Science.gov

Sample records for deformed harmonic-oscillator basis

  1. Axially deformed solution of the Skyrme Hartree Fock Bogolyubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1.66p)

    NASA Astrophysics Data System (ADS)

    Stoitsov, M. V.; Dobaczewski, J.; Nazarewicz, W.; Ring, P.

    2005-04-01

    We describe the program HFBTHO for axially deformed configurational Hartree-Fock-Bogolyubov calculations with Skyrme-forces and zero-range pairing interaction using Harmonic-Oscillator and/or Transformed Harmonic-Oscillator states. The particle-number symmetry is approximately restored using the Lipkin-Nogami prescription, followed by an exact particle number projection after the variation. The program can be used in a variety of applications, including systematic studies of wide ranges of nuclei, both spherical and axially deformed, extending all the way out to nucleon drip lines. Program summaryTitle of the program: HFBTHO (v1.66p) Catalogue number: ADUI Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI Licensing provisions: none Computers on which the program has been tested: Pentium-III, Pentium-IV, AMD-Athlon, IBM Power 3, IBM Power 4, Intel Xeon Operating systems: LINUX, Windows Programming language used: FORTRAN-95 Memory required to execute with typical data: 59 MB when using N=20 No. of bits in a word: 64 No. of processors used: 1 Has the code been vectorized?: No No. of bytes in distributed program, including test data, etc.: 195 285 No. of lines in distributed program: 12 058 Distribution format: tar.gz Nature of physical problem: The solution of self-consistent mean-field equations for weakly bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasiparticle wave functions. In the present implementation, this is achieved by using the single-particle wave functions of the Transformed Harmonic Oscillator, which allows for an accurate description of deformation effects and pairing correlations in nuclei arbitrarily close to the particle drip lines. Method of solution: The program uses the axially Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes

  2. First, Second Quantization and Q-Deformed Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Van Ngu, Man; Gia Vinh, Ngo; Lan, Nguyen Tri; Thanh, Luu Thi Kim; Viet, Nguyen Ai

    2015-06-01

    Relations between the first, the second quantized representations and deform algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization (the commutation relation between coordinate and momentum operators) and the axiom of second quantization (the commutation relation between creation and annihilation operators) are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the axiom of second quantization leads to a violence of the axiom of first quantization, and inverse. Using the coordinate representation, we study fine structures of the vacuum state wave function depend in the deformation parameter q. A comparison with fine structures of Cooper pair of superconductivity in the coordinate representation is also performed.

  3. Probing deformed commutators with macroscopic harmonic oscillators

    PubMed Central

    Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A.; Serra, Enrico; Vitali, David; Marin, Francesco

    2015-01-01

    A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈22 μg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation. PMID:26088965

  4. Probing deformed commutators with macroscopic harmonic oscillators.

    PubMed

    Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A; Serra, Enrico; Vitali, David; Marin, Francesco

    2015-01-01

    A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈ 22 μg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation. PMID:26088965

  5. Effective field theory in the harmonic oscillator basis

    DOE PAGESBeta

    Binder, S.; Ekström, Jan A.; Hagen, Gaute; Papenbrock, Thomas F.; Wendt, Kyle A.

    2016-04-25

    In this paper, we develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leadingmore » order. Finally, many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.« less

  6. Effective field theory in the harmonic oscillator basis

    NASA Astrophysics Data System (ADS)

    Binder, S.; Ekström, A.; Hagen, G.; Papenbrock, T.; Wendt, K. A.

    2016-04-01

    We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.

  7. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  8. Cooper pair of superconductivity in the coordinate representation and q-deformed harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Van Ngu, Man; Gia Vinh, Ngo; Lan, Nguyen Tri; Thanh, Luu Thi Kim; Viet, Nguyen Ai

    2016-06-01

    In this work we study the similarity between the wave functions of q -deformed harmonic oscillator and wave functions of Cooper pair. The wave functions of Cooper pairs in coordinate-space have an “onion-like” layered structure with exponent decay (Boltzmann) envelope modulation. The ground state wave function of q -deform harmonic oscillator has the form of oscillate functions with Gaussian decay envelope modulation. The corresponding between Boltzmann and Gaussian forms of envelope functions and their quantum similarity are discussed.

  9. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    NASA Astrophysics Data System (ADS)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions

  10. Application of Elliott's SU(3) model to the triaxially deformed harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Sugawara-Tanabe, Kazuko

    2011-05-01

    We have introduced new bosons corresponding to the integral ratio of three frequencies for a harmonic oscillator potential, by means of a non-linear transformation which realizes the SU(3) group as a dynamical symmetry group, and which leaves the anisotropic harmonic oscillator Hamiltonian invariant. The classification of the single-particle levels based on this covering group predicts magic numbers depending on the deformation parameters δ and γ. The special cases with tan γ = 1/√3 (γ = 30°) and √3 /5(γ˜19°) are discussed.

  11. RLC circuit realization of a q-deformed harmonic oscillator with time dependent mass

    NASA Astrophysics Data System (ADS)

    Batouli, J.; El Baz, M.; Maaouni, A.

    2015-08-01

    We consider an RLC circuit type realization of a q-deformed harmonic oscillator. The differential equations of motion characterizing this circuit are derived, and it is shown that the RLC circuit gets modified as a result of the q-deformation. The natural frequency, the capacitance and the external power source are all modified and become q-dependent. The energy aspects of the circuit are also studied and the effects of the deformation are shown.

  12. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VI) HFODD (v2.40h): A new version of the program

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Satuła, W.; Carlsson, B. G.; Engel, J.; Olbratowski, P.; Powałowski, P.; Sadziak, M.; Sarich, J.; Schunck, N.; Staszczak, A.; Stoitsov, M.; Zalewski, M.; Zduńczuk, H.

    2009-11-01

    We describe the new version (v2.40h) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the DT2h transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected three insignificant errors. New version program summaryProgram title: HFODD (v2.40h) Catalogue identifier: ADFL_v2_2 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v2_2.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 79 618 No. of bytes in distributed program, including test data, etc.: 372 548 Distribution format: tar.gz Programming language: FORTRAN-77 and Fortran-90 Computer: Pentium-III, AMD-Athlon, AMD-Opteron Operating system: UNIX, LINUX, Windows XP Has the code been

  13. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VII) HFODD (v2.49t): A new version of the program

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Dobaczewski, J.; McDonnell, J.; Satuła, W.; Sheikh, J. A.; Staszczak, A.; Stoitsov, M.; Toivanen, P.

    2012-01-01

    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF + BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. New version program summaryProgram title:HFODD (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution

  14. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (IV) HFODD (v2.08i): a new version of the program

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Olbratowski, P.

    2004-04-01

    We describe the new version (v2.08i) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, all symmetries can be broken, which allows for calculations with angular frequency and angular momentum tilted with respect to the mass distribution. The new version contains an interface to the LAPACK subroutine ZHPEVX. Program summaryTitle of the program:HFODD (v2.08i) Catalogue number: ADTO Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTO Reference in CPC for earlier version of program: J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 131 (2000) 164 (v1.75r) Catalogue number of previous version: ADML Licensing provisions: none Does the new version supersede the previous one: yes Computers on which the program has been tested: SG Power Challenge L, Pentium-II, Pentium-III, AMD-Athlon Operating systems: UNIX, LINUX, Windows-2000 Programming language used: FORTRAN-77 and FORTRAN-90 Memory required to execute with typical data: 10 Mwords No. of bits in a word: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Has the code been vectorised?: Yes No. of bytes in distributed program, including test data, etc.: 265352 No. of lines in distributed program: 52656 Distribution format: tar gzip file Nature of physical problem: The nuclear mean-field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean-field is local and velocity dependent. The locality allows for

  15. Some properties of an infinite family of deformations of the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Quesne, Christiane

    2010-12-01

    In memory of Marcos Moshinsky, who promoted the algebraic study of the harmonic oscillator, some results recently obtained on an infinite family of deformations of such a system are reviewed. This set, which was introduced by Tremblay, Turbiner, and Winternitz, consists in some Hamiltonians Hk on the plane, depending on a positive real parameter k. Two algebraic extensions of Hk are described. The first one, based on the elements of the dihedral group D2k and a Dunkl operator formalism, provides a convenient tool to prove the superintegrability of Hk for odd integer k. The second one, employing two pairs of fermionic operators, leads to a supersymmetric extension of Hk of the same kind as the familiar Freedman and Mende super-Calogero model. Some connection between both extensions is also outlined.

  16. Some properties of an infinite family of deformations of the harmonic oscillator

    SciTech Connect

    Quesne, Christiane

    2010-12-23

    In memory of Marcos Moshinsky, who promoted the algebraic study of the harmonic oscillator, some results recently obtained on an infinite family of deformations of such a system are reviewed. This set, which was introduced by Tremblay, Turbiner, and Winternitz, consists in some Hamiltonians H{sub k} on the plane, depending on a positive real parameter k. Two algebraic extensions of H{sub k} are described. The first one, based on the elements of the dihedral group D{sub 2k} and a Dunkl operator formalism, provides a convenient tool to prove the superintegrability of H{sub k} for odd integer k. The second one, employing two pairs of fermionic operators, leads to a supersymmetric extension of H{sub k} of the same kind as the familiar Freedman and Mende super-Calogero model. Some connection between both extensions is also outlined.

  17. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  18. Covariant harmonic oscillators and coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  19. Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Liang, Shi-Dong

    2016-06-01

    We investigate the connection between the linear harmonic oscillator equation and some classes of second order nonlinear ordinary differential equations of Li\\'enard and generalized Li\\'enard type, which physically describe important oscillator systems. By using a method inspired by quantum mechanics, and which consist on the deformation of the phase space coordinates of the harmonic oscillator, we generalize the equation of motion of the classical linear harmonic oscillator to several classes of strongly non-linear differential equations. The first integrals, and a number of exact solutions of the corresponding equations are explicitly obtained. The devised method can be further generalized to derive explicit general solutions of nonlinear second order differential equations unrelated to the harmonic oscillator. Applications of the obtained results for the study of the travelling wave solutions of the reaction-convection-diffusion equations, and of the large amplitude free vibrations of a uniform cantilever beam are also presented.

  20. On the moment of inertia of a quantum harmonic oscillator

    SciTech Connect

    Khamzin, A. A. Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.

    2013-04-15

    An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.

  1. The q-harmonic oscillators, q-coherent states and the q-symplecton

    NASA Technical Reports Server (NTRS)

    Biedenharn, L. C.; Lohe, M. A.; Nomura, Masao

    1993-01-01

    The recently introduced notion of a quantum group is discussed conceptually and then related to deformed harmonic oscillators ('q-harmonic oscillators'). Two developments in applying q-harmonic oscillators are reviewed: q-coherent states and the q-symplecton.

  2. Scaling properties of the harmonic oscillator basis calculations for N = Z nuclei in the infrared limit with the JISP16 potential

    NASA Astrophysics Data System (ADS)

    Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter

    2014-03-01

    It has recently been found that when no-core configuration interaction (NCCI) calculations of low-mass nuclei are plotted against an infrared momentum cutoff λsc (scaling cutoff), a universal curve is obtained for the energy and the RMS radius. The plotted results must have an ultraviolet (UV) cutoff ΛUV greater than or equal to the intrinsic cutoff ΛNN of the interaction. This assures that UV convergence is reached. The scaling property then allows for the performance of extrapolations in the IR limit. Here we conduct NCCI calculations in the harmonic oscillator basis with the JISP16 potential. In the IR limit we obtain universal curves for N = Z nuclei up to and including 8Be . An extrapolation in the IR limit for the ground state energy and the RMS radius is performed, and extrapolated results are obtained. Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).

  3. Galilean covariant harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    A Galilean covariant approach to classical mechanics of a single particle is described. Within the proposed formalism, all non-covariant force laws defining acting forces which become to be defined covariantly by some differential equations are rejected. Such an approach leads out of the standard classical mechanics and gives an example of non-Newtonian mechanics. It is shown that the exactly solvable linear system of differential equations defining forces contains the Galilean covariant description of harmonic oscillator as its particular case. Additionally, it is demonstrated that in Galilean covariant classical mechanics the validity of the second Newton law of dynamics implies the Hooke law and vice versa. It is shown that the kinetic and total energies transform differently with respect to the Galilean transformations.

  4. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  5. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  6. Symmetries of coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.

    1993-01-01

    It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).

  7. Making space for harmonic oscillators

    SciTech Connect

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  8. Quantum Dynamics of a Harmonic Oscillator in a Defomed Bath in the Presence of Lamb Shift

    NASA Astrophysics Data System (ADS)

    Daeimohamad, M.; Mohammadi, M.

    2012-10-01

    In this paper, we investigate the dissipative quantum dynamics of a harmonic oscillator in the presence a deformed bath by considering the Lamb shift term. The deformed bath is modelled by a collection of deformed quantum harmonic oscillators as a generalization of Hopfield model. The Langevin equation for both the photon number and the fluctuation spectrum under the Weisskopf-Winger approximation are obtained and discussed.

  9. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  10. Quantum wormholes and harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Garay, Luis J.

    1993-01-01

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface which divides the space time manifold into two disconnected parts. Minisuperspace models which consist of a homogeneous massless scalar field coupled to a Friedmann-Robertson-Walker space time are considered. Once the path integral over the lapse function is performed, the requirement that the space time be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is argued that there does not exist any wave function which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. Then, the wormhole wave functions can be written as linear combinations of harmonic oscillator wave functions.

  11. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  12. Harmonic Oscillators as Bridges between Theories

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Noz, Marilyn E.

    2005-03-01

    Other than scattering problems where perturbation theory is applicable, there are basically two ways to solve problems in physics. One is to reduce the problem to harmonic oscillators, and the other is to formulate the problem in terms of two-by-two matrices. If two oscillators are coupled, the problem combines both two-by-two matrices and harmonic oscillators. This method then becomes a powerful research tool to cover many different branches of physics. Indeed, the concept and methodology in one branch of physics can be translated into another through the common mathematical formalism. It is noted that the present form of quantum mechanics is largely a physics of harmonic oscillators. Special relativity is the physics of the Lorentz group which can be represented by the group of by two-by-two matrices commonly called SL(2, c). Thus the coupled harmonic oscillators can therefore play the role of combining quantum mechanics with special relativity. Both Paul A. M. Dirac and Richard P. Feynman were fond of harmonic oscillators, while they used different approaches to physical problems. Both were also keenly interested in making quantum mechanics compatible with special relativity. It is shown that the coupled harmonic oscillators can bridge these two different approaches to physics.

  13. The harmonic oscillator and nuclear physics

    NASA Technical Reports Server (NTRS)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  14. Second International Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)

    1995-01-01

    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.

  15. Kraus representation of a damped harmonic oscillator and its application

    SciTech Connect

    Liu Yuxi; Oezdemir, Sahin K.; Miranowicz, Adam; Imoto, Nobuyuki

    2004-10-01

    By definition, the Kraus representation of a harmonic oscillator suffering from the environment effect, modeled as the amplitude damping or the phase damping, is directly given by a simple operator algebra solution. As examples and applications, we first give a Kraus representation of a single qubit whose computational basis states are defined as bosonic vacuum and single particle number states. We further discuss the environment effect on qubits whose computational basis states are defined as the bosonic odd and even coherent states. The environment effects on entangled qubits defined by two different kinds of computational basis are compared with the use of fidelity.

  16. Quantum phases for a generalized harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    2008-03-01

    An effective Hamiltonian for the generalized harmonic oscillator is determined by using squeezed state wavefunctions. The equations of motion over an extended phase space are determined and then solved perturbatively for a specific choice of the oscillator parameters. These results are used to calculate the dynamic and geometric phases for the generalized oscillator with this choice of parameters.

  17. Quantum harmonic oscillator in a thermal bath

    NASA Technical Reports Server (NTRS)

    Zhang, Yuhong

    1993-01-01

    The influence functional path-integral treatment of quantum Brownian motion is briefly reviewed. A newly derived exact master equation of a quantum harmonic oscillator coupled to a general environment at arbitrary temperature is discussed. It is applied to the problem of loss of quantum coherence.

  18. Quantum nondemolition measurements of harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Caves, C. M.; Zimmermann, M.; Sandberg, V. D.; Drever, R. W. P.

    1978-01-01

    Measuring systems to determine the real component of the complex amplitude of a harmonic oscillator are described. This amplitude is constant in the absence of driving forces, and the uncertainty principle accounts for the fact that only the real component can be measured precisely and continuously ('quantum nondemolition measurement'). Application of the measuring systems to the detection of gravitational waves is considered.

  19. Group Theory of Covariant Harmonic Oscillators

    ERIC Educational Resources Information Center

    Kim, Y. S.; Noz, Marilyn E.

    1978-01-01

    A simple and concrete example for illustrating the properties of noncompact groups is presented. The example is based on the covariant harmonic-oscillator formalism in which the relativistic wave functions carry a covariant-probability interpretation. This can be used in a group theory course for graduate students who have some background in…

  20. Pisot q-coherent states quantization of the harmonic oscillator

    SciTech Connect

    Gazeau, J.P.; Olmo, M.A. del

    2013-03-15

    We revisit the quantized version of the harmonic oscillator obtained through a q-dependent family of coherent states. For each q, 0deformed integers form Fibonacci-like sequences of integers. We then examine the main characteristics of the corresponding quantum oscillator: localization in the configuration and in the phase spaces, angle operator, probability distributions and related statistical features, time evolution and semi-classical phase space trajectories. - Highlights: Black-Right-Pointing-Pointer Quantized version of the harmonic oscillator (HO) through a q-family of coherent states. Black-Right-Pointing-Pointer For q,0Deformed numbers are Fibonacci-like integer sequences (1/q a quadratic unit Pisot number). Black-Right-Pointing-Pointer We examine the main physical characteristics of the corresponding quantum oscillator.

  1. Quantum harmonic oscillator with superoscillating initial datum

    SciTech Connect

    Buniy, R. V.; Struppa, D. C.; Colombo, F.; Sabadini, I.

    2014-11-15

    In this paper, we study the evolution of superoscillating initial data for the quantum driven harmonic oscillator. Our main result shows that superoscillations are amplified by the harmonic potential and that the analytic solution develops a singularity in finite time. We also show that for a large class of solutions of the Schrödinger equation, superoscillating behavior at any given time implies superoscillating behavior at any other time.

  2. Factorization method for the truncated harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Fernández C, D. J.; Morales-Salgado, V. S.

    2015-04-01

    Factorization procedures of first and second order are used to generate Hamiltonians with known spectra departing from the harmonic oscillator with an infinite potential barrier. Certain systems obtained in a straightforward way through said method possess differential ladder operators of both types, third and fourth order. Since systems with this kind of operators are linked with the Painlevé IV and V equations respectively, several solutions of these non-linear second-order differential equations will be simply found.

  3. Information theories for time-dependent harmonic oscillator

    SciTech Connect

    Choi, Jeong Ryeol; Kim, Min-Soo; Kim, Daeyeoul; Maamache, Mustapha; Menouar, Salah; Nahm, In Hyun

    2011-06-15

    Highlights: > Information theories for the general time-dependent harmonic oscillator based on invariant operator method. > Time dependence of entropies and entropic uncertainty relation. > Characteristics of Shannon information and Fisher information. > Application of information theories to particular systems that have time-dependent behavior. - Abstract: Information theories for the general time-dependent harmonic oscillator are described on the basis of invariant operator method. We obtained entropic uncertainty relation of the system and discussed whether it is always larger than or equal to the physically allowed minimum value. Shannon information and Fisher information are derived by means of density operator that satisfies Liouville-von Neumann equation and their characteristics are investigated. Shannon information is independent of time, but Fisher information is explicitly dependent on time as the time functions of the Hamiltonian vary. We can regard that the Fisher information is a local measure since its time behavior is largely affected by local arrangements of the density, whilst the Shannon information plays the role of a global measure of the spreading of density. To promote the understanding, our theory is applied to special systems, the so-called quantum oscillator with time-dependent frequency and strongly pulsating mass system.

  4. Quantum Harmonic Oscillator Subjected to Quantum Vacuum Fluctuations

    NASA Astrophysics Data System (ADS)

    Gevorkyan, A. S.; Burdik, C.; Oganesyan, K. B.

    2010-05-01

    Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy level, as well as many other phenomena in real nonrelativistic quantum systems are connected with the influence of quantum vacuum fluctuations which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum harmonic oscillator (QHO) + environment" is described in terms of complex probabilistic processes (CPP) which satisfies a stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type. On the basis of orthogonal CPP, the method of stochastic density matrix (SDM) is developed. The energy spectrum of QHO and a possibility of infringement of detailed balance of transitions between quantum levels including spontaneous decay of ≪ground state≫ are investigated by the SDM method.

  5. Joint entropy of quantum damped harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Aguiar, V.; Guedes, I.

    2014-05-01

    We use the dynamical invariant method and a unitary transformation to obtain the exact Schrödinger wave function, ψn(x,t), and calculate for n=0 the time-dependent joint entropy (Leipnik’s entropy) for two classes of quantum damped harmonic oscillators. We observe that the joint entropy does not vary in time for the Caldirola-Kanai oscillator, while it decreases and tends to a constant value (ln({e}/{2})) for asymptotic times for the Lane-Emden ones. This is due to the fact that for the latter, the damping factor decreases as time increases. The results show that the time dependence of the joint entropy is quite complex and does not obey a general trend of monotonously increase with time.

  6. A possible generalization of the harmonic oscillator potential

    NASA Technical Reports Server (NTRS)

    Levai, Geza

    1995-01-01

    A four-parameter potential is analyzed, which contains the three-dimensional harmonic oscillator as a special case. This potential is exactly solvable and retains several characteristics of the harmonic oscillator, and also of the Coulomb problem. The possibility of similar generalizations of other potentials is also pointed out.

  7. Fisher information of quantum damped harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Aguiar, V.; Guedes, I.

    2015-04-01

    We calculate the time-dependent Fisher information in position ({{F}x}) and momentum ({{F}p}) for the lowest lying state ≤ft( n=0 \\right) of two classes of quantum damped (Lane-Emden (LE) and Caldirola-Kanai (CK)) harmonic oscillators. The expressions of {{F}x} and {{F}p} are written in terms of ρ , a c-number quantity satisfying a nonlinear differential equation. Analytical solutions of ρ were obtained. For the LE and CK oscillators, we observe that {{F}x} increases while {{F}p} decreases with increasing time. The product {{F}x}{{F}p} increases and tends to a constant value in the limit t\\to ∞ for the LE oscillator, while it is time-independent for the CK oscillator. Moreover, for the CK oscillator the product {{F}x}{{F}p} decreases as the damping ≤ft( γ \\right) increases. Relations among the Fisher information, Leipnik and Shannon entropies, and the Stam and Cramer-Rao inequalities are given. A discussion on the squeezing phenomenon in position for the oscillators is presented.

  8. Improving Density Functionals with Quantum Harmonic Oscillators

    NASA Astrophysics Data System (ADS)

    Tkatchenko, Alexandre

    2013-03-01

    Density functional theory (DFT) is the most widely used and successful approach for electronic structure calculations. However, one of the pressing challenges for DFT is developing efficient functionals that can accurately capture the omnipresent long-range electron correlations, which determine the structure and stability of many molecules and materials. Here we show that, under certain conditions, the problem of computing the long-range correlation energy of interacting electrons can be mapped to a system of coupled quantum harmonic oscillators (QHOs). The proposed model allows us to synergistically combine concepts from DFT, quantum chemistry, and the widely discussed random-phase approximation for the correlation energy. In the dipole limit, the interaction energy for a system of coupled QHOs can be calculated exactly, thereby leading to an efficient and accurate model for the many-body dispersion energy of complex molecules and materials. The studied examples include intermolecular binding energies, the conformational hierarchy of DNA structures, the geometry and stability of molecular crystals, and supramolecular host-guest complexes (A. Tkatchenko, R. A. DiStasio Jr., R. Car, M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012); R. A. DiStasio Jr., A. von Lilienfeld, A. Tkatchenko, PNAS 109, 14791 (2012); A. Tkatchenko, D. Alfe, K. S. Kim, J. Chem. Theory and Comp. (2012), doi: 10.1021/ct300711r; A. Tkatchenko, A. Ambrosetti, R. A. DiStasio Jr., arXiv:1210.8343v1).

  9. Harmonic oscillator interaction with squeezed radiation

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Nikonov, D. E.

    1993-01-01

    Although the problem of electromagnetic radiation by a quantum harmonic oscillator is considered in textbooks on quantum mechanics, some of its aspects have remained unclear until now. By this, we mean that usually the initial quantum states of both the oscillator and the field are assumed to be characterized by a definite energy level of the oscillator and definite occupation numbers of the field modes. In connection with growing interest in squeezed states, it would be interesting to analyze the general case when the initial states of both subsystems are arbitrary superpositions of energy eigenstates. This problem was considered in other work, where the power of the spontaneous emission was calculated in the case of an arbitrary oscillator's initial state, but the field was initially in a vacuum state. In the present article, we calculate the rate of the oscillator average energy, squeezing, and correlation parameter change under the influence of an arbitrary external radiation field. Some other problems relating to the interaction between quantum particles (atoms) or oscillators where the electromagnetic radiation is an arbitrary (in particular squeezed) state were investigated.

  10. The Coupled Harmonic Oscillator: Not Just for Seniors Anymore.

    ERIC Educational Resources Information Center

    Preyer, Norris W.

    1996-01-01

    Presents experiments that use Microcomputer Based Laboratory (MBL) techniques to enable freshmen physics students to investigate complex systems, such as nonlinear oscillators or coupled harmonic oscillators, at a level appropriate for an independent project. (JRH)

  11. Driven harmonic oscillator as a quantum simulator for open systems

    SciTech Connect

    Piilo, Jyrki; Maniscalco, Sabrina

    2006-09-15

    We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for the non-Markovian damped harmonic oscillator. In the general framework, our results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals physical insight into the open system dynamics, e.g., the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.

  12. Harmonic oscillator in quantum rotational spectra: Molecules and nuclei

    NASA Technical Reports Server (NTRS)

    Pavlichenkov, Igor M.

    1995-01-01

    The mapping of a rotational dynamics on a harmonic oscillator is considered. The method used for studying the stabilization of the rigid top rotation around the intermediate moment of inertial axix by orbiting particle is described.

  13. A harmonic oscillator having “volleyball damping”

    NASA Astrophysics Data System (ADS)

    Mickens, R. E.; Oyedeji, K.; Rucker, S. A.

    2006-05-01

    Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value. The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.

  14. Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate

    NASA Astrophysics Data System (ADS)

    Egorov, A. G.; Kamalutdinov, A. M.; Paimushin, V. N.; Firsov, V. A.

    2016-03-01

    A method for determining the drag coefficient of a thin plate harmonically oscillating in a viscous incompressible fluid is proposed. The method is based on measuring the amplitude of deflections of cantilever-fixed thin plates exhibiting damping flexural oscillations with a frequency corresponding to the first mode and on solving an inverse problem of calculating the drag coefficient on the basis of the experimentally found logarithmic decrement of beam oscillations.

  15. Calculation of four-particle harmonic-oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Germanas, D.; Kalinauskas, R. K.; Mickevičius, S.

    2010-02-01

    A procedure for precise calculation of the three- and four-particle harmonic-oscillator (HO) transformation brackets is presented. The analytical expressions of the four-particle HO transformation brackets are given. The computer code for the calculations of HO transformation brackets proves to be quick, efficient and produces results with small numerical uncertainties. Program summaryProgram title: HOTB Catalogue identifier: AEFQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1247 No. of bytes in distributed program, including test data, etc.: 6659 Distribution format: tar.gz Programming language: FORTRAN 90 Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix RAM: 8 MB Classification: 17.17 Nature of problem: Calculation of the three-particle and four-particle harmonic-oscillator transformation brackets. Solution method: The method is based on compact expressions of the three-particle harmonics oscillator brackets, presented in [1] and expressions of the four-particle harmonics oscillator brackets, presented in this paper. Restrictions: The three- and four-particle harmonic-oscillator transformation brackets up to the e=28. Unusual features: Possibility of calculating the four-particle harmonic-oscillator transformation brackets. Running time: Less than one second for the single harmonic-oscillator transformation bracket. References:G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barret, S. Mickevičius, D. Germanas, Nuclear Physics A 695 (2001) 191.

  16. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Badavi, F. F.; Townsend, L. W.

    1986-01-01

    The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.

  17. A Look at Damped Harmonic Oscillators through the Phase Plane

    ERIC Educational Resources Information Center

    Daneshbod, Yousef; Latulippe, Joe

    2011-01-01

    Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…

  18. Asymptotic Formula for Quantum Harmonic Oscillator Tunneling Probabilities

    NASA Astrophysics Data System (ADS)

    Jadczyk, Arkadiusz

    2015-10-01

    Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.

  19. Simulating Harmonic Oscillator and Electrical Circuits: A Didactical Proposal

    ERIC Educational Resources Information Center

    Albano, Giovannina; D'Apice, Ciro; Tomasiello, Stefania

    2002-01-01

    A Mathematica[TM] package is described that uses simulations and animations to illustrate key concepts in harmonic oscillation and electric circuits for students not majoring in physics or mathematics. Students are not required to know the Mathematica[TM] environment: a user-friendly interface with buttons functionalities and on-line help allows…

  20. The One-Dimensional Damped Forced Harmonic Oscillator Revisited

    ERIC Educational Resources Information Center

    Flores-Hidalgo, G.; Barone, F. A.

    2011-01-01

    In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.

  1. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  2. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    ERIC Educational Resources Information Center

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  3. The Study of Damped Harmonic Oscillations Using an Electronic Counter

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2009-01-01

    We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…

  4. Free Fall and Harmonic Oscillations: Analyzing Trampoline Jumps

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Eager, David

    2015-01-01

    Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is…

  5. Properties of infrared extrapolations in a harmonic oscillator basis

    NASA Astrophysics Data System (ADS)

    Coon, Sidney A.; Kruse, Michael K. G.

    2016-02-01

    The success and utility of effective field theory (EFT) in explaining the structure and reactions of few-nucleon systems has prompted the initiation of EFT-inspired extrapolations to larger model spaces in ab initio methods such as the no-core shell model (NCSM). In this contribution, we review and continue our studies of infrared (ir) and ultraviolet (uv) regulators of NCSM calculations in which the input is phenomenological NN and NNN interactions fitted to data. We extend our previous findings that an extrapolation in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction is quite successful, not only for the eigenstates of the Hamiltonian but also for expectation values of operators, such as r2, considered long range. The latter results are obtained with Hamiltonians transformed by the similarity renormalization group (SRG) evolution. On the other hand, a possible extrapolation of ground state energies in the uv cutoff when the ir cutoff is below the intrinsic ir scale is not robust and does not agree with the ir extrapolation of the same data or with independent calculations using other methods.

  6. Local Gram-Schmidt and covariant Lyapunov vectors and exponents for three harmonic oscillator problems

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2012-02-01

    We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.

  7. Confined One Dimensional Harmonic Oscillator as a Two-Mode System

    SciTech Connect

    Gueorguiev, V G; Rau, A P; Draayer, J P

    2005-07-11

    The one-dimensional harmonic oscillator in a box problem is possibly the simplest example of a two-mode system. This system has two exactly solvable limits, the harmonic oscillator and a particle in a (one-dimensional) box. Each of the two limits has a characteristic spectral structure describing the two different excitation modes of the system. Near each of these limits, one can use perturbation theory to achieve an accurate description of the eigenstates. Away from the exact limits, however, one has to carry out a matrix diagonalization because the basis-state mixing that occurs is typically too large to be reproduced in any other way. An alternative to casting the problem in terms of one or the other basis set consists of using an ''oblique'' basis that uses both sets. Through a study of this alternative in this one-dimensional problem, we are able to illustrate practical solutions and infer the applicability of the concept for more complex systems, such as in the study of complex nuclei where oblique-basis calculations have been successful.

  8. Franck-Condon factors for multidimensional harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Malmqvist, Per-Åke; Forsberg, Niclas

    1998-03-01

    We present a simple formula for the overlap integrals of two sets of multi-dimensional harmonic oscillators. The oscillators have in general different equilibrium points, force constants, and natural vibration modes. The formula expresses the overlap matrix in the one-dimensional case, < m'| n''>, as a so-called LU decomposition, =<0'|0''> limit∑L mtU tn, where the summation index has a range 0≤ t≤min( m, n), i.e., it is the matrix product of a lower-triangular matrix L with an upper-triangular U. These matrices are obtained from simple recursion formulae. This form is essentially retained in the multi-dimensional case. General matrix elements are obtained by exact and finite expressions, relating them to matrix elements over a single set of harmonic oscillator wave functions. We present test calculations with error estimates, also comparing with literature examples.

  9. Time-Dependent Coupled Harmonic Oscillators: Classical and Quantum Solutions

    NASA Astrophysics Data System (ADS)

    Macedo, Diego Ximenes; Guedes, Ilde

    2015-10-01

    In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld invariant method. The exact wave functions are obtained by solving the respective Milne-Pinney equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.

  10. Time-dependent coupled harmonic oscillators: Classical and quantum solutions

    NASA Astrophysics Data System (ADS)

    Macedo, D. X.; Guedes, I.

    2014-08-01

    In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne-Pinney (MP) equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.

  11. Reaching Synchronization in Networked Harmonic Oscillators With Outdated Position Data.

    PubMed

    Song, Qiang; Yu, Wenwu; Cao, Jinde; Liu, Fang

    2016-07-01

    This paper studies the synchronization problem for a network of coupled harmonic oscillators by proposing a distributed control algorithm based only on delayed position states, i.e., outdated position states stored in memory. The coupling strength of the network is conveniently designed according to the absolute values and the principal arguments of the nonzero eigenvalues of the network Laplacian matrix. By analyzing a finite number of stability switches of the network with respect to the variation in the time delay, some necessary and sufficient conditions are derived for reaching synchronization in networked harmonic oscillators with positive and negative coupling strengths, respectively, and it is shown that the time delay should be taken from a set of intervals bounded by some critical values. Simulation examples are given to illustrate the effectiveness of the theoretical analysis. PMID:26241985

  12. Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules

    SciTech Connect

    Go, Clark Kendrick C.; Maquiling, Joel T.

    2010-07-28

    Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.

  13. Random reverse-cyclic matrices and screened harmonic oscillator.

    PubMed

    Srivastava, Shashi C L; Jain, Sudhir R

    2012-04-01

    We have calculated the joint probability distribution function for random reverse-cyclic matrices and shown that it is related to an N-body exactly solvable model. We refer to this well-known model potential as a screened harmonic oscillator. The connection enables us to obtain all the correlations among the particle positions moving in a screened harmonic potential. The density of nontrivial eigenvalues of this ensemble is found to be of the Wigner form and admits a hole at the origin, in contrast to the semicircle law of the Gaussian orthogonal ensemble of random matrices. The spacing distributions assume different forms ranging from Gaussian-like to Wigner. PMID:22680453

  14. Non-Markovian quantum Brownian motion of a harmonic oscillator

    SciTech Connect

    Tang, J.

    1994-02-01

    We apply the density-matrix method to the study of quantum Brownian motion of a harmonic oscillator coupled to a heat bath, a system investigated previously by Caldeira and Leggett using a different method. Unlike the earlier work, in our derivation of the master equation the non-Markovian terms are maintained. Although the same model of interaction is used, discrepancy is found between their results and our equation in the Markovian limit. We also point out that the particular interaction model used by both works cannot lead to the phenomenological generalized Langevin theory of Kubo.

  15. Argand diagrams, harmonic oscillators, and record-playing tonearms

    NASA Astrophysics Data System (ADS)

    Piccard, Richard D.

    1986-04-01

    The complex analysis of the driven, damped, harmonic oscillator is reviewed for the specific case that the driving force is produced by ``wiggling the other end of the spring,'' a case which many find intuitively appealing. The solution is examined using the Cartesian and polar presentations in the complex plane. The record-playing tonearm is particularly suited as a ``practical example'' because it naturally leads to a question that is much easier to answer in terms of the Argand diagram: What will the cartridge output be?

  16. Optimal control of a harmonic oscillator: Economic interpretations

    NASA Astrophysics Data System (ADS)

    Janová, Jitka; Hampel, David

    2013-10-01

    Optimal control is a popular technique for modelling and solving the dynamic decision problems in economics. A standard interpretation of the criteria function and Lagrange multipliers in the profit maximization problem is well known. On a particular example, we aim to a deeper understanding of the possible economic interpretations of further mathematical and solution features of the optimal control problem: we focus on the solution of the optimal control problem for harmonic oscillator serving as a model for Phillips business cycle. We discuss the economic interpretations of arising mathematical objects with respect to well known reasoning for these in other problems.

  17. Fastest Effectively Adiabatic Transitions for a Collection of Harmonic Oscillators.

    PubMed

    Boldt, Frank; Salamon, Peter; Hoffmann, Karl Heinz

    2016-05-19

    We discuss fastest effectively adiabatic transitions (FEATs) for a collection of noninteracting harmonic oscillators with shared controllable real frequencies. The construction of such transitions is presented for given initial and final equilibrium states, and the dependence of the minimum time control on the interval of achievable frequencies is discussed. While the FEAT times and associated FEAT processes are important in their own right as optimal controls, the FEAT time is an added feature which provides a measure of the quality of a shortcut to adiabaticity (STA). The FEAT time is evaluated for a previously reported experiment, wherein a cloud of Rb atoms is cooled following a STA recipe that took about twice as long as the FEAT speed limit, a time efficiency of 50%. PMID:26811863

  18. Single trapped ion as a time-dependent harmonic oscillator

    SciTech Connect

    Menicucci, Nicolas C.; Milburn, G. J.

    2007-11-15

    We show how a single trapped ion may be used to test a variety of important physical models realized as time-dependent harmonic oscillators. The ion itself functions as its own motional detector through laser-induced electronic transitions. Alsing et al., [Phys. Rev. Lett. 94, 220401 (2005)] proposed that an exponentially decaying trap frequency could be used to simulate (thermal) Gibbons-Hawking radiation in an expanding universe, but the Hamiltonian used was incorrect. We apply our general solution to this experimental proposal, correcting the result for a single ion and showing that while the actual spectrum is different from the Gibbons-Hawking case, it nevertheless shares an important experimental signature with this result.

  19. BAYESIAN ANALYSIS OF MULTIPLE HARMONIC OSCILLATIONS IN THE SOLAR CORONA

    SciTech Connect

    Arregui, I.; Asensio Ramos, A.; Diaz, A. J.

    2013-03-01

    The detection of multiple mode harmonic kink oscillations in coronal loops enables us to obtain information on coronal density stratification and magnetic field expansion using seismology inversion techniques. The inference is based on the measurement of the period ratio between the fundamental mode and the first overtone and theoretical results for the period ratio under the hypotheses of coronal density stratification and magnetic field expansion of the wave guide. We present a Bayesian analysis of multiple mode harmonic oscillations for the inversion of the density scale height and magnetic flux tube expansion under each of the hypotheses. The two models are then compared using a Bayesian model comparison scheme to assess how plausible each one is given our current state of knowledge.

  20. Free fall and harmonic oscillations: analyzing trampoline jumps

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Eager, David

    2015-01-01

    Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is obtained in terms of maximum normalized force from the trampoline and the harmonic frequency. A simple expression is obtained for the ratio between air-time and harmonic period, and the maximum g-factor. The results are compared to experimental results, including accelerometer data showing 7g during bounces on a small trampoline in an amusement park play area. Similar results are obtained on a larger garden trampoline, and even larger accelerations have been measured for gymnastic trampolines.

  1. Harmonic oscillations and their switching in elliptical optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jie Zheng, Ming; San Chan, Yun; Yu, Kin Wah

    2011-03-01

    We have studied harmonic oscillations in an elliptical optical waveguide array in which the coupling between neighboring waveguides is varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, long-living Bloch oscillations (BO) and dipole oscillations (DO) are obtained when a linear gradient in the propagation constant is applied. Moreover, we achieve a switching from DO to BO or vice versa by ramping up the gradient profile. The various optical oscillations as well as their switching are investigated by field-evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals.

  2. The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach

    ERIC Educational Resources Information Center

    Lee, Keeyung

    2009-01-01

    The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…

  3. Exact solution of a quantum forced time-dependent harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  4. The Harmonic Oscillator with a Gaussian Perturbation: Evaluation of the Integrals and Example Applications

    ERIC Educational Resources Information Center

    Earl, Boyd L.

    2008-01-01

    A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…

  5. Revised calculation of four-particle harmonic-oscillator transformation brackets matrix

    NASA Astrophysics Data System (ADS)

    Mickevičius, S.; Germanas, D.; Kalinauskas, R. K.

    2013-02-01

    In this article we present a new, considerably enhanced and more rapid method for calculation of the matrix of four-particle harmonic-oscillator transformation brackets (4HOB). The new method is an improved version of 4HOB matrix calculations which facilitates the matrix calculation by finding the eigenvectors of the 4HOB matrix explicitly. Using this idea the new Fortran code for fast and 4HOB matrix calculation is presented. The calculation time decreases more than a few hundred times for large matrices. As many problems of nuclear and hadron physics structure are modeled on the harmonic oscillator (HO) basis our presented method can be useful for large-scale nuclear structure and many-particle identical fermion systems calculations. Program summaryTitle of program: HOTB_M Catalogue identifier: AEFQ_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 2149 No. of bytes in distributed program, including test data, etc.: 17576 Distribution format: tar.gz Programming language: Fortran 90. Computer: Any computer with Fortran 90 compiler. Operating system: Windows, Linux, FreeBSD, True64 Unix. RAM: Up to a few Gigabytes (see Tables 1 and 2 included in the distribution package) Classification: 17.16, 17.17. Catalogue identifier of previous version: AEFQ_v2_0 Journal reference of previous version: Comput. Phys. Comm. 182(2011)1377 Does the new version supersede the previous version?: Yes Nature of problem: Calculation of the matrix of the 4HOB in a more effective way, which allows us to calculate the matrix of the brackets up to a few hundred times more rapidly than in a previous version. Solution method: The method is based on compact expressions of 4HOB, presented in [1] and its simplifications presented in this paper. Reasons for new version

  6. Quadratic Algebra Approach to the Dirac Equation with Spin and Pseudospin Symmetry for the 4D Harmonic Oscillator and U(1) Monopole

    NASA Astrophysics Data System (ADS)

    Aghaei, S.; Chenaghlou, A.

    2015-01-01

    In this paper, we study the Dirac equation with spin and pseudospin symmetry by the quadratic algebra approach for the 4-dimensional harmonic oscillator. By realization of the quadratic algebras in the deformed oscillator algebra, we obtain the relativistic energy spectrum. Also, by regarding the generalized Kustaanheimo-Stiefel transformation, we obtain the relativistic energy spectrum for the charge-dyon system with the U(1) monopole.

  7. Feinberg-Horodecki states of a time-dependent mass distribution harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Eshghi, M.; Sever, R.; Ikhdair, S. M.

    2016-07-01

    The solution of the Feinberg-Horodecki (FH) equation for a time-dependent mass (TDM) harmonic oscillator quantum system is studied. A certain interaction is applied to a mass m(t) to provide a particular spectrum of stationary energies. The related spectrum of the harmonic oscillator potential V(t) acting on the TDM m(t) oscillators is found. We apply the time version of the asymptotic iteration method (AIM) to calculate analytical expressions of the TDM stationary state energies and their wave functions. It is shown that the obtained solutions reduce to those of simple harmonic oscillator as the time-dependent mass reduces to m0.

  8. Entanglement dynamics for a conditionally kicked harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Arrais, Eric G.; Sales, J. S.; de Almeida, N. G.

    2016-08-01

    The time evolution of the quantum kicked harmonic oscillator (KHO) is described by the Floquet operator which maps the state of the system immediately before one kick onto the state at a time immediately after the next. Quantum KHO is characterized by three parameters: the coupling strength V 0, the so-called Lamb–Dicke parameter η whose square is proportional to the effective Planck constant {{\\hslash }}{{eff}}, and the ratio T of the natural frequency of the oscillator and the kick frequency. To a given coupling strength and depending on T being a natural or irrational number, the phase space of the classical kicked oscillator can display different behaviors, as for example, stochastic webs or quasicrystal structures, thus showing a chaotic or localized behavior that is mirrored in the quantum phase space. On the other hand, the classical limit is studied letting {{\\hslash }}{{eff}} become negligible. In this paper we investigate how the ratio T, considered as integer, rational or irrational, influences the entanglement dynamics of the quantum KHO and study how the entanglement dynamics behaves when varying either V 0 or {{\\hslash }}{{eff}} parameters.

  9. Inverse Problem for Harmonic Oscillator Perturbed by Potential, Characterization

    NASA Astrophysics Data System (ADS)

    Chelkak, Dmitri; Kargaev, Pavel; Korotyaev, Evgeni

    Consider the perturbed harmonic oscillator Ty=-y''+x2y+q(x)y in L2(R), where the real potential q belongs to the Hilbert space H={q', xq∈ L2(R)}. The spectrum of T is an increasing sequence of simple eigenvalues λn(q)=1+2n+μn, n >= 0, such that μn--> 0 as n-->∞. Let ψn(x,q) be the corresponding eigenfunctions. Define the norming constants νn(q)=limx↑∞log |ψn (x,q)/ψn (-x,q)|. We show that for some real Hilbert space and some subspace Furthermore, the mapping ψ:q|-->ψ(q)=({λn(q)}0∞, {νn(q)}0∞) is a real analytic isomorphism between H and is the set of all strictly increasing sequences s={sn}0∞ such that The proof is based on nonlinear functional analysis combined with sharp asymptotics of spectral data in the high energy limit for complex potentials. We use ideas from the analysis of the inverse problem for the operator -y''py, p∈ L2(0,1), with Dirichlet boundary conditions on the unit interval. There is no literature about the spaces We obtain their basic properties, using their representation as spaces of analytic functions in the disk.

  10. Phase of the quantum harmonic oscillator with applications to optical polarization

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1993-01-01

    The phase of the quantum harmonic oscillator, the temporal distribution of a particle in a square-well potential, and a quantum theory of angles are derived from a general theory of complementarity. Schwinger's harmonic oscillator model of angular momenta is modified for the case of photons. Angular distributions for systems of identical and distinguishable particles are discussed. Unitary and antiunitary time reversal operators are then presented and applied to optical polarization states in birefringent media.

  11. Noninvariance groups for many-particle systems: Coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Kellman, Michael E.

    1984-07-01

    Noninvariance groups for many-particle systems are investigated in the context of the model problem of the coupling of a pair of harmonic oscillators to give normal modes. First, a recent paper analyzing normal modes in terms of breaking of the SU(2) invariance symmetry of the uncoupled system is reviewed. Next, the noninvariance group description of the one-dimensional oscillator spectrum in terms of infinite-dimensional unitary representations of SU(1,1) is summarized. Then, the analysis of normal modes in terms of a broken noninvariance SU(2,1) group for the two-dimensional problem is carried out. First, the T, U, and V SU(2) subgroup classifications of SU(3) are reviewed in the context of representations for the three-dimensional oscillator. Second, the analogous SU(2) and SU(1,1) subgroup classification of the infinite two-dimensional spectrum is presented. The SU(1,1) groups classify infinite sequences of excitation of the symmetric and antisymmetric stretch, respectively. Then, in an alternate approach, SU(1,1) representations for the spectra of the individual oscillators are coupled, analogous to vector coupling of angular momentum. Normal modes can be obtained in this manner, but only in the limit in which an arbitrary parameter labeling the group representations takes the value infinity. The relation of these results to the theory of group contractions and their implications for the description of truncated spectra (such as coupled Morse oscillators or π-electron spectra of linear polyenes) are briefly discussed.

  12. Harmonic oscillator states with integer and non-integer orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2011-12-01

    We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non

  13. Thermodynamics of trajectories of a quantum harmonic oscillator coupled to N baths

    NASA Astrophysics Data System (ADS)

    Pigeon, Simon; Fusco, Lorenzo; Xuereb, André; De Chiara, Gabriele; Paternostro, Mauro

    2015-07-01

    We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to N dissipative baths by using an approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyze the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.

  14. On the effects of a screw dislocation and a linear potential on the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Bueno, M. J.; Furtado, C.; Bakke, K.

    2016-09-01

    Quantum effects on the harmonic oscillator due to the presence of a linear scalar potential and a screw dislocation are investigated. By searching for bound states solutions, it is shown that an Aharonov-Bohm-type effect for bound states and a restriction of the values of the angular frequency of the harmonic oscillator can be obtained, where the allowed values are determined by the topology of the screw dislocation and the quantum numbers associated with the radial modes and the angular momentum. As particular cases, the angular frequency and the energy levels associated with the ground state and the first excited state of the system are obtained.

  15. Massive fermions interacting via a harmonic oscillator in the presence of a minimal length uncertainty relation

    NASA Astrophysics Data System (ADS)

    Falaye, B. J.; Dong, Shi-Hai; Oyewumi, K. J.; Ilaiwi, K. F.; Ikhdair, S. M.

    2015-10-01

    We derive the relativistic energy spectrum for the modified Dirac equation by adding a harmonic oscillator potential where the coordinates and momenta are assumed to obey the commutation relation [x̂,p̂] = iℏ(1 + ηp2). In the nonrelativistic (NR) limit, our results are in agreement with the ones obtained previously. Furthermore, the extension to the construction of creation and annihilation operators for the harmonic oscillators with minimal length uncertainty relation is presented. Finally, we show that the commutation relation of the SU(1, 1) ˜SO(2, 1) algebra is satisfied by the operators ℒ±̂ and ℒẑ.

  16. Adaptive radial basis function mesh deformation using data reduction

    NASA Astrophysics Data System (ADS)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  17. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    ERIC Educational Resources Information Center

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  18. The Adiabatic Invariant of the n-Degree-of-Freedom Harmonic Oscillator

    ERIC Educational Resources Information Center

    Devaud, M.; Leroy, V.; Bacri, J.-C.; Hocquet, T.

    2008-01-01

    In this graduate-level theoretical paper, we propose a general derivation of the adiabatic invariant of the n-degree-of-freedom harmonic oscillator, available whichever the physical nature of the oscillator and of the parametrical excitation it undergoes. This derivation is founded on the use of the classical Glauber variables and ends up with…

  19. Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes

    ERIC Educational Resources Information Center

    Gauthier, N.

    2004-01-01

    An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…

  20. Fisher Information and Shannon Entropy in Confined 1D Harmonic Oscillator

    SciTech Connect

    Stevanovic, Ljiljana

    2010-01-21

    Study of the linear harmonic oscillator confined in the square well with impenetrable walls is of great interest since its application for modeling parabolic quantum well semiconductor heterostructures. Fisher information and Shannon entropy, as a complexity measure for its ground and some excited energy levels are reported here.

  1. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  2. A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces

    SciTech Connect

    Vignat, C.; Lamberti, P. W.

    2009-10-15

    Recently, Carinena, et al. [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positive curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.

  3. Decoherence and dissipation of a quantum harmonic oscillator coupled to two-level systems

    SciTech Connect

    Schlosshauer, Maximilian; Hines, A. P.; Milburn, G. J.

    2008-02-15

    We derive and analyze the Born-Markov master equation for a quantum harmonic oscillator interacting with a bath of independent two-level systems. This hitherto virtually unexplored model plays a fundamental role as one of the four 'canonical' system-environment models for decoherence and dissipation. To investigate the influence of further couplings of the environmental spins to a dissipative bath, we also derive the master equation for a harmonic oscillator interacting with a single spin coupled to a bosonic bath. Our models are experimentally motivated by quantum-electromechanical systems and micron-scale ion traps. Decoherence and dissipation rates are found to exhibit temperature dependencies significantly different from those in quantum Brownian motion. In particular, the systematic dissipation rate for the central oscillator decreases with increasing temperature and goes to zero at zero temperature, but there also exists a temperature-independent momentum-diffusion (heating) rate.

  4. Coherent dynamics of a flux qubit coupled to a harmonic oscillator.

    PubMed

    Chiorescu, I; Bertet, P; Semba, K; Nakamura, Y; Harmans, C J P M; Mooij, J E

    2004-09-01

    In the emerging field of quantum computation and quantum information, superconducting devices are promising candidates for the implementation of solid-state quantum bits (qubits). Single-qubit operations, direct coupling between two qubits and the realization of a quantum gate have been reported. However, complex manipulation of entangled states-such as the coupling of a two-level system to a quantum harmonic oscillator, as demonstrated in ion/atom-trap experiments and cavity quantum electrodynamics-has yet to be achieved for superconducting devices. Here we demonstrate entanglement between a superconducting flux qubit (a two-level system) and a superconducting quantum interference device (SQUID). The latter provides the measurement system for detecting the quantum states; it is also an effective inductance that, in parallel with an external shunt capacitance, acts as a harmonic oscillator. We achieve generation and control of the entangled state by performing microwave spectroscopy and detecting the resultant Rabi oscillations of the coupled system. PMID:15356624

  5. The Harmonic Oscillator Influenced by Gravitational Wave in Noncommutative Quantum Phase Space

    NASA Astrophysics Data System (ADS)

    Yakup, Rehimhaji; Dulat, Sayipjamal; Li, Kang; Hekim, Mamatabdulla

    2014-04-01

    Dynamical property of harmonic oscillator affected by linearized gravitational wave (LGW) is studied in a particular case of both position and momentum operators which are noncommutative to each other. By using the generalized Bopp's shift, we, at first, derived the Hamiltonian in the noncommutative phase space (NPS) and, then, calculated the time evolution of coordinate and momentum operators in the Heisenberg representation. Tiny vibration of flat Minkowski space and effect of NPS let the Hamiltonian of harmonic oscillator, moving in the plain, get new extra terms from it's original and noncommutative space partner. At the end, for simplicity, we take the general form of the LGW into gravitational plain wave, obtain the explicit expression of coordinate and momentum operators.

  6. The time-dependent quantum harmonic oscillator revisited: Applications to quantum field theory

    SciTech Connect

    Gomez Vergel, Daniel Villasenor, Eduardo J.S.

    2009-06-15

    In this article, we formulate the study of the unitary time evolution of systems consisting of an infinite number of uncoupled time-dependent harmonic oscillators in mathematically rigorous terms. We base this analysis on the theory of a single one-dimensional time-dependent oscillator, for which we first summarize some basic results concerning the unitary implementability of the dynamics. This is done by employing techniques different from those used so far to derive the Feynman propagator. In particular, we calculate the transition amplitudes for the usual harmonic oscillator eigenstates and define suitable semiclassical states for some physically relevant models. We then explore the possible extension of this study to infinite dimensional dynamical systems. Specifically, we construct Schroedinger functional representations in terms of appropriate probability spaces, analyze the unitarity of the time evolution, and probe the existence of semiclassical states for a wide range of physical systems, particularly, the well-known Minkowskian free scalar fields and Gowdy cosmological models.

  7. Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.

    PubMed

    Kienzler, D; Lo, H-Y; Keitch, B; de Clercq, L; Leupold, F; Lindenfelser, F; Marinelli, M; Negnevitsky, V; Home, J P

    2015-01-01

    The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems. PMID:25525161

  8. Truncated harmonic oscillator and Painlevé IV and V equations

    NASA Astrophysics Data System (ADS)

    Fernández C, David J.; Morales-Salgado, V. S.

    2015-06-01

    Quantum systems described by second and third order polynomial Heisenberg algebras are obtained applying supersymmetric quantum mechanics to the harmonic oscillator with an infinite potential barrier. These systems are linked with the Painlevé IV and V equations, respectively, thus several solutions of these non-linear second-order differential equations will be found, along with a chain of Bäcklund transformations connecting such solutions.

  9. Corrections to the Born-Oppenheimer approximation for a harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Patterson, Chris W.

    1993-02-01

    We derive simple expressions for the energy corrections to the Born-Oppenheimer approximation valid for a harmonic oscillator. We apply these corrections to the electronic and rotational ground state of H+2 and show that the diabatic energy corrections are linearly dependent on the vibrational quantum numbers as seen in recent variational calculations [D. A. Kohl and E. J. Shipsey, J. Chem. Phys. 84, 2707 (1986)].

  10. Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator

    SciTech Connect

    Chen Xi; Muga, J. G.

    2010-11-15

    We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes ('shortcuts to adiabaticity') designed to reproduce the initial populations at some predetermined final frequency and time. We provide lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.

  11. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  12. The harmonic oscillator on Riemannian and Lorentzian configuration spaces of constant curvature

    NASA Astrophysics Data System (ADS)

    Cariñena, José F.; Rañada, Manuel F.; Santander, Mariano

    2008-03-01

    The harmonic oscillator as a distinguished dynamical system can be defined not only on the Euclidean plane but also on the sphere and on the hyperbolic plane, and more generally on any configuration space with constant curvature and metric of any signature, either Riemannian (definite positive) or Lorentzian (indefinite). In this paper we study the main properties of these "curved" harmonic oscillators simultaneously on any such configuration space, using a Cayley-Klein (CK)-type approach, with two free parameters κ1,κ2 which altogether correspond to the possible values for curvature and signature type: the generic Riemannian and Lorentzian spaces of constant curvature (sphere S2, hyperbolic plane H2, AntiDeSitter sphere AdS1+1, and DeSitter sphere dS1+1) appear in this family, with Euclidean and Minkowski spaces as flat particular cases. We solve the equations of motion for the curved harmonic oscillator and obtain explicit expressions for the orbits by using three different methods: by direct integration, by obtaining the general CK version of Binet's equation, and finally as a consequence of its superintegrable character. The orbits are conics with center at the potential origin on any CK space, thereby extending this well known Euclidean property to any constant curvature configuration space. The final part of the article, that has a more geometric character, presents pertinent results of the theory of conics on spaces of constant curvature.

  13. Steady-state entanglement of harmonic oscillators via dissipation in a single superconducting artificial atom

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Nie, Wei; Feng, Xunli; Oh, C. H.

    2016-07-01

    The correlated emission lasing (CEL) is experimentally demonstrated in harmonic oscillators coupled via a single three-level artificial atom [Phys. Rev. Lett. 115, 223603 (2015), 10.1103/PhysRevLett.115.223603] in which two-mode entanglement only exists in a certain time period when the harmonic oscillators are resonant with the atomic transitions. Here we examine this system and show that it is possible to obtain the steady-state entanglement when the two harmonic oscillators are resonant with Rabi sidebands. Applying dressed atomic states and Bogoliubov-mode transformation, we obtain the analytical results of the variance sum of a pair of Einstein-Podolsky-Rosen (EPR)-like operators. The stable entanglement originates from the dissipation process of the Bogoliubov modes because the atomic system can act as a reservoir in dressed state representation. We also show that the entanglement is robust against the dephasing rates of the superconducing atom, which is expected to have important applications in quantum information processing.

  14. Containment control for coupled harmonic oscillators with multiple leaders under directed topology

    NASA Astrophysics Data System (ADS)

    Xu, Chengjie; Zheng, Ying; Su, Housheng; Wang, Hua O.

    2015-02-01

    This paper investigates the problem of containment control for coupled harmonic oscillators with multiple leaders under directed topology. Using tools from matrix, graph and stability theories, necessary and sufficient conditions are obtained for coupled harmonic oscillators under continuous-time and sampled-data-based protocols, respectively. When the continuous-time protocol is used, it is proved that every follower will ultimately converge to the convex hull spanned by the leaders if and only if there exists at least one leader that has a directed path to that follower at any time. When the sampled-data-based protocol is used, it is shown that the containment can be achieved if and only if: (1) an appropriate sampling period is chosen and (2) for every follower, there exists at least one leader that has a directed path to that follower at any time. And we also give the containment conditions for coupled harmonic oscillators under undirected topology as a special case. Finally, numerical simulations are presented to illustrate the theoretical findings.

  15. Derivation of exact master equation with stochastic description: Dissipative harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Li, Haifeng; Shao, Jiushu; Wang, Shikuan

    2011-11-01

    A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.

  16. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2004-01-01

    ). Method of solution: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the Eispack library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Restrictions: There are two restrictions for the code: The number of the major shells of the basis does not have to exceed Nmax=26. For the largest values of Nmax (˜23-26), the diagonalization takes the major part of the running time, but the global run-time remains reasonable. Typical running time: (With full optimization in the project settings of the Microsoft Visual Fortran 5.0A on Windows XP.) With Nmax=23, for the neutrons case, and for both parities, if we need all eigenenergies and all eigenfunctions of the bound states, the running time is about 80 sec on the AMD Athlon computer at 1 GHz. In this case, the calculation of the matrix elements takes only about 20 sec. If all unbound states are required, the runtime becomes larger.

  17. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  18. Single particle calculations for a Woods Saxon potential with triaxial deformations, and large Cartesian oscillator basis (new version code)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2007-05-01

    and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Method of solution: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate, respectively, the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Restrictions: There are two restrictions for the code: The number of the major shells of the basis does not have to exceed N=26. For the largest values of N (˜23-26), the diagonalization takes the major part of the running time, but the global run-time remains reasonable. Typical running time: (With full optimization in the project settings of the Compaq Visual Fortran on Windows XP) With N=23, for the neutrons case, and for both parities, the running time is about 40 sec on the P4 computer at 2.6 GHz. In this case, the calculation of the matrix elements takes only about 17 sec. If all unbound states are required, the runtime becomes larger.

  19. SevenOperators, a Mathematica script for harmonic oscillator nuclear matrix elements arising in semileptonic electroweak interactions

    NASA Astrophysics Data System (ADS)

    Haxton, Wick; Lunardini, Cecilia

    2008-09-01

    Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland

  20. Condition for equivalence of q-deformed and anharmonic oscillators

    NASA Technical Reports Server (NTRS)

    Artoni, M.; Zang, Jun; Birman, Joseph L.

    1993-01-01

    The equivalence between the q-deformed harmonic oscillator and a specific anharmonic oscillator model, by which some new insight into the problem of the physical meaning of the parameter q can be attained, are discussed.

  1. Quantum entanglement in coupled harmonic oscillator systems: from micro to macro

    NASA Astrophysics Data System (ADS)

    Kao, Jhih-Yuan; Chou, Chung-Hsien

    2016-07-01

    We investigate the entanglement dynamics of several models of coupled harmonic oscillators, whereby a number of properties concerning entanglement have been scrutinized, such as how the environment affects entanglement of a system, and death and revival of entanglement. Among them, there are two models for which we are able to vary their particle numbers easily by assuming identicalness, thereby examining how the particle number affects entanglement. We have found that the upper bound of entanglement between identical oscillators is approximately inversely proportional to the particle number.

  2. Coherent states for nonlinear harmonic oscillator and some of its properties

    SciTech Connect

    Amir, Naila E-mail: naila.amir@sns.nust.edu.pk; Iqbal, Shahid E-mail: siqbal@sns.nust.edu.pk

    2015-06-15

    A one-dimensional nonlinear harmonic oscillator is studied in the context of generalized coherent states. We develop a perturbative framework to compute the eigenvalues and eigenstates for the quantum nonlinear oscillator and construct the generalized coherent states based on Gazeau-Klauder formalism. We analyze their statistical properties by means of Mandel parameter and second order correlation function. Our analysis reveals that the constructed coherent states exhibit super-Poissonian statistics. Moreover, it is shown that the coherent states mimic the phenomena of quantum revivals and fractional revivals during their time evolution. The validity of our results has been discussed in terms of various parametric bounds imposed by our computational scheme.

  3. New stochastic equation for a harmonic oscillator: Brownian motion with adhesion

    NASA Astrophysics Data System (ADS)

    Gitterman, M.

    2010-11-01

    In addition to the usually considered stochastic harmonic oscillator with an external random force (Brownian motion) or with random frequency and random damping, we consider an oscillator with a random mass for which the particles of the surrounding medium adhere to the oscillator for some (random) time after the collision, thereby changing the oscillator mass. We have calculated the first two moments and the Lyapunov exponent, which describes the stability of the fixed point. This model can be useful for the analysis of chemical and biological solutions as well as for nano-technological devices.

  4. Protective measurement of the wave function of a single squeezed harmonic-oscillator state

    NASA Astrophysics Data System (ADS)

    Alter, Orly; Yamamoto, Yoshihisa

    1996-05-01

    A scheme for the "protective measurement"

    [Phys. Rev. A 47, 4616 (1993)]
    of the wave function of a squeezed harmonic-oscillator state is described. This protective measurement is shown to be equivalent to a measurement of an ensemble of states. The protective measurement, therefore, allows for a definition of the quantum wave function on a single system. Yet, this equivalency also suggests that both measurement schemes account for the epistemological meaning of the wave function only. The protective measurement requires a full a priori knowledge of the measured state. The intermediate cases, in which only partial a priori information is given, are also discussed.

  5. Harmonic oscillators and resonance series generated by a periodic unstable classical orbit

    NASA Technical Reports Server (NTRS)

    Kazansky, A. K.; Ostrovsky, Valentin N.

    1995-01-01

    The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.

  6. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    SciTech Connect

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  7. Generalized Hopf Fibration and Geometric SO(3) Reduction of the 4DOF Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    van der Meer, J. C.; Crespo, F.; Ferrer, S.

    2016-04-01

    It is shown that the generalized Hopf map ℍ × ℍ → ℍ × ℝ × ℝ quaternion formulation can be interpreted as an SO(3) orbit map for a symplectic SO(3) action. As a consequence the generalized Hopf fibration S7 → S4 appears in the SO(3) geometric symplectic reduction of the 4DOF isotropic harmonic oscillator. Furthermore it is shown how the Hopf fibration and associated twistor fibration play a role in the geometry of the Kepler problem and the rigid body problem.

  8. Evading surface and detector frequency noise in harmonic oscillator measurements of force gradients

    PubMed Central

    Moore, Eric W.; Lee, SangGap; Hickman, Steven A.; Harrell, Lee E.; Marohn, John A.

    2010-01-01

    We introduce and demonstrate a method of measuring small force gradients acting on a harmonic oscillator in which the force-gradient signal of interest is used to parametrically up-convert a forced oscillation below resonance into an amplitude signal at the oscillator’s resonance frequency. The approach, which we demonstrate in a mechanically detected electron spin resonance experiment, allows the force-gradient signal to evade detector frequency noise by converting a slowly modulated frequency signal into an amplitude signal. PMID:20733934

  9. Even and odd coherent states of supersymmetric harmonic oscillators and their nonclassical properties

    NASA Astrophysics Data System (ADS)

    Afshar, Davood; Motamedinasab, Amin; Anbaraki, Azam; Jafarpour, Mojtaba

    2016-02-01

    In this paper, we have constructed even and odd superpositions of supercoherent states, similar to the standard even and odd coherent states of the harmonic oscillator. Then, their nonclassical properties, that is, squeezing and entanglement have been studied. We have observed that even supercoherent states show squeezing behavior for some values of parameters involved, while odd supercoherent states do not show squeezing at all. Also sub-Poissonian statistics have been observed for some ranges of the parameters in both states. We have also shown that these states may be considered as logical qubits which reduce to the Bell states at a limit, with concurrence equal to 1.

  10. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress

    SciTech Connect

    Bocko, M.F.; Onofrio, R.

    1996-07-01

    Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables of a system but allows one-time measurements of a single observable with any precision. The dynamical evolution of a system immediately following a measurement limits the class of observables that may be measured repeatedly with arbitrary precision, with the influence of the measurement apparatus on the system being confined strictly to the conjugate observables. Observables having this feature, and the corresponding measurements performed on them, have been named quantum nondemolition or back-action evasion observables. In a previous review (Caves {ital et} {ital al}., 1980, Rev. Mod. Phys. {bold 52}, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a harmonic oscillator was presented. The present review summarizes the experimental progress on quantum nondemolition measurements and the classical models developed to describe and guide the development of practical implementations of quantum nondemolition measurements. The relationship between the classical and quantum theoretical models is also reviewed. The concept of quantum nondemolition and back-action evasion measurements originated in the context of measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be useful in other experimental contexts as well, as is discussed in the last part of this review. {copyright} {ital 1996 The American Physical Society.}

  11. Purity and decoherence in the theory of a damped harmonic oscillator.

    PubMed

    Isar, A; Sandulescu, A; Scheid, W

    1999-12-01

    For the generalized master equations derived by Karrlein and Grabert for the microscopic model of a damped harmonic oscillator, the conditions for purity of states are written, in particular for different initial conditions and different types of damping, including Ohmic, Drude, and weak coupling cases, and the Agarwal and Weidlich-Haake models. It is shown that the states which remain pure are the squeezed states with variances that are constant in time. For pure states, generalized nonlinear Schrödinger-type equations corresponding to these master equations are also obtained. Then the condition for purity of states of a damped harmonic oscillator is considered in the framework of Lindblad theory for open quantum systems. For a special choice of the environment coefficients, correlated coherent states with constant variances and covariance are shown to be the only states which remain pure all the time during the evolution of the considered system. In Karrlein-Grabert and Lindblad models, as well as in the particular models considered, expressions for the rate of entropy production are written, and it is shown that state which preserve their purity in time are also states which minimize entropy production and, therefore, are the most stable state under evolution in the presence of the environment, and play an important role in the description of decoherence phenomenon. PMID:11970551

  12. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.

  13. Double simple-harmonic-oscillator formulation of the thermal equilibrium of a fluid interacting with a coherent source of phonons

    NASA Technical Reports Server (NTRS)

    Defacio, B.; Vannevel, Alan; Brander, O.

    1993-01-01

    A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.

  14. Vibrational spectroscopy of a harmonic oscillator system nonlinearly coupled to a heat bath

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2002-10-01

    Vibrational relaxation of a harmonic oscillator nonlinearly coupled to a heat bath is investigated by the Gaussian-Markovian quantum Fokker-Planck equation approach. The system-bath interaction is assumed to be linear in the bath coordinate, but linear plus square in the system coordinate modeling the elastic and inelastic relaxation mechanisms. Interplay of the two relaxation processes induced by the linear-linear and square-linear interactions in Raman or infrared spectra is discussed for various system-bath couplings, temperatures, and correlation times for the bath fluctuations. The one-quantum coherence state created through the interaction with the pump laser pulse relaxes through different pathways in accordance with the mechanisms of the system-bath interactions. Relations between the present theory, Redfield theory, and stochastic theory are also discussed.

  15. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-03-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO.

  16. Attractors and Spectral Characteristics of Neural Structures Based on the Model of the Quantum Harmonic Oscillator

    SciTech Connect

    Rigatos, Gerasimos G.

    2007-09-06

    Neural computation based on principles of quantum mechanics can provide improved models of memory processes and brain functioning and is of importance for the realization of quantum computing machines. To this end, this paper studies neural structures with weights that follow the model of the quantum harmonic oscillator. These weights correspond to diffusing particles, which interact to each other as the theory of Brownian motion predicts. The learning of the stochastic weights (convergence of the diffusing particles to an equilibrium) is analyzed. In the case of associative memories the proposed neural model results in an exponential increase of the number of attractors. Spectral analysis shows that the stochastic weights satisfy an equation which is analogous to the principle of uncertainty.

  17. Squeezing induced in a harmonic oscillator by a sudden change in mass or frequency

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Colegrave, R. K.

    1993-08-01

    The Kanai-Caldirola (Bateman) Hamiltonian is used to derive the dynamics of a simple harmonic oscillator, initially in a minimum uncertainty state, under the influence of an external agency which causes the mass parameter to change from M0 to M1 in a short time ɛ. Then the frequency changes from ω0 to ω1=(M0/M1)ω0+O(ɛ2). In the limit ɛ-->0, no squeezing or loss of coherence occurs. If M1/M0=1+/-η (0<η<<1), then a squeezing of order ɛ2η occurs. If M1/M0 is appreciably different from unity, then the quadrature variances are unequal but the state no longer has minimum uncertainty. An application could be made in quantum optics.

  18. Resolvent of harmonic oscillator Hamiltonian and its application to Fourier transform for generalized functions

    NASA Astrophysics Data System (ADS)

    Kuwata, S.

    2016-02-01

    For the Fourier transform: ℱ of a non-integrablefunction φ, we exploit theresolvent ℛ forthe harmonic oscillator Hamiltonian, where the integral kernel for ℛ can be represented using the confluent hypergeometric function. Due to the commutativity of ℱ and ℛ, ℱ can be regarded by ℛ-1ℱℛ. In the case of φ(x) = 1, for example, it follows that(ℛφ)(x) is continuous on ℝ and that (ℛφ)(x) ≃ x-2(|x| → ∞)), so that ℛφ turns outto be integrable over ℝ. The finding that(ℱℛ)φ is exponentially localized indicatesthat the mapℱℛ:φ ↦ ¢ can be used as data compression of φ. Moreover, the inverse map:ℛ-1ℱ-1:¢ ↦ φ is well defined, which implies that the data decompression into φ can be made in a numerical calculation friendly way.

  19. Harmonic oscillator representation in the theory of scattering and nuclear reactions

    NASA Technical Reports Server (NTRS)

    Smirnov, Yuri F.; Shirokov, A. M.; Lurie, Yuri, A.; Zaitsev, S. A.

    1995-01-01

    The following questions, concerning the application of the harmonic oscillator representation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR; separable expansion of the short range potentials and the calculation of the phase shifts; 'isolated states' as generalization of the Wigner-von Neumann bound states embedded in continuum; a nuclear coupled channel problem in HOR; and the description of true three body scattering in HOR. As an illustration the soft dipole mode in the (11)Li nucleus is considered in a frame of the (9)Li+n+n cluster model taking into account of three body continuum effects.

  20. Stability and multiple bifurcations of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity.

    PubMed

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O

    2008-12-01

    We investigate the dynamics of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity. We perform a linearized stability analysis and multiple bifurcations of the zero solution of the system near zero eigenvalue singularity. Taking the time delay as the bifurcation parameter, the presence of steady-state bifurcation, Bogdanov-Takens bifurcation, triple zero, and Hopf-zero singularities is demonstrated. In the case when the system has a simple zero eigenvalue, center manifold reduction and normal form theory are used to investigate the stability and the types of steady-state bifurcation. The stability of the zero solution of the system near the simple zero eigenvalue singularity is completely solved. PMID:19123623

  1. Alternative descriptions of wave and particle aspects of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Schuch, Dieter

    1993-01-01

    The dynamical properties of the wave and particle aspects of the harmonic oscillator can be studied with the help of the time-dependent Schroedinger equation (SE). Especially the time-dependence of maximum and width of Gaussian wave packet solutions allow to show the evolution and connections of those two complementary aspects. The investigation of the relations between the equations describing wave and particle aspects leads to an alternative description of the considered systems. This can be achieved by means of a Newtonian equation for a complex variable in connection with a conservation law for a nonclassical angular momentum-type quantity. With the help of this complex variable, it is also possible to develop a Hamiltonian formalism for the wave aspect contained in the SE, which allows to describe the dynamics of the position and momentum uncertainties. In this case the Hamiltonian function is equivalent to the difference between the mean value of the Hamiltonian operator and the classical Hamiltonian function.

  2. The sojourn time of the inverted harmonic oscillator on the noncommutative plane

    NASA Astrophysics Data System (ADS)

    Guo, Guang-Jie; Ren, Zhong-Zhou; Ju, Guo-Xing; Long, Chao-Yun

    2011-10-01

    The sojourn time of the Gaussian wavepacket that is stationed at the center of the inverted harmonic oscillator is investigated on the noncommutative plane in detail. In ordinary commutative space quantum mechanics, the sojourn time of the Gaussian wavepacket is always a monotonically decreasing function of the curvature parameter ω of the potential. However, in this paper, we find that the spatial noncommutativity makes the sojourn time a concave function of ω with a minimum at an inflection point ω0. Furthermore, if ω is larger than a certain critical value the sojourn time will become infinity. Thus, the ordinary intuitive physical picture about the relation between the sojourn time and the shape of the inverted oscillator potential is changed when the spatial noncommutativity is considered.

  3. Semiclassical analysis of long-wavelength multiphoton processes: The periodically driven harmonic oscillator

    SciTech Connect

    Fox, Ronald F.; Vela-Arevalo, Luz V.

    2002-11-01

    The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms, a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to demonstrate that for the oscillator case there are no multiphoton resonances.

  4. GENERAL: Solving Dirac Equation with New Ring-Shaped Non-Spherical Harmonic Oscillator Potential

    NASA Astrophysics Data System (ADS)

    Hu, Xian-Quan; Luo, Guang; Wu, Zhi-Min; Niu, Lian-Bin; Ma, Yan

    2010-02-01

    A new ring-shaped non-harmonic oscillator potential is proposed. The precise hound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.

  5. Relation between the extended time-delayed feedback control algorithm and the method of harmonic oscillators.

    PubMed

    Pyragas, Viktoras; Pyragas, Kestutis

    2015-08-01

    In a recent paper [Phys. Rev. E 91, 012920 (2015)] Olyaei and Wu have proposed a new chaos control method in which a target periodic orbit is approximated by a system of harmonic oscillators. We consider an application of such a controller to single-input single-output systems in the limit of an infinite number of oscillators. By evaluating the transfer function in this limit, we show that this controller transforms into the known extended time-delayed feedback controller. This finding gives rise to an approximate finite-dimensional theory of the extended time-delayed feedback control algorithm, which provides a simple method for estimating the leading Floquet exponents of controlled orbits. Numerical demonstrations are presented for the chaotic Rössler, Duffing, and Lorenz systems as well as the normal form of the Hopf bifurcation. PMID:26382493

  6. Bose–Einstein condensation in a two-component Bose gas with harmonic oscillator interaction

    NASA Astrophysics Data System (ADS)

    Abulseoud, A. A.; Abbas, A. H.; Galal, A. A.; El-Sherbini, Th M.

    2016-07-01

    In this article a system containing two species of identical bosons interacting via a harmonic oscillator potential is considered. It is assumed that the number of bosons of each species is the same and that bosons belonging to the same species repel each other while those belonging to different species attract. The Hamiltonian is diagonalized and the energy spectrum of the system is written down. The behaviour of the system in the thermodynamic limit is studied within the framework of the grand canonical ensemble, and thermodynamic parameters, such as the internal energy, entropy and specific heat capacity are calculated. It is shown that the system exhibits a single species Bose–Einstein condensation when the coupling strengths are equal and a dual species condensation when they are different.

  7. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  8. Solution of the Quantum Harmonic Oscillator Plus a Delta-Function Potential at the Origin: The "Oddness" of Its Even-Parity Solutions

    ERIC Educational Resources Information Center

    Viana-Gomes, J.; Peres, N. M. R.

    2011-01-01

    We derive the energy levels associated with the even-parity wavefunctions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the…

  9. Sampled-data synchronisation of coupled harmonic oscillators with communication and input delays subject to controller failure

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Zhou, Jin; Wu, Quanjun

    2016-01-01

    This paper considers the sampled-data synchronisation problems of coupled harmonic oscillators with communication and input delays subject to controller failure. A synchronisation protocol is proposed for such oscillator systems over directed network topology, and then some general algebraic criteria on exponential convergence for the proposed protocol are established. The main features of the present investigation include: (1) both the communication and input delays are simultaneously addressed, and the directed network topology is firstly considered and (2) the effects of time delays on synchronisation performance are theoretically and numerically investigated. It is shown that in the absence of communication delays, coupled harmonic oscillators can achieve synchronisation oscillatory motion. Whereas if communication delays are nonzero at infinite multiple sampled-data instants, its synchronisation (or consensus) state is zero. This conclusion can be used as an effective control strategy to stabilise coupled harmonic oscillators in practical applications. Furthermore, it is interesting to find that increasing either communication or input delays will enhance the synchronisation performance of coupled harmonic oscillators. Subsequently, numerical examples illustrate and visualise theoretical results.

  10. A Back-to-Front Derivation: The Equal Spacing of Quantum Levels Is a Proof of Simple Harmonic Oscillator Physics

    ERIC Educational Resources Information Center

    Andrews, David L.; Romero, Luciana C. Davila

    2009-01-01

    The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…

  11. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    SciTech Connect

    Cari, C. Suparmi, A.

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  12. Solutions of the Klein-Gordon equation with equal scalar and vector harmonic oscillator plus inverse quadratic potential

    NASA Astrophysics Data System (ADS)

    Ita, B. I.; Obong, H. P.; Ehi-Eromosele, C. O.; Edobor-Osoh, A.; Ikeuba, A. I.

    2014-11-01

    The solutions of the Klein-Gordon equation with equal scalar and vector harmonic oscillator plus inverse quadratic potential for S-waves have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding un-normalized eigenfunctions are obtained in terms of the Laguerre polynomials.

  13. Quantization and instability of the damped harmonic oscillator subject to a time-dependent force

    SciTech Connect

    Majima, H. Suzuki, A.

    2011-12-15

    We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity (-{gamma}x) and a time-dependent external force (K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: L=mxy-U(x+1/2 y)+U(x-1/2 y)+({gamma})/2 (xy-yx)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x{+-}y/2)=1/2 k(x{+-}y/2){sup 2} specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian H. The Heisenberg equations of motion utilizing the quantized Hamiltonian H surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force. - Highlights: > A method of quantizing dissipative systems is presented. > In order to obtain the method, we apply Bateman's dual system approach. > A formula for a transition amplitude is derived. > We use the formula to study the instability of the dissipative systems.

  14. Nonlinear Spectroscopic Theory of Displaced Harmonic Oscillators with Differing Curvatures: A Correlation Function Approach

    NASA Astrophysics Data System (ADS)

    Fidler, Andrew F.; Engel, Gregory S.

    2013-10-01

    We present a theory for a bath model in which we approximate the adiabatic nuclear potential surfaces on the ground and excited electronic states by displaced harmonic oscillators that differ in curvature. Calculations of the linear and third-order optical response functions employ an effective short-time approximation coupled with the cumulant expansion. In general, all orders of correlation contribute to the optical response, indicating that the solvation process cannot be described as Gaussian within the model. Calculations of the linear absorption and fluorescence spectra resulting from the theory reveal a stronger temperature dependence of the Stokes shift along with a general asymmetry between absorption and fluorescence line shapes, resulting purely from the difference in the phonon side band. We discuss strategies for controlling spectral tuning and energy-transfer dynamics through the manipulation of the excited-state and ground-state curvature. Calculations of the nonlinear response also provide insights into the dynamics of the system-bath interactions and reveal that multidimensional spectroscopies are sensitive to a difference in curvature between the ground- and excited-state adiabatic surfaces. This extension allows for the elucidation of short-time dynamics of dephasing that are accessible in nonlinear spectroscopic methods.

  15. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.

    PubMed

    Insinga, Andrea; Andresen, Bjarne; Salamon, Peter

    2016-07-01

    Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time. PMID:27575089

  16. Detecting topological entanglement entropy in a lattice of quantum harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Demarie, Tommaso F.; Linjordet, Trond; Menicucci, Nicolas C.; Brennen, Gavin K.

    2014-08-01

    The Kitaev surface code model is the most studied example of a topologically ordered phase and typically involves four-spin interactions on a two-dimensional surface. A universal signature of this phase is topological entanglement entropy (TEE), but due to low signal to noise, it is extremely difficult to observe in these systems, and one usually resorts to measuring anyonic statistics of excitations or non-local string operators to reveal the order. We describe a continuous-variable analog to the surface code using quantum harmonic oscillators on a two-dimensional lattice, which has the distinctive property of needing only two-body nearest-neighbor interactions for its creation. Though such a model is gapless, it satisfies an area law and the ground state can be simply prepared by measurements on a finitely squeezed and gapped two-dimensional cluster-state without topological order. Asymptotically, the continuous variable surface code TEE grows linearly with the squeezing parameter and a recently discovered non-local quantity, the topological logarithmic negativity, behaves analogously. We also show that the mixed-state generalization of the TEE, the topological mutual information, is robust to some forms of state preparation error and can be detected simply using single-mode quadrature measurements. Finally, we discuss scalable implementation of these methods using optical and circuit-QED technology.

  17. Floquet topological system based on frequency-modulated classical coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-02-01

    We theoretically propose how to observe topological effects in a generic classical system of coupled harmonic oscillators, such as classical pendula or lumped-element electric circuits, whose oscillation frequency is modulated fast in time. Making use of Floquet theory in the high-frequency limit, we identify a regime in which the system is accurately described by a Harper-Hofstadter model where the synthetic magnetic field can be externally tuned via the phase of the frequency modulation of the different oscillators. We illustrate how the topologically protected chiral edge states, as well as the Hofstadter butterfly of bulk bands, can be observed in the driven-dissipative steady state under a monochromatic drive. In analogy with the integer quantum Hall effect, we show how the topological Chern numbers of the bands can be extracted from the mean transverse shift of the steady-state oscillation amplitude distribution. Finally, we discuss the regime where the analogy with the Harper-Hofstadter model breaks down.

  18. Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.

    2015-11-01

    In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.

  19. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.

    2016-07-01

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n  ⩽  5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E  ×  B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.

  20. Development and applications of algorithms for calculating the transonic flow about harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.

    1984-01-01

    A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.

  1. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  2. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Insinga, Andrea; Andresen, Bjarne; Salamon, Peter

    2016-07-01

    Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time.

  3. Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.

    2008-01-01

    We prove that the 1- d quantum harmonic oscillator is stable under spatially localized, time quasi-periodic perturbations on a set of Diophantine frequencies of positive measure. This proves a conjecture raised by Enss-Veselic in their 1983 paper [EV] in the general quasi-periodic setting. The motivation of the present paper also comes from construction of quasi-periodic solutions for the corresponding nonlinear equation.

  4. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis (TRIAXIAL 2014, Third version of the code Triaxial)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2014-11-01

    , WINDOWS 7, LINUX. RAM: 256 Mb (depending on nmax). Swap file: 4Gb (depending on nmax) Classification: 17.7. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSK_v2_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 634 Nature of problem: The Single particle energies and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Solution method: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Two quantum numbers are conserved: the parity and the signature. Due to the Kramers degeneracy, only positive signature is considered. Therefore, calculations are made for positive and negative parity separately (with positive signature only). Reasons for new version: Now, there are several ways to obtain the eigenvalues and the eigenfunctions. The eigenvalues can be obtained from the subroutine ‘eigvals’ or from the array ‘energies’ or also from the formatted files ‘valuu.dat’, ‘eigenvalo.dat’, ‘eigenva.dat’ or better from the unformatted file ‘eigenvaunf.dat’. The eigenfunctions can be obtained straightforwardly in configuration space from the subroutine ‘eigfunc’ or by their components on the oscillator basis from the subroutine ‘compnts’. The latter are also recorded on a formatted file ‘componento.dat’ or on an unformatted file ‘componentounf.dat’. Summary of revisions: This version is

  5. Microwave Imaging Reflectometry for the study of Edge Harmonic Oscillations on DIII-D

    NASA Astrophysics Data System (ADS)

    Ren, X.; Chen, M.; Chen, X.; Domier, C. W.; Ferraro, N. M.; Kramer, G. J.; Luhmann, N. C., Jr.; Muscatello, C. M.; Nazikian, R.; Shi, L.; Tobias, B. J.; Valeo, E.

    2015-10-01

    Quiescent H-mode (QH-mode) is an ELM free mode of operation in which edge-localized harmonic oscillations (EHOs) are believed to enhance particle transport, thereby stabilizing ELMs and preventing damage to the divertor and plasma facing components. Microwave Imaging Reflectometer (MIR) enabling direct comparison between the measured and simulated 2D images of density fluctuations near the edge can determine the 2D structure of density oscillation, which can help to explain the physics behind EHO modes. MIR data sometimes indicate a counter-propagation between dominant (n=1) and higher harmonic modes of coherent EHOs in the steep gradient regions of the pedestal. To preclude diagnostic artifacts, we have performed forward modeling that includes possible optical mis-alignments to show that offsets between transmitting and receiving antennas do not account for this feature. We have also simulated the non-linear structure of the EHO modes, which induces multiple harmonics that are properly charaterized in the synthetic diagnostic. By excluding mis-alignments of optics as well as patially eliminating non-linearity of EHO mode structure as possible explanation for the data, counter-propagation observed in MIR data, which is not corroborated by external Mirnov coil array measurements, may be due to subtleties of the eigenmode structure, such as an inversion radius consistent with a magnetic island. Similar effects are observed in analysis of internal ECE-Imaging and BES data. The identification of a non-ideal structure motivates further exploration of nonlinear models of this instability. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  6. Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential

    NASA Astrophysics Data System (ADS)

    Van Assche, W.; Yáñez, R. J.; Dehesa, J. S.

    1995-08-01

    The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called ``entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= -∫-∞+∞H2n(x)log H2n(x) e-x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(-||x||m), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423-4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ≂log(π√2n/e)+o(1) and Sγ-1/2log λ≂log(π√2n/e)+o(1), so that Sρ+Sγ≂log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129-132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.

  7. Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation

    SciTech Connect

    Saito, Teruo; Yamada, Naoki; Ikeuti, Shinji; Tatematsu, Yoshinori; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka; Ogasawara, Shinya; Manuilov, Vladimir N.; Shimozuma, Takashi; Kubo, Shin; Nishiura, Masaki; Tanaka, Kenji; Kawahata, Kazuo

    2012-06-15

    New power records of second harmonic gyrotron oscillation have been demonstrated in the sub-THz band. The first step gyrotron of demountable type had succeeded in oscillation with power more than 50 kW at 350 GHz and nearly 40 kW at 390 GHz [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009)]. Then, the second step gyrotron of sealed-off type was manufactured. A cavity mode was carefully selected to avoid mode competition with a neighboring fundamental harmonic mode. Matching of the selected mode with the electron gun was also circumspectly considered. The second step gyrotron has attained higher power radiation than the first gyrotron. The maximum single mode power was 62 kW at 388 GHz. Then, the electron gun was modified for use of a different cavity mode with a higher coupling coefficient than that for the 62 kW mode. The new mode proved single mode oscillation power of 83 kW at about 389 GHz. These results are new second-harmonic-oscillation power records for sub-THz gyrotrons. The present study constitutes foundations of development of high power second harmonic sub-THz gyrotron for application to collective Thomson scattering measurement on fusion plasmas, especially on high-density plasmas such as those produced in LHD [N. Ohyabu et al., Phys. Rev. Lett. 97, 055002 (2006)]. This paper reports the design consideration to realize high power single mode gyrotron oscillation at second harmonic and the examination of oscillation characteristics of the gyrotron.

  8. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis (TRIAXIAL 2014, Third version of the code Triaxial)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2014-11-01

    , WINDOWS 7, LINUX. RAM: 256 Mb (depending on nmax). Swap file: 4Gb (depending on nmax) Classification: 17.7. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSK_v2_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 634 Nature of problem: The Single particle energies and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Solution method: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Two quantum numbers are conserved: the parity and the signature. Due to the Kramers degeneracy, only positive signature is considered. Therefore, calculations are made for positive and negative parity separately (with positive signature only). Reasons for new version: Now, there are several ways to obtain the eigenvalues and the eigenfunctions. The eigenvalues can be obtained from the subroutine ‘eigvals’ or from the array ‘energies’ or also from the formatted files ‘valuu.dat’, ‘eigenvalo.dat’, ‘eigenva.dat’ or better from the unformatted file ‘eigenvaunf.dat’. The eigenfunctions can be obtained straightforwardly in configuration space from the subroutine ‘eigfunc’ or by their components on the oscillator basis from the subroutine ‘compnts’. The latter are also recorded on a formatted file ‘componento.dat’ or on an unformatted file ‘componentounf.dat’. Summary of revisions: This version is

  9. Wigner distribution function and entropy of the damped harmonic oscillator within the theory of the open quantum systems

    NASA Technical Reports Server (NTRS)

    Isar, Aurelian

    1995-01-01

    The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.

  10. Two-dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2004-01-01

    Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model.

  11. Two-dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath.

    PubMed

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2004-01-01

    Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model. PMID:15267286

  12. Complex Vector Formalism of Harmonic Oscillator in Geometric Algebra: Particle Mass, Spin and Dynamics in Complex Vector Space

    NASA Astrophysics Data System (ADS)

    Muralidhar, K.

    2014-03-01

    Elementary particles are considered as local oscillators under the influence of zeropoint fields. Such oscillatory behavior of the particles leads to the deviations in their path of motion. The oscillations of the particle in general may be considered as complex rotations in complex vector space. The local particle harmonic oscillator is analyzed in the complex vector formalism considering the algebra of complex vectors. The particle spin is viewed as zeropoint angular momentum represented by a bivector. It has been shown that the particle spin plays an important role in the kinematical intrinsic or local motion of the particle. From the complex vector formalism of harmonic oscillator, for the first time, a relation between mass and bivector spin has been derived in the form . Where, is the angular velocity bivector of complex rotations, is the velocity of light. The unit vector acts as an operator on the idempotents and to give the eigen values The constant represents two fold nature of the equation corresponding to particle and antiparticle states. Further the above relation shows that the mass of the particle may be interpreted as a local spatial complex rotation in the rest frame. This gives an insight into the nature of fundamental particles. When a particle is observed from an arbitrary frame of reference, it has been shown that the spatial complex rotation dictates the relativistic particle motion. The mathematical structure of complex vectors in space and spacetime is developed.

  13. Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Yang, T.; Nava, G.; Martınez Vázquez, R.; Di Tano, M.; Veglione, M.; Minzioni, P.; Mondello, C.; Cristiani, I.; Osellame, R.

    2015-03-01

    Optical stretching is a powerful technique for the mechanical phenotyping of single suspended cells that exploits cell deformability as an inherent functional marker. Dual-beam optical trapping and stretching of cells is a recognized tool to investigate their viscoelastic properties. The optical stretcher has the ability to deform cells through optical forces without physical contact or bead attachment. In addition, it is the only method that can be combined with microfluidic delivery, allowing for the serial, high-throughput measurement of the optical deformability and the selective sorting of single specific cells. Femtosecond laser micromachining can fabricate in the same chip both the microfluidic channel and the optical waveguides, producing a monolithic device with a very precise alignment between the components and very low sensitivity to external perturbations. Femtosecond laser irradiation in a fused silica chip followed by chemical etching in hydrofluoric acid has been used to fabricate the microfluidic channels where the cells move by pressure-driven flow. With the same femtosecond laser source two optical waveguides, orthogonal to the microfluidic channel and opposing each other, have been written inside the chip. Here we present an optimized writing process that provides improved wall roughness of the micro-channels allowing high-quality imaging. In addition, we will show results on cell sorting on the basis of mechanical properties in the same device: the different deformability exhibited by metastatic and tumorigenic cells has been exploited to obtain a metastasis-cells enriched sample. The enrichment is verified by exploiting, after cells collection, fluorescence microscopy.

  14. Landau-Zener transitions in a two-level system that is coupled to a finite-temperature harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Ashhab, Sahel

    2015-03-01

    The Landau-Zener (LZ) problem is a standard paradigm for studying energy transfer and adiabatic passage protocols. We consider the LZ problem for a two level system when this system interacts with one harmonic oscillator mode that is initially set to a finite-temperature thermal equilibrium state. The oscillator could represent an external mode that is strongly coupled to the system, e.g. an ionic oscillation mode in a molecule, or it could represent a prototypical uncontrolled environment. We analyze the system's occupation probabilities at the final time in a number of different regimes, varying the system and oscillator frequencies, their coupling strength and the temperature. In particular we find some surprising non-monotonic dependence on the coupling strength and temperature.

  15. Harmonic oscillator wave functions of a self-assembled InAs quantum dot measured by scanning tunneling microscopy.

    PubMed

    Teichmann, Karen; Wenderoth, Martin; Prüser, Henning; Pierz, Klaus; Schumacher, Hans W; Ulbrich, Rainer G

    2013-08-14

    InAs quantum dots embedded in an AlAs matrix inside a double barrier resonant tunneling diode are investigated by cross-sectional scanning tunneling spectroscopy. The wave functions of the bound quantum dot states are spatially and energetically resolved. These bound states are known to be responsible for resonant tunneling phenomena in such quantum dot diodes. The wave functions reveal a textbook-like one-dimensional harmonic oscillator behavior showing up to five equidistant energy levels of 80 meV spacing. The derived effective oscillator mass of m* = 0.24m0 is 1 order of magnitude higher than the effective electron mass of bulk InAs that we attribute to the influence of the surrounding AlAs matrix. This underlines the importance of the matrix material for tailored QD devices with well-defined properties. PMID:23777509

  16. Optimal control equations for the one dimensional quantum harmonic oscillator under the influence of external dipole effects

    SciTech Connect

    Ayvaz, Muzaffer; Demiralp, Metin

    2012-12-10

    This study focuses on the construction of the optimal control equations for one dimensional quantum harmonic oscillator under the influence of external dipol effects and the solution of these equations by using Fluctuationlessness Theorem and a recently developed scheme called Characteristic Evolutions Method. The dipole function of the system has been taken as odd cubic spatial polynomial. Optimal control equations of the system under consideration are constructed by using expectation values of the position and the momentum operators instead of the wave and costate evolutions. It is shown that, the resulting equations are systems of ordinary differential equations and there are infinitely many ODEs. The solution strategy is based on the approximation of the expectation values for the operator products in the sense of Fluctuationlessness Theorem.

  17. Chaos in axially symmetric potentials with octupole deformation

    SciTech Connect

    Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )

    1994-04-11

    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.

  18. Structure and Behavior of the Edge Harmonic Oscillation in Quiescent H-Mode Plasmas on DIII-D

    NASA Astrophysics Data System (ADS)

    McKee, G. R.; Yan, Z.; Burrell, K. H.; Garofalo, A. M.; Grierson, B. A.; Solomon, W. M.

    2013-10-01

    The edge harmonic oscillation (EHO) is a steady-state, pedestal-localized instability that is observed in high-performance, ELM-free Quiescent H-mode plasmas. The spatiotemporal characteristics of the EHO have been measured in QH-mode plasmas with a 2D BES array that measures low-k density fluctuations. The skewness of the fluctuation distribution increases radially from -0.5 to +1 near the separatrix, consistent with the radially varying and highly non-sinusoidal harmonic structure. These fluctuation characteristics are qualitatively consistent with an outward particle transport driven by the EHO. The density fluctuation (ñ / n) profile peaks inside the pedestal, near ρ = 0.90-0.95, and is observed from ρ = 0 . 85 to the separatrix; the fundamental frequency is typically in the range of 5-15 kHz. The radial structure of the oscillation has a monotonically varying phase shift of approximately 180 degrees across the outer plasma region that changes direction with plasma current, suggesting that the mode structure is impacted by the high edge toroidal rotation velocity. Work supported by the US Department of Energy under DE-FG02-08ER54999, DE-FC02-04ER54698, and DE-AC02-09CH11466.

  19. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    NASA Astrophysics Data System (ADS)

    Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.

    2014-04-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of-flight chopper spectrometers [A. A. Aczel et al., Nat. Commun. 3, 1124 (2012), 10.1038/ncomms2117]. These modes are well described by three-dimensional isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states, and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature-dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  20. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    SciTech Connect

    Lin, J. Y. Y.; Aczel, Adam A; Abernathy, Douglas L; Nagler, Stephen E; Buyers, W. J. L.; Granroth, Garrett E

    2014-01-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  1. Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.

    1980-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.

  2. Measures for the non-Markovianity of a harmonic oscillator coupled to a discrete bath derived from numerically exact references

    NASA Astrophysics Data System (ADS)

    Lorenz, Ulf; Saalfrank, Peter

    2015-02-01

    System-bath problems in physics and chemistry are often described by Markovian master equations. However, the Markov approximation, i.e., neglect of bath memory effects is not always justified, and different measures of non-Markovianity have been suggested in the literature to judge the validity of this approximation. Here we calculate several computable measures of non-Markovianity for the non-trivial problem of a harmonic oscillator coupled to a large number of bath oscillators. The Multi Configurational Time Dependent Hartree method is used to provide a numerically converged solution of the system-bath Schrödinger equation, from which the appropriate quantities can be calculated. In particular, we consider measures based on trace-distances and quantum discord for a variety of initial states. These quantities have proven useful in the case of two-level and other small model systems typically encountered in quantum optics, but are less straightforward to interpret for the more complex model systems that are relevant for chemical physics. Supplementary material in the form of one zip file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50727-8

  3. Neural network solution of the Schrödinger equation for a two-dimensional harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Androsiuk, J.; Kułak, L.; Sienicki, K.

    1993-07-01

    We present computer simulations of a neural network capable of learning to perform transformations generated by the Schrödinger equation required to find eigenenergies of a two-dimensional harmonic oscillator. We show that this task can be achieved by a not fully connected back-propagation neural network containing 49 input neurons, 3 hidden layer neurons and 1 output neuron. The investigated neural network turns out to be capable of predicting eigenenergies with an average error of less than one percent. We demonstrate that the CPU time required to teach a neural network of performing the transformation produced by the Schrödinger equation is about 2 min to reach 41000 learning iterations, thus making foreseeable a direct application of a neural network in this and other more complex physical and chemical problems. A discussion of the errors due to the generalization of acquired knowledge is presented and related to a limited number of examples in learning mode and the number of neurons in the hidden layer. Decreasing the number of neurons in the hidden layer increases the apparent ability of the neural network for generalization.

  4. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    SciTech Connect

    Noguera, Norman; Rózga, Krzysztof

    2015-07-15

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.

  5. Addendum to "An update on the classical and quantum harmonic oscillators on the sphere and the hyperbolic plane in polar coordinates" [Phys. Lett. A 379 (26-27) (2015) 1589-1593

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2016-02-01

    The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.

  6. Harmonic oscillators: the quantization of simple systems in the old quantum theory and their functional roles in biology.

    PubMed

    Steele, Richard H

    2008-03-01

    This article introduces quantum physics into biology in an intuitive and non-intimidating manner. It extends the quantum aspects of harmonic oscillators, and electromagnetic fields, to their functional roles in biology. Central to this process are the De Broglie wave-particle duality equation, and the adiabatic invariant parameters, magnetic moment, angular momentum and magnetic flux, determined by Ehrenfest as imposing quantum constraints on the dynamics of charges in motion. In mechanisms designed to explain the generation of low-level light emissions in biology we have adopted a biological analog of the electrical circuitry modeled on the parallel plated capacitor, traversed by helical protein structures, capable of generating electromagnetic radiation in the optical spectral region. The charge carrier required for the emissions is an accelerating electron driven, in a cyclotron-type mechanism, by ATP-induced reverse electron transfer with the radial, emission, components, mediated by coulombic forces within the helical configurations. Adenine, an essential nucleotide constituent of DNA, was examined with its long wavelength absorption maximum determining the energetic parameters for the calculations. The calculations were made for a virtual 5-turn helix where each turn of the helix emits a different frequency, generating a biological quantum series. The components of six adiabatic invariant equations were found to be embedded in Planck's constant rendering them discrete, finite, non-random, non-statistical-Planck's constant precludes probability. A mechanism for drug-induced hallucination is described that might provide insights as to the possible role of electromagnetic fields in consciousness. Sodium acceleration through a proposed nerve membrane helical channel generated electromagnetic emissions in the microwave region in confirmation of reported microwave emission for active nerves and may explain saltatory nerve conduction. Theoretical calculations for a

  7. A dynamical basis for crustal deformation and seismotectonic block movements in central Europe

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1983-01-01

    The stress field in the earth's crust as inferred from satellite gravity data causes crustal deformation and seismotectonic block movements in central Europe. The satellite-determined stresses in the crust of central Europe are consistent with earthquake focal mechanisms, joint-orientation and in situ stress measurements.

  8. Abnormality Detection via Iterative Deformable Registration and Basis-Pursuit Decomposition.

    PubMed

    Zeng, Ke; Erus, Guray; Sotiras, Aristeidis; Shinohara, Russell T; Davatzikos, Christos

    2016-08-01

    We present a generic method for automatic detection of abnormal regions in medical images as deviations from a normative data base. The algorithm decomposes an image, or more broadly a function defined on the image grid, into the superposition of a normal part and a residual term. A statistical model is constructed with regional sparse learning to represent normative anatomical variations among a reference population (e.g., healthy controls), in conjunction with a Markov random field regularization that ensures mutual consistency of the regional learning among partially overlapping image blocks. The decomposition is performed in a principled way so that the normal part fits well with the learned normative model, while the residual term absorbs pathological patterns, which may then be detected through a statistical significance test. The decomposition is applied to multiple image features from an individual scan, detecting abnormalities using both intensity and shape information. We form an iterative scheme that interleaves abnormality detection with deformable registration, gradually improving robustness of the spatial normalization and precision of the detection. The algorithm is evaluated with simulated images and clinical data of brain lesions, and is shown to achieve robust deformable registration and localize pathological regions simultaneously. The algorithm is also applied on images from Alzheimer's disease patients to demonstrate the generality of the method. PMID:27046847

  9. Probing deformed quantum commutators

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  10. Observation of radial phase shift of the edge harmonic oscillation in the edge transport barrier discharges in the Compact Helical System using beam emission spectroscopy

    SciTech Connect

    Oishi, T.; Kado, S.; Yoshinuma, M.; Ida, K.; Akiyama, T.; Minami, T.; Nagaoka, K.; Shimizu, A.; Okamura, S.; Tanaka, S.

    2006-10-15

    In the present study, a coherent density fluctuation similar to the edge harmonic oscillation (EHO) in tokamaks was observed in the edge transport barrier discharge in the Compact Helical System (CHS) [K. Matsuoka et al., Plasma Physics and Controlled Nuclear Fusion Research, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 2, pp. 441] using beam emission spectroscopy (BES). The fluctuation had both fundamental (f=4.5 kHz) and second-harmonic (2f=9 kHz) frequencies. EHO in CHS had a peak amplitude at approximately {rho}=0.95. The mode has a continuous phase shift in the radial direction. If this is interpreted as the radial propagation, the mode propagates in the outer radial direction at an apparent phase velocity of several hundreds of meters per second, which is a characteristic similar to the radial phase shift of EHO in tokamaks.

  11. Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial

    NASA Astrophysics Data System (ADS)

    Marquette, Ian; Quesne, Christiane

    2016-05-01

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed Xm1,m2,…,mk Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

  12. Quantum Optimal Control of Single Harmonic Oscillator under Quadratic Controls together with Linear Dipole Polarizability: A Fluctuation Free Expectation Value Dynamical Perspective

    SciTech Connect

    Ayvaz, Muzaffer; Demiralp, Metin

    2011-09-14

    In this study, the optimal control equations for one dimensional quantum harmonic oscillator under the quadratic control operators together with linear dipole polarizability effects are constructed in the sense of Heisenberg equation of motion. A numerical technique based on the approximation to the non-commuting quantum mechanical operators from the fluctuation free expectation value dynamics perspective in the classical limit is also proposed for the solution of optimal control equations which are ODEs with accompanying boundary conditions. The dipole interaction of the system is considered to be linear, and the observable whose expectation value will be suppressed during the control process is considered to be quadratic in terms of position operator x. The objective term operator is also assumed to be quadratic.

  13. A remarkable spectral feature of the Schrödinger Hamiltonian of the harmonic oscillator perturbed by an attractive δ‧-interaction centred at the origin: double degeneracy and level crossing

    NASA Astrophysics Data System (ADS)

    Albeverio, Sergio; Fassari, Silvestro; Rinaldi, Fabio

    2013-09-01

    We rigorously define the self-adjoint Hamiltonian of the harmonic oscillator perturbed by an attractive δ‧-interaction, of strength β, centred at 0 (the bottom of the confining parabolic potential), by explicitly providing its resolvent. Our approach is based on a ‘coupling constant renormalization’, related to a technique originated in quantum field theory and implemented in the rigorous mathematical construction of the self-adjoint operator representing the negative Laplacian perturbed by the δ-interaction in two and three dimensions. The way the δ‧-interaction enters in our Hamiltonian corresponds to the one originally discussed for the free Hamiltonian (instead of the harmonic oscillator one) by P Sěba. It should not be confused with the δ‧-potential perturbation of the harmonic oscillator discussed, e.g., in a recent paper by Gadella, Glasser and Nieto (also introduced by P Sěba as a perturbation of the one-dimensional free Laplacian and recently investigated in that context by Golovaty, Hryniv and Zolotaryuk). We investigate in detail the spectrum of our perturbed harmonic oscillator. The spectral structure differs from that of the one-dimensional harmonic oscillator perturbed by an attractive δ-interaction centred at the origin: the even eigenvalues are not modified at all by the δ‧-interaction. Moreover, all the odd eigenvalues, regarded as functions of β, exhibit the rather remarkable phenomenon called ‘level crossing’ after first producing the double degeneracy of all the even eigenvalues for the value \\beta = \\beta _0 = \\frac{{2\\sqrt \\pi }}{{B\\left( {\\frac{3}{4},\\frac{1}{2}} \\right)}} \\cong 1.47934(B( ·, ·) being the beta function). Dedicated to Professor Gianfausto Dell'Antonio on the occasion of his 80th birthday.

  14. Trigonometric Basis Set Functions: Their Application to the C-H Stretching and Deformation Motions of Benzene and to Orbital Symmetry

    NASA Astrophysics Data System (ADS)

    Bor, G.; Kettle, Sidney F. A.

    1999-12-01

    The unifying power of the use of trigonometric basis functions in group character tables is demonstrated. Additionally, these functions provide a simple way of generating pictures of symmetry coordinates. This is illustrated for the in-plane stretch and out-of-plane deformation motions of the C-H bonds in benzene. Their application to orbital symmetry applications is also indicated.

  15. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  16. Comparison between the Morse eigenfunctions and deformed oscillator wavefunctions

    SciTech Connect

    Recamier, J.; Mochan, W. L.; Gorayeb, M.; Paz, J. L.

    2008-04-15

    In this work we introduce deformed creation and annihilation operators which differ from the usual harmonic oscillator operators a, a{sup {dagger}} by a number operator function A circumflex = a circumflex f(n circumflex ), A circumflex {sup {dagger}} = f(n circumflex )a circumflex {sup {dagger}}. We construct the deformed coordinate and momentum in terms of the deformed operators and maintain only up to first order terms in the deformed operators. By application of the deformed annihilation operator upon the vacuum state we get the ground state wavefunction in the configuration space and the wavefunctions for excited states are obtained by repeated application of the deformed creation operator. Finally, we compare the wavefunctions obtained with the deformed operators with the corresponding Morse eigenfunctions.

  17. Efficient and automatic calculation of optical band shapes and resonance Raman spectra for larger molecules within the independent mode displaced harmonic oscillator model.

    PubMed

    Petrenko, Taras; Neese, Frank

    2012-12-21

    In this work, an improved method for the efficient automatic simulation of optical band shapes and resonance Raman (rR) intensities within the "independent mode displaced harmonic oscillator" is described. Despite the relative simplicity of this model, it is able to account for the intensity distribution in absorption (ABS), fluorescence, and rR spectra corresponding to strongly dipole allowed electronic transitions with high accuracy. In order to include temperature-induced effects, we propose a simple extension of the time dependent wavepacket formalism developed by Heller which enables one to derive analytical expressions for the intensities of hot bands in ABS and rR spectra from the dependence of the wavepacket evolution on its initial coordinate. We have also greatly optimized the computational procedures for numerical integration of complicated oscillating integrals. This is important for efficient simulations of higher-order rR spectra and excitation profiles, as well as for the fitting of experimental spectra of large molecules. In particular, the multimode damping mechanism is taken into account for efficient reduction of the upper time limit in the numerical integration. Excited state energy gradient as well as excited state geometry optimization calculations are employed in order to determine excited state dimensionless normal coordinate displacements. The gradient techniques are highly cost-effective provided that analytical excited state derivatives with respect to nuclear displacements are available. Through comparison with experimental spectra of some representative molecules, we illustrate that the gradient techniques can even outperform the geometry optimization method if the harmonic approximation becomes inadequate. PMID:23267471

  18. Lie algebraic approach to the time-dependent quantum general harmonic oscillator and the bi-dimensional charged particle in time-dependent electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ibarra-Sierra, V. G.; Sandoval-Santana, J. C.; Cardoso, J. L.; Kunold, A.

    2015-11-01

    We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai-Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators.

  19. Decoherence of spin-deformed bosonic model

    SciTech Connect

    Dehdashti, Sh.; Mahdifar, A.; Bagheri Harouni, M.; Roknizadeh, R.

    2013-07-15

    The decoherence rate and some parameters affecting it are investigated for the generalized spin-boson model. We consider the spin-bosonic model when the bosonic environment is modeled by the deformed harmonic oscillators. We show that the state of the environment approaches a non-linear coherent state. Then, we obtain the decoherence rate of a two-level system which is in contact with a deformed bosonic environment which is either in thermal equilibrium or in the ground state. By using some recent realization of f-deformed oscillators, we show that some physical parameters strongly affect the decoherence rate of a two-level system. -- Highlights: •Decoherence of the generalized spin-boson model is considered. •In this model the environment consists of f-oscillators. •Via the interaction, the state of the environment approaches non-linear coherent states. •Effective parameters on decoherence are considered.

  20. Non-perturbative Calculation of the Positronium Mass Spectrum in Basis Light-Front Quantization

    NASA Astrophysics Data System (ADS)

    Wiecki, Paul; Li, Yang; Zhao, Xingbo; Maris, Pieter; Vary, James P.

    2015-09-01

    We report on recent improvements to our non-perturbative calculation of the positronium spectrum. Our Hamiltonian is a two-body effective interaction which incorporates one-photon exchange terms, but neglects fermion self-energy effects. This effective Hamiltonian is diagonalized numerically in a harmonic oscillator basis at strong coupling () to obtain the mass eigenvalues. We find that the mass spectrum compares favorably to the Bohr spectrum of non-relativistic quantum mechanics evaluated at this unphysical coupling.

  1. Deformation quantization for contact interactions and dissipation

    NASA Astrophysics Data System (ADS)

    Belchev, Borislav Stefanov

    This thesis studies deformation quantization and its application to contact interactions and systems with dissipation. We consider the subtleties related to quantization when contact interactions and boundaries are present. We exploit the idea that discontinuous potentials are idealizations that should be realized as limits of smooth potentials. The Wigner functions are found for the Morse potential and in the proper limit they reduce to the Wigner functions for the infinite wall, for the most general (Robin) boundary conditions. This is possible for a very limited subset of the values of the parameters --- so-called fine tuning is necessary. It explains why Dirichlet boundary conditions are used predominantly. Secondly, we consider deformation quantization in relation to dissipative phenomena. For the damped harmonic oscillator we study a method using a modified noncommutative star product. Within this framework we resolve the non-reality problem with the Wigner function and correct the classical limit.

  2. Franck-Condon factors perturbed by damped harmonic oscillators: Solvent enhanced X {sup 1}A{sub g} ↔ A{sup 1}B{sub 1u} absorption and fluorescence spectra of perylene

    SciTech Connect

    Wang, Chen-Wen; Zhu, Chaoyuan Lin, Sheng-Hsien; Yang, Ling; Yu, Jian-Guo

    2014-08-28

    Damped harmonic oscillators are utilized to calculate Franck-Condon factors within displaced harmonic oscillator approximation. This is practically done by scaling unperturbed Hessian matrix that represents local modes of force constants for molecule in gaseous phase, and then by diagonalizing perturbed Hessian matrix it results in direct modification of Huang–Rhys factors which represent normal modes of solute molecule perturbed by solvent environment. Scaling parameters are empirically introduced for simulating absorption and fluorescence spectra of an isolated solute molecule in solution. The present method is especially useful for simulating vibronic spectra of polycyclic aromatic hydrocarbon molecules in which hydrogen atom vibrations in solution can be scaled equally, namely the same scaling factor being applied to all hydrogen atoms in polycyclic aromatic hydrocarbons. The present method is demonstrated in simulating solvent enhanced X {sup 1}A{sub g} ↔ A{sup 1}B{sub 1u} absorption and fluorescence spectra of perylene (medium-sized polycyclic aromatic hydrocarbon) in benzene solution. It is found that one of six active normal modes v{sub 10} is actually responsible to the solvent enhancement of spectra observed in experiment. Simulations from all functionals (TD) B3LYP, (TD) B3LYP35, (TD) B3LYP50, and (TD) B3LYP100 draw the same conclusion. Hence, the present method is able to adequately reproduce experimental absorption and fluorescence spectra in both gas and solution phases.

  3. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  4. Importance of the single-particle continuum in BCS pairing with a pseudostate basis

    NASA Astrophysics Data System (ADS)

    Lay, J. A.; Alonso, C. E.; Fortunato, L.; Vitturi, A.

    2016-05-01

    In a recent work [arXiv:1510.03185] the use of the Transformed Harmonic Oscillator (THO) basis for the discretization of the singleparticle continuum into a Generalized Bardeen-Cooper-Schrieffer (BCS) formalism was proposed for the description of weakly bound nuclei. We make use of the flexibility of this formalism to study the evolution of the pairing when the nucleus becomes more and more weakly bound. Specifically we focus on the evolution of the occupation of the different partial waves in 22O when the Fermi level approaches zero.

  5. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  6. Assessing the utility of phase-space-localized basis functions: Exploiting direct product structure and a new basis function selection procedure

    NASA Astrophysics Data System (ADS)

    Brown, James; Carrington, Tucker

    2016-06-01

    In this paper we show that it is possible to use an iterative eigensolver in conjunction with Halverson and Poirier's symmetrized Gaussian (SG) basis [T. Halverson and B. Poirier, J. Chem. Phys. 137, 224101 (2012)] to compute accurate vibrational energy levels of molecules with as many as five atoms. This is done, without storing and manipulating large matrices, by solving a regular eigenvalue problem that makes it possible to exploit direct-product structure. These ideas are combined with a new procedure for selecting which basis functions to use. The SG basis we work with is orders of magnitude smaller than the basis made by using a classical energy criterion. We find significant convergence errors in previous calculations with SG bases. For sum-of-product Hamiltonians, SG bases large enough to compute accurate levels are orders of magnitude larger than even simple pruned bases composed of products of harmonic oscillator functions.

  7. FAST TRACK COMMUNICATION: An infinite family of superintegrable deformations of the Coulomb potential

    NASA Astrophysics Data System (ADS)

    Post, Sarah; Winternitz, Pavel

    2010-06-01

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system.

  8. Deformation of Fluid Column by Action of Axial Vibration and Some Aspects of High-Rate Thermocapillary Convection

    NASA Technical Reports Server (NTRS)

    Feonychev, Alexander I.; Kalachinskaya, Irina S.; Pokhilko, Victor I.

    1996-01-01

    The deformation of the fluid column by an action of a low-frequency vibration is considered. It is shown that behavior of the free fluid surface depends on the frequency of applied vibration and its amplitude. In the area of very low frequencies when fluid has time to comment on travel of bounding solid walls limiting column, the harmonical oscillations of free surface with given frequency are observed. With increase of vibration frequency the steady-state relief on free fluid surface is formed. If the amplitude of vibration is very small and the frequency corresponding to the first peak in the vibration spectrum on the Mir orbital station, the deformation of free surface tends to zero. Fluid flow induced thermocapillary effect on deformed free surface is more unstable as in the case of smooth cylindrical surface. It was shown that width of heating zone affects very essentially the flow pattern and transition to oscillatory regime of thermocapillary convection.

  9. Hamiltonian Light-Front Ffield Theory in a Basis Function Approach

    SciTech Connect

    Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Sternberg, P.; Ng, E.G.; Yang, C.

    2009-05-15

    Hamiltonian light-front quantum field theory constitutes a framework for the non-perturbative solution of invariant masses and correlated parton amplitudes of self-bound systems. By choosing the light-front gauge and adopting a basis function representation, we obtain a large, sparse, Hamiltonian matrix for mass eigenstates of gauge theories that is solvable by adapting the ab initio no-core methods of nuclear many-body theory. Full covariance is recovered in the continuum limit, the infinite matrix limit. There is considerable freedom in the choice of the orthonormal and complete set of basis functions with convenience and convergence rates providing key considerations. Here, we use a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography. We outline our approach, present illustrative features of some non-interacting systems in a cavity and discuss the computational challenges.

  10. How to spoil a good basis set for Rayleigh-Ritz calculations

    SciTech Connect

    Pupyshev, Vladimir I.; Montgomery, H. E. Jr.

    2013-08-15

    For model quantum mechanical systems such as the harmonic oscillator and a particle in an impenetrable box, we consider the set of exact discrete spectrum functions and define the modified basis set by subtraction of the ground state wavefunction from all the other wavefunctions with some real weights. It is demonstrated that the modified set of functions is complete in the space of square integrable functions if and only if the series of the squared weights diverges. A similar, but nonequivalent criterion is derived for convergence of Rayleigh-Ritz ground state energy calculations to the exact ground state energy value with the basis set extension. Some numerical illustrations are provided which demonstrate a wide variety of possible situations for model systems.

  11. Hamiltonian Light-front Field Theory Within an AdS/QCD Basis

    SciTech Connect

    Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Sternberg, P.; Ng, E.G.; Yang, C.; /LBL, Berkeley

    2009-12-16

    Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.

  12. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  13. Madelung Deformity.

    PubMed

    Kozin, Scott H; Zlotolow, Dan A

    2015-10-01

    Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. PMID:26341718

  14. Identification of parameters of models of nonlinear deformation of isotropic and composite materials on the basis of calculations and experiments aimed at analyzing the dynamic behavior of cylindrical metal-plastic shells

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2015-11-01

    A method for identification of material parameters of the constitutive relations of elastoplastic and viscoelastic deformation of isotropic and composite materials is developed. The method is based on minimizing the functional of the residue of results of numerical and experimental analysis of unsteady deformation of structural elements made of examined materials. The method is tested, and prospects of its application for determining material parameters of viscoelastic and elastoplastic models of nonlinear deformation of cylindrical metal-plastic shells under explosive loading are demonstrated.

  15. Generalized coherent states under deformed quantum mechanics with maximum momentum

    NASA Astrophysics Data System (ADS)

    Ching, Chee Leong; Ng, Wei Khim

    2013-10-01

    Following the Gazeau-Klauder approach, we construct generalized coherent states (GCS) as the quantum simulator to examine the deformed quantum mechanics, which exhibits an intrinsic maximum momentum. We study deformed harmonic oscillators and compute their probability distribution and entropy of states exactly. Also, a particle in an infinite potential box is studied perturbatively. In particular, unlike usual quantum mechanics, the present deformed case increases the entropy of the Planck scale quantum optical system. Furthermore, for simplicity, we obtain the modified uncertainty principle (MUP) with the perturbative treatment up to leading order. MUP turns out to increase generally. However, for certain values of γ (a parameter of GCS), it is possible that the MUP will vanish and hence will exhibit the classical characteristic. This is interpreted as the manifestation of the intrinsic high-momentum cutoff at lower momentum in a perturbative treatment. Although the GCS saturates the minimal uncertainty in a simultaneous measurement of physical position and momentum operators, thus constituting the squeezed states, complete coherency is impossible in quantum gravitational physics. The Mandel Q number is calculated, and it is shown that the statistics can be Poissonian and super-/sub-Poissonian depending on γ. The equation of motion is studied, and both Ehrenfest’s theorem and the correspondence principle are recovered. Fractional revival times are obtained through the autocorrelation, and they indicate that the superposition of a classical-like subwave packet is natural in GCS. We also contrast our results with the string-motivated (Snyder) type of deformed quantum mechanics, which incorporates a minimum position uncertainty rather than a maximum momentum. With the advances of quantum optics technology, it might be possible to realize some of these distinguishing quantum-gravitational features within the domain of future experiments.

  16. Applications of Basis Light-Front Quantization to QED

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Zhao, Xingbo; Ilderton, Anton; Honkanen, Heli; Maris, Pieter; Brodsky, Stanley J.

    2014-06-01

    Hamiltonian light-front quantum field theory provides a framework for calculating both static and dynamic properties of strongly interacting relativistic systems. Invariant masses, correlated parton amplitudes and time-dependent scattering amplitudes, possibly with strong external time-dependent fields, represent a few of the important applications. By choosing the light-front gauge and adopting an orthonormal basis function representation, we obtain a large, sparse, Hamiltonian matrix eigenvalue problem for mass eigenstates that we solve by adapting ab initio no-core methods of nuclear many-body theory. In the continuum limit, the infinite matrix limit, we recover full covariance. Guided by the symmetries of light-front quantized theory, we adopt a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall anti-de Sitter/quantum chromodynamics (AdS/QCD) model obtained from light-front holography. We outline our approach and present results for non-linear Compton scattering, evaluated non-perturbatively, where a strong and time-dependent laser field accelerates the electron and produces states of higher invariant mass i.e. final states with photon emission.

  17. Solutions to Kuessner's integral equation in unsteady flow using local basis functions

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Halstead, D. W.

    1975-01-01

    The computational procedure and numerical results are presented for a new method to solve Kuessner's integral equation in the case of subsonic compressible flow about harmonically oscillating planar surfaces with controls. Kuessner's equation is a linear transformation from pressure to normalwash. The unknown pressure is expanded in terms of prescribed basis functions and the unknown basis function coefficients are determined in the usual manner by satisfying the given normalwash distribution either collocationally or in the complex least squares sense. The present method of solution differs from previous ones in that the basis functions are defined in a continuous fashion over a relatively small portion of the aerodynamic surface and are zero elsewhere. This method, termed the local basis function method, combines the smoothness and accuracy of distribution methods with the simplicity and versatility of panel methods. Predictions by the local basis function method for unsteady flow are shown to be in excellent agreement with other methods. Also, potential improvements to the present method and extensions to more general classes of solutions are discussed.

  18. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  19. Hamiltonian light-front field theory in a basis function approach

    SciTech Connect

    Vary, J. P.; Honkanen, H.; Li Jun; Maris, P.; Brodsky, S. J.; Harindranath, A.; Sternberg, P.; Ng, E. G.; Yang, C.

    2010-03-15

    Hamiltonian light-front quantum field theory constitutes a framework for the nonperturbative solution of invariant masses and correlated parton amplitudes of self-bound systems. By choosing the light-front gauge and adopting a basis function representation, a large, sparse, Hamiltonian matrix for mass eigenstates of gauge theories is obtained that is solvable by adapting the ab initio no-core methods of nuclear many-body theory. Full covariance is recovered in the continuum limit, the infinite matrix limit. There is considerable freedom in the choice of the orthonormal and complete set of basis functions with convenience and convergence rates providing key considerations. Here we use a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall anti-de Sitter/quantum chromodynamics (AdS/QCD) model obtained from light-front holography. We outline our approach and present illustrative features of some noninteracting systems in a cavity. We illustrate the first steps toward solving quantum electrodynamics (QED) by obtaining the mass eigenstates of an electron in a cavity in small basis spaces and discuss the computational challenges.

  20. Madelung deformity.

    PubMed

    Ghatan, Andrew C; Hanel, Douglas P

    2013-06-01

    Madelung deformity is a rare congenital anomaly of the wrist caused by asymmetric growth at the distal radial physis secondary to a partial ulnar-sided arrest. The deformity is characterized by ulnar and palmar curvature of the distal radius, positive ulnar variance, and proximal subsidence of the lunate. It more commonly occurs in females than males and typically affects both wrists. The deformity can occur in isolation or as part of a genetic syndrome. The pattern of inheritance varies, with some cases following a pseudoautosomal pattern and many others lacking a clear family history. Nonsurgical management is typically advocated in asymptomatic patients. Few studies exist on the natural history of the condition; however, extensor tendon ruptures have been reported in severe and chronic cases. Stiffness, pain, and patient concerns regarding wrist cosmesis have been cited as indications for surgery. Various techniques for surgical management of Madelung deformity have been described, but clear evidence to support the use of any single approach is lacking. PMID:23728962

  1. Normal ordering for nonlinear deformed ladder operators and the f-generalization of the Stirling and Bell numbers

    NASA Astrophysics Data System (ADS)

    Aleixo, A. N. F.; Balantekin, A. B.

    2015-12-01

    We resolve the normal ordering problem for symmetric ( D ˆ + D ˆ - ) n and asymmetric ( Dˆ + r D ˆ - ) n strings of the nonlinear deformed ladder operators D ˆ ± for supersymmetric and shape-invariant potential systems, where r and n are positive integers. We provide exact and explicit expressions for their normal forms N { ( D ˆ + D ˆ - ) n } and N { ( Dˆ + r D ˆ - ) n } , where in N { . . . } all D ˆ - are at the right side. We find that the solutions involve sequence of expansion coefficients which, for r, n > 1, corresponds to the f-deformed generalization of the classical Stirling and Bell numbers of the second kind. We apply the general formalism for the translational shape-invariant potential systems as well as for the particular case of the harmonic oscillator potential system. We show that these numbers are obtained for families of polynomial expressions generated with the deformations parameters and the parameters related to the forms of the supersymmetric partner potentials.

  2. Ab initio no core configuration interaction calculations in the natural orbital basis

    NASA Astrophysics Data System (ADS)

    Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter

    2015-10-01

    The natural orbital basis has been successfully used in the past in atomic and molecular structure calculations. The natural orbitals used in those calculations are calculated by diagonalizing the electron one-body density matrix. Here we develop natural orbitals for nuclear no-core configuration interaction (NCCI) calculations. A NCCI calculation using an initial single particle basis, such as the harmonic oscillator basis, must first be performed in order to obtain a one-body density matrix. The eigenvectors of the one-body density matrix are the natural orbitals, and the corresponding eigenvalues are the occupations of these natural orbitals in the nuclear wave function. According to these occupancies, the most important natural orbitals, in the sense of the most occupied, can then be selected and used in a NCCI calculation. We discuss ab initio nuclear NCCI calculations for light nuclei and assess their ability to provide faster convergence. Supported by the US DOE (under Grants DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, and DE-FG02-87ER40371), and the US NSF (under Grant 0904782). Computational resources provided by NERSC (supported by US DOE Contract DE-AC02-05CH11231), and NDCRC.

  3. The finite harmonic oscillator and its associated sequences.

    PubMed

    Gurevich, Shamgar; Hadani, Ronny; Sochen, Nir

    2008-07-22

    A system of functions (signals) on the finite line, called the oscillator system, is described and studied. Applications of this system for discrete radar and digital communication theory are explained. PMID:18635684

  4. On harmonic oscillators and their Kemmer relativistic forms

    NASA Technical Reports Server (NTRS)

    Debergh, Nathalie; Beckers, Jules

    1993-01-01

    It is shown that Dirac (Kemmer) equations are intimately connected with (para)supercharges coming from (para)supersymmetric quantum mechanics, a nonrelativistic theory. The dimensions of the irreducible representations of Clifford (Kemmer) algebras play a fundamental role in such an analysis. These considerations are illustrated through oscillator like interactions, leading to (para)relativistic oscillators.

  5. Operation of higher harmonic oscillations in free-electron lasers.

    PubMed

    Sei, N; Ogawa, H; Yamada, K

    2012-01-01

    We report for the first time the experimental achievement of a seventh-harmonic free-electron laser (FEL) oscillation. The measured FEL gains and average FEL powers for higher harmonics were identical to those calculated by a one-dimensional FEL theory. The measured linewidths of the higher-harmonic FELs were narrower than that of the fundamental FEL owing to the narrower spectral widths of the spontaneous emissions. By applying the higher-harmonic FEL oscillation to a resonator-type FEL with an advanced accelerator, an x-ray FEL oscillator can be realized at lower electron-beam energy. PMID:22274354

  6. Entanglement scaling in classical and quantum harmonic oscillator lattices

    SciTech Connect

    Audenaert, K.; Eisert, J.; Plenio, M. B.; Cramer, M.

    2006-11-15

    We consider entanglement properties of ground and thermal states of harmonic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for systems in arbitrary spatial dimensions. The behavior of the block entanglement in the field limit is analysed and a logarithmic divergence is recovered.

  7. Intuitive Solution to Quantum Harmonic Oscillator at Infinity

    ERIC Educational Resources Information Center

    Pye, Cory C.

    2004-01-01

    The attempt to develop the laboratory component of a one-semester quantum chemistry course at Saint Mary's University has led to allowing the students to solve a big problem in quantum chemistry. It is done by subdivision into smaller problems that can be independently tackled by a student with a two-year calculus background.

  8. The impact damped harmonic oscillator in free decay

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; North, C. M.

    1987-01-01

    The impact-damped oscillator in free decay is studied by using time history solutions. A large range of oscillator amplitude is covered. The amount of damping is correlated with the behavior of the impacting mass. There are three behavior regimes: (1) a low amplitude range with less than one impact per cycle and very low damping, (2) a useful middle amplitude range with a finite number of impacts per cycle, and (3) a high amplitude range with an infinite number of impacts per cycle and progressively decreasing damping. For light damping the impact damping in the middle range is: (1) proportional to impactor mass, (2) additive to proportional damping, (3) a unique function of vibration amplitude, (4) proportional to 1-epsilon, where epsilon is the coefficient of restitution, and (5) very roughly inversely proportional to amplitude. The system exhibits jump phenomena and period doublings. An impactor with 2 percent of the oscillator's mass can produce a loss factor near 0.1.

  9. The finite harmonic oscillator and its associated sequences

    PubMed Central

    Gurevich, Shamgar; Hadani, Ronny; Sochen, Nir

    2008-01-01

    A system of functions (signals) on the finite line, called the oscillator system, is described and studied. Applications of this system for discrete radar and digital communication theory are explained. PMID:18635684

  10. Disentanglement of two harmonic oscillators in relativistic motion

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yuin; Chou, Chung-Hsien; Hu, B. L.

    2008-12-01

    We study the dynamics of quantum entanglement between two Unruh-DeWitt detectors, one stationary (Alice), and another uniformly accelerating (Rob), with no direct interaction but coupled to a common quantum field in (3+1)D Minkowski space. We find that for all cases studied the initial entanglement between the detectors disappears in a finite time (“sudden death”). After the moment of total disentanglement the correlations between the two detectors remain nonzero until late times. The relation between the disentanglement time and Rob’s proper acceleration is observer dependent. The larger the acceleration is, the longer the disentanglement time in Alice’s coordinate, but the shorter in Rob’s coordinate.

  11. Laser cooling of a harmonic oscillator's bath with optomechanics

    NASA Astrophysics Data System (ADS)

    Xu, Xunnong; Taylor, Jacob

    Thermal noise reduction in mechanical systems is a topic both of fundamental interest for studying quantum physics at the macroscopic level and for application of interest, such as building high sensitivity mechanics based sensors. Similar to laser cooling of neutral atoms and trapped ions, the cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce additional damping channel to mechanical motion, while keeping its thermal noise at the same level, and as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of temperature to quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an efficient scheme for reducing the thermal load on a mechanical resonator while improving its quality factor. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme. Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA.

  12. Disentanglement of two harmonic oscillators in relativistic motion

    SciTech Connect

    Lin, S.-Y.; Chou, C.-H.; Hu, B. L.

    2008-12-15

    We study the dynamics of quantum entanglement between two Unruh-DeWitt detectors, one stationary (Alice), and another uniformly accelerating (Rob), with no direct interaction but coupled to a common quantum field in (3+1)D Minkowski space. We find that for all cases studied the initial entanglement between the detectors disappears in a finite time ('sudden death'). After the moment of total disentanglement the correlations between the two detectors remain nonzero until late times. The relation between the disentanglement time and Rob's proper acceleration is observer dependent. The larger the acceleration is, the longer the disentanglement time in Alice's coordinate, but the shorter in Rob's coordinate.

  13. On the measurement of time for the quantum harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1992-01-01

    A generalization of previous treatments of quantum phase is presented. Restrictions on the class of realizable phase statistics are thereby removed; thus, permitting 'phase wavefunction collapse' (and other advantages). This is accomplished by exciting the auxiliary mode of the measurement apparatus in a time-reversed fashion. The mathematical properties of this auxiliary mode are studied in the hope that they will lead to an identification of a physical apparatus which can realize the quantum phase measurement.

  14. Topics in Noncommutative Gauge Theories and Deformed Relativistic Theories

    NASA Astrophysics Data System (ADS)

    Chandra, Nitin

    2013-01-01

    This is my PhD thesis. In this thesis we study the gauge theories on noncommutative Moyal space. We find new static solitons and instantons in terms of the so called generalized Bose operators. Generalized Bose operators are constructed to describe reducible representation of the oscillator algebra. They create/annihilate k-quanta, k being a positive integer. We start with giving an alternative description to the already found static magnetic flux tube solutions of the noncommutative gauge theories in terms of generalized Bose operators. The Nielsen-Olesen vortex solutions found in terms of these operators reduce to the already found ones. On the contrary we find a class of new instaton solutions which are unitarily inequivalant to the the ones found from ADHM construction on noncommutative space. The charge of the instaton has a description in terms of the index representing the reducibility of the Fock space, i.e., k. After studying the static solitonic solutions in noncommutative Minkowski space and the instaton solutions in noncommutative Euclidean space we go on to study the implications of the time-space noncommutativity in Minkowski space. To understand it properly we study the time-dependent transitions of a forced harmonic oscillator in noncommutative 1+1 dimensional spacetime. We also try to understand the implications of the found results in the context of quantum optics. We then shift to the so called DSR theories which are related to a different kind of noncommutative (kappa-Minkowski) space. DSR (Doubly/Deformed Special Relativity) aims to search for an alternate relativistic theory which keeps a length/energy scale (the Planck scale) and a velocity scale (the speed of light scale) invariant. We study thermodynamics of an ideal gas in such a scenario.

  15. Balancing accuracy and efficiency in selecting vibrational configuration interaction basis states using vibrational perturbation theory

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-08-01

    This work describes the benchmarking of a vibrational configuration interaction (VCI) algorithm that combines the favourable computational scaling of VPT2 with the algorithmic robustness of VCI, in which VCI basis states are selected according to the magnitude of their contribution to the VPT2 energy, for the ground state and fundamental excited states. Particularly novel aspects of this work include: expanding the potential to 6th order in normal mode coordinates, using a double-iterative procedure in which configuration selection and VCI wavefunction updates are performed iteratively (micro-iterations) over a range of screening threshold values (macro-iterations), and characterisation of computational resource requirements as a function of molecular size. Computational costs may be further reduced by a priori truncation of the VCI wavefunction according to maximum extent of mode coupling, along with discarding negligible force constants and VCI matrix elements, and formulating the wavefunction in a harmonic oscillator product basis to enable efficient evaluation of VCI matrix elements. Combining these strategies, we define a series of screening procedures that scale as O ( Nmode 6 ) - O ( Nmode 9 ) in run time and O ( Nmode 6 ) - O ( Nmode 7 ) in memory, depending on the desired level of accuracy. Our open-source code is freely available for download from http://www.sourceforge.net/projects/pyvci-vpt2.

  16. IBA in deformed nuclei

    SciTech Connect

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for /sup 168/Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong ..beta.. ..-->.. ..gamma.. transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the ..beta.. ..-->.. ..gamma.. transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ..delta..K=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics.

  17. Deformation properties of lead isotopes

    NASA Astrophysics Data System (ADS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180Pb and 184Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  18. Dislocations: 75 years of Deformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2009-01-01

    The selection of papers presented in this section reflect on themes to be explored at the "Dislocations: 75 years of Deformation Mechanisms" Symposium to be held at the Annual 2009 TMS meeting. The symposium was sponsored by the Mechanical Behavior of Materials Committee to give tribute to the evolution of a concept that has formed the basis of our mechanistic understanding of how crystalline solids plastically deform and how they fail.

  19. Coulomb problem in an angular-momentum basis: An algebraic formulation

    NASA Astrophysics Data System (ADS)

    de Lange, O. L.; Raab, R. E.

    1988-03-01

    We show that a representation-independent, spectrum-generating algebra for the Coulomb problem in an angular momentum basis can be obtained by quantizing two complex, time-dependent, classical vectors, Dc=Fc+iGc and D*c. The approach is based on an analogy with a treatment of the isotropic harmonic oscillator [A. J. Bracken and H. I. Leemon, J. Math. Phys. 21, 2170 (1980)], and on work in which classical constants of the motion were quantized to yield shift operators for angular momentum in the Coulomb problem [O. L. de Lange and R. E. Raab, Phys. Rev. A 34, 1650 (1986)]. By construction Fc and Gc are orthogonal to the orbital angular momentum L, their moduli have equal, constant magnitude, and they rotate about L. In this construction we use Ac (the Laplace-Runge-Lenz vector) and Ac×L^ as basis vectors. Fc and Gc contain an undetermined phase factor exp(iδ). Dc and D*c are quantized by requiring that the resulting operators should be shift operators for energy and angular momentum in the bound-state kets ||nlm>. This determines the operators Δ+/- corresponding to the classical phase factors exp(+/-iδ). In the coordinate and momentum representations of wave mechanics respectively, Δ+/- are the dilatation operators for coordinate-space and momentum-space wave functions. The shift operators can be factorized to yield 20 abstract operators. Apart from their dependence on Δ+/- and constants of the motion, ten of these are linear in p, eight are linear in r, and two are quadratic in r. Apart from Δ+/-, these operators can be linearized by replacing constants of the motion with their eigenvalues: In the coordinate and momentum representations of wave mechanics they are first-order differential operators. The shift operators are part of a Hermitian basis for a spectrum-generating algebra which is shown to be SO(2,1)⊕SO(3,2).

  20. Learning deformation and structure simultaneously: in situ endograft deformation analysis.

    PubMed

    Langs, Georg; Paragios, Nikos; Desgranges, Pascal; Rahmouni, Alain; Kobeiter, Hicham

    2011-02-01

    The learning of the shape and appearance behavior of complex anatomical structures is of growing importance in the successful use of medical imaging data. We propose a method to simultaneously learn a model of shape variation and the behavioral structure of objects in volumetric data sets. The algorithm performs a group-wise registration of a set of examples, and accounts for the heterogeneous deformation or variability properties of the data. We use the method for the in situ analysis of endograft deformation in the thoracic aorta during the cardiac cycle. The method is based on an emerging model of the shape variation, which is learned autonomously from a gated computed tomography sequence. It automatically adapts to the highly non-uniform elasticity properties of the structure during learning. The resulting deformation model is used for the measurement of global and local characteristics of the endograft movement. The method allows for the in situ localization of the stent during the cardiac cycle, and the measurement of its deformation. Furthermore, it makes the comparison of different endograft designs possible, and can serve as a basis for fitting a physical model of the endograft- and vessel surface to individual patients. The latter is essential for long-term risk assessment of the impact of endografts in highly mobile areas. We evaluate the approach on 10 data sets from patients that underwent endograft placement after traumatic ruptures of the thoracic aorta. PMID:20675181

  1. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  2. Numerical tests of a fixed vibrational basis/gaussian bath theory for small molecule dynamics in low-temperature media.

    PubMed

    Chapman, Craig T; Cheng, Xiaolu; Cina, Jeffrey A

    2011-04-28

    A recently framed quantum/semiclassical treatment for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium (Chapman, C. T.; Cina, J. A. J. Chem. Phys.2007,127, 114502) is further analyzed and subjected to initial tests of its numerical implementation. In the illustrative context of a 1D system interacting with a 1D medium, we rederive the fixed vibrational basis/gaussian bath (FVB/GB) equations of motion for the parameters defining the gaussian bath wave packet accompanying each of the energy eigenkets of the quantum mechanical system. The conditions of validity for the gaussian-bath approximation are shown to coincide with those supporting approximate population conservation. We perform initial numerical tests of the FVB/GB scheme and illustrate the semiclassical description it provides of coherent motion in the medium by comparing its predictions with the exact results for a high-frequency system harmonic oscillator bilinearly coupled to a lower-frequency bath oscillator. Linear vibronic absorption spectra or, equivalently, ultrafast wave packet interferometry signals are shown to be readily and accurately calculable within the FVB/GB framework. PMID:21462985

  3. Deformable Nanolaminate Optics

    SciTech Connect

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  4. Finite deformation of elasto-plastic solids

    NASA Technical Reports Server (NTRS)

    Osias, J. R.

    1973-01-01

    A theoretical basis is established for analysis of finite deformation of metals. The observation that finite deformation of such elastoplastic materials may be viewed as a process rather than an event leads to derivation of a complete initial and boundary value problem distinguished by its quasilinear nature. This feature of the formulation motivates adoption of an incremental approach to numerical problem solving. Numerical solution capability is established for problems of plane stress and plane strain. The validity of the theory and numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation for which analytic solutions are available. Subsequently the analysis is employed for the investigation of necking in flat metal tensile bars. The results of this investigation provide the first full numerical solutions for tensile necking in plane stress and plane strain. In addition a basis is provided for assessment of the validity of stress-strain relations inferred from tensile test data.

  5. Contact Pairing Interaction for the Hartree-Fock-Bogoliubov Calculations

    SciTech Connect

    Dobaczewski, J.

    2001-10-18

    Properties of density-dependent contact pairing interactions in nuclei are discussed. It is shown that the pairing interaction that is intermediate between surface and volume pairing forces gives the pairing gaps that are compatible with the experimental odd-even mass staggering. Results of the deformed Hartree-Fock-Bogoliubov calculations for this ''mixed'' pairing interaction, and using the transformed harmonic oscillator basis, are presented.

  6. Shapeable sheet without plastic deformation

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Naomi; Witten, Thomas A.

    2015-11-01

    Randomly crumpled sheets have shape memory. In order to understand the basis of this form of memory, we simulate triangular lattices of springs whose lengths are altered to create a topography with multiple potential energy minima. We then deform these lattices into different shapes and investigate their ability to retain the imposed shape when the energy is relaxed. The lattices are able to retain a range of curvatures. Under moderate forcing from a state of local equilibrium, the lattices deform by several percent but return to their retained shape when the forces are removed. By increasing the forcing until an irreversible motion occurs, we find that the transitions between remembered shapes show cooperativity among several springs. For fixed lattice structures, the shape memory tends to decrease as the lattice is enlarged; we propose ways to counter this decrease by modifying the lattice geometry. We survey the energy landscape by displacing individual nodes. An extensive fraction of these nodes proves to be bistable; they retain their displaced position when the energy is relaxed. Bending the lattice to a stable curved state alters the pattern of bistable nodes. We discuss this shapeability in the context of other forms of material memory and contrast it with the shapeability of plastic deformation. We outline the prospects for making real materials based on these principles.

  7. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  8. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  9. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  10. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.