dietrich, F. S.
2015-02-25
The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.
Shape of Ar44: Onset of deformation in neutron-rich nuclei near Ca48
NASA Astrophysics Data System (ADS)
Zielińska, M.; Görgen, A.; Clément, E.; Delaroche, J.-P.; Girod, M.; Korten, W.; Bürger, A.; Catford, W.; Dossat, C.; Iwanicki, J.; Libert, J.; Ljungvall, J.; Napiorkowski, P. J.; Obertelli, A.; Piętak, D.; Rodríguez-Guzmán, R.; Sletten, G.; Srebrny, J.; Theisen, Ch.; Wrzosek, K.
2009-07-01
The development of deformation and shape coexistence in the vicinity of doubly magic Ca48, related to the weakening of the N=28 shell closure, was addressed in a low-energy Coulomb excitation experiment using a radioactive Ar44 beam from the SPIRAL facility at GANIL. The 21+ and 22+ states in Ar44 were excited on Pb208 and Ag109 targets at two different beam energies. B(E2) values between all observed states and the spectroscopic quadrupole moment of the 21+ state were extracted from the differential Coulomb excitation cross sections, indicating a prolate shape of the Ar44 nucleus and giving evidence of an onset of deformation already two protons and two neutrons away from doubly magic Ca48. New Hartree-Fock-Bogoliubov based configuration mixing calculations have been performed with the Gogny D1S interaction for Ar44 and neighboring nuclei using two different approaches: the angular momentum projected generator coordinate method considering axial quadrupole deformations and a five-dimensional approach including the triaxial degree of freedom. The experimental values and new calculations are furthermore compared to shell-model calculations and to relativistic mean-field calculations. The new results give insight into the weakening of the N=28 shell closure and the development of deformation in this neutron-rich region of the nuclear chart.
Non-Axial Octupole Deformations and Tetrahedral Symmetry in Heavy Nuclei
Mazurek, Katarzyna; Dudek, Jerzy
2005-11-21
The total energies of about 120 nuclei in the Thorium region have been calculated within the macroscopic-microscopic method in the 5-dimensional space of deformation parameters {alpha}20, {alpha}22, {alpha}30, {alpha}32 and {alpha}40. The macroscopic energy term contains the nuclear surface-curvature dependence as proposed within the LSD approach. The microscopic energies are calculated with the Woods-Saxon single particle potential employing the universal set of parameters.We study a possible presence of the octupole axial and non-axial degrees of freedom all-over in the ({beta}, {gamma})-plane focussing on the ground-states, secondary minima and in the saddle points. In fact, a competition between axial and tri-axial octupole deformation parameters is obtained at the saddle points and in the secondary minima for many isotones with N > 136. The presence of the tetrahedral symmetry minima is predicted in numerous nuclei in the discussed region, although most of the time at relatively high excitation energies.
Deformed rotational bands in the doubly odd nuclei [sup 134]Pr and [sup 132]Pr
Hauschild, K.; Wadsworth, R.; Clark, R.M.; Hibbert, I.M. ); Beausang, C.W.; Forbes, S.A.; Nolan, P.J.; Paul, E.S.; Semple, A.T.; Wilson, J.N. ); Gizon, A.; Gizon, J.; Santos, D. ); Simpson, J. )
1994-08-01
The nuclei [sup 132,134]Pr have been investigated using the [sup 100]Mo([sup 37]Cl,[ital xn]) reactions at a beam energy of 155 MeV. Gamma rays were detected with the Eurogam array. Analysis of the data has revealed the presence of two new weakly populated decoupled bands in [sup 134]Pr. One of these bands has been linked into the normal-deformed states and is thought to be built on a [pi]([ital h][sub 11/2])[sup 2][direct product][nu]([ital f][sub 7/2],[ital h][sub 9/2]) configuration. The second band has been interpreted as being based on a [pi]([ital h][sub 11/2])[sup 3][direct product][nu][ital i][sub 13/2] intruder configuration within the second [beta][sub 2][congruent]0.3 prolate minimum. The known decoupled band in [sup 132]Pr (5[ital n] reaction channel) and the highly deformed band in [sup 130]La A([alpha]3[ital n]) have also been extended. The structure of all of these bands is discussed together with similar bands in nieghboring odd-odd nuclei.
Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei
Wu, C.Y.; Cline, D.
1996-12-31
Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.
NASA Astrophysics Data System (ADS)
Agbemava, S. E.; Afanasjev, A. V.; Ring, P.
2016-04-01
A systematic investigation of octupole-deformed nuclei is presented for even-even systems with Z ≤106 located between the two-proton and two-neutron driplines. For this study we use five most-up-to-date covariant energy density functionals of different types, with a nonlinear meson coupling, with density-dependent meson couplings, and with density-dependent zero-range interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov theory based on an effective separable particle-particle interaction of finite range. This allows us to assess theoretical uncertainties within the present covariant models for the prediction of physical observables relevant for octupole-deformed nuclei. In addition, a detailed comparison with the predictions of nonrelativistic models is performed. A new region of octupole deformation, centered around Z ˜98 ,N ˜196 is predicted for the first time. In terms of its size in the (Z ,N ) plane and the impact of octupole deformation on binding energies this region is similar to the best known region of octupole-deformed nuclei centered at Z ˜90 ,N ˜136 . For the later island of octupole-deformed nuclei, the calculations suggest substantial increase of its size as compared with available experimental data.
Effect of deformations on the binding energy of centrally depressed nuclei
NASA Astrophysics Data System (ADS)
Ismail, M.; Ellithi, A. Y.; Adel, A.; Abdulghany, A. R.
2015-07-01
The energy density formalism is implemented to study the binding energy of some heavy, superheavy and hyperheavy nuclei. The macroscopic contribution of binding energy is derived in the presence of a depression parameter in the nuclear density distribution, and the total energy is obtained by adding the shell and pairing correction to the macroscopic part. Total energy is studied with the variation of quadrupole {{β }2} and hexadecapole {{β }4} deformation parameters using different values of depression parameter. The addition of the shell and pairing corrections affects the behavior of the total energy especially the minimum position at specific deformation parameters, a second minimum in some cases are close to the first one, suggesting the possible existence of shape isomers. We minimized the total energy with respect to deformation and density depression parameters and obtained the binding energy of 208Pb, 238U, 252Cf, 280Cn, 285-289Fl, 298Fl, 306120, 320126, 339136, 500174 and 700226. The binding energies obtained are in good agreement with the available experimental data. The difference between the binding energies obtained by this simple method and experimental ones is less than 0.13%.
Deformation signature from the Gamow-Teller decay of N=Z nuclei
Miehe, Ch.; Dessagne, Ph.; Huck, A.; Knipper, A.; Marguier, G.; Longour, C.; Rauch, V.; Giovinazzo, J.; Borge, M. J. G.; Piqueras, I.; Tengblad, O.; Jokinen, A.; Ramdhane, M.
1998-12-21
The {sup 76}Sr (N=Z=38) and the {sup 72}Kr (N=Z=36) {beta}{sup +} EC decay have been studied at the CERN/ISOLDE PSB facility where their beta-gamma and delayed particle decay modes have been investigated. The established decay schemes yield new information on the Gamow-Teller (GT) strength spread over the J{sup {pi}}=1{sup +} states in the daughter nuclei. The delayed proton emission of an N=Z nucleus is observed for the first time in the case of {sup 76}Sr. The experimental GT strength intensities and distributions are discussed in the light of the theoretical estimates for oblate and prolate deformations.
2-D Hartee-Fock-Bogoliubov Calculations For Exotic Deformed Nuclei
NASA Astrophysics Data System (ADS)
Blazkiewicz, Artur; Oberacker, Volker E.; Umar, Sait A.; Teran, Edgar
2003-10-01
We solve the Hartree-Fock-Bogoliubov (HFB) equations in coordinate space; the computational method has been specifically designed to study ground state properties of nuclei near the neutron and proton drip lines teref1. The unique feature of our code is that it takes into account the strong coupling to high-energy continuum states, up to an equivalent single-particle energy of 60 MeV or higher. We solve the HFB equations for deformed, axially symmetric even-even nuclei in coordinate space on a 2-D lattice with Basis-Spline methods. For the p-h channel, the Skyrme (SLy4) effective N-N interaction is utilized, and for the p-p and h-h channel we use a delta interaction. Results teref2,ref3 are presented for binding energies, deformations, normal densities and pairing densities, Fermi levels, and pairing gaps. In particular, we calculate the properties of two light isotope chains up to the two-neutron dripline: oxygen (^22-28O) and sulfur (^40-52S). For some of the sulfur isotopes we found the "shape coexistence" what was also confirmed by RMF calculations of P. Ring and G.A. Lalazissis teref4. Furthermore, we study the strongly deformed heavy systems zirconium (^102,104Zr), cerium (^152Ce), and samarium (^158Sm).We are also planning to study other isotopes by running our new parallel MPI version of HFB code. Comparison with relativistic mean field theory and with experimental data is given whenever available. This work has been supported by the U.S. Department of Energy under grant No. DE-FG02-96ER40963 with Vanderbilt University. The numerical calculations were carried out on the IBM-RS/6000 SP supercomputer at NERSC in Berkeley and on our local "Beowulf" Vampire computer at Vanderbilt University. 99 ref1 Axially Symmetric Hartee-Fock-Bogoliubov calculations for nuclei near the drip lines,E. Teran, V.E. Oberacker and A.S. Umar, Phys. Rev. C 67, (June 2003) ref2 Half lives of isomeric states from SF of ^252Cf and large deformations in ^104Zr and ^158Sm, J.K. Hwang, A
Hoff, R.W.; Gardner, D.G.; Gardner, M.A.
1984-10-05
A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been used to construct sets of discrete states with energy 0 to 1.5 MeV in /sup 176/Lu and /sup 236/Np. These data were used as part of the input for calculation of isomer production cross-section ratios in the /sup 175/Lu(n,..gamma..)/sup 176/Lu and /sup 237/Np(n,2n)/sup 236/Np reactions. In order to achieve agreement with experiment, it has been found necessary to include in the modeled set many rotational bands (35 to 95), which are comprised of hundreds of levels with their gamma-ray branching ratios. It is essential that enough bands be included to produce a representative selection of K quantum numbers in the de-excitation cascade. 20 refs., 3 figs., 3 tabs.
Theory of (3He,(alpha)) surrogate reactions for deformed uranium nuclei
Thompson, I; Escher, J E
2006-11-08
We present the one-step theory of neutron-pickup transfer reactions with {sup 3}He projectiles on {sup 235}U and {sup 238}U. We find all the neutron eigenstates in a deformed potential, and use those in a given energy range for ({sup 3}He, {alpha}) DWBA pickup calculations to find the spin and parity distributions of the residual target nuclei. A simple smoothing convolution is used to take into account the spreading width of the single-neutron hole states into the more complicated compound nuclear states. We assume that the initial target is an even-even rotor, but can take into account spectator neutrons outside such a rotor by recombining their spin and parity at the end of the calculations.
Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.; Dietrich, F. S.
2015-02-25
The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, wemore » have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.« less
NASA Astrophysics Data System (ADS)
Erhard, M.; Junghans, A. R.; Nair, C.; Schwengner, R.; Beyer, R.; Klug, J.; Kosev, K.; Wagner, A.; Grosse, E.
2010-03-01
Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental determination of the photon strength function covering the high excitation energy range above 4 MeV with its increasing level density. Photon scattering was used up to the neutron separation energies Sn and data up to the maximum of the isovector giant resonance (GDR) were obtained by photoactivation. After a proper correction for multistep processes the observed quasicontinuous spectra of scattered photons show a remarkably good match to the photon strengths derived from nuclear photoeffect data obtained previously by neutron detection and corrected in absolute scale by using the new activation results. The combined data form an excellent basis to derive a shape dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N=50 neutron shell (i.e., with the impact of quadrupole deformation and triaxiality). The wide energy coverage of the data allows for a stringent assessment of the dipole sum rule and a test of a novel parametrization developed previously which is based on it. This parametrization for the electric dipole strength function in nuclei with A>80 deviates significantly from prescriptions generally used previously. In astrophysical network calculations it may help to quantify the role the p-process plays in cosmic nucleosynthesis. It also has impact on the accurate analysis of neutron capture data of importance for future nuclear energy systems and waste transmutation.
Cao, X. G.; Zhang, G. Q.; Cai, X. Z.; Ma, Y. G.; Guo, W.; Chen, J. G.; Tian, W. D.; Fang, D. Q.; Wang, H. W.
2010-06-15
The reaction dynamics of axisymmetric deformed {sup 24}Mg+{sup 24}Mg collisions has been investigated systematically by an isospin-dependent quantum molecular dynamics model. It is found that different deformations and orientations result in apparently different properties of reaction dynamics. We reveal that some observables such as nuclear stopping power (R), multiplicity of fragments, and elliptic flow are very sensitive to the initial deformations and orientations. There exists an eccentricity scaling of elliptic flow in central body-body collisions with different deformations. In addition, the tip-tip and body-body configurations turn out to be two extreme cases in central reaction dynamical process.
NASA Astrophysics Data System (ADS)
Lisboa, R.; Malheiro, M.; Carlson, B. V.
2016-02-01
Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the
Sharipov, Sh.; Ermamatov, M. J. Bayimbetova, J. K.
2008-02-15
The properties of excited states of two deformable odd nuclei are investigated within the nonadiabatic model previously developed by the present authors. The results of relevant calculations are compared with available experimental data.
A C-code for the double folding interaction potential for reactions involving deformed target nuclei
NASA Astrophysics Data System (ADS)
Gontchar, I. I.; Chushnyakova, M. V.
2013-01-01
We present a C-code designed to obtain the interaction potential between a spherical projectile nucleus and an axial-symmetrical deformed target nucleus and in particular to find the Coulomb barrier, by using the double folding model (DFM). The program calculates the nucleus-nucleus potential as a function of the distance between the centers of mass of colliding nuclei as well as of the angle between the axis of symmetry of the target nucleus and the beam direction. The most important output parameters are the Coulomb barrier energy and the radius. Since many researchers use a Woods-Saxon profile for the nuclear term of the potential we provide an option in our code for fitting the DFM potential by such a profile near the barrier. Program summaryProgram title: DFMDEF Catalogue identifier: AENI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2245 No. of bytes in distributed program, including test data, etc.: 215442 Distribution format: tar.gz Programming language: C. Computer: PC, Mac. Operating system: Windows XP (with the GCC-compiler version 2), MacOS, Linux. RAM: 100 MB with average parameters set Classification: 17.9. Nature of problem: The code calculates in a semimicroscopic way the bare interaction potential between a spherical projectile nucleus and a deformed but axially symmetric target nucleus as a function of the center of mass distance as well as of the angle between the axis of symmetry of the target nucleus and the beam direction. The height and the position of the Coulomb barrier are found. The calculated potential is approximated by a conventional Woods-Saxon profile near the barrier. Dependence of the barrier parameters upon the characteristics of the effective NN forces (like, e
Zhang Yu; Pan Feng; Liu Yuxin; Luo Yanan; Draayer, J. P.
2011-09-15
An analytically solvable model, X(3/2j+1), is proposed to describe odd-A nuclei near the X(3) critical point. The model is constructed based on a collective core described by the X(3) critical point symmetry coupled to a spin-j particle. A detailed analysis of the spectral patterns for cases j=1/2 and j=3/2 is provided to illustrate dynamical features of the model. By comparing theory with experimental data and results of other models, it is found that the X(3/2j+1) model can be taken as a simple yet very effective scheme to describe those odd-A nuclei with an even-even core at the critical point of the spherical to axially deformed shape phase transition.
Korover, Igor
2015-04-01
This thesis reports on a simultaneous measurement of the ^{4}He(e,e'p), ^{4}He(e,e'pp), and ^{4}He(e,e'pn) reactions at Q^{2} = 2 (GeV/c)^{2} and x_{B} > 1 for an (e,e'p) missing momentum range of 400 to 830 MeV/c.
NASA Astrophysics Data System (ADS)
Sahu, R.; Srivastava, P. C.; Kota, V. K. B.
2013-09-01
Nuclear transition matrix elements (NTME) for neutrinoless positron double beta decay (0νβ+β+ and 0νβ+EC) of 64Zn, 74Se, 78Kr and 84Sr nuclei, which are in the A = 60-90 region, are calculated within the framework of the deformed shell model (DSM) based on Hartree-Fock states. For 64Zn, GXPF1A interaction in 1f7/2, 2p3/2, 1f5/2 and 2p1/2 space with 40Ca as the core is employed. Similarly for 74Se, 78Kr and 84Sr nuclei, 56Ni is taken as the inert core employing a modified Kuo interaction in 2p3/2, 1f5/2, 2p1/2 and 1g9/2 space. After ensuring that the DSM gives a good description of the spectroscopic properties of low-lying levels in the four nuclei considered, the NTME are calculated. The half-lives deduced with these NTME, assuming the neutrino mass is 1 eV, are smallest for 78Kr with the half-life for β+EC decay being ˜1027 yr. For all others, the half-lives are in the range of ˜1028-1029 yr.
Signals for compositeness in e-e+-->e-e+ and e-e+-->μ-μ+
NASA Astrophysics Data System (ADS)
Bars, I.; Gunion, J. F.; Kwan, M.
1986-07-01
Theories in which leptons are composite lead to additional contributions (beyond those from the standard model) to the amplitudes for e-e+-->e-e+ and e-e+-->μ-μ+. Detailed models, constructed by analogy between QCD and compositeness/precolor interactions lead to specific forms for these extra terms. We demonstrate that compositeness scales M as high as 4-7 TeV may be probed using e-e+ collision machines currently available and planned for the near future. Sensitivity to the type of composite model and its parity-violation structure is demonstrated. In particular we point out that there are no standard-model contributions to the scattering e-e+-->μ-μ+ when the incoming e- and e+ both have the same helicity. Observation of a nonzero cross section in such a helicity scattering state is prima facie evidence of flavor-changing vector currents in the t channel or scalar currents connecting the e and μ lepton sectors in the s channel.
NASA Astrophysics Data System (ADS)
Ni, Dongdong; Ren, Zhongzhou
2015-05-01
The weak-decay (β+ and EC) rates of neutron-deficient Kr, Sr, Zr, and Mo isotopes are investigated within the deformed quasiparticle random-phase approximation with realistic nucleon-nucleon interactions. The particle-particle and particle-hole channels of residual interactions are handled in large single-particle model spaces, based on the Brückner G-matrix with charge-dependent Bonn nucleon-nucleon forces. Contributions from allowed Gamow-Teller and Fermi transitions as well as first-forbidden transitions are calculated. The calculated half-lives show good agreement with the experimental data over a wide range of magnitude, from 10-2 to 107 s. Moreover, predictions of β-decay half-lives are made for some extremely proton-rich isotopes, which could be useful for future experiments.
Effects of angular dependence of surface diffuseness in deformed nuclei on Coulomb barrier
NASA Astrophysics Data System (ADS)
Adamian, G. G.; Antonenko, N. V.; Malov, L. A.; Scamps, G.; Lacroix, D.
2014-09-01
The angular dependence of surface diffuseness is further discussed. The results of self-consistent calculations are compared with those obtained with the phenomenological mean-field potential. The rather simple parametrizations are suggested. The effects of surface polarization and hexadecapole deformation on the height of the Coulomb barrier are revealed.
Zhang Yu; Pan Feng; Liu Yuxin; Hou Zhanfeng; Draayer, J. P.
2010-09-15
A coupling scheme for even-even nuclei with the X(5) critical point symmetry coupled to a single valence nucleon in a j orbit is proposed to approximately describe the critical point phenomena of spherical to axially deformed shape (phase) transition in odd-A nuclear systems. The corresponding scheme, which can be solved analytically, is called the X(5/(2j+1)) model. A special case with j=1/2 is analyzed in detail to show its level structure and transition patterns. It is further shown that {sup 189}Au and {sup 155}Tb may be possible X(5/(2j+1)) symmetry candidates with j=1/2 and j=3/2, respectively.
NASA Astrophysics Data System (ADS)
Ring, P.; Gambhir, Y. K.; Lalazissis, G. A.
1997-09-01
We present a Fortran program for the calculation of the ground state properties of axially deformed even-even nuclei in the framework of Relativistic Mean Field Theory (RMF). In this approach a set of coupled partial differentials has to be solved self-consistently: the Dirac equation for the nucleons moving in self-consistent fields and the Klein-Gordon equations for the meson fields and the electromagnetic field, whose sources are scalar and vector densities determined of the nucleons. For this purpose the Dirac spinors as well as the meson fields are expanded in terms of anisotropic oscillator wave functions in cylindrical coordinates. This requires a matrix diagonalization for the solution of the Dirac equations and the solution of an inhomogeneous matrix equation for the meson fields. For the determination of the Coulomb field the Greens function method is used.
Kuzyakin, R. A. Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.
2013-06-15
Within the quantum diffusion approach, the capture of a projectile nucleus by a target nucleus is studied at bombarding energies above and below the Coulomb barrier. The effects of deformation of interacting nuclei and neutron transfer between them on the total and partial capture cross sections and the mean angular momentum of the captured system are studied. The results obtained for the {sup 16}O + {sup 112}Cd, {sup 152}Sm, and {sup 184}W; {sup 19}F +{sup 175}Lu; {sup 28}Si +{sup 94,100}Mo and {sup 154}Sm; {sup 40}Ca +{sup 96}Zr; {sup 48}Ca+ {sup 90}Zr; and {sup 64}Ni +{sup 58,64}Ni, {sup 92,96}Zr, and {sup 100}Mo reactions are in good agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Kuzyakin, R. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.
2013-06-01
Within the quantum diffusion approach, the capture of a projectile nucleus by a target nucleus is studied at bombarding energies above and below the Coulomb barrier. The effects of deformation of interacting nuclei and neutron transfer between them on the total and partial capture cross sections and the mean angular momentum of the captured system are studied. The results obtained for the 16O + 112Cd, 152Sm, and 184W; 19F +175Lu; 28Si +94,100Mo and 154Sm; 40Ca +96Zr; 48Ca+ 90Zr; and 64Ni +58,64Ni, 92,96Zr, and 100Mo reactions are in good agreement with available experimental data.
Dominance of Low Spin and High Deformation in Ab Initio Approaches to the Structure of Light Nuclei
Dytrych, T.; Draayer, J. P.; Sviratcheva, K. D.; Bahri, C.; Vary, J. P.
2009-08-26
Ab initio no-core shell-model solutions for the structure of light nuclei are shown to be dominated by low-spin and high-deformation configurations. This implies that only a small fraction of the full model space is important for a description of bound-state properties of light nuclei. It further points to the fact that the coupling scheme of choice for carrying out calculations for light nuclear systems is an algebraic-based, no-core shell-model scheme that builds upon an LS coupling [SO(3) x SU(2)] foundation with the spatial part of the model space further organized into its symplectic [SO(3) subset of SU(3) subset of Sp(3, R)] structure. Results for {sup 12}C and {sup 16}O are presented with the cluster nature of the excited 0{sup +} states in {sup 16}O analyzed within this framework. The results of the analysis encourages the development of a no-core shell model code that takes advantage of algebraic methods as well as modern computational techniques. Indeed, although it is often a very challenging task to cast complex algebraic constructs into simple logical ones that execute efficiently on modern computational systems, the construction of such a next-generation code is currently underway.
Proton emission from the deformed odd-odd nuclei near drip line
NASA Astrophysics Data System (ADS)
Patial, M.; Arumugam, P.; Jain, A. K.; Maglione, E.; Ferreira, L. S.
2016-01-01
Proton emission from odd-odd nuclei is studied within the two quasiparticle plus rotor model which includes the non-adiabatic effects and the residual interaction between valence proton and neutron. Justification of the formalism is discussed through corroboration of our results with the experimental spectrum of 180Ta. Exact calculations are performed to get the proton emission halflives. Our results for the proton emitter 130Eu leads to the assignment of spin and parity Jπ = 1+ for the ground state. The role of Coriolis and residual neutron-proton interactions on the proton emission halflives and their interplay are also discussed.
NASA Astrophysics Data System (ADS)
Li, Dong-Peng; Chen, Shou-Wan; Niu, Zhong-Ming; Liu, Quan; Guo, Jian-You
2015-02-01
Following a recent letter [J.-Y. Guo, S.-W. Chen, Z.-M. Niu, D.-P. Li, and Q. Liu, Phys. Rev. Lett. 112, 062502 (2014), 10.1103/PhysRevLett.112.062502], we present more details for the relativistic symmetry research by using the similarity renormalization group. With the theoretical formalism expressed in detail, we explore the origin and breaking mechanism of relativistic symmetries for an axially deformed nucleus. By comparing the energy splitting between the (pseudo-) spin doublets, it is shown that the spin energy splitting arises almost completely from the spin-orbit coupling, while the pseudospin energy splitting arises from a combination of the nonrelativistic, dynamical, and spin-orbit terms. Furthermore, these splittings are correlated with nuclear deformation as well as with the quantum numbers of the doublets. The origin of relativistic symmetries is disclosed and the breaking mechanism of spin and pseudospin symmetries is clarified.
Interplay between tensor force and deformation in even-even nuclei
NASA Astrophysics Data System (ADS)
Bernard, Rémi N.; Anguiano, Marta
2016-09-01
In this work we study the effect of the nuclear tensor force on properties related with deformation. We focus on isotopes in the Mg, Si, S, Ar, Sr and Zr chains within the Hartree-Fock-Bogoliubov theory using the D1ST2a Gogny interaction. Contributions to the tensor energy in terms of saturated and unsaturated subshells are analyzed. Like-particle and proton-neutron parts of the tensor term are independently examinated. We found that the tensor term may considerably modify the potential energy landscapes and change the ground state shape. We analyze too how the pairing characteristics of the ground state change when the tensor force is included.
Selection rules for electromagnetic transitions in triaxially deformed odd-A nuclei
Tanabe, Kosai; Sugawara-Tanabe, Kazuko
2008-06-15
The approximate selection rules for the interband and intraband electromagnetic transitions are predicted referring to two quantum numbers, which are derived from an algebraic solution for the particle-rotor model with one high-j nucleon coupled to a triaxially deformed core. It is shown that the inclusion of angular momentum dependence for moments of inertia reproduces the experimental excitation energies relative to a reference quite well both for positive and negative parity TSD bands in {sup 161,163,165,167}Lu.
Deformation increase of high-spin core-excited isomers in the astatine nuclei
Scheveneels, G.; Hardeman, F.; Neyens, G.; Coussement, R. )
1991-06-01
Quadrupole moments of six high-spin isomers in the At isotopes have been measured with the level-mixing-spectroscopy method: {sup 208}At(16{sup {minus}}), {sup 209}At(29/2{sup +}), {sup 210}At(19{sup +},15{sup {minus}}), {sup 211}At(39/2{sup {minus}},29/2{sup +}). The results show that level mixing spectroscopy is a promising technique to determine quadrupole moments of isomers that are difficult to measure by other in-beam hyperfine interaction methods. A large increase of the quadrupole moment is observed if neutrons are excited across or removed from the {ital N}=126 shell closure. This behavior is explained in terms of an enhanced core softness for fewer core neutrons; the aligned valence particles, moving in equatorial orbits, then easily polarize the core towards oblate deformation.
Charge-exchange modes of excitation in deformed neutron-rich nuclei
Yoshida, Kenichi
2015-10-15
Gamow-Teller (GT) mode of excitation and β-decay properties of deformed neutron-rich even-N Zr isotopes are investigated in a self-consistent Skyrme energy-density-functional approach, in which the Hartree-Fock-Bogoliubov equation is solved in the coordinate space and the proton-neutron Quasiparticle-RPA equation is solved in the quasiparticle basis. It is found that a stronger collectivity is generated for the GT giant resonance as an increase in the neutron number. Furthermore, we find that the T = 0 pairing enhances the low-lying GT strengths cooperatively with the T = 1 pairing correlation depending on the microscopic structure of the low-lying mode and the shell structure around the Fermi levels, and that the enhanced strength shortens the β-decay half-lives by at most an order of magnitude.
Shape phase transition in odd-even nuclei: From spherical to deformed gamma-unstable shapes
Boeyuekata, M.; Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.
2010-07-15
Shape phase transitions in odd-A nuclei are investigated within the framework of the interacting boson-fermion model. The case of a single j=9/2 fermion coupled to an even-even boson core is considered. This boson core transits from spherical to gamma-unstable shapes depending on the value of a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core along the shape transition and, in particular, at the critical point is discussed. For that purpose, the ground-state energy surface in terms of the beta and gamma shape variables for the even core and odd-even energy surfaces for the different K states coming from j=9/2 are constructed. The evolution of each individual coupled state along the transition from the spherical [U(5)] to the gamma-unstable [O(6)] situation is investigated. One finds that the core-fermion coupling gives rise to a smoother transition than in the even-core case.
NASA Astrophysics Data System (ADS)
Yakut, H.; Guliyev, E.; Guner, M.; Tabar, E.; Zenginerler, Z.
2012-08-01
A new microscopic method has been developed in the framework of the Quasiparticle-Phonon Nuclear Model (QPNM) in order to investigate spin polarization effects on the magnetic properties such as magnetic moment, intrinsic magnetic moment and effective gs factor of the ground state of odd-mass 157-167Er isotopes. The calculations were performed using both Tamm-Dancoff Approximation (TDA) and Quasiparticle Random-Phase Approximation (QRPA). Reasonably good agreement has been obtained between the QRPA results and the relevant experimental data. Furthermore the variation of the intrinsic magnetic moment gK values with the mass number A exhibits similar behavior for both theoretical and experimental results. From the compression of the calculated intrinsic magnetic moment values with the experimental data the spin-spin interaction parameter has been found as χ=(30/A) MeV for odd-mass 157-167Er isotopes. Our results clarify the possibility of using this new method to describe the magnetic properties of odd-mass deformed nuclei.
Luo, W.D.; Bouguettoucha, A.; Dobaczewski, J.; Dudek, J.; Li, X.
1995-12-01
Microscopic analysis of the quantum (shell) effects related to the presence of the hexadecapole ({ital Y}{sub 4{mu}}; {mu}=0,2,4) components in the nuclear mean field is performed for the superdeformed nuclei in the mass {ital A} {similar_to} 150 region using the deformed Woods-Saxon potential. No shell effects favoring the {ital C}{sub 4}-symmetry are found. The calculations indicate, however, the existence of the {alpha}{sub 44}-deformation driving orbitals whose occupation might induce an {alpha}{sub 44}-polarization effect. For {sup 149}Gd and {sup 153}Dy nuclei, in which the existence of the {ital C}{sub 4}-symmetry effects is suspected, properties of several excited particle-hole configuration are analyzed.
NASA Astrophysics Data System (ADS)
Koh, Meng-Hock; Duy Duc, Dao; Nhan Hao, T. V.; Thuy Long, Ha; Quentin, P.; Bonneau, L.
2016-01-01
In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed.
Coello Pérez, Eduardo A.; Papenbrock, Thomas F.
2015-07-27
In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 02+ band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less
Coello Pérez, Eduardo A.; Papenbrock, Thomas F.
2015-07-27
In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoretical uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 0_{2}^{+} band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.
Color coherent effects in (e,e{prime}N) and (e,e{prime}N,N(h)) processes at CEBAF
Frankfurt, L.L.; Sargsyan, M.M.; Strikman, M.I. |
1994-04-01
The options for investigating color coherent effects and competing nuclear effects of nucleon-nucleon correlations in nuclei, nuclear shell effects in (e, e{prime}N) and (e, e{prime}NN(h)) reactions are considered. They argue that extension of CEBAF energies to reach Q{sup 2} = 10 GeV{sup 2} will allow systematical investigations of color coherent effects in nonperturbative regime of QCD and their interplay with nuclear effects.
Ross, T.J.; Hughes, R.O.; Beausang, C.W.; Allmond, James M; Angell, C.T.; Basunia, M.S.; Bleuel, D.L.; Burke, J.T.; Casperson, R.J.; Escher, J.E.; Fallon, P.; Hatarik, R.; Munson, J.; Paschalis, S.; Petri, M.; Phair, L.; Ressler, J.J.; Scielzo, N.D.
2013-01-01
Odd-mass gadolinium isotopes around N = 90 were populated by the (p,d ) reaction, utilizing 25-MeV protons, resulting in population of low-spin quasineutron states at energies near and below the Fermi surface. Systematics of the single quasineutron levels populated are presented. A large excitation energy gap is observed between levels originating from the 2d3/2 , 1h11/2 , and 3s1/2 spherical parents (above the N = 64 gap), and the 2d5/2 (below the gap), indicating that the spherical shell model level spacing is maintained at least to moderate deformations.
NASA Astrophysics Data System (ADS)
Ray, D.; Afanasjev, A. V.
2016-07-01
A systematic search for extremely deformed structures in the N ≈Z nuclei of the A ≈40 mass region has been performed for the first time in the framework of covariant density functional theory. At spin zero such structures are located at high excitation energies, which prevents their experimental observation. The rotation acts as a tool to bring these exotic shapes to the yrast line or its vicinity so that their observation could become possible with future generation of γ -tracking (or similar) detectors such as GRETA and AGATA. The major physical observables of such structures (such as transition quadrupole moments, as well as kinematic and dynamic moments of inertia), the underlying single-particle structure and the spins at which they become yrast or near yrast, are defined. The search for the fingerprints of clusterization and molecular structures is performed and the configurations with such features are discussed. The best candidates for observation of extremely deformed structures are identified. For several nuclei in this study (such as 36Ar), the addition of several spin units above the currently measured maximum spin of 16 ℏ will inevitably trigger the transition to hyper- and megadeformed nuclear shapes.
NASA Astrophysics Data System (ADS)
Samarin, Viacheslav
2014-03-01
Time-dependent Schrödinger equation is numerically solved by difference method for external neutrons of nuclei 6He, 18O, 48Са, 238U at their grazing collisions with energies in the vicinity of a Coulomb barrier. The spin-orbital interaction and Pauli's exclusion principle were taken into consideration during the solution.
Pauling, L
1982-11-01
A set of rules, involving the magic and semimagic values of neutron and proton numbers and the proton/neutron ratio, is formulated for the composition of the revolving clusters producing the values of the moment of inertia given by the differences in energy of the adjacent levels in quasibands and bands of nuclei. The cluster compositions assigned with use of these rules to isotopes of Kr, Sr, Zr, Mo, and the actinon nuclei and to successive levels of the ground-state band of (158)Er lead to reasonable values of the radius of revolution (the distance from the center of the nonrevolving sphere to the center of the cluster). These values correspond to a spheron diameter of about 3.20 fm. PMID:16593256
Collision dynamics of two 238U atomic nuclei.
Golabek, Cédric; Simenel, Cédric
2009-07-24
Collisions of actinide nuclei form, during very short times of few 10;{-21} s, the heaviest ensembles of interacting nucleons available on Earth. Such collisions have been proposed as an alternative way to produce heavy and superheavy elements. They are also used to produce superstrong electric fields by the huge number of interacting protons to test spontaneous positron-electron (e;{+}e;{-}) pair emission predicted by the quantum electrodynamics theory. The time-dependent Hartree-Fock theory is used to study collision dynamics of two 238U atomic nuclei. In particular, the role of nuclear deformation on collision time and on reaction mechanisms such as nucleon transfer is emphasized. The highest collision times (approximately 4 x 10;{-21} s at 1200 MeV) should allow experimental signature of spontaneous e;{+}e;{-} emission in case of bare uranium ions. Surprisingly, we also observe ternary fission due to purely dynamical effects. PMID:19659346
Hoff, R.W.; Jain, A.K.; Kvasil, J.; Sood, P.C.; Sheline, R.K.; Florida State Univ., Tallahassee, FL )
1989-09-01
The application of a simple semi-empirical model is discussed in terms of interpreting experimental nuclear structure data for twelve of the best characterized odd-odd deformed nuclei. An essential part of this modeling is to calculate values for the Gallagher-Moszkowski splittings and Newby shifts, the observables that arise from the n-p residual interaction in odd-odd nuclei. Assumptions regarding the form for this n-p force are traced historically. The predictive power of a favored form of the n-p force, one that includes a central force with short and long-range components, a tensor force, and some effects of core polarization, is examined in light of experimental data obtained since its formulation. A data set of 42 experimentally determined Newby shifts has been reviewed as to the reliability of each entry. Exceptions to a recently proposed rule for the a priori determination of the sign of Newby shift are discussed. Evidence is presented for the existence of an odd-even staggering or signature effect in the rotational spacings of many K{sup {minus}} bands (with K > 0). By use of Coriolis-coupling calculations, it has been possible to reproduce the staggering observed in some of the K{sup {minus}} rotational bands of {sup 156}Tb, {sup 168}Tm, {sup 176}Lu, {sup 182}Ta, and {sup 182}Re. 27 refs., 3 figs., 3 tabs.
Description of superdeformed nuclei in the A{approx}190 region by generalized deformed su{sub q}(2)
Alharbi, H. H.; Alhendi, H. A.; Alhakami, F. S.
2009-05-15
The generalized deformed su{sub q}(2) model is applied to 79 superdeformed bands in the region A{approx}190. The transition energies and the moments of inertia are calculated within the model and their validity is investigated by comparing them with the experimental data. Both the standard su{sub q}(2) and the generalized one fail to account for the uprising and the downturn of the dynamic moments of inertia. Both models, however, show remarkable agreement with the available experimental data at low angular frequency (({Dirac_h}/2{pi}){omega}{<=}0.25 MeV)
Precision measurements of e+, e_, e++e_ fluxes with AMS-02
NASA Astrophysics Data System (ADS)
Pizzolotto, Cecilia
2016-05-01
The Alpha Magnetic Spectrometer (AMS-02) is a large acceptance particle physics detector installed on board the International Space Station (ISS) since May 19th 2011 to search for primordial anti-matter, for indirect signals of dark matter and to perform a high statistic and long duration measurement of the spectra of primary charged cosmic rays. Precise measurements of the electron and positron fluxes and of the total e++e_ flux are presented. These AMS results provide a deeper understanding of the nature of high energy cosmic rays and can shed more light on the nature of dark matter.
Effective Theory for Deformed Nuclei
Papenbrock, Thomas F
2011-01-01
Techniques from effective field theory are applied to nuclear rotation. This approach exploits the spontaneous breaking of rotational symmetry and the separation of scale between low-energy Nambu-Goldstone rotational modes and high-energy vibrational and nucleonic degrees of freedom.
NASA Astrophysics Data System (ADS)
Mishra, S.; Shukla, A.; Sahu, R.; Kota, V. K. B.
2008-08-01
The β+/EC half-lives of medium heavy N~Z nuclei with mass number A~64-80 are calculated within the deformed shell model (DSM) based on Hartree-Fock states by employing a modified Kuo interaction in (2p3/2,1f5/2,2p1/2,1g9/2) space. The DSM model has been quite successful in predicting many spectroscopic properties of N~Z medium heavy nuclei with A~64-80. The calculated β+/EC half-lives, for prolate and oblate shapes, compare well with the predictions of the calculations with Skyrme force by Sarriguren Going further, following recent searches, half-lives for 2ν β+β+/β+EC/ECEC decay for the nucleus Kr78 are calculated using DSM and the results compare well with QRPA predictions.
Job Prospects for E/E Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1987-01-01
Discusses the trends in employment in the electrical/electronics (E/E) engineering industry. States that although the number of E/E graduates grew at a rate of over 11 percent from 1985 to 1986, the economy continues to be the major determinant in the job outlook in the field. (TW)
^{3,4}He(e,e'p) Experiments in Jefferson Lab's Hall A
D.W. Higinbotham
2002-09-01
Coincidence experiments have proven to be very useful tools in studying specific aspects of the nucleus. In particular the (e,e'p) reaction has been used not only to study the single-nucleon structure of nuclei but also to study the behavior of nucleons embedded in the nuclear medium. In this paper, the results of the Jefferson Lab {sup 3}He(e,e'p) measurements will be presented along with a discussion of recent and upcoming {sup 4}He(e,e'p) measurements.
Superdeformed oblate superheavy nuclei
Jachimowicz, P.; Kowal, M.; Skalski, J.
2011-05-15
We study stability of superdeformed oblate (SDO) superheavy Z{>=}120 nuclei predicted by systematic microscopic-macroscopic calculations in 12D deformation space and confirmed by the Hartree-Fock calculations with the SLy6 force. We include into consideration high-K isomers that very likely form at the SDO shape. Although half-lives T{sub 1/2} < or approx. 10{sup -5} s are calculated or estimated for even-even spin-zero systems, decay hindrances known for high-K isomers suggest that some SDO superheavy nuclei may be detectable by the present experimental technique.
Werner U. Boeglin
2005-02-01
One hopes to learn about the short range structure of the deuteron by measuring the D(e,e'p)n cross section at large nucleon momenta. The problems of previous experiments are discussed and a recent Hall A experiment at Jefferson Lab is presented.
Short-Distance Structure of Nuclei
Douglas Higinbotham, Eliazer Piasetzky, Stephen Wood
2011-06-01
One of Jefferson Lab's original missions was to further our understanding of the short-distance structure of nuclei. In particular, to understand what happens when two or more nucleons within a nucleus have strongly overlapping wave-functions; a phenomena commonly referred to as short-range correlations. Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions that have been used at Jefferson Lab to probe this short-distance structure as well as provide an outlook for future experiments.
NASA Astrophysics Data System (ADS)
Nayak, R. C.; Pattnaik, S.
2015-11-01
We identify here the possible occurrence of large deformations in the neutron- and proton-rich (n-rich and p-rich) regions of the nuclear chart from extensive predictions of the values of the reduced quadrupole transition probability B(E2)↑ for the transition from the ground state to the first 2+ state and the corresponding excitation energy E2 of even-even nuclei in the recently developed generalized differential equation (GDE) model exclusively meant for these physical quantities. This is made possible from our analysis of the predicted values of these two physical quantities and the corresponding deformation parameters derived from them such as the quadrupole deformation β2, the ratio of β2 to the Weisskopf single-particle β2(sp) and the intrinsic electric quadrupole moment Q0, calculated for a large number of both known as well as hitherto unknown even-even isotopes of oxygen to fermium (0 to FM; Z = 8-100). Our critical analysis of the resulting data convincingly support possible existence of large collectivity for the nuclides 30,32Ne,34Mg, 60Ti, 42,62,64Cr,50,68Fe, 52,72Ni, 72,70,96Kr,74,76Sr,78,80,106,108Zr, 82,84,110,112Mo, 140Te,144Xe, 148Ba,122Ce, 128,156Nd,130,132,158,160Sm and 138,162,164,166Gd, whose values of β2 are found to exceed 0.3 and even 0.4 in some cases. Our findings of large deformations in the exotic n-rich regions support the existence of another “island of inversion” in the heavy-mass region possibly caused by breaking of the N = 70 subshell closure.
NASA Astrophysics Data System (ADS)
Redon, N.; Prévost, A.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rossé, B.; Stézowski, O.; Nolan, P. J.; Andreoiu, C.; Boston, A. J.; Descovich, M.; Evans, A. O.; Gros, S.; Norman, J.; Page, R. D.; Paul, E. S.; Rainovski, G.; Sampson, J.; de France, G.; Casandjian, J. M.; Theisen, Ch.; Scheurer, J. N.; Nyakó, B. M.; Gál, J.; Kalinka, G.; Molnár, J.; Dombrádi, Zs.; Timár, J.; Zolnai, L.; Juhász, K.; Astier, A.; Deloncle, I.; Porquet, M. G.; Wadsworth, R.; Raddon, P.; Lee, Y.; Wilkinson, A.; Joshi, P.; Simpson, J.; Appelbe, D.; Joss, D.; Lemmon, R.; Smith, J.; Cullen, D.; Brondi, A.; La Rana, G.; Moro, R.; Vardacci, E.; Girod, M.
2004-02-01
The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.
Redon, N.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rosse, B.; Stezowski, O.; France, G. de; Casandjian, J. M.
2004-02-27
The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.
Electroproduction of Strange Nuclei
E.V. Hungerford
2002-06-01
The advent of high-energy, CW-beams of electrons now allows electro-production and precision studies of nuclei containing hyperons. Previously, the injection of strangeness into a nucleus was accomplished using secondary beams of mesons, where beam quality and target thickness limited the missing mass resolution. We review here the theoretical description of the (e, e'K+) reaction mechanism, and discuss the first experiment demonstrating that this reaction can be used to precisely study the spectra of light hypernuclei. Future experiments based on similar techniques, are expected to attain even better resolutions and rates.
Short Range Correlations in Nuclei
L. B. Weinstein
2006-11-01
Short range correlations (SRC) are an extremely important part of nuclear structure. They are responsible for the high momentum part of the nuclear wavefunction. Instantaneous densities can significantly exceed the average neutron star density. Recent (e,e[prime]) measurements at Jefferson Lab have shown that SRC are universal in nuclei from deuterium to gold, that the probability of two-nucleon SRC is 5-25%, and that the probability of three-nucleon SRC is less than 1%. Recent (e,e[prime]pn) measurements have measured the SRC probabilities as a function of proton momentum and have measured the joint NN momentum distributions.
Octupole shapes in heavy nuclei
Ahmad, I.
1994-08-01
Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.
NASA Astrophysics Data System (ADS)
Lee, Roman N.; Mingulov, Kirill T.
2016-06-01
We apply the differential equation method to the calculation of the total Born cross section of the process Z1Z2 →Z1Z2e+e-. We obtain explicit expression for the cross section exact in the relative velocity of the nuclei.
NASA Astrophysics Data System (ADS)
Hofmann, Sigurd
2015-11-01
Scientifically based searches for elements beyond uranium started after the discovery of the neutron. Neutrons captured by uranium nuclei and subsequent {β }- decay, similarly as most of the elements were produced in nature, was the successful method applied. However, as a first result, Hahn and Strassmann discovered nuclear fission indicating a limit for the existence of nuclei at an increasing number of protons. Eventually, the nuclear shell model allowed for a more accurate calculation of binding energies, half-lives and decay modes of the heaviest nuclei. Theoreticians predicted a region of increased stability at proton number Z = 126, later shifted to 114, and neutron number N = 184. These nuclei receive their stability from closed shells for the protons and neutrons. Later, increased stability was also predicted for deformed nuclei at Z = 108 and N = 162. In this review I will report on experimental work performed on research to produce and identify these super-heavy nuclei (SHN). Intensive heavy ion beams, sophisticated target technology, efficient electromagnetic ion separators, and sensitive detector arrays were the prerequisites for discovery of 12 new elements during the last 40 years. The results are described and compared with theoretical predictions and interpretations. An outlook is given on further improvement of experimental facilities which will be needed for exploration of the extension and structure of the island of SHN, in particular for searching for isotopes with longer half-lives predicted to be located in the south east of the island, for new elements, and last not least, for surprises which, naturally, emerge unexpectedly.
NASA Astrophysics Data System (ADS)
Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru
2008-04-01
]C([symbol], n)[symbol]O by the transfer reaction [symbol]C([symbol]Li, t)[symbol]O / F. Hammache et al. -- SPIRAL2 at GANIL: a world of leading ISOL facility for the physics of exotic nuclei / S. Gales -- Magnetic properties of light neutron-rich nuclei and shell evolution / T. Suzuki, T. Otsuka -- Multiple scattering effects in elastic and quasi free proton scattering from halo nuclei / R. Crespo et al. -- The dipole response of neutron halos and skins / T. Aumann -- Giant and pygmy resonances within axially-symmetric-deformed QRPA with the Gogny force / S. Péru, H. Goutte -- Soft K[symbol] = O+ modes unique to deformed neutron-rich unstable nuclei / K. Yoshida et al. -- Synthesis, decay properties, and identification of superheavy nuclei produced in [symbol]Ca-induced reactions / Yu. Ts. Oganessian et al. -- Highlights of the Brazilian RIB facility and its first results and hindrance of fusion cross section induced by [symbol]He / P. R. S. Gomes et al. -- Search for long fission times of super-heavy elements with Z = 114 / M. Morjean et al. -- Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara et al. -- [symbol]-cluster states and 4[symbol]-particle condensation in [symbol]O / Y. Funaki et al. -- Evolution of the N = 28 shell closure far from stability / O. Sorlin et al. -- Continuum QRPA approach and the surface di-neutron modes in nuclei near the neutron drip-line / M. Matsuo et al. -- Deformed relativistic Hartree-Bogoliubov model for exotic nuclei / S. G. Zhou et al. -- Two- and three-body correlations in three-body resonances and continuum states / K. Katō, K. Ikeda -- Pion- and Rho-Meson effects in relativistic Hartree-Fock and RPA / N. V. Giai et al. -- Study of the structure of neutron rich nuclei by using [symbol]-delayed neutron and gamma emission method / Y. Ye et al. -- Production of secondary radioactive [symbol] Na beam for the study of [symbol]Na([symbol], p)[symbol]Mg stellar reaction / D. N. Binh et al
NASA Astrophysics Data System (ADS)
Neff, Thomas; Feldmeier, Hans; Roth, Robert
2006-10-01
In the Fermionic Molecular Dynamics (FMD) model the nuclear many-body system is described using Slater determinants with Gaussian wave-packets as single-particle states. The flexibility of the FMD wave functions allows for a consistent description of shell model like structures, deformed states, cluster structures as well as halos. An effective interaction derived from the realistic Argonne V18 interaction using the Unitary Correlation Operator Method is used for all nuclei. Results for nuclei in the p-shell will be presented. Halo features are present in the Helium isotopes, cluster structures are studied in Beryllium and Carbon isotopes. The interplay between shell structure and cluster structures in the ground and the Hoyle state in ^12C will be discussed.
Searching for Short Range Correlations Using (e,e'NN) Reactions
Bin Zhang
2003-02-01
Electron induced two nucleon knockout reactions (e,e'pp) and (e,e'np) were performed for {sup 3}He, {sup 4}He, and {sup 12}C nuclei with incident energies of 2.261 GeV and 4.461 GeV using the CLAS detector at Jefferson Lab. Events with missing momenta lower than the Fermi level and missing energies smaller than the pion threshold were studied. The residual system was assumed to be a spectator and the process was considered as a quasi-free knockout of an NN pair. The data showed that the initial momentum extends up to 800 MeV/c with considerable strength. The cross sections for {sup 3}He(e,e'pp)n were compared to the calculations of J.M. Laget. It was found that the final state interactions (FSI) and the meson exchange currents (MEC) dominate the cross sections and the short range properties of the NN pair were substantially undermined. However, the node of the S state wave function of the pp pair at around 400 MeV/c initial momentum starts to be recognizable in the 4.461 GeV data. The data and the theory suggest that with higher momentum transfers, especially in the region x{sub Bj} > 1, the competing processes such as FSI and MEC will be less important and the detailed study of the short-range properties of nucleons inside nuclei will be more desirable.
Review of metastable states in heavy nuclei.
Dracoulis, G D; Walker, P M; Kondev, F G
2016-07-01
The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with [Formula: see text]. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances. PMID:27243336
Mirror nuclei constraint in nuclear mass formula
Wang Ning; Liang Zuoying; Liu Min; Wu, Xizhen
2010-10-15
The macroscopic-microscopic mass formula is further improved by considering mirror nuclei constraint. The rms deviation with respect to 2149 measured nuclear masses is reduced to 0.441 MeV. The shell corrections, the deformations of nuclei, the neutron and proton drip lines, and the shell gaps are also investigated to test the model. The rms deviation of {alpha}-decay energies of 46 superheavy nuclei is reduced to 0.263 MeV. The predicted central position of the superheavy island could lie around N=176{approx}178 and Z=116{approx}120 according to the shell corrections of nuclei.
Review of metastable states in heavy nuclei
NASA Astrophysics Data System (ADS)
Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.
2016-07-01
The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.
NASA Technical Reports Server (NTRS)
Raisbeck, G. M.
1986-01-01
Cosmogenic nuclei, nuclides formed by nuclear interactions of galactic and solar cosmic rays with extraterrestrial or terrestrial matter are discussed. Long lived radioactive cosmogenic isotopes are focused upon. Their uses in dating, as tracers of the interactions of cosmic rays with matter, and in obtaining information on the variation of primary cosmic ray flux in the past are discussed.
Spatial dependence of pairing in deformed nuclei
Balbutsev, E. B.; Malov, L. A.; Schuck, P.
2011-11-15
The solution of time-dependent Hartree-Fock-Bogoliubov equations by the Wignerfunction-moments method leads to the appearance of refined low-lying modes whose description requires the accurate knowledge of the anomalous density matrix. It is shown that calculations with Woods-Saxon potential satisfy this requirement, producing an anomalous density matrix of the same quality as more complicated calculations with realistic forces.
Onset of deformation in polonium nuclei
Younes, W.; Cizewski, J.A.
1996-12-31
The authors have been able to reproduce the systematics of the positive-parity states in {sup 192-208}Po within the framework of the Particle-Core Model. The wave-functions of the 2{sup +}{sub 1} states have been extracted using the Quasiparticle Random Phase Approximation. The increase in the collective motion of the lighter isotopes comes from the increased proton-neutron interaction when the neutrons and protons both occupy high-j orbitals.
Study of 0+ States in Deformed Nuclei
Lesher, S. R.; Ammar, Z.; Merrick, M.; Hannant, C. D.; Boukharouba, N.; McEllistrem, M. T.; Yates, S. W.; Warr, N.; Fransen, C.; Brown, T. B.
2006-03-13
In recent 160Gd(p,t) reaction studies the existence of more than ten 0+ states in 158Gd below 3.0 MeV was revealed. We have examined 158Gd with the (n,n'{gamma}) reaction at neutron energies up to 3.5 MeV to confirm the identification of these states and to determine their lifetimes through DSAM measurements. Gamma-ray excitation function and angular distribution measurements have been performed and {gamma} - {gamma} coincidences have been measured with the KEGS array of detectors. Moderately strong decays are observed from some of these 0+ states.
NASA Astrophysics Data System (ADS)
Baffioni, S.; Charlot, C.; Ferri, F.; Godinovic, N.; Meridiani, P.; Puljak, I.; Salerno, R.; Sirois, Y.
2007-02-01
A prospective analysis is presented for the discovery of the Standard Model Higgs boson in the CMS experiment at the LHC collider. The analysis focuses on the pp → H + X → ZZ(*) + X → e+e-e+e- + X channel for Higgs boson masses in the range 120 lesssim mH lesssim 300 GeV/c2. It relies on a full simulation of the detector response and usage of new detailed electron reconstruction tools. Emphasis is put on realistic strategies for the evaluation of experimental systematics and control of physics background processes. For an integrated LHC luminosity of 30fb-1, a Standard Model Higgs boson would be observed in the e+e-e+e- channel with a significance above 3 standard deviations for masses mH in the range from about 130 to 160 GeV/c2 and above 180 GeV/c2. A discovery with a significance above 5 standard deviations is possible for this integrated luminosity around mH sime 150 GeV/c2 and in the range from about 190 to 300 GeV/c2. The mass (cross-section) of the Higgs boson can be determined with a precision better than 1% (30%).
Search for contact interactions in the reactions e + e -→ l + l - and e + e -→γγ
NASA Astrophysics Data System (ADS)
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Li.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Fellous, R. El; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemmling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Helley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Trier, H.; Della Maria, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, J.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Schmitt, M.; Sharma, V.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Zheng, M.; Zobernig, G.
1993-06-01
Contact interactions are searched for using the differential cross sections for the reactions e + e -→ e + e -, e + e -→ µ + µ -, e + e -→ τ + τ - and e + e -→γγ measured at 12 energies around the Z peak and corresponding to about 20 pb-1 of cumulated luminosity. Four-fermion contact term models assuming various chiralities of lepton currents are fitted to the lepton data and lower limits on the energy scale Λ of such terms are set at 95% c.l. The limits vary in the range 0.9 4.7 TeV, depending on the model and on the lepton flavour. The eeγγ contact terms are searched for assuming various chiralities. Limits on the energy scale Λ between 79 and 130 GeV are extracted from the data. The results are compared and combined with those reported at lower energies.
Galindo-Uribarri, Alfredo {nmn}
2010-01-01
Current experimental developments on the study of exotic nuclei far from the valley of stability are discussed. I start with general aspects related to the production of radioactive beams followed by the description of some of the experimental tools and specialized techniques for studies in reaction spectroscopy, nuclear structure research and nuclear applications with examples from selected topical areas with which I have been involved. I discuss some of the common challenges faced in Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beam (RIB) science.
Superheavy Nuclei - Clusters of Matter and Antimatter
Greiner, Walter; Buervenich, Thomas J.
2005-03-31
The extension of the periodic system into various new areas is investigated. Experiments for the synthesis of superheavy elements and the predictions of magic numbers with modern meson field theories are reviewed. Different channels of nuclear decay are discussed including cluster radioactivity, cold fission and cold multifragmentation Furthermore, we present the vacuum for the e+-e- field of QED and show how it is modified for baryons in nuclear environment. Then we discuss the possibility of producing new types of nuclear systems by implanting an antibaryon into ordinary nuclei. The structure of nuclei containing one antiproton or antilambda is investigated within the framework of a relativistic mean-field model. Self-consistent calculations predict very enhanced binding and considerable compression in such systems as compared with normal nuclei. We present arguments that the life time of such nuclei with respect to the antibaryon annihilation might be long enough for their observation. A perspective for future research is given.
Properties of the hypothetical spherical superheavy nuclei
Smolanczuk, R. |
1997-08-01
Theoretical results on the ground-state properties of the hypothetical spherical superheavy atomic nuclei are presented and discussed. Even-even isotopes of elements Z=104{minus}120 are considered. Certain conclusions are also drawn for odd-A and odd-odd superheavy nuclei. Results obtained earlier for even-even deformed superheavy nuclei with Z=104{minus}114 are given for completeness. Equilibrium deformation, nuclear mass, {alpha}-decay energy, {alpha}-decay half-life, dynamical fission barrier, as well as spontaneous-fission half-life are considered. {beta}-stability of superheavy nuclei is also discussed. The calculations are based on the macroscopic-microscopic model. A multidimensional deformation space describing axially symmetric nuclear shapes is used in the analysis of masses and decay properties of superheavy nuclei. We determined the boundaries of the region of superheavy nuclei which are expected to live long enough to be detected after the synthesis in a present-day experimental setup. {copyright} {ital 1997} {ital The American Physical Society}
Relativistic Mean Field description of exotic nuclei
NASA Astrophysics Data System (ADS)
Gambhir, Y. K.
1994-03-01
The Relativistic Mean Field (RMF) approach which essentially is an extension of the original σ — ω model of Walecka, has been applied to exotic nuclei as an illustration. We consider nuclei near Z = 34 in the very interesting 2p-1f region. The calculated binding energies, root mean square radii, deformations and other observables are very satisfactory and are in accordance with the experiment (where available) and also with the available empirical studies. Large deformations and shape co-existence are obtained for several cases.
Selfconsistent calculations for hyperdeformed nuclei
Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D.
1996-12-31
Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.
Transitional nuclei near shell closures
Mukherjee, G.
2014-08-14
High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.
Exploration of High-Dimensional Nuclei Data
Fuentes, Fernando; Kettani, Houssain; Ostrouchov, George; Stoitsov, Mario; Nam, Hai Ah
2010-01-01
Density Functional Theory (DFT) provides the theoretical foundation for a self-consistent mean-field description of the nucleus in terms of one-body densities and currents. The idea is to construct a functional whose input is the proton and neutron densities and currents, and whose output yields the ground-state energy and other properties of the nucleus. Extensive computations of ground-state energies and other observable properties of several thousand nuclei are required in order to find a universal functional that covers the entire chart of nuclei. The analysis looks for hidden relationships between observables to determine a functional that can reliably predict nuclear properties in regions where no experimental data exist. Using methods for dimension reduction and visualization tools, it is hypothesized that the deformation of the neutrons is related to other characteristics of the nuclei. The discovered relationships with the deformation of the neutrons take us a step closer toward the universal functional.
Nuclear and Q{sup 2} dependence of quaselastic (e,e{prime}p) scattering at large momentum transfer
Jackson, H.E.; Geesaman, D.F.; Jones, C.E.
1995-08-01
An experiment was completed at the Stanford Linear Accelerator Center in which measurements of the (e,e{prime}p) coincidence quasielastic cross section in nuclei were extended to the largest possible Q{sup 2} attainable with the Nuclear Physics Injector and the End Station A spectrometers. Coincidence measurements of the quasielastic (e,e{prime}p) cross section were made on nuclei from carbon to gold in the Q{sup 2} range of 1-7 (GeV/c){sup 2}. Several papers describing the results were published or submitted. Analysis of the data is in its final stages. In summary, the cross section for quasielastic {sup 12}C(e,e{prime}p) scattering was measured at momentum transfer Q{sup 2}=1, 3, 5, and 6.8 (GeV/c){sup 2}. The results are consistent with scattering from a single nucleon as the dominant process. The nuclear transparency is obtained and compared with theoretical calculations that incorporate color transparency effects. No significant rise of the transparency with Q{sup 2} is observed. Cross sections were reported for the reaction {sup 2}H(e,e{prime}p)n for momentum transfers in the range 1.2 {<=}Q{sup 2}{<=}6.8 (GeV/c){sup 2} and for missing momenta from 0 to 250 MeV/c. The longitudinal-transverse interference structure function was separated at Q{sup 2}=1.5 (GeV/c){sup 2}. The observables were compared to calculations performed in nonrelativistic and relativistic frameworks. The data are best described by a fully relativistic calculation. The A-dependence of the quasielastic A(e,e{prime}p) reaction was studied with {sup 2}H, C, Fe, and Au nuclei at momentum transfers Q{sup 2}=1, 3, 5, and 6.8 (GeV/c){sup 2}. The nuclear transparency T A,Q{sup 2}, a measure of the average probability that the struck proton escapes from the nucleu A without interaction, was extracted. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as color transparency. No significant rise within errors is seen for any of the nuclei studied.
Physics of e(+) - e(-) colliders: Present, future and far future
NASA Astrophysics Data System (ADS)
Peskin, M. E.
1984-10-01
A lecture on e(+)-e(-) colliders contains the following: Section 2 reviews the features of e(+)-e(-) collisions according to the standard gauge theory of strong, weak, and electromagnetic interactions. This discussion reviews a few of the most important features of Ee(+)-e(-) collisions at currently accessible energies and the expectations for e(+)-e(-) reactions which produce the intermediate vector bosons Z(0) and W(+-). Section 3 reviews some of the experimental work done at the current generation of e(+)-e(-) colliders; this discussion emphasizes the search for new types of elementary particles. Section 4 is a theoretical digression, introducing a number of ideas about physics at the energy scale of 1 TeV. Section 5 discusses a number of technical aspects of electron-positron colliders designed to reach the TeV energies. Finally, Section 6 discusses various possible effects which could appear in e(+)-e(-) collisions as the result of new physics appearing at 1 TeV or above.
Measurement of Nuclear Transparency for the A(e,e' pi^+) Reaction
B. Clasie; X. Qian; J. Arrington; R. Asaturyan; F. Benmokhtar; W. Boeglin; P. Bosted; A. Bruell; M. E. Christy; E. Chudakov; W. Cosyn; M. M. Dalton; A. Daniel; D. Day; D. Dutta; L. El Fassi; R. Ent; H. C. Fenker; J. Ferrer; N. Fomin; H. Gao; K. Garrow; D. Gaskell; C. Gray; T. Horn; G. M. Huber; M. K. Jones; N. Kalantarians; C. E. Keppel; K. Kramer; A. Larson; Y. Li; Y. Liang; A. F. Lung; S. Malace; P. Markowitz; A. Matsumura; D. G. Meekins; T. Mertens; G. A. Miller; T. Miyoshi; H. Mkrtchyan; R. Monson; T. Navasardyan; G. Niculescu; I. Niculescu; Y. Okayasu; A. K. Opper; C. Perdrisat; V. Punjabi; A. W. Rauf; V. M. Rodriquez; D. Rohe; J. Ryckebusch; J. Seely; E. Segbefia; G. R. Smith; M. Strikman; M. Sumihama; V. Tadevosyan; L. Tang; V. Tvaskis; A. Villano; W. F. Vulcan; F. R. Wesselmann; S. A. Wood; L. Yuan; X. C. Zheng
2007-12-01
We have measured the nuclear transparency of the A(e,e' pi^+) process in ^{2}H,^{12}C, ^{27}Al, ^{63}Cu and ^{197}Au targets. These measurements were performed at the Jefferson Laboratory over a four momentum transfer squared range Q^2 = 1.1 - 4.7 (GeV/c)^2. The nuclear transparency was extracted as the super-ratio of $(\\sigma_A/\\sigma_H)$ from data to a model of pion-electroproduction from nuclei without pi-N final state interactions. The Q^2 and atomic number dependence of the nuclear transparency both show deviations from traditional nuclear physics expectations, and are consistent with calculations that include the quantum chromodynamical phenomenon of color transparency.
Search for rare and forbidden decays D+ --> h+/- e+/- e+.
He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Asner, D M; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Cravey, M; Cummings, J P; Danko, I; Napolitano, J
2005-11-25
Using 0.8 x 10(6) D+ D- pairs collected with the CLEO-c detector at the psi(3770) resonance, we have searched for flavor-changing neutral current and lepton-number-violating decays of D+ mesons to final states with dielectrons. We find no indication of either, obtaining 90% confidence level upper limits of B(D+ --> pi+ e+ e-) < 7.4 x 10(-6), B(D+ --> pi- e+ d+) < 3.6 x 10(-6), B(D+ --> K+ e+ e-) < 6.2 x 10(-6), and B(D+ --> K- e+ e+) < 4.5 x 10(-6). PMID:16384207
Magnetic moment interactions in the e -- e + system
NASA Astrophysics Data System (ADS)
Geiger, K.; Reinhardt, J.; Müller, B.; Greiner, W.
1988-03-01
We have studied the possible existence of quasibound states of an electron-positron pair due to their magnetic interaction in the framework of the equations suggested by Barut et al. [5]. We derive radial equations for all angular quantum numbers of the e -- e + system and show, in detail, that Barut's equations doe not give a consistent, physically satisfactory description of positronium, except in the non-relativistic approximation (up to terms of order m α2). Moreover, we do not find evidence that the effective potentials occurring in the radial equations support magnetic resonances of the e-- e + system at short particle distances (“micropositronium”).
Understanding nuclei in the upper sd - shell
Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.
2014-08-14
Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.
Superdeformation in the mercury nuclei
Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H. ); Drigert, M.W. ); Ye, D.; Beard, K.B.; Garg, U.; Reviol, W. ); Bearden, I.G.; Benet, P.; Daly, P.J.; Grabowski, Z.W. )
1990-01-01
We shall first summarize the present experimental situation concerning {sup 192}Hg, the nucleus regarded as the analog of {sup 152}Dy for this superdeformation (SD) region in that gaps are calculated to occur at large deformation for Z = 80 and N = 112. Proton and neutron excitations out of the {sup 192}Hg core will then be reviewed with particular emphasis on {sup 191}Hg and {sup 193}Tl. The presentation will conclude with a brief discussion on limits of the SD region for neutron deficient Hg nuclei. 26 refs., 10 figs.
Evidence for short range corelations from high Q{sup 2} (e,e{prime}) reactions
Strikman, M.I.; Frankfurt, L.L.; Sargayan, M.M.
1994-04-01
For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e{prime}) reactions, where Q{sup 2} > 1 (GeV/c){sup 2}, x = Q{sup 2}/2mq{sub o} > 1 and 1 GeV > q{sub o}> 300 {approximately} 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration.
Enhanced subthreshold e+ e- production in short laser pulses.
Titov, A I; Takabe, H; Kämpfer, B; Hosaka, A
2012-06-15
The emission of e+ e- pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g., laser) wave field is analyzed. A significant increase of the total cross section of pair production in the subthreshold region is found for decreasing laser pulse duration even in the case of moderate laser pulse intensities. PMID:23004244
Shape coexistence and triaxiality in nuclei near 80Zr
NASA Astrophysics Data System (ADS)
Zheng, S. J.; Xu, F. R.; Shen, S. F.; Liu, H. L.; Wyss, R.; Yan, Y. P.
2014-12-01
Total-Routhian-surface calculations have been performed to investigate the shape evolutions of A ˜80 nuclei: Zr-8480,Sr-8076 , and Mo,8684 . Shape coexistences of spherical, prolate, and oblate deformations have been found in these nuclei. Particularly for the nuclei 80Sr and 82Zr , the energy differences between two shape-coexisting states are less than 220 keV. At high spins, the g9 /2 shell plays an important role in shape evolutions. It has been found that the alignment of the g9 /2 quasiparticles drives nuclei to be triaxial.
Investigation of Proton-Proton Short-Range Correlations via the 12C(e,eï ½Rpp) Reaction
Sheyor, Ran
2007-12-01
In this work we present a simultaneous measurement of the 12C(e,e2p) and 12C(e,e2pp) reactions. This measurement was done as part of the E01-015 experiment at Hall A of Jefferson Lab, at Q2 = 2 (GeV/c) 2 , B x = 1.2, for an (e,e2p) missing-momentum range from 300 to 600 MeV/c. At these kinematics conditions, with a missing-momentum greater than the Fermi momentum of nucleons in a nucleus and far from the D excitation, nucleon-nucleon Short-Range Correlations (SRCs) are predicted to dominate the reaction. For 9.5 Â± 2% of the 12C(e,e2p) events, a recoiling partner proton was observed in the opposite direction to the 12C(e,e2p) missing momentum vector with roughly equal momentum. This observation is an experimental signature for proton-proton short-range correlations (pp-SRC) in nuclei. Even though the probability of pp-SRCs in nuclei is small, they are important since they can teach us about the strong interaction at short distances. Moreover, as a manifestation of asymmetric
... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...
Kozin, Scott H; Zlotolow, Dan A
2015-10-01
Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. PMID:26341718
NUCLEI AT HIGH ANGULAR MOMENTUM
Diamond, R.M.; Stephens, F.S.
1980-06-01
It appears that most nuclei show a compromise between purely collective and purely non-collective behavior at very high spins.non~collective behavior in nuclei has been seen only as high as 36 or 37{bar h}, at which point a more collective structure seems to develop. The concepts underlying the study of high angular momentum states are discussed. The factors that limit angular momentum in nuclei are considered. The currently emerging state of physics of very high spin states is reviewed. The detailed calculations currently made for high spin states are described, focusing not on the calculations themselves, but on the physical input to them and results that come out. Production of high-spin states using heavy-ion reactions is reviewed. Studies of {gamma}-rays de-exciting the evaporation residues from heavy-ion reactions are covered. Two types of {gamma} rays occur: those that cool the nucleus to or toward the yrast line, called "statistical," and those that are more or less parallel to the yrast line and remove the angular momentum, called "yrast~like." Collective rotation, in simplest form the motion of a deformed nucleus around an axis perpendicular to its symmetry axis, is also covered.
Hypernuclear Spectroscopy using the (e,e'K+) Reaction
Yuan, Lulin; Sarsour, Murad; Miyoshi, Toshinobu; Zhu, Zhengmao; Ahmidouch, Abdellah; Androic, Darko; Angelescu, Tatiana; Asaturyan, Razmik; Avery, Steven; Baker, O.; Bertovic, I.; Breuer, Herbert; Carlini, Roger; Cha, Jinseok; Chrien, Robert; Christy, Michael; Cole, Leon; Danagoulian, Samuel; Dehnhard, Dietrich; Elaasar, Mostafa; Empl, A.; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gan, Liping; Garrow, Kenneth; Gasparian, Ashot; Gueye, Paul; Harvey, Mark; Hashimoto, Osamu; Hinton, Wendy; Hu, Bitao; Hungerford, Ed; Jackson, Caesar; Johnston, Kathleen; Juengst, Henry; Keppel, Cynthia; Lan, Kejian; Liang, Yongguang; LIKHACHEV, V.; Likhachev, V.; Liu, Jinghua; Mack, David; Margaryan, Amur; Markowitz, Pete; Mkrtchyan, Hamlet; Nakamura, Satoshi; Petkovic, Tomislav; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Sawafta, Reyad; Simicevic, Neven; Smith, G.; Stepanyan, Samuel; Tadevosyan, Vardan; Takahashi, Toshiyuki; Tanida, K.; Tang, Liguang; Ukai, Mifuyu; Uzzle, Alicia; Vulcan, William; Wells, Steven; Wood, Stephen; Xu, Guanghua; Yamaguchi, Hiroshi
2006-04-01
A pioneering experiment in Lambda hypernuclear spectroscopy, undertaken at the Thomas Jefferson National Accelerator Facility (Jlab), was recently reported. The experiment used the high- precision, continuous electron beam at Jlab, and a special arrangement of spectrometer magnets to measure the spectrum from {nat}C and 7Li targets using the (e,e' K+)reaction. The 12B hypernuclear spectrum was previously published. This experiment is now reported in more detail, with improved results for the 12B hypernuclear spectrum. In addition, unpublished results of the 7He hypernuclear spectrum are also shown. This later spectrum indicates the need for a more detailed few-body calculation of the hypernucleus and the reaction process. The success of this experiment demonstrates that the (e,e'K+) reaction can be effectively used as a high resolution tool to study hypernuclear spectra, ant its use should be vigorously pursued.
Monte Carlo calculations of (e,e{prime}p) reactions
Pieper, S.C.; Pandharipande, V.R.; Boffi, S.; Radici, M.
1995-08-01
We have used our {sup 16}O Monte Carlo program to compute the p{sub 3/2} quasihole wave function in {sup 16}O and the Pavia program to compute {sup 16}O(e,e{prime}p) {sup 15}N(3/2{sup -}) with this wave function. We also developed a local-density approximation (LDA) for obtaining the quasihole wave function from a mean-field wave function, and studied the effects of using this LDA on the outgoing distorted waves. We find that we can predict correctly the contribution of the interior of the nucleus to the observed (e,e{prime}p) cross sections, but the surface contribution is too large. The LDA modifications to the outgoing wave function are small.
e-/e+ Accelerating Structure with Cyclic Variation of Azimuth Asymmetry
Krasnykh, A.; /SLAC
2007-03-05
A classical electron/positron accelerating structure is a disk-loaded cylindrical waveguide. The accelerator structure here has azimuth symmetry. The proposed structure contains a disk-loaded cylindrical waveguide where there is a periodical change of RF-field vs. azimuth. The modulation deforms the rf-field in such a manner that the accelerated particles undergo transverse focusing forces. The new class of accelerator structures covers the initial part of e+/e- linacs where a bunch is not rigid and additional transverse focusing fields are necessary. We discuss a bunch formation with a high transverse aspect ratio in the proposed structure and particularly in the photoinjector part of a linac.
Three pseudoscalar meson production in e+e- annihilation
Dai, Lingyun; Portoles, Jorge; Shekhovtsova, Olga
2013-09-01
We study, at leading order in the large number of colours expansion and within the Resonance Chiral Theory framework, the odd-intrinsic-parity $e^+ e^- \\rightarrow \\pi^+ \\pi^- (\\pi^0 , \\eta)$ cross-sections in the energy regime populated by hadron resonances, namely $9 \\, m_{\\pi}^2 \\lsim E \\lsim 2 \\, \\mbox{GeV}$. In addition we implement our results in the Monte Carlo generator PHOKHARA 7.0 and we simulate hadron production through the radiative return method.
Next-to-leading order corrections to e+e-→W+W-Z and e+e-→ZZZ
NASA Astrophysics Data System (ADS)
Boudjema, Fawzi; Ninh, Le Duc; Hao, Sun; Weber, Marcus M.
2010-04-01
We calculate the one-loop electroweak corrections to e+e-→W+W-Z and e+e-→ZZZ and analyze their impacts on both the total cross section and some key distributions. These processes are important for the measurements of the quartic couplings of the massive gauge bosons which can be a window on the mechanism of spontaneous symmetry breaking. We find that even after subtracting the leading QED corrections, the electroweak corrections can still be large, especially as the energy increases. We compare and implement different methods of dealing with potential instabilities in the routines pertaining to the loop integrals. For the real corrections we apply a dipole subtraction formalism and compare it to a phase-space slicing method.
Shell model for warm rotating nuclei
Matsuo, M.; Yoshida, K.; Dossing, T.
1996-12-31
Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.
Recent results on. nu. /sub e/ e/sup -/ scattering
Allen, R.C.; Bharadwaj, V.; Brooks, G.A.; Chen, H.H.; Doe, P.J.; Hausammann, R.; Lee, W.P.; Mahler, H.J.; Potter, M.E.; Rushton, A.M.; and others
1986-10-15
The latest results from the neutrino-electron elastic scattering experiment at the LAMPF beam stop are presented. Based on the data sample collected from September 1983 to December 1985, we observed 121 +- 25 events consistent with ..nu../sub x/ e/sup -/ scattering, of which 99 +- 25 events are assigned to ..nu../sub e/ e/sup -/ scattering. The resulting cross section agrees with standard electroweak theory and rules out the constructive interference between weak charge-current and neutral-current interactions.
Nuclear transparency from quasielastic 12C(e,e'p)
D. Rohe; O. Benhar; C.S. Armstrong; R. Asaturyan; O.K. Baker; S. Bueltmann; C. Carasco; D. Day; R. Ent; H.C. Fenker; K. Garrow; A. Gasparian; P. Gueye; M. Hauger; A. Honegger; J. Jourdan; C.E. Keppel; G. Kubon; R. Lindgren; A. Lung; D.J. Mack; J.H. Mitchell; H. Mkrtchyan; D. Mocelj; K. Normand; T. Petitjean; O. Rondon; E. Segbefia; I. Sick; S. Stepanyan; L. Tang; F. Tiefenbacher; W.F. Vulcan; G. Warren; S.A. Wood; L. Yuan; M. Zeier; H. Zhu; B. Zihlmann
2005-11-01
We studied the reaction 12C(e,e'p) in quasielastic kinematics at momentum transfers between 0.6 and 1.8 (GeV/c){sup 2} covering the single-particle region. From this the nuclear transparency factors are extracted using two methods. The results are compared to theoretical predictions obtained using a generalization of Glauber theory described in this paper. Furthermore, the momentum distribution in the region of the 1s-state up to momenta of 300 MeV/c is obtained from the data and compared to the Correlated Basis Function theory and the Independent-Particle Shell model.
An exclusive event generator for e+e- scan experiments
NASA Astrophysics Data System (ADS)
Ping, Rong-Gang
2014-08-01
An exclusive event generator is designed for e+e- scan experiments, including initial state radiation effects up to the second order correction. The generator is coded within the framework of BesEvtGen. There are seventy hadronic decay modes available, with effective center-of-mass energy coverage from the two pion mass threshold up to about 6 GeV. The accuracy achieved for the initial state radiation correction reaches the level achieved by the KKMC generator. The uncertainty associated with the calculation of the correction factor to the initial state radiation is dominated by the measurements of the energy-dependent Born cross section.
First Study of Rapidity Gaps in e+e- Annihilation
NASA Astrophysics Data System (ADS)
Abe, K.; Abe, K.; Abt, I.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T.; Bashindzhagyan, G. L.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; D'Oliveira, A.; Damerell, C. J.; Daoudi, M.; de Sangro, R.; de Simone, P.; dell'Orso, R.; Dervan, P. J.; Dima, M.; Dong, D. N.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Etzion, E.; Falciai, D.; Fan, C.; Fero, M. J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G. D.; Hart, E. L.; Hasan, A.; Hasegawa, Y.; Hasuko, K.; Hedges, S.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Lia, V.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Mours, B.; Muller, D.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L. S.; Panvini, R. S.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Snyder, J. A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Trandafir, A. I.; Turk, J. D.; Usher, T.; Va'Vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. A.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zeitlin, C.; Zhou, J.
1996-06-01
We present the first study of rapidity gaps in e+e- annihilations, using Z0 decays collected by the SLAC Linear Collider Large Detector experiment. Our measured rapidity gap spectra fall exponentially with increasing gap size over five decades, and we observe no anomalous class of events containing large gaps. This supports the interpretation of the large-gap events measured in pp¯ and ep collisions in terms of exchange of color-singlet objects. The presence of heavy flavors or additional jets does not affect these conclusions.
Open s d -shell nuclei from first principles
NASA Astrophysics Data System (ADS)
Jansen, G. R.; Schuster, M. D.; Signoracci, A.; Hagen, G.; Navrátil, P.
2016-07-01
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg, we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory for deformed nuclei, thereby demonstrating that collective phenomena in s d -shell nuclei emerge from complex ab initio calculations.
Open sd-shell nuclei from first principles
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; Navratil, Petr
2016-07-05
We extend the ab initio coupled-cluster e ective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral e ective eld theory evolved to a lower cuto via a similarity renormalization group transformation. We nd good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an e ectivemore » eld theory for deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
Anomaly of the moment of inertia of shape transitional nuclei
Gupta, J. B.; Hamilton, J. H.
2011-06-15
The change in the structure of the collective levels with spin angular momentum in atomic nuclei is often expressed in terms of the classical concepts of the kinematic and the dynamic moments of inertia varying with spin. For the well deformed even-even nuclei the kinematic moment of inertia increases with spin up to 10%-20%, at say I{sup {pi}} = 12{sup +}. However, for the shape transitional nuclei, or almost spherical nuclei, it increases with spin much faster. The pitfalls of using the rotor model form of kinematic moment of inertia in such cases are pointed out here. Alternative methods of extracting the nuclear structure information are explored. The important role of the ground state deformation is illustrated. The use of the power index formula for evaluating the effective moment of inertia, free from the assumption of the rotor model, is described.
Angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei
Severijns, N.; Golovko, V.V.; Kraev, I.S.; Phalet, T.; Belyaev, A.A.; Lukhanin, A.A.; Noga, V.I.; Erzinkyan, A.L.; Parfenova, V.P.; Eversheim, P.-D.; Herzog, P.; Tramm, C.; Filimonov, V.T.; Toporov, Yu.G.; Zotov, E.; Gurevich, G.M.; Rusakov, A.V.; Vyachin, V.N.; Zakoucky, D.
2005-04-01
The anisotropy in the angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei, which are among the strongest deformed {alpha} emitters, was measured. Large {alpha} anisotropies have been observed for all three nuclei. The results are compared with calculations based on {alpha}-particle tunneling through a deformed Coulomb barrier.
The Zboverline{b} couplings at future e + e - colliders
NASA Astrophysics Data System (ADS)
Gori, Stefania; Gu, Jiayin; Wang, Lian-Tao
2016-04-01
Many new physics models predict sizable modifications to the SM Zboverline{b} couplings, while the corresponding measurements at LEP and SLC exhibit some discrepancy with the SM predictions. After updating the current results on the Zboverline{b} coupling constraints from global fits, we list the observables that are most important for improving the Zboverline{b} coupling constraints and estimate the expected precision reach of three proposed future e + e - colliders, CEPC, ILC and FCC-ee. We consider both the case that the results are SM-like and the one that the Zboverline{b} couplings deviate significantly from the SM predictions. We show that, if we assume the value of the Zboverline{b} couplings to be within 68% CL of the current measurements, any one of the three colliders will be able to rule out the SM with more than 99 .9999% CL (5 σ). We study the implications of the improved Zboverline{b} coupling constraints on new physics models, and point out their complementarity with the constraints from the direct search of new physics particles at the LHC, as well as with Higgs precision measurements. Our results provide a further motivation for the construction of future e + e - colliders.
Signal of doubly charged Higgs at e+e- colliders
NASA Astrophysics Data System (ADS)
Hue, L. T.; Huong, D. T.; Long, H. N.; Hung, H. T.; Thao, N. H.
2015-11-01
The masses and signals of the production of doubly charged Higgses (DCH) in the framework of the supersymmetric reduced minimal 3-3-1 model are investigated. In the DCH sector, we prove that there always exists a region of the parameter space where the mass of the lightest DCH is of the order of O(100) GeV even when all other new particles are very heavy. The lightest DCH mainly decays to two same-sign leptons while the dominant decay channels of the heavy DCHs are those decaying to heavy particles. We analyze each production cross section for e^+e^- ⇒ H^{++} H^{-} as a function of a few kinematic variables, which are useful to discuss the creation of DCHs in e^+e^- colliders as an indicator of new physics beyond the Standard Model. A numerical study shows that the cross sections for creating the lightest DCH can reach values of a few pb. The other two DCHs are too heavy, beyond the observable range of experiments. The lightest DCH may be detected by the International Linear Collider or the Compact Linear Collider by searching for its decay to a same-sign charged lepton pair.
Fast electric dipole transitions in Ra-Ac nuclei
Ahmad, I.
1985-01-01
Lifetime of levels in /sup 225/Ra, /sup 225/Ac, and /sup 227/Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in /sup 225/Ra and /sup 225/Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in /sup 227/Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs.
Population of Nuclei Via 7Li-Induced Binary Reactions
Clark, Rodney M.; Phair, Larry W.; Descovich, M.; Cromaz, Mario; Deleplanque, M.A.; Fall on, Paul; Lee, I-Yang; Macchiavelli, A.O.; McMahan, Margaret A.; Moretto, Luciano G.; Rodriguez-Vieitez, E.; Sinha,Shrabani; Stephens, Frank S.; Ward, David; Wiedeking, Mathis
2005-08-08
The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.
Orientations of recrystallization nuclei developed in columnar-grained Ni at triple junctions
NASA Astrophysics Data System (ADS)
Xu, C. L.; Huang, S.; Zhang, Y. B.; Wu, G. L.; Liu, Q.; Jensen, D. Juul
2015-04-01
A high purity columnar grained nickel sample with a strong <001> fiber texture was cold rolled to 50% reduction in thickness, followed by annealing at different temperatures. Optical microscopy was used to depict the grain boundaries prior to annealing and to detect nuclei formed on grain boundaries after annealing. Electron backscatter diffraction was performed to characterize the orientations of the nuclei and the deformed grains. Hardness tests were conducted at deformed grains. The potentials of triple junctions as preferential nucleation sites, the influence of deformation differences between adjacent grains on nucleation and orientation relationships between nuclei and parent matrix are analyzed.
Halos in a deformed relativistic Hartree-Bogoliubov theory in continuum
Li Lulu; Meng Jie; Ring, P.; Zhao Enguang; Zhou Shangui
2012-10-20
In this contribution we present some recent results about neutron halos in deformed nuclei. A deformed relativistic Hartree-Bogoliubov theory in continuumhas been developed and the halo phenomenon in deformed weakly bound nuclei is investigated. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nuclei {sup 42}Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the existence of halos in deformed nuclei and for the occurrence of this decoupling effect are discussed.
Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential
Bonatsos, Dennis; Georgoudis, P. E.; Lenis, D.; Minkov, N.; Quesne, C.
2011-04-15
Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.
Ground State Properties and Bubble Structure of Synthesized Superheavy Nuclei
NASA Astrophysics Data System (ADS)
Singh, S. K.; Ikram, M.; Patra, S. K.
2013-01-01
We calculate the ground state properties of recently synthesized superheavy elements (SHEs) from Z = 105-118 along with the predicted proton magic Z = 120. The relativistic and nonrelativistic mean field formalisms are used to evaluate the binding energy (BE), charge radius, quadrupole deformation parameter and the density distribution of nucleons. We analyzed the stability of the nuclei based on BE and neutron to proton ratio. We also studied the bubble structure which reveals the special features of the superheavy nuclei.
Isovector pairing and quartet condensation in N=Z nuclei
Sandulescu, N.; Negrea, D.; Dukelsky, J.; Johnson, C. W.
2012-11-20
We introduce and study a quartet condensate model (QCM) to treat the isovector pairing correlations in N=Z nuclei, by conserving the particle number and the total spin and isospin in the ground state of such nuclei. For the calculations we choose different isovector pairing forces acting on spherical and axially deformed single particle states. The results show that the QCM model describes very well the isovector pairing correlations for nuclear systems with N=Z.
Survey of Reflection-Asymmetric Nuclear Deformations
NASA Astrophysics Data System (ADS)
Olsen, Erik; Birge, Noah; Erler, Jochen; Nazarewicz, Witek; Perhac, Alex; Schunck, Nicolas; Stoitsov, Mario; Nuclei Collaboration
2015-10-01
Due to spontaneous symmetry breaking it is possible for a nucleus to have a deformed shape in its ground state. It is theorized that atoms whose nuclei have reflection-asymmetric or pear-like deformations could have non-zero electric dipole moments (EDMs). Such a trait would be evidence of CP-violation, a feature that goes beyond the Standard Model of Physics. It is the purpose of this project to predict which nuclei exhibit a reflection-asymmetric deformation and which of those would be the best candidates for an EDM measuring experiment. Using nuclear Density Functional Theory along with the new computer code AxialHFB and massively parallel computing we calculated ground state nuclear properties for thousands of even-even nuclei across the nuclear chart: from light to superheavy and from stable to short-lived systems. Six different Energy Density Functionals (EDFs) were used to assess systematic errors in our calculations. Overall, 140 even-even nuclei (near and among the lantanides and actinides and in the superheavy region near N = 184) were predicted by all 6 EDFs to have a pear-like deformation. The case of 112Xe also proved curious as it was predicted by 5 EDFs to have a pear-like deformation despite its proximity to the two-proton drip line. Deceased.
Quantum effects in low-energy photofission of heavy nuclei
Tsipenyuk, Y.M.; Ostapenko, Y.B.; Smirenkin, G.N.; Soldatov, A.S.
1984-09-01
The article is devoted to quantum effects in highly deformed nuclei and the related features of the fission mechanism in the low-energy photofission of heavy nuclei. The following questions are considered: the spectrum of transition states (fission channels), the symmetry of the nuclear configuration in the deformation process, the features of the passage through the barrier due to the existence in the second well of quasistationary states of fissile and nonfissile modes, the isomeric-shelf phenomenon in deep sub-barrier fission, and the relation between the fragment mass distribution and the structure of the fission barrier.
Collins Effect from Polarized SIDIS and e+e- Data
Prokudin, A.; Tuerk, C.
2007-06-13
The recent data on the transverse single spin asymmetry A{sub UT}{sup sin({phi}{sub h}+{phi}{sub S})} from HERMES and COMPASS Collaborations are analysed within LO parton model with unintegrated parton distribution and fragmentation functions. A fit of SIDIS data from HERMES Collaboration is performed leading to the extraction of favoured and unfavoured Collins fragmentation functions. A very good description of COMPASS data is obtained. BELLE e+e- data are shown to be compatible with our estimates based on the extracted Collins fragmentation functions. Predictions for A{sub UT}{sup sin({phi}{sub h}+{phi}{sub S})} asymmetries at JLab and COMPASS operating on a proton target are given.
Models for the positive latitude e{-}e{+} annihilation feature
NASA Astrophysics Data System (ADS)
von Ballmoos, P.; Guessoum, N.; Jean, P.; Knödlseder, J.
2003-01-01
Galactic maps of e-e+ annihilation radiation based on CGRO-OSSE, SMM and TGRS data have indicated the existence of an extended component at positive Galactic latitudes (l~ -2 deg, b~ 7 deg), in addition to the emission from the galactic bulge and disk (Purcell et al. \\cite{Purcell97}; Cheng et al. \\cite{Cheng97}; Milne et al. \\cite{Milne00}; Milne et al. \\cite{Milne01}). This Positive Latitude Enhancement (PLE) was first attributed to an ``annihilation fountain" in the Galactic center (Dermer & Skibo \\cite{Dermer97}) but has since been the object of several models. After discussing the observational evidence for the PLE, we investigate various models for the PLE: besides the scenarios proposed in the literature, we have introduced a number of models requiring relatively modest positron rates due to a local origin of the e-e+ emission (local galactic-, solar system-, earth- and spacecraft-environment origins). The various scenarios for the PLE are constrained in the light of the latest OSSE-SMM-TGRS data analysis results: we have looked at the possible positron production mechanisms as well as the annihilation conditions in the different physical environments (temperature and dust grain content) proposed for the positive-latitude region. By constraining those parameters, based on the recent limits for the line width and the positronium fraction, we found that some of the models can essentially be discarded. A number of other scenarios will have to await further measurements and maps, such as will be possible with INTEGRAL's SPI and IBIS instruments. We present a table/checklist of model-falsification criteria.
Fabian, Andrew C.
1999-01-01
Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363
Microscopic analysis of pear-shaped nuclei
NASA Astrophysics Data System (ADS)
Nomura, K.
2015-10-01
We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sd f interacting boson model (IBM), that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 - β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.
Ground state properties of superheavy nuclei with Z=117 and Z=119
Ren Zhongzhou; Chen Dinghan; Xu Chang
2006-11-02
We review the current studies on the ground-state properties of superheavy nuclei. It is shown that there is shape coexistence for the ground state of many superheavy nuclei from different models and many superheavy nuclei are deformed. This can lead to the existence of isomers in superheavy region and it plays an important role for the stability of superheavy nuclei. Some new results on Z=117 and Z=119 isotopes are presented. The agreement between theoretical results and experimental data clearly demonstrates the validity of theoretical models for the ground-state properties of superheavy nuclei.
Allowance for the shell structure of colliding nuclei in the fusion-fission process
Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.; Pashkevich, V. V.
2011-07-15
The motion of two nuclei toward each other in fusion-fission reactions is considered. The state of the system of interacting nuclei is specified in terms of three collective coordinates (parameters). These are the distance between the centers of mass of the nuclei and the deformation parameter for each of them (the nose-to-nose orientation of the nuclei is assumed). The evolution of collective degrees of freedom of the system is described by Langevin equations. The energies of the Coulomb and nuclear (Gross-Kalinovsky potential) interactions of nuclei are taken into account in the potential energy of the system along with the deformation energy of each nucleus with allowance for shell effects. The motion of nuclei toward each other are calculated for two reaction types: reactions involving nuclei that are deformed ({sub 42}{sup 100}Mo + {sub 42}{sup 100}Mo {yields} {sub 84}{sup 200}Po) and those that are spherical ({sub 82}{sup 208}Pb + {sub 8}{sup 18}O {yields} {sub 90}{sup 226}Th) in the ground state. It is shown that the shell structure of interacting nuclei affects not only the fusion process as a whole (fusionbarrier height and initial-reaction-energy dependence of the probability that the nuclei involved touch each other) but also the processes occurring in each nucleus individually (shape of the nuclei and their excitation energies at the point of touching).
Search for the B s 0 → e + e - and B d 0 → e + e - Decays in Flavor-Changing Z' Model
NASA Astrophysics Data System (ADS)
Banerjee, D.; Dharai, C.; Sahoo, S.
2015-10-01
The precise prediction of the branching ratios of the very rare decays B s 0 → e + e - and B d 0 → e + e - is an important ingredient for high energy research beyond standard model (SM). Recently, the CDF collaboration has reported upper limits for the branching ratios B ( B s 0 → e + e - ) < 2.8 × 10- 7 and B ( B d 0 → e + e - ) < 8.3 × 10- 8 at 90 % confidence level. These branching ratios are approximately seven orders of magnitude larger than the SM predictions, providing in this way a direction in which the SM could be extended. In this paper, the B s 0 → e + e - and B d 0 → e + e - rare decays in flavor-changing Z' model are studied. Our estimated branching ratios are enhanced from their SM values and provide signals for new physics.
Bunnell, W P
1986-12-01
Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010
Cluster Features of Normal-, Super- and Hyperdeformed nuclei
Adamian, G.G.; Antonenko, N.V.; Kuklin, S.N.
2005-11-21
It is shown that an important mode of nuclear excitations in different processes like as cluster radioactivity, parity splitting in normal deformed bands, decay out phenomenon of the yrast superdeformed states in the heavy nuclei and formation of super- and hyper-deformed states in induced fission and heavy ion reactions is related to the motion in charge (mass) asymmetry coordinate. With the suggested cluster model one can try to unify all phenomena mentioned above.
Further examination of prolate-shape dominance in nuclear deformation
Hamamoto, Ikuko; Mottelson, Ben R.
2009-03-15
The observed almost complete dominance of prolate over oblate deformations in the ground states of deformed even-even nuclei is related to the splitting of high l''surface'' orbits in the Nilsson diagram: on the oblate side the occurrence of numerous strongly avoided crossings which reduce the fanning out of the low {lambda} orbits, while on the prolate side the same interactions increase the fanning out. It is further demonstrated that the prolate dominance is rather special for the restricted particle number of available nuclei and is not generic for finite systems with mean-field potentials resembling those in atomic nuclei.
Lower bound on e+e- decay of massive neutrinos
NASA Technical Reports Server (NTRS)
Cowsik, R.; Schramm, D. N.; Hoflicn, P
1988-01-01
Astronomical observations of SN1987A, such as the light curve, spectral intensities of lines, the X-ray emissions, etc., constrain the lifetime for the decay of a heavy neutrino 1 MeV less than or equivalent to m sub nu H less than or equal to 50 MeV through nu sub H yields nu sub 1+e(+)+e(-) exceeds 4 x 10 to the 15th exp(-m sub nuH/5MeV) seconds. Otherwise. resulting ionization energy deposits and stronger X-ray emission would have been observed. This coupled with traditional cosmological considerations argues that the lifetime of tau-neutrinos probably exceeds the age of the universe. This in turn would imply the standard cosmological mass bound does apply to nu sub tau, namely m sub nu sub tau less than or equivalent to 100 h squared eV (where h is the Hubble constant in units of 100 km/sec/mpc). The only significant loophole for these latter arguments would be if nu sub tau primarily decays rapidly into particles having very weak interactions.
Recent results on giant dipole resonance decays in highly excited nuclei
Snover, K.A.
1991-12-31
Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus `motionally narrowed` GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following {sup 58}Ni {plus} {sup 92}Zr fusion. 22 refs.
Recent results on giant dipole resonance decays in highly excited nuclei
Snover, K.A.
1991-01-01
Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus motionally narrowed' GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following [sup 58]Ni [plus] [sup 92]Zr fusion. 22 refs.
Delayed and In-beam Spectroscopy on Francium and Astatine Nuclei at the Proton Drip Line
NASA Astrophysics Data System (ADS)
Uusitalo, J.; Jakobsson, U.
2011-11-01
Delayed and in-beam spectroscopy on francium and astatine nuclei at and beyond the proton drip line has been performed. In neutron deficient astatine nuclei a shift to deformed shapes as a function of decreasing neutron has been obtained. In neutron deficient francium isotope the same shift is evident.
Delayed and In-beam Spectroscopy on Francium and Astatine Nuclei at the Proton Drip Line
Uusitalo, J.; Jakobsson, U.; Collaboration: RITU-Gamma Gollaboration
2011-11-30
Delayed and in-beam spectroscopy on francium and astatine nuclei at and beyond the proton drip line has been performed. In neutron deficient astatine nuclei a shift to deformed shapes as a function of decreasing neutron has been obtained. In neutron deficient francium isotope the same shift is evident.
ERIC Educational Resources Information Center
Cerny, Joseph; Poskanzer, Arthur M.
1978-01-01
Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)
Brown, R.D. Jr.
1990-01-01
Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.
Studies of pear-shaped nuclei using accelerated radioactive beams.
Gaffney, L P; Butler, P A; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bönig, S; Bree, N; Cederkäll, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; De Witte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kröll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M
2013-05-01
There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on (220)Rn and (224)Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model. PMID:23657348
The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer
Hassan Ibrahim
2006-12-31
This dissertation presents the highest four-momentum transfer, Q^2,quasielastic (x_Bj = 1) results from Experiment E01-020 which systematically explored the 2He(e,e'p)n reaction ("Electro-disintegration" of the deuteron) at three different four-momentum transfers, Q^2 = 0.8, 2.1, and 3.5 GeV^2 and missing momenta, P_miss = 0, 100, 200, 300, 400, and 500 GeV including separations of the longitudinal-transverse interference response function, R_LT, and extractoin of the longitudinal-transverse asymmetry, A_LT. This systematic approach will help to understand the reaction mechanism and the deuteron structure down to the short range part of the nucleon-nucleon interaction which is one of the fundamental missions of nuclear physics. By studying the very short distance structure of the deuteron, one may also determine whether or to what extent the description of nuclei in terms of nucleon/meson degrees of freedom must be supplemented by inclusion of explicit quark effects. The unique combination of energy, current, duty factor, and control of systematics for Hall A at Jefferson Lab made Jefferson Lab the only facility in the world where these systematic studies of the deuteron can be undertaken. This is especially true when we want to understand the short range structure of the deuteron where high energies and high luminosity/duty factor are needed. All these features of Jefferson Lab allow us to examine large missing momenta (short range scales) at kinematics where the effects of final state interactions (FSI), meson exchange currents (MEC), and isobar currents (IC) are minimal, making the extraction of the deuteron structure less model-dependent. Jefferson Lab also provides the kinematical flexibility to perform the separation of R_LT over a broad range of missing momenta and momentum transfers. Experiment E01-020 use the standard Hall A equipment in coincidence configuration in addition to the cryogenic target system. The low and middle Q^2 kinematics were completed
Fission Products Evaluation for the Selected Nuclei
Lee, Y.D.; Chang, J.H.
2005-05-24
The neutron cross sections of 19 selected high-priority nuclei were evaluated in the fast energy region. The calculation was compared with the CSISRS experimental data and the ENDF files. Evaluation procedures included an optical-model parameter search, followed by complete nuclear reaction model calculations with parameters validated against experimental data. A spherical and deformed optical model, MSC and MSD, pre-equilibrium exiton, and Hauser-Feshbach with a width fluctuation were used in the EMPIRE code. A considerable improvement was achieved for most of the nuclei cases. The results were merged with the resonance parameters (adopted in ENDF/B-VI.8). The final files were submitted to ENDF/B-VII for review.
Population of Nuclei Via 7Li-Induced Binary Reactions
Clark, R M; Phair, L W; Descovich, M; Cromaz, M; Deleplanque, M A; Fallon, P; Lee, I Y; Macchiavelli, A O; McMahan, M A; Moretto, L G; Rodriguez-Vieitez, E; Sinha, S; Stephens, F S; Ward, D; Wiedeking, M; Bernstein, L A; Burke, J T; Church, J A
2005-08-09
The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.
Ghatan, Andrew C; Hanel, Douglas P
2013-06-01
Madelung deformity is a rare congenital anomaly of the wrist caused by asymmetric growth at the distal radial physis secondary to a partial ulnar-sided arrest. The deformity is characterized by ulnar and palmar curvature of the distal radius, positive ulnar variance, and proximal subsidence of the lunate. It more commonly occurs in females than males and typically affects both wrists. The deformity can occur in isolation or as part of a genetic syndrome. The pattern of inheritance varies, with some cases following a pseudoautosomal pattern and many others lacking a clear family history. Nonsurgical management is typically advocated in asymptomatic patients. Few studies exist on the natural history of the condition; however, extensor tendon ruptures have been reported in severe and chronic cases. Stiffness, pain, and patient concerns regarding wrist cosmesis have been cited as indications for surgery. Various techniques for surgical management of Madelung deformity have been described, but clear evidence to support the use of any single approach is lacking. PMID:23728962
High spin spectroscopy for A approx 160 nuclei
Yu, C.-H. Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy); Gascon, J.; Garrett, J.D.; Hagemann, G.B. )
1989-01-01
Experimental routhians, alignments, band crossing frequencies, and the B(M1)/B(E2) ratios of the N = 90 isotopes and several light Lu (N = 90--96) isotopes are summarized and discussed in terms of shape changes. These systematic analyses show a neutron and proton number dependent deformations (both quadruple and {gamma} deformations) for these light rare earth nuclei. The stability of the nuclear deformation with respect to {beta} and {gamma} is also found to be particle number dependent. Such particle number dependent shapes can be attributed to the different locations of the proton and neutron Fermi levels in the Nilsson diagrams. Configurations dependent shapes are discussed specially concerned the deformation difference between the proton h{sub 9/2}1/2{sup -}(541) and the high-K h{sub 11/2} configurations. The observed large neutron band crossing frequencies in the h{sub 9/2}1/2{sup -}(541) configuration support the predicted large deformation of this configuration but can be reproduced by the cranked shell model calculation according to the predicted deformations. Lifetime measurement for {sup 157}Ho, one of the nuclei that show a large {h bar}{omega}{sup c} in the 1/2{sup -}(541) band, indicates that deformation difference can only account for 20% of such shift in {h bar}{omega}{sub c}. 55 refs., 12 figs.
Fission of actinide nuclei using multi-nucleon transfer reactions
NASA Astrophysics Data System (ADS)
Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki
2014-09-01
We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Search for Hyperdeformation in Light Xe Nuclei
NASA Astrophysics Data System (ADS)
Nyako, B. M.; Papp, F.; Gal, J.; Molnar, J.; Timar, J.; Algora, A.; Dombradi, Zs.; Kalinka, G.; Zolnai, L.; Juhasz, K.; Singh, A. K.; Huebel, H.; Al-Khatib, A.; Bringel, P.; Buerger, A.; Neusser, A.; Schoenwasser, G.; Herskind, B.; Hagemann, G. B.; Hansen, C. R.; Sletten, G.; Scheurer, J. N.; Hannachi, F.; Kmiecik, M.; Maj, A.; Styczen, J.; Zuber, K.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.; Roccaz, J.; Siem, S.; Bednarczyk, P.; Byrski, Th.; Curien, D.; Dorvaux, O.; Duchene, G.; Gall, B.; Khalfallah, F.; Piqueras, I.; Robin, J.; Patel, S. B.; Evans, A. O.; Rainovski, G.; Airoldi, A.; Benzoni, G.; Bracco, A.; Camera, F.; Million, B.; Mason, P.; Paleni, A.; Sacchi, R.; Wieland, O.; La Rana, G.; Moro, R.; Petrache, C. M.; Petrache, D.; de Angelis, G.; Fallon, P.; Lee, I.-Y.; Lisle, J. C.; Cederwall, B.; Lagergren, K.; Lieder, R. M.; Podsvirova, E.; Gast, W.; Jaeger, H.; Redon, N.; Goergen, A.
2005-04-01
The ultimate search for hyperdeformation (HD) at high spins with the EUROBALL spectrometer was performed for 126Ba as a hyper long (HLHD) experiment. The DIAMANT ancillary detector was used to tag γ -rays in coincidence with the emitted light charged particles. Using γ -energy correlation methods, the particle--xn-γ data have been analysed to search for hyperdeformed structures in the corresponding residual nuclei. Data in coincidence with one α particle indicate the presence of normal deformed collective bands up to very high spins and the possible occurrence of HD-like ridge structures in 122Xe.
Rotational spacings in superdeformed bands of nuclei
Chasman, R.R.; Farhan, A.
1995-08-01
An unexpected result of the experimental investigation of superdeformed rotational bands is the observation of near-identical dynamic moments of inertia in different nuclei. This phenomenon was also noted in normally deformed rotational bands. A priori, the BCS method is suspect at I = 0 for the treatment of superdeformed nuclear shapes because the single-particle level density near the nuclear surface is small. If it were large, there would be no superdeformed minimum. At high spin, pairing correlations are further weakened, and the BCS method becomes even worse.
NASA Technical Reports Server (NTRS)
Malik, F. Bary
1993-01-01
The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.
The structure and shape of exotic nuclei beyond the proton drip-line
Ferreira, L. S.; Arumugam, P.; Maglione, E.
2008-11-11
Proton emission from deformed nuclei with triaxial symmetry is discussed within the non-adiabatic quasi-particle approach. As an example, we consider decay from {sup 161}Re, where we were able to reproduce the experimental half-life with a noticeable {gamma} deformation.
The scission point configuration of fissioning nuclei
NASA Astrophysics Data System (ADS)
Ivanyuk, Fedir
2016-06-01
We define the optimal shape which fissioning nuclei attain just before the scission and calculate the deformation energy as function of the mass asymmetry at the scission point. The calculated deformation energy is used in quasi-static approximation for the estimation of mass distribution, total kinetic and excitation energy of fission fragments, and the total number of prompt neutrons. The calculated results reproduce rather well the experimental data on the position of the peaks in the mass distribution of fission fragments, the total kinetic and excitation energy of fission fragments. The calculated value of neutron multiplicity is somewhat larger than experimental results. The saw-tooth structure of neutron multiplicity is qualitatively reproduced.
Quaglioni, S; Navratil, P; Roth, R
2009-12-15
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.
Broglia, R.A.
1986-01-01
The dipole giant resonance is reviewed, as it is the only vibration which has been experimentally identified in the decay of hot nuclei. The mechanism of exciting the resonance and the mode of the resonance are described. The methods used to calculate the vibrations from the shell model are discussed, including the Hartree-Fock approximation and random phase approximation. Nuclei formed by compound nuclear reactions, which possess high excitation energy and angular momentum, are considered. It is argued that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. It is also considered possible that the discussion of the dipole giant resonance may be extended to the gamma decay of the isovector quadrupole vibration. 26 refs., 18 figs. (LEW)
Alpha decay properties of superheavy nuclei Z = 126
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2016-01-01
We have studied the possible isotopes of superheavy nuclei Z = 126 in the range 288 ≤ A ≥ 339 by studying through their α-decay properties. α-Decay half-life for the isotopes of Z = 126 superheavy nuclei in the range 288 ≤ A ≥ 339 is performed within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated α half-lives agree with the values computed using the Viola-Seaborg systematic, the universal curve of Poenaru et al. (2011) [61]; (2012) [62] and the analytical formulas of Royer (2000) [63]. To identify the mode of decay of these isotopes, the spontaneous-fission half-lives were also evaluated using the semiempirical relation given by Xu et al. (2008) [72]. As we could observe α chains consistently from the nuclei 288-306126, we have predicted that these nuclei could not be synthesized and detected experimentally via α decay as their decay half-lives are too small, which span the order 10-9 to 10-6 s. Most of the predicted, unknown nuclei in the range 307 ≤ A ≥ 326 were found to have relatively long half-lives. Of these the nuclei 307126, 318126, 319126, 320126 and 323-326126 were found to have long half-lives and hence could be sufficient to detect them if synthesized in a laboratory.
Muon charged Lepton Flavor Violation search in Europe: the μ+ → e+γ and the μ+ → e+e-e+ decays
NASA Astrophysics Data System (ADS)
Papa, Angela
2014-11-01
Lepton flavor violation (LFV) research is currently one of the most exciting branches of particle physics. Flavor violating processes, such as μ+ → e+γ and μ+ → e+e-e+, which are strongly suppressed in the Standard Model (SM), are very sensitive to new physics. The MEG experiment and the Mu3e experiment, which search for the μ+ → e+γ and the μ+ → e+e-e+ decay respectively, are two precision physics experiments at the forefront of field. They are housed at the Paul Scherrer Institut (PSI), in Switzerland, which provides the most intense continuous muon beam in the world. A summary of the status of the two experiments is given.
Search for the decay KL to pi0 e+ e- and study of the decay KL to e+ e- gamma gamma
NASA Astrophysics Data System (ADS)
Mikelsons, Peter L.
The particle decay KL-->p0e+e- is a probe of direct CP violation, a phenomenon previously only seen in KL-->pp decays. Understanding direct CP violation is an important part of understanding violation of CP symmetry in general. Experimentally, one of the obstacles to studying KL-->p0e+e- is the rare decay KL-->e+e- gg , which can mimic KL-->p0e+e- . A study of KL-->p0e+e- and KL-->e+e- gg was made as part of the KTeV E799 experiment. K-->p0p0Dalitz decays were used for normalization, and a KL flux of (2.65 +/- 0.18) × 1011 decays was measured. We observed 1578 KL-->e+e- gg candidate events, of which 1516.5 +/- 1.8 remain after background subtraction. These events allow measurement of the Bergström, Massó, and Singer KLgg vertex form- factor parameter, aK*=+0.015+/- 0.12stat.+/-0.03sys. , in mild disagreement with the previously fit value of -0.28 +/- 0.08. This form-factor implies a corresponding branching ratio of G(KL-->e+e- g g,E*g>5 MeV)/G(KL-->all ) = (5.82+/-0.15stat.+/-0.31 sys.+/-0.19BR)× 10-7 , in agreement with the QED prediction. The search for KL-->p0e+e- found two candidate events. However, 1.06 +/- 0.41 events were expected from background processes. Therefore, we do not claim observation of KL-->p0e+e- . Instead, with a single-event sensitivity of 1.00 × 10 -10, we set an upper limit on the KL-->p0e+e- branching ratio of 4.86 × 10-10 at the 90% confidence level.
Mosel, Ulrich
2004-08-30
Changes of hadronic properties in dense nuclear matter as predicted by theory have usually been investigated by means of relativistic heavy-ion reactions. In this talk I show that observable consequences of such changes can also be seen in more elementary reactions on nuclei. Particular emphasis is put on a discussion of photonuclear reactions; examples are the dilepton production at {approx_equal} 1 GeV and the hadron production in nuclei at 10-20 GeV photon energies. The observable effects are expected to be as large as in relativistic heavy-ion collisions and can be more directly related to the underlying hadronic changes.
Interplay between one-particle and collective degrees of freedom in nuclei
NASA Astrophysics Data System (ADS)
Hamamoto, Ikuko
2016-02-01
Some developments of nuclear-structure physics uniquely related to Copenhagen School are sketched based on theoretical considerations versus experimental findings and one-particle versus collective aspects. Based on my personal overview I pick up the following topics; (1) Study of vibration in terms of particle-vibration coupling; (2) one-particle motion in deformed and rotating potentials, and yrast spectroscopy in high-spin physics; (3) triaxial shape in nuclei: wobbling motion and chiral bands; (4) nuclear structure of drip line nuclei: in particular, shell-structure (or magic numbers) change and spherical or deformed halo phenomena; (5) shell structure in oblate deformation.
Alternating-parity collective states of yrast and nonyrast bands in lanthanide and actinide nuclei
Nadirbekov, M. S. Yuldasheva, G. A.; Denisov, V. Yu.
2015-03-15
Excited collective states of even-even nuclei featuring quadrupole and octupole deformations are studied within a nonadiabatic collective model with a Gaussian potential energy. Rotational states of the yrast band and vibrational-rotational states of nonyrast bands are considered in detail. The energies of alternating-parity excited states of the yrast band in the {sup 164}Er, {sup 220}Ra, and {sup 224}Th nuclei; the yrast and first nonyrast bands in the {sup 154}Sm and {sup 160}Gd nuclei; and the yrast, first nonyrast, and second nonyrast bands in the {sup 224}Ra and {sup 240}Pu nuclei are described well on the basis of the proposed model.
New regions of nuclear deformation
Lister, C.J.; Gelletly, W.; Varley, B.J.; Price, H.G.; Olness, J.W.
1983-01-01
It has long been expected from general theoretical considerations that nuclei with Z and N far removed from major shell closures should exhibit considerable collectivity and maybe deformed in their groundstates. A number of calculations have recently attempted to quantify these expectations through detailed predictions of nuclear shapes across the periodic table. In this contribution we review predictions and experimental data for the regions with Z,N = (40,40), (40,64) and (64,64) which are all off the valley of stability. Emphasis is placed on the experimental techniques and data obtained from the first of these regions where the prediction of extremely large prolate deformation has been experimentally verified.
Blankenbecler, R.
1981-01-01
A brief review is given of selected topics involved in the relativistic quark structure of nuclei such as the infinite momentum variables, scaling variables, counting rules, forward-backward variables, thermodynamic-like limit, QCD effects, higher quark bags, confinement, and many unanswered questions.
Physics with Polarized Nuclei.
ERIC Educational Resources Information Center
Thompson, William J.; Clegg, Thomas B.
1979-01-01
Discusses recent advances in polarization techniques, specifically those dealing with polarization of atomic nuclei, and how polarized beams and targets are produced. These techniques have greatly increased the scope of possible studies, and provided the tools for testing fundamental symmetries and the spin dependence of nuclear forces. (GA)
Octupole collectivity in nuclei
NASA Astrophysics Data System (ADS)
Butler, P. A.
2016-07-01
The experimental and theoretical evidence for octupole collectivity in nuclei is reviewed. Recent theoretical advances, covering a wide spectrum from mean-field theory to algebraic and cluster approaches, are discussed. The status of experimental data on the behaviour of energy levels and electric dipole and electric octupole transition moments is reviewed. Finally, an outlook is given on future prospects for this field.
Systematic Study of Fission Barriers of Excited Superheavy Nuclei
Sheikh, J. A.; Nazarewicz, Witold; Pei, J. C.
2009-01-01
A systematic study of fission-barrier dependence on excitation energy has been performed using the self-consistent finite-temperature Hartree-Fock+BCS (FT-HF+BCS) formalism with the SkM* Skyrme energy density functional. The calculations have been carried out for even-even superheavy nuclei with Z ranging between 110 and 124. For an accurate description of fission pathways, the effects of triaxial and reflection asymmetric degrees of freedom have been fully incorporated. Our survey demonstrates that the dependence of isentropic fission barriers on excitation energy changes rapidly with particle number, pointing to the importance of shell effects even at large excitation energies characteristic of compound nuclei. The fastest decrease of fission barriers with excitation energy is predicted for deformed nuclei around N = 164 and spherical nuclei around N = 184 that are strongly stabilized by ground-state shell effects. For nuclei ^{240}Pu and ^{256}Fm, which exhibit asymmetric spontaneous fission, our calculations predict a transition to symmetric fission at high excitation energies due to the thermal quenching of static reflection asymmetric deformations.
Moretto, L.G.; Wozniak, G.J.
1988-11-01
The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.
Modes of decay in neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Kumar, B.; Biswal, S. K.; Singh, S. K.; Lahiri, C.; Patra, S. K.
2016-03-01
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field (RMF) approach using axially deformed basis. The total nucleon densities are calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like α-decay and β-decay are analyzed. We find the neutron-rich isotopes are stable against α-decay, however they are very much unstable against β-decay. The life time of these nuclei predicted to be tens of second against β-decay.
{alpha} decay of high-spin isomers in superheavy nuclei
Delion, D. S.; Liotta, R. J.; Wyss, R.
2007-10-15
Hindrance factors corresponding to {alpha} decay from two quasiparticle isomeric high K states are evaluated in superheavy nuclei. We found that the hindrance factors are very sensitive to the deformations and, therefore, they may constitute a powerful tool to extract spectroscopic information in these nuclei. The hindrance factors turn out to be very large, specially for nonaligned configurations. This indicates that if one of such states is reached the parent nucleus may become isomeric. It is also possible that {alpha} decay may not proceed through ground state to ground state chains but rather through excited states.
Octupole shaps in nuclei, and some rotational consequences thereof
Nazarewicz, W.; Olanders, P.; Ragnarsson, I.; Dudek, J.; Leander, G.A.
1984-01-01
During the last years a large number of experimental papers presenting spectroscopic evidence for collective dipole and octupole deformations have appeared. Many theoretical attempts have been made to explain the observed spectroscopic properties in terms of stable octupole deformations. The coupling by the octupole potential, being proportional to Y/sub 30/, is strongest for those subshells for which ..delta..1 = 3. Therefore the tendency towards octupole deformation occurs just beyond closed shells where the high-j intruder subshells (N,1,j) lie very close to the normal parity subshells (N-1,1-3,j-3), i.e. for the particle numbers 34 (g/sub 9/2/-p/sub 3/2/), 56 (h/sub 11/2/-d/sub 5/2/). 9C (i/sub 13/2/-f/sub 7/2/) and 134 (j/sub 15/2/-g/sub 9/2/). Empirically, it is specifically for the particle numbers listed above that negative parity states are observed at relatively low energies in doubly even nuclei. From the different combinations of octupole-driving particle numbers four regions of likely candidates for octupole deformed equilibrium shapes emerge, namely the neutron-deficient nuclei with Z approx. = 90, N approx. = 134 (light actinides) and Z approx. = 34, N approx. = 34 (A approx. = 70) and the neutron-rich nuclei with Z approx. = 56, N approx. = 90 (heavy Ba) and Z approx. = 34, N/sup 56/ (A approx. = 90). In our calculations we searched for octupole unstable nuclei in these four mass regions. The Strutinsky method with the deformed Woods-Saxon potential was employed. The macroscopic part consists of a finite-range liquid drop energy, where both the surface and Coulomb terms contain a diffuseness correction.
Energetic Nuclei, Superdensity and Biomedicine
ERIC Educational Resources Information Center
Baldin, A. M.
1977-01-01
High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…
They're M-e-e-elting!: An Investigation of Glacial Retreat in Antarctica
ERIC Educational Resources Information Center
Bugg, Samuel R., IV; Constible, Juanita; Kaput, Marianne; Lee, Richard E., Jr.
2007-01-01
In this article, the authors describe the mechanics of They're M-e-e-elting!, an activity wherein middle school students can simulate glacial retreat in Antarctica. They're M-e-e-elting! allows students to melt glaciers, change the water level and salinity of the Southern Ocean, and examine alterations to the Antarctic food web--all without…
Limits on a light Higgs boson in e+e- collisions at LEP
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Beck, A.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; Mamouni, H. El; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Harris, I.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Humbert, R.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Janissen, J.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Du, P. Le; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Llyod, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; MacBeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Mildenberger, J.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Prebys, E.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Thackray, N. J.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; van den Plas, D.; Vandalen, G. J.; Vasseur, G.; Virtue, C. J.; von der Schmitt, H.; von Krogh, J.; Wagner, A.; Wahl, C.; Walker, J. P.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.
1990-11-01
Data from e+e- collisions collected with the OPAL detector at LEP have been used to exclude a standard model Higgs boson (H0) with mass below 2mμ. The analysis used 1.2 pb-1 of data taken at centre-of-mass energies between 88.3 and 95.0 GeV to search for the reactions e+e--->Z0H0, (Z0-->e+e- or μ+μ-, H0-->undetected), e+e--->Z0H0, (Z0-->νν, H0-->e+e- or γγ). The existence of a minimal standard model H0 with mass in the range 0<=mH<=2mμ is excluded at the 95% confidence level. The limit is also valid for standard model extensions with a large branching ratio for the decay of H0 to γγ.
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.
1982-01-01
Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average ice nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle ice nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the extent of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/ice supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.
NASA Astrophysics Data System (ADS)
Penionzhkevich, Yu. E.
2016-06-01
This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclearphysics methods for studying cosmic objects and properties of the Universe. The results of investigations in nuclear reactions, induced by radioactive nuclear beams, make it possible to analyze the nucleosynthesis scenario in the region of light elements in a new manner.
NASA Astrophysics Data System (ADS)
Iltan, E. O.
We present the leading logarithmic QCD corrections to the matrix element of the decay b→de+e- in the two Higgs doublet model with tree level flavor changing currents (model III). We continue studying the differential branching ratio and the CP-violating asymmetry for the exclusive decays B→πe+e- and B→ρe+e- and analysing the dependencies of these quantities on the selected model III parameters, ξU,D, including the leading logarithmic QCD corrections. Further, we present the forward-backward asymmetry of dileptons for the decay B→ρe+e- and discuss the dependencies to the model III parameters. We observe that there is a possibility to enhance the branching ratios and suppress the CP-violating effects for both decays in the framework of the model III. Therefore, the measurements of these quantities will be an efficient tool to search the new physics beyond the SM.
The effects of density-dependent form factors for (e, e'p) reaction in quasi-elastic region
NASA Astrophysics Data System (ADS)
Kim, K. S.; Cheoun, Myung-Ki; Kim, Hungchong; So, W. Y.
2016-04-01
Within the framework of a relativistic single particle model, the effects of density-dependent electromagnetic form factors on the exclusive (e,e'p) reaction are investigated in the quasi-elastic region. The density-dependent electromagnetic form factors are generated from a quark-meson coupling model and used to calculate the cross sections in two different densities, either at the normal density of ρ_0 ˜ 0.15 fm^-3 or at the lower density, 0.5ρ_0 . Then these cross sections are analyzed in the two different kinematics: One is that the momentum of the outgoing nucleon is along the momentum transfer. The other is that the angle between the momentum of the outgoing nucleon and the momentum transfer is varied at fixed magnitude of the momentum of the outgoing nucleon. Our theoretical differential reduced cross sections are compared with the NIKHEF data for the 208 Pb( e, e'p) reaction, which is related to the probability that a bound nucleon from a given orbit can be knocked-out of the nucleus. The effects of the density-dependent form factors increase the differential cross sections for both knocked-out proton and neutron by an amount of a few percent. Moreover they are shown to be almost the same within only a few percent, i.e., nearly independent of the shell location of knockout nucleons. These results are quite consistent with the characteristics of double magic nuclei which have relatively sharp smearing in the density distribution.
Size-Invariant Detection of Cell Nuclei in Microscopy Images.
Ram, Sundaresh; Rodriguez, Jeffrey J
2016-07-01
Accurate detection of individual cell nuclei in microscopy images is an essential and fundamental task for many biological studies. In particular, multivariate fluorescence microscopy is used to observe different aspects of cells in cultures. Manual detection of individual cell nuclei by visual inspection is time consuming, and prone to induce subjective bias. This makes automatic detection of cell nuclei essential for large-scale, objective studies of cell cultures. Blur, clutter, bleed-through, imaging noise and touching and partially overlapping nuclei with varying sizes and shapes make automated detection of individual cell nuclei a challenging task using image analysis. In this paper we propose a new automated method for fast and robust detection of individual cell nuclei based on their radial symmetric nature in fluorescence in-situ hybridization (FISH) images obtained via confocal microscopy. The main contributions are two-fold. 1) This work presents a more accurate cell nucleus detection system using the fast radial symmetry transform (FRST). 2) The proposed cell nucleus detection system is robust against most occlusions and variations in size and moderate shape deformations. We evaluate the performance of the proposed algorithm using precision/recall rates, Fβ-score and root-mean-squared distance (RMSD) and show that our algorithm provides improved detection accuracy compared to existing algorithms. PMID:26886972
Revelation of Double Magicity in N = Z Nuclei in the RP-Process Region
Sharma, M. M.; Sharma, J. K.
2010-04-30
In rapid-proton capture (rp-process), N = Z nuclei above Ni are understood to act as waiting-point nuclei. The N = Z nuclei {sup 68}Se, {sup 72}Kr, {sup 76}Sr and {sup 80}Zr among others are known to give rise to a large-energy x-ray flux and peaks in abundances of these nuclei synthesized in the astrophysical rp-process. Investigating the experimental isotope shifts in Kr isotopes near the proton drip-line within the framework of the deformed Relativistic Hartree-Bogoliubov theory, we have discovered that N = Z rp-process nuclei {sup 68}Se, {sup 72}Kr, {sup 76}Sr and {sup 80}Zr exhibit large shell gap both at the proton and neutron numbers in the deformed space with the consequence that pairing correlations for protons and neutrons vanish. This lends a doubly magic character to these nuclei. A significant number of nuclei in this region are also shown to exhibit neutron magicity at N = 34, 36, 38, and 40 in the deformed space. A unique case of concomitance of the double magicity and the shape-coexistence is found for {sup 68}Se.
Chasman, R.R.
1996-12-31
In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.
Triaxiality and shape coexistence in the A ~ 30 island of inversion nuclei
NASA Astrophysics Data System (ADS)
Dong, GuoXiang; Wang, XiaoBao; Yu, ShaoYing
2015-11-01
Understanding the properties of nuclei inside "island of inversion" is still an interesting issue. Based on a simple Nilsson model with a new set of isospin-dependent parameters, and with non-axial deformations considered, we have performed three-dimensional potential-energy-surface calculations for Ne, Na, Mg and Al isotopes that are claimed to be in or nearby the A ~ 30 island of inversion. It is found that shape coexistence and triaxial deformation (or softness) exist in these nuclei. Large deformations are obtained by the improved Nilsson parameters, which explains the observed large electric quadrupole transition probabilities. The large deformations happening in 30Ne, 31Na, 32Mg and 33Al indicate the quenching of the spherical N = 20 neutron shell gap. The calculations of nuclear binding and two-neutron separation energies have been also improved with the isospin-dependent parameters and the inclusion of the non-axial deformation degree of freedom.
Collective modes in light nuclei from first principles.
Dytrych, T; Launey, K D; Draayer, J P; Maris, P; Vary, J P; Saule, E; Catalyurek, U; Sosonkina, M; Langr, D; Caprio, M A
2013-12-20
Results for ab initio no-core shell model calculations in a symmetry-adapted SU(3)-based coupling scheme demonstrate that collective modes in light nuclei emerge from first principles. The low-lying states of 6Li, 8Be, and 6He are shown to exhibit orderly patterns that favor spatial configurations with strong quadrupole deformation and complementary low intrinsic spin values, a picture that is consistent with the nuclear symplectic model. The results also suggest a pragmatic path forward to accommodate deformation-driven collective features in ab initio analyses when they dominate the nuclear landscape. PMID:24483740
Deformation properties of lead isotopes
NASA Astrophysics Data System (ADS)
Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.
2016-01-01
The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180Pb and 184Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo
Studies of the Shapes of Heavy Nuclei at ISOLDE
NASA Astrophysics Data System (ADS)
Butler, Peter A.
For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a "pear-shape" in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). In this talk I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that will exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.
NASA Astrophysics Data System (ADS)
Thomson, M. A.
2016-02-01
A future e+ e- collider, such as the ILC or CLIC, would allow the Higgs sector to be probed with a precision significantly beyond that achievable at the High-Luminosity LHC. A central part of the Higgs programme at an e+ e- collider is the model-independent determination of the absolute Higgs couplings to fermions and to gauge bosons. Here the measurement of the e+ e- → H Z Higgsstrahlung cross section, using the recoil mass technique, sets the absolute scale for all Higgs coupling measurements. Previous studies have considered \\upsigma (e+ e- → H Z) with Z → {ℓ} + {ℓ} - , where {ℓ} = e, {\\upmu } . In this paper it is shown for the first time that a near model-independent recoil mass technique can be extended to the hadronic decays of the Z boson. Because the branching ratio for Z → q {overline{q}} is approximately ten times greater than for Z → {ℓ} + {ℓ} - , this method is statistically more powerful than using the leptonic decays. For an integrated luminosity of 500 fb^{-1} at a centre-of-mass energy of √{s} =350 GeV at CLIC, \\upsigma (e+ e- → H Z) can be measured to {± }1.8 % using the hadronic recoil mass technique. A similar precision is found for the ILC operating at √{s} =350 GeV. The centre-of-mass dependence of this measurement technique is discussed, arguing for the initial operation of a future linear collider at just above the top-pair production threshold.
Structure properties of medium and heavy exotic nuclei
NASA Astrophysics Data System (ADS)
Gaidarov, M. K.
2012-09-01
Investigations of important characteristics of the structure of nuclei near drip-lines in coordinate and momentum space have been performed. The charge form factors, charge and matter densities and the corresponding rms radii for even-even isotopes of Ni, Kr, and Sn are calculated in the framework of deformed self-consistent mean field Skyrme DDHF+BCS method. The resulting charge radii and neutron skin thicknesses of these nuclei are compared with available experimental data, as well as with other theoretical predictions. The formation of a neutron skin is analyzed in terms of various definitions. Its correlation with the nuclear symmetry energy is studied within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The nucleon momentum distributions for the same isotopic chains of neutron-rich nuclei are studied in the framework of the same mean-field method, as well as of theoretical correlation methods based on light-front dynamics and local density approximation. The isotopic sensitivities of the calculated neutron and proton momentum distributions are investigated together with the effects of nucleon correlations and deformation of nuclei.
NASA Technical Reports Server (NTRS)
Rahe, J.; Vanysek, V.; Weissman, P. R.
1994-01-01
Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.
Total photoabsorption in nuclei
Bianchi, N.
1992-06-01
The Frascati-Genova collaboration proposes to measure the total photonuclear cross section on a wide range of nuclei between 500 MeV and 2 GeV, to obtain informations on the interaction of baryon resonances with nucleons and on the onset of the shadowing effect. The experiment could be performed in the Hall B as soon as the tagging facility will be ready and before the end of the installation of the CLAS spectrometer. The requirements for the photon beam, like maximum energy, intensity and beam definition, are not so strong so that the experiment would also be a good first test of the tagged photon facility.
Catara, F.; Sambataro, M. Italy Dipartimento di Fisica dell'Universita, 95129 Catania )
1992-08-01
By making use of a mapping procedure recently proposed, we construct the nucleon image of the one-body quark density operator in the framework of the nonrelativistic quark model of the nucleons. We evaluate the expectation value of this operator in the ground state of the doubly magic nuclei {sup 4}He, {sup 16}O, and {sup 40}Ca described within the nuclear shell model. We analyze the role of quark exchanges between nucleons. We also investigate the effect on the quark density of short-range correlations in the nuclear wave functions as well as of variations in the nucleon size.
Shell energy and the level-density parameter of hot nuclei
Nerlo-Pomorska, Bozena; Pomorski, Krzysztof; Bartel, Johann
2006-09-15
Macroscopic-microscopic calculations have been performed with the Yukawa folded mean field for 134 spherical even-even nuclei and 6 deformed ones at temperatures 0{<=}T{<=}5 MeV and elongations ranging from oblate shapes to the scission configuration of fissioning nuclei. The Strutinsky type free-energy shell corrections for this sample of nuclei and their temperature and deformation dependence are found by a folding procedure in particle-number space. The average dependence of the single-particle level-density parameter on mass number A and isospin I is determined and compared with previous estimates obtained using the relativistic mean-field theory, the Hartree-Fock approximation with the Skyrme effective interaction, and the phenomenological Thomas-Fermi approach adjusted to experimental data. The estimates for the level-density parameter obtained for different deformations are fitted by a liquid-drop type expression.
Calculations of {alpha}-decay half-lives for heavy and superheavy nuclei
Qian Yibin; Ni Dongdong; Ren, Zhongzhou
2011-04-15
Systematic calculations on the {alpha}-decay half-lives of heavy and superheavy nuclei are performed within a deformed version of the cluster model, using the modified two-potential approach. The deformed Woods-Saxon potential is employed to calculate the {alpha}-decay width through a deformed barrier. For comparison the calculated {alpha}-decay half-lives in the empirical relations are also presented. The present study is initially restricted to even-even nuclei in the heavy mass region with N>126. Then the study is extended to the recently observed heaviest nuclei, including synthesized superheavy elements and isotopes. The {alpha}-decay half-lives obtained are found to be in good agreement with the experimental data.
Mass limits for a standard model Higgs Boson in e+e- collisions at LEP
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Bavaria, G.; Beck, F.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davies, O. W.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchesneau, D.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hatzifotiadou, D.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Heintze, J.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hinde, P. S.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imori, M.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jin, E.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Köpke, L.; Kokott, T. P.; Koshiba, M.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; MacBeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Possoz, A.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Roehner, F.; Rollnik, A.; Roney, J. M.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Steuerer, J.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk, G.; van den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Wang, H.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yamashita, H.; Yang, Y.; Yekutieli, G.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.
1990-02-01
A search for the minimal standard model Higgs boson has been performed with data from e+e- collisions in the OPAL detector at LEP. The analysis is based on 825 nb-1 of data taken at centre-of-mass energies between 88.3 and 95.0 GeV. The search concentrated on the reactions e+e--->(e+e- or μ+μ- or vv)H0,H0-->(qq or τ+τ-), for Higgs masses above 3 GeV/c2. No Higgs boson candidates have been observed. The present study excludes the existence of a standard model H0 with mass in the range 3.0<=mH<=19.3 GeV/c2 at the 95% confidence level.
Low lying electric dipole excitations in nuclei of the rare earth region
von Brentano, P.; Zilges, A.; Herzberg, R.D. . Inst. fuer Kernphysik); Zamfir, N.V. ); Kneissl, U.; Heil, R.D.; Pitz, H.H. . Inst. fuer Strahlenphysik); Wesselborg, C. . Inst. fuer Kernphysik)
1992-01-01
From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J[sup [pi
(E,E)-alpha-farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons.
Sobotník, Jan; Hanus, Robert; Kalinová, Blanka; Piskorski, Rafal; Cvacka, Josef; Bourguignon, Thomas; Roisin, Yves
2008-04-01
The behavioral and electroantennographic responses of Prorhinotermes canalifrons to its soldier frontal gland secretion, and two separated major components of the secretion, (E)-1-nitropentadec-1-ene and (E,E)-alpha-farnesene, were studied in laboratory experiments. Behavioral experiments showed that both the frontal gland secretion and (E,E)-alpha-farnesene triggered alarm reactions in P. canalifrons, whereas (E)-1-nitropentadec-1-ene did not affect the behavior of termite groups. The alarm reactions were characterized by rapid walking of activated termites and efforts to alert and activate other members of the group. Behavioral responses to alarm pheromone differed between homogeneous and mixed groups, suggesting complex interactions. Antennae of both soldiers and pseudergates were sensitive to the frontal gland secretion and to (E,E)-alpha-farnesene, but soldiers showed stronger responses. The dose responses to (E,E)-alpha-farnesene were identical for both soldiers and pseudergates, suggesting that both castes use similar receptors to perceive (E,E)-alpha-farnesene. Our data confirm (E,E)-alpha-farnesene as an alarm pheromone of P. canalifrons. PMID:18386097
Nonaxial-octupole effect in superheavy nuclei
Chen, Y.-S.; Sun, Yang; Gao Zaochun
2008-06-15
The triaxial-octupole Y{sub 32} correlation in atomic nuclei has long been expected to exist but experimental evidence has not been clear. We find, in order to explain the very low-lying 2{sup -} bands in the transfermium mass region, that this exotic effect may manifest itself in superheavy elements. Favorable conditions for producing triaxial-octupole correlations are shown to be present in the deformed single-particle spectrum, which is further supported by quantitative Reflection Asymmetric Shell Model calculations. It is predicted that the strong nonaxial-octupole effect may persist up to the element 108. Our result thus represents the first concrete example of spontaneous breaking of both axial and reflection symmetries in the heaviest nuclear systems.