Science.gov

Sample records for deformed harmonic-oscillator basis

  1. Axially deformed solution of the Skyrme Hartree Fock Bogolyubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1.66p)

    NASA Astrophysics Data System (ADS)

    Stoitsov, M. V.; Dobaczewski, J.; Nazarewicz, W.; Ring, P.

    2005-04-01

    We describe the program HFBTHO for axially deformed configurational Hartree-Fock-Bogolyubov calculations with Skyrme-forces and zero-range pairing interaction using Harmonic-Oscillator and/or Transformed Harmonic-Oscillator states. The particle-number symmetry is approximately restored using the Lipkin-Nogami prescription, followed by an exact particle number projection after the variation. The program can be used in a variety of applications, including systematic studies of wide ranges of nuclei, both spherical and axially deformed, extending all the way out to nucleon drip lines. Program summaryTitle of the program: HFBTHO (v1.66p) Catalogue number: ADUI Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI Licensing provisions: none Computers on which the program has been tested: Pentium-III, Pentium-IV, AMD-Athlon, IBM Power 3, IBM Power 4, Intel Xeon Operating systems: LINUX, Windows Programming language used: FORTRAN-95 Memory required to execute with typical data: 59 MB when using N=20 No. of bits in a word: 64 No. of processors used: 1 Has the code been vectorized?: No No. of bytes in distributed program, including test data, etc.: 195 285 No. of lines in distributed program: 12 058 Distribution format: tar.gz Nature of physical problem: The solution of self-consistent mean-field equations for weakly bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasiparticle wave functions. In the present implementation, this is achieved by using the single-particle wave functions of the Transformed Harmonic Oscillator, which allows for an accurate description of deformation effects and pairing correlations in nuclei arbitrarily close to the particle drip lines. Method of solution: The program uses the axially Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes

  2. First, Second Quantization and Q-Deformed Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Van Ngu, Man; Gia Vinh, Ngo; Lan, Nguyen Tri; Thanh, Luu Thi Kim; Viet, Nguyen Ai

    2015-06-01

    Relations between the first, the second quantized representations and deform algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization (the commutation relation between coordinate and momentum operators) and the axiom of second quantization (the commutation relation between creation and annihilation operators) are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the axiom of second quantization leads to a violence of the axiom of first quantization, and inverse. Using the coordinate representation, we study fine structures of the vacuum state wave function depend in the deformation parameter q. A comparison with fine structures of Cooper pair of superconductivity in the coordinate representation is also performed.

  3. Probing deformed commutators with macroscopic harmonic oscillators

    PubMed Central

    Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A.; Serra, Enrico; Vitali, David; Marin, Francesco

    2015-01-01

    A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈22 μg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation. PMID:26088965

  4. Probing deformed commutators with macroscopic harmonic oscillators.

    PubMed

    Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A; Serra, Enrico; Vitali, David; Marin, Francesco

    2015-01-01

    A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈ 22 μg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation. PMID:26088965

  5. Effective field theory in the harmonic oscillator basis

    NASA Astrophysics Data System (ADS)

    Binder, S.; Ekström, A.; Hagen, G.; Papenbrock, T.; Wendt, K. A.

    2016-04-01

    We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.

  6. Effective field theory in the harmonic oscillator basis

    DOE PAGESBeta

    Binder, S.; Ekström, Jan A.; Hagen, Gaute; Papenbrock, Thomas F.; Wendt, Kyle A.

    2016-04-25

    In this paper, we develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leadingmore » order. Finally, many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.« less

  7. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  8. Cooper pair of superconductivity in the coordinate representation and q-deformed harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Van Ngu, Man; Gia Vinh, Ngo; Lan, Nguyen Tri; Thanh, Luu Thi Kim; Viet, Nguyen Ai

    2016-06-01

    In this work we study the similarity between the wave functions of q -deformed harmonic oscillator and wave functions of Cooper pair. The wave functions of Cooper pairs in coordinate-space have an “onion-like” layered structure with exponent decay (Boltzmann) envelope modulation. The ground state wave function of q -deform harmonic oscillator has the form of oscillate functions with Gaussian decay envelope modulation. The corresponding between Boltzmann and Gaussian forms of envelope functions and their quantum similarity are discussed.

  9. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    NASA Astrophysics Data System (ADS)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions

  10. Application of Elliott's SU(3) model to the triaxially deformed harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Sugawara-Tanabe, Kazuko

    2011-05-01

    We have introduced new bosons corresponding to the integral ratio of three frequencies for a harmonic oscillator potential, by means of a non-linear transformation which realizes the SU(3) group as a dynamical symmetry group, and which leaves the anisotropic harmonic oscillator Hamiltonian invariant. The classification of the single-particle levels based on this covering group predicts magic numbers depending on the deformation parameters δ and γ. The special cases with tan γ = 1/√3 (γ = 30°) and √3 /5(γ˜19°) are discussed.

  11. RLC circuit realization of a q-deformed harmonic oscillator with time dependent mass

    NASA Astrophysics Data System (ADS)

    Batouli, J.; El Baz, M.; Maaouni, A.

    2015-08-01

    We consider an RLC circuit type realization of a q-deformed harmonic oscillator. The differential equations of motion characterizing this circuit are derived, and it is shown that the RLC circuit gets modified as a result of the q-deformation. The natural frequency, the capacitance and the external power source are all modified and become q-dependent. The energy aspects of the circuit are also studied and the effects of the deformation are shown.

  12. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VI) HFODD (v2.40h): A new version of the program

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Satuła, W.; Carlsson, B. G.; Engel, J.; Olbratowski, P.; Powałowski, P.; Sadziak, M.; Sarich, J.; Schunck, N.; Staszczak, A.; Stoitsov, M.; Zalewski, M.; Zduńczuk, H.

    2009-11-01

    We describe the new version (v2.40h) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the DT2h transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected three insignificant errors. New version program summaryProgram title: HFODD (v2.40h) Catalogue identifier: ADFL_v2_2 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v2_2.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 79 618 No. of bytes in distributed program, including test data, etc.: 372 548 Distribution format: tar.gz Programming language: FORTRAN-77 and Fortran-90 Computer: Pentium-III, AMD-Athlon, AMD-Opteron Operating system: UNIX, LINUX, Windows XP Has the code been

  13. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VII) HFODD (v2.49t): A new version of the program

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Dobaczewski, J.; McDonnell, J.; Satuła, W.; Sheikh, J. A.; Staszczak, A.; Stoitsov, M.; Toivanen, P.

    2012-01-01

    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF + BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. New version program summaryProgram title:HFODD (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution

  14. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (IV) HFODD (v2.08i): a new version of the program

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Olbratowski, P.

    2004-04-01

    We describe the new version (v2.08i) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, all symmetries can be broken, which allows for calculations with angular frequency and angular momentum tilted with respect to the mass distribution. The new version contains an interface to the LAPACK subroutine ZHPEVX. Program summaryTitle of the program:HFODD (v2.08i) Catalogue number: ADTO Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTO Reference in CPC for earlier version of program: J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 131 (2000) 164 (v1.75r) Catalogue number of previous version: ADML Licensing provisions: none Does the new version supersede the previous one: yes Computers on which the program has been tested: SG Power Challenge L, Pentium-II, Pentium-III, AMD-Athlon Operating systems: UNIX, LINUX, Windows-2000 Programming language used: FORTRAN-77 and FORTRAN-90 Memory required to execute with typical data: 10 Mwords No. of bits in a word: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Has the code been vectorised?: Yes No. of bytes in distributed program, including test data, etc.: 265352 No. of lines in distributed program: 52656 Distribution format: tar gzip file Nature of physical problem: The nuclear mean-field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean-field is local and velocity dependent. The locality allows for

  15. Some properties of an infinite family of deformations of the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Quesne, Christiane

    2010-12-01

    In memory of Marcos Moshinsky, who promoted the algebraic study of the harmonic oscillator, some results recently obtained on an infinite family of deformations of such a system are reviewed. This set, which was introduced by Tremblay, Turbiner, and Winternitz, consists in some Hamiltonians Hk on the plane, depending on a positive real parameter k. Two algebraic extensions of Hk are described. The first one, based on the elements of the dihedral group D2k and a Dunkl operator formalism, provides a convenient tool to prove the superintegrability of Hk for odd integer k. The second one, employing two pairs of fermionic operators, leads to a supersymmetric extension of Hk of the same kind as the familiar Freedman and Mende super-Calogero model. Some connection between both extensions is also outlined.

  16. Some properties of an infinite family of deformations of the harmonic oscillator

    SciTech Connect

    Quesne, Christiane

    2010-12-23

    In memory of Marcos Moshinsky, who promoted the algebraic study of the harmonic oscillator, some results recently obtained on an infinite family of deformations of such a system are reviewed. This set, which was introduced by Tremblay, Turbiner, and Winternitz, consists in some Hamiltonians H{sub k} on the plane, depending on a positive real parameter k. Two algebraic extensions of H{sub k} are described. The first one, based on the elements of the dihedral group D{sub 2k} and a Dunkl operator formalism, provides a convenient tool to prove the superintegrability of H{sub k} for odd integer k. The second one, employing two pairs of fermionic operators, leads to a supersymmetric extension of H{sub k} of the same kind as the familiar Freedman and Mende super-Calogero model. Some connection between both extensions is also outlined.

  17. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  18. Covariant harmonic oscillators and coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  19. Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Liang, Shi-Dong

    2016-06-01

    We investigate the connection between the linear harmonic oscillator equation and some classes of second order nonlinear ordinary differential equations of Li\\'enard and generalized Li\\'enard type, which physically describe important oscillator systems. By using a method inspired by quantum mechanics, and which consist on the deformation of the phase space coordinates of the harmonic oscillator, we generalize the equation of motion of the classical linear harmonic oscillator to several classes of strongly non-linear differential equations. The first integrals, and a number of exact solutions of the corresponding equations are explicitly obtained. The devised method can be further generalized to derive explicit general solutions of nonlinear second order differential equations unrelated to the harmonic oscillator. Applications of the obtained results for the study of the travelling wave solutions of the reaction-convection-diffusion equations, and of the large amplitude free vibrations of a uniform cantilever beam are also presented.

  20. On the moment of inertia of a quantum harmonic oscillator

    SciTech Connect

    Khamzin, A. A. Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.

    2013-04-15

    An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.

  1. The q-harmonic oscillators, q-coherent states and the q-symplecton

    NASA Technical Reports Server (NTRS)

    Biedenharn, L. C.; Lohe, M. A.; Nomura, Masao

    1993-01-01

    The recently introduced notion of a quantum group is discussed conceptually and then related to deformed harmonic oscillators ('q-harmonic oscillators'). Two developments in applying q-harmonic oscillators are reviewed: q-coherent states and the q-symplecton.

  2. Scaling properties of the harmonic oscillator basis calculations for N = Z nuclei in the infrared limit with the JISP16 potential

    NASA Astrophysics Data System (ADS)

    Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter

    2014-03-01

    It has recently been found that when no-core configuration interaction (NCCI) calculations of low-mass nuclei are plotted against an infrared momentum cutoff λsc (scaling cutoff), a universal curve is obtained for the energy and the RMS radius. The plotted results must have an ultraviolet (UV) cutoff ΛUV greater than or equal to the intrinsic cutoff ΛNN of the interaction. This assures that UV convergence is reached. The scaling property then allows for the performance of extrapolations in the IR limit. Here we conduct NCCI calculations in the harmonic oscillator basis with the JISP16 potential. In the IR limit we obtain universal curves for N = Z nuclei up to and including 8Be . An extrapolation in the IR limit for the ground state energy and the RMS radius is performed, and extrapolated results are obtained. Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).

  3. Galilean covariant harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    A Galilean covariant approach to classical mechanics of a single particle is described. Within the proposed formalism, all non-covariant force laws defining acting forces which become to be defined covariantly by some differential equations are rejected. Such an approach leads out of the standard classical mechanics and gives an example of non-Newtonian mechanics. It is shown that the exactly solvable linear system of differential equations defining forces contains the Galilean covariant description of harmonic oscillator as its particular case. Additionally, it is demonstrated that in Galilean covariant classical mechanics the validity of the second Newton law of dynamics implies the Hooke law and vice versa. It is shown that the kinetic and total energies transform differently with respect to the Galilean transformations.

  4. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  5. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  6. Making space for harmonic oscillators

    SciTech Connect

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  7. Symmetries of coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.

    1993-01-01

    It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).

  8. Quantum Dynamics of a Harmonic Oscillator in a Defomed Bath in the Presence of Lamb Shift

    NASA Astrophysics Data System (ADS)

    Daeimohamad, M.; Mohammadi, M.

    2012-10-01

    In this paper, we investigate the dissipative quantum dynamics of a harmonic oscillator in the presence a deformed bath by considering the Lamb shift term. The deformed bath is modelled by a collection of deformed quantum harmonic oscillators as a generalization of Hopfield model. The Langevin equation for both the photon number and the fluctuation spectrum under the Weisskopf-Winger approximation are obtained and discussed.

  9. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  10. Quantum wormholes and harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Garay, Luis J.

    1993-01-01

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface which divides the space time manifold into two disconnected parts. Minisuperspace models which consist of a homogeneous massless scalar field coupled to a Friedmann-Robertson-Walker space time are considered. Once the path integral over the lapse function is performed, the requirement that the space time be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is argued that there does not exist any wave function which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. Then, the wormhole wave functions can be written as linear combinations of harmonic oscillator wave functions.

  11. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  12. Harmonic Oscillators as Bridges between Theories

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Noz, Marilyn E.

    2005-03-01

    Other than scattering problems where perturbation theory is applicable, there are basically two ways to solve problems in physics. One is to reduce the problem to harmonic oscillators, and the other is to formulate the problem in terms of two-by-two matrices. If two oscillators are coupled, the problem combines both two-by-two matrices and harmonic oscillators. This method then becomes a powerful research tool to cover many different branches of physics. Indeed, the concept and methodology in one branch of physics can be translated into another through the common mathematical formalism. It is noted that the present form of quantum mechanics is largely a physics of harmonic oscillators. Special relativity is the physics of the Lorentz group which can be represented by the group of by two-by-two matrices commonly called SL(2, c). Thus the coupled harmonic oscillators can therefore play the role of combining quantum mechanics with special relativity. Both Paul A. M. Dirac and Richard P. Feynman were fond of harmonic oscillators, while they used different approaches to physical problems. Both were also keenly interested in making quantum mechanics compatible with special relativity. It is shown that the coupled harmonic oscillators can bridge these two different approaches to physics.

  13. The harmonic oscillator and nuclear physics

    NASA Technical Reports Server (NTRS)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  14. Second International Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)

    1995-01-01

    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.

  15. Kraus representation of a damped harmonic oscillator and its application

    SciTech Connect

    Liu Yuxi; Oezdemir, Sahin K.; Miranowicz, Adam; Imoto, Nobuyuki

    2004-10-01

    By definition, the Kraus representation of a harmonic oscillator suffering from the environment effect, modeled as the amplitude damping or the phase damping, is directly given by a simple operator algebra solution. As examples and applications, we first give a Kraus representation of a single qubit whose computational basis states are defined as bosonic vacuum and single particle number states. We further discuss the environment effect on qubits whose computational basis states are defined as the bosonic odd and even coherent states. The environment effects on entangled qubits defined by two different kinds of computational basis are compared with the use of fidelity.

  16. Quantum nondemolition measurements of harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Caves, C. M.; Zimmermann, M.; Sandberg, V. D.; Drever, R. W. P.

    1978-01-01

    Measuring systems to determine the real component of the complex amplitude of a harmonic oscillator are described. This amplitude is constant in the absence of driving forces, and the uncertainty principle accounts for the fact that only the real component can be measured precisely and continuously ('quantum nondemolition measurement'). Application of the measuring systems to the detection of gravitational waves is considered.

  17. Quantum harmonic oscillator in a thermal bath

    NASA Technical Reports Server (NTRS)

    Zhang, Yuhong

    1993-01-01

    The influence functional path-integral treatment of quantum Brownian motion is briefly reviewed. A newly derived exact master equation of a quantum harmonic oscillator coupled to a general environment at arbitrary temperature is discussed. It is applied to the problem of loss of quantum coherence.

  18. Group Theory of Covariant Harmonic Oscillators

    ERIC Educational Resources Information Center

    Kim, Y. S.; Noz, Marilyn E.

    1978-01-01

    A simple and concrete example for illustrating the properties of noncompact groups is presented. The example is based on the covariant harmonic-oscillator formalism in which the relativistic wave functions carry a covariant-probability interpretation. This can be used in a group theory course for graduate students who have some background in…

  19. Quantum phases for a generalized harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    2008-03-01

    An effective Hamiltonian for the generalized harmonic oscillator is determined by using squeezed state wavefunctions. The equations of motion over an extended phase space are determined and then solved perturbatively for a specific choice of the oscillator parameters. These results are used to calculate the dynamic and geometric phases for the generalized oscillator with this choice of parameters.

  20. Pisot q-coherent states quantization of the harmonic oscillator

    SciTech Connect

    Gazeau, J.P.; Olmo, M.A. del

    2013-03-15

    We revisit the quantized version of the harmonic oscillator obtained through a q-dependent family of coherent states. For each q, 0deformed integers form Fibonacci-like sequences of integers. We then examine the main characteristics of the corresponding quantum oscillator: localization in the configuration and in the phase spaces, angle operator, probability distributions and related statistical features, time evolution and semi-classical phase space trajectories. - Highlights: Black-Right-Pointing-Pointer Quantized version of the harmonic oscillator (HO) through a q-family of coherent states. Black-Right-Pointing-Pointer For q,0Deformed numbers are Fibonacci-like integer sequences (1/q a quadratic unit Pisot number). Black-Right-Pointing-Pointer We examine the main physical characteristics of the corresponding quantum oscillator.

  1. Quantum harmonic oscillator with superoscillating initial datum

    SciTech Connect

    Buniy, R. V.; Struppa, D. C.; Colombo, F.; Sabadini, I.

    2014-11-15

    In this paper, we study the evolution of superoscillating initial data for the quantum driven harmonic oscillator. Our main result shows that superoscillations are amplified by the harmonic potential and that the analytic solution develops a singularity in finite time. We also show that for a large class of solutions of the Schrödinger equation, superoscillating behavior at any given time implies superoscillating behavior at any other time.

  2. Factorization method for the truncated harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Fernández C, D. J.; Morales-Salgado, V. S.

    2015-04-01

    Factorization procedures of first and second order are used to generate Hamiltonians with known spectra departing from the harmonic oscillator with an infinite potential barrier. Certain systems obtained in a straightforward way through said method possess differential ladder operators of both types, third and fourth order. Since systems with this kind of operators are linked with the Painlevé IV and V equations respectively, several solutions of these non-linear second-order differential equations will be simply found.

  3. Information theories for time-dependent harmonic oscillator

    SciTech Connect

    Choi, Jeong Ryeol; Kim, Min-Soo; Kim, Daeyeoul; Maamache, Mustapha; Menouar, Salah; Nahm, In Hyun

    2011-06-15

    Highlights: > Information theories for the general time-dependent harmonic oscillator based on invariant operator method. > Time dependence of entropies and entropic uncertainty relation. > Characteristics of Shannon information and Fisher information. > Application of information theories to particular systems that have time-dependent behavior. - Abstract: Information theories for the general time-dependent harmonic oscillator are described on the basis of invariant operator method. We obtained entropic uncertainty relation of the system and discussed whether it is always larger than or equal to the physically allowed minimum value. Shannon information and Fisher information are derived by means of density operator that satisfies Liouville-von Neumann equation and their characteristics are investigated. Shannon information is independent of time, but Fisher information is explicitly dependent on time as the time functions of the Hamiltonian vary. We can regard that the Fisher information is a local measure since its time behavior is largely affected by local arrangements of the density, whilst the Shannon information plays the role of a global measure of the spreading of density. To promote the understanding, our theory is applied to special systems, the so-called quantum oscillator with time-dependent frequency and strongly pulsating mass system.

  4. Quantum Harmonic Oscillator Subjected to Quantum Vacuum Fluctuations

    NASA Astrophysics Data System (ADS)

    Gevorkyan, A. S.; Burdik, C.; Oganesyan, K. B.

    2010-05-01

    Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy level, as well as many other phenomena in real nonrelativistic quantum systems are connected with the influence of quantum vacuum fluctuations which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum harmonic oscillator (QHO) + environment" is described in terms of complex probabilistic processes (CPP) which satisfies a stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type. On the basis of orthogonal CPP, the method of stochastic density matrix (SDM) is developed. The energy spectrum of QHO and a possibility of infringement of detailed balance of transitions between quantum levels including spontaneous decay of ≪ground state≫ are investigated by the SDM method.

  5. Joint entropy of quantum damped harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Aguiar, V.; Guedes, I.

    2014-05-01

    We use the dynamical invariant method and a unitary transformation to obtain the exact Schrödinger wave function, ψn(x,t), and calculate for n=0 the time-dependent joint entropy (Leipnik’s entropy) for two classes of quantum damped harmonic oscillators. We observe that the joint entropy does not vary in time for the Caldirola-Kanai oscillator, while it decreases and tends to a constant value (ln({e}/{2})) for asymptotic times for the Lane-Emden ones. This is due to the fact that for the latter, the damping factor decreases as time increases. The results show that the time dependence of the joint entropy is quite complex and does not obey a general trend of monotonously increase with time.

  6. A possible generalization of the harmonic oscillator potential

    NASA Technical Reports Server (NTRS)

    Levai, Geza

    1995-01-01

    A four-parameter potential is analyzed, which contains the three-dimensional harmonic oscillator as a special case. This potential is exactly solvable and retains several characteristics of the harmonic oscillator, and also of the Coulomb problem. The possibility of similar generalizations of other potentials is also pointed out.

  7. Improving Density Functionals with Quantum Harmonic Oscillators

    NASA Astrophysics Data System (ADS)

    Tkatchenko, Alexandre

    2013-03-01

    Density functional theory (DFT) is the most widely used and successful approach for electronic structure calculations. However, one of the pressing challenges for DFT is developing efficient functionals that can accurately capture the omnipresent long-range electron correlations, which determine the structure and stability of many molecules and materials. Here we show that, under certain conditions, the problem of computing the long-range correlation energy of interacting electrons can be mapped to a system of coupled quantum harmonic oscillators (QHOs). The proposed model allows us to synergistically combine concepts from DFT, quantum chemistry, and the widely discussed random-phase approximation for the correlation energy. In the dipole limit, the interaction energy for a system of coupled QHOs can be calculated exactly, thereby leading to an efficient and accurate model for the many-body dispersion energy of complex molecules and materials. The studied examples include intermolecular binding energies, the conformational hierarchy of DNA structures, the geometry and stability of molecular crystals, and supramolecular host-guest complexes (A. Tkatchenko, R. A. DiStasio Jr., R. Car, M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012); R. A. DiStasio Jr., A. von Lilienfeld, A. Tkatchenko, PNAS 109, 14791 (2012); A. Tkatchenko, D. Alfe, K. S. Kim, J. Chem. Theory and Comp. (2012), doi: 10.1021/ct300711r; A. Tkatchenko, A. Ambrosetti, R. A. DiStasio Jr., arXiv:1210.8343v1).

  8. Fisher information of quantum damped harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Aguiar, V.; Guedes, I.

    2015-04-01

    We calculate the time-dependent Fisher information in position ({{F}x}) and momentum ({{F}p}) for the lowest lying state ≤ft( n=0 \\right) of two classes of quantum damped (Lane-Emden (LE) and Caldirola-Kanai (CK)) harmonic oscillators. The expressions of {{F}x} and {{F}p} are written in terms of ρ , a c-number quantity satisfying a nonlinear differential equation. Analytical solutions of ρ were obtained. For the LE and CK oscillators, we observe that {{F}x} increases while {{F}p} decreases with increasing time. The product {{F}x}{{F}p} increases and tends to a constant value in the limit t\\to ∞ for the LE oscillator, while it is time-independent for the CK oscillator. Moreover, for the CK oscillator the product {{F}x}{{F}p} decreases as the damping ≤ft( γ \\right) increases. Relations among the Fisher information, Leipnik and Shannon entropies, and the Stam and Cramer-Rao inequalities are given. A discussion on the squeezing phenomenon in position for the oscillators is presented.

  9. Harmonic oscillator interaction with squeezed radiation

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Nikonov, D. E.

    1993-01-01

    Although the problem of electromagnetic radiation by a quantum harmonic oscillator is considered in textbooks on quantum mechanics, some of its aspects have remained unclear until now. By this, we mean that usually the initial quantum states of both the oscillator and the field are assumed to be characterized by a definite energy level of the oscillator and definite occupation numbers of the field modes. In connection with growing interest in squeezed states, it would be interesting to analyze the general case when the initial states of both subsystems are arbitrary superpositions of energy eigenstates. This problem was considered in other work, where the power of the spontaneous emission was calculated in the case of an arbitrary oscillator's initial state, but the field was initially in a vacuum state. In the present article, we calculate the rate of the oscillator average energy, squeezing, and correlation parameter change under the influence of an arbitrary external radiation field. Some other problems relating to the interaction between quantum particles (atoms) or oscillators where the electromagnetic radiation is an arbitrary (in particular squeezed) state were investigated.

  10. The Coupled Harmonic Oscillator: Not Just for Seniors Anymore.

    ERIC Educational Resources Information Center

    Preyer, Norris W.

    1996-01-01

    Presents experiments that use Microcomputer Based Laboratory (MBL) techniques to enable freshmen physics students to investigate complex systems, such as nonlinear oscillators or coupled harmonic oscillators, at a level appropriate for an independent project. (JRH)

  11. Driven harmonic oscillator as a quantum simulator for open systems

    SciTech Connect

    Piilo, Jyrki; Maniscalco, Sabrina

    2006-09-15

    We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for the non-Markovian damped harmonic oscillator. In the general framework, our results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals physical insight into the open system dynamics, e.g., the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.

  12. Harmonic oscillator in quantum rotational spectra: Molecules and nuclei

    NASA Technical Reports Server (NTRS)

    Pavlichenkov, Igor M.

    1995-01-01

    The mapping of a rotational dynamics on a harmonic oscillator is considered. The method used for studying the stabilization of the rigid top rotation around the intermediate moment of inertial axix by orbiting particle is described.

  13. A harmonic oscillator having “volleyball damping”

    NASA Astrophysics Data System (ADS)

    Mickens, R. E.; Oyedeji, K.; Rucker, S. A.

    2006-05-01

    Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value. The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.

  14. Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate

    NASA Astrophysics Data System (ADS)

    Egorov, A. G.; Kamalutdinov, A. M.; Paimushin, V. N.; Firsov, V. A.

    2016-03-01

    A method for determining the drag coefficient of a thin plate harmonically oscillating in a viscous incompressible fluid is proposed. The method is based on measuring the amplitude of deflections of cantilever-fixed thin plates exhibiting damping flexural oscillations with a frequency corresponding to the first mode and on solving an inverse problem of calculating the drag coefficient on the basis of the experimentally found logarithmic decrement of beam oscillations.

  15. Calculation of four-particle harmonic-oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Germanas, D.; Kalinauskas, R. K.; Mickevičius, S.

    2010-02-01

    A procedure for precise calculation of the three- and four-particle harmonic-oscillator (HO) transformation brackets is presented. The analytical expressions of the four-particle HO transformation brackets are given. The computer code for the calculations of HO transformation brackets proves to be quick, efficient and produces results with small numerical uncertainties. Program summaryProgram title: HOTB Catalogue identifier: AEFQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1247 No. of bytes in distributed program, including test data, etc.: 6659 Distribution format: tar.gz Programming language: FORTRAN 90 Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix RAM: 8 MB Classification: 17.17 Nature of problem: Calculation of the three-particle and four-particle harmonic-oscillator transformation brackets. Solution method: The method is based on compact expressions of the three-particle harmonics oscillator brackets, presented in [1] and expressions of the four-particle harmonics oscillator brackets, presented in this paper. Restrictions: The three- and four-particle harmonic-oscillator transformation brackets up to the e=28. Unusual features: Possibility of calculating the four-particle harmonic-oscillator transformation brackets. Running time: Less than one second for the single harmonic-oscillator transformation bracket. References:G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barret, S. Mickevičius, D. Germanas, Nuclear Physics A 695 (2001) 191.

  16. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Badavi, F. F.; Townsend, L. W.

    1986-01-01

    The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.

  17. Asymptotic Formula for Quantum Harmonic Oscillator Tunneling Probabilities

    NASA Astrophysics Data System (ADS)

    Jadczyk, Arkadiusz

    2015-10-01

    Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.

  18. Simulating Harmonic Oscillator and Electrical Circuits: A Didactical Proposal

    ERIC Educational Resources Information Center

    Albano, Giovannina; D'Apice, Ciro; Tomasiello, Stefania

    2002-01-01

    A Mathematica[TM] package is described that uses simulations and animations to illustrate key concepts in harmonic oscillation and electric circuits for students not majoring in physics or mathematics. Students are not required to know the Mathematica[TM] environment: a user-friendly interface with buttons functionalities and on-line help allows…

  19. A Look at Damped Harmonic Oscillators through the Phase Plane

    ERIC Educational Resources Information Center

    Daneshbod, Yousef; Latulippe, Joe

    2011-01-01

    Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…

  20. Free Fall and Harmonic Oscillations: Analyzing Trampoline Jumps

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Eager, David

    2015-01-01

    Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is…

  1. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    ERIC Educational Resources Information Center

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  2. The Study of Damped Harmonic Oscillations Using an Electronic Counter

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2009-01-01

    We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…

  3. The One-Dimensional Damped Forced Harmonic Oscillator Revisited

    ERIC Educational Resources Information Center

    Flores-Hidalgo, G.; Barone, F. A.

    2011-01-01

    In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.

  4. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  5. Properties of infrared extrapolations in a harmonic oscillator basis

    NASA Astrophysics Data System (ADS)

    Coon, Sidney A.; Kruse, Michael K. G.

    2016-02-01

    The success and utility of effective field theory (EFT) in explaining the structure and reactions of few-nucleon systems has prompted the initiation of EFT-inspired extrapolations to larger model spaces in ab initio methods such as the no-core shell model (NCSM). In this contribution, we review and continue our studies of infrared (ir) and ultraviolet (uv) regulators of NCSM calculations in which the input is phenomenological NN and NNN interactions fitted to data. We extend our previous findings that an extrapolation in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction is quite successful, not only for the eigenstates of the Hamiltonian but also for expectation values of operators, such as r2, considered long range. The latter results are obtained with Hamiltonians transformed by the similarity renormalization group (SRG) evolution. On the other hand, a possible extrapolation of ground state energies in the uv cutoff when the ir cutoff is below the intrinsic ir scale is not robust and does not agree with the ir extrapolation of the same data or with independent calculations using other methods.

  6. Local Gram-Schmidt and covariant Lyapunov vectors and exponents for three harmonic oscillator problems

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2012-02-01

    We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.

  7. Confined One Dimensional Harmonic Oscillator as a Two-Mode System

    SciTech Connect

    Gueorguiev, V G; Rau, A P; Draayer, J P

    2005-07-11

    The one-dimensional harmonic oscillator in a box problem is possibly the simplest example of a two-mode system. This system has two exactly solvable limits, the harmonic oscillator and a particle in a (one-dimensional) box. Each of the two limits has a characteristic spectral structure describing the two different excitation modes of the system. Near each of these limits, one can use perturbation theory to achieve an accurate description of the eigenstates. Away from the exact limits, however, one has to carry out a matrix diagonalization because the basis-state mixing that occurs is typically too large to be reproduced in any other way. An alternative to casting the problem in terms of one or the other basis set consists of using an ''oblique'' basis that uses both sets. Through a study of this alternative in this one-dimensional problem, we are able to illustrate practical solutions and infer the applicability of the concept for more complex systems, such as in the study of complex nuclei where oblique-basis calculations have been successful.

  8. Time-Dependent Coupled Harmonic Oscillators: Classical and Quantum Solutions

    NASA Astrophysics Data System (ADS)

    Macedo, Diego Ximenes; Guedes, Ilde

    2015-10-01

    In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld invariant method. The exact wave functions are obtained by solving the respective Milne-Pinney equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.

  9. Time-dependent coupled harmonic oscillators: Classical and quantum solutions

    NASA Astrophysics Data System (ADS)

    Macedo, D. X.; Guedes, I.

    2014-08-01

    In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne-Pinney (MP) equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.

  10. Reaching Synchronization in Networked Harmonic Oscillators With Outdated Position Data.

    PubMed

    Song, Qiang; Yu, Wenwu; Cao, Jinde; Liu, Fang

    2016-07-01

    This paper studies the synchronization problem for a network of coupled harmonic oscillators by proposing a distributed control algorithm based only on delayed position states, i.e., outdated position states stored in memory. The coupling strength of the network is conveniently designed according to the absolute values and the principal arguments of the nonzero eigenvalues of the network Laplacian matrix. By analyzing a finite number of stability switches of the network with respect to the variation in the time delay, some necessary and sufficient conditions are derived for reaching synchronization in networked harmonic oscillators with positive and negative coupling strengths, respectively, and it is shown that the time delay should be taken from a set of intervals bounded by some critical values. Simulation examples are given to illustrate the effectiveness of the theoretical analysis. PMID:26241985

  11. Franck-Condon factors for multidimensional harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Malmqvist, Per-Åke; Forsberg, Niclas

    1998-03-01

    We present a simple formula for the overlap integrals of two sets of multi-dimensional harmonic oscillators. The oscillators have in general different equilibrium points, force constants, and natural vibration modes. The formula expresses the overlap matrix in the one-dimensional case, < m'| n''>, as a so-called LU decomposition, =<0'|0''> limit∑L mtU tn, where the summation index has a range 0≤ t≤min( m, n), i.e., it is the matrix product of a lower-triangular matrix L with an upper-triangular U. These matrices are obtained from simple recursion formulae. This form is essentially retained in the multi-dimensional case. General matrix elements are obtained by exact and finite expressions, relating them to matrix elements over a single set of harmonic oscillator wave functions. We present test calculations with error estimates, also comparing with literature examples.

  12. Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules

    SciTech Connect

    Go, Clark Kendrick C.; Maquiling, Joel T.

    2010-07-28

    Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.

  13. Argand diagrams, harmonic oscillators, and record-playing tonearms

    NASA Astrophysics Data System (ADS)

    Piccard, Richard D.

    1986-04-01

    The complex analysis of the driven, damped, harmonic oscillator is reviewed for the specific case that the driving force is produced by ``wiggling the other end of the spring,'' a case which many find intuitively appealing. The solution is examined using the Cartesian and polar presentations in the complex plane. The record-playing tonearm is particularly suited as a ``practical example'' because it naturally leads to a question that is much easier to answer in terms of the Argand diagram: What will the cartridge output be?

  14. Random reverse-cyclic matrices and screened harmonic oscillator.

    PubMed

    Srivastava, Shashi C L; Jain, Sudhir R

    2012-04-01

    We have calculated the joint probability distribution function for random reverse-cyclic matrices and shown that it is related to an N-body exactly solvable model. We refer to this well-known model potential as a screened harmonic oscillator. The connection enables us to obtain all the correlations among the particle positions moving in a screened harmonic potential. The density of nontrivial eigenvalues of this ensemble is found to be of the Wigner form and admits a hole at the origin, in contrast to the semicircle law of the Gaussian orthogonal ensemble of random matrices. The spacing distributions assume different forms ranging from Gaussian-like to Wigner. PMID:22680453

  15. Non-Markovian quantum Brownian motion of a harmonic oscillator

    SciTech Connect

    Tang, J.

    1994-02-01

    We apply the density-matrix method to the study of quantum Brownian motion of a harmonic oscillator coupled to a heat bath, a system investigated previously by Caldeira and Leggett using a different method. Unlike the earlier work, in our derivation of the master equation the non-Markovian terms are maintained. Although the same model of interaction is used, discrepancy is found between their results and our equation in the Markovian limit. We also point out that the particular interaction model used by both works cannot lead to the phenomenological generalized Langevin theory of Kubo.

  16. Optimal control of a harmonic oscillator: Economic interpretations

    NASA Astrophysics Data System (ADS)

    Janová, Jitka; Hampel, David

    2013-10-01

    Optimal control is a popular technique for modelling and solving the dynamic decision problems in economics. A standard interpretation of the criteria function and Lagrange multipliers in the profit maximization problem is well known. On a particular example, we aim to a deeper understanding of the possible economic interpretations of further mathematical and solution features of the optimal control problem: we focus on the solution of the optimal control problem for harmonic oscillator serving as a model for Phillips business cycle. We discuss the economic interpretations of arising mathematical objects with respect to well known reasoning for these in other problems.

  17. Fastest Effectively Adiabatic Transitions for a Collection of Harmonic Oscillators.

    PubMed

    Boldt, Frank; Salamon, Peter; Hoffmann, Karl Heinz

    2016-05-19

    We discuss fastest effectively adiabatic transitions (FEATs) for a collection of noninteracting harmonic oscillators with shared controllable real frequencies. The construction of such transitions is presented for given initial and final equilibrium states, and the dependence of the minimum time control on the interval of achievable frequencies is discussed. While the FEAT times and associated FEAT processes are important in their own right as optimal controls, the FEAT time is an added feature which provides a measure of the quality of a shortcut to adiabaticity (STA). The FEAT time is evaluated for a previously reported experiment, wherein a cloud of Rb atoms is cooled following a STA recipe that took about twice as long as the FEAT speed limit, a time efficiency of 50%. PMID:26811863

  18. Free fall and harmonic oscillations: analyzing trampoline jumps

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Eager, David

    2015-01-01

    Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is obtained in terms of maximum normalized force from the trampoline and the harmonic frequency. A simple expression is obtained for the ratio between air-time and harmonic period, and the maximum g-factor. The results are compared to experimental results, including accelerometer data showing 7g during bounces on a small trampoline in an amusement park play area. Similar results are obtained on a larger garden trampoline, and even larger accelerations have been measured for gymnastic trampolines.

  19. Harmonic oscillations and their switching in elliptical optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jie Zheng, Ming; San Chan, Yun; Yu, Kin Wah

    2011-03-01

    We have studied harmonic oscillations in an elliptical optical waveguide array in which the coupling between neighboring waveguides is varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, long-living Bloch oscillations (BO) and dipole oscillations (DO) are obtained when a linear gradient in the propagation constant is applied. Moreover, we achieve a switching from DO to BO or vice versa by ramping up the gradient profile. The various optical oscillations as well as their switching are investigated by field-evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals.

  20. Single trapped ion as a time-dependent harmonic oscillator

    SciTech Connect

    Menicucci, Nicolas C.; Milburn, G. J.

    2007-11-15

    We show how a single trapped ion may be used to test a variety of important physical models realized as time-dependent harmonic oscillators. The ion itself functions as its own motional detector through laser-induced electronic transitions. Alsing et al., [Phys. Rev. Lett. 94, 220401 (2005)] proposed that an exponentially decaying trap frequency could be used to simulate (thermal) Gibbons-Hawking radiation in an expanding universe, but the Hamiltonian used was incorrect. We apply our general solution to this experimental proposal, correcting the result for a single ion and showing that while the actual spectrum is different from the Gibbons-Hawking case, it nevertheless shares an important experimental signature with this result.

  1. BAYESIAN ANALYSIS OF MULTIPLE HARMONIC OSCILLATIONS IN THE SOLAR CORONA

    SciTech Connect

    Arregui, I.; Asensio Ramos, A.; Diaz, A. J.

    2013-03-01

    The detection of multiple mode harmonic kink oscillations in coronal loops enables us to obtain information on coronal density stratification and magnetic field expansion using seismology inversion techniques. The inference is based on the measurement of the period ratio between the fundamental mode and the first overtone and theoretical results for the period ratio under the hypotheses of coronal density stratification and magnetic field expansion of the wave guide. We present a Bayesian analysis of multiple mode harmonic oscillations for the inversion of the density scale height and magnetic flux tube expansion under each of the hypotheses. The two models are then compared using a Bayesian model comparison scheme to assess how plausible each one is given our current state of knowledge.

  2. The Harmonic Oscillator with a Gaussian Perturbation: Evaluation of the Integrals and Example Applications

    ERIC Educational Resources Information Center

    Earl, Boyd L.

    2008-01-01

    A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…

  3. Exact solution of a quantum forced time-dependent harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  4. The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach

    ERIC Educational Resources Information Center

    Lee, Keeyung

    2009-01-01

    The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…

  5. Revised calculation of four-particle harmonic-oscillator transformation brackets matrix

    NASA Astrophysics Data System (ADS)

    Mickevičius, S.; Germanas, D.; Kalinauskas, R. K.

    2013-02-01

    In this article we present a new, considerably enhanced and more rapid method for calculation of the matrix of four-particle harmonic-oscillator transformation brackets (4HOB). The new method is an improved version of 4HOB matrix calculations which facilitates the matrix calculation by finding the eigenvectors of the 4HOB matrix explicitly. Using this idea the new Fortran code for fast and 4HOB matrix calculation is presented. The calculation time decreases more than a few hundred times for large matrices. As many problems of nuclear and hadron physics structure are modeled on the harmonic oscillator (HO) basis our presented method can be useful for large-scale nuclear structure and many-particle identical fermion systems calculations. Program summaryTitle of program: HOTB_M Catalogue identifier: AEFQ_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 2149 No. of bytes in distributed program, including test data, etc.: 17576 Distribution format: tar.gz Programming language: Fortran 90. Computer: Any computer with Fortran 90 compiler. Operating system: Windows, Linux, FreeBSD, True64 Unix. RAM: Up to a few Gigabytes (see Tables 1 and 2 included in the distribution package) Classification: 17.16, 17.17. Catalogue identifier of previous version: AEFQ_v2_0 Journal reference of previous version: Comput. Phys. Comm. 182(2011)1377 Does the new version supersede the previous version?: Yes Nature of problem: Calculation of the matrix of the 4HOB in a more effective way, which allows us to calculate the matrix of the brackets up to a few hundred times more rapidly than in a previous version. Solution method: The method is based on compact expressions of 4HOB, presented in [1] and its simplifications presented in this paper. Reasons for new version

  6. Quadratic Algebra Approach to the Dirac Equation with Spin and Pseudospin Symmetry for the 4D Harmonic Oscillator and U(1) Monopole

    NASA Astrophysics Data System (ADS)

    Aghaei, S.; Chenaghlou, A.

    2015-01-01

    In this paper, we study the Dirac equation with spin and pseudospin symmetry by the quadratic algebra approach for the 4-dimensional harmonic oscillator. By realization of the quadratic algebras in the deformed oscillator algebra, we obtain the relativistic energy spectrum. Also, by regarding the generalized Kustaanheimo-Stiefel transformation, we obtain the relativistic energy spectrum for the charge-dyon system with the U(1) monopole.

  7. Feinberg-Horodecki states of a time-dependent mass distribution harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Eshghi, M.; Sever, R.; Ikhdair, S. M.

    2016-07-01

    The solution of the Feinberg-Horodecki (FH) equation for a time-dependent mass (TDM) harmonic oscillator quantum system is studied. A certain interaction is applied to a mass m(t) to provide a particular spectrum of stationary energies. The related spectrum of the harmonic oscillator potential V(t) acting on the TDM m(t) oscillators is found. We apply the time version of the asymptotic iteration method (AIM) to calculate analytical expressions of the TDM stationary state energies and their wave functions. It is shown that the obtained solutions reduce to those of simple harmonic oscillator as the time-dependent mass reduces to m0.

  8. Inverse Problem for Harmonic Oscillator Perturbed by Potential, Characterization

    NASA Astrophysics Data System (ADS)

    Chelkak, Dmitri; Kargaev, Pavel; Korotyaev, Evgeni

    Consider the perturbed harmonic oscillator Ty=-y''+x2y+q(x)y in L2(R), where the real potential q belongs to the Hilbert space H={q', xq∈ L2(R)}. The spectrum of T is an increasing sequence of simple eigenvalues λn(q)=1+2n+μn, n >= 0, such that μn--> 0 as n-->∞. Let ψn(x,q) be the corresponding eigenfunctions. Define the norming constants νn(q)=limx↑∞log |ψn (x,q)/ψn (-x,q)|. We show that for some real Hilbert space and some subspace Furthermore, the mapping ψ:q|-->ψ(q)=({λn(q)}0∞, {νn(q)}0∞) is a real analytic isomorphism between H and is the set of all strictly increasing sequences s={sn}0∞ such that The proof is based on nonlinear functional analysis combined with sharp asymptotics of spectral data in the high energy limit for complex potentials. We use ideas from the analysis of the inverse problem for the operator -y''py, p∈ L2(0,1), with Dirichlet boundary conditions on the unit interval. There is no literature about the spaces We obtain their basic properties, using their representation as spaces of analytic functions in the disk.

  9. Entanglement dynamics for a conditionally kicked harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Arrais, Eric G.; Sales, J. S.; de Almeida, N. G.

    2016-08-01

    The time evolution of the quantum kicked harmonic oscillator (KHO) is described by the Floquet operator which maps the state of the system immediately before one kick onto the state at a time immediately after the next. Quantum KHO is characterized by three parameters: the coupling strength V 0, the so-called Lamb–Dicke parameter η whose square is proportional to the effective Planck constant {{\\hslash }}{{eff}}, and the ratio T of the natural frequency of the oscillator and the kick frequency. To a given coupling strength and depending on T being a natural or irrational number, the phase space of the classical kicked oscillator can display different behaviors, as for example, stochastic webs or quasicrystal structures, thus showing a chaotic or localized behavior that is mirrored in the quantum phase space. On the other hand, the classical limit is studied letting {{\\hslash }}{{eff}} become negligible. In this paper we investigate how the ratio T, considered as integer, rational or irrational, influences the entanglement dynamics of the quantum KHO and study how the entanglement dynamics behaves when varying either V 0 or {{\\hslash }}{{eff}} parameters.

  10. Phase of the quantum harmonic oscillator with applications to optical polarization

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1993-01-01

    The phase of the quantum harmonic oscillator, the temporal distribution of a particle in a square-well potential, and a quantum theory of angles are derived from a general theory of complementarity. Schwinger's harmonic oscillator model of angular momenta is modified for the case of photons. Angular distributions for systems of identical and distinguishable particles are discussed. Unitary and antiunitary time reversal operators are then presented and applied to optical polarization states in birefringent media.

  11. Noninvariance groups for many-particle systems: Coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Kellman, Michael E.

    1984-07-01

    Noninvariance groups for many-particle systems are investigated in the context of the model problem of the coupling of a pair of harmonic oscillators to give normal modes. First, a recent paper analyzing normal modes in terms of breaking of the SU(2) invariance symmetry of the uncoupled system is reviewed. Next, the noninvariance group description of the one-dimensional oscillator spectrum in terms of infinite-dimensional unitary representations of SU(1,1) is summarized. Then, the analysis of normal modes in terms of a broken noninvariance SU(2,1) group for the two-dimensional problem is carried out. First, the T, U, and V SU(2) subgroup classifications of SU(3) are reviewed in the context of representations for the three-dimensional oscillator. Second, the analogous SU(2) and SU(1,1) subgroup classification of the infinite two-dimensional spectrum is presented. The SU(1,1) groups classify infinite sequences of excitation of the symmetric and antisymmetric stretch, respectively. Then, in an alternate approach, SU(1,1) representations for the spectra of the individual oscillators are coupled, analogous to vector coupling of angular momentum. Normal modes can be obtained in this manner, but only in the limit in which an arbitrary parameter labeling the group representations takes the value infinity. The relation of these results to the theory of group contractions and their implications for the description of truncated spectra (such as coupled Morse oscillators or π-electron spectra of linear polyenes) are briefly discussed.

  12. Harmonic oscillator states with integer and non-integer orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2011-12-01

    We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non

  13. Thermodynamics of trajectories of a quantum harmonic oscillator coupled to N baths

    NASA Astrophysics Data System (ADS)

    Pigeon, Simon; Fusco, Lorenzo; Xuereb, André; De Chiara, Gabriele; Paternostro, Mauro

    2015-07-01

    We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to N dissipative baths by using an approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyze the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.

  14. On the effects of a screw dislocation and a linear potential on the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Bueno, M. J.; Furtado, C.; Bakke, K.

    2016-09-01

    Quantum effects on the harmonic oscillator due to the presence of a linear scalar potential and a screw dislocation are investigated. By searching for bound states solutions, it is shown that an Aharonov-Bohm-type effect for bound states and a restriction of the values of the angular frequency of the harmonic oscillator can be obtained, where the allowed values are determined by the topology of the screw dislocation and the quantum numbers associated with the radial modes and the angular momentum. As particular cases, the angular frequency and the energy levels associated with the ground state and the first excited state of the system are obtained.

  15. Massive fermions interacting via a harmonic oscillator in the presence of a minimal length uncertainty relation

    NASA Astrophysics Data System (ADS)

    Falaye, B. J.; Dong, Shi-Hai; Oyewumi, K. J.; Ilaiwi, K. F.; Ikhdair, S. M.

    2015-10-01

    We derive the relativistic energy spectrum for the modified Dirac equation by adding a harmonic oscillator potential where the coordinates and momenta are assumed to obey the commutation relation [x̂,p̂] = iℏ(1 + ηp2). In the nonrelativistic (NR) limit, our results are in agreement with the ones obtained previously. Furthermore, the extension to the construction of creation and annihilation operators for the harmonic oscillators with minimal length uncertainty relation is presented. Finally, we show that the commutation relation of the SU(1, 1) ˜SO(2, 1) algebra is satisfied by the operators ℒ±̂ and ℒẑ.

  16. Adaptive radial basis function mesh deformation using data reduction

    NASA Astrophysics Data System (ADS)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  17. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    ERIC Educational Resources Information Center

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  18. The Adiabatic Invariant of the n-Degree-of-Freedom Harmonic Oscillator

    ERIC Educational Resources Information Center

    Devaud, M.; Leroy, V.; Bacri, J.-C.; Hocquet, T.

    2008-01-01

    In this graduate-level theoretical paper, we propose a general derivation of the adiabatic invariant of the n-degree-of-freedom harmonic oscillator, available whichever the physical nature of the oscillator and of the parametrical excitation it undergoes. This derivation is founded on the use of the classical Glauber variables and ends up with…

  19. Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes

    ERIC Educational Resources Information Center

    Gauthier, N.

    2004-01-01

    An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…

  20. Fisher Information and Shannon Entropy in Confined 1D Harmonic Oscillator

    SciTech Connect

    Stevanovic, Ljiljana

    2010-01-21

    Study of the linear harmonic oscillator confined in the square well with impenetrable walls is of great interest since its application for modeling parabolic quantum well semiconductor heterostructures. Fisher information and Shannon entropy, as a complexity measure for its ground and some excited energy levels are reported here.

  1. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  2. Decoherence and dissipation of a quantum harmonic oscillator coupled to two-level systems

    SciTech Connect

    Schlosshauer, Maximilian; Hines, A. P.; Milburn, G. J.

    2008-02-15

    We derive and analyze the Born-Markov master equation for a quantum harmonic oscillator interacting with a bath of independent two-level systems. This hitherto virtually unexplored model plays a fundamental role as one of the four 'canonical' system-environment models for decoherence and dissipation. To investigate the influence of further couplings of the environmental spins to a dissipative bath, we also derive the master equation for a harmonic oscillator interacting with a single spin coupled to a bosonic bath. Our models are experimentally motivated by quantum-electromechanical systems and micron-scale ion traps. Decoherence and dissipation rates are found to exhibit temperature dependencies significantly different from those in quantum Brownian motion. In particular, the systematic dissipation rate for the central oscillator decreases with increasing temperature and goes to zero at zero temperature, but there also exists a temperature-independent momentum-diffusion (heating) rate.

  3. The time-dependent quantum harmonic oscillator revisited: Applications to quantum field theory

    SciTech Connect

    Gomez Vergel, Daniel Villasenor, Eduardo J.S.

    2009-06-15

    In this article, we formulate the study of the unitary time evolution of systems consisting of an infinite number of uncoupled time-dependent harmonic oscillators in mathematically rigorous terms. We base this analysis on the theory of a single one-dimensional time-dependent oscillator, for which we first summarize some basic results concerning the unitary implementability of the dynamics. This is done by employing techniques different from those used so far to derive the Feynman propagator. In particular, we calculate the transition amplitudes for the usual harmonic oscillator eigenstates and define suitable semiclassical states for some physically relevant models. We then explore the possible extension of this study to infinite dimensional dynamical systems. Specifically, we construct Schroedinger functional representations in terms of appropriate probability spaces, analyze the unitarity of the time evolution, and probe the existence of semiclassical states for a wide range of physical systems, particularly, the well-known Minkowskian free scalar fields and Gowdy cosmological models.

  4. The Harmonic Oscillator Influenced by Gravitational Wave in Noncommutative Quantum Phase Space

    NASA Astrophysics Data System (ADS)

    Yakup, Rehimhaji; Dulat, Sayipjamal; Li, Kang; Hekim, Mamatabdulla

    2014-04-01

    Dynamical property of harmonic oscillator affected by linearized gravitational wave (LGW) is studied in a particular case of both position and momentum operators which are noncommutative to each other. By using the generalized Bopp's shift, we, at first, derived the Hamiltonian in the noncommutative phase space (NPS) and, then, calculated the time evolution of coordinate and momentum operators in the Heisenberg representation. Tiny vibration of flat Minkowski space and effect of NPS let the Hamiltonian of harmonic oscillator, moving in the plain, get new extra terms from it's original and noncommutative space partner. At the end, for simplicity, we take the general form of the LGW into gravitational plain wave, obtain the explicit expression of coordinate and momentum operators.

  5. A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces

    SciTech Connect

    Vignat, C.; Lamberti, P. W.

    2009-10-15

    Recently, Carinena, et al. [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positive curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.

  6. Coherent dynamics of a flux qubit coupled to a harmonic oscillator.

    PubMed

    Chiorescu, I; Bertet, P; Semba, K; Nakamura, Y; Harmans, C J P M; Mooij, J E

    2004-09-01

    In the emerging field of quantum computation and quantum information, superconducting devices are promising candidates for the implementation of solid-state quantum bits (qubits). Single-qubit operations, direct coupling between two qubits and the realization of a quantum gate have been reported. However, complex manipulation of entangled states-such as the coupling of a two-level system to a quantum harmonic oscillator, as demonstrated in ion/atom-trap experiments and cavity quantum electrodynamics-has yet to be achieved for superconducting devices. Here we demonstrate entanglement between a superconducting flux qubit (a two-level system) and a superconducting quantum interference device (SQUID). The latter provides the measurement system for detecting the quantum states; it is also an effective inductance that, in parallel with an external shunt capacitance, acts as a harmonic oscillator. We achieve generation and control of the entangled state by performing microwave spectroscopy and detecting the resultant Rabi oscillations of the coupled system. PMID:15356624

  7. Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.

    PubMed

    Kienzler, D; Lo, H-Y; Keitch, B; de Clercq, L; Leupold, F; Lindenfelser, F; Marinelli, M; Negnevitsky, V; Home, J P

    2015-01-01

    The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems. PMID:25525161

  8. Corrections to the Born-Oppenheimer approximation for a harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Patterson, Chris W.

    1993-02-01

    We derive simple expressions for the energy corrections to the Born-Oppenheimer approximation valid for a harmonic oscillator. We apply these corrections to the electronic and rotational ground state of H+2 and show that the diabatic energy corrections are linearly dependent on the vibrational quantum numbers as seen in recent variational calculations [D. A. Kohl and E. J. Shipsey, J. Chem. Phys. 84, 2707 (1986)].

  9. Truncated harmonic oscillator and Painlevé IV and V equations

    NASA Astrophysics Data System (ADS)

    Fernández C, David J.; Morales-Salgado, V. S.

    2015-06-01

    Quantum systems described by second and third order polynomial Heisenberg algebras are obtained applying supersymmetric quantum mechanics to the harmonic oscillator with an infinite potential barrier. These systems are linked with the Painlevé IV and V equations, respectively, thus several solutions of these non-linear second-order differential equations will be found, along with a chain of Bäcklund transformations connecting such solutions.

  10. Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator

    SciTech Connect

    Chen Xi; Muga, J. G.

    2010-11-15

    We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes ('shortcuts to adiabaticity') designed to reproduce the initial populations at some predetermined final frequency and time. We provide lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.

  11. The harmonic oscillator on Riemannian and Lorentzian configuration spaces of constant curvature

    NASA Astrophysics Data System (ADS)

    Cariñena, José F.; Rañada, Manuel F.; Santander, Mariano

    2008-03-01

    The harmonic oscillator as a distinguished dynamical system can be defined not only on the Euclidean plane but also on the sphere and on the hyperbolic plane, and more generally on any configuration space with constant curvature and metric of any signature, either Riemannian (definite positive) or Lorentzian (indefinite). In this paper we study the main properties of these "curved" harmonic oscillators simultaneously on any such configuration space, using a Cayley-Klein (CK)-type approach, with two free parameters κ1,κ2 which altogether correspond to the possible values for curvature and signature type: the generic Riemannian and Lorentzian spaces of constant curvature (sphere S2, hyperbolic plane H2, AntiDeSitter sphere AdS1+1, and DeSitter sphere dS1+1) appear in this family, with Euclidean and Minkowski spaces as flat particular cases. We solve the equations of motion for the curved harmonic oscillator and obtain explicit expressions for the orbits by using three different methods: by direct integration, by obtaining the general CK version of Binet's equation, and finally as a consequence of its superintegrable character. The orbits are conics with center at the potential origin on any CK space, thereby extending this well known Euclidean property to any constant curvature configuration space. The final part of the article, that has a more geometric character, presents pertinent results of the theory of conics on spaces of constant curvature.

  12. Steady-state entanglement of harmonic oscillators via dissipation in a single superconducting artificial atom

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Nie, Wei; Feng, Xunli; Oh, C. H.

    2016-07-01

    The correlated emission lasing (CEL) is experimentally demonstrated in harmonic oscillators coupled via a single three-level artificial atom [Phys. Rev. Lett. 115, 223603 (2015), 10.1103/PhysRevLett.115.223603] in which two-mode entanglement only exists in a certain time period when the harmonic oscillators are resonant with the atomic transitions. Here we examine this system and show that it is possible to obtain the steady-state entanglement when the two harmonic oscillators are resonant with Rabi sidebands. Applying dressed atomic states and Bogoliubov-mode transformation, we obtain the analytical results of the variance sum of a pair of Einstein-Podolsky-Rosen (EPR)-like operators. The stable entanglement originates from the dissipation process of the Bogoliubov modes because the atomic system can act as a reservoir in dressed state representation. We also show that the entanglement is robust against the dephasing rates of the superconducing atom, which is expected to have important applications in quantum information processing.

  13. Derivation of exact master equation with stochastic description: Dissipative harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Li, Haifeng; Shao, Jiushu; Wang, Shikuan

    2011-11-01

    A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.

  14. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  15. Containment control for coupled harmonic oscillators with multiple leaders under directed topology

    NASA Astrophysics Data System (ADS)

    Xu, Chengjie; Zheng, Ying; Su, Housheng; Wang, Hua O.

    2015-02-01

    This paper investigates the problem of containment control for coupled harmonic oscillators with multiple leaders under directed topology. Using tools from matrix, graph and stability theories, necessary and sufficient conditions are obtained for coupled harmonic oscillators under continuous-time and sampled-data-based protocols, respectively. When the continuous-time protocol is used, it is proved that every follower will ultimately converge to the convex hull spanned by the leaders if and only if there exists at least one leader that has a directed path to that follower at any time. When the sampled-data-based protocol is used, it is shown that the containment can be achieved if and only if: (1) an appropriate sampling period is chosen and (2) for every follower, there exists at least one leader that has a directed path to that follower at any time. And we also give the containment conditions for coupled harmonic oscillators under undirected topology as a special case. Finally, numerical simulations are presented to illustrate the theoretical findings.

  16. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2004-01-01

    ). Method of solution: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the Eispack library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Restrictions: There are two restrictions for the code: The number of the major shells of the basis does not have to exceed Nmax=26. For the largest values of Nmax (˜23-26), the diagonalization takes the major part of the running time, but the global run-time remains reasonable. Typical running time: (With full optimization in the project settings of the Microsoft Visual Fortran 5.0A on Windows XP.) With Nmax=23, for the neutrons case, and for both parities, if we need all eigenenergies and all eigenfunctions of the bound states, the running time is about 80 sec on the AMD Athlon computer at 1 GHz. In this case, the calculation of the matrix elements takes only about 20 sec. If all unbound states are required, the runtime becomes larger.

  17. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  18. Single particle calculations for a Woods Saxon potential with triaxial deformations, and large Cartesian oscillator basis (new version code)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2007-05-01

    and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Method of solution: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate, respectively, the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Restrictions: There are two restrictions for the code: The number of the major shells of the basis does not have to exceed N=26. For the largest values of N (˜23-26), the diagonalization takes the major part of the running time, but the global run-time remains reasonable. Typical running time: (With full optimization in the project settings of the Compaq Visual Fortran on Windows XP) With N=23, for the neutrons case, and for both parities, the running time is about 40 sec on the P4 computer at 2.6 GHz. In this case, the calculation of the matrix elements takes only about 17 sec. If all unbound states are required, the runtime becomes larger.

  19. SevenOperators, a Mathematica script for harmonic oscillator nuclear matrix elements arising in semileptonic electroweak interactions

    NASA Astrophysics Data System (ADS)

    Haxton, Wick; Lunardini, Cecilia

    2008-09-01

    Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland

  20. Condition for equivalence of q-deformed and anharmonic oscillators

    NASA Technical Reports Server (NTRS)

    Artoni, M.; Zang, Jun; Birman, Joseph L.

    1993-01-01

    The equivalence between the q-deformed harmonic oscillator and a specific anharmonic oscillator model, by which some new insight into the problem of the physical meaning of the parameter q can be attained, are discussed.

  1. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    SciTech Connect

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  2. Generalized Hopf Fibration and Geometric SO(3) Reduction of the 4DOF Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    van der Meer, J. C.; Crespo, F.; Ferrer, S.

    2016-04-01

    It is shown that the generalized Hopf map ℍ × ℍ → ℍ × ℝ × ℝ quaternion formulation can be interpreted as an SO(3) orbit map for a symplectic SO(3) action. As a consequence the generalized Hopf fibration S7 → S4 appears in the SO(3) geometric symplectic reduction of the 4DOF isotropic harmonic oscillator. Furthermore it is shown how the Hopf fibration and associated twistor fibration play a role in the geometry of the Kepler problem and the rigid body problem.

  3. New stochastic equation for a harmonic oscillator: Brownian motion with adhesion

    NASA Astrophysics Data System (ADS)

    Gitterman, M.

    2010-11-01

    In addition to the usually considered stochastic harmonic oscillator with an external random force (Brownian motion) or with random frequency and random damping, we consider an oscillator with a random mass for which the particles of the surrounding medium adhere to the oscillator for some (random) time after the collision, thereby changing the oscillator mass. We have calculated the first two moments and the Lyapunov exponent, which describes the stability of the fixed point. This model can be useful for the analysis of chemical and biological solutions as well as for nano-technological devices.

  4. Protective measurement of the wave function of a single squeezed harmonic-oscillator state

    NASA Astrophysics Data System (ADS)

    Alter, Orly; Yamamoto, Yoshihisa

    1996-05-01

    A scheme for the "protective measurement"

    [Phys. Rev. A 47, 4616 (1993)]
    of the wave function of a squeezed harmonic-oscillator state is described. This protective measurement is shown to be equivalent to a measurement of an ensemble of states. The protective measurement, therefore, allows for a definition of the quantum wave function on a single system. Yet, this equivalency also suggests that both measurement schemes account for the epistemological meaning of the wave function only. The protective measurement requires a full a priori knowledge of the measured state. The intermediate cases, in which only partial a priori information is given, are also discussed.

  5. Harmonic oscillators and resonance series generated by a periodic unstable classical orbit

    NASA Technical Reports Server (NTRS)

    Kazansky, A. K.; Ostrovsky, Valentin N.

    1995-01-01

    The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.

  6. Evading surface and detector frequency noise in harmonic oscillator measurements of force gradients

    PubMed Central

    Moore, Eric W.; Lee, SangGap; Hickman, Steven A.; Harrell, Lee E.; Marohn, John A.

    2010-01-01

    We introduce and demonstrate a method of measuring small force gradients acting on a harmonic oscillator in which the force-gradient signal of interest is used to parametrically up-convert a forced oscillation below resonance into an amplitude signal at the oscillator’s resonance frequency. The approach, which we demonstrate in a mechanically detected electron spin resonance experiment, allows the force-gradient signal to evade detector frequency noise by converting a slowly modulated frequency signal into an amplitude signal. PMID:20733934

  7. Coherent states for nonlinear harmonic oscillator and some of its properties

    SciTech Connect

    Amir, Naila E-mail: naila.amir@sns.nust.edu.pk; Iqbal, Shahid E-mail: siqbal@sns.nust.edu.pk

    2015-06-15

    A one-dimensional nonlinear harmonic oscillator is studied in the context of generalized coherent states. We develop a perturbative framework to compute the eigenvalues and eigenstates for the quantum nonlinear oscillator and construct the generalized coherent states based on Gazeau-Klauder formalism. We analyze their statistical properties by means of Mandel parameter and second order correlation function. Our analysis reveals that the constructed coherent states exhibit super-Poissonian statistics. Moreover, it is shown that the coherent states mimic the phenomena of quantum revivals and fractional revivals during their time evolution. The validity of our results has been discussed in terms of various parametric bounds imposed by our computational scheme.

  8. Quantum entanglement in coupled harmonic oscillator systems: from micro to macro

    NASA Astrophysics Data System (ADS)

    Kao, Jhih-Yuan; Chou, Chung-Hsien

    2016-07-01

    We investigate the entanglement dynamics of several models of coupled harmonic oscillators, whereby a number of properties concerning entanglement have been scrutinized, such as how the environment affects entanglement of a system, and death and revival of entanglement. Among them, there are two models for which we are able to vary their particle numbers easily by assuming identicalness, thereby examining how the particle number affects entanglement. We have found that the upper bound of entanglement between identical oscillators is approximately inversely proportional to the particle number.

  9. Even and odd coherent states of supersymmetric harmonic oscillators and their nonclassical properties

    NASA Astrophysics Data System (ADS)

    Afshar, Davood; Motamedinasab, Amin; Anbaraki, Azam; Jafarpour, Mojtaba

    2016-02-01

    In this paper, we have constructed even and odd superpositions of supercoherent states, similar to the standard even and odd coherent states of the harmonic oscillator. Then, their nonclassical properties, that is, squeezing and entanglement have been studied. We have observed that even supercoherent states show squeezing behavior for some values of parameters involved, while odd supercoherent states do not show squeezing at all. Also sub-Poissonian statistics have been observed for some ranges of the parameters in both states. We have also shown that these states may be considered as logical qubits which reduce to the Bell states at a limit, with concurrence equal to 1.

  10. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress

    SciTech Connect

    Bocko, M.F.; Onofrio, R.

    1996-07-01

    Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables of a system but allows one-time measurements of a single observable with any precision. The dynamical evolution of a system immediately following a measurement limits the class of observables that may be measured repeatedly with arbitrary precision, with the influence of the measurement apparatus on the system being confined strictly to the conjugate observables. Observables having this feature, and the corresponding measurements performed on them, have been named quantum nondemolition or back-action evasion observables. In a previous review (Caves {ital et} {ital al}., 1980, Rev. Mod. Phys. {bold 52}, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a harmonic oscillator was presented. The present review summarizes the experimental progress on quantum nondemolition measurements and the classical models developed to describe and guide the development of practical implementations of quantum nondemolition measurements. The relationship between the classical and quantum theoretical models is also reviewed. The concept of quantum nondemolition and back-action evasion measurements originated in the context of measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be useful in other experimental contexts as well, as is discussed in the last part of this review. {copyright} {ital 1996 The American Physical Society.}

  11. Purity and decoherence in the theory of a damped harmonic oscillator.

    PubMed

    Isar, A; Sandulescu, A; Scheid, W

    1999-12-01

    For the generalized master equations derived by Karrlein and Grabert for the microscopic model of a damped harmonic oscillator, the conditions for purity of states are written, in particular for different initial conditions and different types of damping, including Ohmic, Drude, and weak coupling cases, and the Agarwal and Weidlich-Haake models. It is shown that the states which remain pure are the squeezed states with variances that are constant in time. For pure states, generalized nonlinear Schrödinger-type equations corresponding to these master equations are also obtained. Then the condition for purity of states of a damped harmonic oscillator is considered in the framework of Lindblad theory for open quantum systems. For a special choice of the environment coefficients, correlated coherent states with constant variances and covariance are shown to be the only states which remain pure all the time during the evolution of the considered system. In Karrlein-Grabert and Lindblad models, as well as in the particular models considered, expressions for the rate of entropy production are written, and it is shown that state which preserve their purity in time are also states which minimize entropy production and, therefore, are the most stable state under evolution in the presence of the environment, and play an important role in the description of decoherence phenomenon. PMID:11970551

  12. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.

  13. Double simple-harmonic-oscillator formulation of the thermal equilibrium of a fluid interacting with a coherent source of phonons

    NASA Technical Reports Server (NTRS)

    Defacio, B.; Vannevel, Alan; Brander, O.

    1993-01-01

    A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.

  14. Squeezing induced in a harmonic oscillator by a sudden change in mass or frequency

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Colegrave, R. K.

    1993-08-01

    The Kanai-Caldirola (Bateman) Hamiltonian is used to derive the dynamics of a simple harmonic oscillator, initially in a minimum uncertainty state, under the influence of an external agency which causes the mass parameter to change from M0 to M1 in a short time ɛ. Then the frequency changes from ω0 to ω1=(M0/M1)ω0+O(ɛ2). In the limit ɛ-->0, no squeezing or loss of coherence occurs. If M1/M0=1+/-η (0<η<<1), then a squeezing of order ɛ2η occurs. If M1/M0 is appreciably different from unity, then the quadrature variances are unequal but the state no longer has minimum uncertainty. An application could be made in quantum optics.

  15. Resolvent of harmonic oscillator Hamiltonian and its application to Fourier transform for generalized functions

    NASA Astrophysics Data System (ADS)

    Kuwata, S.

    2016-02-01

    For the Fourier transform: ℱ of a non-integrablefunction φ, we exploit theresolvent ℛ forthe harmonic oscillator Hamiltonian, where the integral kernel for ℛ can be represented using the confluent hypergeometric function. Due to the commutativity of ℱ and ℛ, ℱ can be regarded by ℛ-1ℱℛ. In the case of φ(x) = 1, for example, it follows that(ℛφ)(x) is continuous on ℝ and that (ℛφ)(x) ≃ x-2(|x| → ∞)), so that ℛφ turns outto be integrable over ℝ. The finding that(ℱℛ)φ is exponentially localized indicatesthat the mapℱℛ:φ ↦ ¢ can be used as data compression of φ. Moreover, the inverse map:ℛ-1ℱ-1:¢ ↦ φ is well defined, which implies that the data decompression into φ can be made in a numerical calculation friendly way.

  16. Harmonic oscillator representation in the theory of scattering and nuclear reactions

    NASA Technical Reports Server (NTRS)

    Smirnov, Yuri F.; Shirokov, A. M.; Lurie, Yuri, A.; Zaitsev, S. A.

    1995-01-01

    The following questions, concerning the application of the harmonic oscillator representation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR; separable expansion of the short range potentials and the calculation of the phase shifts; 'isolated states' as generalization of the Wigner-von Neumann bound states embedded in continuum; a nuclear coupled channel problem in HOR; and the description of true three body scattering in HOR. As an illustration the soft dipole mode in the (11)Li nucleus is considered in a frame of the (9)Li+n+n cluster model taking into account of three body continuum effects.

  17. Stability and multiple bifurcations of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity.

    PubMed

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O

    2008-12-01

    We investigate the dynamics of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity. We perform a linearized stability analysis and multiple bifurcations of the zero solution of the system near zero eigenvalue singularity. Taking the time delay as the bifurcation parameter, the presence of steady-state bifurcation, Bogdanov-Takens bifurcation, triple zero, and Hopf-zero singularities is demonstrated. In the case when the system has a simple zero eigenvalue, center manifold reduction and normal form theory are used to investigate the stability and the types of steady-state bifurcation. The stability of the zero solution of the system near the simple zero eigenvalue singularity is completely solved. PMID:19123623

  18. Alternative descriptions of wave and particle aspects of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Schuch, Dieter

    1993-01-01

    The dynamical properties of the wave and particle aspects of the harmonic oscillator can be studied with the help of the time-dependent Schroedinger equation (SE). Especially the time-dependence of maximum and width of Gaussian wave packet solutions allow to show the evolution and connections of those two complementary aspects. The investigation of the relations between the equations describing wave and particle aspects leads to an alternative description of the considered systems. This can be achieved by means of a Newtonian equation for a complex variable in connection with a conservation law for a nonclassical angular momentum-type quantity. With the help of this complex variable, it is also possible to develop a Hamiltonian formalism for the wave aspect contained in the SE, which allows to describe the dynamics of the position and momentum uncertainties. In this case the Hamiltonian function is equivalent to the difference between the mean value of the Hamiltonian operator and the classical Hamiltonian function.

  19. The sojourn time of the inverted harmonic oscillator on the noncommutative plane

    NASA Astrophysics Data System (ADS)

    Guo, Guang-Jie; Ren, Zhong-Zhou; Ju, Guo-Xing; Long, Chao-Yun

    2011-10-01

    The sojourn time of the Gaussian wavepacket that is stationed at the center of the inverted harmonic oscillator is investigated on the noncommutative plane in detail. In ordinary commutative space quantum mechanics, the sojourn time of the Gaussian wavepacket is always a monotonically decreasing function of the curvature parameter ω of the potential. However, in this paper, we find that the spatial noncommutativity makes the sojourn time a concave function of ω with a minimum at an inflection point ω0. Furthermore, if ω is larger than a certain critical value the sojourn time will become infinity. Thus, the ordinary intuitive physical picture about the relation between the sojourn time and the shape of the inverted oscillator potential is changed when the spatial noncommutativity is considered.

  20. Semiclassical analysis of long-wavelength multiphoton processes: The periodically driven harmonic oscillator

    SciTech Connect

    Fox, Ronald F.; Vela-Arevalo, Luz V.

    2002-11-01

    The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms, a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to demonstrate that for the oscillator case there are no multiphoton resonances.

  1. GENERAL: Solving Dirac Equation with New Ring-Shaped Non-Spherical Harmonic Oscillator Potential

    NASA Astrophysics Data System (ADS)

    Hu, Xian-Quan; Luo, Guang; Wu, Zhi-Min; Niu, Lian-Bin; Ma, Yan

    2010-02-01

    A new ring-shaped non-harmonic oscillator potential is proposed. The precise hound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.

  2. Vibrational spectroscopy of a harmonic oscillator system nonlinearly coupled to a heat bath

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2002-10-01

    Vibrational relaxation of a harmonic oscillator nonlinearly coupled to a heat bath is investigated by the Gaussian-Markovian quantum Fokker-Planck equation approach. The system-bath interaction is assumed to be linear in the bath coordinate, but linear plus square in the system coordinate modeling the elastic and inelastic relaxation mechanisms. Interplay of the two relaxation processes induced by the linear-linear and square-linear interactions in Raman or infrared spectra is discussed for various system-bath couplings, temperatures, and correlation times for the bath fluctuations. The one-quantum coherence state created through the interaction with the pump laser pulse relaxes through different pathways in accordance with the mechanisms of the system-bath interactions. Relations between the present theory, Redfield theory, and stochastic theory are also discussed.

  3. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-03-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO.

  4. Attractors and Spectral Characteristics of Neural Structures Based on the Model of the Quantum Harmonic Oscillator

    SciTech Connect

    Rigatos, Gerasimos G.

    2007-09-06

    Neural computation based on principles of quantum mechanics can provide improved models of memory processes and brain functioning and is of importance for the realization of quantum computing machines. To this end, this paper studies neural structures with weights that follow the model of the quantum harmonic oscillator. These weights correspond to diffusing particles, which interact to each other as the theory of Brownian motion predicts. The learning of the stochastic weights (convergence of the diffusing particles to an equilibrium) is analyzed. In the case of associative memories the proposed neural model results in an exponential increase of the number of attractors. Spectral analysis shows that the stochastic weights satisfy an equation which is analogous to the principle of uncertainty.

  5. Bose–Einstein condensation in a two-component Bose gas with harmonic oscillator interaction

    NASA Astrophysics Data System (ADS)

    Abulseoud, A. A.; Abbas, A. H.; Galal, A. A.; El-Sherbini, Th M.

    2016-07-01

    In this article a system containing two species of identical bosons interacting via a harmonic oscillator potential is considered. It is assumed that the number of bosons of each species is the same and that bosons belonging to the same species repel each other while those belonging to different species attract. The Hamiltonian is diagonalized and the energy spectrum of the system is written down. The behaviour of the system in the thermodynamic limit is studied within the framework of the grand canonical ensemble, and thermodynamic parameters, such as the internal energy, entropy and specific heat capacity are calculated. It is shown that the system exhibits a single species Bose–Einstein condensation when the coupling strengths are equal and a dual species condensation when they are different.

  6. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  7. Relation between the extended time-delayed feedback control algorithm and the method of harmonic oscillators.

    PubMed

    Pyragas, Viktoras; Pyragas, Kestutis

    2015-08-01

    In a recent paper [Phys. Rev. E 91, 012920 (2015)] Olyaei and Wu have proposed a new chaos control method in which a target periodic orbit is approximated by a system of harmonic oscillators. We consider an application of such a controller to single-input single-output systems in the limit of an infinite number of oscillators. By evaluating the transfer function in this limit, we show that this controller transforms into the known extended time-delayed feedback controller. This finding gives rise to an approximate finite-dimensional theory of the extended time-delayed feedback control algorithm, which provides a simple method for estimating the leading Floquet exponents of controlled orbits. Numerical demonstrations are presented for the chaotic Rössler, Duffing, and Lorenz systems as well as the normal form of the Hopf bifurcation. PMID:26382493

  8. Solution of the Quantum Harmonic Oscillator Plus a Delta-Function Potential at the Origin: The "Oddness" of Its Even-Parity Solutions

    ERIC Educational Resources Information Center

    Viana-Gomes, J.; Peres, N. M. R.

    2011-01-01

    We derive the energy levels associated with the even-parity wavefunctions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the…

  9. Sampled-data synchronisation of coupled harmonic oscillators with communication and input delays subject to controller failure

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Zhou, Jin; Wu, Quanjun

    2016-01-01

    This paper considers the sampled-data synchronisation problems of coupled harmonic oscillators with communication and input delays subject to controller failure. A synchronisation protocol is proposed for such oscillator systems over directed network topology, and then some general algebraic criteria on exponential convergence for the proposed protocol are established. The main features of the present investigation include: (1) both the communication and input delays are simultaneously addressed, and the directed network topology is firstly considered and (2) the effects of time delays on synchronisation performance are theoretically and numerically investigated. It is shown that in the absence of communication delays, coupled harmonic oscillators can achieve synchronisation oscillatory motion. Whereas if communication delays are nonzero at infinite multiple sampled-data instants, its synchronisation (or consensus) state is zero. This conclusion can be used as an effective control strategy to stabilise coupled harmonic oscillators in practical applications. Furthermore, it is interesting to find that increasing either communication or input delays will enhance the synchronisation performance of coupled harmonic oscillators. Subsequently, numerical examples illustrate and visualise theoretical results.

  10. A Back-to-Front Derivation: The Equal Spacing of Quantum Levels Is a Proof of Simple Harmonic Oscillator Physics

    ERIC Educational Resources Information Center

    Andrews, David L.; Romero, Luciana C. Davila

    2009-01-01

    The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…

  11. Solutions of the Klein-Gordon equation with equal scalar and vector harmonic oscillator plus inverse quadratic potential

    NASA Astrophysics Data System (ADS)

    Ita, B. I.; Obong, H. P.; Ehi-Eromosele, C. O.; Edobor-Osoh, A.; Ikeuba, A. I.

    2014-11-01

    The solutions of the Klein-Gordon equation with equal scalar and vector harmonic oscillator plus inverse quadratic potential for S-waves have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding un-normalized eigenfunctions are obtained in terms of the Laguerre polynomials.

  12. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    SciTech Connect

    Cari, C. Suparmi, A.

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  13. Quantization and instability of the damped harmonic oscillator subject to a time-dependent force

    SciTech Connect

    Majima, H. Suzuki, A.

    2011-12-15

    We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity (-{gamma}x) and a time-dependent external force (K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: L=mxy-U(x+1/2 y)+U(x-1/2 y)+({gamma})/2 (xy-yx)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x{+-}y/2)=1/2 k(x{+-}y/2){sup 2} specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian H. The Heisenberg equations of motion utilizing the quantized Hamiltonian H surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force. - Highlights: > A method of quantizing dissipative systems is presented. > In order to obtain the method, we apply Bateman's dual system approach. > A formula for a transition amplitude is derived. > We use the formula to study the instability of the dissipative systems.

  14. Detecting topological entanglement entropy in a lattice of quantum harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Demarie, Tommaso F.; Linjordet, Trond; Menicucci, Nicolas C.; Brennen, Gavin K.

    2014-08-01

    The Kitaev surface code model is the most studied example of a topologically ordered phase and typically involves four-spin interactions on a two-dimensional surface. A universal signature of this phase is topological entanglement entropy (TEE), but due to low signal to noise, it is extremely difficult to observe in these systems, and one usually resorts to measuring anyonic statistics of excitations or non-local string operators to reveal the order. We describe a continuous-variable analog to the surface code using quantum harmonic oscillators on a two-dimensional lattice, which has the distinctive property of needing only two-body nearest-neighbor interactions for its creation. Though such a model is gapless, it satisfies an area law and the ground state can be simply prepared by measurements on a finitely squeezed and gapped two-dimensional cluster-state without topological order. Asymptotically, the continuous variable surface code TEE grows linearly with the squeezing parameter and a recently discovered non-local quantity, the topological logarithmic negativity, behaves analogously. We also show that the mixed-state generalization of the TEE, the topological mutual information, is robust to some forms of state preparation error and can be detected simply using single-mode quadrature measurements. Finally, we discuss scalable implementation of these methods using optical and circuit-QED technology.

  15. Floquet topological system based on frequency-modulated classical coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-02-01

    We theoretically propose how to observe topological effects in a generic classical system of coupled harmonic oscillators, such as classical pendula or lumped-element electric circuits, whose oscillation frequency is modulated fast in time. Making use of Floquet theory in the high-frequency limit, we identify a regime in which the system is accurately described by a Harper-Hofstadter model where the synthetic magnetic field can be externally tuned via the phase of the frequency modulation of the different oscillators. We illustrate how the topologically protected chiral edge states, as well as the Hofstadter butterfly of bulk bands, can be observed in the driven-dissipative steady state under a monochromatic drive. In analogy with the integer quantum Hall effect, we show how the topological Chern numbers of the bands can be extracted from the mean transverse shift of the steady-state oscillation amplitude distribution. Finally, we discuss the regime where the analogy with the Harper-Hofstadter model breaks down.

  16. Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.

    2015-11-01

    In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.

  17. Nonlinear Spectroscopic Theory of Displaced Harmonic Oscillators with Differing Curvatures: A Correlation Function Approach

    NASA Astrophysics Data System (ADS)

    Fidler, Andrew F.; Engel, Gregory S.

    2013-10-01

    We present a theory for a bath model in which we approximate the adiabatic nuclear potential surfaces on the ground and excited electronic states by displaced harmonic oscillators that differ in curvature. Calculations of the linear and third-order optical response functions employ an effective short-time approximation coupled with the cumulant expansion. In general, all orders of correlation contribute to the optical response, indicating that the solvation process cannot be described as Gaussian within the model. Calculations of the linear absorption and fluorescence spectra resulting from the theory reveal a stronger temperature dependence of the Stokes shift along with a general asymmetry between absorption and fluorescence line shapes, resulting purely from the difference in the phonon side band. We discuss strategies for controlling spectral tuning and energy-transfer dynamics through the manipulation of the excited-state and ground-state curvature. Calculations of the nonlinear response also provide insights into the dynamics of the system-bath interactions and reveal that multidimensional spectroscopies are sensitive to a difference in curvature between the ground- and excited-state adiabatic surfaces. This extension allows for the elucidation of short-time dynamics of dephasing that are accessible in nonlinear spectroscopic methods.

  18. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.

    PubMed

    Insinga, Andrea; Andresen, Bjarne; Salamon, Peter

    2016-07-01

    Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time. PMID:27575089

  19. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Insinga, Andrea; Andresen, Bjarne; Salamon, Peter

    2016-07-01

    Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time.

  20. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  1. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.

    2016-07-01

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n  ⩽  5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E  ×  B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.

  2. Development and applications of algorithms for calculating the transonic flow about harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.

    1984-01-01

    A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.

  3. Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.

    2008-01-01

    We prove that the 1- d quantum harmonic oscillator is stable under spatially localized, time quasi-periodic perturbations on a set of Diophantine frequencies of positive measure. This proves a conjecture raised by Enss-Veselic in their 1983 paper [EV] in the general quasi-periodic setting. The motivation of the present paper also comes from construction of quasi-periodic solutions for the corresponding nonlinear equation.

  4. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis (TRIAXIAL 2014, Third version of the code Triaxial)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2014-11-01

    , WINDOWS 7, LINUX. RAM: 256 Mb (depending on nmax). Swap file: 4Gb (depending on nmax) Classification: 17.7. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSK_v2_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 634 Nature of problem: The Single particle energies and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Solution method: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Two quantum numbers are conserved: the parity and the signature. Due to the Kramers degeneracy, only positive signature is considered. Therefore, calculations are made for positive and negative parity separately (with positive signature only). Reasons for new version: Now, there are several ways to obtain the eigenvalues and the eigenfunctions. The eigenvalues can be obtained from the subroutine ‘eigvals’ or from the array ‘energies’ or also from the formatted files ‘valuu.dat’, ‘eigenvalo.dat’, ‘eigenva.dat’ or better from the unformatted file ‘eigenvaunf.dat’. The eigenfunctions can be obtained straightforwardly in configuration space from the subroutine ‘eigfunc’ or by their components on the oscillator basis from the subroutine ‘compnts’. The latter are also recorded on a formatted file ‘componento.dat’ or on an unformatted file ‘componentounf.dat’. Summary of revisions: This version is

  5. Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential

    NASA Astrophysics Data System (ADS)

    Van Assche, W.; Yáñez, R. J.; Dehesa, J. S.

    1995-08-01

    The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called ``entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= -∫-∞+∞H2n(x)log H2n(x) e-x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(-||x||m), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423-4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ≂log(π√2n/e)+o(1) and Sγ-1/2log λ≂log(π√2n/e)+o(1), so that Sρ+Sγ≂log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129-132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.

  6. Microwave Imaging Reflectometry for the study of Edge Harmonic Oscillations on DIII-D

    NASA Astrophysics Data System (ADS)

    Ren, X.; Chen, M.; Chen, X.; Domier, C. W.; Ferraro, N. M.; Kramer, G. J.; Luhmann, N. C., Jr.; Muscatello, C. M.; Nazikian, R.; Shi, L.; Tobias, B. J.; Valeo, E.

    2015-10-01

    Quiescent H-mode (QH-mode) is an ELM free mode of operation in which edge-localized harmonic oscillations (EHOs) are believed to enhance particle transport, thereby stabilizing ELMs and preventing damage to the divertor and plasma facing components. Microwave Imaging Reflectometer (MIR) enabling direct comparison between the measured and simulated 2D images of density fluctuations near the edge can determine the 2D structure of density oscillation, which can help to explain the physics behind EHO modes. MIR data sometimes indicate a counter-propagation between dominant (n=1) and higher harmonic modes of coherent EHOs in the steep gradient regions of the pedestal. To preclude diagnostic artifacts, we have performed forward modeling that includes possible optical mis-alignments to show that offsets between transmitting and receiving antennas do not account for this feature. We have also simulated the non-linear structure of the EHO modes, which induces multiple harmonics that are properly charaterized in the synthetic diagnostic. By excluding mis-alignments of optics as well as patially eliminating non-linearity of EHO mode structure as possible explanation for the data, counter-propagation observed in MIR data, which is not corroborated by external Mirnov coil array measurements, may be due to subtleties of the eigenmode structure, such as an inversion radius consistent with a magnetic island. Similar effects are observed in analysis of internal ECE-Imaging and BES data. The identification of a non-ideal structure motivates further exploration of nonlinear models of this instability. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  7. Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation

    SciTech Connect

    Saito, Teruo; Yamada, Naoki; Ikeuti, Shinji; Tatematsu, Yoshinori; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka; Ogasawara, Shinya; Manuilov, Vladimir N.; Shimozuma, Takashi; Kubo, Shin; Nishiura, Masaki; Tanaka, Kenji; Kawahata, Kazuo

    2012-06-15

    New power records of second harmonic gyrotron oscillation have been demonstrated in the sub-THz band. The first step gyrotron of demountable type had succeeded in oscillation with power more than 50 kW at 350 GHz and nearly 40 kW at 390 GHz [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009)]. Then, the second step gyrotron of sealed-off type was manufactured. A cavity mode was carefully selected to avoid mode competition with a neighboring fundamental harmonic mode. Matching of the selected mode with the electron gun was also circumspectly considered. The second step gyrotron has attained higher power radiation than the first gyrotron. The maximum single mode power was 62 kW at 388 GHz. Then, the electron gun was modified for use of a different cavity mode with a higher coupling coefficient than that for the 62 kW mode. The new mode proved single mode oscillation power of 83 kW at about 389 GHz. These results are new second-harmonic-oscillation power records for sub-THz gyrotrons. The present study constitutes foundations of development of high power second harmonic sub-THz gyrotron for application to collective Thomson scattering measurement on fusion plasmas, especially on high-density plasmas such as those produced in LHD [N. Ohyabu et al., Phys. Rev. Lett. 97, 055002 (2006)]. This paper reports the design consideration to realize high power single mode gyrotron oscillation at second harmonic and the examination of oscillation characteristics of the gyrotron.

  8. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis (TRIAXIAL 2014, Third version of the code Triaxial)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2014-11-01

    , WINDOWS 7, LINUX. RAM: 256 Mb (depending on nmax). Swap file: 4Gb (depending on nmax) Classification: 17.7. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSK_v2_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 634 Nature of problem: The Single particle energies and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Solution method: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Two quantum numbers are conserved: the parity and the signature. Due to the Kramers degeneracy, only positive signature is considered. Therefore, calculations are made for positive and negative parity separately (with positive signature only). Reasons for new version: Now, there are several ways to obtain the eigenvalues and the eigenfunctions. The eigenvalues can be obtained from the subroutine ‘eigvals’ or from the array ‘energies’ or also from the formatted files ‘valuu.dat’, ‘eigenvalo.dat’, ‘eigenva.dat’ or better from the unformatted file ‘eigenvaunf.dat’. The eigenfunctions can be obtained straightforwardly in configuration space from the subroutine ‘eigfunc’ or by their components on the oscillator basis from the subroutine ‘compnts’. The latter are also recorded on a formatted file ‘componento.dat’ or on an unformatted file ‘componentounf.dat’. Summary of revisions: This version is

  9. Wigner distribution function and entropy of the damped harmonic oscillator within the theory of the open quantum systems

    NASA Technical Reports Server (NTRS)

    Isar, Aurelian

    1995-01-01

    The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.

  10. Two-dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2004-01-01

    Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model.

  11. Two-dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath.

    PubMed

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2004-01-01

    Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model. PMID:15267286

  12. Complex Vector Formalism of Harmonic Oscillator in Geometric Algebra: Particle Mass, Spin and Dynamics in Complex Vector Space

    NASA Astrophysics Data System (ADS)

    Muralidhar, K.

    2014-03-01

    Elementary particles are considered as local oscillators under the influence of zeropoint fields. Such oscillatory behavior of the particles leads to the deviations in their path of motion. The oscillations of the particle in general may be considered as complex rotations in complex vector space. The local particle harmonic oscillator is analyzed in the complex vector formalism considering the algebra of complex vectors. The particle spin is viewed as zeropoint angular momentum represented by a bivector. It has been shown that the particle spin plays an important role in the kinematical intrinsic or local motion of the particle. From the complex vector formalism of harmonic oscillator, for the first time, a relation between mass and bivector spin has been derived in the form . Where, is the angular velocity bivector of complex rotations, is the velocity of light. The unit vector acts as an operator on the idempotents and to give the eigen values The constant represents two fold nature of the equation corresponding to particle and antiparticle states. Further the above relation shows that the mass of the particle may be interpreted as a local spatial complex rotation in the rest frame. This gives an insight into the nature of fundamental particles. When a particle is observed from an arbitrary frame of reference, it has been shown that the spatial complex rotation dictates the relativistic particle motion. The mathematical structure of complex vectors in space and spacetime is developed.

  13. Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Yang, T.; Nava, G.; Martınez Vázquez, R.; Di Tano, M.; Veglione, M.; Minzioni, P.; Mondello, C.; Cristiani, I.; Osellame, R.

    2015-03-01

    Optical stretching is a powerful technique for the mechanical phenotyping of single suspended cells that exploits cell deformability as an inherent functional marker. Dual-beam optical trapping and stretching of cells is a recognized tool to investigate their viscoelastic properties. The optical stretcher has the ability to deform cells through optical forces without physical contact or bead attachment. In addition, it is the only method that can be combined with microfluidic delivery, allowing for the serial, high-throughput measurement of the optical deformability and the selective sorting of single specific cells. Femtosecond laser micromachining can fabricate in the same chip both the microfluidic channel and the optical waveguides, producing a monolithic device with a very precise alignment between the components and very low sensitivity to external perturbations. Femtosecond laser irradiation in a fused silica chip followed by chemical etching in hydrofluoric acid has been used to fabricate the microfluidic channels where the cells move by pressure-driven flow. With the same femtosecond laser source two optical waveguides, orthogonal to the microfluidic channel and opposing each other, have been written inside the chip. Here we present an optimized writing process that provides improved wall roughness of the micro-channels allowing high-quality imaging. In addition, we will show results on cell sorting on the basis of mechanical properties in the same device: the different deformability exhibited by metastatic and tumorigenic cells has been exploited to obtain a metastasis-cells enriched sample. The enrichment is verified by exploiting, after cells collection, fluorescence microscopy.

  14. Harmonic oscillator wave functions of a self-assembled InAs quantum dot measured by scanning tunneling microscopy.

    PubMed

    Teichmann, Karen; Wenderoth, Martin; Prüser, Henning; Pierz, Klaus; Schumacher, Hans W; Ulbrich, Rainer G

    2013-08-14

    InAs quantum dots embedded in an AlAs matrix inside a double barrier resonant tunneling diode are investigated by cross-sectional scanning tunneling spectroscopy. The wave functions of the bound quantum dot states are spatially and energetically resolved. These bound states are known to be responsible for resonant tunneling phenomena in such quantum dot diodes. The wave functions reveal a textbook-like one-dimensional harmonic oscillator behavior showing up to five equidistant energy levels of 80 meV spacing. The derived effective oscillator mass of m* = 0.24m0 is 1 order of magnitude higher than the effective electron mass of bulk InAs that we attribute to the influence of the surrounding AlAs matrix. This underlines the importance of the matrix material for tailored QD devices with well-defined properties. PMID:23777509

  15. Optimal control equations for the one dimensional quantum harmonic oscillator under the influence of external dipole effects

    SciTech Connect

    Ayvaz, Muzaffer; Demiralp, Metin

    2012-12-10

    This study focuses on the construction of the optimal control equations for one dimensional quantum harmonic oscillator under the influence of external dipol effects and the solution of these equations by using Fluctuationlessness Theorem and a recently developed scheme called Characteristic Evolutions Method. The dipole function of the system has been taken as odd cubic spatial polynomial. Optimal control equations of the system under consideration are constructed by using expectation values of the position and the momentum operators instead of the wave and costate evolutions. It is shown that, the resulting equations are systems of ordinary differential equations and there are infinitely many ODEs. The solution strategy is based on the approximation of the expectation values for the operator products in the sense of Fluctuationlessness Theorem.

  16. Landau-Zener transitions in a two-level system that is coupled to a finite-temperature harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Ashhab, Sahel

    2015-03-01

    The Landau-Zener (LZ) problem is a standard paradigm for studying energy transfer and adiabatic passage protocols. We consider the LZ problem for a two level system when this system interacts with one harmonic oscillator mode that is initially set to a finite-temperature thermal equilibrium state. The oscillator could represent an external mode that is strongly coupled to the system, e.g. an ionic oscillation mode in a molecule, or it could represent a prototypical uncontrolled environment. We analyze the system's occupation probabilities at the final time in a number of different regimes, varying the system and oscillator frequencies, their coupling strength and the temperature. In particular we find some surprising non-monotonic dependence on the coupling strength and temperature.

  17. Chaos in axially symmetric potentials with octupole deformation

    SciTech Connect

    Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )

    1994-04-11

    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.

  18. Neural network solution of the Schrödinger equation for a two-dimensional harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Androsiuk, J.; Kułak, L.; Sienicki, K.

    1993-07-01

    We present computer simulations of a neural network capable of learning to perform transformations generated by the Schrödinger equation required to find eigenenergies of a two-dimensional harmonic oscillator. We show that this task can be achieved by a not fully connected back-propagation neural network containing 49 input neurons, 3 hidden layer neurons and 1 output neuron. The investigated neural network turns out to be capable of predicting eigenenergies with an average error of less than one percent. We demonstrate that the CPU time required to teach a neural network of performing the transformation produced by the Schrödinger equation is about 2 min to reach 41000 learning iterations, thus making foreseeable a direct application of a neural network in this and other more complex physical and chemical problems. A discussion of the errors due to the generalization of acquired knowledge is presented and related to a limited number of examples in learning mode and the number of neurons in the hidden layer. Decreasing the number of neurons in the hidden layer increases the apparent ability of the neural network for generalization.

  19. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    NASA Astrophysics Data System (ADS)

    Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.

    2014-04-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of-flight chopper spectrometers [A. A. Aczel et al., Nat. Commun. 3, 1124 (2012), 10.1038/ncomms2117]. These modes are well described by three-dimensional isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states, and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature-dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  20. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    SciTech Connect

    Lin, J. Y. Y.; Aczel, Adam A; Abernathy, Douglas L; Nagler, Stephen E; Buyers, W. J. L.; Granroth, Garrett E

    2014-01-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  1. Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.

    1980-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.

  2. Measures for the non-Markovianity of a harmonic oscillator coupled to a discrete bath derived from numerically exact references

    NASA Astrophysics Data System (ADS)

    Lorenz, Ulf; Saalfrank, Peter

    2015-02-01

    System-bath problems in physics and chemistry are often described by Markovian master equations. However, the Markov approximation, i.e., neglect of bath memory effects is not always justified, and different measures of non-Markovianity have been suggested in the literature to judge the validity of this approximation. Here we calculate several computable measures of non-Markovianity for the non-trivial problem of a harmonic oscillator coupled to a large number of bath oscillators. The Multi Configurational Time Dependent Hartree method is used to provide a numerically converged solution of the system-bath Schrödinger equation, from which the appropriate quantities can be calculated. In particular, we consider measures based on trace-distances and quantum discord for a variety of initial states. These quantities have proven useful in the case of two-level and other small model systems typically encountered in quantum optics, but are less straightforward to interpret for the more complex model systems that are relevant for chemical physics. Supplementary material in the form of one zip file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50727-8

  3. Structure and Behavior of the Edge Harmonic Oscillation in Quiescent H-Mode Plasmas on DIII-D

    NASA Astrophysics Data System (ADS)

    McKee, G. R.; Yan, Z.; Burrell, K. H.; Garofalo, A. M.; Grierson, B. A.; Solomon, W. M.

    2013-10-01

    The edge harmonic oscillation (EHO) is a steady-state, pedestal-localized instability that is observed in high-performance, ELM-free Quiescent H-mode plasmas. The spatiotemporal characteristics of the EHO have been measured in QH-mode plasmas with a 2D BES array that measures low-k density fluctuations. The skewness of the fluctuation distribution increases radially from -0.5 to +1 near the separatrix, consistent with the radially varying and highly non-sinusoidal harmonic structure. These fluctuation characteristics are qualitatively consistent with an outward particle transport driven by the EHO. The density fluctuation (ñ / n) profile peaks inside the pedestal, near ρ = 0.90-0.95, and is observed from ρ = 0 . 85 to the separatrix; the fundamental frequency is typically in the range of 5-15 kHz. The radial structure of the oscillation has a monotonically varying phase shift of approximately 180 degrees across the outer plasma region that changes direction with plasma current, suggesting that the mode structure is impacted by the high edge toroidal rotation velocity. Work supported by the US Department of Energy under DE-FG02-08ER54999, DE-FC02-04ER54698, and DE-AC02-09CH11466.

  4. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    SciTech Connect

    Noguera, Norman; Rózga, Krzysztof

    2015-07-15

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.

  5. Addendum to "An update on the classical and quantum harmonic oscillators on the sphere and the hyperbolic plane in polar coordinates" [Phys. Lett. A 379 (26-27) (2015) 1589-1593

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2016-02-01

    The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.

  6. Harmonic oscillators: the quantization of simple systems in the old quantum theory and their functional roles in biology.

    PubMed

    Steele, Richard H

    2008-03-01

    This article introduces quantum physics into biology in an intuitive and non-intimidating manner. It extends the quantum aspects of harmonic oscillators, and electromagnetic fields, to their functional roles in biology. Central to this process are the De Broglie wave-particle duality equation, and the adiabatic invariant parameters, magnetic moment, angular momentum and magnetic flux, determined by Ehrenfest as imposing quantum constraints on the dynamics of charges in motion. In mechanisms designed to explain the generation of low-level light emissions in biology we have adopted a biological analog of the electrical circuitry modeled on the parallel plated capacitor, traversed by helical protein structures, capable of generating electromagnetic radiation in the optical spectral region. The charge carrier required for the emissions is an accelerating electron driven, in a cyclotron-type mechanism, by ATP-induced reverse electron transfer with the radial, emission, components, mediated by coulombic forces within the helical configurations. Adenine, an essential nucleotide constituent of DNA, was examined with its long wavelength absorption maximum determining the energetic parameters for the calculations. The calculations were made for a virtual 5-turn helix where each turn of the helix emits a different frequency, generating a biological quantum series. The components of six adiabatic invariant equations were found to be embedded in Planck's constant rendering them discrete, finite, non-random, non-statistical-Planck's constant precludes probability. A mechanism for drug-induced hallucination is described that might provide insights as to the possible role of electromagnetic fields in consciousness. Sodium acceleration through a proposed nerve membrane helical channel generated electromagnetic emissions in the microwave region in confirmation of reported microwave emission for active nerves and may explain saltatory nerve conduction. Theoretical calculations for a

  7. A dynamical basis for crustal deformation and seismotectonic block movements in central Europe

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1983-01-01

    The stress field in the earth's crust as inferred from satellite gravity data causes crustal deformation and seismotectonic block movements in central Europe. The satellite-determined stresses in the crust of central Europe are consistent with earthquake focal mechanisms, joint-orientation and in situ stress measurements.

  8. Abnormality Detection via Iterative Deformable Registration and Basis-Pursuit Decomposition.

    PubMed

    Zeng, Ke; Erus, Guray; Sotiras, Aristeidis; Shinohara, Russell T; Davatzikos, Christos

    2016-08-01

    We present a generic method for automatic detection of abnormal regions in medical images as deviations from a normative data base. The algorithm decomposes an image, or more broadly a function defined on the image grid, into the superposition of a normal part and a residual term. A statistical model is constructed with regional sparse learning to represent normative anatomical variations among a reference population (e.g., healthy controls), in conjunction with a Markov random field regularization that ensures mutual consistency of the regional learning among partially overlapping image blocks. The decomposition is performed in a principled way so that the normal part fits well with the learned normative model, while the residual term absorbs pathological patterns, which may then be detected through a statistical significance test. The decomposition is applied to multiple image features from an individual scan, detecting abnormalities using both intensity and shape information. We form an iterative scheme that interleaves abnormality detection with deformable registration, gradually improving robustness of the spatial normalization and precision of the detection. The algorithm is evaluated with simulated images and clinical data of brain lesions, and is shown to achieve robust deformable registration and localize pathological regions simultaneously. The algorithm is also applied on images from Alzheimer's disease patients to demonstrate the generality of the method. PMID:27046847

  9. Probing deformed quantum commutators

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  10. Observation of radial phase shift of the edge harmonic oscillation in the edge transport barrier discharges in the Compact Helical System using beam emission spectroscopy

    SciTech Connect

    Oishi, T.; Kado, S.; Yoshinuma, M.; Ida, K.; Akiyama, T.; Minami, T.; Nagaoka, K.; Shimizu, A.; Okamura, S.; Tanaka, S.

    2006-10-15

    In the present study, a coherent density fluctuation similar to the edge harmonic oscillation (EHO) in tokamaks was observed in the edge transport barrier discharge in the Compact Helical System (CHS) [K. Matsuoka et al., Plasma Physics and Controlled Nuclear Fusion Research, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 2, pp. 441] using beam emission spectroscopy (BES). The fluctuation had both fundamental (f=4.5 kHz) and second-harmonic (2f=9 kHz) frequencies. EHO in CHS had a peak amplitude at approximately {rho}=0.95. The mode has a continuous phase shift in the radial direction. If this is interpreted as the radial propagation, the mode propagates in the outer radial direction at an apparent phase velocity of several hundreds of meters per second, which is a characteristic similar to the radial phase shift of EHO in tokamaks.

  11. Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial

    NASA Astrophysics Data System (ADS)

    Marquette, Ian; Quesne, Christiane

    2016-05-01

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed Xm1,m2,…,mk Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

  12. Quantum Optimal Control of Single Harmonic Oscillator under Quadratic Controls together with Linear Dipole Polarizability: A Fluctuation Free Expectation Value Dynamical Perspective

    SciTech Connect

    Ayvaz, Muzaffer; Demiralp, Metin

    2011-09-14

    In this study, the optimal control equations for one dimensional quantum harmonic oscillator under the quadratic control operators together with linear dipole polarizability effects are constructed in the sense of Heisenberg equation of motion. A numerical technique based on the approximation to the non-commuting quantum mechanical operators from the fluctuation free expectation value dynamics perspective in the classical limit is also proposed for the solution of optimal control equations which are ODEs with accompanying boundary conditions. The dipole interaction of the system is considered to be linear, and the observable whose expectation value will be suppressed during the control process is considered to be quadratic in terms of position operator x. The objective term operator is also assumed to be quadratic.

  13. A remarkable spectral feature of the Schrödinger Hamiltonian of the harmonic oscillator perturbed by an attractive δ‧-interaction centred at the origin: double degeneracy and level crossing

    NASA Astrophysics Data System (ADS)

    Albeverio, Sergio; Fassari, Silvestro; Rinaldi, Fabio

    2013-09-01

    We rigorously define the self-adjoint Hamiltonian of the harmonic oscillator perturbed by an attractive δ‧-interaction, of strength β, centred at 0 (the bottom of the confining parabolic potential), by explicitly providing its resolvent. Our approach is based on a ‘coupling constant renormalization’, related to a technique originated in quantum field theory and implemented in the rigorous mathematical construction of the self-adjoint operator representing the negative Laplacian perturbed by the δ-interaction in two and three dimensions. The way the δ‧-interaction enters in our Hamiltonian corresponds to the one originally discussed for the free Hamiltonian (instead of the harmonic oscillator one) by P Sěba. It should not be confused with the δ‧-potential perturbation of the harmonic oscillator discussed, e.g., in a recent paper by Gadella, Glasser and Nieto (also introduced by P Sěba as a perturbation of the one-dimensional free Laplacian and recently investigated in that context by Golovaty, Hryniv and Zolotaryuk). We investigate in detail the spectrum of our perturbed harmonic oscillator. The spectral structure differs from that of the one-dimensional harmonic oscillator perturbed by an attractive δ-interaction centred at the origin: the even eigenvalues are not modified at all by the δ‧-interaction. Moreover, all the odd eigenvalues, regarded as functions of β, exhibit the rather remarkable phenomenon called ‘level crossing’ after first producing the double degeneracy of all the even eigenvalues for the value \\beta = \\beta _0 = \\frac{{2\\sqrt \\pi }}{{B\\left( {\\frac{3}{4},\\frac{1}{2}} \\right)}} \\cong 1.47934(B( ·, ·) being the beta function). Dedicated to Professor Gianfausto Dell'Antonio on the occasion of his 80th birthday.

  14. Trigonometric Basis Set Functions: Their Application to the C-H Stretching and Deformation Motions of Benzene and to Orbital Symmetry

    NASA Astrophysics Data System (ADS)

    Bor, G.; Kettle, Sidney F. A.

    1999-12-01

    The unifying power of the use of trigonometric basis functions in group character tables is demonstrated. Additionally, these functions provide a simple way of generating pictures of symmetry coordinates. This is illustrated for the in-plane stretch and out-of-plane deformation motions of the C-H bonds in benzene. Their application to orbital symmetry applications is also indicated.

  15. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  16. Comparison between the Morse eigenfunctions and deformed oscillator wavefunctions

    SciTech Connect

    Recamier, J.; Mochan, W. L.; Gorayeb, M.; Paz, J. L.

    2008-04-15

    In this work we introduce deformed creation and annihilation operators which differ from the usual harmonic oscillator operators a, a{sup {dagger}} by a number operator function A circumflex = a circumflex f(n circumflex ), A circumflex {sup {dagger}} = f(n circumflex )a circumflex {sup {dagger}}. We construct the deformed coordinate and momentum in terms of the deformed operators and maintain only up to first order terms in the deformed operators. By application of the deformed annihilation operator upon the vacuum state we get the ground state wavefunction in the configuration space and the wavefunctions for excited states are obtained by repeated application of the deformed creation operator. Finally, we compare the wavefunctions obtained with the deformed operators with the corresponding Morse eigenfunctions.

  17. Lie algebraic approach to the time-dependent quantum general harmonic oscillator and the bi-dimensional charged particle in time-dependent electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ibarra-Sierra, V. G.; Sandoval-Santana, J. C.; Cardoso, J. L.; Kunold, A.

    2015-11-01

    We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai-Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators.

  18. Efficient and automatic calculation of optical band shapes and resonance Raman spectra for larger molecules within the independent mode displaced harmonic oscillator model.

    PubMed

    Petrenko, Taras; Neese, Frank

    2012-12-21

    In this work, an improved method for the efficient automatic simulation of optical band shapes and resonance Raman (rR) intensities within the "independent mode displaced harmonic oscillator" is described. Despite the relative simplicity of this model, it is able to account for the intensity distribution in absorption (ABS), fluorescence, and rR spectra corresponding to strongly dipole allowed electronic transitions with high accuracy. In order to include temperature-induced effects, we propose a simple extension of the time dependent wavepacket formalism developed by Heller which enables one to derive analytical expressions for the intensities of hot bands in ABS and rR spectra from the dependence of the wavepacket evolution on its initial coordinate. We have also greatly optimized the computational procedures for numerical integration of complicated oscillating integrals. This is important for efficient simulations of higher-order rR spectra and excitation profiles, as well as for the fitting of experimental spectra of large molecules. In particular, the multimode damping mechanism is taken into account for efficient reduction of the upper time limit in the numerical integration. Excited state energy gradient as well as excited state geometry optimization calculations are employed in order to determine excited state dimensionless normal coordinate displacements. The gradient techniques are highly cost-effective provided that analytical excited state derivatives with respect to nuclear displacements are available. Through comparison with experimental spectra of some representative molecules, we illustrate that the gradient techniques can even outperform the geometry optimization method if the harmonic approximation becomes inadequate. PMID:23267471

  19. Decoherence of spin-deformed bosonic model

    SciTech Connect

    Dehdashti, Sh.; Mahdifar, A.; Bagheri Harouni, M.; Roknizadeh, R.

    2013-07-15

    The decoherence rate and some parameters affecting it are investigated for the generalized spin-boson model. We consider the spin-bosonic model when the bosonic environment is modeled by the deformed harmonic oscillators. We show that the state of the environment approaches a non-linear coherent state. Then, we obtain the decoherence rate of a two-level system which is in contact with a deformed bosonic environment which is either in thermal equilibrium or in the ground state. By using some recent realization of f-deformed oscillators, we show that some physical parameters strongly affect the decoherence rate of a two-level system. -- Highlights: •Decoherence of the generalized spin-boson model is considered. •In this model the environment consists of f-oscillators. •Via the interaction, the state of the environment approaches non-linear coherent states. •Effective parameters on decoherence are considered.

  20. Non-perturbative Calculation of the Positronium Mass Spectrum in Basis Light-Front Quantization

    NASA Astrophysics Data System (ADS)

    Wiecki, Paul; Li, Yang; Zhao, Xingbo; Maris, Pieter; Vary, James P.

    2015-09-01

    We report on recent improvements to our non-perturbative calculation of the positronium spectrum. Our Hamiltonian is a two-body effective interaction which incorporates one-photon exchange terms, but neglects fermion self-energy effects. This effective Hamiltonian is diagonalized numerically in a harmonic oscillator basis at strong coupling () to obtain the mass eigenvalues. We find that the mass spectrum compares favorably to the Bohr spectrum of non-relativistic quantum mechanics evaluated at this unphysical coupling.

  1. Deformation quantization for contact interactions and dissipation

    NASA Astrophysics Data System (ADS)

    Belchev, Borislav Stefanov

    This thesis studies deformation quantization and its application to contact interactions and systems with dissipation. We consider the subtleties related to quantization when contact interactions and boundaries are present. We exploit the idea that discontinuous potentials are idealizations that should be realized as limits of smooth potentials. The Wigner functions are found for the Morse potential and in the proper limit they reduce to the Wigner functions for the infinite wall, for the most general (Robin) boundary conditions. This is possible for a very limited subset of the values of the parameters --- so-called fine tuning is necessary. It explains why Dirichlet boundary conditions are used predominantly. Secondly, we consider deformation quantization in relation to dissipative phenomena. For the damped harmonic oscillator we study a method using a modified noncommutative star product. Within this framework we resolve the non-reality problem with the Wigner function and correct the classical limit.

  2. Franck-Condon factors perturbed by damped harmonic oscillators: Solvent enhanced X {sup 1}A{sub g} ↔ A{sup 1}B{sub 1u} absorption and fluorescence spectra of perylene

    SciTech Connect

    Wang, Chen-Wen; Zhu, Chaoyuan Lin, Sheng-Hsien; Yang, Ling; Yu, Jian-Guo

    2014-08-28

    Damped harmonic oscillators are utilized to calculate Franck-Condon factors within displaced harmonic oscillator approximation. This is practically done by scaling unperturbed Hessian matrix that represents local modes of force constants for molecule in gaseous phase, and then by diagonalizing perturbed Hessian matrix it results in direct modification of Huang–Rhys factors which represent normal modes of solute molecule perturbed by solvent environment. Scaling parameters are empirically introduced for simulating absorption and fluorescence spectra of an isolated solute molecule in solution. The present method is especially useful for simulating vibronic spectra of polycyclic aromatic hydrocarbon molecules in which hydrogen atom vibrations in solution can be scaled equally, namely the same scaling factor being applied to all hydrogen atoms in polycyclic aromatic hydrocarbons. The present method is demonstrated in simulating solvent enhanced X {sup 1}A{sub g} ↔ A{sup 1}B{sub 1u} absorption and fluorescence spectra of perylene (medium-sized polycyclic aromatic hydrocarbon) in benzene solution. It is found that one of six active normal modes v{sub 10} is actually responsible to the solvent enhancement of spectra observed in experiment. Simulations from all functionals (TD) B3LYP, (TD) B3LYP35, (TD) B3LYP50, and (TD) B3LYP100 draw the same conclusion. Hence, the present method is able to adequately reproduce experimental absorption and fluorescence spectra in both gas and solution phases.

  3. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  4. Importance of the single-particle continuum in BCS pairing with a pseudostate basis

    NASA Astrophysics Data System (ADS)

    Lay, J. A.; Alonso, C. E.; Fortunato, L.; Vitturi, A.

    2016-05-01

    In a recent work [arXiv:1510.03185] the use of the Transformed Harmonic Oscillator (THO) basis for the discretization of the singleparticle continuum into a Generalized Bardeen-Cooper-Schrieffer (BCS) formalism was proposed for the description of weakly bound nuclei. We make use of the flexibility of this formalism to study the evolution of the pairing when the nucleus becomes more and more weakly bound. Specifically we focus on the evolution of the occupation of the different partial waves in 22O when the Fermi level approaches zero.

  5. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  6. Assessing the utility of phase-space-localized basis functions: Exploiting direct product structure and a new basis function selection procedure

    NASA Astrophysics Data System (ADS)

    Brown, James; Carrington, Tucker

    2016-06-01

    In this paper we show that it is possible to use an iterative eigensolver in conjunction with Halverson and Poirier's symmetrized Gaussian (SG) basis [T. Halverson and B. Poirier, J. Chem. Phys. 137, 224101 (2012)] to compute accurate vibrational energy levels of molecules with as many as five atoms. This is done, without storing and manipulating large matrices, by solving a regular eigenvalue problem that makes it possible to exploit direct-product structure. These ideas are combined with a new procedure for selecting which basis functions to use. The SG basis we work with is orders of magnitude smaller than the basis made by using a classical energy criterion. We find significant convergence errors in previous calculations with SG bases. For sum-of-product Hamiltonians, SG bases large enough to compute accurate levels are orders of magnitude larger than even simple pruned bases composed of products of harmonic oscillator functions.

  7. FAST TRACK COMMUNICATION: An infinite family of superintegrable deformations of the Coulomb potential

    NASA Astrophysics Data System (ADS)

    Post, Sarah; Winternitz, Pavel

    2010-06-01

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system.

  8. Deformation of Fluid Column by Action of Axial Vibration and Some Aspects of High-Rate Thermocapillary Convection

    NASA Technical Reports Server (NTRS)

    Feonychev, Alexander I.; Kalachinskaya, Irina S.; Pokhilko, Victor I.

    1996-01-01

    The deformation of the fluid column by an action of a low-frequency vibration is considered. It is shown that behavior of the free fluid surface depends on the frequency of applied vibration and its amplitude. In the area of very low frequencies when fluid has time to comment on travel of bounding solid walls limiting column, the harmonical oscillations of free surface with given frequency are observed. With increase of vibration frequency the steady-state relief on free fluid surface is formed. If the amplitude of vibration is very small and the frequency corresponding to the first peak in the vibration spectrum on the Mir orbital station, the deformation of free surface tends to zero. Fluid flow induced thermocapillary effect on deformed free surface is more unstable as in the case of smooth cylindrical surface. It was shown that width of heating zone affects very essentially the flow pattern and transition to oscillatory regime of thermocapillary convection.

  9. Hamiltonian Light-Front Ffield Theory in a Basis Function Approach

    SciTech Connect

    Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Sternberg, P.; Ng, E.G.; Yang, C.

    2009-05-15

    Hamiltonian light-front quantum field theory constitutes a framework for the non-perturbative solution of invariant masses and correlated parton amplitudes of self-bound systems. By choosing the light-front gauge and adopting a basis function representation, we obtain a large, sparse, Hamiltonian matrix for mass eigenstates of gauge theories that is solvable by adapting the ab initio no-core methods of nuclear many-body theory. Full covariance is recovered in the continuum limit, the infinite matrix limit. There is considerable freedom in the choice of the orthonormal and complete set of basis functions with convenience and convergence rates providing key considerations. Here, we use a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography. We outline our approach, present illustrative features of some non-interacting systems in a cavity and discuss the computational challenges.

  10. How to spoil a good basis set for Rayleigh-Ritz calculations

    SciTech Connect

    Pupyshev, Vladimir I.; Montgomery, H. E. Jr.

    2013-08-15

    For model quantum mechanical systems such as the harmonic oscillator and a particle in an impenetrable box, we consider the set of exact discrete spectrum functions and define the modified basis set by subtraction of the ground state wavefunction from all the other wavefunctions with some real weights. It is demonstrated that the modified set of functions is complete in the space of square integrable functions if and only if the series of the squared weights diverges. A similar, but nonequivalent criterion is derived for convergence of Rayleigh-Ritz ground state energy calculations to the exact ground state energy value with the basis set extension. Some numerical illustrations are provided which demonstrate a wide variety of possible situations for model systems.

  11. Hamiltonian Light-front Field Theory Within an AdS/QCD Basis

    SciTech Connect

    Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Sternberg, P.; Ng, E.G.; Yang, C.; /LBL, Berkeley

    2009-12-16

    Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.

  12. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  13. Madelung Deformity.

    PubMed

    Kozin, Scott H; Zlotolow, Dan A

    2015-10-01

    Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. PMID:26341718

  14. Identification of parameters of models of nonlinear deformation of isotropic and composite materials on the basis of calculations and experiments aimed at analyzing the dynamic behavior of cylindrical metal-plastic shells

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2015-11-01

    A method for identification of material parameters of the constitutive relations of elastoplastic and viscoelastic deformation of isotropic and composite materials is developed. The method is based on minimizing the functional of the residue of results of numerical and experimental analysis of unsteady deformation of structural elements made of examined materials. The method is tested, and prospects of its application for determining material parameters of viscoelastic and elastoplastic models of nonlinear deformation of cylindrical metal-plastic shells under explosive loading are demonstrated.

  15. Generalized coherent states under deformed quantum mechanics with maximum momentum

    NASA Astrophysics Data System (ADS)

    Ching, Chee Leong; Ng, Wei Khim

    2013-10-01

    Following the Gazeau-Klauder approach, we construct generalized coherent states (GCS) as the quantum simulator to examine the deformed quantum mechanics, which exhibits an intrinsic maximum momentum. We study deformed harmonic oscillators and compute their probability distribution and entropy of states exactly. Also, a particle in an infinite potential box is studied perturbatively. In particular, unlike usual quantum mechanics, the present deformed case increases the entropy of the Planck scale quantum optical system. Furthermore, for simplicity, we obtain the modified uncertainty principle (MUP) with the perturbative treatment up to leading order. MUP turns out to increase generally. However, for certain values of γ (a parameter of GCS), it is possible that the MUP will vanish and hence will exhibit the classical characteristic. This is interpreted as the manifestation of the intrinsic high-momentum cutoff at lower momentum in a perturbative treatment. Although the GCS saturates the minimal uncertainty in a simultaneous measurement of physical position and momentum operators, thus constituting the squeezed states, complete coherency is impossible in quantum gravitational physics. The Mandel Q number is calculated, and it is shown that the statistics can be Poissonian and super-/sub-Poissonian depending on γ. The equation of motion is studied, and both Ehrenfest’s theorem and the correspondence principle are recovered. Fractional revival times are obtained through the autocorrelation, and they indicate that the superposition of a classical-like subwave packet is natural in GCS. We also contrast our results with the string-motivated (Snyder) type of deformed quantum mechanics, which incorporates a minimum position uncertainty rather than a maximum momentum. With the advances of quantum optics technology, it might be possible to realize some of these distinguishing quantum-gravitational features within the domain of future experiments.

  16. Applications of Basis Light-Front Quantization to QED

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Zhao, Xingbo; Ilderton, Anton; Honkanen, Heli; Maris, Pieter; Brodsky, Stanley J.

    2014-06-01

    Hamiltonian light-front quantum field theory provides a framework for calculating both static and dynamic properties of strongly interacting relativistic systems. Invariant masses, correlated parton amplitudes and time-dependent scattering amplitudes, possibly with strong external time-dependent fields, represent a few of the important applications. By choosing the light-front gauge and adopting an orthonormal basis function representation, we obtain a large, sparse, Hamiltonian matrix eigenvalue problem for mass eigenstates that we solve by adapting ab initio no-core methods of nuclear many-body theory. In the continuum limit, the infinite matrix limit, we recover full covariance. Guided by the symmetries of light-front quantized theory, we adopt a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall anti-de Sitter/quantum chromodynamics (AdS/QCD) model obtained from light-front holography. We outline our approach and present results for non-linear Compton scattering, evaluated non-perturbatively, where a strong and time-dependent laser field accelerates the electron and produces states of higher invariant mass i.e. final states with photon emission.

  17. Solutions to Kuessner's integral equation in unsteady flow using local basis functions

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Halstead, D. W.

    1975-01-01

    The computational procedure and numerical results are presented for a new method to solve Kuessner's integral equation in the case of subsonic compressible flow about harmonically oscillating planar surfaces with controls. Kuessner's equation is a linear transformation from pressure to normalwash. The unknown pressure is expanded in terms of prescribed basis functions and the unknown basis function coefficients are determined in the usual manner by satisfying the given normalwash distribution either collocationally or in the complex least squares sense. The present method of solution differs from previous ones in that the basis functions are defined in a continuous fashion over a relatively small portion of the aerodynamic surface and are zero elsewhere. This method, termed the local basis function method, combines the smoothness and accuracy of distribution methods with the simplicity and versatility of panel methods. Predictions by the local basis function method for unsteady flow are shown to be in excellent agreement with other methods. Also, potential improvements to the present method and extensions to more general classes of solutions are discussed.

  18. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  19. Hamiltonian light-front field theory in a basis function approach

    SciTech Connect

    Vary, J. P.; Honkanen, H.; Li Jun; Maris, P.; Brodsky, S. J.; Harindranath, A.; Sternberg, P.; Ng, E. G.; Yang, C.

    2010-03-15

    Hamiltonian light-front quantum field theory constitutes a framework for the nonperturbative solution of invariant masses and correlated parton amplitudes of self-bound systems. By choosing the light-front gauge and adopting a basis function representation, a large, sparse, Hamiltonian matrix for mass eigenstates of gauge theories is obtained that is solvable by adapting the ab initio no-core methods of nuclear many-body theory. Full covariance is recovered in the continuum limit, the infinite matrix limit. There is considerable freedom in the choice of the orthonormal and complete set of basis functions with convenience and convergence rates providing key considerations. Here we use a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall anti-de Sitter/quantum chromodynamics (AdS/QCD) model obtained from light-front holography. We outline our approach and present illustrative features of some noninteracting systems in a cavity. We illustrate the first steps toward solving quantum electrodynamics (QED) by obtaining the mass eigenstates of an electron in a cavity in small basis spaces and discuss the computational challenges.

  20. Madelung deformity.

    PubMed

    Ghatan, Andrew C; Hanel, Douglas P

    2013-06-01

    Madelung deformity is a rare congenital anomaly of the wrist caused by asymmetric growth at the distal radial physis secondary to a partial ulnar-sided arrest. The deformity is characterized by ulnar and palmar curvature of the distal radius, positive ulnar variance, and proximal subsidence of the lunate. It more commonly occurs in females than males and typically affects both wrists. The deformity can occur in isolation or as part of a genetic syndrome. The pattern of inheritance varies, with some cases following a pseudoautosomal pattern and many others lacking a clear family history. Nonsurgical management is typically advocated in asymptomatic patients. Few studies exist on the natural history of the condition; however, extensor tendon ruptures have been reported in severe and chronic cases. Stiffness, pain, and patient concerns regarding wrist cosmesis have been cited as indications for surgery. Various techniques for surgical management of Madelung deformity have been described, but clear evidence to support the use of any single approach is lacking. PMID:23728962

  1. Normal ordering for nonlinear deformed ladder operators and the f-generalization of the Stirling and Bell numbers

    NASA Astrophysics Data System (ADS)

    Aleixo, A. N. F.; Balantekin, A. B.

    2015-12-01

    We resolve the normal ordering problem for symmetric ( D ˆ + D ˆ - ) n and asymmetric ( Dˆ + r D ˆ - ) n strings of the nonlinear deformed ladder operators D ˆ ± for supersymmetric and shape-invariant potential systems, where r and n are positive integers. We provide exact and explicit expressions for their normal forms N { ( D ˆ + D ˆ - ) n } and N { ( Dˆ + r D ˆ - ) n } , where in N { . . . } all D ˆ - are at the right side. We find that the solutions involve sequence of expansion coefficients which, for r, n > 1, corresponds to the f-deformed generalization of the classical Stirling and Bell numbers of the second kind. We apply the general formalism for the translational shape-invariant potential systems as well as for the particular case of the harmonic oscillator potential system. We show that these numbers are obtained for families of polynomial expressions generated with the deformations parameters and the parameters related to the forms of the supersymmetric partner potentials.

  2. Ab initio no core configuration interaction calculations in the natural orbital basis

    NASA Astrophysics Data System (ADS)

    Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter

    2015-10-01

    The natural orbital basis has been successfully used in the past in atomic and molecular structure calculations. The natural orbitals used in those calculations are calculated by diagonalizing the electron one-body density matrix. Here we develop natural orbitals for nuclear no-core configuration interaction (NCCI) calculations. A NCCI calculation using an initial single particle basis, such as the harmonic oscillator basis, must first be performed in order to obtain a one-body density matrix. The eigenvectors of the one-body density matrix are the natural orbitals, and the corresponding eigenvalues are the occupations of these natural orbitals in the nuclear wave function. According to these occupancies, the most important natural orbitals, in the sense of the most occupied, can then be selected and used in a NCCI calculation. We discuss ab initio nuclear NCCI calculations for light nuclei and assess their ability to provide faster convergence. Supported by the US DOE (under Grants DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, and DE-FG02-87ER40371), and the US NSF (under Grant 0904782). Computational resources provided by NERSC (supported by US DOE Contract DE-AC02-05CH11231), and NDCRC.

  3. The finite harmonic oscillator and its associated sequences

    PubMed Central

    Gurevich, Shamgar; Hadani, Ronny; Sochen, Nir

    2008-01-01

    A system of functions (signals) on the finite line, called the oscillator system, is described and studied. Applications of this system for discrete radar and digital communication theory are explained. PMID:18635684

  4. On harmonic oscillators and their Kemmer relativistic forms

    NASA Technical Reports Server (NTRS)

    Debergh, Nathalie; Beckers, Jules

    1993-01-01

    It is shown that Dirac (Kemmer) equations are intimately connected with (para)supercharges coming from (para)supersymmetric quantum mechanics, a nonrelativistic theory. The dimensions of the irreducible representations of Clifford (Kemmer) algebras play a fundamental role in such an analysis. These considerations are illustrated through oscillator like interactions, leading to (para)relativistic oscillators.

  5. Operation of higher harmonic oscillations in free-electron lasers.

    PubMed

    Sei, N; Ogawa, H; Yamada, K

    2012-01-01

    We report for the first time the experimental achievement of a seventh-harmonic free-electron laser (FEL) oscillation. The measured FEL gains and average FEL powers for higher harmonics were identical to those calculated by a one-dimensional FEL theory. The measured linewidths of the higher-harmonic FELs were narrower than that of the fundamental FEL owing to the narrower spectral widths of the spontaneous emissions. By applying the higher-harmonic FEL oscillation to a resonator-type FEL with an advanced accelerator, an x-ray FEL oscillator can be realized at lower electron-beam energy. PMID:22274354

  6. Entanglement scaling in classical and quantum harmonic oscillator lattices

    SciTech Connect

    Audenaert, K.; Eisert, J.; Plenio, M. B.; Cramer, M.

    2006-11-15

    We consider entanglement properties of ground and thermal states of harmonic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for systems in arbitrary spatial dimensions. The behavior of the block entanglement in the field limit is analysed and a logarithmic divergence is recovered.

  7. Intuitive Solution to Quantum Harmonic Oscillator at Infinity

    ERIC Educational Resources Information Center

    Pye, Cory C.

    2004-01-01

    The attempt to develop the laboratory component of a one-semester quantum chemistry course at Saint Mary's University has led to allowing the students to solve a big problem in quantum chemistry. It is done by subdivision into smaller problems that can be independently tackled by a student with a two-year calculus background.

  8. The impact damped harmonic oscillator in free decay

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; North, C. M.

    1987-01-01

    The impact-damped oscillator in free decay is studied by using time history solutions. A large range of oscillator amplitude is covered. The amount of damping is correlated with the behavior of the impacting mass. There are three behavior regimes: (1) a low amplitude range with less than one impact per cycle and very low damping, (2) a useful middle amplitude range with a finite number of impacts per cycle, and (3) a high amplitude range with an infinite number of impacts per cycle and progressively decreasing damping. For light damping the impact damping in the middle range is: (1) proportional to impactor mass, (2) additive to proportional damping, (3) a unique function of vibration amplitude, (4) proportional to 1-epsilon, where epsilon is the coefficient of restitution, and (5) very roughly inversely proportional to amplitude. The system exhibits jump phenomena and period doublings. An impactor with 2 percent of the oscillator's mass can produce a loss factor near 0.1.

  9. On the measurement of time for the quantum harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1992-01-01

    A generalization of previous treatments of quantum phase is presented. Restrictions on the class of realizable phase statistics are thereby removed; thus, permitting 'phase wavefunction collapse' (and other advantages). This is accomplished by exciting the auxiliary mode of the measurement apparatus in a time-reversed fashion. The mathematical properties of this auxiliary mode are studied in the hope that they will lead to an identification of a physical apparatus which can realize the quantum phase measurement.

  10. Disentanglement of two harmonic oscillators in relativistic motion

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yuin; Chou, Chung-Hsien; Hu, B. L.

    2008-12-01

    We study the dynamics of quantum entanglement between two Unruh-DeWitt detectors, one stationary (Alice), and another uniformly accelerating (Rob), with no direct interaction but coupled to a common quantum field in (3+1)D Minkowski space. We find that for all cases studied the initial entanglement between the detectors disappears in a finite time (“sudden death”). After the moment of total disentanglement the correlations between the two detectors remain nonzero until late times. The relation between the disentanglement time and Rob’s proper acceleration is observer dependent. The larger the acceleration is, the longer the disentanglement time in Alice’s coordinate, but the shorter in Rob’s coordinate.

  11. Laser cooling of a harmonic oscillator's bath with optomechanics

    NASA Astrophysics Data System (ADS)

    Xu, Xunnong; Taylor, Jacob

    Thermal noise reduction in mechanical systems is a topic both of fundamental interest for studying quantum physics at the macroscopic level and for application of interest, such as building high sensitivity mechanics based sensors. Similar to laser cooling of neutral atoms and trapped ions, the cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce additional damping channel to mechanical motion, while keeping its thermal noise at the same level, and as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of temperature to quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an efficient scheme for reducing the thermal load on a mechanical resonator while improving its quality factor. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme. Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA.

  12. Disentanglement of two harmonic oscillators in relativistic motion

    SciTech Connect

    Lin, S.-Y.; Chou, C.-H.; Hu, B. L.

    2008-12-15

    We study the dynamics of quantum entanglement between two Unruh-DeWitt detectors, one stationary (Alice), and another uniformly accelerating (Rob), with no direct interaction but coupled to a common quantum field in (3+1)D Minkowski space. We find that for all cases studied the initial entanglement between the detectors disappears in a finite time ('sudden death'). After the moment of total disentanglement the correlations between the two detectors remain nonzero until late times. The relation between the disentanglement time and Rob's proper acceleration is observer dependent. The larger the acceleration is, the longer the disentanglement time in Alice's coordinate, but the shorter in Rob's coordinate.

  13. The finite harmonic oscillator and its associated sequences.

    PubMed

    Gurevich, Shamgar; Hadani, Ronny; Sochen, Nir

    2008-07-22

    A system of functions (signals) on the finite line, called the oscillator system, is described and studied. Applications of this system for discrete radar and digital communication theory are explained. PMID:18635684

  14. Topics in Noncommutative Gauge Theories and Deformed Relativistic Theories

    NASA Astrophysics Data System (ADS)

    Chandra, Nitin

    2013-01-01

    This is my PhD thesis. In this thesis we study the gauge theories on noncommutative Moyal space. We find new static solitons and instantons in terms of the so called generalized Bose operators. Generalized Bose operators are constructed to describe reducible representation of the oscillator algebra. They create/annihilate k-quanta, k being a positive integer. We start with giving an alternative description to the already found static magnetic flux tube solutions of the noncommutative gauge theories in terms of generalized Bose operators. The Nielsen-Olesen vortex solutions found in terms of these operators reduce to the already found ones. On the contrary we find a class of new instaton solutions which are unitarily inequivalant to the the ones found from ADHM construction on noncommutative space. The charge of the instaton has a description in terms of the index representing the reducibility of the Fock space, i.e., k. After studying the static solitonic solutions in noncommutative Minkowski space and the instaton solutions in noncommutative Euclidean space we go on to study the implications of the time-space noncommutativity in Minkowski space. To understand it properly we study the time-dependent transitions of a forced harmonic oscillator in noncommutative 1+1 dimensional spacetime. We also try to understand the implications of the found results in the context of quantum optics. We then shift to the so called DSR theories which are related to a different kind of noncommutative (kappa-Minkowski) space. DSR (Doubly/Deformed Special Relativity) aims to search for an alternate relativistic theory which keeps a length/energy scale (the Planck scale) and a velocity scale (the speed of light scale) invariant. We study thermodynamics of an ideal gas in such a scenario.

  15. Balancing accuracy and efficiency in selecting vibrational configuration interaction basis states using vibrational perturbation theory

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-08-01

    This work describes the benchmarking of a vibrational configuration interaction (VCI) algorithm that combines the favourable computational scaling of VPT2 with the algorithmic robustness of VCI, in which VCI basis states are selected according to the magnitude of their contribution to the VPT2 energy, for the ground state and fundamental excited states. Particularly novel aspects of this work include: expanding the potential to 6th order in normal mode coordinates, using a double-iterative procedure in which configuration selection and VCI wavefunction updates are performed iteratively (micro-iterations) over a range of screening threshold values (macro-iterations), and characterisation of computational resource requirements as a function of molecular size. Computational costs may be further reduced by a priori truncation of the VCI wavefunction according to maximum extent of mode coupling, along with discarding negligible force constants and VCI matrix elements, and formulating the wavefunction in a harmonic oscillator product basis to enable efficient evaluation of VCI matrix elements. Combining these strategies, we define a series of screening procedures that scale as O ( Nmode 6 ) - O ( Nmode 9 ) in run time and O ( Nmode 6 ) - O ( Nmode 7 ) in memory, depending on the desired level of accuracy. Our open-source code is freely available for download from http://www.sourceforge.net/projects/pyvci-vpt2.

  16. IBA in deformed nuclei

    SciTech Connect

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for /sup 168/Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong ..beta.. ..-->.. ..gamma.. transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the ..beta.. ..-->.. ..gamma.. transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ..delta..K=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics.

  17. Deformation properties of lead isotopes

    NASA Astrophysics Data System (ADS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180Pb and 184Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  18. Dislocations: 75 years of Deformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2009-01-01

    The selection of papers presented in this section reflect on themes to be explored at the "Dislocations: 75 years of Deformation Mechanisms" Symposium to be held at the Annual 2009 TMS meeting. The symposium was sponsored by the Mechanical Behavior of Materials Committee to give tribute to the evolution of a concept that has formed the basis of our mechanistic understanding of how crystalline solids plastically deform and how they fail.

  19. Coulomb problem in an angular-momentum basis: An algebraic formulation

    NASA Astrophysics Data System (ADS)

    de Lange, O. L.; Raab, R. E.

    1988-03-01

    We show that a representation-independent, spectrum-generating algebra for the Coulomb problem in an angular momentum basis can be obtained by quantizing two complex, time-dependent, classical vectors, Dc=Fc+iGc and D*c. The approach is based on an analogy with a treatment of the isotropic harmonic oscillator [A. J. Bracken and H. I. Leemon, J. Math. Phys. 21, 2170 (1980)], and on work in which classical constants of the motion were quantized to yield shift operators for angular momentum in the Coulomb problem [O. L. de Lange and R. E. Raab, Phys. Rev. A 34, 1650 (1986)]. By construction Fc and Gc are orthogonal to the orbital angular momentum L, their moduli have equal, constant magnitude, and they rotate about L. In this construction we use Ac (the Laplace-Runge-Lenz vector) and Ac×L^ as basis vectors. Fc and Gc contain an undetermined phase factor exp(iδ). Dc and D*c are quantized by requiring that the resulting operators should be shift operators for energy and angular momentum in the bound-state kets ||nlm>. This determines the operators Δ+/- corresponding to the classical phase factors exp(+/-iδ). In the coordinate and momentum representations of wave mechanics respectively, Δ+/- are the dilatation operators for coordinate-space and momentum-space wave functions. The shift operators can be factorized to yield 20 abstract operators. Apart from their dependence on Δ+/- and constants of the motion, ten of these are linear in p, eight are linear in r, and two are quadratic in r. Apart from Δ+/-, these operators can be linearized by replacing constants of the motion with their eigenvalues: In the coordinate and momentum representations of wave mechanics they are first-order differential operators. The shift operators are part of a Hermitian basis for a spectrum-generating algebra which is shown to be SO(2,1)⊕SO(3,2).

  20. Learning deformation and structure simultaneously: in situ endograft deformation analysis.

    PubMed

    Langs, Georg; Paragios, Nikos; Desgranges, Pascal; Rahmouni, Alain; Kobeiter, Hicham

    2011-02-01

    The learning of the shape and appearance behavior of complex anatomical structures is of growing importance in the successful use of medical imaging data. We propose a method to simultaneously learn a model of shape variation and the behavioral structure of objects in volumetric data sets. The algorithm performs a group-wise registration of a set of examples, and accounts for the heterogeneous deformation or variability properties of the data. We use the method for the in situ analysis of endograft deformation in the thoracic aorta during the cardiac cycle. The method is based on an emerging model of the shape variation, which is learned autonomously from a gated computed tomography sequence. It automatically adapts to the highly non-uniform elasticity properties of the structure during learning. The resulting deformation model is used for the measurement of global and local characteristics of the endograft movement. The method allows for the in situ localization of the stent during the cardiac cycle, and the measurement of its deformation. Furthermore, it makes the comparison of different endograft designs possible, and can serve as a basis for fitting a physical model of the endograft- and vessel surface to individual patients. The latter is essential for long-term risk assessment of the impact of endografts in highly mobile areas. We evaluate the approach on 10 data sets from patients that underwent endograft placement after traumatic ruptures of the thoracic aorta. PMID:20675181

  1. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  2. Numerical tests of a fixed vibrational basis/gaussian bath theory for small molecule dynamics in low-temperature media.

    PubMed

    Chapman, Craig T; Cheng, Xiaolu; Cina, Jeffrey A

    2011-04-28

    A recently framed quantum/semiclassical treatment for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium (Chapman, C. T.; Cina, J. A. J. Chem. Phys.2007,127, 114502) is further analyzed and subjected to initial tests of its numerical implementation. In the illustrative context of a 1D system interacting with a 1D medium, we rederive the fixed vibrational basis/gaussian bath (FVB/GB) equations of motion for the parameters defining the gaussian bath wave packet accompanying each of the energy eigenkets of the quantum mechanical system. The conditions of validity for the gaussian-bath approximation are shown to coincide with those supporting approximate population conservation. We perform initial numerical tests of the FVB/GB scheme and illustrate the semiclassical description it provides of coherent motion in the medium by comparing its predictions with the exact results for a high-frequency system harmonic oscillator bilinearly coupled to a lower-frequency bath oscillator. Linear vibronic absorption spectra or, equivalently, ultrafast wave packet interferometry signals are shown to be readily and accurately calculable within the FVB/GB framework. PMID:21462985

  3. Deformable Nanolaminate Optics

    SciTech Connect

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  4. Finite deformation of elasto-plastic solids

    NASA Technical Reports Server (NTRS)

    Osias, J. R.

    1973-01-01

    A theoretical basis is established for analysis of finite deformation of metals. The observation that finite deformation of such elastoplastic materials may be viewed as a process rather than an event leads to derivation of a complete initial and boundary value problem distinguished by its quasilinear nature. This feature of the formulation motivates adoption of an incremental approach to numerical problem solving. Numerical solution capability is established for problems of plane stress and plane strain. The validity of the theory and numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation for which analytic solutions are available. Subsequently the analysis is employed for the investigation of necking in flat metal tensile bars. The results of this investigation provide the first full numerical solutions for tensile necking in plane stress and plane strain. In addition a basis is provided for assessment of the validity of stress-strain relations inferred from tensile test data.

  5. Contact Pairing Interaction for the Hartree-Fock-Bogoliubov Calculations

    SciTech Connect

    Dobaczewski, J.

    2001-10-18

    Properties of density-dependent contact pairing interactions in nuclei are discussed. It is shown that the pairing interaction that is intermediate between surface and volume pairing forces gives the pairing gaps that are compatible with the experimental odd-even mass staggering. Results of the deformed Hartree-Fock-Bogoliubov calculations for this ''mixed'' pairing interaction, and using the transformed harmonic oscillator basis, are presented.

  6. Shapeable sheet without plastic deformation

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Naomi; Witten, Thomas A.

    2015-11-01

    Randomly crumpled sheets have shape memory. In order to understand the basis of this form of memory, we simulate triangular lattices of springs whose lengths are altered to create a topography with multiple potential energy minima. We then deform these lattices into different shapes and investigate their ability to retain the imposed shape when the energy is relaxed. The lattices are able to retain a range of curvatures. Under moderate forcing from a state of local equilibrium, the lattices deform by several percent but return to their retained shape when the forces are removed. By increasing the forcing until an irreversible motion occurs, we find that the transitions between remembered shapes show cooperativity among several springs. For fixed lattice structures, the shape memory tends to decrease as the lattice is enlarged; we propose ways to counter this decrease by modifying the lattice geometry. We survey the energy landscape by displacing individual nodes. An extensive fraction of these nodes proves to be bistable; they retain their displaced position when the energy is relaxed. Bending the lattice to a stable curved state alters the pattern of bistable nodes. We discuss this shapeability in the context of other forms of material memory and contrast it with the shapeability of plastic deformation. We outline the prospects for making real materials based on these principles.

  7. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  8. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  9. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  10. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  11. Resurgent deformation quantisation

    SciTech Connect

    Garay, Mauricio; Goursac, Axel de; Straten, Duco van

    2014-03-15

    We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.

  12. A basis-set based Fortran program to solve the Gross Pitaevskii equation for dilute Bose gases in harmonic and anharmonic traps

    NASA Astrophysics Data System (ADS)

    Tiwari, Rakesh Prabhat; Shukla, Alok

    2006-06-01

    Inhomogeneous boson systems, such as the dilute gases of integral spin atoms in low-temperature magnetic traps, are believed to be well described by the Gross-Pitaevskii equation (GPE). GPE is a nonlinear Schrödinger equation which describes the order parameter of such systems at the mean field level. In the present work, we describe a Fortran 90 computer program developed by us, which solves the GPE using a basis set expansion technique. In this technique, the condensate wave function (order parameter) is expanded in terms of the solutions of the simple-harmonic oscillator (SHO) characterizing the atomic trap. Additionally, the same approach is also used to solve the problems in which the trap is weakly anharmonic, and the anharmonic potential can be expressed as a polynomial in the position operators x, y, and z. The resulting eigenvalue problem is solved iteratively using either the self-consistent-field (SCF) approach, or the imaginary time steepest-descent (SD) approach. Iterations can be initiated using either the simple-harmonic-oscillator ground state solution, or the Thomas-Fermi (TF) solution. It is found that for condensates containing up to a few hundred atoms, both approaches lead to rapid convergence. However, in the strong interaction limit of condensates containing thousands of atoms, it is the SD approach coupled with the TF starting orbitals, which leads to quick convergence. Our results for harmonic traps are also compared with those published by other authors using different numerical approaches, and excellent agreement is obtained. GPE is also solved for a few anharmonic potentials, and the influence of anharmonicity on the condensate is discussed. Additionally, the notion of Shannon entropy for the condensate wave function is defined and studied as a function of the number of particles in the trap. It is demonstrated numerically that the entropy increases with the particle number in a monotonic way. Program summaryTitle of program

  13. Basis selection in LOBPCG

    NASA Astrophysics Data System (ADS)

    Hetmaniuk, U.; Lehoucq, R.

    2006-10-01

    The purpose of our paper is to discuss basis selection for Knyazev's locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh-Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.

  14. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  15. Effect of alloy deformation on the average spacing parameters of non-deforming particles

    SciTech Connect

    Fisher, J; Gurland, J

    1980-02-01

    It is shown on the basis of stereological definitions and a few simple experiments that the commonly used average dispersion parameters, area fraction (A/sub A/)/sub ..beta../, areal particle density N/sub A..beta../ and mean free path lambda/sub ..cap alpha../, remain invariant during plastic deformation in the case of non-deforming equiaxed particles. Directional effects on the spacing parameters N/sub A..beta../ and lambda/sub ..cap alpha../ arise during uniaxial deformation by rotation and preferred orientation of nonequiaxed particles. Particle arrangement in stringered or layered structures and the effect of deformation on nearest neighbor distances of particles and voids are briefly discussed in relation to strength and fracture theories.

  16. An improved choice of oscillator basis for banana shaped nuclides

    SciTech Connect

    Chasman, R.R.

    1994-03-01

    The question of the appropriate choice of oscillator basis functions for studying exotic nuclear shapes is raised. Difficulties with the conventional choice of oscillator basis states are noted for shapes having a large banana component. A prescription for an improved oscillator basis to study these shapes is given. It can be applied in a more general context. New calculations with this improved basis are presented for the banana deformation mode. The change of basis gives results that improve the prospects of finding states in the banana minimum for many isotopes of Tl, Pb and Bi.

  17. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  18. Deformations of 3-algebras

    SciTech Connect

    Figueroa-O'Farrill, Jose Miguel

    2009-11-15

    We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.

  19. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  20. Large-scale deformed quasiparticle random-phase approximation calculations of the γ -ray strength function using the Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.

    2016-07-01

    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.

  1. Correlation dependences of electromagnetic and deformation parameters

    NASA Astrophysics Data System (ADS)

    Bataleva, E. A.

    2016-05-01

    In-situ monitoring observations are carried out, and correlation analysis aimed at estimating the dependences between the electromagnetic parameters (variations of apparent resistivity, the impedance phase, components of the impedance tensor, and deformations of the daylight surface on the territory of the Bishkek geodynamic polygon) is performed. A new approach to the explanation of the physical mechanism forming variations in electrical conductivity of the medium is proposed on this basis.

  2. Algebraic Multiscale Solver for Elastic Geomechanical Deformation

    NASA Astrophysics Data System (ADS)

    Castelletto, N.; Hajibeygi, H.; Tchelepi, H.

    2015-12-01

    Predicting the geomechanical response of geological formations to thermal, pressure, and mechanical loading is important in many engineering applications. The mathematical formulation that describes deformation of a reservoir coupled with flow and transport entails heterogeneous coefficients with a wide range of length scales. Such detailed heterogeneous descriptions of reservoir properties impose severe computational challenges for the study of realistic-scale (km) reservoirs. To deal with these challenges, we developed an Algebraic Multiscale Solver for ELastic geomechanical deformation (EL-AMS). Constructed on finite element fine-scale system, EL-AMS imposes a coarse-scale grid, which is a non-overlapping decomposition of the domain. Then, local (coarse) basis functions for the displacement vector are introduced. These basis functions honor the elastic properties of the local domains subject to the imposed local boundary conditions. The basis form the Restriction and Prolongation operators. These operators allow for the construction of accurate coarse-scale systems for the displacement. While the multiscale system is efficient for resolving low-frequency errors, coupling it with a fine-scale smoother, e.g., ILU(0), leads to an efficient iterative solver. Numerical results for several test cases illustrate that EL-AMS is quite efficient and applicable to simulate elastic deformation of large-scale heterogeneous reservoirs.

  3. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  4. Safety Basis Report

    SciTech Connect

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  5. Infinitesimal deformations of naturally graded filiform Leibniz algebras

    NASA Astrophysics Data System (ADS)

    Khudoyberdiyev, A. Kh.; Omirov, B. A.

    2014-12-01

    In the present paper we describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any n-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra Fn3(0) . We establish that in the same way any n-dimensional filiform Leibniz algebra can be obtained by an infinitesimal deformation of the filiform Leibniz algebras Fn1,Fn2and Fn3(α) . Moreover, we describe the linear integrable deformations of the above-mentioned algebras with a fixed basis of HL2 in the set of all n-dimensional Leibniz algebras. Among these deformations one new rigid algebra has been found.

  6. Deformation behavior and microstructure evolution of wrought magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wang, Shouren; Song, Linghui; Kang, Sukbong; Cho, Jaehyung; Wang, Yingzi

    2013-05-01

    There are many researches on the deformation behavior of wrought magnesium alloys, such as AZ31, AZ80, AZ91, and ZK60 magnesium alloys at different temperatures and strain rates, but few of them focuses on the deformation behavior of AZ41M and ZK60M alloys, especially under the twin-roll casting (TRC) state. Meanwhile, the existing researches only focus on the grain refinement law of the magnesium alloys under deformation conditions, the deformation mechanism has not been revealed yet. The hot compression behavior of AZ41M and ZK60M magnesium alloys under the temperature and strain rate ranges of 250-400 °C and 0.001-1 s-1 are studied by thermal simulation methods using Gleeble 1500 machine and virtual simulation using finite element analysis software. Simulation results show that sine hyperbolic law is the most suitable flow stress model for wider deformation conditions. The most reasonable selected deformation conditions of ZK60M alloy is 350 °C/0.1 s-1 for TRC and 350 °C/1 s-1 for conventional casting (CC), while AZ41M alloy is 300 °C/0.01 s-1 for TRC and 350 °C/0.1 s-1 for CC. Deformation behavior and dynamic recrystallization (DRX) mechanism of them are analyzed at the same deformation conditions. The microstructures of AZ41M and ZK60M alloys are observed at different deformed conditions by optical microscopy (OM) and electron back scatter diffraction (EBSD) and it reveals the flow behavior and deformation mechanism of them. Working harden and work soften contribute to the activation of basal, non-basal slip systems which promote DRX. The proposed research reveals the deformation behavior and mechanism of the AZ41M and ZK 60M magnesium alloys and concludes their optimized deformation parameters and processes and provides a theory basis for their manufacturing and application.

  7. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  8. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  9. Vaporization of Deforming Droplets

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Chen, Xiaodong; Ma, Dongjun; Yang, Vigor

    2012-11-01

    Droplet deformation is one of the most important factors influencing the evaporation rate. In the present study, high-fidelity numerical simulations of single evaporating droplets with deformation are carried out over a wide range of the Reynolds and Weber numbers. The formulation is based on a complete set of conservation equations for both the liquid and surrounding gas phases. A modified volume-of-fluid (VOF) technique that takes into account heat and mass transfer is used to track the behavior of the liquid/gas interface. Special attention is given to the property conservation, which can be realized by using an iterative algorithm that enforces a divergence constraint in cells containing the interface. The effect of the ambient flow on droplet dynamics and evaporation are investigated systematically. Various underlying mechanisms dictating the droplet characteristics in different deformation regimes are identified. Correlations for the droplet evaporation rate are established in terms of the Reynolds and Weber numbers.

  10. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  11. Lobster claw deformity.

    PubMed

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861

  12. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  13. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  14. Nail Deformities and Injuries.

    PubMed

    Tucker, James Rory J

    2015-12-01

    A variety of nail deformities commonly presents in the primary care office. An understanding of nail anatomy coupled with inspection of the nails at routine office visits can reveal undetected disorders. Some problems are benign, and treatment should be attempted by the primary care provider, such as onychomycosis, paronychia, or ingrown toenails. For conditions such as benign melanonychia, longitudinal ridges, isolated Beau lines, and onycholysis, clinicians may offer reassurance to patients who are concerned about the change in their nails. For deformities such as early pterygium or clubbing, a thorough evaluation and referral to an appropriate specialist may be warranted. PMID:26612379

  15. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  16. Deformation twins in Hornblende

    USGS Publications Warehouse

    Rooney, T.P.; Riecker, R.E.; Ross, M.

    1970-01-01

    Hornblende deformation twins with twin planes parallel to (101) are produced experimentally in single crystals by compression parallel to the c axis. Twinning occurs at confining pressures from 5 to 15 kilobars and temperatures from 400?? to 600??C (strain rate, 10-5 per second).

  17. Transfer involving deformed nuclei

    SciTech Connect

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.

  18. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  19. Degenerative Spinal Deformity.

    PubMed

    Ailon, Tamir; Smith, Justin S; Shaffrey, Christopher I; Lenke, Lawrence G; Brodke, Darrel; Harrop, James S; Fehlings, Michael; Ames, Christopher P

    2015-10-01

    Degenerative spinal deformity afflicts a significant portion of the elderly and is increasing in prevalence. Recent evidence has revealed sagittal plane malalignment to be a key driver of pain and disability in this population and has led to a significant shift toward a more evidence-based management paradigm. In this narrative review, we review the recent literature on the epidemiology, evaluation, management, and outcomes of degenerative adult spinal deformity (ASD). ASD is increasing in prevalence in North America due to an aging population and demographic shifts. It results from cumulative degenerative changes focused in the intervertebral discs and facet joints that occur asymmetrically to produce deformity. Deformity correction focuses on restoration of global alignment, especially in the sagittal plane, and decompression of the neural elements. General realignment goals have been established, including sagittal vertical axis <50 mm, pelvic tilt <22°, and lumbopelvic mismatch <±9°; however, these should be tailored to the patient. Operative management, in carefully selected patients, yields satisfactory outcomes that appear to be superior to nonoperative strategies. ASD is characterized by malalignment in the sagittal and/or coronal plane and, in adults, presents with pain and disability. Nonoperative management is recommended for patients with mild, nonprogressive symptoms; however, evidence of its efficacy is limited. Surgery aims to restore global spinal alignment, decompress neural elements, and achieve fusion with minimal complications. The surgical approach should balance the desired correction with the increased risk of more aggressive maneuvers. In well-selected patients, surgery yields excellent outcomes. PMID:26378361

  20. Crustal deformation along the San Andreas, California

    NASA Astrophysics Data System (ADS)

    Li, Victor C.

    1992-03-01

    The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.

  1. Crustal deformation along the San Andreas, California

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1992-01-01

    The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.

  2. Basis of Articulation.

    ERIC Educational Resources Information Center

    Kelz, Heinrich

    This article intends to shed light on the somewhat nebulous term "basis of articulation," which is used frequently in Eastern European phonetic and linguistic literature but highly neglected in contemporary American literature. In a historical approach, it is shown how the term originated and developed, how it is defined by various authors, and…

  3. [Babies with cranial deformity].

    PubMed

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299

  4. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  5. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  6. Ice deformation near SHEBA

    NASA Astrophysics Data System (ADS)

    Lindsay, R. W.

    2002-10-01

    The deformation rate of sea ice is a key parameter for determining the evolution of the ice thickness distribution. It determines the rate of new ice formation through opening and the rate of ridging through closing and shear. An extensive suite of ground-based and satellite-based measurements of ice motion is used to construct a daily time series of the ice velocity and deformation in the vicinity of the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp that is suitable for forcing a model of the ice thickness distribution. The velocity is interpolated to a square grid that remains centered on the camp, has a spacing of 25 km, is 400 km on a side, and is determined for a 371-day period from 2 October 1997 to 7 October 1998. Velocity measurements from buoys, Advanced Very High Resolution Radiometer (AVHRR), Special Sensor Microwave/Imager (SSMI), and Radarsat Geophysical Processing System (RGPS) are merged using optimal interpolation and a Kalman filter approach. The deformation rate is taken directly from the RGPS measurements when available. The daily total deformation rate measured on a scale of 100 km near the camp averaged 2.21% d-1, and the standard deviation was 1.78% d-1. The divergence was positive in the early winter and negative through most of the spring and summer. There were two major opening/closing events, one in January and one at the end of July. The net divergence over the year was very near zero. The vorticity indicated a net rotation of 87° over the year, with the winter showing strong anticyclonic turning and the summer showing strong cyclonic turning.

  7. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  8. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  9. Treatment of Madelung's deformity.

    PubMed

    Saffar, P; Badina, A

    2015-12-01

    Treatment of Madelung's deformity is still controversial. We reviewed retrospectively 19 patients with Madelung's deformity (two bilateral, 21 cases) who underwent surgery to the radius and ulna to improve range of motion, decrease pain and improve appearance of the wrist. Nineteen patients underwent 21 distal radial osteotomy procedures using three different techniques: subtraction, addition or dome osteotomy. Ulnar shortening and redirection of the distal ulna was performed in 12 cases; a long oblique osteotomy was used in 10 of these cases. The Sauvé-Kapandji technique was performed in five cases, an ulnar distal epiphysiodesis in two cases and a combination of osteotomy and epiphysiodesis in one case. The aim was to reduce the distal radial slope and to restore the orientation and congruity of the distal radio-ulnar joint and to improve its function. Pain was reduced as a result of the procedure: more than 75% of the cases had no or intermittent pain at the review. Pronation improved from 63° to 68° (P=0.467, not significant) and supination improved from 48° to 72° on average (P=0.034, significant). Grip strength increased from 11 to 18 kgf (P=0.013, significant). Madelung's deformity is not always a benign condition and it responds well to corrective osteotomies. PMID:26525609

  10. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  11. Supertransvectants, cohomology, and deformations

    NASA Astrophysics Data System (ADS)

    Ben Fraj, Nizar; Laraiedh, Ismail; Omri, Salem

    2013-02-01

    Over the (1, N)-dimensional real superspace, N = 2, 3, we classify {osp}(N|2)-invariant binary differential operators acting on the superspaces of weighted densities, where {osp}(N|2) is the orthosymplectic Lie superalgebra. This result allows us to compute the first differential {osp}(N|2)-relative cohomology of the Lie superalgebra K(N) of contact vector fields with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We classify generic formal {osp}(3|2)-trivial deformations of the K(3)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal {osp}(3|2)-trivial deformation of this K(3)-module is equivalent to its infinitesimal part. This work is the simplest generalization of a result by the first author et al. [Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelbene, M., and Kammoun, K., "Cohomology of the Lie superalgebra of contact vector fields on {K}^{1|1} and deformations of the superspace of symbols," J. Nonlinear Math. Phys. 16, 373 (2009), 10.1142/S1402925109000431].

  12. Nanoscale Deformable Optics

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  13. Strain accumulation and surface deformation along the San Andreas, California

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1989-01-01

    The goal of this project remains to be the achievement of a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effect of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate/viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformations. In the present period, special focus is placed on the 3-D effect of irregular fault locked patches on the ground measured deformation fields. Specifically, use is made of a newly developed 3-D boundary element program to analyze the fault slip and vertical ground motion in the Parkfield area on the San Andreas.

  14. Diverse deformation patterns of Aleutian volcanoes from InSAR

    USGS Publications Warehouse

    Lu, Zhiming; Dzurisin, D.; Wicks, C., Jr.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  15. Simulation of deformations in magnetic media by the movable cellular automata method

    NASA Astrophysics Data System (ADS)

    Usachev, Victor V.; Andriushchenko, Petr D.; Afremov, Leonid L.

    2015-09-01

    A deformable model of the magnetic medium is considered in the research paper. Simulating algorithms of the impact of the external magnetic field on the deformation of the magnetic medium have been developed on the basis of the movable cellular automata (MCA) method.

  16. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  17. Radioactive Waste Management Basis

    SciTech Connect

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  18. Optical detection of harmonic oscillations in fluorescent dye-loaded microbubbles ensonified by ultrasound.

    PubMed

    Schutt, Carolyn E; Ibsen, Stuart; Benchimol, Michael; Hsu, Mark; Esener, Sadik

    2015-06-15

    A new optical contrast agent has been developed by exposing dye-loaded microbubbles to a rapidly-cooled thermal treatment to homogenize the dye distribution across the surface. Ultrasound causes these microbubbles to oscillate in size which changes the self-quenching efficiency of the dye molecules creating a "blinking" signal. We demonstrate for the first time that these microbubbles can reproducibly generate second, third, and even fourth harmonic fluorescence intensity modulations, in addition to the fundamental frequency of the driving ultrasound. Detecting these harmonic signals could produce a higher signal-to-noise ratio for fluorescence imaging in medical applications by allowing fundamental frequency interference and artifacts to be filtered out. PMID:26076274

  19. Phase of the Riemann ζ function and the inverted harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Bhaduri, R. K.; Khare, Avinash; Law, J.

    1995-07-01

    The Argand diagram is used to display some characteristics of the Riemann ζ function. The zeros of the ζ function on the complex plane give rise to an infinite sequence of closed loops, all passing through the origin of the diagram. The behavior of the phase of the ζ function on and off the line of zeros is studied. Up to some distance from the line of the complex zeros, the phase angle is shown to still retain their memory. The Argand plots also lead to an analogy with the scattering amplitude and an approximate rule for the location of the zeros. The smooth phase of the ζ function along the line of the zeros is related to the quantum density of states of an inverted oscillator.

  20. Demonstration of Double EIT Using Coupled Harmonic Oscillators and RLC Circuits

    ERIC Educational Resources Information Center

    Harden, Joshua; Joshi, Amitabh; Serna, Juan D.

    2011-01-01

    Single and double electromagnetically induced transparencies (EIT) in a medium, consisting of four-level atoms in the inverted-Y configuration, are discussed using mechanical and electrical analogies. A three-coupled spring-mass system subject to damping and driven by an external force is used to represent the four-level atom mechanically. The…

  1. Vector Constants of Motion for Time-Dependent Kepler and Isotropic Harmonic Oscillator Potentials

    NASA Astrophysics Data System (ADS)

    Ritter, O. M.; Santos, F. C.; Tort, A. C.

    2001-06-01

    A method of obtaining vector constants of motion for time-independent as well as time-dependent central fields is discussed. Some well-established results are rederived in this alternative way and new ones obtained.

  2. Using a mobile phone acceleration sensor in physics experiments on free and damped harmonic oscillations

    NASA Astrophysics Data System (ADS)

    Carlos Castro-Palacio, Juan; Velázquez-Abad, Luisberis; Giménez, Marcos H.; Monsoriu, Juan A.

    2013-06-01

    We have used a mobile phone acceleration sensor, and the Accelerometer Monitor application for Android, to collect data in physics experiments on free and damped oscillations. Results for the period, frequency, spring constant, and damping constant agree very well with measurements obtained by other methods. These widely available sensors are likely to find increased use in instructional laboratories.

  3. Propagator for the general time-dependent harmonic oscillator with application to an ion trap

    SciTech Connect

    Harari, Gal; Ben-Aryeh, Yacob; Mann, Ady

    2011-12-15

    We present the simplest possible formula for the propagator of the general time-dependent quadratic Hamiltonian, including linear terms. The method is based on the use of a linear time-dependent invariant and requires only the solution of a linear homogeneous second-order ordinary differential equation corresponding to the classical quadratic Hamiltonian. We give an example for the case of the Paul trap.

  4. 3/4-Fractional Superdiffusion in a System of Harmonic Oscillators Perturbed by a Conservative Noise

    NASA Astrophysics Data System (ADS)

    Bernardin, Cédric; Gonçalves, Patrícia; Jara, Milton

    2016-05-01

    We consider a harmonic chain perturbed by an energy conserving noise and show that after a space-time rescaling the energy-energy correlation function is given by the solution of a skew-fractional heat equation with exponent 3/4.

  5. On Noether's Theorem for the Invariant of the Time-Dependent Harmonic Oscillator

    ERIC Educational Resources Information Center

    Abe, Sumiyoshi; Itto, Yuichi; Matsunaga, Mamoru

    2009-01-01

    The time-dependent oscillator describing parametric oscillation, the concept of invariant and Noether's theorem are important issues in physics education. Here, it is shown how they can be interconnected in a simple and unified manner.

  6. Incompressible fluid ellipsoids in halos. I - The second-harmonic oscillations of the Maclaurin spheroids

    NASA Technical Reports Server (NTRS)

    Durisen, R. H.

    1978-01-01

    The structure and stability of Maclaurin spheroids embedded in rigid uniform-density oblate spheroidal halos are determined by the tensor virial-equation method. These spheroid-halo systems can be thought of as crude fluid analogs of disk galaxies with halos. The halos are assumed to have the same center, the same axis of symmetry, and the same equatorial radius as the Maclaurin spheroids. Only halos with lower eccentricity than the Maclaurin spheroids are considered. The dynamic instability of the toroidal (barlike) modes is suppressed when m, the ratio of the halo mass to Maclaurin spheroid mass, is greater than 3 pi/8 for spherical halos and when m is greater than 1/2 for halos congruent to the Maclaurin spheroids. Intermediate halo flattenings yield intermediate critical m-values. On the other hand, a neutral point of the toroidal modes in the rotating and inertial frames occurs for all m and for all allowed halo flattenings. Growth rates for secular instability beyond the neutral point are calculated, and the eigenfrequencies of all second-harmonic modes are given for select cases. The Ostriker-Peebles (1973) conjecture concerning the stability of disk galaxies against barlike perturbations appears to be incorrect.

  7. Formation and subdivision of deformation structures during plastic deformation.

    PubMed

    Jakobsen, Bo; Poulsen, Henning F; Lienert, Ulrich; Almer, Jonathan; Shastri, Sarvjit D; Sørensen, Henning O; Gundlach, Carsten; Pantleon, Wolfgang

    2006-05-12

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior. Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials. PMID:16690859

  8. Ultrasoft, highly deformable microgels.

    PubMed

    Bachman, Haylee; Brown, Ashley C; Clarke, Kimberly C; Dhada, Kabir S; Douglas, Alison; Hansen, Caroline E; Herman, Emily; Hyatt, John S; Kodlekere, Purva; Meng, Zhiyong; Saxena, Shalini; Spears, Mark W; Welsch, Nicole; Lyon, L Andrew

    2015-03-14

    Microgels are colloidally stable, hydrogel microparticles that have previously been used in a range of (soft) material applications due to their tunable mechanical and chemical properties. Most commonly, thermo and pH-responsive poly(N-isopropylacrylamide) (pNIPAm) microgels can be fabricated by precipitation polymerization in the presence of the co-monomer acrylic acid (AAc). Traditionally pNIPAm microgels are synthesized in the presence of a crosslinking agent, such as N,N'-methylenebisacrylamide (BIS), however, microgels can also be synthesized under 'crosslinker free' conditions. The resulting particles have extremely low (<0.5%), core-localized crosslinking resulting from rare chain transfer reactions. AFM nanoindentation of these ultralow crosslinked (ULC) particles indicate that they are soft relative to crosslinked microgels, with a Young's modulus of ∼10 kPa. Furthermore, ULC microgels are highly deformable as indicated by a high degree of spreading on glass surfaces and the ability to translocate through nanopores significantly smaller than the hydrodynamic diameter of the particles. The size and charge of ULCs can be easily modulated by altering reaction conditions, such as temperature, monomer, surfactant and initiator concentrations, and through the addition of co-monomers. Microgels based on the widely utilized, biocompatible polymer polyethylene glycol (PEG) can also be synthesized under crosslinker free conditions. Due to their softness and deformability, ULC microgels are a unique base material for a wide variety of biomedical applications including biomaterials for drug delivery and regenerative medicine. PMID:25648590

  9. Deformable spanners and applications

    PubMed Central

    Guibas, Leonidas J.; Nguyen, An

    2010-01-01

    For a set S of points in ℝd, an s-spanner is a subgraph of the complete graph with node set S such that any pair of points is connected via some path in the spanner whose total length is at most s times the Euclidean distance between the points. In this paper we propose a new sparse (1 + ε)-spanner with O(n/εd) edges, where ε is a specified parameter. The key property of this spanner is that it can be efficiently maintained under dynamic insertion or deletion of points, as well as under continuous motion of the points in both the kinetic data structures setting and in the more realistic blackbox displacement model we introduce. Our deformable spanner succinctly encodes all proximity information in a deforming point cloud, giving us efficient kinetic algorithms for problems such as the closest pair, the near neighbors of all points, approximate nearest neighbor search (aka approximate Voronoi diagram), well-separated pair decompositions, and approximate k-centers. PMID:21165161

  10. Deformable spanners and applications.

    PubMed

    Gao, Jie; Guibas, Leonidas J; Nguyen, An

    2006-08-01

    For a set S of points in ℝ(d), an s-spanner is a subgraph of the complete graph with node set S such that any pair of points is connected via some path in the spanner whose total length is at most s times the Euclidean distance between the points. In this paper we propose a new sparse (1 + ε)-spanner with O(n/ε(d)) edges, where ε is a specified parameter. The key property of this spanner is that it can be efficiently maintained under dynamic insertion or deletion of points, as well as under continuous motion of the points in both the kinetic data structures setting and in the more realistic blackbox displacement model we introduce. Our deformable spanner succinctly encodes all proximity information in a deforming point cloud, giving us efficient kinetic algorithms for problems such as the closest pair, the near neighbors of all points, approximate nearest neighbor search (aka approximate Voronoi diagram), well-separated pair decompositions, and approximate k-centers. PMID:21165161

  11. Measuring deformations with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Huke, Philipp; Burke, Jan; von Kopylow, Christoph; Bergmann, Ralf B.

    2014-07-01

    Phase-measuring deflectometry is a powerful method to measure reflective surfaces. It is relatively easy to extract slope and curvature information from the measured phase maps; however, retrieving shape information depends very sensitively on the calibration of the camera and the geometry of the measurement system. Whereas we have previously demonstrated shape uncertainties below 1 μm, the range below 100 nm is currently inaccessible to deflectometric shape measurement. On the other hand, the astounding sensitivity of deflectometry can be put to good use for deformation measurements. The evaluation of corresponding shape differences rather than absolute shapes is much less susceptible to system calibration errors and its resolution is given mostly by the measurement system's sensitivity. We give an overview of recent progress in difference deflectometry. Firstly we show results from solar mirror substrates under load to detect flaws with high sensitivity. Secondly we present a preliminary simulation study of achievable deformation-measurement uncertainties to assess the feasibility of deflectometric characterisation of actuator performance and gravity sag for the mirror segments of the European Extremely Large Telescope (E-ELT). Results for the relevant Zernike terms show reliable detection of Zernike coefficients at the 25 nm level. Random artefacts related to noise in the phase measurements are seen to translate into bogus Zernike terms, and we discuss possible mitigation techniques to enhance the sensitivity and accuracy further.

  12. A generalized anisotropic deformation formulation for geomaterials

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.

    2016-04-01

    In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.

  13. Sessile drop deformations under an impinging jet

    NASA Astrophysics Data System (ADS)

    Feng, James Q.

    2015-08-01

    The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier-Stokes equations. For effective material deposition in Aerosol printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol printing.

  14. Genetic basis of hyperlysinemia

    PubMed Central

    2013-01-01

    Background Hyperlysinemia is an autosomal recessive inborn error of L-lysine degradation. To date only one causal mutation in the AASS gene encoding α-aminoadipic semialdehyde synthase has been reported. We aimed to better define the genetic basis of hyperlysinemia. Methods We collected the clinical, biochemical and molecular data in a cohort of 8 hyperlysinemia patients with distinct neurological features. Results We found novel causal mutations in AASS in all affected individuals, including 4 missense mutations, 2 deletions and 1 duplication. In two patients originating from one family, the hyperlysinemia was caused by a contiguous gene deletion syndrome affecting AASS and PTPRZ1. Conclusions Hyperlysinemia is caused by mutations in AASS. As hyperlysinemia is generally considered a benign metabolic variant, the more severe neurological disease course in two patients with a contiguous deletion syndrome may be explained by the additional loss of PTPRZ1. Our findings illustrate the importance of detailed biochemical and genetic studies in any hyperlysinemia patient. PMID:23570448

  15. Genetic basis of autoimmunity

    PubMed Central

    Marson, Alexander; Housley, William J.; Hafler, David A.

    2015-01-01

    Autoimmune diseases affect up to approximately 10% of the population. While rare Mendelian autoimmunity syndromes can result from monogenic mutations disrupting essential mechanisms of central and peripheral tolerance, more common human autoimmune diseases are complex disorders that arise from the interaction between polygenic risk factors and environmental factors. Although the risk attributable to most individual nucleotide variants is modest, genome-wide association studies (GWAS) have the potential to provide an unbiased view of biological pathways that drive human autoimmune diseases. Interpretation of GWAS requires integration of multiple genomic datasets including dense genotyping, cis-regulatory maps of primary immune cells, and genotyped studies of gene expression in relevant cell types and cellular conditions. Improved understanding of the genetic basis of autoimmunity may lead to a more sophisticated understanding of underlying cellular phenotypes and, eventually, novel diagnostics and targeted therapies. PMID:26030227

  16. WEST Physics Basis

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.; Artaud, J. F.; Basiuk, V.; Bécoulet, M.; Brémond, S.; Bucalossi, J.; Bufferand, H.; Ciraolo, G.; Colas, L.; Corre, Y.; Courtois, X.; Decker, J.; Delpech, L.; Devynck, P.; Dif-Pradalier, G.; Doerner, R. P.; Douai, D.; Dumont, R.; Ekedahl, A.; Fedorczak, N.; Fenzi, C.; Firdaouss, M.; Garcia, J.; Ghendrih, P.; Gil, C.; Giruzzi, G.; Goniche, M.; Grisolia, C.; Grosman, A.; Guilhem, D.; Guirlet, R.; Gunn, J.; Hennequin, P.; Hillairet, J.; Hoang, T.; Imbeaux, F.; Ivanova-Stanik, I.; Joffrin, E.; Kallenbach, A.; Linke, J.; Loarer, T.; Lotte, P.; Maget, P.; Marandet, Y.; Mayoral, M. L.; Meyer, O.; Missirlian, M.; Mollard, P.; Monier-Garbet, P.; Moreau, P.; Nardon, E.; Pégourié, B.; Peysson, Y.; Sabot, R.; Saint-Laurent, F.; Schneider, M.; Travère, J. M.; Tsitrone, E.; Vartanian, S.; Vermare, L.; Yoshida, M.; Zagorski, R.; Contributors, JET

    2015-06-01

    With WEST (Tungsten Environment in Steady State Tokamak) (Bucalossi et al 2014 Fusion Eng. Des. 89 907-12), the Tore Supra facility and team expertise (Dumont et al 2014 Plasma Phys. Control. Fusion 56 075020) is used to pave the way towards ITER divertor procurement and operation. It consists in implementing a divertor configuration and installing ITER-like actively cooled tungsten monoblocks in the Tore Supra tokamak, taking full benefit of its unique long-pulse capability. WEST is a user facility platform, open to all ITER partners. This paper describes the physics basis of WEST: the estimated heat flux on the divertor target, the planned heating schemes, the expected behaviour of the L-H threshold and of the pedestal and the potential W sources. A series of operating scenarios has been modelled, showing that ITER-relevant heat fluxes on the divertor can be achieved in WEST long pulse H-mode plasmas.

  17. Learning Deformable Shape Manifolds

    PubMed Central

    Rivera, Samuel; Martinez, Aleix

    2011-01-01

    We propose an approach to shape detection of highly deformable shapes in images via manifold learning with regression. Our method does not require shape key points be defined at high contrast image regions, nor do we need an initial estimate of the shape. We only require sufficient representative training data and a rough initial estimate of the object position and scale. We demonstrate the method for face shape learning, and provide a comparison to nonlinear Active Appearance Model. Our method is extremely accurate, to nearly pixel precision and is capable of accurately detecting the shape of faces undergoing extreme expression changes. The technique is robust to occlusions such as glasses and gives reasonable results for extremely degraded image resolutions. PMID:22308002

  18. Sine-square deformation and supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Okunishi, Kouichi; Katsura, Hosho

    2015-11-01

    We investigate the sine-square deformation (SSD) of free fermions in one-dimensional continuous space. On the basis of supersymmetric quantum mechanics, we prove the correspondence between the many-body ground state of the system with SSD and that of the uniform system with periodic boundary conditions. We also discuss the connection between the SSD in the continuous space and its lattice version, where the geometric correction due to the real-space deformation plays an important role in relating the eigenstates of the lattice SSD with those of the continuous SSD.

  19. Stroke amplifier for deformable mirrors

    PubMed Central

    Webb, Robert H.; Albanese, Marc J.; Zhou, Yaopeng; Bifano, Thomas; Burns, Stephen A.

    2010-01-01

    We demonstrate a simple optical configuration that amplifies the usable stroke of a deformable mirror. By arranging for the wavefront to traverse the deformable mirror more than once, we correct it more than once. The experimental implementation of the idea demonstrates a doubling of 2.0 and 2.04 by two different means. PMID:15495423

  20. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation. PMID:22007412

  1. Basis Selection for Wavelet Regression

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Lau, Sonie (Technical Monitor)

    1998-01-01

    A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using cross-validation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled functions widely used in the wavelet regression literature. The results of the method are contrasted with other published methods.

  2. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  3. Perceptual transparency from image deformation

    PubMed Central

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin’ya

    2015-01-01

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid’s surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of “invisible” transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  4. Opioids and rat erythrocyte deformability.

    PubMed

    Rhoads, D L; Wei, L X; Lin, E T; Rezvani, A; Way, E L

    1986-01-01

    In previous studies from this laboratory, it was noted that opioids in vitro reduced human red blood cell deformability. The effect was found to be dose-dependent, naloxone reversible and preferentially selective kappa ligands exhibited the highest potency. To extend these findings studies were carried out using rat erythrocytes. The time required for erythrocytes to pass through a 5.0 um pore membrane was determined and used as an index of deformability. Opioids added in vitro produced inhibition of deformability in a dose-dependent, naloxone reversible manner. Injecting naive animals with morphine or nalbuphine also produced dose related reductions in red cell deformability. The degree of inhibition produced by nalbuphine correlated well with its plasma concentrations as measured by high performance liquid chromatography (HPLC). Chronic morphine treatment by pellet implantation resulted in the development of tolerance as evidenced by a loss in the ability of morphine in vitro to inhibit red cell deformability. Addition of naloxone resulted in a decrease in filtration time. Thus, the data confirm and extend previous findings on human red blood cells. In as much as previous data from this laboratory demonstrated that opioids inhibit calcium flux from erythrocytes by inhibiting calcium-ATPase and calcium efflux is necessary for normal deformability, it is concluded that opioids act to reduce red cell deformability by inhibition of the calcium pump. PMID:3123933

  5. Surface deformation over flexible joints using spline blending techniques

    NASA Astrophysics Data System (ADS)

    Haavardsholm, Birgitte; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    Skinning over a skeleton joint is the process of skin deformation based on joint transformation. Popular geometric skinning techniques include implicit linear blending and dual quaternions. Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended by Ck-smooth basis functions. A smooth skinning surface can be constructed over a transformable skeleton joint by combining various types of local surface constructions and applying local Hermite interpolation. Compared to traditional spline methods, increased flexibility and local control with respect to surface deformation can be achieved using the GERBS blending construction. We present a method using a blending-type spline surface for skinning over a flexible joint, where local geometry is individually adapted to achieve natural skin deformation based on skeleton transformations..

  6. Effect of droplet deformation on inertial and thermophoretic capture of particles

    NASA Astrophysics Data System (ADS)

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2016-02-01

    Falling droplets significantly deform during the wet deposition and wet scrubbing processes, which affects particle capture. On the basis of studies on the deformation of droplets falling at terminal velocity with typical diameters, the flow and the temperature fields around deformed and spherical droplets were simulated by large eddy simulation. The deposition behavior of particles with varying diameters was studied in both flow processes. The effect of droplet deformation on the inertial capture efficiency and thermophoretic efficiency of particles was analyzed. Inertial capture efficiency is enhanced by droplet deformation when Stokes number (St) > 0.4 and reduced when St < 0.4. The relative difference in the inertial capture efficiencies of the deformed and spherical droplets with the same equivalent diameter increases first and then decreases and converges as St increases. The aforementioned phenomenon is a result of a change in windward area, the shield effects of the boundary layer, and particle inertia. Thermophoretic efficiency is reduced by droplet deformation, but the decrement is independent of temperature difference. The difference in thermophoretic efficiencies is a consequence of the shift in superficial area and in the Nusselt number caused by droplet deformation. A methodology to predict capture efficiency of deformed droplet is established based on comparing the capture efficiencies of deformed and spherical droplets.

  7. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  8. Metastable vacua and complex deformations

    SciTech Connect

    Tatar, Radu; Wetenhall, Ben

    2007-12-15

    We use the non-normalizable complex deformations to describe the stringy realizations of the metastable vacua in N=1, SU(N{sub c}) SUSY theories with N{sub f}>N{sub c} massive fundamental flavors. The consideration of the non-normalizable deformations requires a modified toric duality. The new approach considers the tachyon condensation between pairs of wrapped D5 branes and anti-D5 branes and the resulting mixing between some cycles in the geometry. We enlarge the class of metastable vacua to the case of branes-antibranes wrapped on cycles of deformed A{sub n} singularities.

  9. Features of time-independent Wigner functions

    SciTech Connect

    Curtright, T.; Fairlie, D.; Zachos, C.

    1998-07-01

    The Wigner phase-space distribution function provides the basis for Moyal{close_quote}s deformation quantization alternative to the more conventional Hilbert space and path integral quantizations. The general features of time-independent Wigner functions are explored here, including the functional ({open_quotes}star{close_quotes}) eigenvalue equations they satisfy; their projective orthogonality spectral properties; their Darboux ({open_quotes}supersymmetric{close_quotes}) isospectral potential recursions; and their canonical transformations. These features are illustrated explicitly through simple solvable potentials: the harmonic oscillator, the linear potential, the P{umlt o}schl-Teller potential, and the Liouville potential. {copyright} {ital 1998} {ital The American Physical Society}

  10. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  11. Simplicity from Complexity

    NASA Astrophysics Data System (ADS)

    Freer, M.; Almaraz-Calderon, S.; Carter, J.; Aprahamian, A.; Ashwood, N. I.; Barr, M.; Bucher, B.; Copp, P.; Couder, M.; Curtis, N.; Fang, X.; Jung, F.; Lesher, S.; Lu, W.; Malcolm, J. D.; Roberts, A.; Smit, R.; Tan, W. P.; Wheldon, C.; Ziman, V. A.

    2012-09-01

    The emergence of clustering in light nuclear systems is explored using the deformed harmonic oscillator as a starting point. The experimental evidence for various geometrical arrangements of clusters in carbon-12 is discussed.

  12. ROCK DEFORMATION. Final Progress Report

    SciTech Connect

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  13. M theory on deformed superspace

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  14. Carrier Deformability in Drug Delivery.

    PubMed

    Morilla, Maria Jose; Romero, Eder Lilia

    2016-01-01

    Deformability is a key property of drug carriers used to increase the mass penetration across the skin without disrupting the lipid barrier. Highly deformable vesicles proved to be more effective than conventional liposomes in delivering drugs into and across the mammalian skin upon topical non occlusive application. In the past five years, highly deformable vesicles have been used for local delivery of drugs on joint diseases, skin cancer, atopic dermatitis, would healing, psoriasis, scar treatment, fungal, bacteria and protozoa infections. Promising topical vaccination strategies rely also in this type of carriers. Here we provide an overview on the main structural and mechanical features of deformable vesicles, to finish with an extensive update on their latest preclinical applications. PMID:26675226

  15. Modelling magnetically deformed neutron stars

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Samuelsson, L.; Glampedakis, K.; Andersson, N.

    2008-03-01

    Rotating deformed neutron stars are important potential sources for ground-based gravitational wave interferometers such as LIGO, GEO600 and VIRGO. One mechanism that may lead to significant non-asymmetries is the internal magnetic field. It is well known that a magnetic star will not be spherical and, if the magnetic axis is not aligned with the spin axis, the deformation will lead to the emission of gravitational waves. The aim of this paper is to develop a formalism that would allow us to model magnetically deformed stars, using both realistic equations of state and field configurations. As a first step, we consider a set of simplified model problems. Focusing on dipolar fields, we determine the internal magnetic field which is consistent with a given neutron star model and calculate the associated deformation. We discuss the relevance of our results for current gravitational wave detectors and future prospects.

  16. Promoting research in rock deformation

    NASA Astrophysics Data System (ADS)

    Kirby, Steve

    In response to informal discussions at the 1988 AGU Spring Meeting in Baltimore, Md., a dinner colloquium was held December 5, 1988, in San Francisco. Our purpose was to explore ways of promoting basic research in rock deformation, for which no professional organization exists that spans the full range of research interests. In spite of an informal distribution of announcements of the meeting, 54 people attended.Rock deformation is the materials science of the crystalline and amorphous materials that make up the solid Earth. As such, it includes not only the physical processes responsible for brittle and ductile deformation but also the important chemical processes that influence time-dependent inelastic deformation. Consequently, there is a continuing need to engage interest and collaboration from materials scientists, mineral physicists, metallurgists, surface chemists, and geochemists in the study of the inelastic mechanical behavior of these complex materials.

  17. Deformations in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Reddy, Kathryn; Bateman, Daniel; Iljin, Andrey

    2014-03-01

    Deformations and their relaxation in chiral liquid crystals are studied experimentally and theoretically in planar geometry for liquid crystalline mixtures of varying viscosities. It is shown by both methods that shear deformation in liquid crystals results in the inclination and extension of cholesteric helix in samples with high viscosity. Stretching deformation results in shrinking cholesteric helix. This leads to a possibility of detecting deformations on a nanometer scale by observing changes in selective reflection spectra. Theoretical model takes into account elastic strain of physical network formed by the entanglements between components of liquid crystalline mixture, viscosity of the matrix and elasticity of the liquid crystalline subsystem. This allows to model mechanical response of the matrix with different viscosities to stretching and shear of various amplitudes. It is shown that relaxation of the cholesteric helix takes much shorter time than mechanical relaxation of the mixtures. The model perfectly agrees with experimental data. The model is compared with theoretical model describing behavior of elastomers.

  18. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  19. Shear deformation in granular materials

    SciTech Connect

    Bardenhagen, S.G.; Brackbill, J.U.; Sulsky, D.L.

    1998-12-31

    An investigation into the properties of granular materials is undertaken via numerical simulation. These simulations highlight that frictional contact, a defining characteristic of dry granular materials, and interfacial debonding, an expected deformation mode in plastic bonded explosives, must be properly modeled. Frictional contact and debonding algorithms have been implemented into FLIP, a particle in cell code, and are described. Frictionless and frictional contact are simulated, with attention paid to energy and momentum conservation. Debonding is simulated, with attention paid to the interfacial debonding speed. A first step toward calculations of shear deformation in plastic bonded explosives is made. Simulations are performed on the scale of the grains where experimental data is difficult to obtain. Two characteristics of deformation are found, namely the intermittent binding of grains when rotation and translation are insufficient to accommodate deformation, and the role of the binder as a lubricant in force chains.

  20. Anatomy of gravitationally deformed slopes

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Yamasaki, Shintaro; Hariyama, Takehiro

    2010-05-01

    Deep-seated gravitational slope deformation is the deformation of rocks as well as slope surfaces, but the internal structures have not been well observed and described before. This is mainly due to the difficulty in obtaining undisturbed samples from underground. We analyzed the internal deformational structures of gravitationally deformed slopes by using high quality drilled cores obtained by hybrid drilling technique, which has been recently developed and can recover very fragile materials that could not be taken by the conventional drilling techniques. Investigated slopes were gravitationally deformed out-facing slopes of pelitic schist and shale. The slope surfaces showed deformational features of small steps, depressions, knobs, and linear depressions, but had no major main scarp and landslide body with well-defined outline. This is indicative of slow, deep-seated gravitational deformation. Most of these small deformational features are hidden by vegetations, but they are detected by using airborne laser scanner. Drilled cores showed that the internal deformation is dominated by the slip and tearing off along foliations. Slippage along foliations is conspicuous in pelitic schist: Pelitic schist is sheared, particularly along black layers, which are rich in graphite and pyrite. Graphite is known to be a solid lubricant in material sciences, which seems to be why shearing occurs along the black layers. Rock mass between two slip layers is sheared, rotated, fractured, and pulverized; undulation of bedding or schistosity could be the nucleation points of fracturing. Tearing off along foliations is also the major deformation mode, which forms jagged morphology of rock fragments within shear zones. Rock fragments with jagged surface are commonly observed in "gouge", which is very different from tectonic gouge. This probably reflects the low confining pressures during their formation. Microscopic to mesoscopic openings along fractures are commonly observed with

  1. Measurement of deformations by NMR

    NASA Astrophysics Data System (ADS)

    Bytchenkoff, Dimitri; Rodts, Stéphane

    2015-12-01

    Two NMR data acquisition protocols together with corresponding data processing algorithms for locating macroscopic objects, measuring distances between them or monitoring their displacements or deformations with microscopic precision are presented and discussed. The performance of the methods is demonstrated by applying them to the measurement of deformations of a freely supported beam under loading. We believe that our methods will find their applications in mechanics, civil engineering and medicine.

  2. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria

    SciTech Connect

    Ren, W

    2001-08-24

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria.

  3. Deformation-related recrystallization processes

    NASA Astrophysics Data System (ADS)

    Drury, Martyn R.; Urai, Janos L.

    1990-02-01

    Recrystallization is a common microstructural transformation that occurs during deformation, metamorphism and diagenesis of rocks. Studies on minerals and rock analogues have demonstrated that a wide range of recrystallization mechanisms can occur. The range of mechanisms is related to the various ways in which two basic processes, grain boundary migration and new grain boundary formation combine to transform the microstructure. Two recent papers (Drury et al., 1985; Urai et al., 1986) have proposed different schemes for the description of recrystallization mechanisms. The purpose of this paper is to provide a unified framework for the description of mechanisms. Recrystallization mechanisms are divided into three main types; rotation mechanisms which principally involve the formation of new grain boundaries; migration mechanisms which principally involve grain boundary migration; and general mechanisms which involve both basic processes. A further distinction is made on the basis of the continuity of the microstructural transformation with respect to time. Each of the three main types of mechanism can be divided into a number of sub-types depending on whether the processes of grain boundary migration, new grain boundary formation and new grain formation occur in a discontinuous or continuous manner with respect to time. As the terms continuous and discontinuous have been used in the metallurgical literature to signify the spatial continuity of the microstructural transformation, the terms discontinuai and continual are used to refer to the temporal continuity of the transformation. It is recommended that the following aspects should be specified, if possible, in a general description of recrystallization mechanisms: (1) How do the basic processes combine to transform the microstructure. (2) If new grain development occurs, what is the development mechanism, and does new grain formation occur in a continual or discontinuai manner. (3) If grain boundary migration is

  4. Mixing of discontinuously deforming media.

    PubMed

    Smith, L D; Rudman, M; Lester, D R; Metcalfe, G

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations-such as shear banding or wall slip-creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems. PMID:26931594

  5. Microstructures and deformation mechanisms of experimentally deformed gabbro

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; He, Changrong

    2015-04-01

    The natural gabbro samples were deformed at temperature ranging from 700 to 1150 °C with strain rate steps of 1 × 10-4, 2.5 × 10-5, 6.3 × 10-6 s-1. The mechanical data show that sample experiences gradual transition from semi-brittle flow to plastic flow, corresponding to a systematically decreasing stress exponent n with the increasing temperature ranging from 16.5 to 4.1 (He et al. Sci China (D) 46(7):730-742, 2003). We investigate microstructures and deformation mechanisms of experimentally deformed gabbro under transmission electron microscope in this study. For low temperature of 700 °C to 950 °C, the deformation is mainly accommodated with dislocation glide and mechanical twinning, corresponding to stress exponent lager than 5, which means semi-brittle deformation. Whereas with higher temperature up to 1000 °C-1150 °C, the deformation is accommodated mainly with dislocation glide and climb corresponding to stress exponent of 4.1, which means plastic deformation. Evidence of dislocation climb has been found as dislocation walls in plagioclase. The observed slip system in plagioclase is (001)1/2[110] and that in clinopyroxene are (100)[001] and (010)[001]. The (010)[001] slip system in clinopyroxene is newly found in this work. Melt was found at temperature of 950 °C-1050 °C. The melt glass distributed both in melt thin film between two grain boundaries and melt tubules of triangular along three grain boundaries at temperature of 950 °C-1000 °C. The melt triangular interconnected to the melt film at temperature of 1050 °C-1150 °C, where the melt chemical composition differentiated into iron-rich dark dots and silicate-rich matrix.

  6. Two-temperature continuum thermomechanics of deforming amorphous solids

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Bouchbinder, Eran

    2014-12-01

    There is an ever-growing need for predictive models for the elasto-viscoplastic deformation of solids. Our goal in this paper is to incorporate recently developed out-of-equilibrium statistical concepts into a thermodynamically consistent, finite-deformation, continuum framework for deforming amorphous solids. The basic premise is that the configurational degrees of freedom of the material - the part of the internal energy/entropy that corresponds to mechanically stable microscopic configurations - are characterized by a configurational temperature that might differ from that of the vibrational degrees of freedom, which equilibrate rapidly with an external heat bath. This results in an approximate internal energy decomposition into weakly interacting configurational and vibrational subsystems, which exchange energy following a Fourier-like law, leading to a thermomechanical framework permitting two well-defined temperatures. In this framework, internal variables, that carry information about the state of the material equilibrate with the configurational subsystem, are explicitly associated with energy and entropy of their own, and couple to a viscoplastic flow rule. The coefficients that determine the rate of flow of entropy and heat between different internal systems are proposed to explicitly depend on the rate of irreversible deformation. As an application of this framework, we discuss two constitutive models for the response of glassy materials, a simple phenomenological model and a model related to the concept of Shear-Transformation-Zones as the basis for internal variables. The models account for several salient features of glassy deformation phenomenology. Directions for future investigation are briefly discussed.

  7. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  8. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on

  9. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  10. Residual deformations in ocular tissues

    PubMed Central

    Wang, Ruoya; Raykin, Julia; Gleason, Rudolph L.; Ethier, C. Ross

    2015-01-01

    Residual deformations strongly influence the local biomechanical environment in a number of connective tissues. The sclera is known to be biomechanically important in healthy and diseased eyes, such as in glaucoma. Here, we study the residual deformations of the sclera, as well as the adjacent choroid and retina. Using freshly harvested porcine eyes, we developed two approaches of quantifying residual deformations in the spherically shaped tissues of interest. The first consisted of punching discs from the posterior wall of the eye and quantifying the changes in the area and eccentricity of these samples. The second consisted of cutting a ring from the equatorial sclera and making stress-relieving cuts in it. Measurements of curvature were made before and after the stress-relieving cuts. Using the first approach, we observed a 42% areal contraction of the choroid, but only modest contractions of the sclera and retina. The observed contractions were asymmetric. In the second approach, we observed an opening of the scleral rings (approx. 10% decrease in curvature). We conclude that residual bending deformations are present in the sclera, which we speculate may be due to radially heterogeneous growth and remodelling of the tissue during normal development. Further, residual areal deformations present in the choroid may be due to the network of elastic fibres in this tissue and residual deformations in the constituent vascular bed. Future studies of ocular biomechanics should attempt to include effects of these residual deformations into mechanical models in order to gain a better understanding of the biomechanics of the ocular wall. PMID:25740853

  11. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  12. Mixing of discontinuously deforming media

    NASA Astrophysics Data System (ADS)

    Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations—such as shear banding or wall slip—creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems.

  13. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  14. Quantifying torso deformity in scoliosis

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James

    2006-03-01

    Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.

  15. Features of the plastic deformation of steels with lamellar perlite structure

    NASA Astrophysics Data System (ADS)

    Bataev, A. A.; Tushinskii, L. I.; Bataev, V. A.; Zuev, L. B.

    1996-07-01

    The evolution of the perlite structure in the course of plastic deformation of U8 and St70 steels has been studied. With increasing degree of cold working, the dislocation density increases near the interphase boundary in the ferrite interstices of perlite, which forms a dislocational “fringe”, which in turn forms a pseudocellular structure. Under thermal deformation conditions, a subgrain structure arises in the ferrite interstices of lamellar perlite. The most dangerous localized flow channels in which plasticity is exhausted for the first time and cracks appear, are the deformation bands. The narrower the deformation bands and the larger the value of the relative displacement of the subcolumn blocks adjacent to them, the more dangerous they are with regard to failure. The features revealed in the development of deformation and failure provides a basis for controlling steel treatment regimes in order to produce perlite with the optimum structural parameters.

  16. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1973-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.

  17. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  18. Chaetal deformities in aquatic oligochaeta

    SciTech Connect

    Brinkhurst, R.O.; Wetzel, M.J.

    1994-12-31

    Gross deformities in the chaetae of specimens of the tubificid Potamothrix hammoniensis were described by Milbrink from Lake Vaenern, Sweden. This lake is one of the most mercury-polluted major lakes of the world. Statistical tests showed a highly significant correlation between the incidence of deformities and the mercury concentration in the sediments. Changes in the pulp and paper mill process led to marked reduction in specimens with deformities. Similarly modified specimens of various species have been observed at a number of sites contaminated with heavy metals or oil residues in North America. Experimental work on chaetal form has demonstrated changes due to conductivity which have also been observed in saline inland waters. These experiments suggest that chaetae may be shed and replaced by worms every few days. EDX observation of chaetae indicated that metals may accumulate in them, and so provide a potential depuration mechanism. Independent physiological studies suggest that worms may be capable of regulating their metal levels.

  19. Finite Deformation of Magnetoelastic Film

    SciTech Connect

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.

  20. Microstructure of deformed graywacke sandstones

    SciTech Connect

    Dengler, L.A.

    1980-03-05

    Microsctures in low-permeability graywacke sandstones were studied by optical and scanning electron microscopy (SEM). SEM specimens were prepared by ion-bombardment of thick polished samples. The undeformed rock contains grains in a matrix composed primarily of authigenic chlorite and kaolinite. Chlorite platelets are randomly arranged in face-to-edge relation to one another. Kaolinite occurs as pseudohexagonal crystals stacked face-to-face in pore filling books. Uniaxial-stress experiments covered a range of confining pressures from .1 to 600 MPa. Below 50 MPa confining pressure, intergranular fracturing occurs within the fault zone and near the sample's cylindrical surface. Between 100 and 300 MPa confining pressure, fault zones contain highly fractured grains, gauge and slickensides on grain surfaces. At 600 MPa, the sample contains a diffuse shear zone of highly fractured grains and no well-defined fault. In all samples, the distribution of microcracks is heterogeneous. Different clay minerals exhibit different modes of deformation. Chlorite structure responds to applied stress by compaction, reducing both pore size and volume. Chlorite platelets are plastically deformed in even the least strained samples. Kaolinite does not deform plastically in any of the samples examined. Deformation of kaolinite is restricted to toppling of the book structure. Dilatant crack growth was studied in two samples unloaded prior to failure. Uniaxially-strained samples deform primarily along grain boundaries, producing intergranular cracks and realignment of chlorite platelets. Intragranular crack density is linearly related to axial-strain, although grains are less fractured than in uniaxially-stressed samples tested at equivalent mean pressures. Cracks are rarely longer than a grain diameter. Nuclear-explosively deformed samples were recovered after the Rio Blanco gas stimulation experiment. (JGB)

  1. Switching deformation mode during natural faulting in Carrara marbles.

    NASA Astrophysics Data System (ADS)

    Molli, Giancarlo

    2010-05-01

    A study on meso- and microstructural features of a high angle normal fault observed in the Alpi Apuane NW Tuscany (Italy) is presented to document switching in the deformation mode during different evolutionary stages of a fault zone growth in naturally deformed Carrara marble. The studied fault was formed at c.3 Km of depth and belongs to structures related to the most recent deformation history of the Alpi Apuane metamorphic core (from c.4 Ma until now, Fellin et al. 2007; Molli, 2008). On the basis of deformation mechanisms and their chronology interpreted from cross-cutting relationships, different stages of the fault zone evolution have been recognized. An early stage of deformation (stage 1) was associated with extensional and shear veins now observable in both hangingwall and footwall blocks as part of the deformation zone developed at decameter-scale. Geochemical data indicate vein-development in a locally closed system where a "stationary" fluid phase migrates over meter scale distances (Molli et al., in press). During stage 2, a localization of the deformation, possibly in precursory coarse grained calcite/quartz shear veins of stage 1, took place. During this second stage crystal-plastic deformation affected areas at the head and along the hanging wall rim of fractures accommodating fault tip distorsions in a way recalling the mode-II geometry of stable crack propagation (Atkinson, 1987; Vermilye and Scholtz, 1993; Kim et al., 2004). Following pervasive cataclasis (stage 3) characterizes a plurimeter-wide dilational jog between two non-parallel main slip surfaces with brecciation and far-derived fluids channelling leading to significant geochemical alteration of the fault rocks with respect to the protolith (Molli et al., in press). Cataclastic deformation produced a grain size refinement and a decimetric thick fault core asymmetrically bounded by the upper main slip surface. Deformation was then localized within ultracataclasite of the fault core where

  2. Fourth order deformed general relativity

    NASA Astrophysics Data System (ADS)

    Cuttell, Peter D.; Sakellariadou, Mairi

    2014-11-01

    Whenever the condition of anomaly freedom is imposed within the framework of effective approaches to loop quantum cosmology, one seems to conclude that a deformation of general covariance is required. Here, starting from a general deformation we regain an effective gravitational Lagrangian including terms up to fourth order in extrinsic curvature. We subsequently constrain the form of the corrections for the homogeneous case, and then investigate the conditions for the occurrence of a big bounce and the realization of an inflationary era, in the presence of a perfect fluid or scalar field.

  3. Microwave Tomography Using Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Udpa, Lalita; Udpa, Satish S.

    2008-09-01

    Microwave tomography aims to reconstruct the spatial distribution of the electrical property of penetrable objects using field measurements acquired from multiple views at single or multiple frequencies. This paper presents a novel microwave tomography technique to image penetrable scatterers using deformable mirrors. The deformable mirror consists of a continuum of radiating elements that yields multi-view field measurements for noninvasive characterization of the spatial dielectric property of the scatterer in the microwave regime. Computational feasibility of the proposed technique is presented for heterogeneous two dimensional dielectric scatterers.

  4. Deforming baryons into confining strings

    NASA Astrophysics Data System (ADS)

    Hartnoll, Sean A.; Portugues, Rubén

    2004-09-01

    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nuñez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G2 holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.

  5. Controllable objective with deformable mirrors

    SciTech Connect

    Agafonov, V V; Safronov, A G

    2004-03-31

    A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)

  6. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  7. Cavity coalescence in superplastic deformation

    SciTech Connect

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  8. Neutron scattering on deformed nuclei

    NASA Astrophysics Data System (ADS)

    Hansen, L. F.; Haight, R. C.; Pohl, B. A.; Wong, C.; Lagrange, Ch.

    1985-01-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9Be, C, 181Ta, 232Th, 238U, and 239Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune, and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonably good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP.

  9. Space-based monitoring of ground deformation

    NASA Astrophysics Data System (ADS)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  10. Deformation of the Caribbean region: One plate or two?

    NASA Astrophysics Data System (ADS)

    Driscoll, Neal W.; Diebold, John B.

    1998-11-01

    New deep-penetrating high-resolution multichannel seismic reflection data collected in the eastern Caribbean during R/V Ewing cruise EW9501 imaged both the crustal structure and overlying stratigraphic successions. On the basis of this new multichannel seismic data, we define the geologic development of the Beata Ridge and Venezuelan basin. The Caribbean crust was formed by seafloor spreading in Late Jurassic Early Cretaceous time. Prior to the Senonian, widespread and rapid eruption of basaltic flows began in concert with extensional deformation of the Caribbean crust. Thick volcanic wedges characterized by divergent reflectors are observed along the boundary that separates rough from smooth oceanic crust, are coincident with an abrupt shallowing of the Moho, and appear to be bounded by a large, northwest-dipping fault system. The locus of major extensional deformation migrated through time from the Venezuelan basin to the western flank of the Beata Ridge. Extensional unloading of the Beata Ridge footwall caused uplift and rotation of the ridge. Sediment thicknesses and stratal geometry observed across the Venezuelan basin and Beata Ridge suggest that the majority of the deformation in this region occurred during and soon after the emplacement of the volcanics. Minor fault reactivation in the Neogene along the eastern flank of the Beata Ridge is associated with an accommodation zone (i.e., tear fault) that records a change in the deformation style from bending and subduction of the Caribbean plate along the Muertos Trough south of Puerto Rico to compressional deformation and obduction of the Caribbean plate south of Hispaniola. We propose that this difference in deformational style is, in part, a consequence of the thicker crust on the Beata Ridge, which is more resistant to subduction.

  11. An automated deformable image registration evaluation of confidence tool.

    PubMed

    Kirby, Neil; Chen, Josephine; Kim, Hojin; Morin, Olivier; Nie, Ke; Pouliot, Jean

    2016-04-21

    Deformable image registration (DIR) is a powerful tool for radiation oncology, but it can produce errors. Beyond this, DIR accuracy is not a fixed quantity and varies on a case-by-case basis. The purpose of this study is to explore the possibility of an automated program to create a patient- and voxel-specific evaluation of DIR accuracy. AUTODIRECT is a software tool that was developed to perform this evaluation for the application of a clinical DIR algorithm to a set of patient images. In brief, AUTODIRECT uses algorithms to generate deformations and applies them to these images (along with processing) to generate sets of test images, with known deformations that are similar to the actual ones and with realistic noise properties. The clinical DIR algorithm is applied to these test image sets (currently 4). From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student's t distribution. In this study, four commercially available DIR algorithms were used to deform a dose distribution associated with a virtual pelvic phantom image set, and AUTODIRECT was used to generate dose uncertainty estimates for each deformation. The virtual phantom image set has a known ground-truth deformation, so the true dose-warping errors of the DIR algorithms were also known. AUTODIRECT predicted error patterns that closely matched the actual error spatial distribution. On average AUTODIRECT overestimated the magnitude of the dose errors, but tuning the AUTODIRECT algorithms should improve agreement. This proof-of-principle test demonstrates the potential for the AUTODIRECT algorithm as an empirical method to predict DIR errors. PMID:27025957

  12. An automated deformable image registration evaluation of confidence tool

    NASA Astrophysics Data System (ADS)

    Kirby, Neil; Chen, Josephine; Kim, Hojin; Morin, Olivier; Nie, Ke; Pouliot, Jean

    2016-04-01

    Deformable image registration (DIR) is a powerful tool for radiation oncology, but it can produce errors. Beyond this, DIR accuracy is not a fixed quantity and varies on a case-by-case basis. The purpose of this study is to explore the possibility of an automated program to create a patient- and voxel-specific evaluation of DIR accuracy. AUTODIRECT is a software tool that was developed to perform this evaluation for the application of a clinical DIR algorithm to a set of patient images. In brief, AUTODIRECT uses algorithms to generate deformations and applies them to these images (along with processing) to generate sets of test images, with known deformations that are similar to the actual ones and with realistic noise properties. The clinical DIR algorithm is applied to these test image sets (currently 4). From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. In this study, four commercially available DIR algorithms were used to deform a dose distribution associated with a virtual pelvic phantom image set, and AUTODIRECT was used to generate dose uncertainty estimates for each deformation. The virtual phantom image set has a known ground-truth deformation, so the true dose-warping errors of the DIR algorithms were also known. AUTODIRECT predicted error patterns that closely matched the actual error spatial distribution. On average AUTODIRECT overestimated the magnitude of the dose errors, but tuning the AUTODIRECT algorithms should improve agreement. This proof-of-principle test demonstrates the potential for the AUTODIRECT algorithm as an empirical method to predict DIR errors.

  13. Correlation Between Landforms And Ground Deformation At Nisyros Volcano (Greece)

    NASA Astrophysics Data System (ADS)

    Camiz, S.; Papageorgiou, E.; Poscollieri, M.; Parcharidis, Is.

    2013-12-01

    Relief represents a major element in the characterization of a landscape that can be affected even by slight modifications on its shape, often due to ground deformation. These terrain characteristics are both linked to the topography of a given area, through a Digital Elevation Model (DEM). Topographical attributes, such as slope, aspect, elevation gradients, and others, can be provided by DEM analysis and used further as input to classification methods for defining terrain units. In this study, we explore the relationship between ground deformation and landforms in Nisyros volcano, as ground deformation seems to follow existing geomorphological patterns. Possible correlations between morphological information, collected by classifying landforms on the basis of the ~30 m spatial resolution ASTER Global Digital Elevation Model, and deformation observations resulting from Differential Synthetic Aperture Radar Interferometry (DInSAR) are performed, taking also into consideration the geostructural setting of the study area. Nisyros volcano, located at the eastern part of the active Hellenic Volcanic Arc, was investigated for the time period 2002-2010, during a dormant phase where the topography is mostly described by the geological/tectonic structure. In terms of DInSAR technique, the entire archive of ENVISAT images was used, in both ascending and descending mode, to derive the deformation rates. For the geomorphic consideration Tandem Analysis was implemented through a mixed classification procedure following a principal component analysis applied to local elevation gradients, extracted considering each pixel of the DEM and its nearest neighbours. The projection of the DInSAR results on the obtained factor spaces allows evaluating the homogeneity of the deformation in the pixels belonging to the same classes.

  14. Hydromechanical Normal Deformation Experiments and Coupling to Fracture Surface Geometry

    NASA Astrophysics Data System (ADS)

    Thörn, J.; Fransson, A. M.

    2015-12-01

    Civil engineering structures founded in fractured crystalline rock, such as the Fennoscandian Shield (Norway-Sweden-Finland) requires allowance for both stability and/or deformations of the rock mass and groundwater ingress and groundwater pressure changes. Coupling these issues could be the key to solving the challenges that arise from construction of e.g. hydropower dams, road and railroad tunnels, and most certainly the construction of nuclear waste repositories within fractured crystalline rock, all of which are currently planned in Sweden. Excavation related deformation in fractures may cause groundwater leakage even from the most elaborate pre-excavation grouting works. A better understanding on hydraulically (or grouting) induced deformations in the near-field of tunnels, where the stress field is re-distributed due to the opening may both provide a basis for more accurate numerical modelling and grouting or excavation procedures that minimize the damage on the completed grouting fans. Subjects of this study were experiments conducted as measurement of deformations in boreholes close to tunnels due to stepwise injection tests, and laboratory hydromechanical experiments conducted as flow and normal deformation measurements in a permeameter during cycles of up to 2.5 MPa confining pressure, and subsequent surface scanning of the samples for coupling of HM-results to geometric appearance, aperture and contact geometry. When expressed in terms of hydraulic aperture (b) and fracture normal stiffness (kn) the results of both in situ and lab experiments support a previously suggested relationship based on field data where kn is inversely proportional to roughly b2. The relationship was assumed to be valid for low compressive stress across fractures with limited previous deformation. One important data set used to establish the relationship was transmissivity and storage coefficients from hydraulic interference tests previously performed at Äspö Hard Rock

  15. Electrostatics of Deformable Lipid Membranes

    PubMed Central

    Vorobyov, Igor; Bekker, Borislava; Allen, Toby W.

    2010-01-01

    Abstract It was recently demonstrated that significant local deformations of biological membranes take place due to the fields of charged peptides and ions, challenging the standard model of membrane electrostatics. The ability of ions to retain their immediate hydration environment, combined with the lack of sensitivity of permeability to ion type or even ion pairs, led us to question the extent to which hydration energetics and electrostatics control membrane ion permeation. Using the arginine analog methyl-guanidinium as a test case, we find that although hydrocarbon electronic polarizability causes dramatic changes in ion solvation free energy, as well as a significant change (∼0.4 V) in the membrane dipole potential, little change in membrane permeation energetics occurs. We attribute this to compensation of solvation terms from polar and polarizable nonpolar components within the membrane, and explain why the dipole potential is not fully sensed in terms of the locally deformed bilayer interface. Our descriptions provide a deeper understanding of the translocation process and allow predictions for poly-ions, ion pairs, charged lipids, and lipid flip-flop. We also report simulations of large hydrophobic-ion-like membrane defects and the ionophore valinomycin, which exhibit little membrane deformation, as well as hydrophilic defects and the ion channel gramicidin A, to provide parallels to membranes deformed by unassisted ion permeation. PMID:20550903

  16. Free vibrations and buckling analysis of laminated plates by oscillatory radial basis functions

    NASA Astrophysics Data System (ADS)

    Neves, A. M. A.; Ferreira, A. J. M.

    2015-12-01

    In this paper the free vibrations and buckling analysis of laminated plates is performed using a global meshless method. A refined version of Kant's theorie which accounts for transverse normal stress and through-the-thickness deformation is used. The innovation is the use of oscillatory radial basis functions. Numerical examples are performed and results are presented and compared to available references. Such functions proved to be an alternative to the tradicional nonoscillatory radial basis functions.

  17. The thermodynamics of deformed metamorphic rocks: A review

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce E.; Ord, Alison; Regenauer-Lieb, Klaus

    2011-05-01

    The deformation of rocks is a disequilibrium and strongly non-linear phenomenon with a number of interacting chemical, thermal and microstructural processes operating simultaneously. We review progress in this area over the past 30 years. Deforming-chemically reacting systems are dissipative systems and hence are characterised by highly ordered structures that develop through cooperative processes once parameters such as critical strains, strain-rates, fluid infiltration rates, damage densities or temperatures are attained. Such criticality is the hallmark of deformed rocks at all length scales and is the basis for a diverse range of structures such as foliations and lineations produced by metamorphic differentiation, rotation recrystallisation, folding, boudinage and micro to regional scale fracture systems. Criticality is identified with classical criticality and not self-organised criticality. The first and second laws of thermodynamics are used to show that such structural diversity arises from reaction-diffusion-deformation equations. Criticality of the system is associated with the stored energy becoming non-convex and structures arise in order to minimise this non-convex energy. These structures are scale invariant and hence are characterised by fractal and minimal surface geometries. Thermodynamics is a powerful discipline to integrate seemingly unrelated processes in structural geology and produce an integrated approach to the subject that crosses all length scales.

  18. Beak deformities in Northwestern Crows: evidence of a multispecies epizootic

    USGS Publications Warehouse

    Van Hemert, Caroline; Handel, Colleen M.

    2010-01-01

    Beak abnormalities are rare among adult birds and, typically, are not widespread in a given population, within a region, or across multiple species. A high concentration of beak deformities was recently documented in Black-capped Chickadees (Poecile atricapillus) and other resident avian species in Alaska. We describe a parallel condition in Northwestern Crows (Corvus caurinus) that signals the emergence of a multispecies epizootic. On the basis of 186 Northwestern Crows captured at six sites in Alaska during 2007 and 2008, we estimated the prevalence of beak deformities in adults to be 16.9 ± 5.3%, the highest rate of gross deformities ever recorded in a wild bird population. Prevalence varied among sites and was as high as 36% on the Kenai Peninsula, which suggests possible epizootic clusters. We also documented beak abnormalities in an additional 148 Northwestern Crows in south-central and southeastern Alaska and in 64 crows near Vancouver, British Columbia, and Puget Sound, Washington, a region where both Northwestern Crows and American Crows (C. brachyrhynchos) occur. The increase in frequency and distribution of crows observed with abnormal beaks throughout the Pacific Northwest since the late 1990s indicates a geographic expansion of this problem. Affected crows exhibited elongated and often crossed beaks that were morphologically similar to deformities documented in Black-capped Chickadees and other species in Alaska over approximately the same period. Additional research is needed to determine the etiology and potential adverse effects on bird populations affected by this disorder.

  19. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    SciTech Connect

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng; Liu, Guo-Chin; Molnar, Sandor M.; Chang, Yu-Yen E-mail: jhpw@phys.ntu.edu.tw

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  20. Platform Deformation Phase Correction for the AMiBA-13 Coplanar Interferometer

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Proty Wu, Jiun-Huei; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Cheng, Tai-An; Fu, Szu-Yuan; Liu, Guo-Chin; Molnar, Sandor M.; Umetsu, Keiichi; Wang, Fu-Cheng; Chang, Yu-Yen; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter

    2013-05-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  1. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    PubMed

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. PMID:23470547

  2. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; Kanitpanyacharoen, Waruntorn; Smith, Jesse S.; Sinogeikin, Stanislav; Wenk, Hans-Rudolf

    2015-04-01

    Although the crystal structure of the high-pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser-heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.

  3. The Basis Code Development System

    Energy Science and Technology Software Center (ESTSC)

    1994-03-15

    BASIS9.4 is a system for developing interactive computer programs in Fortran, with some support for C and C++ as well. Using BASIS9.4 you can create a program that has a sophisticated programming language as its user interface so that the user can set, calculate with, and plot, all the major variables in the program. The program author writes only the scientific part of the program; BASIS9.4 supplies an environment in which to exercise that scientificmore » programming which includes an interactive language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving variables, formatted I/O, and online documentation.« less

  4. Deformation of rock: A pressure-sensitive, dilatant material

    NASA Astrophysics Data System (ADS)

    Ord, A.

    1991-12-01

    Permanent (plastic) deformation of rock materials in the brittle regime (cataclastic flow) is modelled here in terms of Mohr-Coulomb behaviour in which all three of the parameters cohesion, friction angle and dilation angle follow hardening (or softening) evolution laws with both plastic straining and increases in confining pressure. The physical basis for such behaviour is provided by a sequence of uniaxial shortening experiments performed by Edmond and Paterson (1972) at confining pressures up to 800 MPa on a variety of materials including Gosford sandstone and Carrara marble. These triaxial compression experiments are important for the large range of confining pressures covered, and for the careful recording of data during deformation, particularly volume change of the specimens. Both materials are pressure-sensitive and dilatant. It is therefore possible to derive from these experiments a set of material parameters which allow a preliminary description of the deformation behaviour in terms of a non-associated, Mohr-Coulomb constitutive model, thus providing the first constitutive modelling of geological materials in the brittle-ductile regime. These parameters are used as input to a finite difference, numerical code (FLAC) with the aim of investigating how closely this numerical model simulates real material behaviour upon breakdown of homogeneous deformation. The mechanical and macrostructural behaviour exhibited by the numerical model is in close agreement with the physical results in that the stress-strain curves are duplicated together with localization behaviour. The results of the modelling illustrate how the strength of the upper-crust may be described by two different but still pressure-dependent models: the linear shear stress/normal stress relationship of Amontons (that is, Byerlee's Law), and a non-linear, Mohr-Coulomb constitutive model. Both include parameters of friction and both describe brittle deformation behaviour. Consideration of the non

  5. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  6. Application of Quaternions for Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2002-01-01

    A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.

  7. B Plant interim safety basis

    SciTech Connect

    Chalk, S.E.

    1996-09-01

    This interim safety basis (ISB-008) replaces the B Plant Safety Analysis Report, WHC-SD-WM-SAR-013, Rev. 2 (WHC 1993a). ISB-008 uses existing accident analyses, modified existing accident analyses, and new accident analyses to prove that B Plant remains within the safety envelope for transition, deactivation, standby, and shutdown activities. The analyses in ISB-008 are in accordance with the most current requirements for analytical approach, risk determination, and configuration management. This document and supporting accident analyses replace previous design-basis documents.

  8. Symmetries and deformations in the spherical shell model

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Pittel, S.

    2016-02-01

    We discuss symmetries of the spherical shell model that make contact with the geometric collective model of Bohr and Mottelson. The most celebrated symmetry of this kind is SU(3), which is the basis of Elliott’s model of rotation. It corresponds to a deformed mean field induced by a quadrupole interaction in a single major oscillator shell N and can be generalized to include several major shells. As such, Elliott’s SU(3) model establishes the link between the spherical shell model and the (quadrupole component of the) geometric collective model. We introduce the analogue symmetry induced by an octupole interaction in two major oscillator shells N-1 and N, leading to an octupole-deformed solution of the spherical shell model. We show that in the limit of large oscillator shells, N\\to ∞ , the algebraic octupole interaction tends to that of the geometric collective model.

  9. Kirner's deformity: a case report and review.

    PubMed Central

    Scott, C. E.; Engber, W.

    1996-01-01

    Kirner's deformity is an uncommon "characteristic" palmo-radial curvature of the distal phalanx of the little finger. Splinting may be beneficial for pain relief and, if used early, may retard progression of the deformity. Disability is usually minimal and treatment to correct the deformity may be delayed to prevent recurrence. Images Figure 1A Figure 1B Figure 1C PMID:9129292

  10. New regions of nuclear deformation

    SciTech Connect

    Lister, C.J.; Gelletly, W.; Varley, B.J.; Price, H.G.; Olness, J.W.

    1983-01-01

    It has long been expected from general theoretical considerations that nuclei with Z and N far removed from major shell closures should exhibit considerable collectivity and maybe deformed in their groundstates. A number of calculations have recently attempted to quantify these expectations through detailed predictions of nuclear shapes across the periodic table. In this contribution we review predictions and experimental data for the regions with Z,N = (40,40), (40,64) and (64,64) which are all off the valley of stability. Emphasis is placed on the experimental techniques and data obtained from the first of these regions where the prediction of extremely large prolate deformation has been experimentally verified.

  11. Thermal deformation of helical gears

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Fei, Ye-tai; Liu, Shan-lin

    2010-08-01

    The analytical equation for the thermal field of a helical gear under normal working condition in a stable thermal field is established using mathematical physics, and the thermal deformation of the gear can be computed using this equation. The variations of gear geometric parameters, such as radial dimension, tooth depth, spiral angle, pressure angle, flank clearance and etc., are investigated with respect to the temperature change. According to the analytical and computational results obtained using the equation, the thermal deformation of the gear is strongly dependent on the choice of parameters, which is also confirmed using simulation software (COMSOL Multiphysic software). This is significant for the improvement of the rotation precision and working efficiency of screw gears.

  12. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  13. Variational approach and deformed derivatives

    NASA Astrophysics Data System (ADS)

    Weberszpil, J.; Helayël-Neto, J. A.

    2016-05-01

    Recently, we have demonstrated that there exists a possible relationship between q-deformed algebras in two different contexts of Statistical Mechanics, namely, the Tsallis' framework and the Kaniadakis' scenario, with a local form of fractional-derivative operators for fractal media, the so-called Hausdorff derivatives, mapped into a continuous medium with a fractal measure. Here, in this paper, we present an extension of the traditional calculus of variations for systems containing deformed-derivatives embedded into the Lagrangian and the Lagrangian densities for classical and field systems. The results extend the classical Euler-Lagrange equations and the Hamiltonian formalism. The resulting dynamical equations seem to be compatible with those found in the literature, specially with mass-dependent and with nonlinear equations for systems in classical and quantum mechanics. Examples are presented to illustrate applications of the formulation. Also, the conserved ​Noether current is worked out.

  14. GASB's Basis of Accounting Project.

    ERIC Educational Resources Information Center

    Kovlak, Daniel L.

    1986-01-01

    In July 1984, the Governmental Accounting Standards Board began its "Measurement Focus/Basis of Accounting" project, which addresses measurement issues and revenue and expenditure recognition problems involving governmental funds. This article explains the project's background, alternatives discussed by the board, and tentative conclusions and…

  15. A Molecular Basis of Cancer.

    ERIC Educational Resources Information Center

    Weinberg, Robert A.

    1983-01-01

    Discusses the molecular basis of cancer, focusing on genetics of the disease. Indicates that human cancers are initiated by oncogenes (altered versions of normal genes) and that in one case the critical alteration is a single point mutation that changes one amino acid in the protein encoded by the gene. (JN)

  16. Grobner Basis Representations of Sudoku

    ERIC Educational Resources Information Center

    Taalman, Laura; Arnold, Elizabeth; Lucas, Stephen

    2010-01-01

    This paper uses Grobner bases to explore the inherent structure of Sudoku puzzles and boards. In particular, we develop three different ways of representing the constraints of Sudoku puzzles with a system of polynomial equations. In one case, we explicitly show how a Grobner basis can be used to obtain a more meaningful representation of the…

  17. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  18. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1972-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging are utilized to investigate both the flow and fracture processes involved. An additional hemisphere forging was done which failed prematurely. Analysis and comparison with available fracture data for AL2O3 indicated possible causes of the failure. Examination of previous forgings indicated an increase in grain boundary cavitation with increasing strain.

  19. Piecewise nonlinear image registration using DCT basis functions

    NASA Astrophysics Data System (ADS)

    Gan, Lin; Agam, Gady

    2015-03-01

    The deformation field in nonlinear image registration is usually modeled by a global model. Such models are often faced with the problem that a locally complex deformation cannot be accurately modeled by simply increasing degrees of freedom (DOF). In addition, highly complex models require additional regularization which is usually ineffective when applied globally. Registering locally corresponding regions addresses this problem in a divide and conquer strategy. In this paper we propose a piecewise image registration approach using Discrete Cosine Transform (DCT) basis functions for a nonlinear model. The contributions of this paper are three-folds. First, we develop a multi-level piecewise registration framework that extends the concept of piecewise linear registration and works with any nonlinear deformation model. This framework is then applied to nonlinear DCT registration. Second, we show how adaptive model complexity and regularization could be applied for local piece registration, thus accounting for higher variability. Third, we show how the proposed piecewise DCT can overcome the fundamental problem of a large curvature matrix inversion in global DCT when using high degrees of freedoms. The proposed approach can be viewed as an extension of global DCT registration where the overall model complexity is increased while achieving effective local regularization. Experimental evaluation results provide comparison of the proposed approach to piecewise linear registration using an affine transformation model and a global nonlinear registration using DCT model. Preliminary results show that the proposed approach achieves improved performance.

  20. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  1. Deformational injection rate measuring method

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2002-09-01

    After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.

  2. Elastic deformations of bolalipid membranes.

    PubMed

    Galimzyanov, Timur R; Kuzmin, Peter I; Pohl, Peter; Akimov, Sergey A

    2016-02-17

    Archaeal membranes have unique mechanical properties that enable these organisms to survive under extremely aggressive environmental conditions. The so-called bolalipids contribute to this exceptional stability. They have two polar heads joined by two hydrocarbon chains. The two headgroups can face different sides of the membrane (O-shape conformation) or the same side (U-shape conformation). We have developed an elasticity theory for bolalipid membranes and show that the energetic contributions of (i) tilt deformations, (ii) area compression/stretching deformations, (iii) as well as those of Gaussian splay from the two membrane surfaces are additive, while splay deformations yield a cross-term. The presence of a small fraction of U-shaped molecules resulted in spontaneous membrane curvature. We estimated the tilt modulus to be approximately equal to that of membranes in eukaryotic cells. In contrast to conventional lipids, the bolalipid membrane possesses two splay moduli, one of which is estimated to be an order of magnitude larger than that of conventional lipids. The projected values of elastic moduli act to hamper pore formation and to decelerate membrane fusion and fission. PMID:26791255

  3. What is red cell deformability?

    PubMed

    Schmid-Schönbein, H; Gaehtgens, P

    1981-01-01

    Microscopic flow visualization of the process of red cell adaptation to flow shows that red cell deformation in flow is the consequence of a continuous viscous rather than an elastic deformation. This fluid drop-like adaptation primarily depends on: (a) the fluidity of the cytoplasm and (b) the favourable surface-area-to-volume ratio, with an excess of surface area allowing strong deformations without an increase in surface area (a real strain). (c) In contrast to previous notions, the modulus of shear elasticity of the membrane is probably less significant. After many attempts to differentiate the contribution of bending and shear stiffness to the elastic recovery of the normal biconcave cell shape have not produced equivocal results, we have changed the elastic shear modulus experimentally by cross-linking the spectrin using the membrane-permeant, bifunctional SH-reagent DIAMIDE, which allows to increase the elastic shear modulus in a dose-dependent manner. Despite a 25-fold decrease in compliance the DIAMIDE-treated cells have normal shape and show remarkably small changes in the rheological behaviour when tested in vitro and in vivo. PMID:6948373

  4. Hyperelastic Internal Balance by Multiplicative Decomposition of the Deformation Gradient

    NASA Astrophysics Data System (ADS)

    Demirkoparan, Hasan; Pence, Thomas J.; Tsai, Hungyu

    2014-07-01

    The multiplicative decomposition of the deformation gradient {{F} = {{hat{F}}}{F}^*} is often used in finite deformation continuum mechanics as a basis for treating mechanical effects including plasticity, biological growth, material swelling, and notions of material morphogenesis. Evolution rules for the particular effect from this list are then posed for F*. The tensor {{{hat{F}}}} is then invoked to describe a subsequent elastic accommodation, and a hyperelastic framework is put in place for its determination using an elastic energy density function, say {W({hat{F}})} , as a constitutive specification. Here we explore the theory that emerges if both F* and {{hat{F}}} are governed by hyperelastic criteria; thus we consider energy densities {W({{hat{F}}}, {F}^*)} . The decomposition of F is itself determined by energy minimization, and the variation associated with the multiplicative decomposition gives a tensor relation that is interpreted as an internal balance requirement. Our initial development purposefully proceeds with minimal presumptions on the kinematic interpretation of the factors in the deformation gradient decomposition. Connections are then made to treatments that ascribe particular kinematic properties to the decomposition factors—the theory of structured deformations is especially significant in this regard. Such theories have broad utility in describing certain substructural reconfigurations in solids. To demonstrate in the context of the present variational treatment we consider a boundary value problem that involves an imposed twist. If the twist is small then the minimizer is classically smooth. At larger values of twist the energy minimizer exhibits a non-smooth deformation that localizes slip at a singular surface.

  5. Stochastic deformation of a thermodynamic symplectic structure

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.

  6. Stochastic deformation of a thermodynamic symplectic structure.

    PubMed

    Kazinski, P O

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered. PMID:19256999

  7. Identification of genes related to beak deformity of chickens using digital gene expression profiling.

    PubMed

    Bai, Hao; Zhu, Jing; Sun, Yanyan; Liu, Ranran; Liu, Nian; Li, Dongli; Wen, Jie; Chen, Jilan

    2014-01-01

    Frequencies of up to 3% of beak deformity (normally a crossed beak) occur in some indigenous chickens in China, such as and Beijing-You. Chickens with deformed beaks have reduced feed intake, growth rate, and abnormal behaviors. Beak deformity represents an economic as well as an animal welfare problem in the poultry industry. Because the genetic basis of beak deformity remains incompletely understood, the present study sought to identify important genes and metabolic pathways involved in this phenotype. Digital gene expression analysis was performed on deformed and normal beaks collected from Beijing-You chickens to detect global gene expression differences. A total of >11 million cDNA tags were sequenced, and 5,864,499 and 5,648,877 clean tags were obtained in the libraries of deformed and normal beaks, respectively. In total, 1,156 differentially expressed genes (DEG) were identified in the deformed beak with 409 being up-regulated and 747 down-regulated in the deformed beaks. qRT-PCR using eight genes was performed to verify the results of DGE profiling. Gene ontology (GO) analysis highlighted that genes of the keratin family on GGA25 were abundant among the DEGs. Pathway analysis showed that many DEGs were linked to the biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Combining the analyses, 11 genes (MUC, LOC426217, BMP4, ACAA1, LPL, ALDH7A1, GLA, RETSAT, SDR16C5, WWOX, and MOGAT1) were highlighted as potential candidate genes for beak deformity in chickens. Some of these genes have been identified previously, while others have unknown function with respect to thus phenotype. To the best of our knowledge, this is the first genome-wide study to investigate the transcriptome differences in the deformed and normal beaks of chickens. The DEGs identified here are worthy of further functional characterization. PMID:25198128

  8. Mesh deformation based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej

    2011-09-01

    In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.

  9. Theory of the deformation of aligned polyethylene

    PubMed Central

    Hammad, A.; Swinburne, T. D.; Hasan, H.; Del Rosso, S.; Iannucci, L.; Sutton, A. P.

    2015-01-01

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel–Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation–dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load. PMID:26339196

  10. Perceptual basis for reactive teleoperation.

    SciTech Connect

    Park, Y. S.; Ewing, T. F.; Boyle, J. M.; Yule, T. J.

    2001-08-28

    To enhance task performance in partially structured environment, enhancement of teleoperation was proposed by introducing autonomous behaviors. Such autonomy is implemented based on reactive robotic architecture, where reactive motor agents that directly couples sensory inputs and motor actions become the building blocks. To this end, presented in this paper is a perceptual basis for the motor agents. The perceptual basis consists of perceptual agents that extracts environmental information from a structured light vision system and provide action oriented perception for the corresponding motor agents. Rather than performing general scene reconstruction, a perceptual agent directly provides the motion reference for the motor behavior. Various sensory mechanisms--sensor fission, fusion, and fashion--becomes basic building blocks of the perception process. Since perception is a process deeply intertwined with the motor actions, active perception may also incorporate motor behaviors as an integral perceptual process.

  11. Authorization basis requirements comparison report

    SciTech Connect

    Brantley, W.M.

    1997-08-18

    The TWRS Authorization Basis (AB) consists of a set of documents identified by TWRS management with the concurrence of DOE-RL. Upon implementation of the TWRS Basis for Interim Operation (BIO) and Technical Safety Requirements (TSRs), the AB list will be revised to include the BIO and TSRs. Some documents that currently form part of the AB will be removed from the list. This SD identifies each - requirement from those documents, and recommends a disposition for each to ensure that necessary requirements are retained when the AB is revised to incorporate the BIO and TSRs. This SD also identifies documents that will remain part of the AB after the BIO and TSRs are implemented. This document does not change the AB, but provides guidance for the preparation of change documentation.

  12. Hanford Generic Interim Safety Basis

    SciTech Connect

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  13. A technique for the optical analysis of deformed telescope mirrors

    NASA Technical Reports Server (NTRS)

    Bolton, John F.

    1986-01-01

    The NASTRAN-ACCOS V programs' interface merges structural and optical analysis capabilities in order to characterize the performance of the NASA Goddard Space Flight Center's Solar Optical Telescope primary mirror, which has a large diameter/thickness ratio. The first step in the optical analysis is to use NASTRAN's FEM to model the primary mirror, simulating any distortions due to gravitation, thermal gradients, and coefficient of thermal expansion nonuniformities. NASTRAN outputs are then converted into an ACCOS V-acceptable form; ACCOS V generates the deformed optical surface on the basis of these inputs, and imaging qualities can be determined.

  14. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  15. Solving the eigenvalue problem of the nuclear Yukawa-folded mean-field Hamiltonian

    NASA Astrophysics Data System (ADS)

    Dobrowolski, A.; Pomorski, K.; Bartel, J.

    2016-02-01

    The nuclear Hamiltonian with a Yukawa-folded mean-field potential is diagonalized within the basis of a deformed harmonic-oscillator in Cartesian coordinates. The nuclear shape is characterized by the equivalent sharp surface described either by the well known Funny-Hills or the Trentalange-Koonin-Sierk parametrizations. They are both able to describe a very vast variety of nuclear deformations, including necked-in shapes, left-right asymmetry and non-axiality. The only imposed limitation on the nuclear shape is the z-signature symmetry, which corresponds to a symmetry of the shape with respect to a rotation by an angle π around the z-axis. On output, the computer code produces for a given nucleus with mass number A and charge number Z the energy eigenvalues and eigenfunctions of the mean-field Hamiltonian at chosen deformation.

  16. Does deformation saturate seismic anisotropy?

    NASA Astrophysics Data System (ADS)

    Tatham, D. J.; Lloyd, G. E.; Butler, R. W.; Casey, M.

    2006-12-01

    The progressive simple shear deformation that characterizes ductile fault zones in the crust involves both rotation and intensification of the strain ellipsoid. These mathematic predictions have been confirmed repeatedly by finite strain determinations in outcrop studies of natural shear zones and used to test geodynamic models of mountain belts. Seismic anisotropy (SA) methods offer the opportunity to pursue these approaches in situ. First however, we must calibrate the magnitude and orientation of the SA ellipsoid against naturally deformed tectonites of known strain state and microstructure. Here we present data from a field analogue of mafic ductile crust in an amphibolite-facies shear zone developed in a deformed mafic dyke embedded within the Lewisian Gneiss (Badcall, NW Scotland). Deflection of pre-existing linear and planar elements and attenuation of the dyke into the shear zone are used to determine the strain gradient. Specimens collected along this gradient were used to establish the geometric fabric intensity defined by different minerals (hornblende grain alignment and ellipticity of plagioclase clots). Finally, petrophysical properties were calculated for the specimens using the SEM-EBSD measured populations of lattice preferred orientations (LPO) for all mineral phases. It is the hornblende-plagioclase LPO, combined in their modal proportions and modulated by the individual mineral single crystal elastic properties, which define the SA profile across the shear zone. Hornblende develops a strong preferred dimensional orientation and hence LPO at shear strains of about 2, whereas the plagioclase LPO remains close to random regardless of bulk strain. The modelled SA of the samples is dominated therefore by the amphibole LPO. Although the values of bulk shear strain vary across the shear zone (0 at the margins to greater than 12 in the centre), the calculated intensity of SA saturates at a shear strain of about 2. These results, if typical of large

  17. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  18. Deformation quantization of cosmological models

    NASA Astrophysics Data System (ADS)

    Cordero, Rubén; García-Compeán, Hugo; Turrubiates, Francisco J.

    2011-06-01

    The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to cosmological models in the minisuperspace. The quantization procedure is performed explicitly for quantum cosmology in a flat minisuperspace. The de Sitter cosmological model is worked out in detail and the computation of the Wigner functions for the Hartle-Hawking, Vilenkin and Linde wave functions are done numerically. The Wigner function is analytically calculated for the Kantowski-Sachs model in (non)commutative quantum cosmology and for string cosmology with dilaton exponential potential. Finally, baby universes solutions are described in this context and the Wigner function is obtained.

  19. Tectonic deformation in southern California

    NASA Technical Reports Server (NTRS)

    Jackson, David D.

    1993-01-01

    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  20. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  1. Deformational characteristics of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Indukuri, Kishore K.

    This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies

  2. Dissipation in deforming chaotic billiards

    NASA Astrophysics Data System (ADS)

    Barnett, Alexander Harvey

    Chaotic billiards (hard-walled cavities) in two or more dimensions are paradigm systems in the fields of classical and quantum chaos. We study the dissipation (irreversible heating) rate in such billiard systems due to general shape deformations which are periodic in time. We are motivated by older studies of one-body nuclear dissipation and by anticipated mesoscopic applications. We review the classical and quantum linear response theories of dissipation rate and demonstrate their correspondence in the semiclassical limit. In both pictures, heating is a result of stochastic energy spreading. The heating rate can be expressed as a frequency-dependent friction coefficient μ(ω), which depends on billiard shape and deformation choice. We show that there is a special class of deformations for which μ vanishes as like a power law in the small- ω limit. Namely, for deformations which cause translations and dilations μ ~ ω4 whereas for those which cause rotations μ ~ ω2. This contrasts the generic case for which μ ~ ω4 We show how a systematic treatment of this special class leads to an improved version of the `wall formula' estimate for μ(0). We show that the special nature of dilation (a new result) is semiclassically equivalent to a quasi- orthogonality relation between the (undeformed) billiard quantum eigenstates on the boundary. This quasi- orthogonality forms the heart of a `scaling method' for the numerical calculation of quantum eigenstates, invented recently by Vergini and Saraceno. The scaling method is orders of magnitude more efficient than any other known billiard quantization method, however an adequate explanation for its success has been lacking until now. We explain the scaling method, its errors, and applications. We also present improvements to Heller's plane wave method. Two smaller projects conclude the thesis. Firstly, we give a new formalism for quantum point contact (QPC) conductance in terms of scattering cross-section in the half

  3. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    SciTech Connect

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  4. The Basis version of LASNEX

    NASA Astrophysics Data System (ADS)

    Dubois, P. F.

    1990-10-01

    We have made major changes to the computer science aspects of our laser fusion simulation program LASNEX. LASNEX is now using the Basis system, a FORTRAN development system developed over the last six years at Lawrence Livermore National Laboratory. This has given users greatly increased power and flexibility. We have eliminated all non-standard usage and macros, enabling us to begin the port of LASNEX to workstations. At the same time, we have completely redone the system used to maintain the source and create new versions of LASNEX, resulting in major gains in capability and productivity.

  5. The Basis version of LASNEX

    SciTech Connect

    Dubois, P.F.

    1990-10-26

    We have made major changes to the computer science aspects of our laser fusion simulation program LASNEX. LASNEX is now using the Basis system, a Fortran development system developed over the last six years at Lawrence Livermore National Laboratory. This has given users greatly increased power and flexibility. We have eliminated all non-standard usage and macros, enabling us to begin the port of LASNEX to workstations. At the same time, we have completely redone the system used to maintain the source and create new versions of LASNEX, resulting in major gains in capability and productivity. 5 refs.

  6. Value basis for conservation policy

    SciTech Connect

    Leiss, W.

    1981-01-01

    This paper is a case study in attempting to apply a particular value (caring) to the domain of social policy, specifically resource conservation policy. The argument is that our consumer society erodes the social basis for the development by individuals of a sense of well-being and personal identity, and that a conservation ethic based on the concept of caring could provide a foundation in practical morality and public policy for a viable sense of well-being. Conservation, then, goes beyond eliminating wasteful consumption to encompass a public commitment that can further economic and social goals. 11 references.

  7. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  8. Deformation parameters influencing prepreg tack

    SciTech Connect

    Ahn, K.J.; Seferis, J.C. ); Pelton, T.; Wilhelm, M. )

    1992-01-01

    A compression to tension apparatus and a methodology capable of measuring prepreg tack have been analyzed in detail in order to establish fundamental material and operating characteristics. Both intrinsic and extrinsic parameters influencing prepreg tack were identified and analyzed using commercially available carbon fiber/epoxy prepregs and mechanical testing equipment. Two different factors, (1) contact (or wetting) area of adjacent prepreg plies and (2) viscoelastic properties of the prepreg, were found to control prepreg tack. At low temperatures, contact area was the main deformation controlling step, while at high temperatures, the viscoelastic property of the prepreg was found to be dominant. Both interlaminar and intralaminar deformations were observed depending on the prepreg systems examined as well as the operating conditions of the test. In addition, hold time, hold pressure, loading rate, resin content, and out-time were also found to affect prepreg tack. Energy of separation, which may be viewed as a descriptor of prepreg tack, was observed to increase with increasing hold time, hold pressure, and loading rate. Energy of separation also showed a maximum value at a specific resin content for a specific prepreg system, while it decreased with increasing prepreg out-time due to prepreg surface characteristic change rather than bulk physical aging. Conclusively, it was observed that prepreg tack must be viewed as an extrinsic, bulk, but surface-sensitive, viscoelastic property which depends on material as well as operating conditions.

  9. Deformable human body model development

    SciTech Connect

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

  10. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  11. Deformation twinning in a polycrystalline magnesium alloy during dynamic compression

    NASA Astrophysics Data System (ADS)

    Hustedt, Caleb; Lloyd, Jeffrey; Lambert, Paul; Kannan, Vignesh; Casem, Daniel; Ramesh, K. T.; Sinclair, Nicholas; Becker, Richard; Hufnagel, Todd

    We report the results of combined in situ x-ray diffraction studies and crystal plasticity modeling of deformation twinning in polycrystalline magnesium during dynamic compression. Diffraction experiments were conducted at the Dynamic Compression Sector (DCS) of the Advanced Photon Source, on magnesium alloy (AZ31B) specimens (with various crystallographic textures) loaded at strain rates of ~1000 s-1 in a compression Kolsky bar. The diffraction patterns, recorded with temporal resolution of 5-10 microseconds, provide information about the evolution of crystallographic texture during deformation, which we interpret in terms of the twinning mechanism (so-called ``extension'' or ``tensile'' twinning). We compare our observations quantitatively with predictions of the evolution of crystallographic texture from an efficient reduced crystal plasticity model. This model explicitly accounts for basal slip and extension twinning on a rate-independent basis, but treats other mechanisms (pyramidal and prismatic slip) as isotropic, rate-dependent functions. This combination yields substantial improvements in efficiency over full crystal-plasticity models while retaining key aspects of the most important deformation mechanisms.

  12. Nitrogen cycle: Basis of life; Stickstoffkreislaeufe: basis des lebens

    SciTech Connect

    Haunold, E.

    1992-10-01

    About 200 species of bacteria and blue algae yearly fix 175 Mio t of nitrogen from the air. This input of nitrogen into the compartment land - sea occurs by means of the enzyme nitrogenase. Within this process of biological nitrogen fixation (BNF) elemental nitrogen is transformed to bound organic nitrogen. All other living organisms depend on bound nitrogen. BNF is nowadays strongly supported by the technical nitrogen fixation (TNF) according to the Haber-Bosch-process. The technically fixed fertilizer nitrogen will soon reach 100 Mio t/a. With the rain additionally 200 Mio t of N/a are washed in as NH3, NH4 or NOx. The inputs are balanced by the outputs of the same magnitude, which occur as the result of mineralization of organic matter, ammonia volatilization and denitrification. The nitrogen cycles thus constitute the basis for life.

  13. Uniaxial deformation of a soft porous material

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Dufresne, Eric; Wettlaufer, John

    2015-11-01

    Compressing a porous material will decrease the volume of pore space, driving fluid out. Similarly, injecting fluid into a porous material will drive mechanical deformation, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with linear elasticity and then further linearizing in the strain. This is a good model for very small deformations, but it becomes increasingly inappropriate as deformations grow larger, and moderate to large deformations are common in the context of phenomena such as swelling, damage, and extreme softness. Here, we compare the predictions of linear poroelasticity with those of a rigorous large-deformation framework in the context of two uniaxial model problems. We explore the error associated with the linear model in both steady and dynamic situations, as well as the impact of allowing the permeability to vary with the deformation.

  14. Protein transfer to membranes upon shape deformation

    NASA Astrophysics Data System (ADS)

    Sagis, L. M. C.; Bijl, E.; Antono, L.; de Ruijter, N. C. A.; van Valenberg, H.

    2013-05-01

    Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is an important factor in several diseases involving obstructions of the microcirculatory system, and deformation induced protein adsorption will alter the rigidity of their membranes. Deformation induced protein transfer will also affect adsorption of cells onto implant surfaces, and the performance of liposome based controlled release systems. Quantitative models describing this phenomenon in biomaterials do not exist. Using a simple quantitative model, we provide new insight in this phenomenon. We present data that show convincingly that for cells or droplets with diameters upwards of a few micrometers, shape deformations induce adsorption of proteins at their interface even at moderate flow rates.

  15. q-Deformation of symplectic dynamical symmetries in algebraic models of nuclear structure

    SciTech Connect

    Georgieva, A. I.; Sviratcheva, K. D.; Ivanov, M. I.; Draayer, J. P.

    2011-06-15

    With a view toward further nuclear structure applications of approaches based on quantum-deformed (or q-deformed) algebras, introduced to the authors by Yu.F. Smirnov, we construct a q analog of a boson realization of the symplectic noncompact sp(4, R) algebra together with a q analog of a fermion realization of the symplectic compact sp(4) algebra. The first study, on the q-deformed Sp(4,R) symmetry, is applied to the development of a q analog of the two-dimensional Interacting Boson Model with q-deformed SU(3) the underpinning dynamical symmetry group. An explicit realization in terms of q-tensor operators with respect to the standard su{sub q}(2) algebra is given. The group-subgroup structure of this framework yields the physical interpretation of the generators of the groups under consideration. The second symplectic algebra, the q-deformed sp(4), is applied to studying isovector pairing correlations in atomic nuclei. A specific q deformation of the sp(4) algebra is realized in terms of q deformed fermion creation and annihilation operators of the shell model. The generators of the algebra close on four distinct realizations of the u{sub q}(2) subalgebra. These reductions, which correspond to different types of pairing interactions, yield a complete classification of the basis states. An analysis of the role of the q deformation is based on a comparison of the results for energies of the lowest isovector-paired 0{sup +} states in the deformed and nondeformed cases.

  16. Integrable deformations of the XXZ spin chain

    NASA Astrophysics Data System (ADS)

    Beisert, Niklas; Fiévet, Lucas; de Leeuw, Marius; Loebbert, Florian

    2013-09-01

    We consider integrable deformations of the XXZ spin chain for periodic and open boundary conditions. In particular, we classify all long-range deformations and study their impact on the spectrum. As compared to the XXX case, we have the z-spin at our disposal, which induces two additional deformations: the short-range magnetic twist and a new long-range momentum-dependent twist.

  17. Self-adjointness of deformed unbounded operators

    SciTech Connect

    Much, Albert

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  18. Deformation-Induced Anisotropy of Polymers

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1982-01-01

    New theory calculates anisotropies induced by large deformations in polymers. Theory was developed primarily for calculating anistropy of thermal expansivity, but is also applicable to thermal conductivity, elastic moduli and other properties. Theory assumes that in isotropic state, long polymer chains are randomly coiled and not oriented in particular direction. They acquire an orientation when material is deformed. As average molecular orientation increases with deformation, properties of bulk material exhibit averaging of the microscopic anistropies of the oriented molecular segments.

  19. Physics-based deformable tongue visualization.

    PubMed

    Yang, Yin; Guo, Xiaohu; Vick, Jennell; Torres, Luis G; Campbell, Thomas F

    2013-05-01

    In this paper, a physics-based framework is presented to visualize the human tongue deformation. The tongue is modeled with the Finite Element Method (FEM) and driven by the motion capture data gathered during speech production. Several novel deformation visualization techniques are presented for in-depth data analysis and exploration. To reveal the hidden semantic information of the tongue deformation, we present a novel physics-based volume segmentation algorithm. This is accomplished by decomposing the tongue model into segments based on its deformation pattern with the computation of deformation subspaces and fitting the target deformation locally at each segment. In addition, the strain energy is utilized to provide an intuitive low-dimensional visualization for the high-dimensional sequential motion. Energy-interpolation-based morphing is also equipped to effectively highlight the subtle differences of the 3D deformed shapes without any visual occlusion. Our experimental results and analysis demonstrate the effectiveness of this framework. The proposed methods, though originally designed for the exploration of the tongue deformation, are also valid for general deformation analysis of other shapes. PMID:23492381

  20. Deformation twinning: Influence of strain rate

    SciTech Connect

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  1. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  2. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor... in the safety basis any changes, conditions, or hazard controls directed by DOE....

  3. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor... in the safety basis any changes, conditions, or hazard controls directed by DOE....

  4. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor... in the safety basis any changes, conditions, or hazard controls directed by DOE....

  5. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor... in the safety basis any changes, conditions, or hazard controls directed by DOE....

  6. 2012 ROCK DEFORMATION: FEEDBACK PROCESSES IN ROCK DEFORMATION GORDON RESEARCH CONFERENCE, AUGUST 19-24, 2012

    SciTech Connect

    Kelemen, Peter

    2012-08-24

    Topics covered include: Failure At High Confining Pressure; Fluid-assisted Slip, Earthquakes & Fracture; Reaction-driven Cracking; Fluid Transport, Deformation And Reaction; Localized Fluid Transport And Deformation; Earthquake Mechanisms; Subduction Zone Dynamics And Crustal Growth.

  7. Madelung deformity and Madelung-type deformities: a review of the clinical and radiological characteristics.

    PubMed

    Ali, Sayed; Kaplan, Summer; Kaufman, Theresa; Fenerty, Sarah; Kozin, Scott; Zlotolow, Dan A

    2015-11-01

    Madelung deformity of the distal radius results from premature closure of the medial volar aspect of the distal radial physis, leading to increased volar tilt and increased inclination of the radial articular surface, triangulation of the carpus with proximal migration of the lunate and dorsal displacement of the distal ulna. The deformity is particularly common in Leri-Weill dyschondrosteosis, but it may also occur in isolation. True Madelung deformity can be differentiated from Madelung-type deformities by the presence of an anomalous radiolunate ligament (Vickers ligament). In this article, we will review the imaging characteristics of true Madelung deformity, including the common "distal radius" variant, the less common "entire radius" variant and "reverse" Madelung deformity. We will discuss the role of the Vickers ligament in disease pathogenesis and its use in differentiating true Madelung deformity from Madelung-type deformities arising from trauma or multiple hereditary exostoses. Surgical management of these patients will also be addressed. PMID:26135644

  8. The 3D split-ring cavity lattice: a new metastructure for engineering arrays of coupled microwave harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Goryachev, Maxim; Tobar, Michael E.

    2015-02-01

    A new electromagnetic cavity structure, a lattice of 3D cavities consisting of an array of posts and gaps is presented. The individual cavity elements are based on the cylindrical re-entrant (or Klystron) cavity. We show that these cavities can also be thought of as 3D split-ring resonators, which is confirmed by applying symmetry transformations, each of which is an electromagnetic resonator with spatially separated magnetic and electric field. The characteristics of the cavity is used to mimic phonon behaviour of a one-dimensional (1D) chain of atoms. It is demonstrated how magnetic field coupling can lead to phonon-like dispersion curves with acoustical and optical branches. The system is able to reproduce a number of effects typical to 1D lattices exhibiting acoustic vibration, such as band gaps, phonon trapping, and effects of impurities. In addition, quasicrystal emulations predict the results expected from this class of ordered structures. The system is easily scalable to simulate two-dimensional and 3D lattices and shows a new way to engineer arrays of coupled microwave resonators with a variety of possible applications to hybrid quantum systems proposed.

  9. Effect of aspect ratio on the air forces and moments of harmonically oscillating thin rectangular wings in supersonic potential flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E

    1951-01-01

    This report treats the effect of aspect ratio on the air forces and moments of an oscillating flat rectangular wing in supersonic potential flow. The linearized velocity potential for the wing undergoing sinusoidal torsional oscillations simultaneously with sinusoidal vertical translations is derived in the form of a power series in terms of a frequency parameter. The series development is such that the differential equation for the velocity potential is satisfied to the required power of the frequency parameter considered and the linear boundary conditions are satisfied exactly. The method of solution can be utilized for other plan forms, that is, plan forms for which certain steady-state solutions are known.

  10. Realization of a quantum gate using gravitational search algorithm by perturbing three-dimensional harmonic oscillator with an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar

    2016-06-01

    The aim of this paper is to design a current source obtained as a representation of p information symbols \\{I_k\\} so that the electromagnetic (EM) field generated interacts with a quantum atomic system producing after a fixed duration T a unitary gate U( T) that is as close as possible to a given unitary gate U_g. The design procedure involves calculating the EM field produced by \\{I_k\\} and hence the perturbing Hamiltonian produced by \\{I_k\\} finally resulting in the evolution operator produced by \\{I_k\\} up to cubic order based on the Dyson series expansion. The gate error energy is thus obtained as a cubic polynomial in \\{I_k\\} which is minimized using gravitational search algorithm. The signal to noise ratio (SNR) in the designed gate is higher as compared to that using quadratic Dyson series expansion. The SNR is calculated as the ratio of the Frobenius norm square of the desired gate to that of the desired gate error.

  11. Realization of a quantum gate using gravitational search algorithm by perturbing three-dimensional harmonic oscillator with an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar

    2016-03-01

    The aim of this paper is to design a current source obtained as a representation of p information symbols {I_k} so that the electromagnetic (EM) field generated interacts with a quantum atomic system producing after a fixed duration T a unitary gate U(T) that is as close as possible to a given unitary gate U_g . The design procedure involves calculating the EM field produced by {I_k} and hence the perturbing Hamiltonian produced by {I_k} finally resulting in the evolution operator produced by {I_k} up to cubic order based on the Dyson series expansion. The gate error energy is thus obtained as a cubic polynomial in {I_k} which is minimized using gravitational search algorithm. The signal to noise ratio (SNR) in the designed gate is higher as compared to that using quadratic Dyson series expansion. The SNR is calculated as the ratio of the Frobenius norm square of the desired gate to that of the desired gate error.

  12. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  13. The Chemical Basis of Pharmacology

    PubMed Central

    2010-01-01

    Molecular biology now dominates pharmacology so thoroughly that it is difficult to recall that only a generation ago the field was very different. To understand drug action today, we characterize the targets through which they act and new drug leads are discovered on the basis of target structure and function. Until the mid-1980s the information often flowed in reverse: investigators began with organic molecules and sought targets, relating receptors not by sequence or structure but by their ligands. Recently, investigators have returned to this chemical view of biology, bringing to it systematic and quantitative methods of relating targets by their ligands. This has allowed the discovery of new targets for established drugs, suggested the bases for their side effects, and predicted the molecular targets underlying phenotypic screens. The bases for these new methods, some of their successes and liabilities, and new opportunities for their use are described. PMID:21058655

  14. The neurological basis of occupation.

    PubMed

    Gutman, Sharon A; Schindler, Victoria P

    2007-01-01

    The purpose of the present paper was to survey the literature about the neurological basis of human activity and its relationship to occupation and health. Activities related to neurological function were organized into three categories: those that activate the brain's reward system; those that promote the relaxation response; and those that preserve cognitive function into old age. The results from the literature review correlating neurological evidence and activities showed that purposeful and meaningful activities could counter the effects of stress-related diseases and reduce the risk for dementia. Specifically, it was found that music, drawing, meditation, reading, arts and crafts, and home repairs, for example, can stimulate the neurogical system and enhance health and well-being, Prospective research studies are needed to examine the effects of purposeful activities on reducing stress and slowing the rate of cognitive decline. PMID:17623380

  15. The Genetic Basis of Hydrocephalus.

    PubMed

    Kousi, Maria; Katsanis, Nicholas

    2016-07-01

    Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics. PMID:27145913

  16. The scientific basis of flotation

    SciTech Connect

    Ives, K.J.

    1984-01-01

    The practical art of flotation, used for about 100 years in mineral processing, has an underlying science. This book describes this scientific basis, by commencing with the surface properties of fine particles in water, and the physical and hydrodynamic behaviour of bubbles. The book integrates the physical, chemical, hydrodynamic and process engineering aspects of flotation, which is not found in existing publications. The contents include: introduction; the froth flotation process; past, present and future-in brief; physics and hydrodynamics of bubbles; thin films, contact angles, wetting. Some aspects of the physical chemistry of solid/water interfaces; experimental techniques in flotation; flotation in mineral processing; engineering aspects of flotation in the minerals industry; flotation machines, circuits and their simulation; and flotation in water treatment. wastewater treatment.

  17. Chemical basis for minimal cognition.

    PubMed

    Hanczyc, Martin M; Ikegami, Takashi

    2010-01-01

    We have developed a simple chemical system capable of self-movement in order to study the physicochemical origins of movement. We propose how this system may be useful in the study of minimal perception and cognition. The system consists simply of an oil droplet in an aqueous environment. A chemical reaction within the oil droplet induces an instability, the symmetry of the oil droplet breaks, and the droplet begins to move through the aqueous phase. The complement of physical phenomena that is then generated indicates the presence of feedback cycles that, as will be argued, form the basis for self-regulation, homeostasis, and perhaps an extended form of autopoiesis. We discuss the result that simple chemical systems are capable of sensory-motor coupling and possess a homeodynamic state from which cognitive processes may emerge. PMID:20586578

  18. Deformed ellipsoidal diffraction grating blank

    NASA Technical Reports Server (NTRS)

    Decew, Alan E., Jr.

    1994-01-01

    The Deformed Ellipsoidal Grating Blank (DEGB) is the primary component in an ultraviolet spectrometer. Since one of the major concerns for these instruments is throughput, significant efforts are made to reduce the number of components and subsequently reflections. Each reflection results in losses through absorption and scattering. It is these two sources of photon loss that dictated the requirements for the DEGB. The first goal is to shape the DEGB in such a way that the energy at the entrance slit is focused as well as possible on the exit slit. The second goal is to produce a surface smooth enough to minimize the photon loss due to scattering. The program was accomplished in three phases. The first phase was the fabrication planning. The second phase was the actual fabrication and initial testing. The last phase was the final testing of the completed DEGB.

  19. Deformable Surface Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Hess, K.; Dandliker, R.; Thalmann, R.

    1987-05-01

    A spatial light modulator (SLM) based on a deformable gel surface is presented. It has remarkable optical properties and its construction and operation are comparatively simple. It can be optically addressed through a photoconductor layer. The surface relief pattern is read out by total reflection and a schlieren optical system. The device provides good wavefront quality (X/10 over the whole aperture of 30 x 50 mm2) and has a spatial resolution of 10 line pairs/mm. Contrast ratios for modulation up to 40:1 were measured. The input sensitivity is typically 0.3 mW/cm2. The rise and decay times are both approximately 20 ms. Besides its primary application as a light valve in large screen TV projection, it can be used in optical information processing systems, e.g., as an incoherent-to-coherent transducer. Combined with a CRT, the SLM can be addressed electronically.

  20. Computer-assisted surgery patterns of ligamentous deformity of the knee: a clinical and cadaveric study.

    PubMed

    Schwarzkopf, Ran; Hadley, Scott; Abbasi, Mohammed; Meere, Patrick A

    2013-08-01

    Knee malalignment during total knee arthroplasty (TKA) is commonly classified as either varus or valgus on the basis of a standing anteroposterior radiograph. Computer-assisted surgery (CAS) navigation TKA provides precise dynamic evaluation of knee alignment throughout the full range of motion (FROM). The goal of this study was to classify patterns of CAS-generated knee deformity curves that match specific soft tissue contracture combinations. This can then be applied as an algorithm for soft tissue balancing on the basis of the preoperative knee deformity curve. Computer navigation-generated graphs from 65 consecutive TKA procedures performed by a single surgeon were analyzed. A stress-strain curve of the coronal alignment of the knee was recorded throughout FROM before bony resection. All graphs were classified into groups according to their pattern. Cadaveric knee models were then used to test the correlation between isolated and combined ligamentous contractures and identified CAS deformity curves. An analysis of the intraoperative knee alignment graphs revealed four distinct patterns of coronal deformity on the basis of intraoperative data: 13% diagonal, 18.5% C-shaped, 43.5% comma shaped, and 25% S-shaped. Each represents the change in varus and valgus alignment during FROM. All patterns were reproduced with cadaveric knees by recreating specific contracture constellations. A tight posterior capsule gave an S-shaped curve, a tight lateral collateral ligament gave a C-shaped curve, tight medial collateral ligament gave a diagonal curve, and a tight posterior lateral corner gave a comma-shaped curve. Release of the specific contractures resulted in correction of all patterns of deformity as measured by CAS. We propose a new classification system for coronal plane knee deformity throughout FROM. This system intends to match individual and combined soft tissue pathological contractures to specific stress-strain curves obtained through routine knee CAS

  1. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  2. Statistical field theories deformed within different calculi

    NASA Astrophysics Data System (ADS)

    Olemskoi, A. I.; Borysov, S. S.; Shuda, I. A.

    2010-09-01

    Within the framework of basic-deformed and finite-difference calculi, as well as deformation procedures proposed by Tsallis, Abe, and Kaniadakis and generalized by Naudts, we develop field-theoretical schemes of statistically distributed fields. We construct a set of generating functionals and find their connection with corresponding correlators for basic-deformed, finite-difference, and Kaniadakis calculi. Moreover, we introduce pair of additive functionals, which expansions into deformed series yield both Green functions and their irreducible proper vertices. We find as well formal equations, governing by the generating functionals of systems which possess a symmetry with respect to a field variation and are subjected to an arbitrary constrain. Finally, we generalize field-theoretical schemes inherent in concrete calculi in the Naudts manner. From the physical point of view, we study dependences of both one-site partition function and variance of free fields on deformations. We show that within the basic-deformed statistics dependence of the specific partition function on deformation has in logarithmic axes symmetrical form with respect to maximum related to deformation absence; in case of the finite-difference statistics, the partition function takes non-deformed value; for the Kaniadakis statistics, curves of related dependences have convex symmetrical form at small curvatures of the effective action and concave form at large ones. We demonstrate that only moment of the second order of free fields takes non-zero values to be proportional to inverse curvature of effective action. In dependence of the deformation parameter, the free field variance has linearly arising form for the basic-deformed distribution and increases non-linearly rapidly in case of the finite-difference statistics; for more complicated case of the Kaniadakis distribution, related dependence has double-well form.

  3. An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.

  4. A deformation analysis method of stepwise regression for bridge deflection prediction

    NASA Astrophysics Data System (ADS)

    Shen, Yueqian; Zeng, Ying; Zhu, Lei; Huang, Teng

    2015-12-01

    Large-scale bridges are among the most important infrastructures whose safe conditions concern people's daily activities and life safety. Monitoring of large-scale bridges is crucial since deformation might have occurred. How to obtain the deformation information and then judge the safe conditions are the key and difficult problems in bridge deformation monitoring field. Deflection is the important index for evaluation of bridge safety. This paper proposes a forecasting modeling of stepwise regression analysis. Based on the deflection monitoring data of Yangtze River Bridge, the main factors influenced deflection deformation is chiefly studied. Authors use the monitoring data to forecast the deformation value of a bridge deflection at different time from the perspective of non-bridge structure, and compared to the forecasting of gray relational analysis based on linear regression. The result show that the accuracy and reliability of stepwise regression analysis is high, which provides the scientific basis to the bridge operation management. And above all, the ideas of this research provide and effective method for bridge deformation analysis.

  5. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    SciTech Connect

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-04

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of {alpha}-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  6. Nonideal contact in a composite shell structure with a deformable filler

    SciTech Connect

    Bedzir, A.A.; Shatskii, I.P.; Shopa, V.M.

    1995-11-01

    In [8], a model was proposed for investigating the frictional contact accompanying the compression of a deformable filler in an elastic cylindrical shell. The elastic equilibrium of coaxial continuous cylindrical shells and a deformable filler was considered in [5], taking account of the friction at the contact surfaces. In the present work, the stress-strain state and pliability of a shell system consisting of two coaxial cylindrical shells, one slotted and one continuous, that are separated by elastic filler is investigated in conditions of frictional contact. The model developed here serves as the basis for calculating the slotted elastic elements of drill shock absorbers.

  7. Analysis of the process of the deformation of carboniferous plastic in roller presses

    SciTech Connect

    Tyutyunnikov, Yu.B.; Vasilev, V.S.

    1984-01-01

    The results of analysis of the deformation of carboniferous plastic in roller presses are presented in a figure, which schematically shows the region of deformation. A mathematical model has been constructed of the interaction between a material being processed and a roller press in its lag zone. Functions derived on the basis of a hydrodynamic theory of the flow of a viscous liquid constitute expressions that can be used to determine the speed of a carboniferous plastic in the lag area and the forces of a specific pressure on the rollers in this area as well as the shear stresses.

  8. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods. PMID:26390453

  9. Solute transport through a deforming porous medium

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Smith, David W.

    2002-06-01

    Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers.

  10. Madelung Deformity and Extensor Tendon Rupture.

    PubMed

    Shahcheraghi, Gholam Hossain; Peyman, Maryam; Mozafarian, Kamran

    2015-07-01

    Extensor tendon rupture in chronic Madelung deformity, as a result of tendon attrition on the dislocated distal ulna, is a rare occurrence. It is, however, seen more often in rheumatoid arthritis. There are few case reports in the English-language literature on this issue. We report a case of multiple tendon ruptures in a previously undiagnosed Madelung deformity. PMID:26161772

  11. Inflated Soft Actuators with Reversible Stable Deformations.

    PubMed

    Hines, Lindsey; Petersen, Kirstin; Sitti, Metin

    2016-05-01

    Most soft robotic systems are currently dependent on bulky compressors or pumps. A soft actuation method is presented combining hyperelastic membranes and dielectric elastomer actuators to switch between stable deformations of sealed chambers. This method is capable of large repeatable deformations, and has a number of stable states proportional to the number of actuatable membranes in the chamber. PMID:27008455

  12. Interactive multigrid refinement for deformable image registration.

    PubMed

    Zhou, Wu; Xie, Yaoqin

    2013-01-01

    Deformable image registration is the spatial mapping of corresponding locations between images and can be used for important applications in radiotherapy. Although numerous methods have attempted to register deformable medical images automatically, such as salient-feature-based registration (SFBR), free-form deformation (FFD), and demons, no automatic method for registration is perfect, and no generic automatic algorithm has shown to work properly for clinical applications due to the fact that the deformation field is often complex and cannot be estimated well by current automatic deformable registration methods. This paper focuses on how to revise registration results interactively for deformable image registration. We can manually revise the transformed image locally in a hierarchical multigrid manner to make the transformed image register well with the reference image. The proposed method is based on multilevel B-spline to interactively revise the deformable transformation in the overlapping region between the reference image and the transformed image. The resulting deformation controls the shape of the transformed image and produces a nice registration or improves the registration results of other registration methods. Experimental results in clinical medical images for adaptive radiotherapy demonstrated the effectiveness of the proposed method. PMID:24232828

  13. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  14. Plate-tectonic mechanism of Laramide deformation.

    USGS Publications Warehouse

    Hamilton, W.

    1981-01-01

    The Laramide compressive deformation of the craton was caused by a clockwise rotation of about 2-4o of the Colorado Plateau region relative to the continental interior, during late Late Cretaceous and early Tertiary time. Late Paleozoic and Neogene deformation of the craton also were produced by motion of a southwestern subplate relative to the continental interior. -from Author

  15. Nanoplasmonic ruler to measure lipid vesicle deformation.

    PubMed

    Jackman, Joshua A; Špačková, Barbora; Linardy, Eric; Kim, Min Chul; Yoon, Bo Kyeong; Homola, Jiří; Cho, Nam-Joon

    2016-01-01

    A nanoplasmonic ruler method is presented in order to measure the deformation of adsorbed, nm-scale lipid vesicles on solid supports. It is demonstrated that single adsorbed vesicles undergo greater deformation on silicon oxide over titanium oxide, offering direct experimental evidence to support membrane tension-based theoretical models of supported lipid bilayer formation. PMID:26466086

  16. Deformation Mechanisms of Antigorite Serpentinite at Subduction Zone Conditions Determined from Experimentally and Naturally Deformed Rocks

    NASA Astrophysics Data System (ADS)

    Auzende, A. L.; Escartin, J.; Walte, N.; Guillot, S.; Hirth, G.; Frost, D. J.

    2014-12-01

    The rheology of serpentinite, and particularly that of antigorite-bearing rocks, is of prime importance for understanding subduction zone proceses, including decoupling between the downwelling slab and the overriding plate, exhumation of high-pressure rocks, fluids pathways and, more generally, mantle wedge dynamics. We present results from deformation-DIA experiments on antigorite serpentinite performed under conditions relevant of subduction zones (1-3.5 GPa ; 400-650°C). We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400°C (Chernak and Hirth, EPSL, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Our observations on experimental samples of antigorite deformed within its stability field show that deformation is dominated by cataclastic flow; we can only document a minor contribution of plastic deformation. In naturally deformed samples, deformation-related plastic structures largely dominate strain accommodation, but we also document a minor contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases, and is coupled to local embrittlement attributed to hydraulic fracturating due to the migration of dehydration fluids. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. We also document that the corrugated structure of antigorite has a control on the strain accommodation mechanisms under subduction conditions, with preferred inter and intra-cracking along (001) and gliding along both a and b. Deformation dominated by brittle processes, as observed in experiments, may occur during deformation at elevated (seismic?) strain rates, while plastic deformation, as observed in naturally deformed rocks, may correspond instead to low strain rates instead (aseismic creep?). We also discuss the role of antigorite rheology and mode of deformation on fluid transport.

  17. BASIS Set Exchange (BSE): Chemistry Basis Sets from the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Basis Set Library

    DOE Data Explorer

    Feller, D; Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd; Sun, Lisong; Gurumoorthi, Vidhya; Chase, Jared; Li, Jun

    The Basis Set Exchange (BSE) provides a web-based user interface for downloading and uploading Gaussian-type (GTO) basis sets, including effective core potentials (ECPs), from the EMSL Basis Set Library. It provides an improved user interface and capabilities over its predecessor, the EMSL Basis Set Order Form, for exploring the contents of the EMSL Basis Set Library. The popular Basis Set Order Form and underlying Basis Set Library were originally developed by Dr. David Feller and have been available from the EMSL webpages since 1994. BSE not only allows downloading of the more than 500 Basis sets in various formats; it allows users to annotate existing sets and to upload new sets. (Specialized Interface)

  18. Deformation Measurements of Smart Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Burner, Alpheus

    2005-01-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  19. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications. PMID:20090749

  20. Deformation measurements of smart aerodynamic surfaces

    NASA Astrophysics Data System (ADS)

    Fleming, Gary A.; Burner, Alpheus W.

    1999-10-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F platform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flat, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  1. CubeSat deformable mirror demonstration

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri; Marinan, Anne; Kerr, Caitlin; Cheng, Kezi; Jamil, Sara

    2012-09-01

    The goal of the CubeSat Deformable Mirror Demonstration (DeMi) is to characterize the performance of a small deformable mirror over a year in low-Earth orbit. Small form factor deformable mirrors are a key technology needed to correct optical system aberrations in high contrast, high dynamic range space telescope applications such as space-based coronagraphic direct imaging of exoplanets. They can also improve distortions and reduce bit error rates for space-based laser communication systems. While follow-on missions can take advantage of this general 3U CubeSat platform to test the on-orbit performance of several different types of deformable mirrors, this first design accommodates a 32-actuator Boston Micromachines MEMS deformable mirror.

  2. Scoliosis and tibiotarsal deformities in broiler chickens.

    PubMed

    Droual, R; Bickford, A A; Farver, T B

    1991-01-01

    The incidence and degree of scoliosis were investigated in broiler chickens with and without intertarsal deformities associated with slipped gastrocnemius tendons. In both groups, the incidence of scoliosis was similar and there was a significant tendency for scoliosis to be convex on the right side. However, scoliosis was significantly greater in birds with intertarsal deformities, and in a significant proportion of these the joint with a slipped tendon was on the convex side of scoliosis. In birds with deformities, inequalities between right and left tibiotarsi were significantly greater, and tibiotarsi with greater length, narrower condyles and trochleae, and shallower trochlear grooves were significantly more often on the convex side of scoliosis. Significant positive correlations were found between scoliosis and rotational and bending deformities of the distal tibiotarsus on the convex side of scoliosis. These findings suggest a cause-and-effect relationship between scoliosis and tibiotarsal deformities associated with slipped tendons. PMID:2029256

  3. Structural basis of metal hypersensitivity

    PubMed Central

    Wang, Yang

    2014-01-01

    Metal hypersensitivity is a common immune disorder. Human immune systems mount the allergic attacks on metal ions through skin contacts, lung inhalation and metal-containing artificial body implants. The consequences can be simple annoyances to life-threatening systemic illness. Allergic hyper-reactivities to nickel (Ni) and beryllium (Be) are the best-studied human metal hypersensitivities. Ni-contact dermatitis affects 10 % of the human population, whereas Be compounds are the culprits of chronic Be disease (CBD). αβ T cells (T cells) play a crucial role in these hypersensitivity reactions. Metal ions work as haptens and bind to the surface of major histocompatibility complex (MHC) and peptide complex. This modifies the binding surface of MHC and triggers the immune response of T cells. Metal-specific αβ T cell receptors (TCRs) are usually MHC restricted, especially MHC class II (MHCII) restricted. Numerous models have been proposed, yet the mechanisms and molecular basis of metal hypersensitivity remain elusive. Recently, we determined the crystal structures of the Ni and Be presenting human MHCII molecules, HLA-DR52c (DRA*0101, DRB3*0301) and HLA-DP2 (DPA1*0103, DPB1*0201). These structures revealed unusual features of MHCII molecules and shed light on how metal ions are recognized by T cells. PMID:22983897

  4. Molecular basis for color vision.

    PubMed

    Yoshizawa, T

    1994-05-01

    Amino acid sequences of four kinds of chicken cone pigments and two kinds of nocturnal gecko visual pigment were determined. Calculations of amino acid identities indicate that gecko pigments should be cone pigments. A phylogenetic tree of visual pigments constructed demonstrated that cone pigments evolved earlier than rod pigments (rhodopsins), indicating that daylight vision including color vision appeared earlier than twilight vision. The divergence of cone pigments to rhodopsins would be caused by replacing basic amino acid residues to acidic ones according to net charge calculations. A comparison between chicken rhodopsin and cone pigments (chicken green and red) displayed that the cone pigments are faster in regeneration from 11-cis retinal and opsin, faster in formation of meta II-intermediate and shorter in lifetime of meta II-intermediate than rhodopsin. These facts would partly explain the rapid dark adaptation, the rapid light response and the low photosensitivity of cones compared with rods. In comparison with di- and tri-chromatic color visions, chicken tetra-chromatic vision was discussed on the basis of both absorption spectra of cone pigments and filtering effect of oil droplets. PMID:8011932

  5. [Neural basis of procedural memory].

    PubMed

    Mochizuki-Kawai, Hiroko

    2008-07-01

    Procedural memory is acquired by trial and error. Our daily life is supported by a number of procedural memories such as those for riding bicycle, typing, reading words, etc. Procedural memory is divided into 3 types; motor, perceptual, and cognitive. Here, the author reviews the cognitive and neural basis of procedural memory according to these 3 types. It is reported that the basal ganglia or cerebellum dysfunction causes deficits in procedural memory. Compared with age-matched healthy participants, patients with Parkinson disease (PD), Huntington disease (HD) or spinocerebellar degeneration (SCD) show deterioration in improvements in motor-type procedural memory tasks. Previous neuroimaging studies have reported that motor-type procedural memory may be supported by multiple brain regions, including the frontal and parietal regions as well as the basal ganglia (cerebellum); this was found with a serial reaction time task (SRT task). Although 2 other types of procedural memory are also maintained by multiple brain regions, the related cerebral areas depend on the type of memory. For example, it was suggested that acquisition of the perceptual type of procedural memory (e.g., ability to read mirror images of words) might be maintained by the bilateral fusiform region, while the acquisition of cognitive procedural memory might be supported by the frontal, parietal, or cerebellar regions as well as the basal ganglia. In the future, we need to cleary understand the neural "network" related to the procedural memory. PMID:18646622

  6. Structural basis of metal hypersensitivity.

    PubMed

    Wang, Yang; Dai, Shaodong

    2013-03-01

    Metal hypersensitivity is a common immune disorder. Human immune systems mount the allergic attacks on metal ions through skin contacts, lung inhalation and metal-containing artificial body implants. The consequences can be simple annoyances to life-threatening systemic illness. Allergic hyper-reactivities to nickel (Ni) and beryllium (Be) are the best-studied human metal hypersensitivities. Ni-contact dermatitis affects 10 % of the human population, whereas Be compounds are the culprits of chronic Be disease (CBD). αβ T cells (T cells) play a crucial role in these hypersensitivity reactions. Metal ions work as haptens and bind to the surface of major histocompatibility complex (MHC) and peptide complex. This modifies the binding surface of MHC and triggers the immune response of T cells. Metal-specific αβ T cell receptors (TCRs) are usually MHC restricted, especially MHC class II (MHCII) restricted. Numerous models have been proposed, yet the mechanisms and molecular basis of metal hypersensitivity remain elusive. Recently, we determined the crystal structures of the Ni and Be presenting human MHCII molecules, HLA-DR52c (DRA*0101, DRB3*0301) and HLA-DP2 (DPA1*0103, DPB1*0201). These structures revealed unusual features of MHCII molecules and shed light on how metal ions are recognized by T cells. PMID:22983897

  7. The autoimmune basis of narcolepsy.

    PubMed

    Mahlios, Josh; De la Herrán-Arita, Alberto K; Mignot, Emmanuel

    2013-10-01

    Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness, cataplexy, hypnagonic hallucinations, sleep paralysis, and disturbed nocturnal sleep patterns. Narcolepsy is caused by the loss of hypocretin (orexin)-producing neurons in the lateral hypothalamus. Evidence, such as a strong association with HLA DQB1*06:02, strongly suggests an autoimmune basis targeting hypocretin neurons. Genome-wide association studies have strengthened the association between narcolepsy and immune system gene polymorphisms, including the identification of polymorphisms in the T cell receptor alpha locus, TNFSF4 (also called OX40L), Cathepsin H (CTSH) the purinergic receptor P2RY11, and the DNA methyltransferase DNMT1. Recently, attention has been raised regarding a spike in cases of childhood narcolepsy in 2010 following the 2009 H1N1 pandemic (pH1N1) in China and vaccination with Pandemrix, an adjuvanted H1N1 vaccine that was used in Europe. How the immune system may be involved in disease initiation and/or progression remains a challenge to researchers. Potential immunological pathways that could lead to the specific elimination of hypocretin producing neurons include molecular mimicry or bystander activation, and are likely a combination of genetic and environmental factors, such as upper airway infections. PMID:23725858

  8. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  9. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  10. Basis Document for Sludge Stabilization

    SciTech Connect

    RISENMAY, H.R.

    2001-06-18

    DOE-RL recently issued Safety Evaluation Report (SER) amendments to the PFP Final Safety Analysis Report, HNF-SD-CP-SAR-021 Rev. 2. The Justification for Continued Operations for 2736-ZB and plutonium oxides in BTCs Safety Basis change (letter DOE-RL ABD-074) was approved by one of the SERs. Also approved by SER was the revised accident analysis for Magnesium Hydroxide Precipitation Process (MHPP) gloveboxes HC-230C-3 and HC-230C-5 containing increased glovebox inventories and corresponding increases in seismic release consequence. Numerous implementing documents require revision and issuance to implement the SER approvals. The SER authorizing plutonium oxides into BTCs specifically limited the SER authorization scope to ''pure or clean oxides, i.e., 85 wt% or grater Pu, in this feed change'' (SER Section 3.0 Base Information paragraph 4 [page 11]). Comprehensive USQ Evaluation PFP-2001-12 addressed the packaging of Pu alloy metals into BTCs, and the packaging of Pu alloy oxides (powders) into food pack cans and determined that the activities did not represent an USQ. The same information used to make the PFP-2001-12 negative USQ determination is applicable to packaging Pu alloy powders (DOES NOT INCLUDE STABILIZED MHPP MATERIALS OR OXIDES OF MOLYBDATES) into BTCs. Information from USQ Evaluation PFP-2001-12 is included in this USQ Evaluation for packaging of relatively pure Pu oxides and Pu alloy oxides into BTCs.

  11. Vascular basis of mucosal color

    PubMed Central

    Kleinheinz, Johannes; Büchter, André; Fillies, Thomas; Joos, Ulrich

    2005-01-01

    Background Besides the color of the teeth the color of the alveolar gingiva plays a crucial role in esthetic rehabilitation in dento-alveolar treatment. Whereas nowadays the color of the teeth can be determined exactly and individually, the specific influence of the red color of the gingiva on treatment has not been assessed yet. The aim of this study was to evaluate the vascularization as the basis for gingival esthetics. Methods Standardized photographs of defined areas of the alveolar gingiva in operated and non-operated patients were taken and assigned to groups with same characteristics after color comparisons. In addition, histologic and immunohistologic analyses of gingival specimens were performed for qualitative and quantitative assessment of vessels and vascularization. Finally, colors and number of vessels were correlated. Results Our results demonstrated three different constellations of colors of the alveolar gingiva in healthy patients. The operated patients could not be grouped because of disparate depiction. There was a clear correlation between color and vessel number in the alveolar gingiva. Conclusion Our investigations revealed the connections between vascularization and gingival color. Recommendations for specific change or even selection of colors based on the results cannot be given, but the importance of vascularly based incision lines was demonstrated. PMID:16270929

  12. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  13. Structural basis of spectrin elasticity

    SciTech Connect

    Shen, B.W.; Stevens, F.J.; Luthi, U.; Goldin, S.B.

    1991-10-17

    A new model of human erythrocyte {alpha}-spectrin is proposed. The secondary structure of human erythrocyte {alpha}-spectrin and its folding into a condensed structure that can convert reversibly in situ, into an elongated configuration is predicted from its deduced protein sequence. Results from conformational and amphipathicity analyses suggest that {alpha}-spectrin consists mainly of short amphipathicity helices interconnected by flexible turns and/or coils. The distribution of charges and amphipathicity of the helices can facilitate their folding into stable domains of 4 and 3 helices surrounding a hydrophobic core. The association between adjacent four- and three-helix domains further organize them into recurring seven-helix motifs that might constitute the basic structural units of the extended {alpha}-spectrin. The elongated spectrin molecule packs, in a sinusoidal fashion, through interactions between neighboring motifs into a compact structure. We suggest that the reversible extension and contraction of this sigmoidally packed structure is the molecular basis of the mechanism by which spectrin contributes to the elasticity of the red cell membrane.

  14. Deformation-based surface morphometry applied to gray matter deformation.

    PubMed

    Chung, Moo K; Worsley, Keith J; Robbins, Steve; Paus, Tomás; Taylor, Jonathan; Giedd, Jay N; Rapoport, Judith L; Evans, Alan C

    2003-02-01

    We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts the inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents. PMID:12595176

  15. Inelastic deformation and dislocation structure of a nickel alloy - Effects of deformation and thermal histories

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Page, R. A.

    1988-01-01

    Inelastic deformation behavior of the cast Ni-base alloy, B1900 + Hf, was investigated using data from step-temperature tensile tests and thermomechanical cyclic tests in the temperature ranges 538-760 C and 760-982 C. The deformation results were correlated with the dislocation structures of deformed specimens, identified by TEM. It was found that, in the 760-982 C temperature range, there are no thermal history effects in the inelastic deformation behavior of B1900 + Hf. In the 538-760 range, anomalous cyclic hardening and, possibly, thermal history effects were observed in thermomechanically deformed alloy, caused by sessile (010) dislocations in the gamma-prime phase.

  16. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    SciTech Connect

    Deta, U. A. E-mail: utamadeta@unesa.ac.id; Suparmi

    2015-09-30

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  17. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    NASA Astrophysics Data System (ADS)

    Deta, U. A.; Suparmi

    2015-09-01

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  18. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  19. Tracking of object deformations in color and depth video: deformation models and applications

    NASA Astrophysics Data System (ADS)

    Jordt, Andreas; Reinhold, Stefan; Koch, Reinhard

    2015-05-01

    The research on deformation tracking based on color image data has continuously gained a wide interest in the last 15 years. In addition, using depth sensors such as the Microsoft Kinect, allows to mitigate the ambiguity problems that arise when trying to solve the deformation tracking tasks on color images only, by adding depth information. However, the fusion of color and depth data is not straight forward, and the deformation tracking task is still ill-posed due to the lack of a general deformation model. The problem is usually circumvented by providing special deformation functions for the task at hand, e.g., skeleton-based for reconstructing people or triangle-based for tracking planar surfaces. In this article we summarize the Analysis by Synthesis (AbS) approach for deformation tracking in depth and color video and show some successful applications of specialized deformation functions. To overcome the issues with NURBS based deformation tracking we propose a new geodesic RBF-based deformation model, which can adapt to any surface topology and shape, while keeping the number of deformation parameters low. Example deformations for objects of different topologies are given, showing the versatility and efficiency of the proposed model.

  20. Structural basis of hereditary coproporphyria

    PubMed Central

    Lee, Dong-Sun; Flachsová, Eva; Bodnárová, Michaela; Demeler, Borries; Martásek, Pavel; Raman, C. S.

    2005-01-01

    Hereditary coproporphyria is an autosomal dominant disorder resulting from the half-normal activity of coproporphyrinogen oxidase (CPO), a mitochondrial enzyme catalyzing the antepenultimate step in heme biosynthesis. The mechanism by which CPO catalyzes oxidative decarboxylation, in an extraordinary metal- and cofactor-independent manner, is poorly understood. Here, we report the crystal structure of human CPO at 1.58-Å resolution. The structure reveals a previously uncharacterized tertiary topology comprising an unusually flat seven-stranded β-sheet sandwiched by α-helices. In the biologically active dimer (KD = 5 × 10-7 M), one monomer rotates relative to the second by ≈40° to create an intersubunit interface in close proximity to two independent enzymatic sites. The unexpected finding of citrate at the active site allows us to assign Ser-244, His-258, Asn-260, Arg-262, Asp-282, and Arg-332 as residues mediating substrate recognition and decarboxylation. We favor a mechanism in which oxygen serves as the immediate electron acceptor, and a substrate radical or a carbanion with substantial radical character participates in catalysis. Although several mutations in the CPO gene have been described, the molecular basis for how these alterations diminish enzyme activity is unknown. We show that deletion of residues (392-418) encoded by exon six disrupts dimerization. Conversely, harderoporphyria-causing K404E mutation precludes a type I β-turn from retaining the substrate for the second decarboxylation cycle. Together, these findings resolve several questions regarding CPO catalysis and provide insights into hereditary coproporphyria. PMID:16176984