Science.gov

Sample records for deformed two-phase stainless

  1. Automatic assessment of a two-phase structure in the duplex stainless-steel SAF 2205

    SciTech Connect

    Komenda, J. ); Sandstroem, R. )

    1993-10-01

    Automatic image analysis was used to study the effect of deformation on the size and distribution of the austenite and ferrite phases in the duplex stainless steel SAF 2205 (22Cr-5Ni-3Mo-15N). The main parameters used were the chord size to characterize the ferrite phase and Feret's diameter for the austenite phase. As the deformation increased, ferrite bands became more elongated and thinner, contributing to a pronounced banding. The amount of banding can be quantified by using a ratio between the slopes of the chord size distributions in the longitudinal and short transverse directions. According to a proposed model of the influence of deformation on the two-phase structure, the process of austenite elongation and subdivision of austenite islands (crushing) is described. The effect of deformation on the yield and tensile strength was expressed using a Hall-Petch type relationship where the grain size was represented by the average width of the ferrite bands. The observed anisotropy in strength properties is believed to be due to texture hardening. Because elongation at a given strength level is the same in both the longitudinal and transverse directions, the banding itself does not influence the ductility. Nor can the strength anisotropy be due to banding, because the strength is greater in the longitudinal than in the transverse direction.

  2. High Pressure Deformation in Two-Phase Aggregates

    SciTech Connect

    Li,L.; Addad, A.; Weidner, D.; Long, H.; Chen, J.

    2007-01-01

    We investigate the rheological behavior of multi-phase aggregates at high pressure and high temperature. Using synchrotron X-ray radiation as the probing tool, we are able to quantify the stress state of individual phases within the aggregates. This method provides fundamental information in interpreting the behavior of two phase/multi-phase mixtures, which contribute to our understanding of the deformation process at deep earth conditions. We choose MgAl{sub 2}O{sub 4} spinel and MgO periclase as our model materials. Mixtures of various volume proportions were deformed in a multi-anvil high pressure deformation apparatus at pressure of 5 GPa and elevated temperatures. Stress is determined from X-ray diffraction, providing a measure of stress in each individual phase of the mixture in situ during the deformation. Macroscopic strain is determined from X-ray imaging. We compare the steady state strength of various mixtures at 1000 {sup o}C and 800 {sup o}C and at the strain rate in the range of 1.8 to 8.8 x 10{sup -5} s{sup -1}. Our data indicate that the weak phase (MgO) is responsible for most of the accumulated strains while the strong phase (spinel) is supporting most of the stress when the volume proportion is 75% spinel and 25% MgO. The intermediate compositions (40/60) are much weaker than either of the end members, while the grain sizes for the intermediate compositions (submicrons) are much smaller than the end members (5-10 {mu}m). We conclude that a change in flow mechanism resulting from these smaller grains is responsible for the low strength of the intermediate composition mixtures. This study demonstrates an approach of using synchrotron X-rays to study the deformation behaviors of multi-phase aggregates at high pressure and high temperature.

  3. Tensile properties and deformation mechanisms in two-phase titanium aluminide sheet material

    SciTech Connect

    Appel, F.; Wagner, R.; Clemens, H.; Glatz, W.

    1997-12-31

    The mechanical properties of two-phase TiAl sheets with different compositions and microstructures were investigated over the temperature range 25--1,000 C. The microprocesses of plasticity were characterized by electron microscope observations. Particular emphasis has been paid to the mechanisms governing the deformation behavior at elevated temperatures which are relevant for the fabrication and engineering applications of structural components.

  4. Three-dimensional deformation analysis of two-phase dislocation substructures

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Raj, S. V.; Walker, Kevin P.

    1992-01-01

    Three-dimensional deformation analysis of two-phase dislocation substructures was carried out, extending the Qian and Fan (1991) approach to 3D stress-strain fields by using the Budiansky and Wu (1962) criterion for strain compatibility between the 'hard' and 'soft' regions. The result is a rate-dependent viscoplastic theory, named the dislocation substructure viscoplasticity (DSV), which incorporates a self-consistent effect of dislocation substructure on material response. An algorithm developed for numerical implementation of the DSV theory is presented.

  5. Hydrogen induced plastic deformation of stainless steel

    SciTech Connect

    Gadgil, V.J.; Keim, E.G.; Geijselaers, H.J.M.

    1998-12-31

    Hydrogen can influence the behavior of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the surface of stainless steel was investigated using electrochemical cathodic charging. Microhardness was measured on the cross section. Transmission electron microscopy was used to investigate the dislocation substructure just below the surface. Computer simulation using finite element method was carried out to estimate the extent and severity of the deformation. The significance of the results are discussed in relation to the loss of ductility due to hydrogen.

  6. Invasion Patterns During Two-phase Flow In Deformable Porous Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2016-04-01

    , when normalized by obtained power laws with time N(t) ∝ tα and r(t) ∝ tβ. [1] Eriksen F.K., Toussaint R., Måløy K.J. and Flekkøy E.G. (2015) Invasion patterns during two-phase flow in deformable porous media. Front. Phys. 3:81. doi: 10.3389/fphy.2015.00081

  7. Consequences of viscous anisotropy for melt localization in a deforming, two-phase aggregate

    NASA Astrophysics Data System (ADS)

    Takei, Y.; Katz, R. F.

    2012-12-01

    Melt localization in the deforming, partially molten mantle has been of interest because it affects the melt extraction rate, mantle deformability, and chemical interaction between the melt and host rock. Experimental studies have reported the spontaneous segregation of melt into melt-rich bands in samples deformed under simple shear and torsion (Holtzman et al, 2003, King et al, 2010). Efforts to clarify the instability mechanism have so far revealed that rheological properties of partially molten rocks control the occurrence of instability. Porosity-weakening viscosity, empirically written as exp(- λ × f) with porosity f and constant λ(= 25-45), plays an essential role in the destabilization of porosity perturbation in the shear flow of a two-phase aggregate (eg., pure shear flow, simple shear flow): the perturbation growth rate is proportional to the product of shear strain rate and the factor λ (Stevenson, 1989). The stress exponent n of the viscosity affects the angle of the perturbation plane with maximum growthrate, where n=3-6 (power-law creep) explains the experimentally observed low angle to the shear plane (Katz et al, 2006). However, in-situ experimental measurements of n indicate that it takes values as low as unity without affecting the observed orientation of melt bands. Viscous anisotropy provides an alternative explanation for the observed band angles. It is produced by the stress-induced microstructural anisotropy (Daines and Kohlstedt, 1997; Zimmermann et al., 1999; Takei, 2010), and it enhances the coupling between melt migration and matrix shear deformation (Takei and Holtzman, 2009). Even without any porosity perturbation, viscous anisotropy destabilizes simple patterns of two-phase flow with a stress/strain gradient (eg., Poiseuille flow, torsional flow) and gives rise to shear-induced melt localization: the growth rate of this mechanism depends on the shear strain rate and the compaction length relative to the spatial scale of the

  8. Load partitioning between single bulk grains in a two-phase duplex stainless steel during tensile loading.

    SciTech Connect

    Hedstrom, P.; Han, T. S.; Lienert, U.; Almer, J. D.; Oden, M.; X-Ray Science Division; Lulea Univ.; Royal Inst. of Tech.; Yonsei Univ.; Linkoping Univ.

    2010-01-01

    The lattice strain tensor evolution for single bulk grains of austenite and ferrite in a duplex stainless steel during tensile loading to 0.02 applied strain has been investigated using in situ high-energy X-ray measurements and finite-element modeling. Single-grain X-ray diffraction lattice strain data for the eight austenite and seven ferrite grains measured show a large variation of residual lattice strains, which evolves upon deformation to the point where some grains with comparable crystallographic orientations have lattice strains different by 1.5 x 10{sup -3}, corresponding to a stress of -300MPa. The finite-element simulations of the 15 measured grains in three different spatial arrangements confirmed the complex deformation constraint and importance of local grain environment.

  9. Substructure and strengthening of heavily deformed single and two-phase metallic materials

    NASA Astrophysics Data System (ADS)

    Gil Sevillano, J.

    1991-06-01

    Work hardening of single-phase crystalline materials (and to some extent, coarse two-phase and dispersion hardened materials too) at low temperatures results from the competition of two dynamic processes: dislocation accumulation, during the long-range gliding of mobile dislocations and dynamic recovery, involving local rearrangements and length annihilation from mobile and stored dislocation interactions. Its complete understanding would be very useful for designing materials with maximized strength after heavy cold work. However, modelling of the strain-induced evolution of the dislocation substructure, an essential ingredient of any work hardening theory, is still far from satisfactory. On the other hand, some heavily deformed ductile two-phase in situ composites are only second to whiskers among the strongest metallic materials. At first sight, the main obstacle geometry for dislocation glide in lamellar or multifilamentary in situ composites being clear-cut, it can be thought that their strength and work hardening are completely understood. However, this is not so and several schools of thought propose different interpretations for the exaggerated departure of the stress-strain curves of in situ composites from the rule-of-mixtures curves built from those of their bulk components. This paper aims to discuss such interpretations. The composite Cu-Nb is taken as model material owing to the extensive and detailed mechanical and microstructural data available in the literature, including different deformation temperatures and two different strain paths. Fine pearlite Fe-Fe3C is the other obvious reference. Le durcissement par déformation des matériaux cristallins monophasés (et, dans une certaine mesure, des matériaux biphasés à grande dimension de phases, et des matériaux renforcés par une phase dispersée) à basse température résulte d'une compétition entre deux processus dynamiques: l'accumulation de dislocations pendant le glissement des

  10. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    SciTech Connect

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

    2005-10-31

    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  11. Two-phase deformation in peridotite: recrystallization and phase-mixing

    NASA Astrophysics Data System (ADS)

    Farla, Robert; Karato, Shun-ichiro; Cai, Zhengyu

    2014-05-01

    Solid-state interaction of phases may give rise to the formation of mixed, fine-grained interconnected layers in the ductile portion of the lithosphere. Strength reduction via this mechanism is a distinct possibility, facilitating plate tectonics. In this study, we explore the microstructural evolution in a representative olivine (75%) -orthopyroxene (25%) mixture deformed to large strains at different temperatures. We used a Griggs deformation apparatus to deform the pre-sintered, coarse-grained aggregates in simple shear geometry at 1.5-2.0 GPa and 1173 to 1543 K at a strain rate of ~10-4 s-1. The water content in these samples was moderate (about 100 wt. ppm H2O after deformation). Our results show that the addition of orthopyroxene causes substantial reduction of the bulk strength following an initial higher stress, within a certain temperature window (> 1273-1523 K). Microstructural analysis shows extensive dynamic recrystallization of parent grains and phase-mixing of recrystallized grains. We observe a possible correlation between highly-strained and recrystallizing orthopyroxene grains and their orientation towards favourable slip, suggesting dislocation processes actively contributed to grain size reduction. In mixed regions, second-phase grain-boundary pinning follows a possible Zener relationship. We interpret the present results using a model where the influence of both grain-size sensitive rheology and of grain-growth is considered. The addition of orthopyroxene substantially expands the conditions for weakening in the grain-size-sensitive creep regime by reduction of grain-growth kinetics. On the contrary, preliminary experiments on water-saturated samples using the 6-ram press at BGI show a lack of phase-mixing in the same temperature range, owing to water-enhanced grain growth kinetics of olivine in particular. However, at larger strains (γ = 1.7 at 1273 K) small orthopyroxene grains tend to align on olivine grain boundaries. Evolution of grain

  12. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  13. Effect of deformation texture on the anisotropy of elasticity and damage of two-phase steel sheets

    NASA Astrophysics Data System (ADS)

    Bryukhanov, A. A.; Gerstein, G.; Dyachok, D. A.; Nürnberger, F.

    2016-07-01

    The effect of small tensile deformation (3, 6, and 10%) on the texture of preliminary annealed sheets of two-phase DP600 steel (0.10 C, 0.15 Si, 1.4 Mn, 0.007 P, 0.008 S, 0,009 N, 0.02-0,06 Al, 1 Cr-Mo-Ni (wt %)) is studied. Against the background of the annealing texture in the sheets, the {001} <110>, {111} <110>, {111} <112>, {111} <312> components of the slip texture and {115} <110>, {115} <552>, {221} <110>, {221} <114> orientations are developed, which can be associated with the twinning processes. The anisotropy pattern of the Young's modulus ( E) in the sheet plane remains the same after tensile deformation of the annealed sheets. After tension, the values of E decrease in all directions as a result of the onset and development of microdamages. The anisotropy of damage ( D) in the plane of the steel sheets after tension is characterized by a maximum in the transverse direction (TD) and a minimum in the rolling direction (RD).

  14. Effect of Plastic Deformation on the Corrosion Behavior of a Super-Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Renton, Neill C.; Elhoud, Abdu M.; Deans, William F.

    2011-04-01

    The role of plastic deformation on the corrosion behavior of a 25Cr-7Ni super-duplex stainless steel (SDSS) in a 3.5 wt.% sodium chloride solution at 90 °C was investigated. Different levels of plastic strain between 4 and 16% were applied to solution annealed tensile specimens and the effect on the pitting potential measured using potentiodynamic electrochemical techniques. A nonlinear relationship between the pitting potential and the plastic strain was recorded, with 8 and 16% causing a significant reduction in average E p, but 4 and 12% causing no significant change when compared with the solution-annealed specimens. The corrosion morphology revealed galvanic interaction between the anodic ferrite and the cathodic austenite causing preferential dissolution of the ferrite. Mixed potential theory and the changing surface areas of the two phases caused by the plastic deformation structures explain the reductions in pitting potential at certain critical plastic strain levels. End-users and manufacturers should evaluate the corrosion behavior of specific cold-worked duplex and SDSSs using their as-produced surface finishes assessing in-service corrosion performance.

  15. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  16. Analysis of chemical changes and microstructure characterization during deformation in ferritic stainless steel.

    PubMed

    Núñez, Andrés; Llovet, Xavier; Almagro, Juan F

    2013-08-01

    Uni- and biaxial tension deformation tests, with different degrees of deformation, have been done on AISI 430 (EN 1.4016) ferritic stainless steel samples, which had both different chemical compositions and had undergone different annealing treatments. The initial and deformed materials were characterized by using electron backscatter diffraction and backscatter electron imaging in a scanning electron microscope together with electron probe microanalysis. The correlation observed among the chemical compositions, annealing treatment, and strain level obtained after deformation is discussed. PMID:23628319

  17. Modeling of Developing Inhomogeneities in the Ferrite Microstructure and Resulting Mechanical Properties Induced by Deformation in the Two-Phase Region

    SciTech Connect

    Majta, J; Zurek, A.K.; Pietrzyk, M.

    1999-07-13

    The differences in microstructure development of hot deformed steels in the austenite and two-phase region have been effectively described using an integrated computer modeling process. In general, the complete model presented here takes into account kinetics of recrystallization, precipitation, phase transformation, recrystallized austenite grain size, ferrite grain size, and the resulting mechanical properties. The transformation submodel of niobium-microalloyed steels is based on the nucleation and grain growth theory and additivity rule. The thermomechanical part of the modeling process was effectively carried out using the finite element method. Results were obtained in different temperatures, strain rates, and range of deformation. The thermomechanical treatments are different for two grades of niobium-steels to make possible analysis of the resulting structure and properties for different histories of deformation and chemical composition.

  18. Modeling creep deformation of a two-phase TiAl/Ti[sub 3]Al alloy with a lamellar microstructure

    SciTech Connect

    Bartholomeusz, M.F. ); Wert, J.A. . Dept. of Materials Science and Engineering)

    1994-10-01

    A two-phase TiAl/Ti[sub 3]Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti[sub 3]Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti[sub 3]Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti[sub 3]Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti[sub 3]Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar microstructure. Application of the model yields a very good correlation between the predicted an experimentally observed minimum creep rates over moderate stress and temperature ranges.

  19. Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure

    NASA Astrophysics Data System (ADS)

    Bartholomeusz, Michael F.; Wert, John A.

    1994-10-01

    A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.

  20. The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels

    SciTech Connect

    Morris, J.W. Jr.; Chan, J.W.; Mei, Z.

    1992-06-01

    The 300-series stainless steels that are commonly specified for the structures of high field superconducting magnets are metastable austenitic alloys that undergo martensitic transformations when deformed at low temperature. The martensitic tranformation is promoted by plastic deformation and by exposure to high magnetic fields. The transformation significantly influences the mechanical properties of the alloy. The mechanisms of this influence are reviewed, with emphasis on fatigue crack growth effects and magnetomechanical phenomena that have only recently been recognized.

  1. Characterization of the deformation and annealing of 304L stainless steel. Final report

    SciTech Connect

    Smith, W.H.

    1994-08-01

    Stainless steel, type 304L, was deformed at room temperature using the two processes of semi-piercing and cold-rolling and then annealed at various temperatures and times. The three metallurgical areas of work hardening, age hardening, and anneal softening were observed and characterized using metallography techniques of macrohardness, optical and transmission electron microscopy, and X-ray diffraction.

  2. Effect of Preaging Deformation on Aging Characteristics of 2507 Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Rao, A. G.; Sarkar, R.; Kashyap, B. P.; Prabhu, N.

    2016-02-01

    In the present study, precipitation of sigma (σ) phase was investigated over the temperature range of 700-850 °C in undeformed and deformed (60% cold rolling) samples of 2507 super duplex stainless steel. The fraction of sigma phase formed as a result of the transformation α → σ + γ2 increases with increasing time and temperature. The increase in sigma phase leads to increase in yield strength and decrease in ductility. Preaging deformation leads to accelerated precipitation of sigma phase. The activation energy for sigma phase precipitation in deformed sample is found to be lower than that in undeformed sample.

  3. Effect of uniaxial deformation to 50% on the sensitization process in 316 stainless steel

    SciTech Connect

    Ramirez, L.M.; Almanza, E.; Murr, L.E. . E-mail: fekberg@utep.edu

    2004-09-15

    The effect of uniaxial deformation to 50% on the degree of sensitization (DOS) in 316 stainless steel was investigated at 625 and 670 deg. C for 5-100 h using the electrochemical potentiokinetic reactivation (EPR) test. The results showed that the deformation accelerated the sensitization/desensitization process, especially at 670 deg. C. However, the material is still sensitized after up to 100 h of aging time. Transmission electron microscopy was used to corroborate these results. The deformed material showed more carbide precipitates (Cr{sub 23}C{sub 6}) at the grain boundaries and twin intersections than did the nondeformed material.

  4. Deformation analysis on F138 austenitic stainless steel: ECAE and rolling

    NASA Astrophysics Data System (ADS)

    De Vincentis, N. S.; Avalos, M. C.; Kliauga, A. M.; Sordi, V. L.; Schell, N.; Brokmeier, H.-G.; Bolmaro, R. E.

    2014-08-01

    Twinning is an alternative mechanism to achieve ultra-fine grain structures through severe plastic deformation. The properties induced in a plastically deformed material are highly dependent on the degree of deformation, accumulated deformation energy and details on grain sizes and microstructure, which are on the scale of some tens of nanometers; therefore it is very important to understand misorientation distributions and dislocation arrays developed in the samples. In this work an F138 austenitic stainless steel was solution heat treated, deformed by Equal Channel Angular Extrusion (ECAE) at room temperature up to four passes, and rolled up to 70% thickness reduction at room temperature. The microstructure evolution was analyzed by x-ray diffraction and domain sizes calculated by Convolutional Multiple Whole Profile (CMWP) model, the misorientation boundaries were measured by electron backscattered diffraction (EBSD), and transmission electron microscopy. Mechanical behavior was tested by tensile tests.

  5. Numerical modeling of two-phase fluid flow in deformable fractured porous media using the extended finite element method and an equivalent continuum model

    NASA Astrophysics Data System (ADS)

    Khoei, A. R.; Hosseini, N.; Mohammadnejad, T.

    2016-08-01

    In the present paper, a numerical model is developed based on a combination of the extended finite element method and an equivalent continuum model to simulate the two-phase fluid flow through fractured porous media containing fractures with multiple length scales. The governing equations involve the linear momentum balance equation and the flow continuity equation for each fluid phase. The extended finite element method allows for an explicit and accurate representation of cracks by enriching the standard finite element approximation of the field variables with appropriate enrichment functions, and captures the mass transfer between the fracture and the matrix. Due to the high computational cost of X-FEM, this technique is only used to model large fractures. The pre-existing short fractures, which are distributed randomly in the porous medium, contribute to the increase of the effective permeability tensor and are modeled with an equivalent continuum model. Finally, the robustness of the proposed computational model is demonstrated through several numerical examples, and the effects of crack orientation, capillary pressure function, solid skeleton deformation, and existence of short cracks on the pattern of fluid flow are investigated. It is shown that the developed model provides a correct prediction of flow pattern for different crack configurations.

  6. Influence of crystal orientation on hardness and nanoindentation deformation in ion-irradiated stainless steels

    NASA Astrophysics Data System (ADS)

    Miura, Terumitsu; Fujii, Katsuhiko; Fukuya, Koji; Takashima, Keisuke

    2011-10-01

    The influence of crystal orientation on hardness and the range of plastic deformation caused by nanoindentation was investigated in a solution annealed type 316 stainless steel irradiated with Fe 2+ ions. The hardness was a function of grain orientation and was correlated with the Taylor factor averaged over three normal directions of the contact surface of the Berkovich indenter. The transmission electron microscope observations of the deformation microstructure under the indentations showed that the range of plastic deformation reached up to 10 times the indent depth for unirradiated material and depended on the orientation relation between the contact surface of the indenter and the slip directions. The range of plastic deformation decreased as the damage structure developed in ion irradiation.

  7. EBSD investigation of the microstructure and texture characteristics of hot deformed duplex stainless steel.

    PubMed

    Cizek, P; Wynne, B P; Rainforth, W M

    2006-05-01

    The microstructure and crystallographic texture characteristics were studied in a 22Cr-6Ni-3Mo duplex stainless steel subjected to plastic deformation in torsion at a temperature of 1000 degrees C using a strain rate of 1 s(-1). High-resolution EBSD was successfully used for precise phase and substructural characterization of this steel. The austenite/ferrite ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over large sample areas. The deformation mechanisms in each phase and the interrelationship between the two are discussed. PMID:16774517

  8. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  9. Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium-water reaction

    SciTech Connect

    Sudha, C.; Parameswaran, P. Kishore, S.; Murthy, C. Meikanda; Rajan, M.; Vijayalakshmi, M.; Raghunathan, V.S.

    2008-08-15

    This paper deals with microstructural studies carried out on an austenitic stainless steel rupture disc which was exposed to sodium-water reaction. The rupture disc was part of a leak simulator put in a micro leak test section which was used to study the 'self wastage' of steam generator tubes. During micro leak testing, the rupture disc failed exhibiting a linear crack at a much lower pressure of 10 MPa rather than bursting open at the higher designed pressure of 15 MPa. The failed rupture disc revealed different microstructural features on the inner (steam exposed) and outer (sodium exposed) surfaces. Using microstructure as the signature, the temperature experienced by the rupture disc was predicted as {>=} 1273 K. Evidence for the exposure of the rupture disc to highly exothermic sodium-water reaction was obtained in the form of sodium rich debris, microcracks and deformation bands. Detailed transmission electron microscopy revealed the nature of deformation bands as deformation twins which is not a preferred failure mode for austenitic stainless steels.

  10. Electrochemical investigation of passive film in pre-deformation AISI 304 stainless steels

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Hongyun, Luo

    2012-12-01

    The electrochemical measures in deformed AISI 304 stainless steels ranged from 0% to 24% were investigated. With the increasing of the strain α'-martensite was gradually increasing. Moreover, the morphologies and densities of dislocations changed with increasing strain. The Mott-Schottky plots showed that the maximum total of donor and acceptor densities in passive film occurred in borate buffer solution when ɛ-martensite was most, while in borate buffer solution with 5000 ppm Cl- the maximum total of donor and acceptor densities occurred when the content of α-martensite was most. These results were proven by further impedance spectroscopy experiments.

  11. Microstructural Characterization of Deformation Localization at Small Strains in a Neutron Irradiated 304 Stainless Steel

    SciTech Connect

    Field, Kevin G; Gussev, Maxim N; Busby, Jeremy T

    2014-01-01

    Deformation localization and structure evolution were investigated in an AISI 304 austenitic stainless steel deformed to 0.8% strain. Using SEM-EBSD, it was shown local plastic deformation may reach significant levels even when the bulk averaged strain level remains below 1%. Local misorientation values up to 24 were observed in these regions of high local plastic deformation. EBSD analysis of FIB lift-out specimens demonstrated that local misorientation level was highest near the free surface and diminished with increasing depth. (S)TEM observations on the same specimen indicated the local density of dislocation channels may vary up to an order of magnitude depending on local grain configuration, distance to the surface and/or local grain boundary structure. It was found that in the case of RT deformation, dislocation defect-free channels may contain twin or may be twin-free with twinning occurring inside channels. Formation of BCC-phase colonies (martensite) was observed in near-surface layer whereas no transformation in the volume of the specimen was detected at this strain level. Martensite formation was associated with channel-grain boundary intersection points where high local misorientation was observed using EBSD.

  12. Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part I- Temperature Dependence

    SciTech Connect

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    This paper describes the temperature dependence of deformation and failure behaviors in the austenitic stainless steels (annealed 304, 316, 316LN, and 20% cold-worked 316LN) in terms of equivalent true stress-true strain curves. The true stress-true strain curves up to the final fracture were calculated from the tensile test data obtained at -150 ~ 450oC using an iterative technique of finite element simulation. Analysis was largely focused on the necking deformation and fracture: Key parameters such as the strain hardening rate, equivalent fracture stress, fracture strain, and tensile fracture energy were evaluated, and their temperature dependencies were investigated. It was shown that a significantly high strain hardening rate was still retained during unstable deformation although overall strain hardening rate beyond the onset of necking was lower than that of the uniform deformation. The values of the parameters except for fracture strain decreased with temperature up to 200oC and were saturated as the temperature came close to the maximum test temperature 450oC. The fracture strain increased and had a maximum at -50oC to 20oC before decreasing with temperature. It was explained that these temperature dependencies of fracture properties were associated with a change in the dominant strain hardening mechanism with test temperature. Also, it was seen that the pre-straining of material has little effect on the strain hardening rate during necking deformation and on fracture properties.

  13. Analysis of tensile deformation and failure in austenitic stainless steels: Part II - Irradiation dose dependence

    NASA Astrophysics Data System (ADS)

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    Irradiation effects on the stable and unstable deformation and fracture behavior of austenitic stainless steels (SSs) have been studied in detail based on the equivalent true stress versus true strain curves. An iterative finite element simulation technique was used to obtain the equivalent true stress-true strain data from experimental tensile curves. The simulation result showed that the austenitic stainless steels retained high strain hardening rate during unstable deformation even after significant irradiation. The strain hardening rate was independent of irradiation dose up to the initiation of a localized necking. Similarly, the equivalent fracture stress was nearly independent of dose before the damage (embrittlement) mechanism changed. The fracture strain and tensile fracture energy decreased with dose mostly in the low dose range <˜2 dpa and reached nearly saturation values at higher doses. It was also found that the fracture properties for EC316LN SS were less sensitive to irradiation than those for 316 SS, although their uniform tensile properties showed almost the same dose dependencies. It was confirmed that the dose dependence of tensile fracture properties evaluated by the linear approximation model for nominal stress was accurate enough for practical use without elaborate calculations.

  14. Martensitic Transformation During Compressive Deformation of a Non-conventional Stainless Steel and Its Quantitative Assessment

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Sampark, P.; Majhi, Goutam Kumar; Dutta, Krishna

    2015-11-01

    This report aims to examine the extent of deformation-induced phase transformation in a non-conventional austenitic stainless steel known as ISO/TR 15510 X12CrMnNiN17-7-5, upon compressive loading at room temperature. Experiments were carried out under varying length to diameter ratios (0.8, 1.0, 1.2, 1.4, and 1.6). TFE (Tetrafluoroethylene)-fluorocarbon tapes were used at specimen-platen interfaces to reduce the effect of friction. The results indicate that the lubrication was effective up to 15% of strain. Optical microscopy and x-ray diffraction (XRD) studies indicated martensitic phase transformation in the deformed specimens. The extent of phase transformation was determined by analyzing the XRD peaks using integrated intensity of the corresponding phases. The results are correlated with the extent of deformation in the respective samples. The presence of γ and α'-martensite on the deformed samples has been substantiated by some limited experiments using transmission electron microscopy.

  15. Analyses of Transient and Tertiary Small Punch Creep Deformation of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2016-09-01

    Creep deformation behavior of 316LN stainless steel (SS) under small punch creep (SPC) and uniaxial creep test has been assessed and compared at 923 K (650 °C). The transient and tertiary creep deformation behaviors have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δ_{{T}} \\cdot (1 - {{e}}^{ - κ \\cdot t} ) + dot{δ }_{{s}} t + δ3 {{e}}^{{[ {φ ( {t - t_{{r}} } )} ]}} on the basis of Dobes and Cadek equation for uniaxial creep strain. Trends in the variations of (i) rate of exhaustion of transient creep ( κ) with steady-state deflection rate ( dot{δ }_{{s}} ) (ii) ` κ' with time to attain steady-state deflection rate, and (iii) initial creep deflection rate with steady-state deflection rate implied that transient SPC deformation obeyed first-order reaction rate theory. The rate of exhaustion of transient creep ( r') values that were determined from uniaxial creep tests were correlated with those obtained from SPC tests. Master curves representing transient creep deformation in both SPC and uniaxial creep tests have been derived and their near coincidence brings unique equivalence between both the test techniques. The relationships between (i) rate of acceleration of tertiary creep ( φ) and steady-state deflection rate, (ii) ` φ' and time spent in tertiary stage, and (iii) final creep deflection rate and steady-state deflection rate revealed that first-order reaction rate theory governed SPC deformation throughout the tertiary region also. Interrelationship between the transient, secondary, and tertiary creep parameters indicated that the same mechanism prevailed throughout the SPC deformation.

  16. Analyses of Transient and Tertiary Small Punch Creep Deformation of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2016-07-01

    Creep deformation behavior of 316LN stainless steel (SS) under small punch creep (SPC) and uniaxial creep test has been assessed and compared at 923 K (650 °C). The transient and tertiary creep deformation behaviors have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δ_{T} \\cdot (1 - {e}^{ - κ \\cdot t} ) + dot{δ }_{s} t + δ3 {e}^{{[ {φ ( {t - t_{r} } )} ]}} on the basis of Dobes and Cadek equation for uniaxial creep strain. Trends in the variations of (i) rate of exhaustion of transient creep (κ) with steady-state deflection rate ( dot{δ }_{s} ) (ii) `κ' with time to attain steady-state deflection rate, and (iii) initial creep deflection rate with steady-state deflection rate implied that transient SPC deformation obeyed first-order reaction rate theory. The rate of exhaustion of transient creep (r') values that were determined from uniaxial creep tests were correlated with those obtained from SPC tests. Master curves representing transient creep deformation in both SPC and uniaxial creep tests have been derived and their near coincidence brings unique equivalence between both the test techniques. The relationships between (i) rate of acceleration of tertiary creep (φ) and steady-state deflection rate, (ii) `φ' and time spent in tertiary stage, and (iii) final creep deflection rate and steady-state deflection rate revealed that first-order reaction rate theory governed SPC deformation throughout the tertiary region also. Interrelationship between the transient, secondary, and tertiary creep parameters indicated that the same mechanism prevailed throughout the SPC deformation.

  17. Microstructure and Deformation Behavior of Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Misra, R. D. K.; Nayak, S.; Mali, S. A.; Shah, J. S.; Somani, M. C.; Karjalainen, L. P.

    2009-10-01

    Materials with submicron to nanometer-sized grains by virtue of their high grain boundary area to grain size ratio provide valuable tools for studying deformation behavior in ultrafine-grained structures. In this regard, the well-known strain-induced martensite transformation and its reversal to the parent austenite phase were used to produce nanograins/ultrafine grains via controlled annealing of heavily cold-worked metastable austenite. The results of the electron microscopy study of phase-reversion-induced microstructure and deformation behavior of nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel during tensile straining are described here. The phase-reversion-induced structure was observed to depend on the cold rolling reduction and temperature-time annealing cycle. The optimized structure consisted of nanocrystalline ( d < 100 nm), ultrafine ( d ≈ 100 to 500 nm), and submicron ( d ≈ 500 to 1000 nm) grains and was characterized by a high yield strength (800 to 1000 MPa)-high ductility (30 to 40 pct) combination. Austenite nucleation during phase-reversion annealing occurred in the form of thin plates or as equiaxed grains along the martensite laths. Twinning and dislocation glide were identified as the primary deformation mechanisms, where twinning had a varied character. However, the high elongation seems to be associated with the gradual transformation of metastable austenite, with twinning having only a minor contribution.

  18. Effects of superplastic deformation on the diffusion welding of SuperDux 65 stainless steel

    SciTech Connect

    Yeh, M.S.; Tseng, Y.H.; Chuang, T.H.

    1999-09-01

    The SuperDux 65 stainless steel diffusion welded in a nonsuperplastic state (880 C, 60 min) required greater pressure, compared to aluminum and titanium alloys, to create a contact area at the weld interface, which will increase the atomic diffusion paths. However, an unsatisfactory weld strength of 45.3 MPa was obtained under the applied pressure of 7 MPa. This alloy deformed easily at its superplastic temperature of 970 C, resulting in a tight contact surface. The higher welding temperature was also beneficial for atomic diffusion. Both effects were advantageous for diffusion welding, while the joined workpieces macroscopically deformed markedly. In this study, a two-stage diffusion welding method was proposed. The specimens were diffusion welded in a nonsuperplastic (or superplastic) state for a short time and then further diffusion welded at superplastic (or nonsuperplastic) temperatures for a longer heating period. It was found that the welding strength could be improved drastically using such a two-stage process. The contributions of superplastic deformation on the diffusion welding of this alloy during the two-stage process were clarified.

  19. Microstructural characterization of deformation localization at small strains in a neutron-irradiated 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Gussev, Maxim N.; Busby, Jeremy T.

    2014-09-01

    A specific phenomenon - highly localized regions of deformation - was found and investigated at the free surface and near-surface layer of a neutron irradiated AISI 304 stainless steel bend specimen deformed to a maximum surface strain of 0.8%. It was shown that local plastic deformation near the surface might reach significant levels being localized at specific spots even when the maximum free surface strain remains below 1%. The effect was not observed in non-irradiated steel of the same composition at similar strain levels. Cross-sectional EBSD analysis demonstrated that the local misorientation level was highest near the free surface and diminished with increasing depth in these regions. (S)TEM indicated that the local density of dislocation channels might vary up to an order of magnitude. These channels may contain twins or may be twin free depending on grain orientation and local strain levels. BCC-phase (α-martensite) formation associated with channel-grain boundary intersection points was observed using EBSD and STEM in the near-surface layer.

  20. Evaluation of deformation-induced transformation and reversion processes of stainless steel by acoustic microscope

    NASA Astrophysics Data System (ADS)

    Kasuga, Yukio; Endo, Tomio; Miyasaka, Chiaki; Kasano, Hideaki

    1999-02-01

    Deformation-induced martensite and reversed austenite of a metastable austenitic stainless steel sheet were evaluated by a scanning acoustic microscope with frequencies 600MHz and 800 MHz. The sheet was elongated up to 40 percent at and below the room temperature to produce martensite, followed by annealing for reversion. First martensite content was measured by a Feritscope. Next using a complex V(z) curve, leaky Rayleigh wave velocity was measured. The deformed and annealed grain structure s were observed with the frequency 800MHz and compared with those by the optical microscope. Rayleigh wave velocity is dependent on the elongation and ambient temperature in elongation and the annealing temperature, which agrees well with the one by the Feritscope. Deformed grains are more clearly observed by the scanning acoustic microscope with 800MHz. The measured value of the velocity is compared with the theoretical one which can be calculated by Young's modulus, Poisson's ratio and the density. The measured Rayleigh wave velocity is well agreement with the theoretical one.

  1. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels

    SciTech Connect

    Pawel, J.E.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L.; Shiba, K.

    1996-04-01

    An austenitic stainless steel, designated 316LN-IG, has been chosen for the first wall/shield (FW/S) structure for the International Thermonuclear Experimental Reactor (ITER). The proposed operational temperature range for the structure (100 to 250{degree}C) is below the temperature regimes for void swelling (400-600{degree}C) and for helium embrittlement (500-700{degree}C). However, the proposed neutron dose is such that large changes in yield strength, deformation mode, and strain hardening capacity could be encountered which could significantly affect fracture properties. Definition of the irradiation regimes in which this phenomenon occurs is essential to the establishment of design rules to protect against various modes of failure.

  2. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    SciTech Connect

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L.

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  3. Influence of Prior Deformation on the Sensitization Kinetics of Nitrogen Alloyed 316L Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mannepalli, Srinivas; Gupta, Ram Kishor; Kumar, A. Vinod; Parvathavarthini, N.; Mudali, U. Kamachi

    2015-05-01

    This paper presents the influence of prior deformation on the sensitization kinetics of nitrogen-alloyed 316L stainless steels. Systematic investigations were carried out for two varieties of 316L SS containing (i) 0.025% C and 0.14% N; (ii) 0.033% C and 0.11% N. Using ASTM standard A262 Practice A and E tests, time-temperature-sensitization diagrams were constructed for as-received as well as 5-25% cold-worked materials. Using these TTS diagrams, critical cooling rates (CCR) above which there is no risk of sensitization were calculated. TTS diagrams established for these two stainless steels will be useful for avoiding time-temperature combinations that may result in sensitization and susceptibility to IGC. These CCR obtained can be used to optimize heating rates/cooling rates to be followed which will not lead to sensitization during solution annealing, stress-relieving, and dimensional stabilization of critical components for fast breeder reactors.

  4. Deformation and Crystallographic Preferred Orientation of Two-phase Lower Mantle Mineral Analogs: Implications for Seismic Anisotropy in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Miyagi, L. M.; Kanitpanyacharoen, W.; Zepeda-Alarcon, E.; Wang, Y.; Parkinson, D.; Lebensohn, R.; DeCarlo, F.; Wenk, H. R.

    2015-12-01

    Geodynamic models predict large strains due to convection in the mantle, and polycrystal plasticity simulations suggest strong crystallographic preferred orientation (CPO), yet much of the lower mantle is observed to be mostly isotropic. However, these models ignore interaction among phases, which is important for the lower mantle, estimated to be composed of ~25% soft ferropericlase (Mg,Fe)O and ~70% harder bridgmanite (MgSiO3). Here we consider deformation of these two lower mantle mineral phases together and look at the microstructure to find whether soft ferropericlase becomes interconnected and acts as a lubricant between harder bridgmanite grains or if ferropericlase is largely disconnected leaving deformation to be absorbed by bridgmanite. We quantify how the volume percent of ferropericlase might affect deformation and CPO development in the lower mantle. We deformed lower mantle mineral analogs halite (NaCl, ferropericlase structure) and neighborite (NaMgF3, perovskite structure) together in the D-DIA. Development of CPO was recorded in situ with radial X-ray diffraction, and information on microstructural evolution was collected using X-ray microtomography. We performed self-consistent polycrystal plasticity modelling to infer likely slip systems and strain rates in each phase. Results show that when present in as little as 15% volume, the soft halite becomes interconnected during deformation, surrounding the harder neighborite grains. The change in microstructure during deformation coincides with a decrease in differential stress, i.e. weakening of the aggregate, and a reduction in CPO, likely due to a switch in deformation mode. Furthermore, polycrystal plasticity models imply much higher strain rates in the softer halite, suggesting it is absorbing the bulk of deformation. The halite does not develop significant CPO, and CPO in the neighborite is reduced by nearly half with addition of 15% volume halite. The results suggest that ferropericlase controls

  5. Effect of prior deformation on sensitization development in stainless steel during continuous cooling

    SciTech Connect

    Simmons, J.W.; Atteridge, D.G.; Bruemmer, S.M. . Dept. of Materials Science and Engineering)

    1991-09-01

    Continuous cooling sensitization (CCS) occurs in austenitic stainless steel (SS) weldment HAZs where the material is subjected to weld-induced plastic deformation, and non-linear heating and cooling cycles. The primary purpose of this investigation was to quantitatively determine the effects of prior deformation on CCS. In addition, these results were used to develop a CCS data base for comparison to a recently published sensitization prediction model (SSDOS). Continuous cooling thermal cycling of specimens from high-carbon Type 316 SSs was performed in a computer-controlled Gleeble thermal simulator. The degree of sensitization (DOS) of thermally treated specimens was quantitatively measured using the electrochemical potentiokinetic reactivation (EPR) test. Prior deformation significantly enhanced the rate of CCS development in the Type 316 SS material. The DOS increased with increasing amounts of prior strain and decreasing cooling rates. Sensitization response was also sensitive to peak cycle temperatures. Continuous cooling sensitization development occurred primarily in the critical temperature range between about 900 and 750{degree}C. Peak cycle temperatures of 1000 and 1050{degree}C retarded sensitization development during subsequent continuous cooling. Strain recovery at elevated temperatures played an important role in reducing the effectiveness of prior deformation in accelerating sensitization kinetics. Due to the effects of recovery, in certain cases, prior strain values of 20% were only as effective as 10% in increasing the rate of sensitization development. Limited transgranular carbide precipitation was observed in 20% prior strain samples depending on specific thermal cycle parameters but was not a significant factor in the present work. The SSDOS model consistently overpredicted the CCS development in both heats of 316 SS studied, regardless of material condition (i.e. mill-annealed, solution-annealed, and pre-strained materials).

  6. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL

    SciTech Connect

    Morgan, M.; Tosten, M.; Chapman, G.

    2013-09-06

    The deformation and fracture toughness properties of forged stainless steels pre-charged with tritium were compared to the deformation and fracture toughness properties of the same steels heat treated at 773 K or 873 K and precharged with hydrogen. Forged stainless steels pre-charged with tritium exhibit an aging effect: Fracture toughness values decrease with aging time after precharging because of the increase in concentration of helium from tritium decay. This study shows that forged stainless steels given a prior heat treatment and then pre-charged with hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing time at temperature. A microstructural analysis showed that the fracture toughness reduction in the heat-treated steels was due to patches of recrystallized grains that form within the forged matrix during the heat treatment. The combination of hydrogen and the patches of recrystallized grains resulted in more deformation twinning. Heavy deformation twinning on multiple slip planes was typical for the hydrogen-charged samples; whereas, in the non-charged samples, less twinning was observed and was generally limited to one slip plane. Similar effects occur in tritium pre-charged steels, but the deformation twinning is brought on by the hardening associated with decay helium bubbles in the microstructure.

  7. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE PAGESBeta

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  8. Recrystallization Behavior of a Heavily Deformed Austenitic Stainless Steel During Iterative Type Annealing

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, B.; Sharma, Sailaja

    2014-09-01

    The study describes evolution of the recrystallization microstructure in an austenitic stainless steel during iterative or repetitive type annealing process. The starting heavily cold deformed microstructure consisted of a dual phase structure i.e., strain-induced martensite (SIM) (43 pct in volume) and heavily deformed large grained retained austenite. Recrystallization behavior was compared with Johnson Mehl Avrami and Kolmogorov model. Early annealing iterations led to reversion of SIM to reversed austenite. The microstructure changes observed in the retained austenite and in the reverted austenite were mapped by electron backscatter diffraction technique and transmission electron microscope. The reversed austenite was characterized by a fine polygonal substructure consisting of low-angle grain boundaries. With an increasing number of annealing repetitions, these boundaries were gradually replaced by high-angle grain boundaries and recrystallized into ultrafine-grained microstructure. On the other hand, recrystallization of retained austenite grains was sluggish in nature. Progress of recrystallization in these grains was found to take place by a gradual evolution of subgrains and their subsequent transformation into fine grains. The observed recrystallization characteristics suggest continuous recrystallization type process. The analysis provided basic insight into the recrystallization mechanisms that enable the processing of ultrafine-grained fcc steels by iterative type annealing. Tensile properties of the processed material showed a good combination of strength and ductility.

  9. Recrystallization Behavior of a Heavily Deformed Austenitic Stainless Steel During Iterative Type Annealing

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, B.; Sharma, Sailaja

    2014-12-01

    The study describes evolution of the recrystallization microstructure in an austenitic stainless steel during iterative or repetitive type annealing process. The starting heavily cold deformed microstructure consisted of a dual phase structure i.e., strain-induced martensite (SIM) (43 pct in volume) and heavily deformed large grained retained austenite. Recrystallization behavior was compared with Johnson Mehl Avrami and Kolmogorov model. Early annealing iterations led to reversion of SIM to reversed austenite. The microstructure changes observed in the retained austenite and in the reverted austenite were mapped by electron backscatter diffraction technique and transmission electron microscope. The reversed austenite was characterized by a fine polygonal substructure consisting of low-angle grain boundaries. With an increasing number of annealing repetitions, these boundaries were gradually replaced by high-angle grain boundaries and recrystallized into ultrafine-grained microstructure. On the other hand, recrystallization of retained austenite grains was sluggish in nature. Progress of recrystallization in these grains was found to take place by a gradual evolution of subgrains and their subsequent transformation into fine grains. The observed recrystallization characteristics suggest continuous recrystallization type process. The analysis provided basic insight into the recrystallization mechanisms that enable the processing of ultrafine-grained fcc steels by iterative type annealing. Tensile properties of the processed material showed a good combination of strength and ductility.

  10. Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part II- Irradiation Dose Dependence

    SciTech Connect

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    Irradiation effects on stable and unstable deformations and fracture behaviors in irradiated austenitic stainless steels (SSs) have been studied in detail based on the equivalent true stress versus true strain curves. An iterative technique in finite element simulation was used to obtain the equivalent true stress-true strain data from experimental tensile curves. It was shown that the strain hardening rate was retained at a high level on unstable deformation after significant irradiation and was independent of the irradiation dose up to the initiation of a localized necking. The equivalent fracture stress was nearly independent of irradiation dose before the damage (embrittlement) mechanism changed. In low dose range (< ~ 2dpa), the fracture strain and tensile fracture energy decreased rapidly with dose and at higher doses they decreased gradually to saturated levels, which were still high for irradiated materials. It was also found that the fracture properties for EC316LN SS were less sensitive to irradiation dose than those for 316 SS, although their uniform tensile properties showed almost the same dose dependencies. It was confirmed that the dose dependence of tensile fracture properties evaluated by the linear approximation model for nominal stress was accurate enough for practical use without elaborate calculations.

  11. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-05-01

    The dynamics of deformation localization and dislocation channel formation were investigated in situ in a neutron-irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy (TEM). Channel formation was observed at ∼70% of the polycrystalline yield stress of the irradiated materials (σ0.2). It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the σ0.2, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young's modulus) in channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in "soft" grains with a high Schmid factor located near "stiff" grains with high elastic stiffness. The spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one-third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. In the AISI 304 steel, channels in grains oriented close to <0 0 1>||TA (tensile axis) and <1 0 1>||TA were twin free and grain with <1 1 1>||TA and grains oriented close to a Schmid factor maximum contained deformation twins.

  12. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.

  13. The creep deformation and elevated temperature microstructural stability of a two-phase TiAl/Ti{sub 3}Al lamellar alloy

    SciTech Connect

    Bartholomeusz, M.F.; Wert, J.A.

    1995-08-01

    Enhanced work hardening of the phases in the lamellar microstructure has been cited as an explanation for the lower minimum creep rates of a two-phase TiAl/Ti{sub 3}Al lamellar alloy compared with the minimum creep rates of the individual TiAl and Ti{sub 3}Al single-phase alloys tested between 980 K and 1,130 K. This proposition is confirmed by TEM observations. Thermal and thermomechanical exposure result in the microstructural evolution, which increases the minimum creep rate ({dot {var_epsilon}}{sub min}) of the lamellar alloy. The effect of microstructural evolution on {dot {var_epsilon}}{sub min} will be discussed in the present paper.

  14. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Somers, Marcel A. J.

    2015-06-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional tensile straining, plane strain compression, and shear. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at various temperatures. Microstructural characterization of the as-deformed state and the nitrided case produced included X-ray diffraction analysis, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of CrN, while a high dislocation density in a fully austenitic structure does not lead to such premature nucleation of CrN.

  15. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part I: Cyclic Deformation Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    In this study, the influence of cyclic strain amplitude on the evolution of cyclic stress-strain response and the associated cyclic deformation mechanisms in 316LN stainless steel with varying nitrogen content (0.07 to 0.22 wt pct) is reported in the temperature range 773 K to 873 K (500 °C to 600 °C). Two mechanisms, namely dynamic strain aging and secondary cyclic hardening, are found to strongly influence the cyclic stress response. Deformation substructures associated with both the mechanisms showed planar mode of deformation. These mechanisms are observed to be operative over certain combinations of temperature and strain amplitude. For strain amplitudes >0.6 pct, wavy or mixed mode of deformation is noticed to suppress both the mechanisms. Cyclic stress-strain curves revealed both single and dual-slope behavior depending on the test temperature. Increase in nitrogen content is found to increase the tendency toward planar mode of deformation, while increase in strain amplitude leads to transition from planar slip bands to dislocation cell/wall structure formation, irrespective of the nitrogen content in 316LN stainless steel.

  16. Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map

    NASA Astrophysics Data System (ADS)

    Kishor, Brij; Chaudhari, G. P.; Nath, S. K.

    2016-06-01

    Hot compression tests were performed to study the hot deformation characteristics of 13Cr-4Ni stainless steel. The tests were performed in the strain rate range of 0.001-10 s-1 and temperature range of 900-1100 °C using Gleeble® 3800 simulator. A constitutive equation of Arrhenius type was established based on the experimental data to calculate the different material constants, and average value of apparent activation energy was found to be 444 kJ/mol. Zener-Hollomon parameter, Z, was estimated in order to characterize the flow stress behavior. Power dissipation and instability maps developed on the basis of dynamic materials model for true strain of 0.5 show optimum hot working conditions corresponding to peak efficiency range of about 28-32%. These lie in the temperature range of 950-1025 °C and corresponding strain rate range of 0.001-0.01 s-1 and in the temperature range of 1050-1100 °C and corresponding strain rate range of 0.01-0.1 s-1. The flow characteristics in these conditions show dynamic recrystallization behavior. The microstructures are correlated to the different stability domains indicated in the processing map.

  17. Numerical Modeling of Ti Deformation for the Development of a Titanium and Stainless Steel Transition Joint

    NASA Astrophysics Data System (ADS)

    Mukherjee, A. B.; Kapoor, R.; Thota, M. K.; Chakravartty, J. K.

    2016-05-01

    Finite element analysis (FEA) was used to model the joining of titanium grade 2 (Ti) to AISI 321 stainless steel (SS) transition joint of lap configuration with grooves at the interface on SS side. The hot forming of Ti for filling the grooves without defects was simulated. FEA involving large plastic flow with sticking friction condition was initially validated using compression test on cylindrical specimen at 900 °C. The barreled shape and a no-deformation zone in the sample predicted by FEA matched with those of the compression experiments. For the joining process, FEA computed the distribution of strain and hydrostatic stress in Ti and the minimum ram load required for a defect-free joint. The hot forming parameters for Ti to fill the grooves without defects and any geometrical distortion of the die were found to be 0.001 s-1 at 900 °C. Using these conditions a defect-free Ti-SS joint was experimentally produced.

  18. Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map

    NASA Astrophysics Data System (ADS)

    Kishor, Brij; Chaudhari, G. P.; Nath, S. K.

    2016-07-01

    Hot compression tests were performed to study the hot deformation characteristics of 13Cr-4Ni stainless steel. The tests were performed in the strain rate range of 0.001-10 s-1 and temperature range of 900-1100 °C using Gleeble® 3800 simulator. A constitutive equation of Arrhenius type was established based on the experimental data to calculate the different material constants, and average value of apparent activation energy was found to be 444 kJ/mol. Zener-Hollomon parameter, Z, was estimated in order to characterize the flow stress behavior. Power dissipation and instability maps developed on the basis of dynamic materials model for true strain of 0.5 show optimum hot working conditions corresponding to peak efficiency range of about 28-32%. These lie in the temperature range of 950-1025 °C and corresponding strain rate range of 0.001-0.01 s-1 and in the temperature range of 1050-1100 °C and corresponding strain rate range of 0.01-0.1 s-1. The flow characteristics in these conditions show dynamic recrystallization behavior. The microstructures are correlated to the different stability domains indicated in the processing map.

  19. Numerical Modeling of Ti Deformation for the Development of a Titanium and Stainless Steel Transition Joint

    NASA Astrophysics Data System (ADS)

    Mukherjee, A. B.; Kapoor, R.; Thota, M. K.; Chakravartty, J. K.

    2016-07-01

    Finite element analysis (FEA) was used to model the joining of titanium grade 2 (Ti) to AISI 321 stainless steel (SS) transition joint of lap configuration with grooves at the interface on SS side. The hot forming of Ti for filling the grooves without defects was simulated. FEA involving large plastic flow with sticking friction condition was initially validated using compression test on cylindrical specimen at 900 °C. The barreled shape and a no-deformation zone in the sample predicted by FEA matched with those of the compression experiments. For the joining process, FEA computed the distribution of strain and hydrostatic stress in Ti and the minimum ram load required for a defect-free joint. The hot forming parameters for Ti to fill the grooves without defects and any geometrical distortion of the die were found to be 0.001 s-1 at 900 °C. Using these conditions a defect-free Ti-SS joint was experimentally produced.

  20. Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application.

    PubMed

    Ren, Yibin; Zhao, Haochuan; Liu, Wenpeng; Yang, Ke

    2016-03-01

    The high nitrogen nickel-free stainless steel has offered an alternative to further improve the performance of the coronary stents, and simultaneously avoids the potential harms of nickel element. Both cold deformation and pitting corrosion are very important for coronary stents made of stainless steel. In this work, the effect of cold deformation on the pitting corrosion resistance of a high nitrogen nickel-free stainless steel (00Cr18Mn15Mo2N0.86) in 0.9% saline solution was investigated. The results showed that the pitting corrosion of the steel was nearly unchanged with increases of the cold deformation up to 50%, indicating that the higher nitrogen content can reduce the negative effect of cold deformation on the pitting corrosion resistance, which is beneficial for the long term service of coronary stents in blood vessel. PMID:26706533

  1. Two-phase nickel aluminides

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Vedula, K.; Shabel, B. S.

    1987-01-01

    The as-extruded microstructures of two alloys in the two phase field consisting of Ni3Al and NiAl in the Ni-Al phase diagram exhibit fibrous morphology and consist of Ll(2) Ni3Al and B2 NiAl. These as-extruded microstructures can be modified dramatically by suitable heat treatments. Martensite plus NiAl or martensite plus Ni3Al microstructures are obtained upon quenching from 1523 K. Aging of martensite at 873 K results in the recently identified phase Ni5Al, whereas aging at 1123 K reverts the microstructures to Ni3Al plus NiAl. The microstructures with predominantly martensite of Ni5Al3 phases are brittle in tension at room temperature. The latter microstructure does not deform plastically even in compression at room temperature. However, some promise of room temperature tensile ductility is indicated by the Ni3Al plus NiAl phase mixtures.

  2. Influence of pre-deformation and oxidation in high temperature water on corrosion resistance of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Hongyun, Luo; Tongxiang, Liang

    2015-11-01

    The passivation properties of deformed 304 stainless steels after immersion in borate buffer solution containing 0.2821 mol/L Cl- at 288 °C were investigated. The spinel and magnetite oxides were formed on all the samples. However, the hematite oxides reduced significantly with the increasing of strain. The sample with maximum strain possessed the poorest corrosion resistance. The hematite oxide could offer high corrosion resistance, while magnetite evidently deteriorated corrosion resistance. Moreover, the influence of the donors in outer layer of oxide film on corrosion resistance was more important than that of the acceptors in inner layer.

  3. Two-phase flow

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1986-01-01

    An experimental program to characterize the spray from candidate nozzles for icing-cloud simulation is discussed. One canidate nozzle, which is currently used for icing research, has been characterized for flow and drop size. The median-volume diameter (MVD) from this air-assist nozzle is compared with correlations in the literature. The new experimental spray facility is discussed, and the drop-size instruments are discussed in detail. Since there is no absolute standard for drop-size measurements and there are other limitations, such as drop -size range and velocity range, several instruments are used and results are compared. A two-phase model was developed at Pennsylvania State University. The model uses the k-epsilon model of turbulence in the continous phase. Three methods for treating the discrete phase are used: (1) a locally homogeneous flow (LHF) model, (2) a deterministic separated flow (DSF) model, and (3) a stochastic separated flow (SSF) model. In the LHF model both phases have the same velocity and temperature at each point. The DSF model provides interphase transport but ignores the effects of turbulent fluctuations. In the SSF model the drops interact with turbulent eddies whose properties are determined by the k-epsilon turbulence model. The two-phase flow model has been extended to include the effects of evaporation and combustion.

  4. Effects of Cyclic and Monotonic Deformations on Nonlinear Ultrasonic Response of Austenitic Stainless Steel: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-Zhen; Xiang, Yanxun; Zhao, Peng

    2016-05-01

    The effect of plastic deformations on the nonlinear ultrasonic response in austenite stainless steel was investigated under the tensile, asymmetric cyclic, and symmetric cyclic loadings. Nonlinear ultrasonic wave measurement was performed on the interrupted specimens. Results show that cyclic and monotonic plastic deformations lead to the significantly different acoustic nonlinear response. The increase of dislocation density and martensite transformation causes the increase of acoustic nonlinearity. By contrast, the well-developed cell structures decrease the acoustic nonlinear response. Under the asymmetric cyclic loading condition, the lightly decrease of acoustic nonlinearity is caused by the development of cell structures, while the slight increase of acoustic nonlinearity should be attributed to the increase of martensite transformation. Comparatively, the severe increase of acoustic nonlinearity during the first stage under symmetric cyclic loading is ascribed to the fast generation of dislocation structures and martensite transformation.

  5. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.

    PubMed

    Cizek, P; Whiteman, J A; Rainforth, W M; Beynon, J H

    2004-03-01

    The evolution of crystallographic texture and deformation substructure was studied in a type 316L austenitic stainless steel, deformed in rolling at 900 degrees C to true strain levels of about 0.3 and 0.7. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used in the investigation and a comparison of the substructural characteristics obtained by these techniques was made. At the lower strain level, the deformation substructure observed by EBSD appeared to be rather poorly developed. There was considerable evidence of a rotation of the pre-existing twin boundaries from their original orientation relationship, as well as the formation of highly distorted grain boundary regions. In TEM, at this strain level, the substructure was more clearly revealed, although it appeared rather inhomogeneously developed from grain to grain. The subgrains were frequently elongated and their boundaries often approximated to traces of [111] slip planes. The corresponding misorientations were small and largely displayed a non-cumulative character. At the larger strain, the substructure within most grains became well developed and the corresponding misorientations increased. This resulted in better detection of sub-boundaries by EBSD, although the percentage of indexing slightly decreased. TEM revealed splitting of some sub-boundaries to form fine microbands, as well as the localized formation of microshear bands. The substructural characteristics observed by EBSD, in particular at the larger strain, generally appeared to compare well with those obtained using TEM. With increased strain level, the mean subgrain size became finer, the corresponding mean misorientation angle increased and both these characteristics became less dependent on a particular grain orientation. The statistically representative data obtained will assist in the development of physically based models of microstructural evolution during thermomechanical processing of austenitic

  6. Effect of Pulse Current on the Tensile Deformation of SUS304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Wang, Shen; Zhao, Shuangjun; Ding, Wei; Chen, Jun; Wu, Guohong

    2015-12-01

    The effect of pulse current on the mechanical properties of SUS304 metastable austenitic stainless steel was studied by tension test with and without air-cooling under different current densities. The microstructural variations at different conditions were also studied by SEM, TEM, and Feritscope. A negative effect on the plasticity was observed when current pulse was applied without air-cooling. But when Joule heating resulting from current pulse was excluded by air-cooling, the elongation of SUS304 stainless steel was increased to 72.4% at a current density of 2.95 A/mm2, which is 23.3% higher than that tested without pulse current at room temperature. Pulse current can decrease the dislocation density and dislocation pile-ups. Furthermore, EP effect from pulse current can accelerate martensitic transformation and enhance TRIP effect. The mechanism of current-induced martensitic transformation was discussed from Gibbs free energy change.

  7. Effects of cold rolling deformation on microstructure in 18/8 grade stainless steel

    NASA Astrophysics Data System (ADS)

    Núñez Galindo, A.; Almagro Bello, J. F.

    2016-02-01

    18-8 stainless steel is one of the most versatile materials. Some of its uses are related to structural applications; in this case, the high mechanical properties required are obtained by controlled lamination after re-crystallisation annealing. In this work, detailed analyses by FEG-SEM and EBSD have been done to correlate the mechanical properties, the amount of martensite and the structural misorientation generated. A linear relation between yield strength and local misorientation has been obtained.

  8. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-08-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  9. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-06-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  10. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    NASA Astrophysics Data System (ADS)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  11. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Laha, K.; Mathew, M. D.; Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K. K.; Jayakumar, T.

    2012-08-01

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  12. Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Cheng; Sun, Gui-Xun; Jiang, Zhong-Hao; Ji, Chang-Tao; Liu, Jia-An; Lian, Jian-She

    2014-02-01

    Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.

  13. The effect of stress-state on the large strain inelastic deformation behavior of 304L stainless steel

    SciTech Connect

    Miller, M.P.; McDowell, D.L.

    1996-01-01

    In metals, large strain inelastic deformation processes such as the formation of a preferred crystallographic orientation (crystallographic texture) and strain hardening processes such as the formation and evolution of dislocation substructures depend on stress-state. Much of the current large strain research has focused on texture. Crystallographic texture development and strain-hardening processes each contribute to the overall material behavior, and a complete description of large strain inelastic material response should reflect both. An investigation of the large strain behavior of 304L stainless steel (SS 304L) subjected to compression, torsion, and sequences of compression followed by torsion and torsion followed by tension is reported. This paper focuses on the stress-state dependence of strain-hardening processes as well as the relative effect such processes have on the overall material behavior. To characterize these processes, transmission electron microscopy (TEM) as well as magnetization investigations were conducted at different strain levels and under different deformation modes. The {gamma} {yields} {alpha}{prime} martensitic transformation which occurs in this material was found to be related to both the strain level and stress state. Dislocation substructures in the form of Taylor lattices, dense dislocation walls, and microbands were also present. The ramifications of using a thin-walled tubular torsion specimen were also explored.

  14. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-03-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  15. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  16. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    SciTech Connect

    Sasikala, G.; Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N)SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 314L(N)SS exhibited better resistance to creep deformation compared to their 316SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 Ss base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing {delta} ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the {delta} ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  17. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Mannan, S. L.; Mathew, M. D.; Rao, K. Bhanu

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  18. The effect of deformation rate on JBK-75 stainless steel forgings

    SciTech Connect

    Odegard, B.C.

    1987-10-01

    A parametric study was conducted to evaluate the effect of forging rate and forging temperature on the strength and microstructure of a precipitation-hardened, austenitic stainless steel forging. High and low forging rates were achieved using a high energy rate forging (HERF) process and a low velocity mechanical press (MP) respectively. The forging geometry required a two-stage forging sequence. The first stage or preform was identical for both forging processes. The final stage used similar die geometries with minor modifications to accommodate the attachment to the respective hammers. The resulting microstructure and mechanical properties were significantly different. These differences are attributed to the effects of strain rate and temperature. 10 figs., 1 tab.

  19. Acoustic emission studies on welded and thermally treated AISI 304 stainless steel during tensile deformation

    SciTech Connect

    Mukherjee, P.; Barat, P.; Jayakumar, T.; Kalyanasundaram, P.; Rajagopalan, C.; Raj, B.

    1997-10-15

    The present investigations are planned to study the influence of prior martensites formed due to cold treatment as 77K in AISI 304 SS welded specimens, on strain-induced martensites occurred during tensile deformation using AE technique. AE parameters like count rate and root mean square (r.m.s.) voltage have been used to characterize AE activities generated during tensile deformation process in as-welded and welded-treated samples. Frequency spectrum analysis of AE signals captured from the samples has been done to understand the dynamic behavior of the martensite phase formation. Tensile properties of these samples have also been reported. Volume fraction of the magnetic phase (martensite and delta ferrite) formed in these samples are measured before and after straining. X-ray diffraction (XRD) technique has been used to support the presence of delta ferrite (formed during welding) and martensite in the weld region.

  20. The role of deformation mechanisms in flow localization of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wu, Xianglin; Pan, Xiao; Mabon, James C.; Li, Meimei; Stubbins, James F.

    2006-09-01

    Type 316 SS is widely used as a structural material in a variety of current accelerator driven systems and designs as well as in a number of current and advanced fission and fusion reactor concepts. The material is found to be very sensitive to irradiation damage in the temperature range of 150-400 °C, where low levels of irradiation exposure, as little as 0.1 dpa, can substantially reduce the uniform elongation in tensile tests. This process, where the plastic flow becomes highly localized resulting in very low overall ductility, is referred to as flow localization. The process controlling this restriction of flow is related to the difference between the yield and ultimate strengths such that dramatic irradiation-induced increases in the yield strength results in very limited plastic flow until necking. In this study, the temperature dependence of this process is examined in light of the operating deformation mechanisms. It is found that twinning is an important deformation mechanism at lower temperatures but is not available in the temperature range of concern since the stress to activate twinning becomes excessively high. This limits the deformation and leads to the flow localization process.

  1. Two-phase/two-phase heat exchanger analysis

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1992-01-01

    A capillary pumped loop (CPL) system with a condenser linked to a double two-phase heat exchanger is analyzed numerically to simulate the performance of the system from different starting conditions to a steady state condition based on a simplified model. Results of the investigation are compared with those of similar apparatus available in the Space Station applications of the CPL system with a double two-phase heat exchanger.

  2. Temperature dependence of the deformation behavior of type 316 stainless steel after low temperature neutron irradiation

    SciTech Connect

    Robertson, J.P.; Rowcliffe, A.F.; Grossbeck, M.L.; Ioka, Ikuo; Jitsukawa, Shiro

    1996-12-31

    A single heat of solution annealed 316 ss was irradiated to 7 and 18 dpa at 60, 200, 330, and 400 C. Tensile properties were studied vs dose and temperature. Large changes in yield strength, deformation mode, strain to necking (STN), and strain hardening capacity were seen. Magnitude of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength and decrease STN to <0.5% under certain conditions. A maximum increase in yield strength and a minimum in STN occur after irradiation at 330 C but failure mode remains ductile.

  3. Creep deformation and fracture behaviour of a nitrogen-bearing type 316 stainless steel weld metal

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Mathew, M. D.; Bhanu Sankara Rao, K.; Mannan, S. L.

    1999-08-01

    Creep properties of a nuclear grade type 316 stainless steel (SS) weld metal containing ˜0.08 wt% of nitrogen were studied at 873 and 923 K. These properties were compared with those of a type 316 SS weld metal without nitrogen. In general, the nitrogen-bearing weld metal exhibited better creep and rupture properties. The rupture strengths of the nitrogen-containing weld metal was ˜40% higher than that for the type 316 SS weld metal at both the temperatures. The steady-state (minimum) creep rates were up to two orders of magnitude lower for the nitrogen-containing weld metal compared to 316 SS weld metal. Rupture ductility of nitrogen-containing weld metal was lower at all the test conditions; the long-term ductility at 923 K was below 5%. The differences in creep behaviour of the two weld metals are discussed with respect to the influence of nitrogen on microstructural evolution in the two weld metals.

  4. Creep deformation of a two-phase TiAl/Ti[sub 3]Al lamellar alloy and the individual TiAl and Ti[sub 3]Al constituent phases

    SciTech Connect

    Bartholomeusz, M.F.; Wert, J.A. ); Qibin Yang )

    1993-08-01

    Two-phase TiAl/Ti[sub 3]Al alloys in which the constituent phases form a lamellar microstructure are reported to possess good combinations of low-temperature fracture toughness, tensile strength and fatigue resistance. However, information about the high-temperature creep properties of the two-phase TiAl/Ti[sub 3]Al alloys with lamellar microstructures (referred to as lamellar alloys in the remainder of the paper) is limited. Based on a simple rule of mixtures model of strength, it would be expected that the creep rates of the lamellar alloy would be between the creep rates of TiAl and Ti[sub 3]Al. In contrast to composite model predictions of strength, Polvani and coworkers found that the minimum creep rates of two duplex alloys, a [gamma]/[gamma][prime] nickel-base superalloy and NiAl/Ni[sub 2]AlTi, were significantly lower than the minimum creep rates of either of the constituent phases. They also reported that most dislocations in the two-phase NiAl/Ni[sub 2]AlTi alloy were contained within the semi-coherent interfacial dislocation networks between the two phases. Based on this observation they proposed that the creep rate is controlled by the rate at which dislocations moving through both phases are emitted and absorbed by the interphase dislocation networks. The greater strain hardening rate of the lamellar TiAl/Ti[sub 3]Al alloy suggests that it may exhibit lower steady-state creep rates that the individual constituent phases. The objective of the present study is to evaluate the creep properties of a TiAl/ Ti[sub 3]Al lamellar alloy and of the individual constituent phases. In this paper, the results of this investigation will be presented and compared with previously published results for this alloy system.

  5. Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 dpa and deformed to 0.8% strain

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Field, K. G.; Busby, J. T.

    2014-03-01

    Surface relief due to localized deformation in a 4.4-dpa neutron-irradiated AISI 304 stainless steel was investigated using scanning electron microscopy coupled with electron backscattering diffraction and scanning transmission electron microscopy. It was found a body-centered-cubic (BCC) phase (deformation-induced martensite) had formed at the surface of the deformed specimen along the steps generated from dislocation channels. Martensitic hill-like formations with widths of ˜1 μm and depths of several microns were observed at channels with heights greater than ˜150 nm above the original surface. Martensite at dislocation channels was observed in grains along the [0 0 1]-[1 1 1] orientation but not in those along the [1 0 1] orientation.

  6. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2016-08-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process. As an alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low-temperature nitriding results in improved properties of both bulk and surface.

  7. Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Karlsen, Wade; Diego, Gonzalo; Devrient, Bastian

    2010-11-01

    Cold-work has been associated with the occurrence of intergranular cracking of stainless steels employed in light water reactors. This study examined the deformation behavior of AISI 304, AISI 347 and a higher stacking fault energy model alloy subjected to bulk cold-work and (for 347) surface deformation. Deformation microstructures of the materials were examined and correlated with their particular mechanical response under different conditions of temperature, strain rate and degree of prior cold-work. Select slow-strain rate tensile tests in autoclaves enabled the role of local strain heterogeneity in crack initiation in pressurized water reactor environments to be considered. The high stacking fault energy material exhibited uniform strain hardening, even at sub-zero temperatures, while the commercial stainless steels showed significant heterogeneity in their strain response. Surface treatments introduced local cold-work, which had a clear effect on the surface roughness and hardness, and on near-surface residual stress profiles. Autoclave tests led to transgranular surface cracking for a circumferentially ground surface, and intergranular crack initiation for a polished surface.

  8. Studies of two phase flow

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.

    1994-01-01

    The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.

  9. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  10. Two-phase viscoelastic jetting

    SciTech Connect

    Yu, J-D; Sakai, S.; Sethian, J.A.

    2008-12-10

    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  11. Two-phase potential flow

    NASA Technical Reports Server (NTRS)

    Wallis, Graham B.

    1989-01-01

    Some features of two recent approaches of two-phase potential flow are presented. The first approach is based on a set of progressive examples that can be analyzed using common techniques, such as conservation laws, and taken together appear to lead in the direction of a general theory. The second approach is based on variational methods, a classical approach to conservative mechanical systems that has a respectable history of application to single phase flows. This latter approach, exemplified by several recent papers by Geurst, appears generally to be consistent with the former approach, at least in those cases for which it is possible to obtain comparable results. Each approach has a justifiable theoretical base and is self-consistent. Moreover, both approaches appear to give the right prediction for several well-defined situations.

  12. Cyclic Deformation Behavior of Fe-18Cr-18Mn-0.63N Nickel-Free High-Nitrogen Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shao, C. W.; Shi, F.; Li, X. W.

    2015-04-01

    Cyclic deformation and damage behavior of a Ni-free high-nitrogen austenitic stainless steel with a composition of Fe-18Cr-18Mn-0.63N (weight pct) were studied, and the internal stress and effective stress were estimated by partitioning the hysteresis loop during cyclic straining at total strain amplitudes ranging from 3.0 × 10-3 to 1.0 × 10-2. It is found that immediate cyclic softening takes place at all strain amplitudes and subsequently a saturation or quasi-saturation state develops and occupies the main part of the whole fatigue life. The internal stress increases with increasing strain amplitude, while the variation of effective stress with strain amplitude is somewhat complicated. Such a phenomenon is discussed in terms of dislocation structures and the short-range ordering caused by the interaction between nitrogen atoms and substitutional atoms. The relationship of fatigue life vs plastic strain amplitude ( N f-Δ ɛ pl/2) follows a bilinear Coffin-Manson rule, resulting from the variation in slip deformation mode with the applied strain amplitude. At the low strain amplitude, cracks initiate along slip bands, and planar slip dislocation configurations dominate the major characteristic of internal microstructures. At high strain amplitudes, intergranular (mostly along grain boundaries and few along twin boundaries) cracks are generally found, and the deformation microstructures are mainly composed of dislocation cells, stacking faults and a small amount of deformation twins, in addition to planar slip dislocation structures.

  13. Analytical modeling of the thermomechanical behavior of ASTM F-1586 high nitrogen austenitic stainless steel used as a biomaterial under multipass deformation.

    PubMed

    Bernardes, Fabiano R; Rodrigues, Samuel F; Silva, Eden S; Reis, Gedeon S; Silva, Mariana B R; Junior, Alberto M J; Balancin, Oscar

    2015-06-01

    Precipitation-recrystallization interactions in ASTM F-1586 austenitic stainless steel were studied by means of hot torsion tests with multipass deformation under continuous cooling, simulating an industrial laminating process. Samples were deformed at 0.2 and 0.3 at a strain rate of 1.0s(-1), in a temperature range of 900 to 1200°C and interpass times varying from 5 to 80s. The tests indicate that the stress level depends on deformation temperature and the slope of the equivalent mean stress (EMS) vs. 1/T presents two distinct behaviors, with a transition at around 1100°C, the non-recrystallization temperature (Tnr). Below the Tnr, strain-induced precipitation of Z-phase (NbCrN) occurs in short interpass times (tpass<30s), inhibiting recrystallization and promoting stepwise stress build-up with strong recovery, which is responsible for increasing the Tnr. At interpass times longer than 30s, the coalescence and dissolution of precipitates promote a decrease in the Tnr and favor the formation of recrystallized grains. Based on this evidence, the physical simulation of controlled processing allows for a domain refined grain with better mechanical properties. PMID:25842112

  14. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2014-07-01

    This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases. PMID:24857514

  15. Effects of deformation (strain) and heat treatment on grain boundary sensitization and precipitation in austenitic stainless steels

    SciTech Connect

    Murr, L.E. ); Advani, A.; Shankar, S.; Atteridge, D.G. . Dept. of Materials Science and Engineering)

    1990-03-01

    Sensitization, particularly the degree of sensitization (DOS) in type 316 stainless steel pipe is critically dependent upon the solution anneal of the mill-annealed or commercial material, and is particularly sensitive to los-temperature aging when the starting material is solution annealed between about 1,000{degrees}C and 1,100{degrees}C. It is observed that when the DOS is above about 10 C/cm{sup 2} (quantitative electrochemical photentiokinetic reactivation units in Coulombs/cm{sup 2}), noticeable carbide precipitation occurs in the grain boundaries and increases with increasing DOS. Transmission electron microscopy (TEM) examination of precipitation occurring in type 316 stainless steel pipe grain boundaries has shown them to exhibit many microstructural features that seem to be coincident with grain boundary microstructures, particularly ledges.

  16. Keratocytes generate traction forces in two phases.

    PubMed

    Burton, K; Park, J H; Taylor, D L

    1999-11-01

    Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement. PMID:10564269

  17. Microstructural Evolution of an Al-Alloyed Duplex Stainless Steel During Tensile Deformation Between 77 K and 473 K (-196 °C and 200 °C)

    NASA Astrophysics Data System (ADS)

    Rahimi, Reza; Ullrich, Christiane; Rafaja, David; Biermann, Horst; Mola, Javad

    2016-06-01

    Tensile deformation behavior of an Al-alloyed Fe-17Cr-6Mn-4Al-3Ni-0.45C (mass pct) duplex stainless steel containing approximately 20 vol pct ferrite was studied in the temperature range from 77 K to 473 K (-196 °C to 200 °C). While the elongation exhibited a maximum near room temperature, the yield strength continuously increased at lower tensile test temperatures. According to the microstructural examinations, the twinning-induced plasticity and the dislocation cell formation were the dominant deformation mechanisms in the austenite and ferrite, respectively. Reduction of the tensile ductility at T < 273 K (0 °C) was attributed to the ready material decohesion at the ferrite/austenite boundaries. Tensile testing at 473 K (200 °C) was associated with the serrated flow which was ascribed to the Portevin-Le Chatelier effect. Due to a rise in the stacking fault energy of austenite, the occurrence of mechanical twinning was impeded at higher tensile test temperatures. Furthermore, the evolution of microstructural constituents at room temperature was studied by interrupted tensile tests. The deformation in the austenite phase started with the formation of Taylor lattices followed by mechanical twinning at higher strains/stresses. In the ferrite phase, on the other hand, the formation of dislocation cells, cell refinement, and microbands formation occurred in sequence during deformation. Microhardness evolution of ferrite and austenite in the interrupted tensile test specimens implied a higher strain-hardening rate for the austenite as it clearly became the harder phase at higher tensile strain levels.

  18. Effect of Friction-Induced Deformation on the Structure, Microhardness, and Wear Resistance of Austenitic Chromium—Nickel Stainless Steel Subjected to Subsequent Oxidation

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Chernenko, N. L.

    2016-03-01

    The effect of plastic deformation that occurs in the zone of the sliding friction contact on structural transformations in the 12Kh18N9T austenitic steel subjected to subsequent 1-h oxidation in air at temperatures of 300-800°C, as well as on its wear resistance, has been studied. It has been shown that severe deformation induced by dry sliding friction produces the two-phase nanocrystalline γ + α structure in the surface layer of the steel ~10 μm thick. This structure has the microhardness of 5.2 GPa. Subsequent oxidation of steel at temperatures of 300-500°C leads to an additional increase in the microhardness of its deformed surface layer to the value of 7.0 GPa. This is due to the active saturation of the austenite and the strain-assisted martensite (α') with the oxygen atoms, which diffuse deep into the metal over the boundaries of the γ and α' nanocrystals with an increased rate. The concentration of oxygen in the surface layer of the steel and in wear products reaches 8 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ and α' phases, which enhances the strength and wear resistance of the surface of the 12Kh18N9T steel. The oxidation of steel at temperatures of 550-800°C under a light normal load (98 N) results in the formation of a large number of Fe3O4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance during dry sliding friction in a pair with 40Kh13 steel. Under a heavy normal load (196 N), the toughness of 12Kh18N9T steel and, therefore, the wear resistance of its surface layer decrease due to the presence of the brittle oxide phase.

  19. Melt-band instabilities with two-phase damage

    NASA Astrophysics Data System (ADS)

    Rudge, John F.; Bercovici, David

    2015-05-01

    Deformation experiments on partially molten rocks in simple shear form melt bands at 20° to the shear plane instead of at the expected 45° principal compressive stress direction. These melt bands may play an important role in melt focusing in mid-ocean ridges. Such shallow bands are known to form for two-phase media under shear if strongly non-Newtonian power-law creep is employed for the solid phase, or anisotropy imposed. However laboratory experiments show that shallow bands occur regardless of creep mechanism, even in diffusion creep, which is nominally Newtonian. Here we propose that a couple of forms of two-phase damage allow for shallow melt bands even in diffusion creep.

  20. One- and two-phase nozzle flows

    SciTech Connect

    Chang, I.S.

    1980-01-01

    A time-dependent technique, in conjunction with the boundary-fitted coordinates system, is applied to solve a gas-only one-phase flow and a fully-coupled, gas-particle two-phase flow inside nozzles with small throat radii of curvature, steep wall gradients, and submerged configurations. The emphasis of the study has been placed on one- and two-phase flow in the transonic region. Various particle sizes and particle mass fractions have been investigated in the two-phase flow. The salient features associated with the two-phase nozzle flow compared with those of the one-phase flow are illustrated through the calculations of the JPL nozzle, the Titan III solid rocket motor, and the submerged nozzle configuration found in the Inertial Upper Stage (IUS) solid rocket motor.

  1. Two-Phase Flow Separator Investigation

    NASA Video Gallery

    The goal of the Two-Phase Flow Separator investigation is to help increase understanding of how to separate gases and liquids in microgravity. Many systems on the space station contain both liquids...

  2. Two-phase flow studies. Final report

    SciTech Connect

    Kestin, J.; Maeder, P.F.

    1980-08-01

    Progress on the following is reported: literature survey, design of two-phase flow testing facility, design of nozzle loop, thermophysical properties, design manual, and advanced energy conversion systems. (MHR)

  3. Two-Phase Potential Flow. Final report

    SciTech Connect

    Wallis, G.B.

    1999-06-11

    The objective of this work was to devise essentially exact solutions to a set of well-defined basic problems of inviscid fluid flow with particulate inclusions. This would help to establish a sound basis for fundamental theoretical developments in the field of two-phase flow. The results of this effort have ranged from basic theorems and the formulation of conservation laws for two-phase mixtures, to detailed predictions for specific geometrical patterns and experimental confirmation of these results.

  4. Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    NASA Technical Reports Server (NTRS)

    Mebs, R W; Mcadam, D J

    1947-01-01

    A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were

  5. Performance tests of a two phase ejector

    SciTech Connect

    Harrell, G.S.; Kornhauser, A.A.

    1995-12-31

    The ejector expansion refrigeration cycle is a modified vapor compression cycle in which a two phase ejector is used to recover a portion of the work otherwise lost in the expansion valve. The ejector improves cycle performance by increasing compressor inlet pressure and by lowering the quality of liquid entering the evaporator. Theoretically, a cooling COP improvement of approximately 23% is achievable for a typical refrigerating cycle and an ideal ejector. If the ejector performed as well as typical single phase ejectors an improvement of 12% could be achieved. Previous tests have demonstrated a smaller 3.7% improvement; the difference is in the poor performance of the two phase ejector. The purpose of this research is to understand the operating characteristics of the two phase ejector and to devise design improvements. A two phase ejector test rig has been constructed and tested. Preliminary data show performance superior to previously tested two phase ejectors, but still inferior to single phase ejectors. Ejector performance corresponds to refrigeration cycle COP improvements ranging from 3.9% to 7.6%.

  6. Tensile Deformation Behavior and Phase Transformation in the Weld Coarse-Grained Heat-Affected Zone of Metastable High-Nitrogen Fe-18Cr-10Mn-N Stainless Steel

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Park, Seong-Jun; Jang, Jae-il; Jang, Min-Ho; Ha, Heon-Young; Hwang, Byoungchul

    2013-07-01

    The tensile deformation behavior and phase transformation in the weld coarse-grained heat-affected zone (CGHAZ) of a metastable high-nitrogen austenitic stainless steel was explored through tensile tests, nanoindentation experiments, and transmission electron microscopy analysis. True stress-strain response during tensile test was found to be seriously affected by δ-ferrite fraction, which depends on peak temperature of the CGHAZs. The strain-induced martensitic transformation (SIMT) occurred in base steel, whereas the SIMT disappeared and deformation twinning occurred predominantly in the CGHAZs. The relationship among true stress-strain response, nanoindentation hardness, and deformed microstructures was carefully investigated and discussed in terms of changes of stacking fault energy.

  7. Dynamic characteristics of two-phase media

    SciTech Connect

    Fedotovskiy, V.S.; Sinyavskiy, V.F.; Terenik, L.V.; Spirov, V.S.

    1990-01-01

    This paper presents the results of investigations into the effective dynamic properties of heterogeneous media formed by a liquid and rigid spherical or cylindrical inclusions contained in it. Oscillations of a pipeline with a two-phase mixture in the general case having a non-uniform distribution of phases over the cross section are considered. Relations are obtained for the effective mass and hydrodynamic damping that determine the frequencies and dynamic-response factors. Oscillations of the bundles of elastic rods in a liquid are considered as in a two-phase mixture formed by a liquid and cylindrical inclusions and which has equivalent inertia and viscous properties.

  8. Two phase detonation studies conducted in 1971

    NASA Technical Reports Server (NTRS)

    Nicholls, J. A.

    1972-01-01

    A report is presented describing the research conducted on five phases: (1) ignition of fuel drops by a shock wave and passage of a shock wave over a burning drop, (2) the energy release pattern of a two-phase detonation with controlled drop sizes, (3) the attenuation of shock and detonation waves passing over an acoustic liner, (4) experimental and theoretical studies of film detonations, and (5) a simplified analytical model of a rotating two-phase detonation wave in a rocket motor.

  9. Plastic anisotropy in a superplastic duplex stainless steel

    SciTech Connect

    Song, J.L.; Bate, P.S.

    1997-07-01

    Measurements of the plastic anisotropy in uniaxial tension of the duplex stainless steel, SAF2304, have been made at room temperature and under conditions where the material was superplastic. There was significant plastic anisotropy in both types of deformation and there were some similarities between the low and high temperature variations with tensile axis orientation. Although it was possible to model the high temperature anisotropy using a grain boundary sliding model, the assumed distribution of sliding boundaries was considered to be unrealistic. This, together with aspects of microstructural and textural development, indicated that deformation was principally occurring by intragranular slip with a significant contribution caused by mechanical inhomogeneity in the two-phase material.

  10. Improved Two-Phase Switching Regulator

    NASA Technical Reports Server (NTRS)

    Rippel, W. E.

    1984-01-01

    Coupled-inductor polyphase regulator has better efficiency and lower inductor losses. Improved two-phase switching regulator employs negative coupling between inductors to achieve better power-to-weight ratio while reducing peak switching currents and inductor losses. Improvement of about 35 percent using new technique.

  11. Two-phase flow in fractured rock

    SciTech Connect

    Davies, P.; Long, J.; Zuidema, P.

    1993-11-01

    This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here.

  12. Condensing, Two-Phase, Contact Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Oren, J. A.; Sauer, L. W.

    1988-01-01

    Two-phase heat exchanger continuously separates liquid and vapor phases of working fluid and positions liquid phase for efficient heat transfer. Designed for zero gravity. Principle is adapted to other phase-separation applications; for example, in thermodynamic cycles for solar-energy conversion.

  13. Apparatus for monitoring two-phase flow

    DOEpatents

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  14. Dynamic failure in two-phase materials

    SciTech Connect

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.

  15. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  16. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred (Inventor)

    1987-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  17. Two-phase charge-coupled device

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.

  18. Two-phase flow centrifugal pump performance

    NASA Astrophysics Data System (ADS)

    Chisely, Eugene Andras

    The performance of centrifugal pumps subjected to a liquid-gas-mixture flow is a significant concern to manufacturers and to some users such as Chemical, Nuclear Power Plants, and Gas-Oil Industries. Particularly in the nuclear power industry, the prediction of performance degradation under the two-phase flow conditions occurring in a Loss of Coolant Accident (LOCA) is a significant part of the overall analysis of that accident. In this experimental work, the pressure distribution was measured in a rotating, partially shrouded, open, radial impeller and volute under a wide range of air-water two-phase flow conditions. To obtain these pressure measurements, small-diameter pressure-tap holes were drilled through the casing of the radial pump. High speed photography was used to determine the flow regime of the air-water mixture through the vane and in the volute. An analytical model was developed to predict the radial pump single- and two-phase flow pressure distribution. This distribution was compared with the test data for different suction void fractions. The physical mechanism responsible for pump performance degradation was also investigated.

  19. The rheology of two-phase magmas

    NASA Astrophysics Data System (ADS)

    Llewellin, E. W.; Mader, H. M.; Mueller, S.

    2012-12-01

    Great advances in our understanding of the rheology of two-phase magmatic suspensions (magma with either bubbles or crystals in it) have been made in recent years. These advances are based on laboratory experiments with both magma and analogue materials, and on analytical and numerical modelling. The current state-of-the-art is the culmination of scores of studies undertaken by scores of research groups and presented in scores of publications. Consequently, whilst it is possible to construct a sophisticated rheological description of a two-phase magma based on a few easily-measured properties (melt composition, crystal/vesicle volume fraction, CSD/VSD, etc.) the task of determining how best to do this is daunting to the non-specialist. We present a straightforward, practical, algorithmic approach to determining the rheology of two-phase magma to the degree of sophistication appropriate to most modelling applications. The approach is based on a broad synthesis of the literature, on new experimental data, and on new theoretical analysis.

  20. Two-phase damage models of magma-fracturing

    NASA Astrophysics Data System (ADS)

    Cai, Zhengyu; Bercovici, David

    2013-04-01

    Damage and fracturing in two-phase and porous flows are relevant for geological process such as magma-fracturing during melt migration, which is associated with the propagation of a pore-generating damage front ahead of high-pressure fluid injection. We therefore examine the propagation of porous flow in a damageable matrix by applying the two-phase theory for compaction and damage proposed by Bercovici et al. (2001a) and Bercovici and Ricard (2003). The movement of the fluid and the solid is governed by the two-phase flow laws, while damage (void generation and microcracking) is treated by considering the generation of interfacial surface energy by deformational work. Calculations of one-dimensional (1-D) flow of fluid migrating buoyantly through compacting and damageable matrix show that damage is mitigated in steady-state largely because of the loss of the velocity gradient at the fluid front. However, in time-dependent flows, linear stability analysis shows that the propagation velocity of porosity waves is strongly dependent on damage. In the damage-free case porosity waves are dispersive in that wave-speed decreases with wavenumber (inverse wavelength); however with damage the dispersion flattens and beyond a critical damage reverses (the wave speed increases with wavenumber). Since normal dispersive behavior balances breaking in the nonlinear wave case, such reversed dispersion implies that damage has a profound effect in the nonlinear limit by facilitating wave front steepening and higher wave velocities. Nonlinear solitary wave solutions are obtained numerically and show that the transmission of porosity waves induces high stress and damage that can push the damage front forward. With damage the porosity waves sharpen and calculations suggest that they can transform from shape-conserving solitary waves into faster high amplitude waves, which is also predicted by the linear theory. Such pulse-like sharper waves may prove effective at promoting fluid

  1. Dynamics Coefficient for Two-Phase Soil Model

    NASA Astrophysics Data System (ADS)

    Wrana, Bogumił

    2015-02-01

    The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.

  2. Experimental and Theoretical Studies on Two-Phase Flows.

    NASA Astrophysics Data System (ADS)

    Koh, Christopher James

    This thesis, comprised of two parts, deals with the flow of suspensions. Part I concerns specifically with the stability of a single drop translating through a quiescent, unbounded suspending fluid at low Reynolds number. The evolution of the shape of an initially nonspherical drop as it translates is studied numerically and experimentally. For finite capillary numbers, it is shown that the drop reverts to a sphere provided that the initial deformation is small enough. However, beyond certain critical initial deformation, the drop deforms continuously. For initially prolate shapes, the drop elongates with the formation of a tail; for initially oblate shapes, the drop flattens with the formation of a cavity at its rear. Experiments extend the numerical results. It is found that initially unstable prolate drops break up into multiple droplets, while initially unstable oblate drops deform in double-emulsion drops. Part II of this thesis considers the flow of high concentration solid suspensions through a rectangular channel. By adapting the well-known Laser Doppler Anemometry, an experimental technique is developed to measure the velocity as well as particle volume fraction of the suspension. A crucial element in these experiments is the reduction of the optical turbidity of the suspension. To accomplish this goal, a systematic method based on refractive-index-matching of the two phases is employed. Experimental results show that the velocity profile is blunted while the concentration profile has a maximum near the center. The qualitative features of the experimental data compare reasonably well with theoretical predictions based on the shear-induced particle migration theory.

  3. Numerical Simulation of Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2001-01-01

    Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.

  4. Dynamic failure in two-phase materials

    NASA Astrophysics Data System (ADS)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-01

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parent materials. In this work, we present results on three different polycrystalline materials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces on void nucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the overall two-phase material.

  5. Dynamic failure in two-phase materials

    DOE PAGESBeta

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less

  6. Nodal analysis of two-phase instabilities

    SciTech Connect

    Lahey, R.T. Jr.; Garea, V.P.

    1995-10-01

    Nodal models having moving nodal boundaries have been developed for the analysis of two-phase flow instabilities in a boiling channel. The first model, which was based on a Galerkin method for the discretization, has been found to be accurate in the prediction of the onset of instabilities as well as the frequency of oscillations. This model however, had some problems with the prediction of chaotic phenomena and did not allow for flow reversal in the channel. A second nodal model, based on a finite difference approach, has been found to perform better for the prediction of non-linear response and it also allows for flow reversal. Both models are numerically more efficient than the existing fixed grid models for instabilities analysis.

  7. Stability of oscillatory two phase Couette flow

    NASA Technical Reports Server (NTRS)

    Coward, Adrian V.; Papageorgiou, Demetrios T.

    1993-01-01

    We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.

  8. Tracer Partitioning in Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2012-12-01

    The concentration distributions of geochemical tracers in a subsurface reservoir can be used as an indication of the reservoir flow paths and constituent fluid origin. In this case, we are motivated by the origin of marked geochemical gradients in the Bravo Dome natural CO2 reservoir in northeastern New Mexico. This reservoir contains 99% CO2 with various trace noble gas components and overlies the formation brine in a sloping aquifer. It is thought that magmatic CO2 entered the reservoir, and displaced the brine. This displacement created gradients in the concentrations of the noble gases. Two models to explain noble gas partitioning in two-phase flow are presented here. The first model assumes that the noble gases act as tracers and uses a first order non-linear partial differential equation to compute the volume fraction of each phase along the displament path. A one-way coupled partial differential equation determines the tracer concentration, which has no effect on the overall flow or phase saturations. The second model treats each noble gas as a regular component resulting in a three-component, two-phase system. As the noble gas injection concentration goes to zero, we see the three-component system behave like the one-way coupled system of the first model. Both the analytical and numerical solutions are presented for these models. For the process of a gas displacing a liquid, we see that a noble gas tracer with greater preference for the gas phase, such as Helium, will move more quickly along the flowpath than a heavier tracer that will more easily enter the liquid phase, such as Argon. When we include partial miscibility of both the major and trace components, these differences in speed are shown in a bank of the tracer at the saturation front. In the three component model, the noble gas bank has finite width and concentration. In the limit where the noble gas is treated as a tracer, the width of the bank is zero and the concentration increases linearly

  9. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1991-12-31

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  10. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B. ); Hughes, E.D. )

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  11. Two-Phase Quality/Flow Meter

    NASA Technical Reports Server (NTRS)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  12. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2010-11-15

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

  13. Two-phase Damage Models of Magma Fracturing

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Bercovici, D.

    2011-12-01

    Damage and fracturing in two-phase and porous flows are relevant for geological process such as magma-fracturing during melt migration and hydro-fracturing of crustal rocks for carbon sequestration and shale-gas recovery. These fracturing processes are associated with the propagation of a pore-generating damage front ahead of high-pressure fluid injection. We therefore examine the propagation of porous flow in a damageable matrix by applying the two-phase theory for compaction and damage proposed by Bercovici et al. [2001]; Bercovici and Ricard [2003]. The movement of the fluid and the solid is governed by the two phase flow laws, while damage (void generation and microcracking) is treated by considering the generation of interfacial surface energy by deformational work. Calculations of one dimensional (1-D) flow of fluid migrating buoyantly through compacting and damageable matrix show that damage is mitigated in steady-state largely because of pressure loss at the fluid front. However, in time-dependent flows, linear stability analysis shows that the propagation velocity of porosity waves is strongly dependent on damage. In the damage-free case porosity waves are dispersive in that wave-speed decreases with wavenumber (inverse wavelength); however with damage the dispersion flattens and beyond a critical damage reverses (the wave speed increases with wave number). Since normal dispersive behavior balances breaking in the nonlinear wave case, such reversed dispersion implies that damage has a profound effect in the nonlinear limit by facilitating wave front steepening and high-speed shocks. Nonlinear solitary wave solutions are obtained numerically and show that the transmission of porosity waves induce high stress and damage that can push the damage front forward. With damage the porosity waves sharpen and calculations suggest that they can transform from shape-conserving solitary waves into faster shock waves, which is also predicted by the linear theory. Such

  14. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  15. THE TWO PHASES OF GALAXY FORMATION

    SciTech Connect

    Oser, Ludwig; Naab, Thorsten; Johansson, Peter H.; Burkert, Andreas; Ostriker, Jeremiah P.

    2010-12-20

    Cosmological simulations of galaxy formation appear to show a 'two-phase' character with a rapid early phase at z {approx}> 2 during which 'in situ' stars are formed within the galaxy from infalling cold gas followed by an extended phase since z {approx}< 3 during which 'ex situ' stars are primarily accreted. In the latter phase, massive systems grow considerably in mass and radius by accretion of smaller satellite stellar systems formed at quite early times (z>3) outside of the virial radius of the forming central galaxy. These tentative conclusions are obtained from high-resolution re-simulations of 39 individual galaxies in a full cosmological context with present-day virial halo masses ranging from 7 x 10{sup 11} M{sub sun} h {sup -1} {approx} 1.7 x 10{sup 11} M{sub sun} h {sup -1}) assembly is dominated by accretion and merging with about 80% of the stars added by the present day. In general the simulated galaxies approximately double their mass since z = 1. For massive systems this mass growth is not accompanied by significant star formation. The majority of the in situ created stars are formed at z>2, primarily out of cold gas flows. We recover the observational result of 'archaeological downsizing', where the most massive galaxies harbor the oldest stars. We find that this is not in contradiction with hierarchical structure

  16. Two-phase phenomena, minority games, and herding models

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Qiu, T.; Ren, F.

    2004-04-01

    The recently discovered two-phase phenomenon in financial markets [Nature 421, 130 (2003)] is examined with the German financial index DAX, minority games, and dynamic herding models. It is observed that the two-phase phenomenon is an important characteristic of financial dynamics, independent of volatility clustering. An interacting herding model correctly produces the two-phase phenomenon.

  17. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  18. Stability of stratified two-phase flows in horizontal channels

    NASA Astrophysics Data System (ADS)

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.

    2016-04-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  19. Nanoscale Deformation Behavior of Phase-Reversion Induced Austenitic Stainless Steels: The Interplay Between Grain Size from Nano-Grain Regime to Coarse-Grain Regime

    NASA Astrophysics Data System (ADS)

    Misra, R. D. K.; Venkatsurya, P. K. C.; Somani, M. C.; Karjalainen, L. P.

    2012-12-01

    We have used the recently adopted concept of phase reversion to obtain grain size from the nanograined/ultrafine-grained (NG/UFG) to fine grain (FG) regime by varying temperature-time annealing sequence of cold deformed metastable austenite. The phase-reversion induced NG/UFG structure was characterized by high strength-high ductility combination. The concept of phase reversion involves severe cold deformation of metastable austenite to generate strain-induced martensite. Upon annealing, martensite transforms back to austenite through a diffusional reversion mechanism with NG/UFG, sub-micron grains (SMG) or FG structure, depending on the annealing condition. Depth-sensing nanoindentation experiments were combined with electron microscopy to elucidate the dependence of grain size from nanograin/ultrafine-grain (NG/UFG) to coarse grain (CG) regime on the deformation mechanisms. There was distinct transition in the deformation mechanism from intense mechanical twinning and stacking faults in NG/UFG structure to strain-induced martensite formation at the intersection of shear bands in the CG structure. The transition in the deformation mechanism is discussed in terms of increase in austenite stability with decrease in grain size.

  20. Film boiling on spheres in single- and two-phase flows.

    SciTech Connect

    Liu, C.; Theofanous, T. G.

    2000-08-29

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

  1. A bi-directional two-phase/two-phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    1993-01-01

    This paper describes the design and test of a heat exchanger that transfers heat from one two-phase thermal loop to another with very small drops in temperature and pressure. The heat exchanger condenses the vapor in one loop while evaporating the liquid in the other without mixing of the condensing and evaporating fluids. The heat exchanger is bidirectional in that it can transfer heat in reverse, condensing on the normally evaporating side and vice versa. It is fully compatible with capillary pumped loops and mechanically pumped loops. Test results verified that performance of the heat exchanger met the design requirements. It demonstrated a heat transfer rate of 6800 watts in the normal mode of operation and 1000 watts in the reverse mode with temperature drops of less than 5 C between two thermal loops.

  2. Two-phase flow measurements with advanced instrumented spool pieces

    SciTech Connect

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  3. Effect of Laves Phase on High-Temperature Deformation and Microstructure Evolution in an 18Cr-2Mo-0.5Nb Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ikeda, Ken-ichi; Yamoah, Nana Kwame Gyan; Reynolds, William T.; Hamada, Jun-ichi; Murayama, Mitsuhiro

    2015-08-01

    Niobium-containing ferritic stainless steels are finding new applications in automotive exhaust components because of their oxidation resistance, thermal fatigue resistance, and high-temperature strength. The mechanical behavior of Nb-containing ferritic steels at service temperatures of 973 K (700 °C) and higher results from the convolution of dynamic microstructural changes including precipitation, precipitate coarsening, strain hardening, recovery, and recrystallization. The relative contributions of these competing processes have yet to be clarified. In this study, the high-temperature flow strength of an 18Cr-2Mo-0.5Nb ferritic stainless steel (SUS 444) was correlated with microstructure under different strain and initial precipitate distributions to clarify the relative role of the strengthening and softening processes. High-temperature tensile tests at 1023 K (750 °C) of un-aged (initial microstructure is precipitate-free) and pre-aged (initial microstructure contains precipitates) samples were carried out and transmission electron microscopy was used to assess dislocation distributions and precipitate morphology. The difference in the stress-strain curves between un-aged and pre-aged samples was drastic; the yield strength of the un-aged sample was twice that of the pre-aged sample, and the un-aged sample exhibits a noticeable yield drop. Transmission electron microscopy revealed a Laves phase nucleated and grew during the high-temperature tensile test in the un-aged sample and the majority of the precipitates in the pre-aged sample were the same Laves phase. Furthermore, a strain effect on precipitate growth was recognized in un-aged and pre-aged conditions by comparing grip (no strain) and gage (strained) sections of tensile samples. The dominant strengthening contribution in un-aged samples is initially the precipitate shearing mechanism and it changes to Orowan strengthening beyond the ultimate tensile strength, whereas the dominant contribution in

  4. Flow Behavior Modeling of a Nitrogen-Alloyed Ultralow Carbon Stainless Steel During Hot Deformation: A Comparative Study of Constitutive Models

    NASA Astrophysics Data System (ADS)

    Shang, Xuekun; He, An; Wang, Yanli; Yang, Xiaoya; Zhang, Hailong; Wang, Xitao

    2015-10-01

    The present study focuses on comparison of accuracy of Johnson-Cook, modified Johnson-Cook, and modified Zerilli-Armstrong constitutive models to predict flow behavior of a nitrogen-alloyed ultralow carbon stainless steel at evaluated temperature. True strain-true stress data obtained from hot compression experiments performed with temperatures of 1223-1423 K and strain rates of 0.001-10 s-1 on a Gleeble-3500 thermal-simulator were employed to develop these three models. Furthermore, the ability of the three models to predict the outcomes was evaluated by comparing the correlation coefficient, absolute average related error, ability to track the experimental flow stress, numbers of material constants, and computational time required to develop models. The results show that the modified Johnson-Cook has a better description of the flow behaviors of the studied steel than the other two models. However, under certain conditions, the modified Zerilli-Armstrong model has accuracy comparable to the modified Johnson-Cook model.

  5. Effective property models for homogeneous two-phase flows

    SciTech Connect

    Awad, M.M.; Muzychka, Y.S.

    2008-10-15

    Using an analogy between thermal conductivity of porous media and viscosity in two-phase flow, new definitions for two-phase viscosity are proposed. These new definitions satisfy the following two conditions: namely (i) the two-phase viscosity is equal to the liquid viscosity at the mass quality = 0% and (ii) the two-phase viscosity is equal to the gas viscosity at the mass quality = 100%. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. These new models are assessed using published experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels in the form of Fanning friction factor (f{sub m}) versus Reynolds number (Re{sub m}). The published data include different working fluids such as R-12, R-22, argon (R740), R717, R134a, R410A and propane (R290) at different diameters and different saturation temperatures. Models are assessed on the basis minimizing the root mean square error (e{sub RMS}). It is shown that these new definitions of two-phase viscosity can be used to analyze the experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels using simple friction models. (author)

  6. Magnetohydrodynamic generators using two-phase liquid-metal flows

    NASA Technical Reports Server (NTRS)

    Petrick, M.

    1969-01-01

    Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.

  7. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  8. Two-phase flow research. Phase I. Two-phase nozzle research. Final report

    SciTech Connect

    Toner, S.J.

    1981-07-01

    An investigation of energy transfer in two-phase nozzles was conducted. Experimental performance of converging-diverging nozzles operating on air-water mixtures is presented for a wide range of parameters. Thrust measurements characterized the performance and photographic documentation was used to visually observe the off-design regimes. Thirty-six nozzle configurations were tested to determine the effects of convergence angle, area ratio, and nozzle length. In addition, the pressure ratio and mass flowrate ratio were varied to experimentally map off-design performance. The test results indicate the effects of wall friction and infer temperature and velocity differences between phases and the effect on nozzle performance. The major conclusions reached were: the slip ratio between the phases, gas velocity to liquid velocity, is shown to be below about 4 or 5, and, in most of the test cases run, was estimated to between about 1-1/2 to 2-1/2; in all cases except the free-jet the mass )

  9. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  10. Void fraction correlations in two-phase horizontal flow

    SciTech Connect

    Papathanassiou, G.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

    1983-05-01

    This study examines some physical mechanisms which impose limits on the possible existence of two-phase flow in a horizontal pipe. With the aid of this analysis and the use of the Martinelli variable, X, a method is developed which determines the range of possible void fractions for a given two-phase flow. This method affords a means of direct comparison among void fraction correlations, as well as between correlation predictions and experimental results. In this respect, four well-known void fraction correlations are compared against each other and with experimental results obtained in the Brown University Two-Phase Flow Research Facility.

  11. What types of investors generate the two-phase phenomenon?

    NASA Astrophysics Data System (ADS)

    Ryu, Doojin

    2013-12-01

    We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.

  12. Influence of two-phase flow characteristic on critical heat flux in low pressure

    SciTech Connect

    Inoue, Akira; Lee, Sangryoul

    1996-08-01

    Estimation of the critical heat flux (CHF) in a boiling two-phase flow is one of the important subjects for the safety of water-cooled reactors and other energy systems. In the case of a boiling two-phase flow at low pressure, flow pattern and void fraction are easy to change by the power input and the flow becomes more complex due to low density of gas phase. The CHF is affected by the flow pattern. In this study, the CHFs were measured over wide quality range from the subcooled boiling to the annular-mist flow. By using Pyrex glass tube as a test channel, the two-phase flow situation was observed. Graphite rod or stainless steel tube was used as a heater rod and installed at the center of the glass tube. Two-phase flow was formed by steam injection to circulating water at an upstream region of the test section. The flow pattern was kept nearly constant over the length of test section due to the low input power density into the fluid. Then, the characteristics of CHF could be investigated at each flow patterns of bubbly, slug, annular and annular-mist flow. In the subcooled boiling region of bubbly flow, the CHF decreased with increase of quality and was less sensitive to flow rate. In the slug flow region, the CHF showed a minimum value. With more increase of quality in the annular flow, the CHF increased and reached a peak value at a certain quality depending on a flow rate. The peak of CHF occurred almost at a constant vapor mass velocity. In the annular-mist flow region, the CHF decreased with increase of quality. In the region, the effect of heated length on the CHF was systematically measured and validity of an analytical model considering dryout of liquid film based on formation of a dry patch was investigated.

  13. Fluid structure interaction solver coupled with volume of fluid method for two-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.

    2016-06-01

    In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.

  14. Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)

    SciTech Connect

    Cady, C.M.; Chen, K.C.; Kotula, P.G.; Mauro, M.E.; Thoma, D.J.

    1998-12-07

    A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  15. Static and dynamic strain aging in two-phase {gamma}-titanium aluminides

    SciTech Connect

    Christoph, U.; Appel, F.; Wagner, R.

    1997-12-31

    Deformation of two-phase titanium aluminides exhibits discontinuous yielding and a negative strain rate sensitivity over the temperature range 450--750 K. These phenomena are usually associated with the Portevin-LeChatelier effect which is due to the dynamic interaction of diffusing defects with the dislocations. The resulting glide resistance was investigated by static strain aging. The experiments involve the prestraining of samples followed by aging under a relaxing load for certain periods of time. Reloading of the samples resulted in distinct yield points. The investigations were performed on two-phase {gamma}-titanium aluminides having different compositions and microstructures which are currently being considered for technical applications. Accordingly, dislocation locking occurs with fast kinetics which is characterized by a low activation energy. The experimental results will be discussed with respect to the nature of the diffusional mechanism and possible implication on the mechanical properties of the materials.

  16. Transient two-phase performance of LOFT reactor coolant pumps

    SciTech Connect

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  17. Dynamical mechanism of two-phase phenomena in financial markets

    NASA Astrophysics Data System (ADS)

    Lim, Gyuchang; Yong Kim, Soo; Kim, Kyungsik; Lee, Dong-In; Park, Sang-Bum

    2007-12-01

    Two-phase behavior of the Korean treasury bond (KTB) futures in the Korean exchange market is investigated in this study. To show that the two-phase phenomena are due to heavy-tailed behavior of distribution of price returns, actual data from the KTB futures market with shuffled data and a generated time series are examined according to the Brownian process. In addition, we study the correlation inherent in the KTB futures and its Brownian walk, describing the extent to which the volatility clustering plays a crucial role in equilibrium and nonequilibrium states of financial markets. It is shown that the two-phase behavior essentially results from heavy-tailed behavior of the distribution of price returns. This two-phase behavior does not appear to be relevant to volatility clustering.

  18. A jet polishing technique for thinning two phase materials

    SciTech Connect

    Witcomb, M.J. ); Dahmen, U. )

    1990-11-01

    A common problem in the preparation of thin foils for transmission electron microscopy is the different thinning rate in two-phase materials. Often this leads to foils in which the majority, or matrix, phase is evenly polished while the minority, or precipitate, phase is either etched out or stands proud of the surrounding material. In the present report we describe a two-stage jet polishing technique that has been used successfully on different relatively coarse two-phase structures. 3 figs.

  19. Momentum flux in two phase two component low quality flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Graham, R. W.; Henry, R. E.

    1972-01-01

    In two phase flow systems line losses comprise frictional and momentum pressure drops. For design purposes, it would be desirable to estimate the line losses employing a one-dimensional calculation. Two methods for computing one-dimensional momentum flux at a test section discharge station are compared to the experimental value for a range of two-phase flow conditions. The one-dimensional homogeneous model appears to be more accurate generally in predicting the momentum than the variable slip model.

  20. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  1. A poroelastic medium saturated by a two-phase capillary fluid

    NASA Astrophysics Data System (ADS)

    Shelukhin, V. V.

    2014-09-01

    By Landau's approach developed for description of superfluidity of 2He, we derive a mathematical model for a poroelastic medium saturated with a two-phase capillary fluid. The model describes a three-velocity continuum with conservation laws which obey the basic principles of thermodynamics and which are consistent with the Galilean transformations. In contrast to Biot' linear theory, the equations derived allow for finite deformations. As the acoustic analysis reveals, there is one more longitudinal wave in comparison with the poroelastic medium saturated with a one-phase fluid. We prove that such a result is due to surface tension.

  2. Solution and precipitation hardening in carbon-doped two-phase {gamma}-titanium aluminides

    SciTech Connect

    Appel, F.; Christoph, U.; Wagner, R.

    1997-12-31

    A two-phase titanium aluminide alloy was systematically doped with carbon to improve its high temperature strength. Solid solutions and precipitates of carbon were formed by different thermal treatments. A fine dispersion of perovskite precipitates was found to be very effective for improving the high temperature strength and creep resistance of the material. The strengthening mechanisms were characterized by flow stresses and activation parameters. The investigations were accompanied by electron microscope observation of the defect structure which was generated during deformation. Special attention was paid on the interaction mechanisms of perfect and twinning dislocations with the carbide precipitates.

  3. Detailed microstructure of two-phase lower mantle mineral analogs from SEM and EBSD

    NASA Astrophysics Data System (ADS)

    Kaercher, Pamela; Mariani, Elisabetta; Dawson, Karl

    2016-04-01

    The rheology and viscosity of the lower mantle influence convection, heat transport through the mantle, slab subduction, and many surface processes. Plastic flow in the lower mantle depends on the deformation mechanics of its constituent mineral phases - mostly bridgmanite, (Mg,Fe)SiO3, with a smaller percent of the rheologically weaker ferropericlase, (Mg,Fe)O. For deformation in a (mostly) two-phase system with large strength contrast, such as in the lower mantle, microstructure greatly influences deformation and rheology. We examined microstructures of an analog two-phase system of the lower mantle before and after deformation using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Halite (NaCl) and neighborite (NaMgF3) were used as analogs to lower mantle minerals ferropericlase (Mg,Fe)O and bridgmanite MgSiO3, respectively, and deformed up to 50% strain at 4 GPa confining pressure and average strain rates of 2×10‑3 s‑1in the D-DIA. One goal of our microstructural analysis is to help determine whether deformation in the bulk of the lower mantle occurs by diffusion creep or by dislocation creep, which has been long debated. Previous X-ray diffraction and microtomography studies of these samples (Kaercher et al. submitted) show the weaker NaCl is likely interconnected at just 15 percent volume and greatly reduces crystallographic preferred orientation (CPO) in NaMgF3, while NaCl itself develops either very little or heterogeneous CPO. New SEM and EBSD results show that NaCl deforms primarily by subgrain rotation recrystallization (a recrystallization mechanism active during dislocation creep) at 200° C, resulting in drastically reduced grain sizes. While we have less information for the NaMgF3 due to difficulties polishing soft, hydrophilic NaCl and harder NaMgF3 together, it appears that NaMgF3 grains remain the same size. This suggests that periclase may control deformation in the lower mantle resulting in a weaker, more

  4. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    PubMed

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties. PMID:23721654

  5. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures

    SciTech Connect

    Balancin, O.; Hoffmann, W.A.M.; Jonas, J.J.

    2000-05-01

    Three kinds of duplex stainless steel, with different ferrite-to-austenite ratios, were deformed in torsion over the temperature range 900 C to 1,200 C; the corresponding microstructural evolution was observed and correlated with the deformation conditions. The shapes of the high-temperature flow curves depend strongly on the volume fractions of the phases, the characteristics of the ferrite-austenite interface, and the active softening mechanism. At low volume fractions of austenite, the mechanical behavior is determined by the ferrite matrix and the flow curves are typical of materials that soften by continuous dynamic recrystallization. When the volume fraction of austenite is increased, coherent {gamma} particles distributed within the grains and at the grain boundaries hinder the deformation of the softer {alpha} matrix, increasing both the yield and the peak stress. These peaked flow curves are characterized by rapid work hardening followed by extensive flow softening; under these conditions, the hard austenite particles become aligned with the deformation direction after large strains. AT high volume fractions of austenite ({approximately}50%), the material tends to form a duplex structure, with the flow curves displaying extended work-hardening and work-softening regions; however, a drastic decrease is observed in ductility because of the dissimilar plastic behaviors of the two phases.

  6. Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence.

    PubMed

    Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2013-04-01

    Metallic biomedical devices with nanometer-sized grains (NGs) provide surfaces that are different from their coarse-grained (CG) (tens of micrometer) counterparts in terms of increased fraction of grain boundaries (NG>50%; CG<2-3%). The novel concept of 'phase-reversion' involving a controlled deformation-annealing sequence is used to obtain a wide range of grain structures, starting from the NG regime to the CG regime, to demonstrate that the grain structure significantly impacts cellular interactions and osteoblast functions. The uniqueness of this concept is the ability to address the critical aspect of cellular activity in nanostructured materials, because a range of grain sizes from NG to CG are obtained in a single material using an identical set of parameters. This is in addition to a high strength/weight ratio and superior wear and corrosion resistance. These multiple attributes are important for the long-term stability of biomedical devices. Experiments on the interplay between grain structure from the NG regime to CG in austenitic stainless steel on osteoblast functions indicated that cell attachment, proliferation, viability, morphology and spread varied with grain size and were favorably modulated on the NG and ultrafine-grain structure. Furthermore, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on the NG surface. The differences in the cellular response with change in grain structure are attributed to grain structure and degree of hydrophilicity. The study lays the foundation for a new branch of nanostructured materials for biomedical applications. PMID:23232208

  7. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies

  8. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.

  9. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  10. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    SciTech Connect

    Zaid, Md; Bhattacharjee, P.P.

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. The microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001

  11. Continuous aqueous two-phase extraction of human antibodies using a packed column.

    PubMed

    Rosa, P A J; Azevedo, A M; Sommerfeld, S; Bäcker, W; Aires-Barros, M R

    2012-01-01

    The performance of a pilot scale packed differential contactor was evaluated for the continuous counter-current aqueous two-phase extraction (ATPE) of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cells supernatant (CS) enriched with pure protein. Preliminary studies have been firstly performed in order to select the dispersed phase (phosphate-rich or polyethylene glycol 3350 Da (PEG)-rich phase) and the column packing material. The PEG-rich phase has been selected as the dispersed phase and the stainless steel as the preferred material for the column packing bed since it was not wetted preferentially by the selected dispersed phase. Hydrodynamic studies have been also performed, and the experimental results were successfully adjusted to the Richardson-Zaki and Mísek equations, typically used for the conventional organic-aqueous two-phase systems. An experimental set-up combining the packed column with a pump mixer-settler stage showed to have the best performance and to be advantageous when compared to the IgG batch extraction. An IgG recovery yield of 85% could be obtained with about 50% of total contaminants and more than 85% of contaminant proteins removal. Mass transfer studies have revealed that the mass transfer was controlled by the PEG-rich phase. A higher efficiency could be obtained when using an extra pump mixer-settler stage and higher flow rates. PMID:22173005

  12. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  13. Thermal Vibrational Convection in a Two-phase Stratified Liquid

    NASA Technical Reports Server (NTRS)

    Chang, Qingming; Alexander, J. Iwan D.

    2007-01-01

    The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

  14. Two-Phase flow instrumentation for nuclear accidents simulation

    NASA Astrophysics Data System (ADS)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  15. Two Phase Flow and Space-Based Applications

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    1999-01-01

    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  16. Two-Phase Model of Combustion in Explosions

    SciTech Connect

    Kuhl, A L; Khasainov, B; Bell, J

    2006-06-19

    A two-phase model for Aluminum particle combustion in explosions is proposed. It combines the gas-dynamic conservation laws for the gas phase with the continuum mechanics laws of multi-phase media, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by the Khasainov model. Combustion is specified as material transformations in the Le Chatelier diagram which depicts the locus of thermodynamic states in the internal energy-temperature plane according to Kuhl. Numerical simulations are used to show the evolution of two-phase combustion fields generated by the explosive dissemination of a powdered Al fuel.

  17. Microgravity experiments with a simple two-phase thermal system

    SciTech Connect

    Crowley, C.J.; Sam, R.G. )

    1991-01-10

    Microgravity experiments with a simple two-phase thermal system are described. Microgravity experiments aboard the NASA KC-135 aircraft provide variable acceleration 0.01g to 2g, with low gravity for 20 to 25 seconds. The two-phase loop allows the vapor and liquid phases to flow together between the evaporator and the condenser. It incorporates and evaporator where heat transfer is controlled by forced convection, an adiabatic transport section where transparent piping provides visualization of the flow regime, and a condenser where heat transfer is controlled by the shear between the gas and liquid phases. Stable operation of the system is observed during the variable accleration.

  18. Momentum flux in two phase two component low quality flow.

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Graham, R. W.; Henry, R. E.

    1972-01-01

    Values of a one-dimensional momentum flux at a test section discharge station of a two-phase two-component low quality flow computed by two methods, one based on a one-dimensional homogeneous model and the other on a variable slip model, are compared to experimental values for a range of two-phase flow conditions. The comparison seems to indicate the superior accuracy in momentum flux predictions to be on the side of the one-dimensional homogeneous model.

  19. Single- and two-phase flow characterization using optical fiber bragg gratings.

    PubMed

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  20. Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings

    PubMed Central

    Baroncini, Virgínia H.V.; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E.M.

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  1. A two-phase model of compaction, damage and material weakening

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Bercovici, D. A.

    2013-12-01

    Fluids permeate the pores and cracks of crustal rocks and have a significant effect on rock deformation and failure under stress. A distributed damage within the very low permeable rocks introduced by hydraulic fracturing could enhance the production of oils and gas or the capacity of CO2-bearing fluid during carbon sequestration. We study the dynamics of a simple two-phase flow based on an averaging approach, combined with the mass, momentum and energy conservations for the mixture. A non-equilibrium relation between surface energy and deformational work is investigated during the flow transport within the poro-visco-elastic medium. The generation and growth of void/microcracks are associated with the creation of surface energy during the deformation, i.e. that part of the viscous and elastic deformational energy is partitioned towards surface energy, instead of being dissipated as frictional heat. The resulting equations provide a continuum description of weakening mechanism and show that the shear strength is reduced and the fluid diffusion becomes more effective with a distributed damage. Simple applications to the injection of the fluid with varied pressure are addressed and an enhanced porosity profile is observed near to the injection site with the occurrence of damage.

  2. Two-phase electro-hydrodynamic flow modeling by a conservative level set model.

    PubMed

    Lin, Yuan

    2013-03-01

    The principles of electro-hydrodynamic (EHD) flow have been known for more than a century and have been adopted for various industrial applications, for example, fluid mixing and demixing. Analytical solutions of such EHD flow only exist in a limited number of scenarios, for example, predicting a small deformation of a single droplet in a uniform electric field. Numerical modeling of such phenomena can provide significant insights about EHDs multiphase flows. During the last decade, many numerical results have been reported to provide novel and useful tools of studying the multiphase EHD flow. Based on a conservative level set method, the proposed model is able to simulate large deformations of a droplet by a steady electric field, which is beyond the region of theoretic prediction. The model is validated for both leaky dielectrics and perfect dielectrics, and is found to be in excellent agreement with existing analytical solutions and numerical studies in the literature. Furthermore, simulations of the deformation of a water droplet in decyl alcohol in a steady electric field match better with published experimental data than the theoretical prediction for large deformations. Therefore the proposed model can serve as a practical and accurate tool for simulating two-phase EHD flow. PMID:23161380

  3. Diffusion-controlled grain growth in two-phase solids

    SciTech Connect

    Fan, D.; Chen, L.Q.

    1997-08-01

    Microstructural evolution and the kinetics of grain growth in volume-conserved two-phase solids were investigated using two-dimensional (2-D) computer simulations based on a diffuse-interface field model. In this model, a two-phase microstructure is described by non-conserved field variables which represent crystallographic orientations of grains in each phase and by a conserved composition field variable which distinguishes the compositional difference between the two phases. The temporal and spatial evolution of these field variables were obtained through a numerical solution to the time-dependent Ginzburg-Landau (TDGL) equations. The effect of the ratios of grain boundary energies to interfacial energy on the microstructure features was systematically studied. It was found that grain growth in a volume-conserved two-phase solid is controlled by long-range diffusion and follows the power growth law, R{sup m} {minus} R{sup m}{sub o} = kt with m = 3 in the scaling regime for all cases studied, including the microstructures containing only quadrijunctions. The effects of volume fractions and initial microstructures are discussed.

  4. Low gravity two-phase flow with heat transfer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1991-01-01

    A realistic model for the transfer line chilldown operation under low-gravity conditions is developed to provide a comprehensive predictive capability on the behavior of liquid vapor, two-phase diabatic flows in pipes. The tasks described involve the development of numerical code and the establishment of the necessary experimental data base for low-gravity simulation.

  5. Coal-Face Fracture With A Two-Phase Liquid

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  6. Two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Bush, Mia L.; Omrani, Adel; Yan, An

    1995-01-01

    Coiled tube heat exchangers involving two-phase flows are used in a variety of application areas, extending from the aerospace industry to petrochemical, refrigeration land power generation industries. The optimal design in each situation requires a fundamental understanding of the heat, mass and momentum transfer characteristic of the flowing two-phase mixture. However, two-phase flows in lengths of horizontal or vertical straight channels with heat transfer are often quite difficult in themselves to understand sufficiently well to permit accurate system designs. The present study has the following general objectives: (1) Observe two-phase flow patterns of air-water and R-113 working fluids over a range of flow conditions, for helical and spiral coil geometries, of circular and rectangular cross-section; (2) Compare observed flow patterns with predictions of existing flow maps; (3) Study criteria for flow regime transitions for possible modifications of existing flow pattern maps; and (4) Measure associated pressure drops across the coiled test sections over the rage of flow conditions specified.

  7. Numerical studies of gravity effects in two-phase reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Cox, B.L.

    1986-06-01

    Numerical studies are performed to investigate the effects of localized feed zones on the pressure transients in two-phase reservoirs. It is shown that gravity effects can significantly affect the pressure transients, because of the large difference in the density of liquid water and vapor. Pressure transients for shallow and deep feed zones and the resulting fluid flow patterns are discussed.

  8. Power production with two-phase expansion through vapor dome

    SciTech Connect

    Amend, W.E.; Toner, S.J.

    1984-08-07

    In a system wherein a fluid exhibits a regressive vapor dome in a T-S diagram, the following are provided: a two-phase nozzle receiving the fluid in pressurized and heated liquid state and expanding the received liquid into saturated or superheated vapor state, and apparatus receiving the saturated or superheated vapor to convert the kinetic energy thereof into power.

  9. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  10. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results

  11. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGESBeta

    Martinez, M. J.; Hesse, M. A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  12. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGESBeta

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  13. Two-phase convective CO2 dissolution in saline aquifers

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Hesse, M. A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

  14. By-pass pigs for two-phase flow pipelines

    SciTech Connect

    Wu, H.L.; Spronsen, G. van; Klaus, E.H.; Stewart, D.M.

    1996-12-31

    Pigging two-phase pipelines normally leads to the generation of large liquid slug volumes in front of the pig requiring excessively large separators or slug catchers. The concept of using a high by-pass pig to disperse the liquid and reduce the maximum liquid production rate prior to pig arrival is under investigation by Shell Exploration and Production companies. A simulation model of the dynamics of the pig and related two-phase flow behavior in the pipeline was used to predict the performance of by-pass pigs. Field trials in a dry gas pipeline were carried out to provide friction data and to validate the model. It was then used to explore operating possibilities in a two-phase lie which led to the follow-up trial in a 15.6 km, 20 inch OD two-phase offshore interfield pipeline with risers. Whereas the volume of liquid swept in front of the pig would be 179 m{sup 3} if the by-pass fraction were zero, a reduction of 70% to 53m{sup 3} was achieved in the field with a by-pass fraction of 10%. The predicted mobility of the high by-pass pig in the pipeline and risers was verified and the beneficial effects due to the by-pass concept exceeded the prediction of the simplified model. The significant gains of using a by-pass pig in modifying gas and liquid production rates during pigging operation have been demonstrated. The method can widen the possibility of applying two-phase flow pipeline transportation to cases where separator or slug catcher capacity are limited for reasons of practicality or cost.

  15. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  16. Is stainless steel really "stainless"?

    PubMed

    Porteous, Joan

    2011-06-01

    Initial purchase and replacement costs for surgical instrumentation are significant components in today's operating room budgets. OR staff and medical device reprocessing personnel work together as a team to ensure effective management of this valuable commodity. The purpose of this article is to discuss the composition of stainless steel surgical instruments, to identify processes to minimize damage to instruments caused by staining, corrosion, and pitting, and to utilize that information to describe effective measures to manage instrumentation in both the OR and reprocessing areas. PMID:21823503

  17. Investigations of two-phase flame propagation under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Gokalp, Iskender

    2016-07-01

    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets

  18. A Two-Phase Metaheuristic for Farm Workscheduling

    NASA Astrophysics Data System (ADS)

    Guan, Senlin; Nakamura, Morikazu; Shikanai, Takeshi; Okazaki, Takeo

    This paper proposes a two-phase metaheuristic approach to planning daily farm work for agriculture production corporations. The two-phase metaheuristic contains the optimization of resources assignment and searching schedule based on Genetic Algorithm and hybrid Petri nets model. In the experiment, the effect on optimizing the resource assignment and priority list, initializing population of GA with sorted chromosomes by waiting time, inheriting priority list from tasks in the previous resources assignment enhanced the evolutionary speed and solution quality. The computational experiment revealed high effectiveness for constructing farm work schedule with high ratio of resource utilization. The proposed approach also contributes a referential scheme for combining metaheuristic to solve scheduling problem under constraints.

  19. Gelfand-type problem for two-phase porous media

    PubMed Central

    Gordon, Peter V.; Moroz, Vitaly

    2014-01-01

    We consider a generalization of the Gelfand problem arising in Frank-Kamenetskii theory of thermal explosion. This generalization is a natural extension of the Gelfand problem to two-phase materials, where, in contrast to the classical Gelfand problem which uses a single temperature approach, the state of the system is described by two different temperatures. We show that similar to the classical Gelfand problem the thermal explosion occurs exclusively owing to the absence of stationary temperature distribution. We also show that the presence of interphase heat exchange delays a thermal explosion. Moreover, we prove that in the limit of infinite heat exchange between phases the problem of thermal explosion in two-phase porous media reduces to the classical Gelfand problem with renormalized constants. PMID:24611025

  20. Method and apparatus for monitoring two-phase flow. [PWR

    DOEpatents

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  1. A study of two phase flow in fracture networks

    SciTech Connect

    Karasaki, K.; Pruess, K.; Vomvoris, S.; Segan, S.

    1994-12-31

    Accurate characterization of the two-phase flow behavior of the fractured rock mass is vital to the safety of a potential high level nuclear waste repository in the unsaturated, fractured welded tuff at Yucca Mountain, NV. A tool for studying the two-phase flow properties of a fracture networks was developed. It is based on a simple mechanistic model in which the capillary pressure of a fracture is a unique function of the aperture. Whether a particular fracture element is occupied by wetting fluid or non-wetting fluid is determined by allowability and accessibility criteria. Relative permeability characteristics of a simulated fracture network were investigated using the model. Different assumptions are examined regarding the interactions between phases. In all cases, strong phase interference was observed. Hysteresis effects and irreducible saturation were also explained based on the model.

  2. Spacecraft heat transfer by two-phase flow method

    NASA Technical Reports Server (NTRS)

    Hye, A.

    1985-01-01

    A refrigerator/freezer has been designed with an oil-free compressor to provide an economical two-phase flow system for heat transfer. A computer simulation has been done for the condenser and evaporator to determine the design parameters, such as length, diameter, and flow regimes, for different refrigerants and load requirements. A large Reynolds number was considered to ensure annular flow (in order to maximize heat transfer coefficients) and large Froude number. The simulation was correlated with the test data of a vapor compression refrigerator/freezer flown on STS-4 (which provided information on vapor compression in a zero-gravity environment). The two-phase system will be used for the Spacelab mission SLS-1 and can be used in future spacecraft and high-speed aircraft, where weight, volume, and power requirements are critical.

  3. A pumped two-phase cooling system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.; Costello, F. A.

    1983-01-01

    A pumped, two-phase heat-transport system is being developed for possible use for temperature control of scientific instruments on future NASA missions. As compared to a single-phase system, this two-phase system can maintain tighter temperature control with less pumping power. A laboratory model of the system has been built and tested. The measured heat transfer coefficients were approximately the same as in heat pipes, 220 Btu/hr-sq ft-F, as compared to 25 Btu/hr-sq ft-F for single-phase liquid flow. Heat shearing between experiments has been demonstrated wherein vapor generated in the cold plate of an active experiment was condensed in a cold, unheated experiment. System stability has been observed. However, additional development is needed. The use of non-azeotropic mixtures of coolants appears especially promising as a simple way to determine exit quality and thus control the flow rates to prevent dryout.

  4. Computer simulation of two-phase flow in nuclear reactors

    SciTech Connect

    Wulff, W.

    1992-09-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  5. A review of two-phase flow-induced vibration

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    1987-08-01

    Two-phase flow exists in many shell-and-tube heat exchangers and power generation components. The flowing fluid is a source of energy that can induce small-amplitude subcritical oscillations and large-amplitude dynamic instabilities. In fact, many practical system components have experienced excessive flow-induced vibrations. To prevent unacceptable flow-induced vibration, we must understand excitation mechanisms, develop analytical and experimental techniques, and provide reliable design guidelines. Thus, we are conducting a comprehensive program to study structural vibration in components subjected to two-phase flow. This report reviews the current understanding of vibration of circular cylinders in quiescent fluid, crossflow, and axial flow, with emphasis on excitation mechanisms, mathematical models, and available experimental data. A unified theory is presented for cylinders oscillating under different flow conditions. Based on the theory, future research needs are outlined.

  6. Cascade modeling of single and two-phase turbulence

    NASA Astrophysics Data System (ADS)

    Bolotnov, Igor A.

    The analysis of turbulent two-phase flows requires closure models in order to perform reliable computational multiphase fluid dynamics (CFMD) analyses. A turbulence cascade model, which tracks the evolution of the turbulent kinetic energy between the various eddy sizes, has been developed for the analysis of the single and bubbly two-phase turbulence. Various flows are considered including the decay of isotropic grid-induced turbulence, uniform shear flow and turbulent channel flow. The model has been developed using a "building block" approach by moving from modeling of simpler turbulent flows (i.e., homogeneous, isotropic decay) to more involved turbulent flows (i.e., non-homogeneous channel flow). The spectral cascade-transport model's performance has been assessed against a number of experimental and direct numerical simulation (DNS) results.

  7. Theory and Tests of Two-Phase Turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.

  8. Two-fluid model for two-phase flow

    NASA Astrophysics Data System (ADS)

    Ishii, M.

    1987-06-01

    The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research.

  9. Recent advances in two-phase flow numerics

    SciTech Connect

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  10. Two-phase, gas-liquid flows in static mixers

    SciTech Connect

    Shah, N.F.; Kale, D.D. )

    1992-02-01

    This paper reports that static mixers are used for many gas-liquid two-phase operations. some of the typical applications are processing of natural gas to remove hydrogen sulfide or carbon dioxide, waste water treatment, dissolution of gases, hydrogenation, chlorination, and so on. They have experimentally studied the pressure drop for oxygen-water system in a bubble column packed with Sulzer-Koch-type mixing elements. They observed that the ratio of pressure drop through the packed bubble column to that through the unpacked one was slightly greater than one. The suitability of static mixers to mix fluids of very widely different viscosities has been demonstrated. Two-phase operations in polymer industry involve very viscous fluids. Due to the high viscosity of these fluids, the flow will be predominantly in laminar region for both fluids. There are no data on gas-liquid two-phase systems incorporating viscous Newtonian and non-Newtonian fluids where flows are predominantly in laminar region.

  11. An experimental investigation of two-phase liquid oxygen pumping

    NASA Technical Reports Server (NTRS)

    Gross, L. A.

    1973-01-01

    The results of an experimental program to explore the feasibility of pumping two-phase oxygen (liquid and gas) at the pump inlet are reported. Twenty-one cavitation tests were run on a standard J-2 oxygen pump at the MSFC Components Test Laboratory. All tests were run with liquid oxygen 5 to 10 K above the normal boiling point temperature. During ten tests run at approximately at the pump inlet were noted before complete pump performance 50 percent of the nominal operating speed, two phase conditions were achieved. Vapor volumes of 40 to 50 percent at the pump inlet were noted before complete pump performance loss. The experimental results compared to predictions. Nine cavitation tests run at the nominal pump speed over a 5 K temperature range showed progressively lower net positive suction head (NPSH) requirements as temperature was increased. Two-phase operation was not achieved. The temperature varying NPSH data were used to calculate thermodynamic effects on NPSH, and the results were compared to existing data.

  12. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  13. Two-phase gravity currents in geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Neufeld, J. A.; Golding, M.; Hesse, M. A.; Huppert, H. E.

    2010-12-01

    Geological carbon capture and storage, in which compressed CO2 is injected into deep saline aquifers for permanent storage, forms an integral part of CO2 mitigation strategies. At representative reservoir conditions CO2 is buoyant and may therefore leak into surface waters or the atmosphere. The leakage of CO2 back into the atmosphere may be prevented by the formation of disconnected immobile residual CO2 in the wake of the migrating plume. Here we constrain the magnitude of residual trapping by considering a two-phase model of the buoyancy driven propagation of a plume of injected CO2 within a saline aquifer. The buoyant rise of CO2 within saline aquifers is the principal mechanism through which CO2 contacts the host reservoir. Most simplified models of CO2 migration have assumed that the capillary transition zone is negligible relative to the current thickness and that the fluids are separated by a sharp interface. The results anticipate that such currents quickly become highly localized at the top boundary of reservoirs resulting in a concomitant reduction in residual trapping. However, such single-phase models neglect both the interfacial tension and large viscosity difference between the injected CO2 and the ambient pore fluid. The key challenge in two-phase gravity currents is the modeling of the variation in CO2 saturation with depth within the current. Here we use a standard model that considers the functional dependence of the relative permeability and capillary pressure on saturation to describe the two-phase flow. We anticipate that, after an initial transient, the extent of the current is much greater than its depth and that the capillary pressures within the current are balanced by gravity in this limit. This balance, called gravity-capillary equilibrium, and the fact that flow is predominantly horizontal within the current determine the saturation profile. Realizing that flow is driven primarily by gradients in the hydrostatic pressure, as in single

  14. Two-phase gravity currents in CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome; Golding, Madeleine; Hesse, Marc

    2010-05-01

    Geological carbon capture and storage (CCS), in which compressed CO2 is injected into deep saline aquifers for permanent storage, forms an integral part of CO2 mitigation strategies. At representative reservoir conditions CO2 is buoyant and may therefore leak into surface waters or the atmosphere. The leakage of CO2 back into the atmosphere may be prevented by the formation of disconnected immobile residual CO2 in the wake of the migrating plume. Here we constrain the magnitude of residual trapping by considering a two-phase model of the buoyancy driven propagation of a plume of injected CO2 within a saline aquifer. The buoyant rise of CO2 within saline aquifers is the principal mechanism through which CO2 contacts the host reservoir. Most simplified models of CO2 migration have assumed that the capillary transition zone is negligible relative to the current thickness and that the fluids are separated by a sharp interface. The results anticipate that such currents quickly become highly localized at the top boundary of reservoirs resulting in a concomitant reduction in residual trapping. However, such single-phase models neglect both the interfacial tension and large viscosity difference between the injected CO2 and the ambient pore fluid. The key challenge in two-phase gravity currents is the modeling of the variation in CO2 saturation with depth within the current. Here we use a standard model that considers the functional dependence of the relative permeability and capillary pressure on saturation to describe the two-phase flow. We anticipate that, after an initial transient, the extent of the current is much greater than its depth and that the capillary pressures within the current are balanced by gravity in this limit. This balance, called gravity-capillary equilibrium, and the fact that flow is predominantly horizontal within the current determine the saturation profile. Realizing that flow is driven primarily by gradients in the hydrostatic pressure, as in

  15. Experimental study of seismic vibration effect on two-phase flow

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Wen

    This study is to investigate the seismic vibration effects on two-phase flow. Based on the seismic characteristics found in literature, the properties for designing a test facility to simulate vibration and the test conditions for adiabatic and diabatic (subcooled boiling) two-phase flows have been chosen. In order to perform this experiment, an annulus test section has been built and attached to a vibration module. For experimental investigation and visualization of two-phase flow, Pyrex-glass tubes have been utilized as a transparent test section and stainless steel instrumentation ports are designed to acquire experimental data. In the design process, calculations considering the resonance, natural frequency, structural deflection, material properties and vibration conditions for the vibration structure have been performed to choose a suitable vibration beam. The motion equations of the eccentric cam are also analyzed with respect to displacement (vibration amplitude), velocity and acceleration. Each design process is set for the goal of an economical, reliable and controllable vibration condition for the two-phase flow test section. In addition, the scaling laws for geometric similarity, hydrodynamic similarity and thermal similarity are taken into account for the annulus test section to simulate a fuel assembly sub-channel of a prototypic boiling water reactor (BWR). Potential hydrodynamic and thermal effects for two-phase flow under seismic vibration are broken down and analyzed in detail. Based on the 1-D drift-flux model, the hydrodynamics effects are discussed with respect to the possible variations of distribution parameters, C0, and drift velocity, <<νgj>>, caused by the changes of the void distribution, bubble diameter and flow regimes. Sensitivity studies are carried out for analyzing these potential hydrodynamic effects. In addition, the void generation relations in a diabatic (subcooled boiling) two-phase flow system are taken into account for

  16. Liquid jet pumps for two-phase flows

    SciTech Connect

    Cunningham, R.G.

    1995-06-01

    Isothermal compression of a bubbly secondary fluid in a mixing-throat and diffuser is described by a one-dimensional flow model of a liquid-jet pump. Friction-loss coefficients used in the four equations may be determined experimentally, or taken from the literature. The model reduces to the liquid-jet gas compressor case if the secondary liquid is zero. Conversely, a zero secondary-gas flow reduces the liquid-jet gas and liquid (LJGL) model to that of the familiar liquid-jet liquid pump. A ``jet loss`` occurs in liquid-jet pumps if the nozzle tip is withdrawn from the entrance plane of the throat, and jet loss is included in the efficiency equations. Comparisons are made with published test data for liquid-jet liquid pumps and for liquid-jet gas compressors. The LJGL model is used to explore jet pump responses to two-phase secondary flows, nozzle-to-throat area ratio, and primary-jet velocity. The results are shown in terms of performance curves versus flow ratios. Predicted peak efficiencies are approximately 50 percent. Under sever operating conditions, LJGL pump performance curves exhibit maximum-flow ratios or cut-offs. Cut-offs occurs when two-phase secondary-flow steams attain sonic values at the entry of the mixing throat. A dimensionless number correlates flow-ratio cut-offs with pump geometry and operating conditions. Throat-entry choking of the secondary flow can be predicted, hence avoided, in designing jet pumps to hand two-phase fluids.

  17. Calculation of two-phase flow in gas turbine combustors

    SciTech Connect

    Tolpadi, A.K.

    1995-10-01

    A method is presented for computing steady two-phase turbulent combusting flow in a gas turbine combustor. The gas phase equations are solved in an Eulerian frame of reference. The two-phase calculations are performed by using a liquid droplet spray combustion a model and treating the motion of the evaporating fuel droplets in a Lagrangian frame of reference. The numerical algorithm employs nonorthogonal curvilinear coordinates, a multigrid iterative solution procedure, the standard k-{epsilon} turbulence model, and a combustion model comprising an assumed shape probability density function and the conserved scalar formulation. The trajectory computation of the fuel provides the source terms for all the gas phase equations. This two-phase model was applied to a real piece of combustion hardware in the form of a modern GE/SNECMA single annular CFM56 turbofan engine combustor. For the purposes of comparison, calculations were also performed by treating the fuel as a single gaseous phase. The effect on the solution of two extreme situations of the fuel as a gas and initially as a liquid was examined. The distribution of the velocity field and the conserved scalar within the combustor, as well as the distribution of the temperature field in the reaction zone and in the exhaust, were all predicted with the combustor operating both at high-power and low-power (ground idle) conditions. The calculated exit gas temperature was compared with test rig measurements. Under both low and high-power conditions, the temperature appeared to show an improved agreement with the measured data when the calculations were performed with the spray model as compared to a single-phase calculation.

  18. Experimental study of a two-phase surface jet

    NASA Astrophysics Data System (ADS)

    Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.

    2013-04-01

    Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses < {u^' } w^' } } rangle decrease when bubbles are injected, indicating turbulence attenuation, and are negative at deeper locations, as turbulent eddies shed downward carry high axial momentum deeper into the flow. Flow visualization reveals that the two-phase jet is lifted with the presence of bubbles and reaches the free surface sooner. Significant bubble coalescence is observed, leading to an increase in mean bubble size as the jet develops. The coalescence near the free surface is particularly strong, due to the time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.

  19. Two-phase methane fermentation of municipal-industrial sludge

    SciTech Connect

    Ghosh, S.; Sajjad, A.

    1984-01-01

    This paper presents the development of an innovative two-phase methane fermentation process that provided a mesophilic methane yield of about 0.5 SCM/kg VS (8 SCF/lb VS) added from digestion of a municipal-industrial sludge at a system hydraulic residence time (HRT) of about 6 days compared with a yield of 0.22 to 0.31 SCM/kg VS (3.5 to 5.0 SCF/lb VS) added obtained from single-stage conventional high-rate digesters operated at HRT's of 10 to 20 days. This innovative process has substantive beneficial impact on the production of net energy and availability of surplus digester methane for sale or conversion to such other energy forms as substitute natural gas, electric power, hot water, or low-pressure steam. The research was conducted with a high-metal-content and difficult-to-treat primary sludge from the South Essex Sewerage District (SESD) water pollution control plant, Salem, Massachusetts. Wastewaters received at the plant include 40 to 60 vol % industrial wastes, the remainder being residential liquid wastes. Incineration, which was the sludge disposal process at the plant, is now unacceptable because it leads to the production of hexavalent chromium and other oxidized metals, and the incinerator ash containing these materials cannot be landfilled. The two-phase process does not generate oxidized species such as Cr/sup 6 +/, produces renewable energy and a highly stabilized residue, and could be an answer to the sludge disposal problems of SESD or other sewage districts. Results of bench-scale process development work are presented here. Design and operation of a 7500 L/day (2000 gal/day) two-phase pilot plant will be started this year with support from the above industrial sponsors and other governmental and public agencies. 6 references, 1 figure, 5 tables.

  20. Laboratory experiment on poroelastic behavior of Berea sandstone under two-phase fluid flow condition

    NASA Astrophysics Data System (ADS)

    Goto, H.; Aichi, M.; Tokunaga, T.; Yamamoto, H.; Ogawa, T.; Aoki, T.

    2013-12-01

    Coupled two-phase fluid flow and deformation of Berea sandstone was discussed through laboratory experiments and numerical simulation. In the experiment, a triaxial compression apparatus with flow pipes to pass fluids through a rock sample was used. The experimental procedures were as follows. Firstly, external stresses close to hydrostatic condition were applied to a water saturated cylindrical Berea sandstone sample. Then, compressed air was infiltrated from the bottom of the sample. During the experiment, both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were measured. Both strains showed sudden extensions after a few seconds, and monotonically extended thereafter. The volumetric discharge of water showed that air breakthrough occurred in around 100 seconds after the commencement of the air injection. Numerical simulations based on thermodynamically consistent constitutive equations were conducted in order to quantitatively analyze the experimental results. In a simulation in which the material was assumed to be homogeneous isotropic, the axial strain at half the height of the sample and the volumetric discharge of water at the outlet were reproduced well by using reasonable parameters, while that was not the case with the circumferential strain at half the height of the sample. On the other hand, in a simulation in which anisotropy of the material was introduced, all experimental data were reproduced well by using reasonable parameters. This result is reasonable because Berea sandstone is well known to be anisotropic under such Terzaghi effective stress condition as used in our experiment, i.e., 3.0 MPa (Hart and Wang, 1999; Hart, 2000). Our results indicate that the theory of poroelasticity for two-phase fluid system can explain the strain behavior of porous media for two-phase fluid flow observed in laboratory experiments.

  1. Volumetric monitoring of aqueous two phase system droplets using time-lapse optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bathany, C.; Ahn, Y.; Takayama, S.; Jung, W.

    2016-02-01

    We present a volumetric monitoring method to observe the morphological changes of aqueous two phase system (ATPS) droplets in a microfluidic system. Our method is based on time-lapse optical coherence tomography (OCT) which allows the study of the dynamics of ATPS droplets while visualizing their 3D structures and providing quantitative information on the droplets. In this study, we monitored the process of rehydration and deformation of an ATPS droplet in a microfluidic system and quantified the changes of its volume and velocity under both static and dynamic fluid conditions. Our results indicate that time-lapse OCT is a very promising tool to evaluate the unprecedented features of droplet-based microfluidics.

  2. Radiation heat transfer in two-phase media

    SciTech Connect

    Adzerikho, K.S.

    1988-05-01

    The state of the art of approximate and numerical methods of the theory of radiation heat transfer is analyzed. The principles for producing engineering methods of computing the radiation heat-transfer characteristics in power plants are examined. These principles include: the integration of the transport equation, computing the radiation heat transfer in nonisothermal two-phase media bounded by emitting and reflecting surfaces, the thermal efficiency of screens as a function of the optical properties of the boundary surfaces and the furnace medium, the scattering processes, temperature distribution, and a program NOTAK in the FORTRAN-IV language.

  3. Synthesis of Galacto-oligosaccharide in Two-phase System.

    PubMed

    Gui, Li-Qiong; Wei, Dong-Zhi; Cui, Yu-Min; Yu, Jun-Tang

    1999-01-01

    35 of the total products of galacto-oligosaccharide (GOS) could be obtained from the two-phase system with cyclohexane and ethyl acetate as bulk organic phases and 15% phosphate buffer as aqueous phase. The effects of temperature pH of buffer lactose concentration galactose and glucose and the immobilization of enzyme on the synthesis of GOS were studied. It was found that the reaction temperature and initial lactose concentration didn'thave obvious effects while the addition of glucose and galactose somewhat affected the GOS yield and the GOS yields could reach 64.78% with lactase immobilized on resin D345. PMID:12136210

  4. TOPLOSS - A thermal analyzer for two-phase loops

    NASA Astrophysics Data System (ADS)

    Schwarzott, Walter; Faust, Thomas; Rothmeyer, Markus

    Two phase flow cooling loops are an answer to the new thermal requirements established by future space missions which tend to larger size and higher power demand. The software package TOPLOSS simulates the thermal, fluid- and thermodynamic behavior of two and single phase cooling loops of arbitrary geometry including all relevant components. TOPLOSS structure is modular, the different loop components are modeled in separate adaptable subroutines. The fluid properties module is an improved version of GASP, a NASA-developed fluid property program. TOPLOSS is linked to the thermal network analyzer SINDA which is used to manage the thermal boundaries for the loop. An example illustrates TOPLOSS performance.

  5. A real two-phase submarine debris flow and tsunami

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-09-01

    The general two-phase debris flow model proposed by Pudasaini [1] is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  6. Investigation of two phase (oil, tensid) flow in capillaries

    NASA Astrophysics Data System (ADS)

    Szekely, G.

    1980-07-01

    Capillary flow phenomena were studied. The feasibility of a crude extraction method which can increase the eventual output of existing oil wells is discussed. A gas/water solution together with other additives is pumped into the well. This solution acts on the crude trapped in permeable stone formations. The state of the trapped oil is similar to oil in a capillary tube. Using laboratory apparatus, the characteristic two phase flow resulting when the tensid solution forces the oil out of the capillary was demonstrated.

  7. Modeling of density loaded two-phase flows

    SciTech Connect

    Mostafa, A.A. )

    1991-01-01

    In this paper a mathematical model for densely loaded particle-laden flows is proposed to account for particle collisions and particle-turbulence interaction. The coupled conservation equations are based on a Eulerian scheme for the gas and a stochastic Lagrangian technique for the particles. The model was validated against the experimental data of densely loaded particle-laden jet flows. The comparison between the computational results and measurements suggested that both turbulence modulation and particle collisions are important and should be considered in an accurate analysis of dense two-phase flows.

  8. A real two-phase submarine debris flow and tsunami

    SciTech Connect

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  9. Neutron Imaging of a Two-Phase Refrigerant Flow

    SciTech Connect

    Geoghegan, Patrick J

    2015-01-01

    Void fraction remains a crucial parameter in understanding and characterizing two-phase flow. It appears as a key variable in both heat transfer and pressure drop correlations of two-phase flows, from the macro to micro- channel scale. Void fraction estimation dictates the sizing of both evaporating and condensing phase change heat exchangers, for example. In order to measure void fraction some invasive approach is necessary. Typically, visualization is achieved either downstream of the test section or on top by machining to expose the channel. Both approaches can lead to inaccuracies. The former assumes the flow will not be affected moving from the heat exchanger surface to the transparent section. The latter distorts the heat flow path. Neutron Imaging can provide a non-invasive measurement because metals such as Aluminum are essentially transparent to neutrons. Hence, if a refrigerant is selected that provides suitable neutron attenuation; steady-state void fraction measurements in two-phase flow are attainable in-situ without disturbing the fluid flow or heat flow path. Neutron Imaging has been used in the past to qualitatively describe the flow in heat exchangers in terms of maldistributions without providing void fraction data. This work is distinguished from previous efforts because the heat exchanger has been designed and the refrigerant selected to avail of neutron imaging. This work describes the experimental flow loop that enables a boiling two-phase flow; the heat exchanger test section and downstream transparent section are described. The flow loop controls the degree of subcooling and the refrigerant flowrate. Heating cartridges embedded in the test section are employed to control the heat input. Neutron-imaged steady-state void fraction measurements are captured and compared to representative high-speed videography captured at the visualization section. This allows a qualitative comparison between neutron imaged and traditional techniques. The

  10. Modulating patterns of two-phase flow with electric fields

    PubMed Central

    Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K.; Turecek, Frantisek; Chiu, Daniel T.

    2014-01-01

    This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior. PMID:25379091

  11. Two-phase flow measurement based on oblique laser scattering

    NASA Astrophysics Data System (ADS)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.

  12. Centrifugal inertia effects in two-phase face seal films

    NASA Technical Reports Server (NTRS)

    Basu, P.; Hughes, W. F.; Beeler, R. M.

    1987-01-01

    A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.

  13. Separation of aqueous two-phase polymer systems in microgravity

    NASA Technical Reports Server (NTRS)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  14. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    PubMed Central

    Gu, Hao; Duits, Michel H. G.; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  15. A Two-Phase Model for Shocked Porous Explosive

    NASA Astrophysics Data System (ADS)

    Lambourn, Brian; Handley, Caroline

    2015-06-01

    Mesoscale calculations of hotspots created by a shock wave in a porous explosive show that the hotspots do not cool in times of order at least a microsecond. This suggests that single phase models of porosity like the snowplough model, which assume that a shocked porous explosive jumps to a point on the Hugoniot that is instantaneously in thermodynamic equilibrium, are not correct. A two-phased model of shocked porous explosive has been developed in which a small fraction of the material, representing the hotspots, has a high temperature but the bulk of the material is cooler than the temperature calculated by, for example, the snowplough model. In terms of the mean state of the material, it is shown that the two-phase model only minimally affects the pressure - volume and shock velocity - particle velocity plot of the Hugoniot, but that the mean state lies slightly off the equation of state surface. The results of the model will be compared with two dimensional mesoscale calculations.

  16. Numerical calculation of two-phase turbulent jets

    SciTech Connect

    Saif, A.A.

    1995-05-01

    Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.

  17. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles.

    PubMed

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  18. Ultrasonic wave propagation in two-phase media: Spherical inclusions

    NASA Technical Reports Server (NTRS)

    Fu, L. S.; Sheu, Y. C.

    1983-01-01

    The scattering theory, recently developed via the extended method of equivalent inclusion, is used to study the propagation of time-harmonic waves in two-phase media of elastic matrix with randomly distributed elastic spherical inclusion materials. The elastic moduli and mass density of the composite medium are determined as functions of frequencies when given properties and concentration of the spheres and the matrix. Velocity and attenuation of ultrasonic waves in two-phase media are determined for cases of distributed spheres and localized damage. An averaging theorem that requires the equivalence of the strain energy and the kinetic energy between the effective medium and the original matrix with spherical inhomogeneities is employed to derive the effective moduli and mass density. The functional dependency of these quantities upon frequencies and concentration provides a method of data analysis in ultrasonic evaluation of material properties. Numerical results or moduli, velocity and/or attenuation as functions of concentration of inclusion material, or porosity, are graphically displayed.

  19. Investigation of single-substance horizontal two-phase flow

    SciTech Connect

    Dickinson, D.A.; Maeder, P.F.

    1984-03-01

    Despite the abundance of work in the field of two-phase flow, it seems as though a consensus has not been reached on some of the fundamental points. Although exceptions exist, adequate physical interpretation of the flow seems to be hindered either by complexity of analysis or, in the opposite extreme, the trend toward limited-range analysis and correlations. The dissertation presents the derivation of basic conservation equations for the phases. The combined equations are used to examine the phenomenon of slip and its practical limitations, the Fanno line for single-substance flow and the effect of slip on choking. Equations for critical mass flux in the presence of slip are derived. The Mach, Reynolds and Froude numbers based on conditions at flashing are introduced as the characteristic parameters, and the importance of compressibility in single-substance two-phase flow is discussed. Experimental measurements of pressure change and void fraction for flow in the highly compressible range (.5 < Ma < 1) are presented. The working fluid is Refrigerant R-114, at room temperature, in a test section of diameter 5 cm and length 8 m. The effect of the Froude and Mach numbers is examined. The experimental facility is operated intermittently with running times of approximately two minutes and is instrumented for rapid measurements using a computer data acquisition and control system. A description of the facility and procedure is provided.

  20. Theory and tests of two-phase turbines

    SciTech Connect

    Elliot, D.G.

    1982-03-15

    Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.

  1. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  2. Droplets formation and merging in two-phase flow microfluidics.

    PubMed

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  3. Two-phase flow effect on hybrid rocket combustion

    NASA Astrophysics Data System (ADS)

    Lin, Jih Lung

    2009-10-01

    This study numerically explores the aerodynamic and combustion processes in a hybrid rocket combustor, under a two-phase turbulent flow environment, considering the evaporation, combustion and drag of droplet and droplet ignition criterion. The predictions of temperature, reaction mode, reactant mass fraction, velocity, oxidizer consumption, fuel regression and droplet number distribution enhance understanding of the two-phase combustion aerodynamics inside the combustor. A parametric study of the inlet spray pattern, including spray cone angle, spray injection velocity and droplet size, is performed to improve the operation of reactant mixing and higher fuel regression rate. Analytical results indicate that both the oxidizer consumption and the fuel regression increase with increasing spray cone angle and spray injection velocity in the practical range of operation. However, for stoichiometric operation, the superior spray cone angle is within 20-60°, and spray injection velocity within 20-40 m/s, under a volume-mean droplet radius of 50 μm. The power dependence of solid-fuel regression on total mass flux is found to decrease with rising of droplet mean size.

  4. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    PubMed Central

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  5. Experimental study of phase separation in dividing two phase flow

    SciTech Connect

    Qian Yong; Yang Zhilin; Xu Jijun

    1996-12-31

    Experimental study of phase separation of air-water two phase bubbly, slug flow in the horizontal T-junction is carried out. The influences of the inlet mass quality X1, mass extraction rate G3/G1, and fraction of extracted liquid QL3/QL1 on phase separation characteristics are analyzed. For the first time, the authors have found and defined pulsating run effect by the visual experiments, which show that under certain conditions, the down stream flow of the T-junction has strangely affected the phase redistribution of the junction, and firstly point out that the downstream geometric condition is very important to the study of phase separation phenomenon of two-phase flow in a T-junction. This kind of phenomenon has many applications in the field of energy, power, petroleum and chemical industries, such as the loss of coolant accident (LOCA) caused by a small break in a horizontal coolant pipe in nuclear reactor, and the flip-flop effect in the natural gas transportation pipeline system, etc.

  6. Two-Phase Mass Flow Measurement Using Noise Analysis

    SciTech Connect

    Evans, Robert Pugmire; Keller, Joseph George; Stephens, A. G.; Blotter, J.

    1999-05-01

    The purpose of this work is to develop a low cost, non-intrusive, mass flow measurement sensor for two-phase flow conditions in geothermal applications. The emphasis of the work to date has been on a device that will monitor two-phase flow in the above-ground piping systems. The flashing brines have the potential for excessive scaling and corrosion of exposed surfaces, which can reduce the effectiveness of any measurement device. A major objective in the work has been the development of an instrument that is less susceptible to the scaling and corrosion effects. The focus of the project efforts has been on transducer noise analysis, a technology initiated at the INEEL. A transducer sensing a process condition will have, in addition to its usual signal, various noise components superimposed upon the primary signal that can be related to flow. Investigators have proposed that this technique be applied to steam and liquid water flow mixtures where the signal from an accelerometer mounted on an external pipe surface is evaluated to determine flow rate.

  7. Ultrasonic wave propagation in two-phase media - Spherical inclusions

    NASA Technical Reports Server (NTRS)

    Fu, L. S.; Sheu, Y. C.

    1984-01-01

    The scattering theory, recently developed via the extended method of equivalent inclusion, is used to study the propagation of time-harmonic waves in two-phase media of elastic matrix with randomly distributed elastic spherical inclusion materials. The elastic moduli and mass density of the composite medium are determined as functions of frequencies when given properties and concentration of the spheres and the matrix. Velocity and attenuation of ultrasonic waves in two-phase media are determined for cases of distributed spheres and localized damage. An averaging theorem that requires the equivalence of the strain energy and the kinetic energy between the effective medium and the original matrix with spherical inhomogeneities is employed to derive the effective moduli and mass density. The functional dependency of these quantities upon frequencies and concentration provides a method of data analysis in ultrasonic evaluation of material properties. Numerical results or moduli, velocity and/or attenuation as functions of concentration of inclusion material, or porosity, are graphically displayed.

  8. Nondestructive ultrasonic characterization of two-phase materials. Final report

    SciTech Connect

    Salama, K.

    1987-01-01

    The development of ultrasonic methods for the nondestructive characterization of mechanical properties of two phase engineering materials are described. The primary goal was to establish relationships between the nonlinearity parameter and the percentage of solid solution phase in two phase systems such as heat treatable aluminum alloys. The acoustoelastic constant was also measured on these alloys. A major advantage of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes the method more applicable to inservice nondestructive characterization. The results obtained on the heat treatable 7075 and the work hardenable 5086 and 5456 aluminum alloys show that both the acoustoelastic constant and the acoustic nonlinearity parameter change considerable with the volume fraction of second phase precipitates in these aluminum alloys. A mathematical model was also developed to relate the effective acoustic nonlinearity parameter to volume fraction of second phase precipitates in an alloy. The equation is approximated to within experimental error by a linear expression for volume fractions up to approx. 10%.

  9. Rapid mixing using two-phase hydraulic focusing in microchannels.

    PubMed

    Wu, Zhigang; Nguyen, Nam-Trung

    2005-03-01

    Rapid mixing is important in biomedical analysis. In this study, rapid mixing is obtained through two-phase hydraulic focusing in microchannels. Two mixing streams are focused by two sheath streams. Assuming a laminar flow in the channel, the spreading behavior of the two immiscible fluids is modeled and solved analytically. The results show that both viscosity ratio and flow rate ratio between the sheath flow and the sample flow can affect the focusing ratio. Thus, the mixing path of the sample flows can be adjusted by either viscosity ratio or flow rate ratio. Furthermore, an analytical model was proposed and solved for convective/diffusive mixing between the sample streams. According to this model, the focusing ratio is a key parameter for rapid mixing. A fully polymeric micro mixer was fabricated and tested for verification of the presented analytical models. The micromixer was fabricated by laser micromachining and adhesive bonding. The characterization results show the promising potential of mixing in microscale using two-phase hydraulic focusing. PMID:15834516

  10. Two-phase Flow Characteristics in a Gas-Flow Channel of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Cho, Sung Chan

    Fuel cells, converting chemical energy of fuels directly into electricity, have become an integral part of alternative energy and energy efficiency. They provide a power source of high energy-conversion efficiency and zero emission, meeting the critical demands of a rapidly growing society. The proton exchange membrane (PEM) fuel cells, also called polymer electrolyte fuel cells (PEFCs), are the major type of fuel cells for transportation, portable and small-scale stationary applications. They provide high-power capability, work quietly at low temperatures, produce only water byproduct and no emission, and can be compactly assembled, making them one of the leading candidates for the next generation of power sources. Water management is one of the key issues in PEM fuel cells: appropriate humidification is critical for the ionic conductivity of membrane while excessive water causes flooding and consequently reduces cell performance. For efficient liquid water removal from gas flow channels of PEM fuel cells, in-depth understanding on droplet dynamics and two-phase flow characteristics is required. In this dissertation, theoretical analysis, numerical simulation, and experimental testing with visualization are carried out to understand the two-phase flow characteristics in PEM fuel cell channels. Two aspects of two-phase phenomena will be targeted: one is the droplet dynamics at the GDL surface; the other is the two-phase flow phenomena in gas flow channels. In the former, forces over a droplet, droplet deformation, and detachment are studied. Analytical solutions of droplet deformation and droplet detachment velocity are obtained. Both experiments and numerical simulation are conducted to validate analytical results. The effects of contact angle, channel geometry, superficial air velocity, properties of gas phase fluids are examined and criteria for the detachment velocity are derived to relate the Reynolds number to the Weber number. In the latter, two-phase flow