Sample records for deforming patient model

  1. Estimating patient-specific and anatomically correct reference model for craniomaxillofacial deformity via sparse representation

    PubMed Central

    Wang, Li; Ren, Yi; Gao, Yaozong; Tang, Zhen; Chen, Ken-Chung; Li, Jianfu; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Xia, James J.; Shen, Dinggang

    2015-01-01

    Purpose: A significant number of patients suffer from craniomaxillofacial (CMF) deformity and require CMF surgery in the United States. The success of CMF surgery depends on not only the surgical techniques but also an accurate surgical planning. However, surgical planning for CMF surgery is challenging due to the absence of a patient-specific reference model. Currently, the outcome of the surgery is often subjective and highly dependent on surgeon’s experience. In this paper, the authors present an automatic method to estimate an anatomically correct reference shape of jaws for orthognathic surgery, a common type of CMF surgery. Methods: To estimate a patient-specific jaw reference model, the authors use a data-driven method based on sparse shape composition. Given a dictionary of normal subjects, the authors first use the sparse representation to represent the midface of a patient by the midfaces of the normal subjects in the dictionary. Then, the derived sparse coefficients are used to reconstruct a patient-specific reference jaw shape. Results: The authors have validated the proposed method on both synthetic and real patient data. Experimental results show that the authors’ method can effectively reconstruct the normal shape of jaw for patients. Conclusions: The authors have presented a novel method to automatically estimate a patient-specific reference model for the patient suffering from CMF deformity. PMID:26429255

  2. Models of determining deformations

    NASA Astrophysics Data System (ADS)

    Gladilin, V. N.

    2016-12-01

    In recent years, a lot of functions designed to determine deformation values that occur mostly as a result of settlement of structures and industrial equipment. Some authors suggest such advanced mathematical functions approximating deformations as general methods for the determination of deformations. The article describes models of deformations as physical processes. When comparing static, cinematic and dynamic models, it was found that the dynamic model reflects the deformation of structures and industrial equipment most reliably.

  3. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    PubMed

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Physiome-model-based state-space framework for cardiac deformation recovery.

    PubMed

    Wong, Ken C L; Zhang, Heye; Liu, Huafeng; Shi, Pengcheng

    2007-11-01

    To more reliably recover cardiac information from noise-corrupted, patient-specific measurements, it is essential to employ meaningful constraining models and adopt appropriate optimization criteria to couple the models with the measurements. Although biomechanical models have been extensively used for myocardial motion recovery with encouraging results, the passive nature of such constraints limits their ability to fully count for the deformation caused by active forces of the myocytes. To overcome such limitations, we propose to adopt a cardiac physiome model as the prior constraint for cardiac motion analysis. The cardiac physiome model comprises an electric wave propagation model, an electromechanical coupling model, and a biomechanical model, which are connected through a cardiac system dynamics for a more complete description of the macroscopic cardiac physiology. Embedded within a multiframe state-space framework, the uncertainties of the model and the patient's measurements are systematically dealt with to arrive at optimal cardiac kinematic estimates and possibly beyond. Experiments have been conducted to compare our proposed cardiac-physiome-model-based framework with the solely biomechanical model-based framework. The results show that our proposed framework recovers more accurate cardiac deformation from synthetic data and obtains more sensible estimates from real magnetic resonance image sequences. With the active components introduced by the cardiac physiome model, cardiac deformations recovered from patient's medical images are more physiologically plausible.

  5. Deformation-Aware Log-Linear Models

    NASA Astrophysics Data System (ADS)

    Gass, Tobias; Deselaers, Thomas; Ney, Hermann

    In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.

  6. Biomechanical Model for Computing Deformations for Whole-Body Image Registration: A Meshless Approach

    PubMed Central

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam

    2016-01-01

    Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945

  7. Biomechanical model for computing deformations for whole-body image registration: A meshless approach.

    PubMed

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam

    2016-12-01

    Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time-consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2D models and computing single organ deformations. In this study, 3D comprehensive patient-specific nonlinear biomechanical models implemented using meshless Total Lagrangian explicit dynamics algorithms are applied to predict a 3D deformation field for whole-body image registration. Unlike a conventional approach that requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the fuzzy c-means algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Deformations of the Almheiri-Polchinski model

    NASA Astrophysics Data System (ADS)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh

    2017-03-01

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS2 metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  9. Modeling Patient-Specific Deformable Mitral Valves.

    PubMed

    Ginty, Olivia; Moore, John; Peters, Terry; Bainbridge, Daniel

    2018-06-01

    Medical imaging has advanced enormously over the last few decades, revolutionizing patient diagnostics and care. At the same time, additive manufacturing has emerged as a means of reproducing physical shapes and models previously not possible. In combination, they have given rise to 3-dimensional (3D) modeling, an entirely new technology for physicians. In an era in which 3D imaging has become a standard for aiding in the diagnosis and treatment of cardiac disease, this visualization now can be taken further by bringing the patient's anatomy into physical reality as a model. The authors describe the generalized process of creating a model of cardiac anatomy from patient images and their experience creating patient-specific dynamic mitral valve models. This involves a combination of image processing software and 3D printing technology. In this article, the complexity of 3D modeling is described and the decision-making process for cardiac anesthesiologists is summarized. The management of cardiac disease has been altered with the emergence of 3D echocardiography, and 3D modeling represents the next paradigm shift. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Emotional and behavioral reactions to facially deformed patients before and after craniofacial surgery.

    PubMed

    Barden, R C; Ford, M E; Wilhelm, W M; Rogers-Salyer, M; Salyer, K E

    1988-09-01

    The present experiment investigated whether observers' emotional and behavioral reactions to facially deformed patients could be substantially improved by surgical procedures conducted by well-trained specialists in an experienced multidisciplinary team. Also investigated was the hypothesis that emotional states mediate the effects of physical attractiveness and facial deformity on social interaction. Twenty patients between the ages of 3 months and 17 years were randomly selected from over 2000 patients' files of Kenneth E. Salyer of Dallas, Texas. Patient diagnoses included facial clefts, hypertelorism, Treacher Collins syndrome, and craniofacial dysostoses (Crouzon's and Apert's syndromes). Rigorously standardized photographs of patients taken before and after surgery were shown to 22 "naive" raters ranging in age from 18 to 54 years. Raters were asked to predict their emotional and behavioral responses to the patients. These ratings indicated that observers' behavioral reactions to facially deformed children and adolescents would be more positive following craniofacial surgery. Similarly, the ratings indicated that observers' emotional reactions to these patients would be more positive following surgery. The results are discussed in terms of current sociopsychologic theoretical models for the effects of attractiveness on social interaction. A new model is presented that implicates induced emotional states as a mediating process in explaining the effects of attractiveness and facial deformity on the quality of social interactions. Limitations of the current investigation and directions for future research are also discussed.

  11. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  12. Spinal deformity in patients with Sotos syndrome (cerebral gigantism).

    PubMed

    Tsirikos, Athanasios I; Demosthenous, Nestor; McMaster, Michael J

    2009-04-01

    Retrospective review of a case series. To present the clinical characteristics and progression of spinal deformity in patients with Sotos syndrome. There is limited information on the development of spinal deformity and the need for treatment in this condition. The medical records and spinal radiographs of 5 consecutive patients were reviewed. All patients were followed to skeletal maturity (mean follow-up: 6.6 y). The mean age at diagnosis of spinal deformity was 11.9 years (range: 5.8 to 14.5) with 4 patients presenting in adolescence. The type of deformity was not uniform. Two patients presented in adolescence with relatively small and nonprogressive thoracolumbar and lumbar scoliosis, which required observation but no treatment until the end of spinal growth. Three patients underwent spinal deformity correction at a mean age of 11.7 years (range: 6 to 15.4). The first patient developed a double structural thoracic and lumbar scoliosis and underwent a posterior spinal arthrodesis extending from T3 to L4. Five years later, she developed marked degenerative changes at the L4/L5 level causing symptomatic bilateral lateral recess stenosis and affecting the L5 nerve roots. She underwent spinal decompression at L4/L5 and L5/S1 levels followed by extension of the fusion to the sacrum. The second patient developed a severe thoracic kyphosis and underwent a posterior spinal arthrodesis. The remaining patient presented at the age of 5.9 years with a severe thoracic kyphoscoliosis and underwent a 2-stage antero-posterior spinal arthrodesis. The development of spinal deformity is a common finding in children with Sotos syndrome and in our series it occurred in adolescence in 4 out of 5 patients. There is significant variability on the pattern of spine deformity, ranging from a scoliosis through kyphoscoliosis to a pure kyphosis, and also the age at presentation and need for treatment.

  13. A finite element head and neck model as a supportive tool for deformable image registration.

    PubMed

    Kim, Jihun; Saitou, Kazuhiro; Matuszak, Martha M; Balter, James M

    2016-07-01

    A finite element (FE) head and neck model was developed as a tool to aid investigations and development of deformable image registration and patient modeling in radiation oncology. Useful aspects of a FE model for these purposes include ability to produce realistic deformations (similar to those seen in patients over the course of treatment) and a rational means of generating new configurations, e.g., via the application of force and/or displacement boundary conditions. The model was constructed based on a cone-beam computed tomography image of a head and neck cancer patient. The three-node triangular surface meshes created for the bony elements (skull, mandible, and cervical spine) and joint elements were integrated into a skeletal system and combined with the exterior surface. Nodes were additionally created inside the surface structures which were composed of the three-node triangular surface meshes, so that four-node tetrahedral FE elements were created over the whole region of the model. The bony elements were modeled as a homogeneous linear elastic material connected by intervertebral disks. The surrounding tissues were modeled as a homogeneous linear elastic material. Under force or displacement boundary conditions, FE analysis on the model calculates approximate solutions of the displacement vector field. A FE head and neck model was constructed that skull, mandible, and cervical vertebrae were mechanically connected by disks. The developed FE model is capable of generating realistic deformations that are strain-free for the bony elements and of creating new configurations of the skeletal system with the surrounding tissues reasonably deformed. The FE model can generate realistic deformations for skeletal elements. In addition, the model provides a way of evaluating the accuracy of image alignment methods by producing a ground truth deformation and correspondingly simulated images. The ability to combine force and displacement conditions provides

  14. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  15. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.

    PubMed

    Tonutti, Michele; Gras, Gauthier; Yang, Guang-Zhong

    2017-07-01

    Accurate reconstruction and visualisation of soft tissue deformation in real time is crucial in image-guided surgery, particularly in augmented reality (AR) applications. Current deformation models are characterised by a trade-off between accuracy and computational speed. We propose an approach to derive a patient-specific deformation model for brain pathologies by combining the results of pre-computed finite element method (FEM) simulations with machine learning algorithms. The models can be computed instantaneously and offer an accuracy comparable to FEM models. A brain tumour is used as the subject of the deformation model. Load-driven FEM simulations are performed on a tetrahedral brain mesh afflicted by a tumour. Forces of varying magnitudes, positions, and inclination angles are applied onto the brain's surface. Two machine learning algorithms-artificial neural networks (ANNs) and support vector regression (SVR)-are employed to derive a model that can predict the resulting deformation for each node in the tumour's mesh. The tumour deformation can be predicted in real time given relevant information about the geometry of the anatomy and the load, all of which can be measured instantly during a surgical operation. The models can predict the position of the nodes with errors below 0.3mm, beyond the general threshold of surgical accuracy and suitable for high fidelity AR systems. The SVR models perform better than the ANN's, with positional errors for SVR models reaching under 0.2mm. The results represent an improvement over existing deformation models for real time applications, providing smaller errors and high patient-specificity. The proposed approach addresses the current needs of image-guided surgical systems and has the potential to be employed to model the deformation of any type of soft tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Statistical modeling of interfractional tissue deformation and its application in radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Vile, Douglas J.

    In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model's ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author's knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup

  17. Cervical Disc Deformation During Flexion–Extension in Asymptomatic Controls and Single-Level Arthrodesis Patients

    PubMed Central

    Anderst, William; Donaldson, William; Lee, Joon; Kang, James

    2016-01-01

    The aim of this study was to characterize cervical disc deformation in asymptomatic subjects and single-level arthrodesis patients during in vivo functional motion. A validated model-based tracking technique determined vertebral motion from biplane radiographs collected during dynamic flexion–extension. Level-dependent differences in disc compression–distraction and shear deformation were identified within the anterior and posterior annulus (PA) and the nucleus of 20 asymptomatic subjects and 15 arthrodesis patients using a mixed-model statistical analysis. In asymptomatic subjects, disc compression and shear deformation per degree of flexion–extension progressively decreased from C23 to C67. The anterior and PA experienced compression–distraction deformation of up to 20%, while the nucleus region was compressed between 0% (C67) and 12% (C23). Peak shear deformation ranged from 16% (at C67) to 33% (at C45). In the C5–C6 arthrodesis group, C45 discs were significantly less compressed than in the control group in all disc regions (all p ≤ 0.026). In the C6–C7 arthrodesis group, C56 discs were significantly less compressed than the control group in the nucleus (p = 0.023) and PA (p = 0.014), but not the anterior annulus (AA; p = 0.137). These results indicate in vivo disc deformation is level-dependent, and single-level anterior arthrodesis alters the compression–distraction deformation in the disc immediately superior to the arthrodesis. PMID:23861160

  18. Evaluation of deformable image registration and a motion model in CT images with limited features.

    PubMed

    Liu, F; Hu, Y; Zhang, Q; Kincaid, R; Goodman, K A; Mageras, G S

    2012-05-07

    Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.

  19. Progression of spinal deformity in wheelchair-dependent patients with Duchenne muscular dystrophy who are not treated with steroids: coronal plane (scoliosis) and sagittal plane (kyphosis, lordosis) deformity.

    PubMed

    Shapiro, F; Zurakowski, D; Bui, T; Darras, B T

    2014-01-01

    We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p < 0.001). Scoliosis developed in virtually all DMD patients not receiving steroids once they became wheelchair-dependent, and the degree of deformity deteriorated over time. In general, scoliosis increased at a constant rate, beginning at the time of wheelchair-dependency (p < 0.001). In some there was no scoliosis for as long as three years after dependency, but scoliosis then developed and increased at a constant rate. Some patients showed a rapid increase in the rate of progression of the curve after a few years - the clinical phenomenon of a rapidly collapsing curve over a few months. A sagittal plane kyphotic deformity was seen in 37 of 60 patients (62%) with appropriate radiographs, with 23 (38%) showing lumbar lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and

  20. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  1. An electromechanical based deformable model for soft tissue simulation.

    PubMed

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  2. SU-F-J-138: An Extension of PCA-Based Respiratory Deformation Modeling Via Multi-Linear Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Pitsianis, N

    Purpose: To address and lift the limited degree of freedom (DoF) of globally bilinear motion components such as those based on principal components analysis (PCA), for encoding and modeling volumetric deformation motion. Methods: We provide a systematic approach to obtaining a multi-linear decomposition (MLD) and associated motion model from deformation vector field (DVF) data. We had previously introduced MLD for capturing multi-way relationships between DVF variables, without being restricted by the bilinear component format of PCA-based models. PCA-based modeling is commonly used for encoding patient-specific deformation as per planning 4D-CT images, and aiding on-board motion estimation during radiotherapy. However, themore » bilinear space-time decomposition inherently limits the DoF of such models by the small number of respiratory phases. While this limit is not reached in model studies using analytical or digital phantoms with low-rank motion, it compromises modeling power in the presence of relative motion, asymmetries and hysteresis, etc, which are often observed in patient data. Specifically, a low-DoF model will spuriously couple incoherent motion components, compromising its adaptability to on-board deformation changes. By the multi-linear format of extracted motion components, MLD-based models can encode higher-DoF deformation structure. Results: We conduct mathematical and experimental comparisons between PCA- and MLD-based models. A set of temporally-sampled analytical trajectories provides a synthetic, high-rank DVF; trajectories correspond to respiratory and cardiac motion factors, including different relative frequencies and spatial variations. Additionally, a digital XCAT phantom is used to simulate a lung lesion deforming incoherently with respect to the body, which adheres to a simple respiratory trend. In both cases, coupling of incoherent motion components due to a low model DoF is clearly demonstrated. Conclusion: Multi

  3. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside amore » given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts

  4. Meshless Modeling of Deformable Shapes and their Motion

    PubMed Central

    Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.

    2010-01-01

    We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614

  5. High prevalence of morphometric vertebral deformities in patients with inflammatory bowel disease.

    PubMed

    Heijckmann, Anna Caroline; Huijberts, Maya S P; Schoon, Erik J; Geusens, Piet; de Vries, Jolanda; Menheere, Paul P C A; van der Veer, Eveline; Wolffenbuttel, Bruce H R; Stockbrugger, Reinhold W; Dumitrescu, Bianca; Nieuwenhuijzen Kruseman, Arie C

    2008-08-01

    Earlier studies have documented that the prevalence of decreased bone mineral density (BMD) is elevated in patients with inflammatory bowel disease. The objective of this study was to investigate the prevalence of vertebral deformities in inflammatory bowel disease patients and their relation with BMD and bone turnover. One hundred and nine patients with Crohn's disease (CD) and 72 with ulcerative colitis (UC) (age 44.5+/-14.2 years) were studied. BMD of the hip (by dual X-ray absorptiometry) was measured and a lateral single energy densitometry of the spine for assessment of vertebral deformities was performed. Serum markers of bone resorption (carboxy-terminal cross-linked telopeptide of type I collagen) and formation (procollagen type I amino-terminal propeptide) were measured, and determinants of prevalent vertebral deformities were assessed using logistic regression analysis. Vertebral deformities were found in 25% of both CD and UC patients. Comparing patients with and without vertebral deformities, no significant difference was found between Z-scores and T-scores of BMD, or levels of serum carboxy-terminal cross-linked telopeptide of type I collagen and serum procollagen type I amino-terminal propeptide. Using logistic regression analysis the only determinant of any morphometric vertebral deformity was sex. The presence of multiple vertebral deformities was associated with older age and glucocorticoid use. The prevalence of morphometric vertebral deformities is high in CD and UC. Male sex, but neither disease activity, bone turnover markers, clinical risk factors, nor BMD predicted their presence. The determinants for having more than one vertebral deformity were age and glucocorticoid use. This implies that in addition to screening for low BMD, morphometric assessment of vertebral deformities is warranted in CD and UC.

  6. HSR Model Deformation Measurements from Subsonic to Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Erickson, G. E.; Goodman, W. L.; Fleming, G. A.

    1999-01-01

    This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.

  7. Deformation modeling and constitutive modeling for anisotropic superalloys

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    A study of deformation mechanisms in the single crystal superalloy PWA 1480 was conducted. Monotonic and cyclic tests were conducted from 20 to 1093 C. Both (001) and near-(123) crystals were tested, at strain rates of 0.5 and 50 percent/minute. The deformation behavior could be grouped into two temperature regimes: low temperatures, below 760 C; and high temperatures, above 820 to 950 C depending on the strain rate. At low temperatures, the mechanical behavior was very anisotropic. An orientation dependent CRSS, a tension-compression asymmetry, and anisotropic strain hardening were all observed. The material was deformed by planar octahedral slip. The anisotropic properties were correlated with the ease of cube cross-slip, as well as the number of active slip systems. At high temperatures, the material was isotropic, and deformed by homogeneous gamma by-pass. It was found that the temperature dependence of the formation of superlattice-intrinsic stacking faults was responsible for the local minimum in the CRSS of this alloy at 400 C. It was proposed that the cube cross-slip process must be reversible. This was used to explain the reversible tension-compression asymmetry, and was used to study models of cross-slip. As a result, the cross-slip model proposed by Paidar, Pope and Vitek was found to be consistent with the proposed slip reversibility. The results were related to anisotropic viscoplastic constitutive models. The model proposed by Walter and Jordan was found to be capable of modeling all aspects of the material anisotropy. Temperature and strain rate boundaries for the model were proposed, and guidelines for numerical experiments were proposed.

  8. The increased prevalence of cervical spondylosis in patients with adult thoracolumbar spinal deformity.

    PubMed

    Schairer, William W; Carrer, Alexandra; Lu, Michael; Hu, Serena S

    2014-12-01

    Retrospective cohort study. To assess the concomitance of cervical spondylosis and thoracolumbar spinal deformity. Patients with degenerative cervical spine disease have higher rates of degeneration in the lumbar spine. In addition, degenerative cervical spine changes have been observed in adult patients with thoracolumbar spinal deformities. However, to the best of our knowledge, there have been no studies quantifying the association between cervical spondylosis and thoracolumbar spinal deformity in adult patients. Patients seen by a spine surgeon or spine specialist at a single institution were assessed for cervical spondylosis and/or thoracolumbar spinal deformity using an administrative claims database. Spinal radiographic utilization and surgical intervention were used to infer severity of spinal disease. The relative prevalence of each spinal diagnosis was assessed in patients with and without the other diagnosis. A total of 47,560 patients were included in this study. Cervical spondylosis occurred in 13.1% overall, but was found in 31.0% of patients with thoracolumbar spinal deformity (OR=3.27, P<0.0001). Similarly, thoracolumbar spinal deformity was found in 10.7% of patients overall, but was increased at 23.5% in patients with cervical spondylosis (OR=3.26, P<0.0001). In addition, increasing severity of disease was associated with an increased likelihood of the other spinal diagnosis. Patients with both diagnoses were more likely to undergo both cervical (OR=3.23, P<0.0001) and thoracolumbar (OR=4.14, P<0.0001) spine fusion. Patients with cervical spondylosis or thoracolumbar spinal deformity had significantly higher rates of the other spinal diagnosis. This correlation was increased with increased severity of disease. Patients with both diagnoses were significantly more likely to have received a spine fusion. Further research is warranted to establish the cause of this correlation. Clinicians should use this information to both screen and counsel patients

  9. A multi-organ biomechanical model to analyze prostate deformation due to large deformation of the rectum

    NASA Astrophysics Data System (ADS)

    Brock, Kristy K.; Ménard, Cynthia; Hensel, Jennifer; Jaffray, David A.

    2006-03-01

    Magnetic resonance imaging (MRI) with an endorectal receiver coil (ERC) provides superior visualization of the prostate gland and its surrounding anatomy at the expense of large anatomical deformation. The ability to correct for this deformation is critical to integrate the MR images into the CT-based treatment planning for radiotherapy. The ability to quantify and understand the physiological motion due to large changes in rectal filling can also improve the precision of image-guided procedures. The purpose of this study was to understand the biomechanical relationship between the prostate, rectum, and bladder using a finite element-based multi-organ deformable image registration method, 'Morfeus' developed at our institution. Patients diagnosed with prostate cancer were enrolled in the study. Gold seed markers were implanted in the prostate and MR scans performed with the ERC in place and its surrounding balloon inflated to varying volumes (0-100cc). The prostate, bladder, and rectum were then delineated, converted into finite element models, and assigned appropriate material properties. Morfeus was used to assign surface interfaces between the adjacent organs and deform the bladder and rectum from one position to another, obtaining the position of the prostate through finite element analysis. This approach achieves sub-voxel accuracy of image co-registration in the context of a large ERC deformation, while providing a biomechanical understanding of the multi-organ physiological relationship between the prostate, bladder, and rectum. The development of a deformable registration strategy is essential to integrate the superior information offered in MR images into the treatment planning process.

  10. Modeling of spray droplets deformation and breakup

    NASA Technical Reports Server (NTRS)

    Ibrahim, E. A.; Yang, H. Q.; Przekwas, A. J.

    1993-01-01

    A droplet deformation and breakup (DDB) model is proposed to study shear-type mechanism of spray droplets in pure extentional flows. A numerical solution of the DDB model equation is obtained using a fourth-order Runge-Kutta initial-value solver. The predictions of the DDB model as well as semianalytical and the Taylor analogy models are compared with the experimental data (Krzeczkowski, 1980) for shear breakup, which depict the dimensionless deformation of the drop vs dimensionless time.

  11. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    NASA Astrophysics Data System (ADS)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  12. Gait patterns in hemiplegic patients with equinus foot deformity.

    PubMed

    Manca, M; Ferraresi, G; Cosma, M; Cavazzuti, L; Morelli, M; Benedetti, M G

    2014-01-01

    Equinus deformity of the foot is a common feature of hemiplegia, which impairs the gait pattern of patients. The aim of the present study was to explore the role of ankle-foot deformity in gait impairment. A hierarchical cluster analysis was used to classify the gait patterns of 49 chronic hemiplegic patients with equinus deformity of the foot, based on temporal-distance parameters and joint kinematic measures obtained by an innovative protocol for motion assessment in the sagittal, frontal, and transverse planes, synthesized by parametrical analysis. Cluster analysis identified five subgroups of patients with homogenous levels of dysfunction during gait. Specific joint kinematic abnormalities were found, according to the speed of progression in each cluster. Patients with faster walking were those with less ankle-foot complex impairment or with reduced range of motion of ankle-foot complex, that is with a stiff ankle-foot complex. Slow walking was typical of patients with ankle-foot complex instability (i.e., larger motion in all the planes), severe equinus and hip internal rotation pattern, and patients with hip external rotation pattern. Clustering of gait patterns in these patients is helpful for a better understanding of dysfunction during gait and delivering more targeted treatment.

  13. Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities.

    PubMed

    Bogu, V Phanindra; Kumar, Y Ravi; Kumar Khanara, Asit

    2017-01-01

    This computational study explores modelling and finite element study of the implant under Intracranial pressure (ICP) conditions with normal ICP range (7 mm Hg to 15 mm Hg) or increased ICP (>I5 mm Hg). The implant fixation points allow implant behaviour with respect to intracranial pressure conditions. However, increased fixation points lead to variation in deformation and equivalent stress. Finite element analysis is providing a valuable insight to know the deformation and equivalent stress. The patient CT data (Computed Tomography) is processed in Mimics software to get the mesh model. The implant is modelled by using modified reverse engineering technique with the help of Rhinoceros software. This modelling method is applicable for all types of defects including those beyond the middle line and multiple ones. It is designed with eight fixation points and ten fixation points to fix an implant. Consequently, the mechanical deformation and equivalent stress (von Mises) are calculated in ANSYS 15 software with distinctive material properties such as Titanium alloy (Ti6Al4V), Polymethyl methacrylate (PMMA) and polyether-ether-ketone (PEEK). The deformation and equivalent stress results are obtained through ANSYS 15 software. It is observed that Ti6Al4V material shows low deformation and PEEK material shows less equivalent stress. Among all materials PEEK shows noticeably good result. Hence, a concept was established and more clinically relevant results can be expected with implementation of realistic 3D printed model in the future. This will allow physicians to gain knowledge and decrease surgery time with proper planning.

  14. Deformed coset models from gauged WZW actions

    NASA Astrophysics Data System (ADS)

    Park, Q.-Han

    1994-06-01

    A general Lagrangian formulation of integrably deformed G/H-coset models is given. We consider the G/H-coset model in terms of the gauged Wess-Zumino-Witten action and obtain an integrable deformation by adding a potential energy term Tr(gTg -1overlineT) , where algebra elements T, overlineT belong to the center of the algebra h associated with the subgroup H. We show that the classical equation of motion of the deformed coset model can be identified with the integrability condition of certain linear equations which makes the use of the inverse scattering method possible. Using the linear equation, we give a systematic way to construct infinitely many conserved currents as well as soliton solutions. In the case of the parafermionic SU(2)/U(1)-coset model, we derive n-solitons and conserved currents explicitly.

  15. Numerical modeling of the Indo-Australian intraplate deformation

    NASA Astrophysics Data System (ADS)

    Brandon, Vincent; Royer, Jean-Yves

    2014-05-01

    The Indo-Australian plate is perhaps the best example of wide intraplate deformation within an oceanic plate. The deformation is expressed by an unusual level of intraplate seismicity, including magnitude Mw > 8 events, large-scale folding and deep faulting of the oceanic lithosphere and reactivation of extinct fracture zones. The deformation pattern and kinematic data inversions suggest that the Indo-Australian plate can be viewed as a composite plate made of three rigid component plates - India, Capricorn, Australia - separated by wide and diffuse boundaries undergoing either extensional or compressional deformation. We tested this model using the SHELLS numerical code (Kong & Bird, 1995). The Indo-Australian plate is modeled by a mesh of 5281 spherical triangular finite elements. Mesh edges parallel the major extinct fracture zones so that they can be reactivated by reducing their friction rates. Strength of the plate is defined by the age of the lithosphere and seafloor topography. Model boundary conditions are only defined by the plate velocities predicted by the rotation vectors between rigid components of the Indo-Australian plate and their neighboring plates. Since the mesh limits all belong to rigid plates with fully defined Euler vectors, no conditions are imposed on the location, extent and limits of the diffuse and deforming zones. Using MORVEL plate velocities (DeMets et al., 2010), predicted deformation patterns are very consistent with that observed. Pre-existing structures of the lithosphere play an important role in the intraplate deformation and its distribution. The Chagos Bank focuses most of the extensional deformation between the Indian and Capricorn plates. Agreement between models and observation improves by weakening fossil fracture zones relative to the surrounding crust; however only limited sections of FZ's accommodate deformation. The reactivation of the Eocene FZ's in the Central Indian Basin (CIB) and Wharton Basin (WB) explains the

  16. Analysis of deformable image registration accuracy using computational modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.

    2010-03-15

    Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results showmore » that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that

  17. Improved Rubin-Bodner Model for the Prediction of Soft Tissue Deformations

    PubMed Central

    Zhang, Guangming; Xia, James J.; Liebschner, Michael; Zhang, Xiaoyan; Kim, Daeseung; Zhou, Xiaobo

    2016-01-01

    In craniomaxillofacial (CMF) surgery, a reliable way of simulating the soft tissue deformation resulted from skeletal reconstruction is vitally important for preventing the risks of facial distortion postoperatively. However, it is difficult to simulate the soft tissue behaviors affected by different types of CMF surgery. This study presents an integrated bio-mechanical and statistical learning model to improve accuracy and reliability of predictions on soft facial tissue behavior. The Rubin-Bodner (RB) model is initially used to describe the biomechanical behavior of the soft facial tissue. Subsequently, a finite element model (FEM) computers the stress of each node in soft facial tissue mesh data resulted from bone displacement. Next, the Generalized Regression Neural Network (GRNN) method is implemented to obtain the relationship between the facial soft tissue deformation and the stress distribution corresponding to different CMF surgical types and to improve evaluation of elastic parameters included in the RB model. Therefore, the soft facial tissue deformation can be predicted by biomechanical properties and statistical model. Leave-one-out cross-validation is used on eleven patients. As a result, the average prediction error of our model (0.7035mm) is lower than those resulting from other approaches. It also demonstrates that the more accurate bio-mechanical information the model has, the better prediction performance it could achieve. PMID:27717593

  18. Droplet Deformation Prediction With the Droplet Deformation and Breakup Model (DDB)

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  19. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang

    2014-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may

  20. [DEFORMITY OF LEFT VENTRICLE WALLS IN PATIENTS WITH AORTAL VALVE STENOSIS].

    PubMed

    Trembovetskaya, E M

    2015-04-01

    Parameters of longitudinal deformity of left ventricle walls in patients, suffering aortal valve stenosis (AVS), were analyzed. While the process of heart contraction in norm and in AVS occurs, longitudinal deformity is expressed maximally in its apical divisions. AVS deformity of apical divisions of left ventricle, as well as middle divisions of interventricular septum and lower wall, practically did not differ from such in norm, and deformity of basal divisions of all walls and middle divisions of posterior, lateral and anterior walls of left ventricle was trustworthy less than a norm. Thus, a reduction of the deformity indices in basal divisions of left ventricle and middle segments of its posterior, lateral and anterior walls in patients, suffering AVS with preserved output fraction, precedes the disorders of its hemodynamics and constitutes a predictor for the cardiac output reduction.

  1. The association between the psychological status and the severity of facial deformity in orthognathic patients.

    PubMed

    Kovalenko, Aleksandra; Slabkovskaya, Anna; Drobysheva, Nailya; Persin, Leonid; Drobyshev, Alexey; Maddalone, Marcello

    2012-05-01

    To evaluate the psychological status and correlate it with the severity of facial deformities of patients with skeletal malocclusions before orthognathic treatment. A total of 96 patients aged 15 to 47 with skeletal malocclusions were examined before orthognathic treatment was provided. A photographic analysis was carried out to determine the severity of facial deformity according to the Facial Aesthetic Index (FA1). All patients were divided into three groups according to the FAI score: light (0 to 9), moderate (10 to 19), and severe (>19) facial deformities. Thirty subjects aged 17 to 39 with normal occlusion and attractive harmonious faces without previous orthodontic and/or surgical history were taken as controls. Psychological testing of controls and patients in the study group was performed before orthognathic treatment was provided. Psychological testing showed no statistically significant differences among groups with light and moderate facial deformity and subjects in the control group. Significant differences were encountered among patients with severe facial deformities compared with controls in a series of personality traits, including introversion, neuroticism, trait anxiety, dependency, unsociability, and leadership. Orthognathic patients with different degrees of facial deformity have different psychological profiles. Patients with light and moderate facial deformity have no significant psychological problems. Patients with severe facial deformity show a significantly higher prevalence of emotional instability, introversion, anxiety, and unsociability. Such psychological profiles make orthognathic patients with severe facial deformity prone to psychological distress, depression, and adverse psychological reactions.

  2. Macroscopic modelling of semisolid deformation for considering segregation bands induced by shear deformation

    NASA Astrophysics Data System (ADS)

    Morita, S.; Yasuda, H.; Nagira, T.; Gourlay, C. M.; Yoshiya, M.; Sugiyama, A.

    2012-07-01

    In-situ observation was carried out to observe deformation of semi-solid Fe-2mass%C steel with 65% solid and globular morphology by X-ray radiography. Deformation was predominantly controlled by the rearrangement of globules. The solid particles were pushed into each other and rearrangement caused lower solid fraction regions to form. On the basis of the observation, a macroscopic model that introduces a normal stress acting on the solid due to collisions and rearrangement is proposed. The solid particles are treated as a non-Newtonian fluid. The stiffness parameters, which characterize the flow of the solid, are introduced. Stability of semisolid to fluctuations in solid fraction during simple shear was analysed. Shear deformation can be stably localized in the semisolid with a certain solid fraction range. The model essentially reproduces band segregation formation.

  3. Update to the conventional model for rotational deformation

    NASA Astrophysics Data System (ADS)

    Ries, J. C.; Desai, S.

    2017-12-01

    Rotational deformation (also called the "pole tide") is the deformation resulting from the centrifugal effect of polar motion on the solid earth and ocean, which manifests itself as variations in ocean heights, in the gravity field and in surface displacements. The model for rotational deformation assumes a primarily elastic response of the Earth to the centrifugal potential at the annual and Chandler periods and applies body tide Love numbers to the polar motion after removing the mean pole. The original model was conceived when the mean pole was moving (more or less) linearly, largely in response to glacial isostatic adjustment. In light of the significant variations in the mean pole due to present-day ice mass losses, an `appropriately' filtered mean pole was adopted for the conventional model, so that the longer period variations in the mean pole were not included in the rotational deformation model. However, the elastic Love numbers should be applicable to longer period variations as well, and only the secular (i.e. linear) mean pole should be removed. A model for the linear mean pole is recommended based on a linear fit to the IERS C01 time series spanning 1900 to 2015: in milliarcsec, Xp = 55.0+1.677*dt and Yp = 320.5+3.460*dt where dt=(t-t0), t0=2000.0 and assuming a year=365.25 days. The consequences of an updated model for rotational deformation for site motion and the gravity field are illustrated.

  4. Modelling deformation and fracture in confectionery wafers

    NASA Astrophysics Data System (ADS)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-01

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  5. Deformation Theory and Physics Model Building

    NASA Astrophysics Data System (ADS)

    Sternheimer, Daniel

    2006-08-01

    The mathematical theory of deformations has proved to be a powerful tool in modeling physical reality. We start with a short historical and philosophical review of the context and concentrate this rapid presentation on a few interrelated directions where deformation theory is essential in bringing a new framework - which has then to be developed using adapted tools, some of which come from the deformation aspect. Minkowskian space-time can be deformed into Anti de Sitter, where massless particles become composite (also dynamically): this opens new perspectives in particle physics, at least at the electroweak level, including prediction of new mesons. Nonlinear group representations and covariant field equations, coming from interactions, can be viewed as some deformation of their linear (free) part: recognizing this fact can provide a good framework for treating problems in this area, in particular global solutions. Last but not least, (algebras associated with) classical mechanics (and field theory) on a Poisson phase space can be deformed to (algebras associated with) quantum mechanics (and quantum field theory). That is now a frontier domain in mathematics and theoretical physics called deformation quantization, with multiple ramifications, avatars and connections in both mathematics and physics. These include representation theory, quantum groups (when considering Hopf algebras instead of associative or Lie algebras), noncommutative geometry and manifolds, algebraic geometry, number theory, and of course what is regrouped under the name of M-theory. We shall here look at these from the unifying point of view of deformation theory and refer to a limited number of papers as a starting point for further study.

  6. Nasal septal deformities in ear, nose, and throat patients: an international study.

    PubMed

    Mladina, Ranko; Cujić, Emil; Subarić, Marin; Vuković, Katarina

    2008-01-01

    The purpose of this study was to investigate the incidence and characteristics of nasal septum deformities in ear, nose, and throat (ENT) patients in various geographic regions in the world. Anterior rhinoscopy without nasal decongestion was performed in 17 ENT centers in 14 countries. The septal deformities were classified according to the classification system proposed by Mladina. A total of 2589 adult ENT patients (1500 males and 1089 females) were examined. Septal deformities were found in 89.2% of subjects. Left-sided deformities were slightly more prevalent than right-sided deformities (51.6% and 48.4%, respectively). The most frequent type of deformity was type 3 (20.4%). Straight septum was found in 15.4% of females and 7.5% of males. Almost 90% of the subjects showed 1 of the 7 types of septal deformity. There were no statistically significant differences in the incidence of their appearance among particular geographic regions. Type 3 was the most frequent type. Straight septum was twice as frequent in females than in males.

  7. Modelling deformation and fracture in confectionery wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which wasmore » then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.« less

  8. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    PubMed

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  9. Model Attitude and Deformation Measurements at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    2008-01-01

    The NASA Glenn Research Center is currently participating in an American Institute of Aeronautics and Astronautics (AIAA) sponsored Model Attitude and Deformation Working Group. This working group is chartered to develop a best practices document dealing with the measurement of two primary areas of wind tunnel measurements, 1) model attitude including alpha, beta and roll angle, and 2) model deformation. Model attitude is a principle variable in making aerodynamic and force measurements in a wind tunnel. Model deformation affects measured forces, moments and other measured aerodynamic parameters. The working group comprises of membership from industry, academia, and the Department of Defense (DoD). Each member of the working group gave a presentation on the methods and techniques that they are using to make model attitude and deformation measurements. This presentation covers the NASA Glenn Research Center s approach in making model attitude and deformation measurements.

  10. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  11. Mathematical models of carbon-carbon composite deformation

    NASA Astrophysics Data System (ADS)

    Golovin, N. N.; Kuvyrkin, G. N.

    2016-09-01

    Mathematical models of carbon-carbon composites (CCC) intended for describing the processes of deformation of structures produced by using CCC under high-temperature loading are considered. A phenomenological theory of CCC inelastic deformation is proposed, where such materials are considered as homogeneous ones with effective characteristics and where their high anisotropy of mechanical characteristics and different ways of resistance to extension and compression are taken into account. Micromechanical models are proposed for spatially reinforced CCC, where the difference between mechanical characteristics of components and the reinforcement scheme are taken into account. Themodel parameters are determined from the results of experiments of composite macrospecimens in the directions typical of the material. A version of endochronictype theory with several internal times "launched" for each composite component and related to some damage accumulation mechanisms is proposed for describing the inelastic deformation. Some practical examples are considered.

  12. Problems, acceptance and social inequality: a study of the deformed leprosy patients and their families.

    PubMed

    Kopparty, S N

    1995-09-01

    Though the impact of social inequality on health conditions is widely known, its impact on the chronic and stigmatized disease, leprosy, has received little attention. Deformity sometimes leads to disabilities and to handicaps causing problems to the patient and his family. In this paper an attempt has been made to understand the impact of social inequality, prevalent in the form of the caste system in India on the deformed leprosy patients and on their families. This impact was examined in terms of the problems faced by the patients. A sample of 150 deformed patients and their families, drawn from two districts in Tamil Nadu, was selected for the study. About 57% of the deformed patients experienced their deformity as a handicap which caused social and economic problems while the rest did not. Of the three caste groups, the Lower Caste group experienced more severe economic problems while the Upper Caste group faced more social problems. The extent of acceptance of deformed patients in their family varied significantly among those facing and not facing problems due to their deformity. The deformed patients without any handicap were accepted in a large majority of their families (82%) regardless of their caste status. In contrast the deformed but handicapped patients were accepted differentially among the three caste groups with the Upper group accepting them in most of their families (80%) while in the Lower group much less number of families (54%) did. All the families of the deformed but not handicapped patients desired to keep their patients till their death irrespective of their caste status. On the contrary, while all the families in the Upper Caste group expressed their willingness to keep their handicapped patients in the family till their death, 10% in the Middle and 22% in the Lower Caste groups did not want to do so. This suggests the gradual marginalization, rejection and dehabilitation of the affected. Thus, one's caste status can be a broad indicator

  13. Spherical Viscoelastic Finite Element Model for Cascadia Interseismic Deformation

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, K.; Dragert, H.; Miller, M. M.

    2003-12-01

    We have developed a 3-D spherical viscoelastic finite element model for the Cascadia subduction zone to study temporal and spatial variations of interseismic deformation. Previous 3-D viscoelastic finite element models of subduction zone earthquake cycles all use the Cartesian system, with the surface of the earth map-projected on to a horizontal plane. For earthquakes that rupture very long plate-boundary segments, such as the 1700 Cascadia, 1960 Chile, and 1964 Alaska great earthquakes, the Cartesian approach is inconvenient and less accurate. 3-D analytical solutions take into account the spherical geometry of the earth but have difficulty dealing with realistic plate boundary structure. For the new spherical finite element model, we use 27-node tri-quadratic isoparametric element. The resultant large sparse matrix system is solved by the stabilized bi-conjugate gradient method with ILUT preconditioning of fill-in level 6. Our experience suggests that lower order elements in the spherical system would result in unacceptable numerical errors unless one set of mesh lines is strictly radial. For the great Cascadia earthquake, we employ a smooth coseismic rupture model inferred from thermal data and results of tsunami models of the 1700 event, but we test different slip distances. For interseismic deformation, we use the conventional backslip approach. The contemporary deformation of the Cascadia margin consists of interseismic strain accumulation and a geological secular motion that can be described by a rotation of the forearc relative to North America. To isolate the interseismic deformation, we remove the secular motion from both the model formulation and geodetic data. The model predicts decreasing margin-normal shortening rates throughout the interseismic period as a result of stress relaxation in the viscoelastic mantle. The rate of decrease depends on the assumed mantle viscosity. With a viscosity of 1019 Pa s, model surface deformation at 300 years after

  14. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20more » lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.« less

  15. Deformed Calogero-Sutherland model and fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Atai, Farrokh; Langmann, Edwin

    2017-01-01

    The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.

  16. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. Copyright © 2014. Published by Elsevier Inc.

  17. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI

    PubMed Central

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2016-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  18. Global geodynamic models constrained by tectonic reconstructions including plate deformation

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Flament, N.; Spasojevic, S.; Williams, S.; Seton, M.; Müller, R. D.

    2011-12-01

    In order to investigate the effect of mantle flow on the Earth's surface, imposing the kinematics predicted by plate reconstructions in global convection models has become common practice. Such models are valuable to investigate the effect of the mantle flow beneath the lithosphere on surface topography. Changes in surface topography due to lithospheric deformation are so far not part of top-down tectonic models in which plates are treated as rigid in traditional tectonic reconstructions. We introduce a new generation of geodynamic models that are based on tectonic reconstructions with deforming plates at both passive and convergent margins. These models allow us to investigate the relationships between lithospheric deformation and mantle flow, and their combined effects on surface topography. In traditional tectonic reconstructions, continents are represented as rigid blocks that either overlap or are separated by gaps in full-fit reconstructions. Reconstructions that include a global network of topological plate polygons avoid continental overlaps and gaps, but velocities are still derived on the basis of the Euler poles for rigid blocks. To resolve these issues, we developed a series of deforming plate models using the open source plate modeling software GPlates. For a given area, our methodology requires the relative motions between major rigid continental blocks, and a definition of the regions in which continental lithosphere deformed between these blocks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions is then used as a time-dependent surface boundary condition in global 3-D geodynamic models. To incorporate the continental lithosphere in our global models, we embed compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness

  19. Unified Model Deformation and Flow Transition Measurements

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.

    1999-01-01

    The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.

  20. A Deformable Generic 3D Model of Haptoral Anchor of Monogenean

    PubMed Central

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903

  1. A deformable generic 3D model of haptoral anchor of Monogenean.

    PubMed

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.

  2. Modeling plasticity by non-continuous deformation

    NASA Astrophysics Data System (ADS)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  3. Stellar Structure Models of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Zubairi, Omair; Wigley, David; Weber, Fridolin

    Traditional stellar structure models of non-rotating neutron stars work under the assumption that these stars are perfect spheres. This assumption of perfect spherical symmetry is not correct if the matter inside neutron stars is described by an anisotropic model for the equation of state. Certain classes of neutron stars such as Magnetars and neutron stars which contain color-superconducting quark matter cores are expected to be deformed making them oblong spheroids. In this work, we investigate the stellar structure of these deformed neutron stars by deriving stellar structure equations in the framework of general relativity. Using a non-isotropic equation of state model, we solve these structure equations numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure profiles and investigate changes from standard spherical models.

  4. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study

    PubMed Central

    Mao, Keya; Xiao, Songhua; Liu, Zhengsheng; Zhang, Yonggang; Zhang, Xuesong; Wang, Zheng; Lu, Ning; Shourong, Zhu; Xifeng, Zhang; Geng, Cui; Baowei, Liu

    2010-01-01

    Surgical treatment of complex severe spinal deformity, involving a scoliosis Cobb angle of more than 90° and kyphosis or vertebral and rib deformity, is challenging. Preoperative two-dimensional images resulting from plain film radiography, computed tomography (CT) and magnetic resonance imaging provide limited morphometric information. Although the three-dimensional (3D) reconstruction CT with special software can view the stereo and rotate the spinal image on the screen, it cannot show the full-scale spine and cannot directly be used on the operation table. This study was conducted to investigate the application of computer-designed polystyrene models in the treatment of complex severe spinal deformity. The study involved 16 cases of complex severe spinal deformity treated in our hospital between 1 May 2004 and 31 December 2007; the mean ± SD preoperative scoliosis Cobb angle was 118° ± 27°. The CT scanning digital imaging and communication in medicine (DICOM) data sets of the affected spinal segments were collected for 3D digital reconstruction and rapid prototyping to prepare computer-designed polystyrene models, which were applied in the treatment of these cases. The computer-designed polystyrene models allowed 3D observation and measurement of the deformities directly, which helped the surgeon to perform morphological assessment and communicate with the patient and colleagues. Furthermore, the models also guided the choice and placement of pedicle screws. Moreover, the models were used to aid in virtual surgery and guide the actual surgical procedure. The mean ± SD postoperative scoliosis Cobb angle was 42° ± 32°, and no serious complications such as spinal cord or major vascular injury occurred. The use of computer-designed polystyrene models could provide more accurate morphometric information and facilitate surgical correction of complex severe spinal deformity. PMID:20213294

  5. The impact of patient self assessment of deformity on HRQL in adults with scoliosis

    PubMed Central

    Tones, Megan J; Moss, Nathan D

    2007-01-01

    Background Body image and HRQL are significant issues for patients with scoliosis due to cosmetic deformity, physical and psychological symptoms, and treatment factors. A selective review of scoliosis literature revealed that self report measures of body image and HRQL share unreliable correlations with radiographic measures and clinician recommendations for surgery. However, current body image and HRQL measures do not indicate which aspects of scoliosis deformity are the most distressing for patients. The WRVAS is an instrument designed to evaluate patient self assessment of deformity, and may show some promise in identifying aspects of deformity most troubling to patients. Previous research on adolescents with scoliosis supports the use of the WRVAS as a clinical tool, as the instrument shares strong correlations with radiographic measures and quality of life instruments. There has been limited use of this instrument on adult populations. Methods The WRVAS and the SF-36v2, a HRQL measure, were administered to 71 adults with scoliosis, along with a form to report age and gender. Preliminary validation analyses were performed on the WRVAS (floor and ceiling effects, internal consistency and collinearity, correlations with the SF-36v2, and multiple regression with the WRVAS total score as the predictor, and SF-36v2 scores as outcomes). Results The psychometric properties of the WRVAS were acceptable. Older participants perceived their deformities as more severe than younger participants. More severe deformities were associated with lower scores on the Physical Component Summary Score of the SF-36v2. Total WRVAS score also predicted Physical Component Summary scores. Conclusion The results of the current study indicate that the WRVAS is a reliable tool to use with adult patients, and that patient self assessment of deformity shared a relationship with physical rather than psychological aspects of HRQL. The current and previous studies concur that revision of the

  6. Modeling Dynamic Helium Release as a Tracer of Rock Deformation

    DOE PAGES

    Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.; ...

    2017-11-03

    Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less

  7. Modeling Dynamic Helium Release as a Tracer of Rock Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.

    Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less

  8. Semantic modeling of plastic deformation of polycrystalline rock

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  9. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, J.

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to

  10. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, Jian

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension

  11. Quantitative evaluation of maxillary bone deformation by computed tomography in patients with leprosy

    PubMed Central

    Kondo, Osamu; Suzuki, Koichi; Aoki, Yoshinori; Ishii, Norihisa

    2018-01-01

    Background Facial deformation as a sequela of leprosy is caused not only by a saddle nose but also by regression of the maxilla, as well documented in paleopathological observations of excavated skeletal remains of patients with leprosy. However, maxillary changes in living patients have been evaluated only by the subjective visual grading. Here, we attempted to evaluate maxillary bone deformation in patients with leprosy using three-dimensional computed tomography (3D-CT). Methods Three-dimensional images centered on the maxilla were reconstructed using multiplanar reconstruction methods in former patients with leprosy (n = 10) and control subjects (n = 5); the anterior-posterior length of the maxilla (MA-P) was then measured. The difference between the MA-P of the patients and those of controls was evaluated after compensating for individual skull size. These findings were also compared with those from previous paleopathological studies. Findings Three former patients with lepromatous leprosy showed marked atrophy of the maxilla at the prosthion (-8.6, -11.1 and -17.9 mm) which corresponded with the visual appearance of the maxillary deformity, and these results were consistent with paleopathological findings of excavated skeletal remains. Additionally, the precise bone defects of the maxilla could be individually calculated for accurate reconstructive surgery. Interpretation We have successfully illustrated maxillary bone deformities in living patients with leprosy. This study also confirmed the maxillary regression described in paleopathological studies. PMID:29522533

  12. FEM modeling of postseismic deformation of poroelastic material

    NASA Astrophysics Data System (ADS)

    Kawamoto, S.; Ito, T.; Hirahara, K.

    2004-12-01

    Following a large earthquake, postseismic deformation in the focal region has been observed by GPS, leveling measurements and the other geodetic measurements. To explain the postseismic deformation, researchers have proposed and well investigated two physical mechanisms of afterslip and viscoelastic relaxation. In some cases, however, there have been observed postseismic deformation which can not be explained by these mechanisms. Therefore, another mechanism has been proposed, where the crust is treated as "poroelastic material". This concept is called "poroelasticity". In this concept, postseismic deformation is caused by pore fluid flow due to the coseismic stress redistribution. We explored, therefore, the postseismic deformation due to pore fluid flow in a poroelastic material using finite element method (FEM), which can easily handle lateral variations of hydraulic diffusivity and elastic or plastic property. We used the FEM program 'CAMBIOT3D' originally developed by Geotech. Lab. Gunma University, Japan (2003). Because this program was developed for soil mechanics, we must have modified so as to calculate deformation due to earthquake faulting. We implemented the 'split node technique' (Melosh and Refsky, 1981) to calculate the coseismic deformation. In addition to this, we modified the program to calculate the deformation taking into account the Skempton's B. This coefficient B determines what fraction of the coseismic stress due to an earthquake is allotted to pore pressure. Without Skempton's B, coseismic pore pressure becomes too large and hence postseismic deformation is calculated too large. We evaluated the postseismic deformation in a poroelastic material to show that the poroelastic deformation is quite different from that of afterslip and viscoelastic relaxation models. In this presentation, we show the postseismic deformation due to pore fluids flow in a poroelastic material and the effect of Skempton's B. Especially, we discuss what different

  13. Computational model of deformable lenses actuated by dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Tongqing; Cai, Shengqiang; Wang, Huiming; Suo, Zhigang

    2013-09-01

    A recent design of deformable lens mimics the human eye, adjusting its focal length in response to muscle-like actuation. The artificial muscle is a membrane of a dielectric elastomer subject to a voltage. Here, we calculate the coupled and inhomogeneous deformation of the lens and the dielectric elastomer actuator by formulating a nonlinear boundary-value problem. We characterize the strain-stiffening elastomer with the Gent model and describe the voltage-induced deformation using the model of ideal dielectric elastomer. The computational predictions agree well with experimental data. We use the model to explore the space of parameters, including the prestretch of the membrane, the volume of the liquid in the lens, and the size of the dielectric elastomer actuator relative to the lens. We examine how various modes of failure limit the minimum radius of curvature.

  14. Poisson-Lie duals of the η deformed symmetric space sigma model

    NASA Astrophysics Data System (ADS)

    Hoare, Ben; Seibold, Fiona K.

    2017-11-01

    Poisson-Lie dualising the η deformation of the G/H symmetric space sigma model with respect to the simple Lie group G is conjectured to give an analytic continuation of the associated λ deformed model. In this paper we investigate when the η deformed model can be dualised with respect to a subgroup G0 of G. Starting from the first-order action on the complexified group and integrating out the degrees of freedom associated to different subalgebras, we find it is possible to dualise when G0 is associated to a sub-Dynkin diagram. Additional U1 factors built from the remaining Cartan generators can also be included. The resulting construction unifies both the Poisson-Lie dual with respect to G and the complete abelian dual of the η deformation in a single framework, with the integrated algebras unimodular in both cases. We speculate that extending these results to the path integral formalism may provide an explanation for why the η deformed AdS5 × S5 superstring is not one-loop Weyl invariant, that is the couplings do not solve the equations of type IIB supergravity, yet its complete abelian dual and the λ deformed model are.

  15. Crustal deformation mechanism in southeastern Tibetan Plateau: Insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, S.; Chen, L.

    2017-12-01

    The Indo-Asian collision developed the complicated crustal deformation around the southeastern Tibetan plateau. Numerous models have proposed to explain the crustal deformation, but the mechanism remains controversial, especially the increasing multi-geophysics data, which demonstrate the existence of lower velocity, lower resistivity and high conductivity, implying that lower crustal flow is responsible for the crustal deformation, arguing for the lower crust flow model. To address the relations between the crust flow and the surface deformation, we employ a three-dimensional viscoelastic finite model to investigate the possible influence on the surface deformation, and discuss the stress field distribution under the model. Our preliminary results suggest that lower crustal flow plays an important role in crustal deformation in southeastern Tibetan plateau. The best fitting is achieved when the flow velocity of the lower crust is approximately 10-11 mm/a faster than that of the upper crust. Crustal rheological properties affect regional crustal deformation, when the viscosity of the middle and lower crust in the South China block reaches 1022 and 1023 Pa.s, respectively; the predicted match observations well, especially for the magnitude within the South China block. The maximum principal stress field exhibits clear zoning, gradually shifting from an approximately east-west orientation in the northern Bayan Har block to southeast in the South China block, southwest in the western Yunnan block, and a radially divergent distribution in the Middle Yunnan and Southern Yunnan blocks.

  16. Navigation-Assisted Total Knee Arthroplasty for Patients with Extra-Articular Deformity

    PubMed Central

    Rhee, Seung Joon; Seo, Chang Hyo

    2013-01-01

    Purpose Since the existence of an extra-articular deformity seriously alters the normal geometry and kinetics around the knee joint, difficulties are often encountered in total knee arthroplasty (TKA) using a standard surgical technique. The purpose of this study was to evaluate the usefulness of surgical navigation system as a treatment option for osteoarthritic knees with extra-articular deformity. Materials and Methods The authors retrospectively reviewed medical records of the patients who underwent primary TKA between 2007 and 2012. Knees with preoperative radiography showing an angular deformity within the region from the middle third of the femur to the middle third of the tibia in the ipsilateral limb of the arthritic knees were considered as cases having extra-articular deformity. Thirteen knees of the 13 patients were found to have undergone TKA using a navigation system for osteoarthritis with ipsilateral extra-articular deformity. The hip-knee-ankle angle, Knee Society score (KSS), and range of motion were measured before and after the operation to evaluate the improvement. Results The mean hip-knee-ankle angle in the coronal plane was improved to 0.2°±4.5° in valgus alignment postoperatively. The KSS was improved to 89.6±4.6 points postoperatively at the last follow-up, with over 90% of good and excellent results. The range of motion was improved to 118.5°±10.5° postoperatively. Conclusions Navigation-assisted TKA is a good treatment option of osteoarthritic knees with extra-articular deformity. PMID:24368997

  17. [PERCUTANEOUS CORRECTION OF FOREFOOT DEFORMITIES IN DIABETIC PATIENTS IN ORDER TO PREVENT PRESSURE SORES - TECHNIQUE AND RESULTS IN 20 CONSECUTIVE PATIENTS].

    PubMed

    Yassin, Mustafa; Garti, Avraham; Heller, Eyal; Weissbrot, Moshe; Robinson, Dror

    2017-04-01

    Diabetes mellitus is a 21st century pandemic. Due to life-span prolongation combined with the increased rate of diabetes, a growing population of patients is afflicted with neuropathic foot deformities. Traditional operative repair of these deformities is associated with a high complication rate and relatively common infection incidence. In recent years, in order to prevent these complications, percutaneous deformity correction methods were developed. Description of experience accumulated in treating 20 consecutive patients with diabetic neuropathic foot deformities treated in a percutaneous fashion. A consecutive series of patients treated at our institute for neuropathic foot deformity was assessed according to a standard protocol using the AOFAS forefoot score and the LUMT score performed at baseline as well as at 6 months and 12 months. Treatment related complications were monitored. All procedures were performed in an ambulatory setting using local anesthesia. A total of 12 patients had soft tissue corrections, and 8 had a combined soft tissue and bone correction. Baseline AOFAS score was 48±7 and improved to 73±9 at six months and 75±7 at one year. LUMT score in 11 patients with a chronic wound decreased from 22±4 to 2±1 at one year post-op. One patient required hospitalization due to post-op bleeding. Percutaneous techniques allow deformity correction of diabetic feet, including those with open wounds in an ambulatory setting with a low complication rate.

  18. [What was found in deformities of leprosy patients from the view-point of orthopedics?].

    PubMed

    Obara, Akiko

    2003-08-01

    No more deformities which are the cause of social stigma by early detection and chemotherapy! Let patients learn how to avoid getting deformed to keep normal ADL & QOL. Fight against the nerve damage and stop the progressive deformities by organizing the team approach. Instead of intense efforts of taking care by well organized team work, deformities are resulted inevitably in some cases. Let their deformities be out of the way of their keeping normal community lives without any prejudice, respecting their human rights and dignity.

  19. Patients cured of acromegaly do not experience improvement of their skull deformities.

    PubMed

    Rick, Jonathan W; Jahangiri, Arman; Flanigan, Patrick M; Aghi, Manish K

    2017-04-01

    Acromegaly is a rare disease that is associated with many co-morbidities. This condition also causes progressive deformity of the skull which includes frontal bossing and cranial thickening. Surgical and/or medical management can cure this condition in many patients, but it is not understood if patients cured of acromegaly experience regression of their skull deformities. We performed a retrospective analysis on patients treated at our dedicated pituitary center from 2009 to 2014. We looked at all MRI images taken during the treatment of these patients and recorded measurements on eight skull dimensions. We then analyzed these measurements for changes over time. 29 patients underwent curative treatment for acromegaly within our timeframe. The mean age for this population was 45.0 years old (range 19-70) and 55.2 % (n = 16) were female. All of these patients were treated with a transsphenoidal resection for a somatotropic pituitary adenoma. 9 (31.1%) of these patients required further medical therapy to be cured. We found statically significant variation in the coronal width of the sella turcica after therapy, which is likely attributable to changes from transsphenoidal surgery. None of the other dimensions had significant variation over time after cure. Patients cured of acromegaly should not expect natural regression of their skull deformities. Our study suggests that both frontal bossing and cranial thickening do not return to normal after cure.

  20. Interactive collision detection for deformable models using streaming AABBs.

    PubMed

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB

  1. Deformable human body model development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has beenmore » incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.« less

  2. Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    DOE PAGES

    Burnley, Pamela C

    2015-07-01

    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includesmore » kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.« less

  3. Preliminary deformation model for National Seismic Hazard map of Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except inmore » the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.« less

  4. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  5. Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.

    PubMed

    McIntosh, Chris; Hamarneh, Ghassan

    2012-01-01

    We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.

  6. Modelling heat and mass transfer in bread baking with mechanical deformation

    NASA Astrophysics Data System (ADS)

    Nicolas, V.; Salagnac, P.; Glouannec, P.; Ploteau, J.-P.; Jury, V.; Boillereaux, L.

    2012-11-01

    In this paper, the thermo-hydric behaviour of bread during baking is studied. A numerical model has been developed with Comsol Multiphysics© software. The model takes into account the heat and mass transfers in the bread and the phenomenon of swelling. This model predicts the evolution of temperature, moisture, gas pressure and deformation in French "baguette" during baking. Local deformation is included in equations using solid phase conservation and, global deformation is calculated using a viscous mechanic model. Boundary conditions are specified with the sole temperature model and vapour pressure estimation of the oven during baking. The model results are compared with experimental data for a classic baking. Then, the model is analysed according to physical properties of bread and solicitations for a better understanding of the interactions between different mechanisms within the porous matrix.

  7. Female patients' and parents' assessment of deformity- and brace-related stress in the conservative treatment of adolescent idiopathic scoliosis.

    PubMed

    Misterska, Ewa; Glowacki, Maciej; Latuszewska, Joanna

    2012-06-15

    A cross-sectional analysis of parents' and patients' perceptions of deformity- and brace-related stress regarding conservative treatment of adolescent idiopathic scoliosis. The purpose of this study was to determine the agreement between patients' and parents' assessments of emotional stress and to compare these assessments with radiographical measurements of spinal deformity. Conservative treatment in patients with scoliosis may cause emotional stress. To our knowledge, no group has ever reported patient and parental estimation of stress related to wearing a brace and spinal deformity in girls with adolescent idiopathic scoliosis. Sixty-three pairs of parents and girls with adolescent idiopathic scoliosis treated with a Cheneau brace were separately asked to complete the Bad Sobberheim Stress Questionnaire-Deformity and the Bad Sobberheim Stress Questionnaire-Brace. The age range of the patients was from 10 to 17 years. Patients were assessed at a mean of 14.12 (SD, 10.99) months after the start of the conservative treatment. Patients thought that a moderate level of stress was connected with conservative treatment; however, the stress level, related to perceived trunk deformation, was low. From the parents' perspective, patients experienced a moderate level of stress during conservative treatment and related to spinal deformity. The study groups differ in their perception of stress levels due to body disfigurement but not during the conservative treatment. Parent-patient stress-level disparities were not related to body mass index, age of the patient, brace application, and radiographical measurements of spinal deformity. Patients and parents perceive the emotional stress related to brace treatment in the same way; however, parents overestimate the assessment of stress levels related to body deformity. From the perspective of patients and parents, brace wearing increased the level of stress induced by the deformity alone. Complete assessment of conservative

  8. A Particle Representation Model for the Deformation of Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Kassinos, S. C.; Reynolds, W. C.

    1996-01-01

    In simple flows, where the mean deformation rates are mild and the turbulence has time to come to equilibrium with the mean flow, the Reynolds stresses are determined by the applied strain rate. Hence in these flows, it is often adequate to use an eddy-viscosity representation. The modern family of kappa-epsilon models has been very useful in predicting near equilibrium turbulent flows, where the rms deformation rate S is small compared to the reciprocal time scale of the turbulence (epsilon/kappa). In modern engineering applications, turbulence models are quite often required to predict flows with very rapid deformations (large S kappa/epsilon). In these flows, the structure takes some time to respond and eddy viscosity models are inadequate. The response of turbulence to rapid deformations is given by rapid distortion theory (RDT). Under RDT the nonlinear effects due to turbulence-turbulence interactions are neglected in the governing equations, but even when linearized in this fashion, the governing equations are unclosed at the one-point level due to the non-locality of the pressure fluctuations.

  9. A tumor growth model with deformable ECM

    NASA Astrophysics Data System (ADS)

    Sciumè, G.; Santagiuliana, R.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A.

    2014-12-01

    Existing tumor growth models based on fluid analogy for the cells do not generally include the extracellular matrix (ECM), or if present, take it as rigid. The three-fluid model originally proposed by the authors and comprising tumor cells (TC), host cells (HC), interstitial fluid (IF) and an ECM, considered up to now only a rigid ECM in the applications. This limitation is here relaxed and the deformability of the ECM is investigated in detail. The ECM is modeled as a porous solid matrix with Green-elastic and elasto-visco-plastic material behavior within a large strain approach. Jauman and Truesdell objective stress measures are adopted together with the deformation rate tensor. Numerical results are first compared with those of a reference experiment of a multicellular tumor spheroid (MTS) growing in vitro, then three different tumor cases are studied: growth of an MTS in a decellularized ECM, growth of a spheroid in the presence of host cells and growth of a melanoma. The influence of the stiffness of the ECM is evidenced and comparison with the case of a rigid ECM is made. The processes in a deformable ECM are more rapid than in a rigid ECM and the obtained growth pattern differs. The reasons for this are due to the changes in porosity induced by the tumor growth. These changes are inhibited in a rigid ECM. This enhanced computational model emphasizes the importance of properly characterizing the biomechanical behavior of the malignant mass in all its components to correctly predict its temporal and spatial pattern evolution.

  10. Development of a Detailed Volumetric Finite Element Model of the Spine to Simulate Surgical Correction of Spinal Deformities

    PubMed Central

    Driscoll, Mark; Mac-Thiong, Jean-Marc; Labelle, Hubert; Parent, Stefan

    2013-01-01

    A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices. PMID:23991426

  11. Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone

    NASA Astrophysics Data System (ADS)

    Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed

    2005-02-01

    A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.

  12. Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi

    1998-04-01

    The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.

  13. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. CASL has endeavored to improve upon this approach by incorporating a microstructurally-based, atomistically-informed, zirconium alloy mechanical deformation analysis capability into the BISON-CASL engineering scale fuel performance code. Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed bymore » Lebensohn and Tome´ [2], has been coupled with BISON-CASL to represent the mechanistic material processes controlling the deformation behavior of the cladding. A critical component of VPSC is the representation of the crystallographic orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON-CASL and provides initial results utilizing the coupled functionality.« less

  14. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    PubMed

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  15. Finite Element modelling of deformation induced by interacting volcanic sources

    NASA Astrophysics Data System (ADS)

    Pascal, Karen; Neuberg, Jürgen; Rivalta, Eleonora

    2010-05-01

    The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system comprises more than one source, the assumption of homogeneity in the half-space is violated and several sources are combined, their respective deformation field being summed. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying their relative position. Furthermore we considered the impact of topography, loading, and magma compressibility. To quantify the discrepancies and compare the various models, we calculated the difference between analytical and numerical maximum horizontal or vertical surface displacements.We will demonstrate that for certain conditions combining analytical sources can cause an error of up to 20%. References: McTigue, D. F. (1987), Elastic Stress and Deformation Near a Finite Spherical Magma Body: Resolution of the Point Source Paradox, J. Geophys. Res. 92, 12931-12940. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull Earthquake Res Inst, Univ Tokyo 36, 99-134. Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America 82(2), 1018-1040.

  16. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  17. Viscoelastic-cycle model of interseismic deformation in the northwestern United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, Patricia; Wilson, Doug; Svarc, Jerry; Puskas, Christine; Smith, Robert B.

    2010-01-01

    We apply a viscoelastic cycle model to a compilation of GPS velocity fields in order to address the kinematics of deformation in the northwestern United States. A viscoelastic cycle model accounts for time-dependent deformation following large crustal earthquakes and is an alternative to block models for explaining the interseismic crustal velocity field. Building on the approach taken in Pollitz et al., we construct a deformation model for the entire western United States-based on combined fault slip and distributed deformation-and focus on the implications for the Mendocino triple junction (MTJ), Cascadia megathrust, and western Washington. We find significant partitioning between strike-slip and dip-slip motion near the MTJ as the tectonic environment shifts from northwest-directed shear along the San Andreas fault system to east-west convergence along the Juan de Fuca Plate. By better accounting for the budget of aseismic and seismic slip along the Cascadia subduction interface in conjunction with an assumed rheology, we revise a previous model of slip for the M~ 9 1700 Cascadia earthquake. In western Washington, we infer slip rates on a number of strike-slip and dip-slip faults that accommodate northward convergence of the Oregon Coast block and northwestward convergence of the Juan de Fuca Plate. Lateral variations in first order mechanical properties (e.g. mantle viscosity, vertically averaged rigidity) explain, to a large extent, crustal strain that cannot be rationalized with cyclic deformation on a laterally homogeneous viscoelastic structure. Our analysis also shows that present crustal deformation measurements, particularly with the addition of the Plate Boundary Observatory, can constrain such lateral variations.

  18. Linking plate reconstructions with deforming lithosphere to geodynamic models

    NASA Astrophysics Data System (ADS)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also

  19. Quantifying the Erlenmeyer flask deformity

    PubMed Central

    Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P

    2012-01-01

    Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032

  20. Modelling highly deformable metal extrusion using SPH

    NASA Astrophysics Data System (ADS)

    Prakash, Mahesh; Cleary, Paul W.

    2015-05-01

    Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.

  1. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.

    PubMed

    Vasconcelos, Maria J M; Ventura, Sandra M R; Freitas, Diamantino R S; Tavares, João Manuel R S

    2012-03-01

    The morphological and dynamic characterisation of the vocal tract during speech production has been gaining greater attention due to the motivation of the latest improvements in magnetic resonance (MR) imaging; namely, with the use of higher magnetic fields, such as 3.0 Tesla. In this work, the automatic study of the vocal tract from 3.0 Tesla MR images was assessed through the application of statistical deformable models. Therefore, the primary goal focused on the analysis of the shape of the vocal tract during the articulation of European Portuguese sounds, followed by the evaluation of the results concerning the automatic segmentation, i.e. identification of the vocal tract in new MR images. In what concerns speech production, this is the first attempt to automatically characterise and reconstruct the vocal tract shape of 3.0 Tesla MR images by using deformable models; particularly, by using active and appearance shape models. The achieved results clearly evidence the adequacy and advantage of the automatic analysis of the 3.0 Tesla MR images of these deformable models in order to extract the vocal tract shape and assess the involved articulatory movements. These achievements are mostly required, for example, for a better knowledge of speech production, mainly of patients suffering from articulatory disorders, and to build enhanced speech synthesizer models.

  2. A revised dislocation model of interseismic deformation of the Cascadia subduction zone

    USGS Publications Warehouse

    Wang, Kelin; Wells, Ray E.; Mazzotti, Stephane; Hyndman, Roy D.; Sagiya, Takeshi

    2003-01-01

    CAS3D‐2, a new three‐dimensional (3‐D) dislocation model, is developed to model interseismic deformation rates at the Cascadia subduction zone. The model is considered a snapshot description of the deformation field that changes with time. The effect of northward secular motion of the central and southern Cascadia forearc sliver is subtracted to obtain the effective convergence between the subducting plate and the forearc. Horizontal deformation data, including strain rates and surface velocities from Global Positioning System (GPS) measurements, provide primary geodetic constraints, but uplift rate data from tide gauges and leveling also provide important validations for the model. A locked zone, based on the results of previous thermal models constrained by heat flow observations, is located entirely offshore beneath the continental slope. Similar to previous dislocation models, an effective zone of downdip transition from locking to full slip is used, but the slip deficit rate is assumed to decrease exponentially with downdip distance. The exponential function resolves the problem of overpredicting coastal GPS velocities and underpredicting inland velocities by previous models that used a linear downdip transition. A wide effective transition zone (ETZ) partially accounts for stress relaxation in the mantle wedge that cannot be simulated by the elastic model. The pattern of coseismic deformation is expected to be different from that of interseismic deformation at present, 300 years after the last great subduction earthquake. The downdip transition from full rupture to no slip should take place over a much narrower zone.

  3. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients

    PubMed Central

    Onofrey, John A.; Staib, Lawrence H.; Papademetris, Xenophon

    2015-01-01

    This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods. PMID:26900569

  4. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  5. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.

    PubMed

    Ye, Ting; Li, Hua; Lam, K Y

    2015-02-01

    In this paper, we numerically explore the possibility of separating two groups of deformable cells, by a very small dielectrophoretic (DEP) microchip with the characteristic length of several cell diameters. A 2D two-fluid model is developed to describe the separation process, where three types of forces are considered, the aggregation force for cell-cell interaction, the deformation force for cell deformation, and the DEP force for cell dielectrophoresis. As a model validation, we calculate the levitation height of a cell subject to DEP force, and compare it with the experimental data. After that, we simulate the separation of two groups of cells with different dielectric properties at high and low frequencies, respectively. The simulation results show that the deformable cells can be separated successfully by a very small DEP microchip, according to not only their different permittivities at the high frequency, but also their different conductivities at the low frequency. In addition, both two groups of cells have a shape deformation from an original shape to a lopsided slipper shape during the separation process. It is found that the cell motion is mainly determined by the DEP force arising from the electric field, causing the cells to deviate from the centerline of microchannel. However, the cell deformation is mainly determined by the deformation force arising from the fluid flow, causing the deviated cells to undergo an asymmetric motion with the deformation of slipper shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhou, S; Williams, C; Ionascu, D

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived weremore » compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was

  7. Investigation on Insar Time Series Deformation Model Considering Rheological Parameters for Soft Clay Subgrade Monitoring

    NASA Astrophysics Data System (ADS)

    Xing, X.; Yuan, Z.; Chen, L. F.; Yu, X. Y.; Xiao, L.

    2018-04-01

    The stability control is one of the major technical difficulties in the field of highway subgrade construction engineering. Building deformation model is a crucial step for InSAR time series deformation monitoring. Most of the InSAR deformation models for deformation monitoring are pure empirical mathematical models, without considering the physical mechanism of the monitored object. In this study, we take rheology into consideration, inducing rheological parameters into traditional InSAR deformation models. To assess the feasibility and accuracy for our new model, both simulation and real deformation data over Lungui highway (a typical highway built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. In order to solve the unknows of the non-linear rheological model, three algorithms: Gauss-Newton (GN), Levenberg-Marquarat (LM), and Genetic Algorithm (GA), are utilized and compared to estimate the unknown parameters. Considering both the calculation efficiency and accuracy, GA is chosen as the final choice for the new model in our case study. Preliminary real data experiment is conducted with use of 17 TerraSAR-X Stripmap images (with a 3-m resolution). With the new deformation model and GA aforementioned, the unknown rheological parameters over all the high coherence points are obtained and the LOS deformation (the low-pass component) sequences are generated.

  8. Visualizing along-strike change in deformation style using analog modeling and digital visualization software

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.

    2012-12-01

    It is a well-known phenomenon that deformation style varies in space; both along the strike of a deformed belt and along the strike of individual structures within that belt. This variation in deformation style is traditionally visualized with a series of closely spaced 2D cross-sections. However, the use of 2D section lines implies plane strain along those lines, and the true 3D nature of the deformation is not necessarily captured. By using a combination of remotely sensed data, analog modeling of field datasets and this remote data, and numerical and digital visualization of the finished model, a 3D understanding and restoration of the deformation style within the region can be achieved. The workflow used for this study begins by considering the variation in deformation style which can be observed from satellite images and combining this data with traditional field data, in order to understand the deformation in the region under consideration. The conceptual model developed at this stage is then modeled using a sand and silicone modeling system, where the kinematics and dynamics of the deformation processes can be examined. A series of closely-spaced cross-sections, as well as 3D images of the deformation, are created from the analog model, and input into a digital visualization and modeling system for restoration. In this fashion, a valid 3D model is created where the internal structure of the deformed system can be visualized and mined for information. The region used in the study is the Sawtooth Range, Montana. The region forms part of the Montana Disturbed Belt in the Front Ranges of the Rocky Mountains, along strike from the Alberta Syncline in the Canadian Rocky Mountains. Interpretation of satellite data indicates that the deformation front structures include both folds and thrust structures. The thrust structures vary from hinterland-verging triangle zones to foreland-verging imbricate thrusts along strike, and the folds also vary in geometry along

  9. Deformation of the quintom cosmological model and its consequences

    NASA Astrophysics Data System (ADS)

    Sadeghi, J.; Pourhassan, B.; Nekouee, Z.; Shokri, M.

    In this paper, we investigate the effects of noncommutative phase-space on the quintom cosmological model. In that case, we discuss about some cosmological parameters and show that they depend on the deformation parameters. We find that the noncommutative parameter plays important role which helps to re-arrange the divergency of cosmological constant. We draw time-dependent scale factor and investigate the effect of noncommutative parameters. Finally, we take advantage from noncommutative phase-space and obtain the deformed Lagrangian for the quintom model. In order to discuss some cosmological phenomena as dark energy and inflation, we employ Noether symmetry.

  10. Concurrent orthopedic and neurosurgical procedures in pediatric patients with spinal deformity.

    PubMed

    Mooney, James F; Glazier, Stephen S; Barfield, William R

    2012-11-01

    The management of pediatric patients with complex spinal deformity often requires both an orthopedic and a neurosurgical intervention. The reasons for multiple subspecialty involvement include, but are not limited to, the presence of a tethered cord requiring release or a syrinx requiring decompression. It has been common practice to perform these procedures in a staged manner, although there is little evidence in the literature to support separate interventions. We reviewed a series of consecutive patients who underwent spinal deformity correction and a neurosurgical intervention concurrently in an attempt to assess the safety, efficacy, and possible complications associated with such an approach. Eleven patients were reviewed who underwent concurrent orthopedic and neurosurgical procedures. Data were collected for patient demographics, preoperative diagnosis, procedures performed, intraoperative and perioperative complications, as well as any unexpected return to the operating room for any reason. Operative notes and anesthesia records were reviewed to determine estimated blood loss, surgical time, and the use of intraoperative neurological monitoring. Patient diagnoses included myelodysplasia (N=6), congenital scoliosis and/or kyphosis (N=4), and scoliosis associated with Noonan syndrome (N=1). Age at the time of surgery averaged 9 years 2 months (range=14 months to 17 years 2 months). Estimated blood loss averaged 605 ml (range=50-3000 ml). The operative time averaged 313 min (range=157-477 min). There were no intraoperative complications, including incidental dural tears or deterioration in preoperative neurological status. One patient developed a sore associated with postoperative cast immobilization that led to a deep wound infection. It appears that concurrent orthopedic and neurosurgical procedures in pediatric patients with significant spinal deformities can be performed safely and with minimal intraoperative and postoperative complications when utilizing

  11. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  12. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    NASA Astrophysics Data System (ADS)

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  13. An efficient and scalable deformable model for virtual reality-based medical applications.

    PubMed

    Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann

    2004-09-01

    Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.

  14. Accurate Segmentation of CT Male Pelvic Organs via Regression-based Deformable Models and Multi-task Random Forests

    PubMed Central

    Gao, Yaozong; Shao, Yeqin; Lian, Jun; Wang, Andrew Z.; Chen, Ronald C.

    2016-01-01

    Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well as large variations of shape and appearance of the pelvic organs. Among existing segmentation methods, deformable models are the most popular, as shape prior can be easily incorporated to regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their performance, especially for segmenting organs with large shape variations. In this paper, we propose a novel approach to guide deformable models, thus making them robust against arbitrary initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement from any image voxel to the target organ boundary based on the local patch appearance. This regressor provides a nonlocal external force for each vertex of deformable model, thus overcoming the initialization problem suffered by the traditional deformable models. To learn a reliable displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context model is used to iteratively enforce structural information during voxel-wise prediction. Extensive experiments on 313 planning CT scans of 313 patients show that our method achieves better results than alternative classification or regression based methods, and also several other existing methods in CT pelvic organ segmentation. PMID:26800531

  15. Is spine deformity surgery in patients with spastic cerebral palsy truly beneficial?: a patient/parent evaluation.

    PubMed

    Watanabe, Kota; Lenke, Lawrence G; Daubs, Michael D; Watanabe, Kei; Bridwell, Keith H; Stobbs, Georgia; Hensley, Marsha

    2009-09-15

    Retrospective clinical outcome study. To evaluate the clinical outcomes and satisfaction associated with the surgical treatment of neuromuscular spinal deformity secondary to cerebral palsy. Controversy still exists regarding whether spinal deformity surgery is truly a beneficial surgery for patients with cerebral palsy (CP) since there is limited functional benefit and higher perioperative complications rates in this patient population. Neuromuscular patient evaluation questionnaires were answered retrospectively by 84 patients/families of spastic CP patients undergoing spinal fusion. The average follow-up was 6.2 years (range: 2-16). The questionnaires were designed to assess expectation, cosmesis, function, patient care, quality of life, pulmonary function, pain, health status, self-image, and satisfaction. Questionnaire results, complications, and radiographic data were divided into "satisfied group" and "less satisfied group" and we analyzed reasons of satisfaction and dissatisfaction. The overall satisfaction rate was 92%. Ninety-three percent reported improvement with sitting balance, 94% with cosmesis, and 71% in patient's quality of life. Functional improvements seemed limited, but 8% to 40% of the patients still perceived the surgical results as improvement. The postoperative complication rate was 27%. The mean preoperative Cobb angle of the major curve was 88 degrees (range: 53 degrees-141 degrees), which corrected to 39 degrees (range: 5 degrees-88 degrees) after surgery. The less satisfied group had a significantly higher late complication rate, less correction of the major curve, greater residual major curve, and hyperlordosis of the lumbar spine after surgery. Despite the perioperative difficulties seen with CP patients, the majority of the patient/parents were satisfied with the results of the spinal deformity surgery. Functional improvements were limited but 8% to 40% of the patients still perceived the results as improved. The reason for less than

  16. Model Deformation Measurements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1998-01-01

    Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.

  17. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    PubMed Central

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry

  18. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.

    PubMed

    Bekesi, Nandor; Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0-0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry, suggesting that this is a promising technique

  19. Left Ventricular Endocardium Tracking by Fusion of Biomechanical and Deformable Models

    PubMed Central

    Gu, Jason

    2014-01-01

    This paper presents a framework for tracking left ventricular (LV) endocardium through 2D echocardiography image sequence. The framework is based on fusion of biomechanical (BM) model of the heart with the parametric deformable model. The BM model constitutive equation consists of passive and active strain energy functions. The deformations of the LV are obtained by solving the constitutive equations using ABAQUS FEM in each frame in the cardiac cycle. The strain energy functions are defined in two user subroutines for active and passive phases. Average fusion technique is used to fuse the BM and deformable model contours. Experimental results are conducted to verify the detected contours and the results are evaluated by comparing themto a created gold standard. The results and the evaluation proved that the framework has the tremendous potential to track and segment the LV through the whole cardiac cycle. PMID:24587814

  20. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov; Tomé, Carlos, E-mail: tome@lanl.gov; Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC)more » polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.« less

  1. Target Recognition Using Neural Networks for Model Deformation Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hibler, David L.

    1999-01-01

    Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.

  2. Modeling and simulation of deformation of hydrogels responding to electric stimulus.

    PubMed

    Li, Hua; Luo, Rongmo; Lam, K Y

    2007-01-01

    A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels.

  3. Correcting for deformation in skin-based marker systems.

    PubMed

    Alexander, E J; Andriacchi, T P

    2001-03-01

    A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.

  4. Novel Use of Active Leptospermum Honey for Ringed Fixator Pin Site Care in Diabetic Charcot Deformity Patients.

    PubMed

    Lazarides, Alexander L; Hamid, Kamran S; Kerzner, Michael S

    2018-04-01

    Open reduction with external fixation (OREF) utilizing fine wire ringed fixators for correction of Charcot deformity has gained popularity over the past decade. Pin site infections are a well-documented complication of external fixation as well as a driver of escalating health care costs. We aimed to demonstrate the safety and efficacy of a novel method of pin site care utilizing active Leptospermum honey-impregnated dressings (MediHoney) in diabetic patients undergoing deformity correction with OREF. Twenty-one diabetic patients with Charcot deformities of the lower extremity were prospectively enrolled and followed for pin site complications following OREF for deformity correction. Active Leptospermum honey dressings were applied at metal-cutaneous interfaces at the end of the OREF procedure and replaced weekly for a total of 8 weeks. Patients were monitored for pin site infections from the time of surgery until external fixator removal. Sixteen consecutive patients receiving standard OREF for Charcot deformities were evaluated retrospectively to serve as a control group. Of the 21 enrolled patients, 19 underwent OREF and followed up throughout the study period. Treated patients had a mean age of 58.5 years and mean body mass index measuring 33.3 kg/m 2 as documented prior to surgery. The 15 patients with hemoglobin A1c labs drawn in the 3 months preceding surgery averaged 7.5. Fixators were removed at an average of 12.1 weeks after adequate bony healing. Of the 244 pin sites in 19 patients, 3 pin sites (1.2% of pins) in 2 patients (10.5% of patients) showed evidence of superficial infection. All infections resolved with oral antibiotics. Infection rates were significantly reduced when compared to the standard care control group. Pilot data in a prospectively collected case series demonstrate safety and efficacy of active Leptospermum honey-impregnated dressings when used for fine wire ringed fixator pin site care in diabetic Charcot deformity patients. Further

  5. Damping Models for Shear-Deformable Beam with Applications to Spacecraft Wiring Harness

    DTIC Science & Technology

    2014-10-28

    AFRL-RV-PS- TR-2014-0189 AFRL-RV-PS- TR-2014-0189 DAMPING MODELS FOR SHEAR-DEFORMABLE BEAM WITH APPLICATIONS TO SPACECRAFT WIRING HARNESS ...Feb 2012 4. TITLE AND SUBTITLE Damping Models for Shear-Deformable Beam with Applications to Spacecraft Wiring Harness 5a. CONTRACT NUMBER FA9453-12...behavior of wiring harnesses . The emphasis in this project will be on the extension of the shear-beam damping model to the Timoshenko beam, a beam model

  6. Mathematical model of rolling an elastic wheel over deformable support base

    NASA Astrophysics Data System (ADS)

    Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.

    2018-02-01

    One of the main direction of economic growth in Russia remains to be a speedy development of north and northeast regions that are the constituents of the 60 percent of the country territory. The further development of these territories requires new methods and technologies for solving transport and technological problems when off-road transportation of cargoes and people is conducting. One of the fundamental methods of patency prediction is imitation modeling of wheeled vehicles movement in different operating conditions. Both deformable properties of tires and physical and mechanical properties of the ground: normal tire deflection and gauge depth; variation of contact patch area depending on the load and pressure of air in the tire; existence of hysteresis losses in the tire material which are influencing on the rolling resistance due to friction processes between tire and ground in the contact patch; existence of the tangential reaction from the ground by entire contact area influence on the tractive patency. Nowadays there are two main trends in theoretical research of interaction wheeled propulsion device with ground: analytical method involving mathematical description of explored process and finite element method based on computational modeling. Mathematical models of interaction tire with the ground are used both in processes of interaction individual wheeled propulsion device with ground and researches of mobile vehicle dynamical models operated in specific road and climate conditions. One of the most significant imperfection of these models is the description of interaction wheel with flat deformable support base whereas profile of real support base surface has essential height of unevenness which is commensurate with radius of the wheel. The description of processes taking place in the ground under influence of the wheeled propulsion device using the finite element method is relatively new but most applicable lately. The application of this method allows

  7. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    NASA Astrophysics Data System (ADS)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  8. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    NASA Astrophysics Data System (ADS)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to

  9. Half-Lives of Proton Emitters With a Deformed Density-Dependent Model

    NASA Astrophysics Data System (ADS)

    Qian, Yi-Bin; Ren, Zhong-Zhou; Ni, Dong-Dong; Sheng, Zong-Qiang

    2010-11-01

    Half-lives of proton radioactivity are investigated with a deformed density-dependent model. The single folding potential which is dependent on deformation and orientation is employed to calculate the proton decay width through the deformed potential barrier. In addition, the spectroscopic factor is taken into account in the calculation, which is obtained in the relativistic mean field theory with NL3. The calculated results of semi-spherical nuclei are found to be in good agreement with the experimental data, and the results of well-deformed nuclei are also satisfactory. Moreover, a formula for the spherical proton emission half-life based on the Gamow quantum tunneling theory is presented.

  10. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  11. Microstructure based hygromechanical modelling of deformation of fruit tissue

    NASA Astrophysics Data System (ADS)

    Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.

    2017-10-01

    Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.

  12. [Research progress on real-time deformable models of soft tissues for surgery simulation].

    PubMed

    Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie

    2010-04-01

    Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.

  13. Subsequent, unplanned spine surgery and life survival of patients operated for neuropathic spine deformity.

    PubMed

    Asher, Marc A; Lai, Sue-Min; Burton, Douglas C

    2012-01-01

    Retrospective study of a prospectively assembled cohort. To characterize the survival from subsequent spine surgery and the life survival of patients treated surgically for severe spinal deformity due to neuropathic diseases. Survivorship analysis is widely used to study the natural history of disease processes and of treatments provided, but has very seldom been used to study patients' course after surgery for spinal deformity associated with neuropathic diseases. Patients with neuropathic spinal deformity treated with primary posterior instrumentation and arthrodesis from 1989 through 2002 were identified and studied by review of charts and radiographs, and by mail survey. Subsequent spine surgery and death events, and the time interval from surgery were identified. Fifteen variables possibly influencing survivorship were studied. There were no perioperative deaths, spinal cord injuries, or acute wound infections in the 117 eligible patients. Reoperation and life survival statuses were available for 110 patients (94%) at an average follow-up of 11.89 years (±5.3; range: 2-20.9 yr). Twelve patients (11%) had subsequent spine surgery. Survival from subsequent spine surgery was 91% at 5 years, 90% at 10 and 15 years, and 72% at 20 years. Proximal fixation problems occurred in 4 patients. Twenty-two patients (20%) had died from 4 to 20 years postoperative. Life survival was 98% at 5 years, 89% at 10 years, 81% at 15 years, and 56% at 20 years. The only variable associated with life survival was the occurrence of one or more perioperative complications, P = 0.0032. The younger half of the series at operation (<13.75 yr) was significantly more likely to have one or more perioperative complications, P = 0.0068. Spinal deformity type and magnitude were similar for the younger and older halves of the patients. Life survival of the patients with cerebral-palsy and not-cerebral-palsy upper motor neuron disease was not different. One-hundred-two of 105 were at least

  14. The relationship between digital model accuracy and time-dependent deformation of alginate impressions.

    PubMed

    Alcan, Toros; Ceylanoğlu, Cenk; Baysal, Bekir

    2009-01-01

    To investigate the effects of different storage periods of alginate impressions on digital model accuracy. A total of 105 impressions were taken from a master model with three different brands of alginates and were poured into stone models in five different storage periods. In all, 21 stone models were poured and immediately were scanned, and 21 digital models were prepared. The remaining 84 impressions were poured after 1, 2, 3, and 4 days, respectively. Five linear measurements were made by three researchers on the master model, the stone models, and the digital models. Time-dependent deformation of alginate impressions at different storage periods and the accuracy of traditional stone models and digital models were evaluated separately. Both the stone models and the digital models were highly correlated with the master model. Significant deformities in the alginate impressions were noted at different storage periods of 1 to 4 days. Alginate impressions of different brands also showed significant differences between each other on the first, third, and fourth days. Digital orthodontic models are as reliable as traditional stone models and probably will become the standard for orthodontic clinical use. Storing alginate impressions in sealed plastic bags for up to 4 days caused statistically significant deformation of alginate impressions, but the magnitude of these deformations did not appear to be clinically relevant and had no adverse effect on digital modeling.

  15. A skeleton family generator via physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2009-01-01

    This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

  16. Modelling of the plastic deformation and primary creep of metals coupled with DC in terms of the synthetic theory of irrecoverable deformation

    NASA Astrophysics Data System (ADS)

    Rusinko, Andrew; Varga, Peter

    2018-04-01

    The paper deals with modelling of the plastic and creep deformation of metals coupled with current. The passage of DC manifests itself in the increase in creep deformation and leads to primary creep time shortening. With plastic deformation, a short electric impulse results in the step-wise decrease of stress (stress-drop) on the stress-strain diagram. To catch these phenomena, we utilize the synthetic theory of recoverable deformation. The constitutive equation of this theory is supplemented by a term taking into account the intensity of DC. Further, we introduce DC intensity into the function governing transient creep. As a result, we predict the parameters of transient creep and calculate the stress-drop as a function of current intensity. The model results show good agreement with experimental data.

  17. Modeling of deformation behavior and texture evolution in magnesium alloy using the intermediate $$\\phi$$-model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Ahzi, Said; M'Guil, S. M.

    2014-01-06

    The viscoplastic intermediate phi-model was applied in this work to predict the deformation behavior and texture evolution in a magnesium alloy, an HCP material. We simulated the deformation behavior with different intergranular interaction strengths and compared the predicted results with available experimental results. In this approach, elasticity is neglected and the plastic deformation mechanisms are assumed as a combination of crystallographic slip and twinning systems. Tests are performed for rolling (plane strain compression) of random textured Mg polycrystal as well as for tensile and compressive tests on rolled Mg sheets. Simulated texture evolutions agree well with experimental data. Activities of twinning and slip, predicted by the intermediatemore » $$\\phi$$-model, reveal the strong anisotropic behavior during tension and compression of rolled sheets.« less

  18. Non-rigid image registration using a statistical spline deformation model.

    PubMed

    Loeckx, Dirk; Maes, Frederik; Vandermeulen, Dirk; Suetens, Paul

    2003-07-01

    We propose a statistical spline deformation model (SSDM) as a method to solve non-rigid image registration. Within this model, the deformation is expressed using a statistically trained B-spline deformation mesh. The model is trained by principal component analysis of a training set. This approach allows to reduce the number of degrees of freedom needed for non-rigid registration by only retaining the most significant modes of variation observed in the training set. User-defined transformation components, like affine modes, are merged with the principal components into a unified framework. Optimization proceeds along the transformation components rather then along the individual spline coefficients. The concept of SSDM's is applied to the temporal registration of thorax CR-images using pattern intensity as the registration measure. Our results show that, using 30 training pairs, a reduction of 33% is possible in the number of degrees of freedom without deterioration of the result. The same accuracy as without SSDM's is still achieved after a reduction up to 66% of the degrees of freedom.

  19. A nonaffine network model for elastomers undergoing finite deformations

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  20. Lower lip deformity in patients with cleft and non-cleft Class III malocclusion before and after orthognathic surgery.

    PubMed

    Park, Joo Seok; Koh, Kyung S; Choi, Jong Woo

    2015-10-01

    Orthognathic surgery does not yield the same cosmetic benefits in patients with Class III jaw deformities associated with clefts as for patients without clefts. Preoperative upper lip tightness caused by cleft lip repair may not fully explain this difference, suggesting that a lower lip deformity is present. The study compared the outcomes of orthognathic surgery in patients with cleft and non-cleft Class III malocclusion, focusing on lip relationship. The surgical records of 50 patients with Class III malocclusion, including 25 with and 25 without clefts, who had undergone orthognathic surgery, were retrospectively analyzed. Lateral cephalometric tracings, preoperatively and at 6 months postoperatively, were superimposed to analyze the soft tissue changes at seven reference points. At 6 months after surgery, there were no significant differences in skeletal location, whereas the soft tissues of the lower lip differed significantly between patients with and without cleft (p=0.002), indicating the persistence of a lower lip deformity in cleft patients. Moreover, the soft tissues of the lower lip receded in non-cleft patients and protruded in cleft patients after orthognathic surgery. Lower lip deformity and upper lip tightness may result in an unsatisfactory relationship between the upper and lower lips of patients with cleft-related jaw deformity after orthognathic surgery. Other factors were less important than the pathology of the lower lip. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.

    PubMed

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-10-01

    Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.

  2. Quantifying torso deformity in scoliosis

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James

    2006-03-01

    Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.

  3. Geomechanical Modeling of Deformation Banding in the Navajo Sandstone, San Rafael Monocline, Utah

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Sundal, A.; Petrie, E. S.

    2017-12-01

    Deformation bands are ubiquitous geological features in many types of rocks. Depending on their micro-structure, they can act either as conduits or barriers to fluid flow. Given the significant roles deformation bands play in fluid flow and chemical transport in rocks, it is important to develop fundamental understanding of their origin, and their characteristics as they relate with the host rock properties and their depositional and structural-geological history. We present a forward-modeling technique based on the geomechanical Bifurcation Theory (BT) to predict the formation of deformation bands in sandstone. According to BT, the formation of deformation bands is a result of strain location, which in turn stems from instability in the stress-strain response of materials during loading. Due to bifurcation, a material which undergoes homogeneous deformation can reach a point at which the material experiences instability and deformation starts to become non-homogenous. We implemented BT in the commercially-available geomechanical code FLAC (Fast Langragian Analysis of Continua) and applied it in the field-scale modeling of deformation banding in the Navajo Sandstone in the San Rafael Monocline in Utah induced by fault propagation folding. The results show that geomechanical modeling using BT has a powerful potential to simulate the physical processes in the formation of deformation banding in rocks. Predicted deformation bands, specifically the pervasive bedding-parallel bands in the Navajo sandstone formation, normal faulting in the upper limb and reverse faulting in the lower limb, are generally in agreement with field observations. Predictions indicate that the pervasive bedding-parallel bands in the Navajo Sandstone are transitional compaction-shear bands with alternating zones of volumetric compaction and dilation. These predictions are consistent with petrographic analysis of thin sections of rock samples from the Navajo Sandstone. The most important

  4. Understanding and modeling volcanotectonic processes that generate surface deformation on active stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Gudmundsson, A.

    2005-05-01

    Surface deformation on stratovolcanoes is the result of local stresses generated by various volcanotectonic processes. These processes include changes in fluid pressure in the associated geothermal fields and magma chambers, regional seismic or tectonic events, fault development, and dike injections. Here the focus is on magma-chamber pressure changes and dike injections. Surface deformation associated with magma-chamber pressure changes is normally referred to as inflation when the pressure increases, and as deflation when the pressure decreases. The processes that lead to inflation are primarily addition of new magma to the chamber and rapid exsolution of gas from the magma in the chamber. The processes that lead to deflation are primarily cooling (and contraction) of magma in the chamber, regional tectonic extension of the crust holding the chamber, and eruption and/or dike injection. Injection of dikes (including inclined sheets) is common in most active stratovolcanoes. However, no dike-fed eruptions can take place unless the local stress field within the volcano is favorable to feeder-dike formation. By contrast, if at any location - in any layer - in the stratovolcano the stress field is unfavorable to dike propagation, the dike becomes arrested and no eruption occurs. Detailed studies of dikes in stratovolcanoes worldwide indicate that most dikes become arrested and never reach the surface. However, arrested dikes may give rise to surface deformation, such as is commonly monitored during volcanic unrest periods. By definition, stratovolcanoes are composed of numerous alternating strata (layers) of pyroclastic material and lava flows. Commonly, these layers have widely different mechanical properties. In particular, some layers such as lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas other layers, such as non-welded pyroclastic units, may be soft (with a low Young's modulus). Here I present new numerical models on

  5. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  6. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model

    PubMed Central

    Li, Xiaoqing; Wang, Yu

    2018-01-01

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing

  7. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.

    PubMed

    Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu

    2018-01-19

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing

  8. Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies

    NASA Astrophysics Data System (ADS)

    Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.

    2017-12-01

    Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are

  9. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  10. Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.

    2001-01-01

    Single-camera, single-view videogrammetry has been used for the first time to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique used for the measurements presented here has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. However, the primary measurement at the NTF with this technique in the past has been the measurement of the static aeroelastic wing twist of the main wing element on full span models rather than for the measurement of component deformation. Considerations for using the videogrammetric technique for semispan component deformation measurements as well as representative results are presented.

  11. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on

  12. A large deformation viscoelastic model for double-network hydrogels

    NASA Astrophysics Data System (ADS)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  13. Image-based Modeling of PSF Deformation with Application to Limited Angle PET Data

    PubMed Central

    Matej, Samuel; Li, Yusheng; Panetta, Joseph; Karp, Joel S.; Surti, Suleman

    2016-01-01

    The point-spread-functions (PSFs) of reconstructed images can be deformed due to detector effects such as resolution blurring and parallax error, data acquisition geometry such as insufficient sampling or limited angular coverage in dual-panel PET systems, or reconstruction imperfections/simplifications. PSF deformation decreases quantitative accuracy and its spatial variation lowers consistency of lesion uptake measurement across the imaging field-of-view (FOV). This can be a significant problem with dual panel PET systems even when using TOF data and image reconstruction models of the detector and data acquisition process. To correct for the spatially variant reconstructed PSF distortions we propose to use an image-based resolution model (IRM) that includes such image PSF deformation effects. Originally the IRM was mostly used for approximating data resolution effects of standard PET systems with full angular coverage in a computationally efficient way, but recently it was also used to mitigate effects of simplified geometric projectors. Our work goes beyond this by including into the IRM reconstruction imperfections caused by combination of the limited angle, parallax errors, and any other (residual) deformation effects and testing it for challenging dual panel data with strongly asymmetric and variable PSF deformations. We applied and tested these concepts using simulated data based on our design for a dedicated breast imaging geometry (B-PET) consisting of dual-panel, time-of-flight (TOF) detectors. We compared two image-based resolution models; i) a simple spatially invariant approximation to PSF deformation, which captures only the general PSF shape through an elongated 3D Gaussian function, and ii) a spatially variant model using a Gaussian mixture model (GMM) to more accurately capture the asymmetric PSF shape in images reconstructed from data acquired with the B-PET scanner geometry. Results demonstrate that while both IRMs decrease the overall uptake

  14. Inelastic deformation and phenomenological modeling of aluminum including transient effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.W.

    A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelasticmore » spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.« less

  15. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps)more » using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions

  16. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  17. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    NASA Astrophysics Data System (ADS)

    Li, Dongna; Li, Xudong; Dai, Jianfeng

    2018-06-01

    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  18. Lymph node segmentation on CT images by a shape model guided deformable surface methodh

    NASA Astrophysics Data System (ADS)

    Maleike, Daniel; Fabel, Michael; Tetzlaff, Ralf; von Tengg-Kobligk, Hendrik; Heimann, Tobias; Meinzer, Hans-Peter; Wolf, Ivo

    2008-03-01

    With many tumor entities, quantitative assessment of lymph node growth over time is important to make therapy choices or to evaluate new therapies. The clinical standard is to document diameters on transversal slices, which is not the best measure for a volume. We present a new algorithm to segment (metastatic) lymph nodes and evaluate the algorithm with 29 lymph nodes in clinical CT images. The algorithm is based on a deformable surface search, which uses statistical shape models to restrict free deformation. To model lymph nodes, we construct an ellipsoid shape model, which strives for a surface with strong gradients and user-defined gray values. The algorithm is integrated into an application, which also allows interactive correction of the segmentation results. The evaluation shows that the algorithm gives good results in the majority of cases and is comparable to time-consuming manual segmentation. The median volume error was 10.1% of the reference volume before and 6.1% after manual correction. Integrated into an application, it is possible to perform lymph node volumetry for a whole patient within the 10 to 15 minutes time limit imposed by clinical routine.

  19. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.

    PubMed

    Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart

    2014-11-19

    A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.

  20. Effect of Surgical Curve Correction on Exercise Tolerance and Physical Capacities in Patients of Severe Spinal Deformity.

    PubMed

    Patil, Prateek C; Rathod, Ashok K; Borde, Mandar; Singh, Vishwajeet; Singh, Hemant U

    2016-12-01

    Traditionally, surgical intervention for patients with a spinal deformity has been considered for cosmetic benefits, but surgical intervention can alter the lung physiology or volumes and in turn leads to increase in physical capacity and exercise tolerance. Therefore, we conducted this to determine whether a surgical correction would restore the lung physiology, physical capacity and exercise tolerance in patients with kyphoscoliosis. To evaluate the usage of six-minute walk test scores and modified Borg scores as tools/measures for exercise tolerance in patients with spinal deformity and to study the effects of surgical correction of spinal deformity on exercise tolerance with above parameters as the measures. Thirty patients with spinal deformity, who had undergone surgery for deformity correction, were evaluated. All patients were investigated pre-operatively with x-rays of the spine (anteroposterior and lateral views). Clinical tests like breath holding time (after full inspiration) in number of seconds, modified Borg scores, six-minute walk test scores (heart rate, respiratory rate, maximum distance walked); were recorded as measures of exercise tolerance. The patients were followed up on the first, third, sixth and twelfth month post-operatively and tested clinically for breath holding time, modified Borg scores, six-minute walk test scores (heart rate, respiratory rate, maximum distance walked) and x-rays of the spine (anteroposterior and lateral views). In our study, breath holding time (p-value = 0.001) and modified Borg scores (p-value = 0.012) showed a significant improvement at 12 months post-operatively. We noted similar findings with heart rate, respiratory rate and maximum distance walked after a six-minute walk test. Improvements were noted in all the parameters, especially in the group of patients with greater than 60 degrees of cobb angle. However, the differences between the two groups (pre-operative cobb angle less than 60 degrees and pre

  1. Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.

    NASA Astrophysics Data System (ADS)

    Heorton, Harry; Feltham, Daniel; Tsamados, Michel

    2017-04-01

    The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.

  2. Phenomenological model for transient deformation based on state variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, M S; Cho, C W; Alexopoulos, P

    The state variable theory of Hart, while providing a unified description of plasticity-dominated deformation, exhibits deficiencies when it is applied to transient deformation phenomena at stresses below yield. It appears that the description of stored anelastic strain is oversimplified. Consideration of a simple physical picture based on continuum dislocation pileups suggests that the neglect of weak barriers to dislocation motion is the source of these inadequacies. An appropriately modified description incorporating such barriers then allows the construction of a macroscopic model including transient effects. Although the flow relations for the microplastic element required in the new theory are not known,more » tentative assignments may be made for such functions. The model then exhibits qualitatively correct behavior when tensile, loading-unloading, reverse loading, and load relaxation tests are simulated. Experimental procedures are described for determining the unknown parameters and functions in the new model.« less

  3. A multiphase approach to model ultrafiltration of deformable colloids

    NASA Astrophysics Data System (ADS)

    Haribabu, Malavika; Dunstan, Dave; Davidson, Malcolm; Harvie, Dalton

    2017-11-01

    Ultrafiltration (UF) is widely used in the dairy industry to fractionate and concentrate proteins, during the manufacture of milk protein concentrate and cheese. The protein build-up, comprising casein micelles (CM) and whey proteins, at the membrane surface during UF increases the resistance of the membrane system, thereby decreasing the performance of the process unit. CM have a complex structure that hydrodynamically behaves as a hard-sphere when dilute, but deforms beyond the random packing limit, forming a shear-thinning gel. This study employs a mixture model, based on the mixture phase continuity, Navier-Stokes equations, and solids continuity equation, to predict the solid concentration and velocity distribution during UF of CM. Micelle deformation is modelled as a function of volume fraction and dependent on its elastic modulus and particle size. The effect of deformation on gel permeability is implemented via Happel's permeability for hard spheres. Under crossflow conditions, the gel thickness is observed to increase along the membrane length, followed by a decrease towards the end of the membrane, resulting in an increase in flux at the latter section of the membrane. This study demonstrates that the membrane end-effects are important in determining UF performance.

  4. Deformation and stress change associated with plate interaction at subduction zones: a kinematic modelling

    NASA Astrophysics Data System (ADS)

    Zhao, Shaorong; Takemoto, Shuzo

    2000-08-01

    The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model

  5. The Role of Deformation Energetics in Long-Term Tectonic Modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, S.; Choi, E.

    2017-12-01

    The deformation-related energy budget is usually considered in the simplest form or even entirely omitted from the energy balance equation. We derive a full energy balance equation that accounts not only for heat energy but also for mechanical (elastic, plastic and viscous) work. The derived equation is implemented in DES3D, an unstructured finite element solver for long-term tectonic deformation. We verify the implementation by comparing numerical solutions to the corresponding semi-analytic solutions in three benchmarks extended from the classical oedometer test. We also investigate the long-term effects of deformation energetics on the evolution of large offset normal faults. We find that the models considering the full energy balance equation tend to produce more secondary faults and an elongated core complex. Our results for the normal fault system confirm that persistent inelastic deformation has a significant impact on the long-term evolution of faults, motivating further exploration of the role of the full energy balance equation in other geodynamic systems.

  6. Trochantoplasty for Total Hip Arthroplasty in Patients With Coxa Vara Deformity.

    PubMed

    Yoo, Jun-Il; Parvizi, Javad; Song, Ji-Ung; Ha, Yong-Chan; Lee, Young-Kyun; Koo, Kyung-Hoi

    2017-07-01

    In total hip arthroplasty (THA) of hips with coxa vara, the femoral stems might be inserted in a varus alignment. To avoid varus insertion, we designed a technique, which we termed "trochantoplasty." In this procedure, the medial half of the greater trochanter was removed during THA. We evaluated 30 patients (31 hips) who had coxa vara deformity and underwent THA using trochantoplasty at the mean follow-up of 5 years (range, 3-9 years). All stems were inserted in the neutral position. One Vancouver type 1 periprosthetic femoral fracture occurred after a fall at postoperative 2 months. At the latest follow-up, the mean power of abductor was 4.3 (range, 3-5). Four patients had moderate limp whereas 26 patients had slight limp. The abduction at 90° flexion ranged from 15° to 45° (mean, 35°). There was no revision. All prostheses had bone-ingrown stability without any detectable wear or osteolysis. The mean Harris hip score was improved from 66.9 to 89.4 points. Trochantoplasty can be used to avoid varus insertion of the femoral stem while performing THA in patients with coxa vara deformity without compromising the abductor mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Collision detection and modeling of rigid and deformable objects in laparoscopic simulator

    NASA Astrophysics Data System (ADS)

    Dy, Mary-Clare; Tagawa, Kazuyoshi; Tanaka, Hiromi T.; Komori, Masaru

    2015-03-01

    Laparoscopic simulators are viable alternatives for surgical training and rehearsal. Haptic devices can also be incorporated with virtual reality simulators to provide additional cues to the users. However, to provide realistic feedback, the haptic device must be updated by 1kHz. On the other hand, realistic visual cues, that is, the collision detection and deformation between interacting objects must be rendered at least 30 fps. Our current laparoscopic simulator detects the collision between a point on the tool tip, and on the organ surfaces, in which haptic devices are attached on actual tool tips for realistic tool manipulation. The triangular-mesh organ model is rendered using a mass spring deformation model, or finite element method-based models. In this paper, we investigated multi-point-based collision detection on the rigid tool rods. Based on the preliminary results, we propose a method to improve the collision detection scheme, and speed up the organ deformation reaction. We discuss our proposal for an efficient method to compute simultaneous multiple collision between rigid (laparoscopic tools) and deformable (organs) objects, and perform the subsequent collision response, with haptic feedback, in real-time.

  8. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  9. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  10. Neotectonic Deformation in Central Eurasia: A Geodynamic Model Approach

    NASA Astrophysics Data System (ADS)

    Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume; Bird, Peter

    2017-11-01

    Central Eurasia hosts wide orogenic belts of collision between India and Arabia with Eurasia, with diffuse or localized deformation occurring up to hundreds of kilometers from the primary plate boundaries. Although numerous studies have investigated the neotectonic deformation in central Eurasia, most of them have focused on limited segments of the orogenic systems. Here we explore the neotectonic deformation of all of central Eurasia, including both collision zones and the links between them. We use a thin-spherical sheet approach in which lithosphere strength is calculated from lithosphere structure and its thermal regime. We investigate the contributions of variations in lithospheric structure, rheology, boundary conditions, and fault friction coefficients on the predicted velocity and stress fields. Results (deformation pattern, surface velocities, tectonic stresses, and slip rates on faults) are constrained by independent observations of tectonic regime, GPS, and stress data. Our model predictions reproduce the counterclockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults in the Tibetan Plateau, a weaker lithosphere is required, provided by a change in the rheological parameters. The southward movement of the SE Tibetan Plateau can be explained by the combined effects of the Sumatra trench retreat, a thinner lithospheric mantle, and strik-slip faults in the region. This study offers a comprehensive model for regions with little or no data coverage, like the Arabia-India intercollision zone, where the surface velocity is northward showing no deflection related to Arabia and India indentations.

  11. Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Kramer, M. J.

    1983-01-01

    The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.

  12. Intraplate Crustal Deformation Within the Northern Sinai Microplate: Evidence from Paleomagnetic Directions and Mechanical Modeling

    NASA Astrophysics Data System (ADS)

    Dembo, N.; Granot, R.; Hamiel, Y.

    2017-12-01

    The intraplate crustal deformation found in the northern part of the Sinai Microplate, located near the northern Dead Sea Fault plate boundary, is examined. Previous studies have suggested that distributed deformation in Lebanon is accommodated by regional uniform counterclockwise rigid block rotations. However, remanent magnetization directions observed near the Lebanese restraining bend are not entirely homogeneous suggesting that an unexplained and complex internal deformation pattern exists. In order to explain the variations in the amount of vertical-axis rotations we construct a mechanical model of the major active faults in the region that simulates the rotational deformation induced by motion along these faults. The rotational pattern calculated by the mechanical modeling predicts heterogeneous distribution of rotations around the faults. The combined rotation field that considers both the fault induced rotations and the already suggested regional block rotations stands in general agreement with the observed magnetization directions. Overall, the modeling results provide a more detailed and complete picture of the deformation pattern in this region and show that rotations induced by motion along the Dead Sea Fault act in parallel to rigid block rotations. Finally, the new modeling results unravel important insights as to the fashion in which crustal deformation is distributed within the northern part of the Sinai Microplate and propose an improved deformational mechanism that might be appropriate for other plate margins as well.

  13. Volcanoes Behave as Composite Materials: Implications for Modeling Magma Chambers, Dikes, and Surface Deformation

    NASA Astrophysics Data System (ADS)

    Leiss, B.; Gudmundsson, A.; Philipp, S. L.

    2005-12-01

    By definition, composite volcanoes are composed of numerous alternating material units or layers such as lavas, sediments, and pyroclastics. Commonly, these layers have widely different mechanical properties. In particular, some lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas others, such as non-welded pyroclastic units and sediments, may be soft (with a low Young's modulus). As a consequence, even if the loading (tectonic stress, magmatic pressure, or displacement) is uniform, the stresses within the composite volcano will vary widely. In this sense, the behavior of composite volcanoes is similar to that of general composite materials. The deformation of the surface of a volcano during an unrest period results from stresses generated by processes and parameters such as fluid pressure in a geothermal field or a magma chamber, a regional tectonic event, and a dike injection. Here we present new numerical models on mechanics of magma chambers and dikes, and the associated surface deformation of composite volcanoes. The models show that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. The models also indicate that the surface deformation induced by a propagating dike depends much on the mechanical properties of the layers between the dike tip and the surface. In particular, the numerical results show that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Many dikes may therefore become injected and arrested at shallow depths in a volcano while giving rise to little or no surface deformation. Traditional analytical surface-deformation models such as a point source (Mogi model) for a magma-chamber pressure change and a dislocation for a dike normally assume the volcano to behave as a

  14. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  15. Analysis and Modeling of Process of Residual Deformations Accumulation in Soils and Granular Materials

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. S.; Dolgih, G. V.; Kalinin, A. L.

    2017-11-01

    It is established that under the influence of repeated loads the process of plastic deformation in soils and discrete materials is hereditary. To perform the mathematical modeling of plastic deformation, the authors applied the integral equation by solution of which they manage to obtain the power and logarithmic dependencies connecting plastic deformation with the number of repeated loads, the parameters of the material and components of the stress tensor in the principal axes. It is shown that these dependences generalize a number of models proposed earlier in Russia and abroad. Based on the analysis of the experimental data obtained during material testing in the dynamic devices of triaxial compression at different values of the stress deviator, the coefficients in the proposed models of deformation are determined. The authors determined the application domain for logarithmic and degree dependences.

  16. On precisely modelling surface deformation due to interacting magma chambers and dykes

    NASA Astrophysics Data System (ADS)

    Pascal, Karen; Neuberg, Jurgen; Rivalta, Eleonora

    2014-01-01

    Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide the modelling of deformation sources is not available, due to the lack of tomography studies, for example. Therefore, volcano ground deformation due to magma movement in the subsurface is commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained by a single deformation source, the magmatic system is often represented by a combination of these sources and their displacements fields are simply summed. By doing so, the assumption of homogeneity in the half-space is violated and the resulting interaction between sources is neglected. We have quantified the errors of such a simplification and investigated the limits in which the combination of analytical sources is justified. We have calculated the vertical and horizontal displacements for analytical models with adjacent deformation sources and have tested them against the solutions of corresponding 3-D finite element models, which account for the interaction between sources. We have tested various double-source configurations with either two spherical sources representing magma chambers, or a magma chamber and an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source (magma chamber), we find the discrepancies with the numerical models to be insignificant (<5 per cent) independently of the source separation. However, if a Mogi source is placed side by side to an Okada source (in the strike-perpendicular direction), we find the discrepancies to become significant for a source separation less than four times the radius of the magma chamber. For horizontally or vertically aligned pressurized

  17. Dislocation models of interseismic deformation in the western United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.

    2008-01-01

    The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.

  18. Sex Differences in Patients With CAM Deformities With Femoroacetabular Impingement: 3-Dimensional Computed Tomographic Quantification.

    PubMed

    Yanke, Adam B; Khair, M Michael; Stanley, Robert; Walton, David; Lee, Simon; Bush-Joseph, Charles A; Espinoza Orías, Alejandro; Espinosa Orias, Alejandro A; Inoue, Nozomu; Nho, Shane J

    2015-12-01

    To determine if significant differences exist between male and female CAM deformities using quantitative 3-dimensional (3D) volume and location analysis. Retrospective analysis of preoperative computed tomographic (CT) scans for 138 femurs (69 from male patients and 69 from female patients) diagnosed with impingement from November 2009 to November 2011 was completed. Those patients who presented with hip complaints and had a history, physical examination (limited range of motion, positive impingement signs), plain radiographs (anteroposterior pelvis, 90° Dunn view, false profile view), and magnetic resonance images consistent with femoroacetabular impingement (FAI) and in whom a minimum of 6 months of conservative therapy (oral anti-inflammatory agents, physical therapy, and activity modification) had failed were indicated for arthroscopic surgery and had a preoperative CT scan. Scans were segmented, converted to point cloud data, and analyzed with a custom-written computer program. Analysis included mean CAM height and volume, head radius, and femoral version. Differences were analyzed using an unpaired t test with significance set at P < .05. Female patients had greater femoral anteversion compared with male patients (female patients, 15.5° ± 8.3°; male patients, 11.3° ± 9.0°; P = .06). Male femoral head radii were significantly larger than female femoral heads (female patients, 22.0 ± 1.3 mm; male patients, 25.4 ± 1.3 mm; P < .001). Male CAM height was significantly larger than that in female patients (female patients, 0.66 ± 0.61 mm; male patients, 1.51 ± 0.75 mm; P < .001). Male CAM volume was significantly larger as well (male patients, 433 ± 471 mm(3); female patients, 89 ± 124 mm(3); P < .001). These differences persisted after normalizing height (P < .001) and volume (P < .001) to femoral head radius. Average clock face distribution was from the 1:09 o'clock position ± the 2:51 o'clock position to the 3:28 o'clock position ± the 1:59 o

  19. Deformation data modeling through numerical models: an efficient method for tracking magma transport

    NASA Astrophysics Data System (ADS)

    Charco, M.; Gonzalez, P. J.; Galán del Sastre, P.

    2017-12-01

    Nowadays, multivariate collected data and robust physical models at volcano observatories are becoming crucial for providing effective volcano monitoring. Nevertheless, the forecast of volcanic eruption is notoriously difficult. Wthin this frame one of the most promising methods to evaluate the volcano hazard is the use of surface ground deformation and in the last decades many developments in the field of deformation modeling has been achieved. In particular, numerical modeling allows realistic media features such as topography and crustal heterogeneities to be included, although it is still very time cosuming to solve the inverse problem for near-real time interpretations. Here, we present a method that can be efficiently used to estimate the location and evolution of magmatic sources base on real-time surface deformation data and Finite Element (FE) models. Generally, the search for the best-fitting magmatic (point) source(s) is conducted for an array of 3-D locations extending below a predefined volume region and the Green functions for all the array components have to be precomputed. We propose a FE model for the pre-computation of Green functions in a mechanically heterogeneous domain which eventually will lead to a better description of the status of the volcanic area. The number of Green functions is reduced here to the number of observational points by using their reciprocity relationship. We present and test this methodology with an optimization method base on a Genetic Algorithm. Following synthetic and sensitivity test to estimate the uncertainty of the model parameters, we apply the tool for magma tracking during 2007 Kilauea volcano intrusion and eruption. We show how data inversion with numerical models can speed up the source parameters estimations for a given volcano showing signs of unrest.

  20. Multi-object segmentation framework using deformable models for medical imaging analysis.

    PubMed

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed

  1. Dosimetric treatment course simulation based on a statistical model of deformable organ motion

    NASA Astrophysics Data System (ADS)

    Söhn, M.; Sobotta, B.; Alber, M.

    2012-06-01

    We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.

  2. Dosimetric treatment course simulation based on a statistical model of deformable organ motion.

    PubMed

    Söhn, M; Sobotta, B; Alber, M

    2012-06-21

    We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.

  3. Deformations of vector-scalar models

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Boulanger, Nicolas; Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash

    2018-02-01

    Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations ("gaugings"), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.

  4. Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint)

    DTIC Science & Technology

    2010-05-01

    List of parameters for the modified MuUiken- model for PMMA . Von Mises [MPa] ^AJ3 V 00 ^ Aa ^Afi CR ha hp Value 3386 1748 0.35 298 1979...AFRL-RW-EG-TP-2010-073 Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint) Eric B. Herbold Jennifer L...SUBTITLE Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  5. Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market.

  6. Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.

    2016-12-01

    Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better

  7. Deformable three-dimensional model architecture for interactive augmented reality in minimally invasive surgery.

    PubMed

    Vemuri, Anant S; Wu, Jungle Chi-Hsiang; Liu, Kai-Che; Wu, Hurng-Sheng

    2012-12-01

    Surgical procedures have undergone considerable advancement during the last few decades. More recently, the availability of some imaging methods intraoperatively has added a new dimension to minimally invasive techniques. Augmented reality in surgery has been a topic of intense interest and research. Augmented reality involves usage of computer vision algorithms on video from endoscopic cameras or cameras mounted in the operating room to provide the surgeon additional information that he or she otherwise would have to recognize intuitively. One of the techniques combines a virtual preoperative model of the patient with the endoscope camera using natural or artificial landmarks to provide an augmented reality view in the operating room. The authors' approach is to provide this with the least number of changes to the operating room. Software architecture is presented to provide interactive adjustment in the registration of a three-dimensional (3D) model and endoscope video. Augmented reality including adrenalectomy, ureteropelvic junction obstruction, and retrocaval ureter and pancreas was used to perform 12 surgeries. The general feedback from the surgeons has been very positive not only in terms of deciding the positions for inserting points but also in knowing the least change in anatomy. The approach involves providing a deformable 3D model architecture and its application to the operating room. A 3D model with a deformable structure is needed to show the shape change of soft tissue during the surgery. The software architecture to provide interactive adjustment in registration of the 3D model and endoscope video with adjustability of every 3D model is presented.

  8. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  9. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.

    2014-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  10. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander Wong

    2013-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  11. TU-H-CAMPUS-JeP1-05: Dose Deformation Error Associated with Deformable Image Registration Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surucu, M; Woerner, A; Roeske, J

    Purpose: To evaluate errors associated with using different deformable image registration (DIR) pathways to deform dose from planning CT (pCT) to cone-beam CT (CBCT). Methods: Deforming dose is controversial because of the lack of quality assurance tools. We previously proposed a novel metric to evaluate dose deformation error (DDE) by warping dose information using two methods, via dose and contour deformation. First, isodose lines of the pCT were converted into structures and then deformed to the CBCT using an image based deformation map (dose/structure/deform). Alternatively, the dose matrix from the pCT was deformed to CBCT using the same deformation map,more » and then the same isodose lines of the deformed dose were converted into structures (dose/deform/structure). The doses corresponding to each structure were queried from the deformed dose and full-width-half-maximums were used to evaluate the dose dispersion. The difference between the FWHM of each isodose level structure is defined as the DDE. Three head-and-neck cancer patients were identified. For each patient, two DIRs were performed between the pCT and CBCT, either deforming pCT-to-CBCT or CBCT-to-pCT. We evaluated the errors associated by using either of these pathways to deform dose. A commercially available, Demons based DIR was used for this study, and 10 isodose levels (20% to 105%) were used to evaluate the errors in various dose levels. Results: The prescription dose for all patients was 70 Gy. The mean DDE for CT-to-CBCT deformation was 1.0 Gy (range: 0.3–2.0 Gy) and this was increased to 4.3 Gy (range: 1.5–6.4 Gy) for CBCT-to-CT deformation. The mean increase in DDE between the two deformations was 3.3 Gy (range: 1.0–5.4 Gy). Conclusion: The proposed DDF was used to quantitatively estimate dose deformation errors caused by different pathways to perform DIR. Deforming dose using CBCT-to-CT deformation produced greater error than CT-to-CBCT deformation.« less

  12. Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tianshu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.

    2000-01-01

    Single-camera, single-view videogrammetry has been used to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. The primary measurement at the NTF with this technique in the past has been the measurement of static aeroelastic wing twist on full span models. The first results using the videogrammetric technique for the measurement of component deformation during semispan testing at the NTF are presented.

  13. On the impact of reducing global geophysical fluid model deformations in SLR data processing

    NASA Astrophysics Data System (ADS)

    Weigelt, Matthias; Thaller, Daniela

    2016-04-01

    Mass redistributions in the atmosphere, oceans and the continental hydrology cause elastic loading deformations of the Earth's crust and thus systematically influence Earth-bound observation systems such as VLBI, GNSS or SLR. Causing non-linear station variations, these loading deformations have a direct impact on the estimated station coordinates and an indirect impact on other parameters of global space-geodetic solutions, e.g. Earth orientation parameters, geocenter coordinates, satellite orbits or troposphere parameters. Generally, the impact can be mitigated by co-parameterisation or by reducing deformations derived from global geophysical fluid models. Here, we focus on the latter approach. A number of data sets modelling the (non-tidal) loading deformations are generated by various groups. They show regionally and locally significant differences and consequently the impact on the space-geodetic solutions heavily depends on the available network geometry. We present and discuss the differences between these models and choose SLR as the speace-geodetic technique of interest in order to discuss the impact of atmospheric, oceanic and hydrological loading on the parameters of space-geodetic solutions when correcting for the global geophysical fluid models at the observation level. Special emphasis is given to a consistent usage of models for geometric and gravimetric corrections during the data processing. We quantify the impact of the different deformation models on the station coordinates and discuss the improvement in the Earth orientation parameters and the geocenter motion. We also show that a significant reduction in the RMS of the station coordinates can be achieved depending on the model of choice.

  14. Multimodality Tumor Delineation and Predictive Modelling via Fuzzy-Fusion Deformable Models and Biological Potential Functions

    NASA Astrophysics Data System (ADS)

    Wasserman, Richard Marc

    The radiation therapy treatment planning (RTTP) process may be subdivided into three planning stages: gross tumor delineation, clinical target delineation, and modality dependent target definition. The research presented will focus on the first two planning tasks. A gross tumor target delineation methodology is proposed which focuses on the integration of MRI, CT, and PET imaging data towards the generation of a mathematically optimal tumor boundary. The solution to this problem is formulated within a framework integrating concepts from the fields of deformable modelling, region growing, fuzzy logic, and data fusion. The resulting fuzzy fusion algorithm can integrate both edge and region information from multiple medical modalities to delineate optimal regions of pathological tissue content. The subclinical boundaries of an infiltrating neoplasm cannot be determined explicitly via traditional imaging methods and are often defined to extend a fixed distance from the gross tumor boundary. In order to improve the clinical target definition process an estimation technique is proposed via which tumor growth may be modelled and subclinical growth predicted. An in vivo, macroscopic primary brain tumor growth model is presented, which may be fit to each patient undergoing treatment, allowing for the prediction of future growth and consequently the ability to estimate subclinical local invasion. Additionally, the patient specific in vivo tumor model will be of significant utility in multiple diagnostic clinical applications.

  15. Parity Deformed Jaynes-Cummings Model: “Robust Maximally Entangled States”

    PubMed Central

    Dehghani, A.; Mojaveri, B.; Shirin, S.; Faseghandis, S. Amiri

    2016-01-01

    The parity-deformations of the quantum harmonic oscillator are used to describe the generalized Jaynes-Cummings model based on the λ-analog of the Heisenberg algebra. The behavior is interestingly that of a coupled system comprising a two-level atom and a cavity field assisted by a continuous external classical field. The dynamical characters of the system is explored under the influence of the external field. In particular, we analytically study the generation of robust and maximally entangled states formed by a two-level atom trapped in a lossy cavity interacting with an external centrifugal field. We investigate the influence of deformation and detuning parameters on the degree of the quantum entanglement and the atomic population inversion. Under the condition of a linear interaction controlled by an external field, the maximally entangled states may emerge periodically along with time evolution. In the dissipation regime, the entanglement of the parity deformed JCM are preserved more with the increase of the deformation parameter, i.e. the stronger external field induces better degree of entanglement. PMID:27917882

  16. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  17. Modelling of deformation and recrystallisation microstructures in rocks and ice

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation

  18. Deformable torso phantoms of Chinese adults for personalized anatomy modelling.

    PubMed

    Wang, Hongkai; Sun, Xiaobang; Wu, Tongning; Li, Congsheng; Chen, Zhonghua; Liao, Meiying; Li, Mengci; Yan, Wen; Huang, Hui; Yang, Jia; Tan, Ziyu; Hui, Libo; Liu, Yue; Pan, Hang; Qu, Yue; Chen, Zhaofeng; Tan, Liwen; Yu, Lijuan; Shi, Hongcheng; Huo, Li; Zhang, Yanjun; Tang, Xin; Zhang, Shaoxiang; Liu, Changjian

    2018-04-16

    In recent years, there has been increasing demand for personalized anatomy modelling for medical and industrial applications, such as ergonomics device development, clinical radiological exposure simulation, biomechanics analysis, and 3D animation character design. In this study, we constructed deformable torso phantoms that can be deformed to match the personal anatomy of Chinese male and female adults. The phantoms were created based on a training set of 79 trunk computed tomography (CT) images (41 males and 38 females) from normal Chinese subjects. Major torso organs were segmented from the CT images, and the statistical shape model (SSM) approach was used to learn the inter-subject anatomical variations. To match the personal anatomy, the phantoms were registered to individual body surface scans or medical images using the active shape model method. The constructed SSM demonstrated anatomical variations in body height, fat quantity, respiratory status, organ geometry, male muscle size, and female breast size. The masses of the deformed phantom organs were consistent with Chinese population organ mass ranges. To validate the performance of personal anatomy modelling, the phantoms were registered to the body surface scan and CT images. The registration accuracy measured from 22 test CT images showed a median Dice coefficient over 0.85, a median volume recovery coefficient (RC vlm ) between 0.85 and 1.1, and a median averaged surface distance (ASD) < 1.5 mm. We hope these phantoms can serve as computational tools for personalized anatomy modelling for the research community. © 2018 Anatomical Society.

  19. Craniofacial neurofibromatosis: treatment of the midface deformity.

    PubMed

    Singhal, Dhruv; Chen, Yi-Chieh; Tsai, Yueh-Ju; Yu, Chung-Chih; Chen, Hung Chang; Chen, Yu-Ray; Chen, Philip Kuo-Ting

    2014-07-01

    Craniofacial Neurofibromatosis is a benign but devastating disease. While the most common location of facial involvement is the orbito-temporal region, patients often present with significant mid-face deformities. We reviewed our experience with Craniofacial Neurofibromatosis from June 1981 to June 2011 and included patients with midface soft tissue deformities defined as gross alteration of nasal or upper lip symmetry. Data reviewed included the medical records and photobank. Over 30 years, 52 patients presented to and underwent surgical management for Craniofacial Neurofibromatosis at the Chang Gung Craniofacial Center. 23 patients (43%) demonstrated gross mid-facial deformities at initial evaluation. 55% of patients with lip deformities and 28% of patients with nasal deformities demonstrated no direct tumour involvement. The respective deformity was solely due to secondary gravitational effects from neurofibromas of the cheek subunit. Primary tumour infiltration of the nasal and/or labial subunits was treated with excision followed by various methods of reconstruction including lower lateral cartilage repositioning, forehead flaps, free flaps, and/or oral commissure suspension. Soft tissue deformities of the midface are very common in patients with Craniofacial Neurofibromatosis and profoundly affect overall aesthetic outcomes. Distinguishing primary from secondary involvement of the midface assists in surgical decision making. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Treatment of Combined Spinal Deformity in Patient with Ollier Disease and Abnormal Vertebrae

    PubMed Central

    Ryabykh, S. О.; Gubin, A. V.; Prudnikova, О. G.; Kobyzev, А. Е.

    2012-01-01

    We report staged treatment of severe combined spinal deformity in an 11-year-old patient with Ollier disease and abnormal cervical vertebra. Combined scoliosis with systemic pathology and abnormal vertebrae is a rare condition and features atypical deformity location and rapid progression rate and frequently involves the rib cage and pelvis, disturbing the function of chest organs and skeleton. Progressive deformity resulted in cachexia and acute respiratory failure. A halo-pelvic distraction device assembled of Ilizarov components was employed for a staged surgical treatment performed for lifesaving indications. After vital functions stabilized, the scoliosis curve of the cervical spine was corrected and fixed with a hybrid system of transpedicular supporting points, connecting rods, and connectors that provided staged distraction during growth. The treatment showed good functional and cosmetic result. PMID:24436859

  1. Modeling knee joint endoprosthesis mode of deformation

    NASA Astrophysics Data System (ADS)

    Skeeba, V. Yu; Ivancivsky, V. V.

    2018-03-01

    The purpose of the work was to define the efficient design of the endoprosthesis, working in a multiple-cycle loading environment. Methodology and methods: triangulated surfaces of the base contact surfaces of endoprosthesis butt elements have been created using the PowerShape and SolidWorks software functional environment, and the assemblies of the possible combinations of the knee joint prosthetic designs have been prepared. The mode of deformation modeling took place in the multipurpose program complex ANSYS. Results and discussion: as a result of the numerical modeling, the following data were obtained for each of the developed knee joint versions: the distribution fields of absolute (total) and relative deformations; equivalent stress distribution fields; fatigue strength coefficient distribution fields. In the course of the studies, the following efficient design assembly has been established: 1) Ti-Al-V alloy composite femoral component with polymer inserts; 2) ceramic liners of the compound separator; 3) a Ti-Al-V alloy composite tibial component. The fatigue strength coefficient for the femoral component is 4.2; for the femoral component polymer inserts is 1.2; for the ceramic liners of the compound separator is 3.1; for the tibial component is 2.7. This promising endoprosthesis structure is recommended for further design and technological development.

  2. Extension of continental lithosphere - A model for two scales of basin and range deformation

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Parmentier, E. M.; Fletcher, R. C.

    1986-01-01

    The development of a model for deformation in an extending continental lithosphere that is stratified in density and strength is described. The lithosphere model demonstrates that the necking instabilities at two wavelengths originate due to a strong upper crust, a mantle layer, and a weak lower crust. It is observed that the dominant wavelengths of necking are controlled by layer thickness and the strength of the layers control the amplitude of the instabilities. The model is applied to the Basin and Range Province of the western U.S. where deformations in ranges and tile domains are detected. The relation between the Bouguer gravity anomaly and the deformations is studied. The data reveal that the horizontal scale of short wavelength necking correlates with the spacings of individual basins and ranges, and the longer wavelength corresponds to the width of tilt domains. The control of the Basin and Range deformation by two scales of extensional instability is proposed.

  3. Low-Cost Smartphone-Based Photogrammetry for the Analysis of Cranial Deformation in Infants.

    PubMed

    Barbero-García, Inés; Lerma, José Luis; Marqués-Mateu, Ángel; Miranda, Pablo

    2017-06-01

    Cranial deformation, including deformational plagiocephaly, brachycephaly, and craniosynostosis, is a condition that affects a large number of infants. Despite its prevalence, there are no standards for the systematic evaluation of the cranial deformation. Usually, the deformation is measured manually by the use of calipers. Experts, however, do not agree on the suitability of these measurements to correctly represent the deformation. Other methodologies for evaluation include 3-dimensional (3D) photography and radiologic scanners. These techniques require either patient's sedation and ionizing radiation or high investment. The aim of this study is to develop a novel, low-cost, and minimally invasive methodology to correctly evaluate the cranial deformation using 3D imagery. A smart phone was used to record a slow motion video sequence on 5 different patients. Then, the videos were processed to create accurate 3D models of the patients' head, and the results were compared with the measurements obtained by the manual caliper. The correspondence between the manual and the photogrammetric 3D model measurements was high as far as head marks are available, with differences of 2 mm ± 0.9 mm; without marks, measurement results differed up to 20 mm. Smartphone-based photogrammetry is a low-cost, highly useful methodology to evaluate cranial deformation. This technique provides a much larger quantity of information than linear measurements with a similar accuracy as far as head marks exist. In addition, a new approach for the evaluation is pointed out: the comparison between the head 3D model and an ideal head, represented by a 3-axis ellipsoid. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Elementary model of severe plastic deformation by KoBo process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusak, A.; Storozhuk, N.; Danielewski, M., E-mail: daniel@agh.edu.pl

    2014-01-21

    Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In thismore » very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.« less

  5. Multicomponent model of deformation and detachment of a biofilm under fluid flow

    PubMed Central

    Tierra, Giordano; Pavissich, Juan P.; Nerenberg, Robert; Xu, Zhiliang; Alber, Mark S.

    2015-01-01

    A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between and m s−1 which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than . Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations. PMID:25808342

  6. The Deformity Angular Ratio: Does It Correlate With High-Risk Cases for Potential Spinal Cord Monitoring Alerts in Pediatric 3-Column Thoracic Spinal Deformity Corrective Surgery?

    PubMed

    Lewis, Noah D H; Keshen, Sam G N; Lenke, Lawrence G; Zywiel, Michael G; Skaggs, David L; Dear, Taylor E; Strantzas, Samuel; Lewis, Stephen J

    2015-08-01

    A retrospective analysis. The purpose of this study was to determine whether the deformity angular ratio (DAR) can reliably assess the neurological risks of patients undergoing deformity correction. Identifying high-risk patients and procedures can help ensure that appropriate measures are taken to minimize neurological complications during spinal deformity corrections. Subjectively, surgeons look at radiographs and evaluate the riskiness of the procedure. However, 2 curves of similar magnitude and location can have significantly different risks of neurological deficit during surgery. Whether the curve spans many levels or just a few can significantly influence surgical strategies. Lenke et al have proposed the DAR, which is a measure of curve magnitude per level of deformity. The data from 35 pediatric spinal deformity correction procedures with thoracic 3-column osteotomies were reviewed. Measurements from preoperative radiographs were used to calculate the DAR. Binary logistic regression was used to model the relationship between DARs (independent variables) and presence or absence of an intraoperative alert (dependent variable). In patients undergoing 3-column osteotomies, sagittal curve magnitude and total curve magnitude were associated with increased incidence of transcranial motor evoked potential changes. Total DAR greater than 45° per level and sagittal DAR greater than 22° per level were associated with a 75% incidence of a motor evoked potential alert, with the incidence increasing to 90% with sagittal DAR of 28° per level. In patients undergoing 3-column osteotomies for severe spinal deformities, the DAR was predictive of patients developing intraoperative motor evoked potential alerts. Identifying accurate radiographical, patient, and procedural risk factors in the correction of severe deformities can help prepare the surgical team to improve safety and outcomes when carrying out complex spinal corrections. 3.

  7. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  8. Image updating for brain deformation compensation in tumor resection

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2016-03-01

    Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.

  9. Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model

    PubMed Central

    Gooya, Ali; Pohl, Kilian M.; Bilello, Michel; Biros, George; Davatzikos, Christos

    2011-01-01

    This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR ) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth. PMID:21995070

  10. Joint segmentation and deformable registration of brain scans guided by a tumor growth model.

    PubMed

    Gooya, Ali; Pohl, Kilian M; Bilello, Michel; Biros, George; Davatzikos, Christos

    2011-01-01

    This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth.

  11. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    PubMed

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  12. A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2018-01-01

    Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.

  13. TH-CD-207A-03: A Surface Deformation Driven Respiratory Model for Organ Motion Tracking in Lung Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Zhen, X; Zhou, L

    Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yieldmore » the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and

  14. Cervical Lordosis Actually Increases With Aging and Progressive Degeneration in Spinal Deformity Patients.

    PubMed

    Kim, Han Jo; Lenke, Lawrence G; Oshima, Yasushi; Chuntarapas, Tapanut; Mesfin, Addisu; Hershman, Stuart; Fogelson, Jeremy L; Riew, K Daniel

    2014-09-01

    Retrospective. The authors hypothesized that cervical lordosis (CL) would decrease with aging and increasing degeneration. It is theorized that with age and degeneration, the cervical spine loses lordosis and becomes progressively more kyphotic; however, no studies support these conclusions in patients with various spinal deformities. The authors performed a radiographic analysis of asymptomatic adults (referring to their cervical spine) of varying ages, with differing forms of spinal deformity to the thoracic/lumbar spine to see how cervical lordosis changes with increasing age. A total of 104 total spine EOS X-rays of adult (aged >18 years) spinal deformity patients without documented neck pain, prior neck surgery, or cervical deformity were reviewed. The researchers only reviewed EOS X-rays because they allow complete visualization from occiput to feet. Cervical lordosis, standard Cobb measurements, sagittal balance parameters, and cervical degeneration were quantified radiographically by the method previously described by Gore et al. Statistical analysis was performed with 1-way analysis of variance to compare significant differences between groups aged <40, 40-60 and >60 years as well as changes in sagittal balance. A p-value < .05 was considered significant. Average CL actually increased with increasing age (10.3 ± 14.7, 15.4 ± 15.1, and 23.3 ± 1.6.7 for age < 40, 40-60, and > 60 years, respectively; p < .05). Average cervical degeneration score increased at all disc space levels from C2 to C7 across age groups (0.7 ± 1.2, 9.9 ± 69, and 16.3 ± 8.9 for age <40, 40-60, and >60 years, respectively; p < .01), with the highest degeneration at the C5-6 and C6-7 disc spaces (3.7 ± 3.3 and 3.2 ± 2.9, respectively; p < .01). This increase did not correlate with the increase in CL seen with aging (r = 0.02; p = .84). Cervical lordosis increased with aging in adult spinal deformity patients. There was no relationship between cervical degeneration and lordosis

  15. Pollybeak Deformity in Middle Eastern Rhinoplasty: Prevention and Treatment.

    PubMed

    Hussein, Wael K A; Foda, Hossam M T

    2016-08-01

    The pollybeak deformity is one of the commonest causes of revision rhinoplasty. The Middle Eastern nose has certain criteria that predispose to the development of pollybeak deformity. The aim of this study is to detect the factors contributing to the development of pollybeak deformity in the Middle Eastern nose and methods used to prevent as well as to treat such deformity. Out of the 1,160 revision patients included in this study, 720 (62%) patients had a pollybeak deformity. The commonest contributing factors included underprojected tip with poor support in 490 (68%) patients, excessive supratip scarring in 259 (36%) patients, overresected bony dorsum in 202 (28%) patients, and high anterior septal angle in 173 (24%) patients. The methods used by the authors to treat the pollybeak deformity are described, along with the local steroid injection protocol used to guard against the recurrence of pollybeak deformity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Biomedical image segmentation using geometric deformable models and metaheuristics.

    PubMed

    Mesejo, Pablo; Valsecchi, Andrea; Marrakchi-Kacem, Linda; Cagnoni, Stefano; Damas, Sergio

    2015-07-01

    This paper describes a hybrid level set approach for medical image segmentation. This new geometric deformable model combines region- and edge-based information with the prior shape knowledge introduced using deformable registration. Our proposal consists of two phases: training and test. The former implies the learning of the level set parameters by means of a Genetic Algorithm, while the latter is the proper segmentation, where another metaheuristic, in this case Scatter Search, derives the shape prior. In an experimental comparison, this approach has shown a better performance than a number of state-of-the-art methods when segmenting anatomical structures from different biomedical image modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationshipsmore » between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material

  18. Unclassified congenital deformities of the external ear.

    PubMed

    Vathulya, Madhubari

    2018-01-01

    Congenital ear deformities are a common entity. They are found in isolation or as a part of syndrome in patients. They may involve the external, middle or inner ear or in any of these combinations. Three patients of different ages presented with deformities including mirror image duplication of the superior auricle, unclassified deformities of ear lobule (wavy lobule) and deformity of superior auricle with unclassified variety of lateral ear pit. This article highlights that there are further cases of ear deformities that are noticed in the general population who come for cosmetic correction, and hence, there is a need for further modifying the classification of ear deformities.

  19. Orthopaedic deformities associated with lumbosacral spinal lipomas.

    PubMed

    Gourineni, Prasad; Dias, Luciano; Blanco, Ronaldo; Muppavarapu, Satheesh

    2009-12-01

    Lipomeningocele is the most common cause of occult spinal dysraphism and spinal cord tethering. Children with this condition seem normal at birth except for cutaneous signs, and the initial complaints are usually musculoskeletal. We studied the orthopaedic deformities observed in this condition. We reviewed the medical charts of 159 patients with a diagnosis of lipoma of the lumbosacral spine that were examined in the Myelodysplasia Clinic over 25 years. Of these patients, 122 were treated by a single orthopaedic surgeon (L.D.) and were studied in detail. Of these 122 patients, 45 were over 15 years of age at the time of the final follow-up. Most patients had cutaneous stigmata. Foot deformities were the most common orthopaedic problems, followed by scoliosis. In patients over 15 years of age, the incidence of foot deformities was 44.2% (36 feet), with 20 feet requiring surgical treatment. The most common foot deformities were cavovarus, cavus, and equinocavovarus. In 70% of the surgical cases, good correction was achieved with only one procedure. Foot surgeries in patients under the age of 8 years were usually soft tissue procedures, and bony procedures were performed primarily in patients over the age of 11 years. Orthopaedic deformities are common at the initial presentation in patients with occult spinal dysraphism. A careful clinical examination with a high index of suspicion for spinal cord anomalies is indicated in all cases of spinal and lower extremity deformities. Foot deformities are very common and surgical treatment is usually successful. A thorough follow-up evaluation, including manual muscle strength testing, should be performed routinely to detect tethering of the cord in the early stages and to prevent worsening of the orthopaedic deformities. This was a retrospective case study. Level 4.

  20. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael; Dzurisin, Daniel

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  1. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    DOE PAGES

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less

  2. Automated Description of Regional Left Ventricular Motion in Patients With Cardiac Amyloidosis: A Quantitative Study Using Heart Deformation Analysis.

    PubMed

    Meng, Leng; Lin, Kai; Collins, Jeremy; Markl, Michael; Carr, James C

    2017-08-01

    The purpose of this article is to test the hypothesis that heart deformation analysis can automatically quantify regional myocardial motion patterns in patients with cardiac amyloidosis. Eleven patients with cardiac amyloidosis and 11 healthy control subjects were recruited to undergo cardiac MRI. Cine images were analyzed using heart deformation analysis and feature tracking. Heart deformation analysis-derived myocardial motion indexes in radial and circumferential directions, including radial and circumferential displacement, radial and circumferential velocity, radial and circumferential strain, and radial and circumferential strain rate, were compared between the two groups. The heart deformation analysis tool required a shorter mean (± SD) processing time than did the feature-tracking tool (1.5 ± 0.3 vs 5.1 ± 1.2 minutes). Patients with cardiac amyloidosis had lower peak radial displacement (4.32 ± 1.37 vs 5.62 ± 1.19 mm), radial velocity (25.50 ± 7.70 vs 33.41 ± 5.43 mm/s), radial strain (23.32% ± 10.24% vs 31.21% ± 8.71%), circumferential strain (-13.44% ± 4.21% vs -17.84% ± 2.84%), radial strain rate (1.14 ± 0.46 vs 1.58 ± 0.41 s -1 ), and circumferential strain rate (-0.78 ± 0.22 vs -1.08 ± 0.20 s -1 ) than did healthy control subjects. Heart deformation analysis-derived indexes correlated with feature tracking-derived indexes (r = 0.411 and 0.552). Heart deformation analysis is able to automatically quantify regional myocardial motion in patients with cardiac amyloidosis without the need for operator interaction.

  3. The contribution of thoracic vertebral deformity and arthropathy to trunk pain in patients with chronic obstructive pulmonary disease (COPD).

    PubMed

    Chen, Yi-Wen; Coxson, Harvey O; Coupal, Tyler M; Lam, Stephen; Munk, Peter L; Leipsic, Jonathon; Reid, W Darlene

    2018-04-01

    Pain, commonly localized to the trunk in individuals with COPD, may be due to osteoporosis-related vertebral deformity and chest wall hyper-expansion causing misalignment of joints between the ribs and vertebrae. The purpose of this study was to determine if thoracic vertebral deformity and arthropathy were independent contributors to trunk pain in COPD patients compared to people with a significant smoking history. Participants completed the Brief Pain Inventory (BPI) on the same day as chest CT scans and spirometry. Current and ex-smokers were separated into COPD (n = 91) or non-COPD (n = 80) groups based on spirometry. Subsequently, CT images were assessed for thoracic vertebral deformity, bone attenuation values, and arthropathy of thoracic vertebral joints. The trunk area was the most common pain location in both COPD and non-COPD groups. Thoracic vertebral deformity and costotransverse joint arthropathy were independent contributors to trunk pain in COPD patients (adjusted OR = 3.55 and 1.30, respectively) whereas alcohol consumption contributed to trunk pain in the non-COPD group (adjusted OR = 0.35 in occasional alcohol drinkers; 0.08 in non-alcohol drinkers). The spinal deformity index and the number of narrowed disc spaces were significantly positively related to the BPI intensity, interference, and total scores significantly in COPD patients. Trunk pain, at least in part, is caused by thoracic vertebral deformity, and costotransverse and intervertebral arthropathy in patients living with COPD. The results of this study provided the foundation for the management of pain, which requires further exploration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Thoracolumbar kyphosis in patients with mucopolysaccharidoses: clinical outcomes and predictive radiographic factors for progression of deformity.

    PubMed

    Roberts, S B; Dryden, R; Tsirikos, A I

    2016-02-01

    Clinical and radiological data were reviewed for all patients with mucopolysaccharidoses (MPS) with thoracolumbar kyphosis managed non-operatively or operatively in our institution. In all 16 patients were included (eight female: eight male; 50% male), of whom nine had Hurler, five Morquio and two Hunter syndrome. Six patients were treated non-operatively (mean age at presentation of 6.3 years; 0.4 to 12.9); mean kyphotic progression +1.5(o)/year; mean follow-up of 3.1 years (1 to 5.1) and ten patients operatively (mean age at presentation of 4.7 years; 0.9 to 14.4); mean kyphotic progression 10.8(o)/year; mean follow-up of 8.2 years; 4.8 to 11.8) by circumferential arthrodesis with posterior instrumentation in patients with flexible deformities (n = 6). In the surgical group (mean age at surgery of 6.6 years; 2.4 to 16.8); mean post-operative follow-up of 6.3 years (3.5 to 10.3), mean pre-operative thoracolumbar kyphosis of 74.3(o) (42(o) to 110(o)) was corrected to mean of 28.6(o) (0(o) to 65(o)) post-operatively, relating to a mean deformity correction of 66.9% (31% to 100%). Surgical complications included a deep wound infection treated by early debridement, apical non-union treated by posterior re-grafting, and stable adjacent segment spondylolisthesis managed non-operatively. Thoracolumbar kyphosis > +38(o) at initial presentation was identified as predicting progressively severe deformity with 90% sensitivity and 83% specificity. This study demonstrates that severe thoracolumbar kyphosis in patients with MPS can be effectively treated by circumferential arthrodesis. Severity of kyphosis at initial presentation may predict progression of thoracolumbar deformity. Patients with MPS may be particularly susceptible to post-operative complications due to the underlying connective tissue disorder and inherent immunological compromise. Clinical and radiological data were reviewed for all patients with mucopolysaccharidoses with thoracolumbar kyphosis managed non

  5. On the choice of boundary conditions in continuum models of continental deformation

    NASA Technical Reports Server (NTRS)

    Wdowinski, Shimon; O'Connell, Richard J.

    1990-01-01

    Recent studies of continental deformation have treated the lithosphere as a viscous medium and investigated the time evolution of the deformation caused by tectonic and buoyancy forces. This paper examines the differences between (1) continuum models that keep velocity boundary conditions constant with time and (2) models that keep stress boundary conditions constant with time. These differences are demonstrated by using a simple example of a continental lithosphere that is subjected to horizontal compression. The results show that in (2) the indentation velocity decreases with time, while in (1) the indentation velocity remains constant with time.

  6. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  7. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions

    NASA Astrophysics Data System (ADS)

    Luscher, Darby J.; Bronkhorst, Curt A.; Alleman, Coleman N.; Addessio, Francis L.

    2013-09-01

    A physically consistent framework for combining pressure-volume-temperature equations of state with crystal plasticity models is developed for the application of modeling the response of single and polycrystals under shock conditions. The particular model is developed for copper, thus the approach focuses on crystals of cubic symmetry although many of the concepts in the approach are applicable to crystals of lower symmetry. We employ a multiplicative decomposition of the deformation gradient into isochoric elastic, thermoelastic dilation, and plastic parts leading to a definition of isochoric elastic Green-Lagrange strain. This finite deformation kinematic decomposition enables a decomposition of Helmholtz free-energy into terms reflecting dilatational thermoelasticity, strain energy due to long-range isochoric elastic deformation of the lattice and a term reflecting energy stored in short range elastic lattice deformation due to evolving defect structures. A model for the single crystal response of copper is implemented consistent with the framework into a three-dimensional Lagrangian finite element code. Simulations exhibit favorable agreement with single and bicrystal experimental data for shock pressures ranging from 3 to 110 GPa.

  8. Facial Performance Transfer via Deformable Models and Parametric Correspondence.

    PubMed

    Asthana, Akshay; de la Hunty, Miles; Dhall, Abhinav; Goecke, Roland

    2012-09-01

    The issue of transferring facial performance from one person's face to another's has been an area of interest for the movie industry and the computer graphics community for quite some time. In recent years, deformable face models, such as the Active Appearance Model (AAM), have made it possible to track and synthesize faces in real time. Not surprisingly, deformable face model-based approaches for facial performance transfer have gained tremendous interest in the computer vision and graphics community. In this paper, we focus on the problem of real-time facial performance transfer using the AAM framework. We propose a novel approach of learning the mapping between the parameters of two completely independent AAMs, using them to facilitate the facial performance transfer in a more realistic manner than previous approaches. The main advantage of modeling this parametric correspondence is that it allows a "meaningful" transfer of both the nonrigid shape and texture across faces irrespective of the speakers' gender, shape, and size of the faces, and illumination conditions. We explore linear and nonlinear methods for modeling the parametric correspondence between the AAMs and show that the sparse linear regression method performs the best. Moreover, we show the utility of the proposed framework for a cross-language facial performance transfer that is an area of interest for the movie dubbing industry.

  9. SU-F-T-680: Radiobiological Analysis of the Impact of Daily Patient Deformation and Setup Variations Through the Use of the Cone Beam CT and Deformable Image Registration in Lung Cancer IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurkovic, I; Stathakis, S; Markovic, M

    Purpose: To estimate the dose distributions delivered to the patient in each treatment fraction using deformable image registration (DIR) and assess the radiobiological impact of the inter-fraction variations due to patient deformation and setup. Methods: The work is based on the cone beam CT (CBCT) images and treatment plans of two lung cancer patients. Both patients were treated with intensity modulated radiation therapy (IMRT) to 66Gy in 2Gy/fraction. The treatment plans were exported from the treatment planning system (TPS) to the Velocity AI where DIR was performed and the same deformation matrix was used for the deformation of the plannedmore » dose distribution and organ contours to each CBCT dataset. A radiobiological analysis was performed based on the radiobiological parameters of the involved organs at risk (OARs) and planning target volume (PTV). Using the complication free tumor control probability (P+) index, differences in P+ were observed between each CBCT as well as between CBCT and planning dose distributions. Results: The optimal CBCT P? values ranged from 91.6 % to 94.8 % for patient #1 and from 88.8 % to 90.6 % for patient #2. At the dose level of the clinical prescription, the CBCT P+ values ranged from 80.3% to 80.7% for patient #1 and from 80.7% to 81.0% for the patient #2. The planning CT P+ values were 81.0% and 80.7% for the two patients, respectively. These differences emphasize the significance of using the radiobiological analysis when assessing changes in the dose distribution due to the tumor motion and lung deformations. Conclusion: Daily setup variations yield to differences in the actual dose delivered versus the planned one. The observed differences were rather small when only looking at the dosimetric comparison of the dose distributions, however the radiobiology analysis was able to detect clinically relevant differences among the studied dose distributions.« less

  10. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model.

    PubMed

    Martin, Sébastien; Troccaz, Jocelyne; Daanenc, Vincent

    2010-04-01

    The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented structures of the training set in order to get a probabilistic map on the atlas. The segmentation is then realized through a two stage procedure. In the first stage, the processed image is registered to the probabilistic atlas. Subsequently, a probabilistic segmentation is obtained by mapping the probabilistic map of the atlas to the patient's anatomy. In the second stage, a deformable surface evolves toward the prostate boundaries by merging information coming from the probabilistic segmentation, an image feature model and a statistical shape model. During the evolution of the surface, the probabilistic segmentation allows the introduction of a spatial constraint that prevents the deformable surface from leaking in an unlikely configuration. The proposed method is evaluated on 36 exams that were manually segmented by a single expert. A median Dice similarity coefficient of 0.86 and an average surface error of 2.41 mm are achieved. By merging prior knowledge, the presented method achieves a robust and completely automatic segmentation of the prostate in MR images. Results show that the use of a spatial constraint is useful to increase the robustness of the deformable model comparatively to a deformable surface that is only driven by an image appearance model.

  11. Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.

    2013-12-01

    It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid

  12. SU-E-T-237: Deformable Image Registration and Deformed Dose Composite for Volumetric Evaluation of Multimodal Gynecological Cancer Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albani, D; Sherertz, T; Ellis, R

    2015-06-15

    Purpose: Radiotherapy plans for patients with cervical cancer treated with EBRT followed by HDR brachytherapy are optimized by constraining dose to organs at risk (OARs). Risk of treatment related toxicities is estimated based on the dose received to the hottest 2cc (D2cc) of the bladder, bowel, rectum, and sigmoid. To account for intrafractional variation in OAR volume and positioning, a dose deformation method is proposed for more accurate evaluation of dose distribution for these patients. Methods: Radiotherapy plans from five patients who received 50.4Gy pelvic EBRT followed by 30Gy in five fractions of HDR brachytherapy, using split-ring and tandem applicators,more » were retrospectively evaluated using MIM Software version 6.0. Dose accumulation workflows were used for initial deformation of EBRT and HDR planning CTs onto a common HDR planning CT. The Reg Refine tool was applied with user-specified local alignments to refine the deformation. Doses from the deformed images were transferred to the common planning CT. Deformed doses were scaled to the EQD2, following the linear-quadratic BED model (considered α/β ratio for tumor as 10, and 3 for rest of the tissues), and then combined to create the dose composite. MIM composite doses were compared to the clinically-reported plan assessments based upon the American Brachytherapy Society (ABS) guidelines for cervical HDR brachytherapy treatment. Results: Bladder D2cc exhibited significant reduction (−11.4%±3.85%, p< 0.02) when evaluated using MIM deformable dose composition. Differences observed for bowel, rectum, and sigmoid D2cc were not significant (−0.58±7.37%, −4.13%±13.7%, and 8.58%±4.71%, respectively and p>0.05 for all) relative to the calculated values used clinically. Conclusion: Application of deformable dose composite techniques may lead to more accurate total dose reporting and can allow for elevated dose to target structures with the assurance of not exceeding dose to OARs. Further

  13. Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan

    2017-11-01

    We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.

  14. Supergravity backgrounds for deformations of AdS n × S n supercoset string models

    DOE PAGES

    Lunin, O.; Roiban, R.; Tseytlin, A. A.

    2014-12-11

    We considermore » type IIB supergravity backgrounds corresponding to the deformed AdS n × S n × T 10 - 2 n supercoset string models of the type constructed in arXiv:1309.5850[2] which depend on one deformation parameter κ. In AdS 2 × S 2 case we find that the deformed metric can be extended to a full supergravity solution with non-trivial dilaton, RR scalar and RR 5-form strength. The solution depends on a free parameter a that should be chosen as a particular function of κ to correspond to the deformed supercoset model. In AdS 3 × S 3 case the full solution supported by the dilaton, RR scalar and RR 3-form strength exists only in the two special cases, a = 0 and a = 1 . We conjecture that there may be a more general one-parameter solution supported by several RR fields that for particular a = a ( κ ) corresponds to the supercoset model. In the most complicated deformed AdS 5 × S 5 case we were able to find only the expressions for the dilaton and the RR scalar. The full solution is likely to be supported by a combination of the 5-form and 3-form field strengths. We comment on the singularity structure of the resulting metric and exact dilaton field.« less

  15. Supergravity backgrounds for deformations of AdS n × S n supercoset string models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunin, O.; Roiban, R.; Tseytlin, A. A.

    We considermore » type IIB supergravity backgrounds corresponding to the deformed AdS n × S n × T 10 - 2 n supercoset string models of the type constructed in arXiv:1309.5850[2] which depend on one deformation parameter κ. In AdS 2 × S 2 case we find that the deformed metric can be extended to a full supergravity solution with non-trivial dilaton, RR scalar and RR 5-form strength. The solution depends on a free parameter a that should be chosen as a particular function of κ to correspond to the deformed supercoset model. In AdS 3 × S 3 case the full solution supported by the dilaton, RR scalar and RR 3-form strength exists only in the two special cases, a = 0 and a = 1 . We conjecture that there may be a more general one-parameter solution supported by several RR fields that for particular a = a ( κ ) corresponds to the supercoset model. In the most complicated deformed AdS 5 × S 5 case we were able to find only the expressions for the dilaton and the RR scalar. The full solution is likely to be supported by a combination of the 5-form and 3-form field strengths. We comment on the singularity structure of the resulting metric and exact dilaton field.« less

  16. Deformable known component model-based reconstruction for coronary CT angiography

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Tilley, S.; Xu, S.; Mathews, A.; McVeigh, E. R.; Stayman, J. W.

    2017-03-01

    Purpose: Atherosclerosis detection remains challenging in coronary CT angiography for patients with cardiac implants. Pacing electrodes of a pacemaker or lead components of a defibrillator can create substantial blooming and streak artifacts in the heart region, severely hindering the visualization of a plaque of interest. We present a novel reconstruction method that incorporates a deformable model for metal leads to eliminate metal artifacts and improve anatomy visualization even near the boundary of the component. Methods: The proposed reconstruction method, referred as STF-dKCR, includes a novel parameterization of the component that integrates deformation, a 3D-2D preregistration process that estimates component shape and position, and a polyenergetic forward model for x-ray propagation through the component where the spectral properties are jointly estimated. The methodology was tested on physical data of a cardiac phantom acquired on a CBCT testbench. The phantom included a simulated vessel, a metal wire emulating a pacing lead, and a small Teflon sphere attached to the vessel wall, mimicking a calcified plaque. The proposed method was also compared to the traditional FBP reconstruction and an interpolation-based metal correction method (FBP-MAR). Results: Metal artifacts presented in standard FBP reconstruction were significantly reduced in both FBP-MAR and STF- dKCR, yet only the STF-dKCR approach significantly improved the visibility of the small Teflon target (within 2 mm of the metal wire). The attenuation of the Teflon bead improved to 0.0481 mm-1 with STF-dKCR from 0.0166 mm-1 with FBP and from 0.0301 mm-1 with FBP-MAR - much closer to the expected 0.0414 mm-1. Conclusion: The proposed method has the potential to improve plaque visualization in coronary CT angiography in the presence of wire-shaped metal components.

  17. Finite Element Model and Validation of Nasal Tip Deformation

    PubMed Central

    Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian JF

    2016-01-01

    Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39mm ± 1.04 mm and deviated up to 2mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow. PMID:27633018

  18. Finite Element Model and Validation of Nasal Tip Deformation.

    PubMed

    Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian J F

    2017-03-01

    Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.

  19. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    PubMed

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  20. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  1. Combining the bi-Yang-Baxter deformation, the Wess-Zumino term and TsT transformations in one integrable σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Hoare, B.; Kameyama, T.; Magro, M.

    2017-10-01

    A multi-parameter integrable deformation of the principal chiral model is presented. The Yang-Baxter and bi-Yang-Baxter σ-models, the principal chiral model plus a Wess-Zumino term and the TsT transformation of the principal chiral model are all recovered when the appropriate deformation parameters vanish. When the Lie group is SU(2), we show that this four-parameter integrable deformation of the SU(2) principal chiral model corresponds to the Lukyanov model.

  2. Sparsity-promoting inversion for modeling of irregular volcanic deformation source

    NASA Astrophysics Data System (ADS)

    Zhai, G.; Shirzaei, M.

    2016-12-01

    Kīlauea volcano, Hawaíi Island, has a complex magmatic system. Nonetheless, kinematic models of the summit reservoir have so far been limited to first-order analytical solutions with pre-determined geometry. To investigate the complex geometry and kinematics of the summit reservoir, we apply a multitrack multitemporal wavelet-based InSAR (Interferometric Synthetic Aperture Radar) algorithm and a geometry-free time-dependent modeling scheme considering a superposition of point centers of dilatation (PCDs). Applying Principal Component Analysis (PCA) to the time-dependent source model, six spatially independent deformation zones (i.e., reservoirs) are identified, whose locations are consistent with previous studies. Time-dependence of the model allows also identifying periods of correlated or anti-correlated behaviors between reservoirs. Hence, we suggest that likely the reservoir are connected and form a complex magmatic reservoir [Zhai and Shirzaei, 2016]. To obtain a physically-meaningful representation of the complex reservoir, we devise a new sparsity-promoting modeling scheme assuming active magma bodies are well-localized melt accumulations (i.e., outliers in background crust). The major steps include inverting surface deformation data using a hybrid L-1 and L-2 norm regularization approach to solve for sparse volume change distribution and then implementing a BEM based method to solve for opening distribution on a triangular mesh representing the complex reservoir. Using this approach, we are able to constrain the internal excess pressure of magma body with irregular geometry, satisfying uniformly pressurized boundary condition on the surface of magma chamber. The inversion method with sparsity constraint is tested using five synthetic source geometries, including torus, prolate ellipsoid, and sphere as well as horizontal and vertical L-shape bodies. The results show that source dimension, depth and shape are well recovered. Afterward, we apply this

  3. Evaluating Topographic Effects on Ground Deformation: Insights from Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Ronchin, Erika; Geyer, Adelina; Martí, Joan

    2015-07-01

    Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assume the Earth's surface as flat. However, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals generated by a spherical pressure source embedded in an elastic homogeneous media and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g., slope, aspect, curvature). For this, we bring together the results presented in previous published papers and complement them with new axisymmetric and 3D finite element (FE) model results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas due to diverse topographic features (e.g., collapse caldera structures, prominent central edifices, large landslide scars).

  4. Linking numerical models of lithospheric deformation and magnetotelluric images

    NASA Astrophysics Data System (ADS)

    Sobolev, S. V.

    2012-12-01

    Efficient modeling of geodynamic processes requires constraints from different fields of geosciences. Frequently used are data on crustal structure and composition and their evolution constrained by seismic, gravity and petrological/geochemical studies. However, links between geodynamic modeling and rapidly developing field of magnetotelluric (MT) studies are still insufficient. I'll consider two recent examples of MT observations and geodynamic modeling demonstrating that joint analyses of thermomechanical models of lithospheric deformation and MT images may be useful to understand geodynamic processes. One set of observations is MT data for San Andreas Fault (SAF) in the region close to the SAFOD Site (Becken et al., 2011) that shows high conductivity anomalies in the mantle, that are interpreted as fluid flow feeding creeping part of SAF south of the SAFOD Site. Interestingly, zones of high conductivity do not coincide with the expected zones of the recent active deformation (SAF), but are located to the west of it. Based on thermomechanical model of the evolution of the SAFS in Central and Northern California during the last 20 Mln. years (Popov et al., 2012), I'll demonstrate that high conductivity anomalies precisely coincide with the expected zones of the highest accumulated shear strain. Possible interpretation of this coincidence is that strong preferred orientation of olivine crystals in the highly deformed mantle shear zone causes high permeability of fluids. Another set of observations is MT data showing high conductivity anomalies in the crust of Tibet (Unsworh et al., 2005, Bai et al., 2010) and Pamirs (Sass et al., 2011) that are often interpreted as an evidence for the widely spread partially molten crust. Using 2D thermomechanical models of the collision between India and Eurasia, I'll demonstrate that such structures in the crust cannot appear without delamination of the mantle lithosphere during tectonic shortening. Internal heating of the

  5. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang; Zou, Jianfeng

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less

  6. Clinical research on erythrocyte deformability with different doses of He-Ne exposure in patient with ischemia disease

    NASA Astrophysics Data System (ADS)

    Zhao, Yanping; Liu, Song-hao; Sun, Jinbo; Luo, Gangyue; Hua, Rong; Liu, Qianqin

    2005-01-01

    The aim of this study was to test human erythrocyte deformability with the exposure of erythrocyte from apoplexy patient and other ischemia diseases, contracted with normal donors' blood sample, and the doses-effect of Low-power He_Ne laser in vitro were discussed. Fresh blood sample from adult health donors and patients with different diseases such as apoplexy, diabetes, heart block etc in emergency department were collected and divided into different groups in which there were no less than 6 persons. Fresh human blood samples were irradiated with a He-Ne laser (Lamba=632.8nm), power output around 4.5MW, 9MW, 15mW, and 18mW, et al., exposure time from 7.5min, 15min, and 30min, operating in continuous wave. Measurements of human erythrocyte deformability were taken. Erythrocyte deformability appearance shown some different in the health contracted group and the other ischemia disease group. Some notice difference also shown among some disease group with nonirradiation and the same disease group with laser irradiation. The dose-effects of He-Ne laser therapy was discussed on the further research on the erythrocyte deformability of blood sample from patients with apoplexy disease treated with He-Ne laser at different doses, and a certain optimal doses which could take a beneficial effect in clinic were speculated on. This study revealed that the He-Ne laser have some different effects on erythrocyte deformability in vitro, which were related with the disease condition, red cell state, and outpower-doses, et al closely.

  7. Patient-specific models of cardiac biomechanics

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  8. Numerical investigation of compaction of deformable particles with bonded-particle model

    NASA Astrophysics Data System (ADS)

    Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim

    2017-06-01

    In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  9. Proton-neutron sdg boson model and spherical-deformed phase transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  10. Measurement of deformations of models in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Charpin, F.; Armand, C.; Selvaggini, R.

    Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.

  11. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neylon, J; Qi, S; Sheng, K

    2014-06-15

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomymore » was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R{sup 2} > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate

  12. Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.

    2017-07-01

    A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  13. Frame junction vibration transmission with a modified frame deformation model.

    PubMed

    Moore, J A

    1990-12-01

    A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.

  14. Patterns of Alloy Deformation by Pulsed Pressure

    NASA Astrophysics Data System (ADS)

    Chebotnyagin, L. M.; Potapov, V. V.; Lopatin, V. V.

    2015-06-01

    Patterns of alloy deformation for optimization of a welding regime are studied by the method of modeling and deformation profiles providing high deformation quality are determined. A model of stepwise kinetics of the alloy deformation by pulsed pressure from the expanding plasma channel inside of a deformable cylinder is suggested. The model is based on the analogy between the acoustic and electromagnetic wave processes in long lines. The shock wave pattern of alloy deformation in the presence of multiple reflections of pulsed pressure waves in the gap plasma channel - cylinder wall and the influence of unloading waves from free surfaces are confirmed.

  15. MO-C-17A-03: A GPU-Based Method for Validating Deformable Image Registration in Head and Neck Radiotherapy Using Biomechanical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neylon, J; Min, Y; Qi, S

    2014-06-15

    Purpose: Deformable image registration (DIR) plays a pivotal role in head and neck adaptive radiotherapy but a systematic validation of DIR algorithms has been limited by a lack of quantitative high-resolution groundtruth. We address this limitation by developing a GPU-based framework that provides a systematic DIR validation by generating (a) model-guided synthetic CTs representing posture and physiological changes, and (b) model-guided landmark-based validation. Method: The GPU-based framework was developed to generate massive mass-spring biomechanical models from patient simulation CTs and contoured structures. The biomechanical model represented soft tissue deformations for known rigid skeletal motion. Posture changes were simulated by articulatingmore » skeletal anatomy, which subsequently applied elastic corrective forces upon the soft tissue. Physiological changes such as tumor regression and weight loss were simulated in a biomechanically precise manner. Synthetic CT data was then generated from the deformed anatomy. The initial and final positions for one hundred randomly-chosen mass elements inside each of the internal contoured structures were recorded as ground truth data. The process was automated to create 45 synthetic CT datasets for a given patient CT. For instance, the head rotation was varied between +/− 4 degrees along each axis, and tumor volumes were systematically reduced up to 30%. Finally, the original CT and deformed synthetic CT were registered using an optical flow based DIR. Results: Each synthetic data creation took approximately 28 seconds of computation time. The number of landmarks per data set varied between two and three thousand. The validation method is able to perform sub-voxel analysis of the DIR, and report the results by structure, giving a much more in depth investigation of the error. Conclusions: We presented a GPU based high-resolution biomechanical head and neck model to validate DIR algorithms by generating CT

  16. A mechanical model for deformable and mesh pattern wheel of lunar roving vehicle

    NASA Astrophysics Data System (ADS)

    Liang, Zhongchao; Wang, Yongfu; Chen, Gang (Sheng); Gao, Haibo

    2015-12-01

    As an indispensable tool for astronauts on lunar surface, the lunar roving vehicle (LRV) is of great significance for manned lunar exploration. An LRV moves on loose and soft lunar soil, so the mechanical property of its wheels directly affects the mobility performance. The wheels used for LRV have deformable and mesh pattern, therefore, the existing mechanical theory of vehicle wheel cannot be used directly for analyzing the property of LRV wheels. In this paper, a new mechanical model for LRV wheel is proposed. At first, a mechanical model for a rigid normal wheel is presented, which involves in multiple conventional parameters such as vertical load, tangential traction force, lateral force, and slip ratio. Secondly, six equivalent coefficients are introduced to amend the rigid normal wheel model to fit for the wheels with deformable and mesh-pattern in LRV application. Thirdly, the values of the six equivalent coefficients are identified by using experimental data obtained in an LRV's single wheel testing. Finally, the identified mechanical model for LRV's wheel with deformable and mesh pattern are further verified and validated by using additional experimental results.

  17. Modelling and visualizing distributed compressional plate deformation using GPlates2.0: The Arctic Eurekan Orogeny

    NASA Astrophysics Data System (ADS)

    Gion, Austin; Williams, Simon; Müller, Dietmar

    2017-04-01

    Present-day distributed plate deformation is being mapped and simulated in great detail, largely based on satellite observations. In contrast, the modelling of and data assimilation into deforming plate models for the geological past is still in its infancy. The recently released GPLates2.0 (www.gplates.org) software provides a framework for building plate models including diffuse deformation. Here we present an application example for the Eurekan orogeny, a Paleogene tectonic event driven by sea floor spreading in the Labrador Sea and Baffin Bay, resulting in compression between NW Greenland and the Canadian Arctic. The complexity of the region has prompted the development of countless tectonic models over the last 100 years. Our new tectonic model incorporates a variety of geological field and geophysical observations to model rigid and diffuse plate deformation in this region. Compression driven by Greenland's northward motion contemporaneous with sea floor spreading in the Labrador Sea, shortens Ellesmere Island in a "fan" like pattern, creating a series of thrust faults. Our model incorporates two phases of tectonic events during the orogeny from 63-35 Ma. Phase one from 63 to 55 Ma incorporates 85 km of Paleocene extension between Ellesmere Island and Devon Island with extension of 20 km between Axel Heiberg Island and Ellesmere Island and 85 km of left-lateral strike-slip along the Nares Strait/Judge Daly Fault System, matching a range of 50-100 km indicated by the offset of marker beds, facies contacts, and platform margins between the conjugate Greenland and Ellesmere Island margins. Phase two from 55 to 35 Ma captures 30 km of east-west shortening and 200 km of north-south shortening from Ellesmere Island to the Canadian Arctic Island margins. Our model extends the boundaries of the Eurekan Orogeny northward, considering its effect on the Lomonosov Ridge, Morris Jessup Rise, and the Yermak Plateau , favouring a model in which the Lomonosov Ridge moves

  18. Deformation Prediction and Geometrical Modeling of Head and Neck Cancer Tumor: A Data Mining Approach

    NASA Astrophysics Data System (ADS)

    Azimi, Maryam

    Radiation therapy has been used in the treatment of cancer tumors for several years and many cancer patients receive radiotherapy. It may be used as primary therapy or with a combination of surgery or other kinds of therapy such as chemotherapy, hormone therapy or some mixture of the three. The treatment objective is to destroy cancer cells or shrink the tumor by planning an adequate radiation dose to the desired target without damaging the normal tissues. By using the pre-treatment Computer Tomography (CT) images, most of the radiotherapy planning systems design the target and assume that the size of the tumor will not change throughout the treatment course, which takes 5 to 7 weeks. Based on this assumption, the total amount of radiation is planned and fractionated for the daily dose required to be delivered to the patient's body. However, this assumption is flawed because the patients receiving radiotherapy have marked changes in tumor geometry during the treatment period. Therefore, there is a critical need to understand the changes of the tumor shape and size over time during the course of radiotherapy in order to prevent significant effects of inaccuracy in the planning. In this research, a methodology is proposed in order to monitor and predict daily (fraction day) tumor volume and surface changes of head and neck cancer tumors during the entire treatment period. In the proposed method, geometrical modeling and data mining techniques will be used rather than repetitive CT scans data to predict the tumor deformation for radiation planning. Clinical patient data were obtained from the University of Texas-MD Anderson Cancer Center (MDACC). In the first step, by using CT scan data, the tumor's progressive geometric changes during the treatment period are quantified. The next step relates to using regression analysis in order to develop predictive models for tumor geometry based on the geometric analysis results and the patients' selected attributes (age, weight

  19. Use of the scoliosis research society outcomes instrument to evaluate patient outcome in untreated idiopathic scoliosis patients in Japan: part II: relation between spinal deformity and patient outcomes.

    PubMed

    Watanabe, Kei; Hasegawa, Kazuhiro; Hirano, Toru; Uchiyama, Seiji; Endo, Naoto

    2005-05-15

    This study clarifies the relation between the results of the Scoliosis Research Society Outcomes Instrument (SRS-24) and radiographic parameters of back deformity in Japanese idiopathic scoliosis patients. To investigate the relation between magnitude of back deformity and results of the SRS-24 in untreated patients. In idiopathic scoliosis, it is necessary to clarify the relation between patient-perceived outcomes of the deformity and magnitude of back deformity before considering treatment. The relation between the magnitude of spinal deformity and outcomes of untreated patients, however, has not been fully investigated. Patients (n = 166) under 30 years of age with untreated scoliosis were evaluated. Radiologic examination included Cobb angle, rotation angle of apical vertebrae, and translation of C7 vertebra from the central sacral line (C7 translation) on the coronal plane. Patient evaluation using section 1 (15 questions) of the SRS-24 was compared with radiologic findings using Spearman's correlation coefficient by rank (rs). The average pain domain score was 27.0 +/- 2.2 points, general self-image 9.9 +/- 1.7 points, general function 12.7 +/- 1.1 points, and overall level of activity 14.9 +/- 0.6 points. In radiologic deformity, the average Cobb angle and rotation angle of the thoracic curve were 35.8 degrees +/- 12.1 degrees (range, 17 degrees-73 degrees) and 13.9 degrees +/- 8.2 degrees (range, 0 degrees-38 degrees), respectively. The average Cobb and rotation angle of the lumbar curve were 31.4 degrees +/- 9.3 degrees (range, 13 degrees-56 degrees) and 15.4 degrees +/- 9.7 degrees (range, 2 degrees-36 degrees), respectively. The mean C7 translation was 12.4 +/- 9.7 mm (range, 0-48 mm). Comparison between individual domains and radiologic measurements revealed that the total pain (rs = -0.33; P < 0.0001) and general self-image (rs = -0.25; P = 0.0024) domain scores had a significant inverse correlation with thoracic curve Cobb angle. Comparison between

  20. Computer aided segmentation of kidneys using locally shape constrained deformable models on CT images

    NASA Astrophysics Data System (ADS)

    Erdt, Marius; Sakas, Georgios

    2010-03-01

    This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.

  1. Computational Study of Uniaxial Deformations in Silica Aerogel Using a Coarse-Grained Model.

    PubMed

    Ferreiro-Rangel, Carlos A; Gelb, Lev D

    2015-07-09

    Simulations of a flexible coarse-grained model are used to study silica aerogels. This model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792), consists of spherical particles which interact through weak nonbonded forces and strong interparticle bonds that may form and break during the simulations. Small-deformation simulations are used to determine the elastic moduli of a wide range of material models, and large-deformation simulations are used to probe structural evolution and plastic deformation. Uniaxial deformation at constant transverse pressure is simulated using two methods: a hybrid Monte Carlo approach combining molecular dynamics for the motion of individual particles and stochastic moves for transverse stress equilibration, and isothermal molecular dynamics simulations at fixed Poisson ratio. Reasonable agreement on elastic moduli is obtained except at very low densities. The model aerogels exhibit Poisson ratios between 0.17 and 0.24, with higher-density gels clustered around 0.20, and Young's moduli that vary with aerogel density according to a power-law dependence with an exponent near 3.0. These results are in agreement with reported experimental values. The models are shown to satisfy the expected homogeneous isotropic linear-elastic relationship between bulk and Young's moduli at higher densities, but there are systematic deviations at the lowest densities. Simulations of large compressive and tensile strains indicate that these materials display a ductile-to-brittle transition as the density is increased, and that the tensile strength varies with density according to a power law, with an exponent in reasonable agreement with experiment. Auxetic behavior is observed at large tensile strains in some models. Finally, at maximum tensile stress very few broken bonds are found in the materials, in accord with the theory that only a small fraction of the material structure is actually load-bearing.

  2. 3D Deformation at the Coso Geothermal Field - Observations and Models

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Hager, B. H.; McClusky, S.; King, R. W.

    2001-12-01

    Over the past decade, rapid ground deformation has been measured over the Coso geothermal field in Eastern CA using InSAR and GPS. InSAR resolves changes in distance along the line-of-sight (LOS) to the satellite with high spatial coverage. In the Coso geothermal field the maximum LOS displacements are up to 35 mm/yr. The inclination of the LOS is acute (about 20 degrees), hence the majority of the deformation resolved with InSAR is vertical, however LOS displacements are also affected by horizontal displacements. The ratio of the sensitivity of LOS displacements to vertical and horizontal displacements is at most 5 to 2, for horizontal displacements inline with the LOS. GPS is able to resolve large horizontal displacements in this area, leading to the conclusion that the InSAR LOS displacement fields are non-trivially affected by horizontal displacements. Additionally, since the horizontal displacements are large, GPS is also able to resolve vertical displacements. Moreover, the GPS three component velocities are fairly consistent with the LOS displacements from InSAR. This deformation has been largely attributed to subsidence as fluid is extracted from the geothermal reservoir. The reservoir has been previously modeled as deflating elliptical volumes and as collapsing sills. The elliptical volumes are described as Mogi sources, which are mathematically given as point forces along a line. The collapsing sills are treated as Okada dislocations for finite area faults with pure tensile displacements across them. In both of these dislocation models of the reservoir, the elastic moduli of the rock remains constant with changing fluid pressure. Actual reservoirs are more likely composed of regions of rock permeated with fluid-filled cracks and pores. In such a composite material, changing the pore-fluid pressure changes the elastic moduli of the region. These moduli changes cause the region to deform under loading, thus resulting in observed surface displacements. The

  3. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  4. Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow

    PubMed Central

    Wu, Ziheng; Xu, Zhiliang; Kim, Oleg; Alber, Mark

    2014-01-01

    When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet–platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor–ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific. PMID:24982253

  5. Affine q-deformed symmetry and the classical Yang-Baxter σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.

    2017-03-01

    The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.

  6. Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

    NASA Astrophysics Data System (ADS)

    Li, Hao; Leow, Wee Kheng; Huang, Chao-Hui; Howe, Tet Sen

    Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum potential energy registration of the rod to the scoliotic spine in the x-ray image. Test results show that it is possible to obtain accurate 3D reconstruction using only the landmarks in a single view, provided that appropriate boundary conditions and elastic properties are included as constraints.

  7. Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation

    PubMed Central

    Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee

    2018-01-01

    This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964

  8. Effect of reconstructive vascular surgery on red cell deformability--preliminary results.

    PubMed Central

    Irwin, S T; Rocks, M J; McGuigan, J A; Patterson, C C; Morris, T C; O'Reilly, M J

    1983-01-01

    Using a simple filtration method, red cell deformability was measured in healthy control subjects and in patients with peripheral vascular disease. Impaired red cell deformability was demonstrated in patients with rest pain or gangrene and in patients with intermittent claudication. An improvement in red cell deformability was demonstrated after successful reconstructive vascular surgery in both patient groups. An improvement in red cell deformability was demonstrated in patients undergoing major limb amputation. PMID:6619311

  9. Outcome and safety analysis of 3D printed patient specific pedicle screw jigs for complex spinal deformities: A comparative study.

    PubMed

    Garg, Bhavuk; Gupta, Manish; Singh, Menaka; Kalyanasundaram, Dinesh

    2018-05-03

    Spinal deformities are very challenging to treat and have a great risk of neurological complications due to hardware placement during corrective surgery. Various techniques have been introduced to ensure safe and accurate placement of pedicle screws. Patient-specific screw guides with pre-drawn and pre-validated trajectory seems to be an attractive option. We have focused on developing 3D printing technique for complex spinal deformities in India. This study also aimed to compare the placement of pedicle screw with 3D printing and free hand technique. This is a retrospective comparative clinical study at an academic institutional setting. A total of 20 patients were enrolled during the study, 10 were operated with the help of 3D printing (group 1) and 10 were operated with freehand technique (group 2). Group 1 included 6 congenital, 3 adolescent idiopathic scoliosis (AIS), one post tubercular kyphosis and Group 2 included 5 congenital, 4 AIS and one post tubercular kyphosis patient. Primary outcomes were measured in terms of screw violation and secondary outcome were measured in terms of Surgical time, Blood loss, Radiation exposure (no. of shoots required) and complications. MIMICS v18.0 Software was used for 3D reconstruction from CT scan images of all the patients. 3-Matic software was used to create drill guide. 3-D printer from Stratasys Mojo ABS P 430 model material cartilage (a thermoplastic material) was used for printing of vertebrae model and jigs. Two sample test of proportion was used to compare correctly and wrongly pedicle screw placement with 3D printing and freehand technique. T-test with equal variance was used for operating surgical time and blood loss. This work was carried out by collaboration of Orthopaedics Department, All India Institute of Medical Sciences (AIIMS), New Delhi and Biomedical Engineering Department, Indian Institute of Technology (IIT) Delhi. This project received the grant of USD 60000 from Department of Biotechnology (DBT

  10. Surrogate modeling of deformable joint contact using artificial neural networks.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2015-09-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Surrogate Modeling of Deformable Joint Contact using Artificial Neural Networks

    PubMed Central

    Eskinazi, Ilan; Fregly, Benjamin J.

    2016-01-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  12. Improving Models for Coseismic And Postseismic Deformation from the 2002 Denali, Alaska Earthquake

    NASA Astrophysics Data System (ADS)

    Harper, H.; Freymueller, J. T.

    2016-12-01

    Given the multi-decadal temporal scale of postseismic deformation, predictions of previous models for postseismic deformation resulting from the 2002 Denali Fault earthquake (M 7.9) do not agree with longer-term observations. In revising the past postseismic models with what is now over a decade of data, the first step is revisiting coseismic displacements and slip distribution of the earthquake. Advances in processing allow us to better constrain coseismic displacement estimates, which affect slip distribution predictions in modeling. Additionally, an updated slip model structure from a homogeneous model to a layered model rectifies previous inconsistencies between coseismic and postseismic models. Previous studies have shown that two primary processes contribute to postseismic deformation: afterslip, which decays with a short time constant; and viscoelastic relaxation, which decays with a longer time constant. We fit continuous postseismic GPS time series with three different relaxation models: 1) logarithmic decay + exponential decay, 2) log + exp + exp, and 3) log + log + exp. A grid search is used to minimize total model WRSS, and we find optimal relaxation times of: 1) 0.125 years (log) and 21.67 years (exp); 2) 0.14 years (log), 0.68 years (exp), and 28.33 years (exp); 3) 0.055 years (log), 14.44 years (log), and 22.22 years (exp). While there is not a one-to-one correspondence between a particular decay constant and a mechanism, the optimization of these constants allows us to model the future timeseries and constrain the contribution of different postseismic processes.

  13. Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map

    PubMed Central

    Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan

    2017-01-01

    Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure–property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure–property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure–property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure–property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost. PMID:28696307

  14. Numerical Modeling of the Deformation Behavior of Fault Bounded Lens Shaped Bodies in 2D

    NASA Astrophysics Data System (ADS)

    van der Zee, W.; Urai, J. L.

    2001-12-01

    Fault zones cause dramatic discontinuous changes in mechanical properties. The early stages of evolution of fault zones are important for its long-term behavior. We consider faults which develop from deformation bands or pre-existing joints which are the initially unconnected discontinuities. With further deformation, these coalesce into a connected network, and develop into a 'mature' fault gouge. When segments are not coplanar, soft linkage or bends in the fault plane (releasing and restraining bends, fault bounded lens-shaped bodies etc) necessarily occurs. Further movement causes additional deformation, and the fault zone has a strongly variable thickness. Here, we present the results of detailed fieldwork combined with numerical modeling on the deformation of fault bounded lens-shaped bodies in the fault zone. Detailed study of a number of lenses in the field shows that the lens is invariably more deformed than the surrounding material. This observation can be explained in several ways. In one end member most of the deformation in the future lens occurs before full coalescence of the slip planes and the formation of the lens. The other end member is that the slip planes coalesce before plastic deformation of the lens is occurring. The internal deformation of the lens occurs after the lens is formed, due to the redistributed stresses in the structure. If this is the case, then lens shaped bodies can be always expected to deform preferentially. Finite element models were used to investigate the shear behavior of a planar fault with a lens shaped body or a sinus-shaped asperity. In a sensitivity analysis, we consider different lens shapes and fault friction coefficients. Results show that 1) during slip, the asperity shears off to form a lens shaped body 2) lens interior deforms more than the surroundings, due to the redistribution of stresses 3) important parameters in this system are the length-thickness ratio of the lens and the fault friction coefficient 4

  15. Geodetic Measurements and Mechanical Models of Cyclic Deformation at Okmok Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Feigl, K.; Masterlark, T.; Lu, Z.; Ohlendorf, S. J.; Thurber, C. H.; Sigmundsson, F.

    2009-12-01

    The 1997 and 2008 eruptions of Okmok volcano, Alaska, provide a rare opportunity for conducting a rheological experiment to unravel the complex processes associated with magma migration, storage, and eruption in an active volcano. In this experiment, the magma flux during the eruption provides the “impulse” and the subsequent, transient deformation, the “response”. By simulating the impulse, measuring the response, and interpreting the constitutive relations between the two, one can infer the rheology. Okmok is an excellent natural laboratory for such an experiment because a complete cycle of deformation has been monitored using geodetic and seismic means, including: (a) geodetic time series from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS), (b) earthquake locations; and (c) seismic tomography. We are developing quantitative models using the Finite Element Method (FEM) to simulate the timing and location of the observed seismicity and deformation by accounting for: (a) the geometry and loading of the magma chamber and lava flow, (b) the spatial distribution of material properties; and (c) the constitutive (rheological) relations between stress and strain. Here, we test the hypothesis that the deformation following the 1997 eruption did not reach a steady state before the eruption in 2008. To do so, we iteratively confront the FEM models with the InSAR measurements using the General Inversion of Phase Technique (GIPhT). This approach models the InSAR phase data directly, without unwrapping, as developed, validated, and applied by Feigl and Thurber [Geophys. J. Int., 2009]. By minimizing a cost function that quantifies the misfit between observed and modeled values in terms of “wrapped” phase (with values ranging from -1/2 to +1/2 cycles), GIPhT can estimate parameters in a geophysical model. By avoiding the pitfalls of phase-unwrapping approaches, GIPhT allows the analysis, interpretation and modeling of more

  16. A finite deformation viscoelastic-viscoplastic constitutive model for self-healing materials

    NASA Astrophysics Data System (ADS)

    Shahsavari, H.; Naghdabadi, R.; Baghani, M.; Sohrabpour, S.

    2016-12-01

    In this paper, employing the Hencky strain, viscoelastic-viscoplastic response of self-healing materials is investigated. Considering the irreversible thermodynamics and using the effective configuration in the Continuum Damage-Healing Mechanics (CDHM), a phenomenological finite strain viscoelastic-viscoplastic constitutive model is presented. Considering finite viscoelastic and viscoplastic deformations, total deformation gradient is multiplicatively decomposed into viscoelastic and viscoplastic parts. Due to mathematical advantages and physical meaning of Hencky strain, this measure of strain is employed in the constitutive model development. In this regard, defining the damage and healing variables and employing the strain equivalence hypothesis, the strain tensor is determined in the effective configuration. Satisfying the Clausius-Duhem inequality, the evolution equations are introduced for the viscoelastic and viscoplastic strains. The damage and healing variables also evolve according to two different prescribed functions. To employ the proposed model in different loading conditions, the model is discretized in the semi-implicit form. Material parameters of the model are identified employing experimental tests on asphalt mixes available in the literature. Finally, capability of the model is demonstrated comparing the model predictions in the creep-recovery and repeated creep-recovery with the experimental results available in the literature and a good agreement between predicted and test results is revealed.

  17. A simplified constitutive model for predicting shape memory polymers deformation behavior

    NASA Astrophysics Data System (ADS)

    Li, Yunxin; Guo, Siu-Siu; He, Yuhao; Liu, Zishun

    2015-12-01

    Shape memory polymers (SMPs) can keep a temporary shape after pre-deformation at a higher temperature and subsequent cooling. When they are reheated, their original shapes can be recovered. Such special characteristics of SMPs make them widely used in aerospace structures, biomedical devices, functional textiles and other devices. Increasing usefulness of SMPs motivates us to further understand their thermomechanical properties and deformation behavior, of which the development of appropriate constitutive models for SMPs is imperative. There is much work in literatures that address constitutive models of the thermo-mechanical coupling in SMPs. However, due to their complex forms, it is difficult to apply these constitutive models in the real world. In this paper, a three-element model with simple form is proposed to investigate the thermo-mechanical small strain (within 10%) behavior of polyurethane under uniaxial tension. Two different cases of heated recovery are considered: (1) unconstrained free strain recovery and (2) stress recovery under full constraint at a strain level fixed during low temperature unloading. To validate the model, simulated and predicted results are compared with Tobushi's experimental results and good agreement can be observed.

  18. The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration

    NASA Astrophysics Data System (ADS)

    Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil

    2016-09-01

    The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.

  19. Micromechanical constitutive model for low-temperature constant strain rate deformation of limestones in the brittle and semi-brittle regime

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Guéguen, Y.

    2017-10-01

    Deformation and failure of rocks are important for a better understanding of many crustal geological phenomena such as faulting and compaction. In carbonate rocks among others, low-temperature deformation can either occur with dilatancy or compaction, having implications for porosity changes, failure and petrophysical properties. Hence, a thorough understanding of all the micromechanisms responsible for deformation is of great interest. In this study, a constitutive model for the low-temperature deformation of low-porosity (<20 per cent) carbonate rocks is derived from the micromechanisms identified in previous studies. The micromechanical model is based on (1) brittle crack propagation, (2) a plasticity law (interpreted in terms of dislocation glide without possibility to climb) for porous media with hardening and (3) crack nucleation due to dislocation pile-ups. The model predicts stress-strain relations and the evolution of damage during deformation. The model adequately predicts brittle behaviour at low confining pressures, which switches to a semi-brittle behaviour characterized by inelastic compaction followed by dilatancy at higher confining pressures. Model predictions are compared to experimental results from previous studies and are found to be in close agreement with experimental results. This suggests that microphysical phenomena responsible for the deformation are sufficiently well captured by the model although twinning, recovery and cataclasis are not considered. The porosity range of applicability and limits of the model are discussed.

  20. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation

    NASA Astrophysics Data System (ADS)

    Girard, L.; Weiss, J.; Molines, J. M.; Barnier, B.; Bouillon, S.

    2009-08-01

    Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit "wild randomness," whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit "mild randomness." (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.

  1. Finite Element Modeling of Passive Material Influence on the Deformation and Force Output of Skeletal Muscle

    PubMed Central

    Hodgson, John A.; Chi, Sheng-Wei; Yang, Judy P.; Chen, Jiun-Shyan; Edgerton, V. Reggie; Sinha, Shantanu

    2014-01-01

    The pattern of deformation of the different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. Maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo

  2. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.

    PubMed

    Hodgson, John A; Chi, Sheng-Wei; Yang, Judy P; Chen, Jiun-Shyan; Edgerton, Victor R; Sinha, Shantanu

    2012-05-01

    The pattern of deformation of different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. The maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in the optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo

  3. Biomechanical deformable image registration of longitudinal lung CT images using vessel information

    NASA Astrophysics Data System (ADS)

    Cazoulat, Guillaume; Owen, Dawn; Matuszak, Martha M.; Balter, James M.; Brock, Kristy K.

    2016-07-01

    Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix’s eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: 5.8+/- 2.9 , 3.4+/- 2.3 and 1.6+/- 1.3 mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable

  4. Validation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound: preliminary method and results

    NASA Astrophysics Data System (ADS)

    Clements, Logan W.; Collins, Jarrod A.; Wu, Yifei; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2015-03-01

    Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been performed via phantom experiments. Tracked intraoperative ultrasound (iUS) provides a means to digitize sub-surface anatomical landmarks during clinical procedures. The proposed method involves the validation of a deformation correction algorithm for open hepatic image-guided surgery systems via sub-surface targets digitized with tracked iUS. Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration within the guidance system and for use in retrospective deformation correction. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. After the procedure, the clinician reviewed the iUS images to delineate contours of anatomical target features for use in the validation procedure. Mean closest point distances between the feature contours delineated in the iUS images and corresponding 3-D anatomical model generated from the preoperative tomograms were computed to quantify the extent to which the deformation correction algorithm improved registration accuracy. The preliminary results for two patients indicate that the deformation correction method resulted in a reduction in target error of approximately 50%.

  5. Masticatory function and temporomandibular disorders in patients with dentofacial deformities.

    PubMed

    Abrahamsson, Cecilia

    2013-01-01

    About 30% of individuals in the Swedish population will at some stage during life have treatment with orthodontic appliances. In more severe cases, when orthodontic treatment is not considered sufficient enough to correct the malocclusion, the orthodontic treatment is combined with orthognathic surgery. For these cases, a satisfying jaw relation is achieved by surgically moving the maxilla and/or the mandible into a pre-planned position. Patients due to be treated with orthognathic surgery often suffer from an impaired masticatory function, symptoms from the masticatory muscles or temporomandibular joints (temporomandibular disorders), headaches as well as dissatisfaction with their facial aesthetics. Since orthognathic treatment is expensive, in many cases arduous to the patient and not without complications, it is important to assess the treatment outcome and if this is satisfying for the patients. Previous studies that have examined the outcome after orthognathic treatment have had diverging study designs and have come to different conclusions with regard to both temporomandibular disorders and masticatory function. The overall aim of this thesis was to assess and compare the frequencies of temporomandibular disorders and the masticatory function in patients with dentofacial deformities before and after orthognathic treatment. THE THESIS IS BASED ON THE FOLLOWING STUDIES: Paper I is a systematic literature review aiming to, in an evidence-based approach, answer the question whether orthognathic treatment affects the prevalence of signs and symptoms of temporomandibular disorders. The review encompasses the period from January 1966 to April 2006 and was further extended to May 2013 in the frame story of this thesis. CONCLUSIONS IN PAPER I AND THE COMPLEMENTARY SURVEY: There is insufficient scientific evidence for a decrease of sub diagnoses of temporomandibular disorders after orthognathic treatment. There is limited scientific evidence for a reduction of

  6. Modeling the behaviour of shape memory materials under large deformations

    NASA Astrophysics Data System (ADS)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  7. A complete VLBI delay model for deforming radio telescopes: the Effelsberg case

    NASA Astrophysics Data System (ADS)

    Artz, T.; Springer, A.; Nothnagel, A.

    2014-12-01

    Deformations of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) observations belong to the class of systematic error sources which require correction in data analysis. In this paper we present a model for all path length variations in the geometrical optics of radio telescopes which are due to gravitational deformation. The Effelsberg 100 m radio telescope of the Max Planck Institute for Radio Astronomy, Bonn, Germany, has been surveyed by various terrestrial methods. Thus, all necessary information that is needed to model the path length variations is available. Additionally, a ray tracing program has been developed which uses as input the parameters of the measured deformations to produce an independent check of the theoretical model. In this program as well as in the theoretical model, the illumination function plays an important role because it serves as the weighting function for the individual path lengths depending on the distance from the optical axis. For the Effelsberg telescope, the biggest contribution to the total path length variations is the bending of the main beam located along the elevation axis which partly carries the weight of the paraboloid at its vertex. The difference in total path length is almost 100 mm when comparing observations at 90 and at 0 elevation angle. The impact of the path length corrections is validated in a global VLBI analysis. The application of the correction model leads to a change in the vertical position of mm. This is more than the maximum path length, but the effect can be explained by the shape of the correction function.

  8. Repeatability of the Oxford Foot Model in children with foot deformity.

    PubMed

    McCahill, Jennifer; Stebbins, Julie; Koning, Bart; Harlaar, Jaap; Theologis, Tim

    2018-03-01

    The Oxford Foot Model (OFM) is a multi-segment, kinematic model developed to assess foot motion. It has previously been assessed for repeatability in healthy populations. To determine the OFM's reliability for detecting foot deformity, it is important to know repeatability in pathological conditions. The aim of the study was to assess the repeatability of the OFM in children with foot deformity. Intra-tester repeatability was assessed for 45 children (15 typically developing, 15 hemiplegic, 15 clubfoot). Inter-tester repeatability was assessed in the clubfoot population. The mean absolute differences between testers (clubfoot) and sessions (clubfoot and hemiplegic) were calculated for each of 15 clinically relevant, kinematic variables and compared to typically developing children. Children with clubfoot showed a mean difference between visits of 2.9° and a mean difference between raters of 3.6° Mean absolute differences were within one degree for the intra and inter-rater reliability in 12/15 variables. Hindfoot rotation, forefoot/tibia abduction and forefoot supination were the most variable between testers. Overall the clubfoot data were less variable than the typically developing population. Children with hemiplegia demonstrated slightly higher differences between sessions (mean 4.1°), with the most reliable data in the sagittal plane, and largest differences in the transverse plane. The OFM was designed to measure different types of foot deformity. The results of this study show that it provides repeatable results in children with foot deformity. To be distinguished from measurement artifact, changes in foot kinematics as a result of intervention or natural progression over time must be greater than the repeatability reported here. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    PubMed

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  10. Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Khamei, A. A.; Dehghani, K.; Mahmudi, R.

    2015-05-01

    Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic deformation. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot deformation during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to model the hot ductility of the severe plastic deformed AA6061 alloy.

  11. Evaluating topographic effects on ground deformation: Insights from finite element modeling

    NASA Astrophysics Data System (ADS)

    Ronchin, Erika; Geyer, Adelina; Marti, Joan

    2015-04-01

    Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assumed the Earth's surface as flat. In the last years, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g. slope, aspect, curvature, etc.). For this, we bring together the results exposed in previous published papers and complement them with new axisymmetric and 3D Finite Elements (FE) models results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas considering their diverse topographic features (e.g. collapse caldera structures, prominent central edifices, large landslide scars, etc.). Final conclusions may be also useful for the design of an optimal geodetic monitoring network. This research was partially funded by the European Commission (FP7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO")and RYC-2012-11024.

  12. Spatio-temporal modeling and optimization of a deformable-grating compressor for short high-energy laser pulses

    DOE PAGES

    Qiao, Jie; Papa, J.; Liu, X.

    2015-09-24

    Monolithic large-scale diffraction gratings are desired to improve the performance of high-energy laser systems and scale them to higher energy, but the surface deformation of these diffraction gratings induce spatio-temporal coupling that is detrimental to the focusability and compressibility of the output pulse. A new deformable-grating-based pulse compressor architecture with optimized actuator positions has been designed to correct the spatial and temporal aberrations induced by grating wavefront errors. An integrated optical model has been built to analyze the effect of grating wavefront errors on the spatio-temporal performance of a compressor based on four deformable gratings. Moreover, a 1.5-meter deformable gratingmore » has been optimized using an integrated finite-element-analysis and genetic-optimization model, leading to spatio-temporal performance similar to the baseline design with ideal gratings.« less

  13. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  14. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.

    PubMed

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  15. Modeling Finite Deformations in Trigonal Ceramic Crystals with Lattice Defects

    DTIC Science & Technology

    2010-02-08

    International Journal of Plasticity 26 (2010) 1357–1386 1385Farber, Y.A., Yoon, S.Y., Lagerlof, K.P.D., Heuer, A.H., 1993. Microplasticity during high... microplasticity -induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. Int. J. Plast. 21, 801–834. Zhang, C., Kalia, R.K

  16. Numerical modelling of the evolution of conglomerate deformation up to high simple-shear strain

    NASA Astrophysics Data System (ADS)

    Ran, Hao; Bons, Paul D.; Wang, Genhou; Steinbach, Florian; Finch, Melanie; Ran, Shuming; Liang, Xiao; Zhou, Jie

    2017-04-01

    Deformed conglomerates have been widely used to investigate deformation history and structural analysis, using strain analyses techniques, such as the Rf-Φ and Fry methods on deformed pebbles. Although geologists have focused on the study of deformed conglomerates for several decades, some problems of the process and mechanism of deformation, such as the development of structures in pebbles and matrix, are still not understand well. Numerical modelling provides a method to investigate the process of deformation, as a function of different controlling parameters, up to high strains at conditions that cannot be achieved in the laboratory. We use the 2D numerical modelling platform Elle coupled to the full field crystal visco-plasticity code (VPFFT) to simulate the deformation of conglomerates under simple shear conditions, achieving high finite strains of ≥10. Probably for the first time, we included the effect of an anisotropy, i.e. mica-rich matrix. Our simulations show the deformation of pebbles not only depends on the viscosity contrast between pebbles and matrix but emphasises the importance of interaction between neighbouring pebbles. Under the same finite strain shearing the pebbles of conglomerates with high pebble densities show higher Rf and lower Φ than those of conglomerates with a low density pebbles. Strain localisation can be observed at both the margin of strong pebbles and in the bridging area between the pebbles. At low to medium finite strain, local areas show the opposite (antithetic) shear sense because of the different relative rotation and movement of pebbles or clusters of pebbles. Very hard pebbles retain their original shape and may rotate, depending on the anisotropy of the matrix. σ-clasts are formed by pebbles with moderate viscosity contrast between pebble and a softer matrix. By contrast, δ-clasts are not observed in our simulations with both isotropic and anisotropic matrices, which is consistent with their relative scarcity in

  17. Crystal plasticity modeling of β phase deformation in Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Moore, John A.; Barton, Nathan R.; Florando, Jeff; Mulay, Rupalee; Kumar, Mukul

    2017-10-01

    Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material’s structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V’s mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments or lower fidelity models. The results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.

  18. Crystal plasticity modeling of β phase deformation in Ti-6Al-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, John A.; Barton, Nathan R.; Florando, Jeff

    Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material's structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V's mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments ormore » lower fidelity models. Lastly, the results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.« less

  19. Crystal plasticity modeling of β phase deformation in Ti-6Al-4V

    DOE PAGES

    Moore, John A.; Barton, Nathan R.; Florando, Jeff; ...

    2017-08-24

    Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material's structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V's mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments ormore » lower fidelity models. Lastly, the results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.« less

  20. Real-time deformation of human soft tissues: A radial basis meshless 3D model based on Marquardt's algorithm.

    PubMed

    Zhou, Jianyong; Luo, Zu; Li, Chunquan; Deng, Mi

    2018-01-01

    When the meshless method is used to establish the mathematical-mechanical model of human soft tissues, it is necessary to define the space occupied by human tissues as the problem domain and the boundary of the domain as the surface of those tissues. Nodes should be distributed in both the problem domain and on the boundaries. Under external force, the displacement of the node is computed by the meshless method to represent the deformation of biological soft tissues. However, computation by the meshless method consumes too much time, which will affect the simulation of real-time deformation of human tissues in virtual surgery. In this article, the Marquardt's Algorithm is proposed to fit the nodal displacement at the problem domain's boundary and obtain the relationship between surface deformation and force. When different external forces are applied, the deformation of soft tissues can be quickly obtained based on this relationship. The analysis and discussion show that the improved model equations with Marquardt's Algorithm not only can simulate the deformation in real-time but also preserve the authenticity of the deformation model's physical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A GPS and modelling study of deformation in northern Central America

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; DeMets, C.; Rogers, R.; Tenorio, C.; Hernandez, D.

    2009-09-01

    We use GPS measurements at 37 stations in Honduras and El Salvador to describe active deformation of the western end of the Caribbean Plate between the Motagua fault and Central American volcanic arc. All GPS sites located in eastern Honduras move with the Caribbean Plate, in accord with geologic evidence for an absence of neotectonic deformation in this region. Relative to the Caribbean Plate, the other stations in the study area move west to west-northwest at rates that increase gradually from 3.3 +/- 0.6 mm yr-1 in central Honduras to 4.1 +/- 0.6 mm yr-1 in western Honduras to as high as 11-12 mm yr-1 in southern Guatemala. The site motions are consistent with slow westward extension that has been inferred by previous authors from the north-striking grabens and earthquake focal mechanisms in this region. We examine the factors that influence the regional deformation by comparing the new GPS velocity field to velocity fields predicted by finite element models (FEMs) that incorporate the regional plate boundary faults and known plate motions. Our modelling suggests that the obliquely convergent (~20°) direction of Caribbean-North American Plate motion relative to the Motagua fault west of 90°W impedes the ENE-directed motion of the Caribbean Plate in southern Guatemala, giving rise to extension in southern Guatemala and western Honduras. The FEM predictions agree even better with the measured velocities if the plate motion west of the Central American volcanic arc is forced to occur over a broad zone rather than along a single throughgoing plate boundary fault. Our analysis confirms key predictions of a previous numerical model for deformation in this region, and also indicates that the curvature of the Motagua fault causes significant along-strike changes in the orientations of the principal strain-rate axes in the fault borderlands, in accord with earthquake focal mechanisms and conclusions reached in a recent synthesis of the structural and morphologic data

  2. Deformable templates guided discriminative models for robust 3D brain MRI segmentation.

    PubMed

    Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen

    2013-10-01

    Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.

  3. Numerical Modeling of Exploitation Relics and Faults Influence on Rock Mass Deformations

    NASA Astrophysics Data System (ADS)

    Wesołowski, Marek

    2016-12-01

    This article presents numerical modeling results of fault planes and exploitation relics influenced by the size and distribution of rock mass and surface area deformations. Numerical calculations were performed using the finite difference program FLAC. To assess the changes taking place in a rock mass, an anisotropic elasto-plastic ubiquitous joint model was used, into which the Coulomb-Mohr strength (plasticity) condition was implemented. The article takes as an example the actual exploitation of the longwall 225 area in the seam 502wg of the "Pokój" coal mine. Computer simulations have shown that it is possible to determine the influence of fault planes and exploitation relics on the size and distribution of rock mass and its surface deformation. The main factor causing additional deformations of the area surface are the abandoned workings in the seam 502wd. These abandoned workings are the activation factor that caused additional subsidences and also, due to the significant dip, they are a layer on which the rock mass slides down in the direction of the extracted space. These factors are not taken into account by the geometrical and integral theories.

  4. Nonrigid 3D medical image registration and fusion based on deformable models.

    PubMed

    Liu, Peng; Eberhardt, Benjamin; Wybranski, Christian; Ricke, Jens; Lüdemann, Lutz

    2013-01-01

    For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ (kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold standard for evaluating registration results for the elastic liver. Our registration method was compared with affine registration using mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of 4.32 mm. In contrast, affine registration of extracted livers yields a significantly (P = 0.000001) smaller dislocation of 3.26 mm. In conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has limitations in cases where internal displacement must also be taken into account.

  5. Description of deformed nuclei in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Li, S. C.; Kuyucak, S.

    1996-02-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical {1}/{N} expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the {1}/{N} expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.

  6. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  7. Correction of complex equino cavo varus foot deformity in skeletally mature patients by Ilizarov external fixation versus staged external-internal fixation.

    PubMed

    Emara, Khaled; El Moatasem, El Hussein; El Shazly, Ossama

    2011-12-01

    Complex foot deformity is a multi-planar foot deformity with many etiologic factors. Different corrective procedures using Ilizarov external fixation have been described which include, soft tissue release, V-osteotomy, multiple osteotomies and triple fusion. In this study we compare the results of two groups of skeletally mature patients with complex foot deformity who were treated by two different protocols. The first group (27 patients, 29 feet) was treated by triple fusion fixed by Ilizarov external fixator until union. The second group (29 patients, 30 feet), was treated by triple fusion with initial fixation by Ilizarov external fixation until correction of the deformity was achieved clinically, and then the Ilizarov fixation was replaced by internal fixation using percutaneous screws. Both groups were compared as regard the surgical outcome and the incidence of complications. There was statistically significant difference between the two groups regarding duration of external fixation and duration of casting with shorter duration in the group 2. Also there was statistically significant difference between both groups regarding pin tract infection with less incidence in group 2. Early removal of Ilizarov external fixation after correction of the deformity and percutaneous internal fixation using 6.5 cannulated screws can shorten the duration of treatment and be more comfortable for the patient with a low risk of recurrence or infection. Copyright © 2010 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  8. Modeling coupled Thermo-Hydro-Mechanical processes including plastic deformation in geological porous media

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Karra, S.; Pawar, R. J.; Zyvoloski, G.

    2012-12-01

    There has been an increasing interest in the recent years in developing computational tools for analyzing coupled thermal, hydrological and mechanical (THM) processes that occur in geological porous media. This is mainly due to their importance in applications including carbon sequestration, enhanced geothermal systems, oil and gas production from unconventional sources, degradation of Arctic permafrost, and nuclear waste isolation. Large changes in pressures, temperatures and saturation can result due to injection/withdrawal of fluids or emplaced heat sources. These can potentially lead to large changes in the fluid flow and mechanical behavior of the formation, including shear and tensile failure on pre-existing or induced fractures and the associated permeability changes. Due to this, plastic deformation and large changes in material properties such as permeability and porosity can be expected to play an important role in these processes. We describe a general purpose computational code FEHM that has been developed for the purpose of modeling coupled THM processes during multi-phase fluid flow and transport in fractured porous media. The code uses a continuum mechanics approach, based on control volume - finite element method. It is designed to address spatial scales on the order of tens of centimeters to tens of kilometers. While large deformations are important in many situations, we have adapted the small strain formulation as useful insight can be obtained in many problems of practical interest with this approach while remaining computationally manageable. Nonlinearities in the equations and the material properties are handled using a full Jacobian Newton-Raphson technique. Stress-strain relationships are assumed to follow linear elastic/plastic behavior. The code incorporates several plasticity models such as von Mises, Drucker-Prager, and also a large suite of models for coupling flow and mechanical deformation via permeability and stresses/deformations

  9. Improvement of gastroesophageal reflux disease in Japanese patients with spinal kyphotic deformity who underwent surgical spinal correction.

    PubMed

    Sugimoto, Mitsushige; Hasegawa, Tomohiko; Nishino, Masafumi; Sahara, Shu; Uotani, Takahiro; Ichikawa, Hitomi; Kagami, Takuma; Sugimoto, Ken; Yamato, Yu; Togawa, Daisuke; Kobayashi, Sho; Hoshino, Hironobu; Matsuyama, Yukihiro; Furuta, Takahisa

    2016-01-01

    Spinal kyphotic deformity occasionally results in gastroesophageal reflux disease (GERD). The effects of acid reflux on the esophagus in kyphotic patients are unclear, however, and it is unknown whether acid reflux, endoscopic GERD, and reflux-related symptoms improve following surgical spinal correction in these patients. Herein, we investigated the characteristics of GERD in kyphotic patients and the improvement in GERD following surgical correction. In 48 patients with severe kyphotic deformity scheduled for surgical spinal correction, we conducted esophagogastroduodenoscopy, 24-h pH monitoring and three questionnaire surveys, including the frequency scale for the symptoms of GERD (FSSG). We repeated these measurements after surgical correction and compared pre- and post-surgery values. Of 48 patients, 70.8% [95% CI: 55.9-83.0%, 34/48] had endoscopically evaluated esophageal mucosal injury. Regarding pH before surgery, 64.9% (CI: 47.5-79.8%, 24/37) had abnormal acid reflux (intraesophageal pH < 4 more than 5% of the time). FSSG score was significantly associated with the severity of GERD, and the positive rate was 52.6% (CI: 35.8-69.0%, 20/38). Following surgical correction, esophageal mucosal injury improved endoscopically in 90% of patients, and median total FSSG score significantly decreased from 8 (0-30) to 5 (0-19) (P = 0.005). Regarding pH after surgery, prevalence of abnormal acid reflux decreased from 66.7% (95% CI: 41.0-86.7%) to 33.3% (95% CI: 13.3-59.0%) (P = 0.045). Surgical spinal correction in kyphosis patients improves not only kyphotic deformity-related disorders but also esophageal mucosal injury, abnormal acid reflux, and reflux-related symptoms. © 2015 Japan Gastroenterological Endoscopy Society.

  10. Numerical Modeling of Surface Deformation due to Magma Chamber Inflation/Deflation in a Heterogeneous Viscoelastic Half-space

    NASA Astrophysics Data System (ADS)

    Dichter, M.; Roy, M.

    2015-12-01

    Interpreting surface deformation patterns in terms of deeper processes in regions of active magmatism is challenging and inherently non-unique. This study focuses on interpreting the unusual sombrero-shaped pattern of surface deformation in the Altiplano Puna region of South America, which has previously been modeled as the effect of an upwelling diapir of material in the lower crust. Our goal is to investigate other possible interpretations of the surface deformation feature using a suite of viscoelastic models with varying material heterogeneity. We use the finite-element code PyLith to study surface deformation due to a buried time-varying (periodic) overpressure source, a magma body, at depth within a viscoelastic half-space. In our models, the magma-body is a penny-shaped crack, with a cylindrical region above the crack that is weak relative to the surrounding material. We initially consider a magma body within a homogeneous viscoelastic half-space to determine the effect of the free surface upon deformation above and beneath the source region. We observe a complex depth-dependent phase relationship between stress and strain for elements that fall between the ground surface and the roof of the magma body. Next, we consider a volume of weak material (faster relaxation time relative to background) that is distributed with varying geometry around the magma body. We investigate how surface deformation is governed by the spatial distribution of the weak material and its rheologic parameters. We are able to reproduce a "sombrero" pattern of surface velocities for a range of models with material heterogeneity. The wavelength of the sombrero pattern is primarily controlled by the extent of the heterogeneous region, modulated by flexural effects. Our results also suggest an "optimum overpressure forcing frequency" where the lifetime of the sombrero pattern (a transient phenomenon due to the periodic nature of the overpressure forcing) reaches a maximum. Through further

  11. Shell-model method for Gamow-Teller transitions in heavy deformed odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Long-Jun; Sun, Yang; Ghorui, Surja K.

    2018-04-01

    A shell-model method for calculating Gamow-Teller (GT) transition rates in heavy deformed odd-mass nuclei is presented. The method is developed within the framework of the projected shell model. To implement the computation requirement when many multi-quasiparticle configurations are included in the basis, a numerical advancement based on the Pfaffian formula is introduced. With this new many-body technique, it becomes feasible to perform state-by-state calculations for the GT nuclear matrix elements of β -decay and electron-capture processes, including those at high excitation energies in heavy nuclei which are usually deformed. The first results, β- decays of the well-deformed A =153 neutron-rich nuclei, are shown as the example. The known log(f t ) data corresponding to the B (GT- ) decay rates of the ground state of 153Nd to the low-lying states of 153Pm are well described. It is further shown that the B (GT) distributions can have a strong dependence on the detailed microscopic structure of relevant states of both the parent and daughter nuclei.

  12. The effects of non-Newtonian viscosity on the deformation of red blood cells in a shear flow

    NASA Astrophysics Data System (ADS)

    Sesay, Juldeh

    2005-11-01

    The analyses of the effects of non-Newtonian viscosity on the membrane of red blood cells (RBCs) suspended in a shear flow are presented. The specific objective is to investigate the mechanical deformation on the surfaces of an ellipsoidal particle model. The hydrodynamic stresses and other forces on the surface of the particle are used to determine the cell deformation. We extended previous works, which were based on the Newtonian fluid models, to the non-Newtonian case, and focus on imposed shear rate values between 1 and 100 per second. Two viscosity models are investigated, which respectively correspond to a normal person and a patient with cerebrovascular accident (CVA). The results are compared with those obtained assuming a Newtonian model. We observed that the orientation of the cell influences the deformation and the imposed shear rate drives the local shear rate distribution along the particle surface. The integral particle deformation for the non-Newtonian models in the given shear rate regime is higher than that for the Newtonian reference model. Finally, the deformation of the cell surface decreases as the dissipation ratio increases.

  13. Deformation of the Engle-Livine-Pereira-Rovelli spin foam model by a cosmological constant

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Rabuffo, Giovanni

    2018-04-01

    In this article, we consider an ad hoc deformation of the Engle-Livine-Pereira-Rovelli model for quantum gravity by a cosmological constant term. This sort of deformation was first introduced by Han for the case of the 4-simplex. In this article, we generalize the deformation to the case of arbitrary vertices, and compute its large-j asymptotics. We show that, if the boundary data correspond to a four-dimensional polyhedron P , then the asymptotic formula gives the usual Regge action plus a cosmological constant term. We pay particular attention to the determinant of the Hessian matrix, and show that it can be related to that of the undeformed vertex.

  14. Generalized Ehrenfest Relations, Deformation Quantization, and the Geometry of Inter-model Reduction

    NASA Astrophysics Data System (ADS)

    Rosaler, Joshua

    2018-03-01

    This study attempts to spell out more explicitly than has been done previously the connection between two types of formal correspondence that arise in the study of quantum-classical relations: one the one hand, deformation quantization and the associated continuity between quantum and classical algebras of observables in the limit \\hbar → 0, and, on the other, a certain generalization of Ehrenfest's Theorem and the result that expectation values of position and momentum evolve approximately classically for narrow wave packet states. While deformation quantization establishes a direct continuity between the abstract algebras of quantum and classical observables, the latter result makes in-eliminable reference to the quantum and classical state spaces on which these structures act—specifically, via restriction to narrow wave packet states. Here, we describe a certain geometrical re-formulation and extension of the result that expectation values evolve approximately classically for narrow wave packet states, which relies essentially on the postulates of deformation quantization, but describes a relationship between the actions of quantum and classical algebras and groups over their respective state spaces that is non-trivially distinct from deformation quantization. The goals of the discussion are partly pedagogical in that it aims to provide a clear, explicit synthesis of known results; however, the particular synthesis offered aspires to some novelty in its emphasis on a certain general type of mathematical and physical relationship between the state spaces of different models that represent the same physical system, and in the explicitness with which it details the above-mentioned connection between quantum and classical models.

  15. The computer-aided parallel external fixator for complex lower limb deformity correction.

    PubMed

    Wei, Mengting; Chen, Jianwen; Guo, Yue; Sun, Hao

    2017-12-01

    Since parameters of the parallel external fixator are difficult to measure and calculate in real applications, this study developed computer software that can help the doctor measure parameters using digital technology and generate an electronic prescription for deformity correction. According to Paley's deformity measurement method, we provided digital measurement techniques. In addition, we proposed an deformity correction algorithm to calculate the elongations of the six struts and developed a electronic prescription software. At the same time, a three-dimensional simulation of the parallel external fixator and deformed fragment was made using virtual reality modeling language technology. From 2013 to 2015, fifteen patients with complex lower limb deformity were treated with parallel external fixators and the self-developed computer software. All of the cases had unilateral limb deformity. The deformities were caused by old osteomyelitis in nine cases and traumatic sequelae in six cases. A doctor measured the related angulation, displacement and rotation on postoperative radiographs using the digital measurement techniques. Measurement data were input into the electronic prescription software to calculate the daily adjustment elongations of the struts. Daily strut adjustments were conducted according to the data calculated. The frame was removed when expected results were achieved. Patients lived independently during the adjustment. The mean follow-up was 15 months (range 10-22 months). The duration of frame fixation from the time of application to the time of removal averaged 8.4 months (range 2.5-13.1 months). All patients were satisfied with the corrected limb alignment. No cases of wound infections or complications occurred. Using the computer-aided parallel external fixator for the correction of lower limb deformities can achieve satisfactory outcomes. The correction process can be simplified and is precise and digitized, which will greatly improve the

  16. Adaptive deformable model for colonic polyp segmentation and measurement on CT colonography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Jianhua; Summers, Ronald M.

    2007-05-15

    Polyp size is one important biomarker for the malignancy risk of a polyp. This paper presents an improved approach for colonic polyp segmentation and measurement on CT colonography images. The method is based on a combination of knowledge-guided intensity adjustment, fuzzy clustering, and adaptive deformable model. Since polyps on haustral folds are the most difficult to be segmented, we propose a dual-distance algorithm to first identify voxels on the folds, and then introduce a counter-force to control the model evolution. We derive linear and volumetric measurements from the segmentation. The experiment was conducted on 395 patients with 83 polyps, ofmore » which 43 polyps were on haustral folds. The results were validated against manual measurement from the optical colonoscopy and the CT colonography. The paired t-test showed no significant difference, and the R{sup 2} correlation was 0.61 for the linear measurement and 0.98 for the volumetric measurement. The mean Dice coefficient for volume overlap between automatic and manual segmentation was 0.752 (standard deviation 0.154)« less

  17. A meshless EFG-based algorithm for 3D deformable modeling of soft tissue in real-time.

    PubMed

    Abdi, Elahe; Farahmand, Farzam; Durali, Mohammad

    2012-01-01

    The meshless element-free Galerkin method was generalized and an algorithm was developed for 3D dynamic modeling of deformable bodies in real time. The efficacy of the algorithm was investigated in a 3D linear viscoelastic model of human spleen subjected to a time-varying compressive force exerted by a surgical grasper. The model remained stable in spite of the considerably large deformations occurred. There was a good agreement between the results and those of an equivalent finite element model. The computational cost, however, was much lower, enabling the proposed algorithm to be effectively used in real-time applications.

  18. Multiple magma emplacement and its effect on the superficial deformation: hints from analogue models

    NASA Astrophysics Data System (ADS)

    Montanari, Domenico; Bonini, Marco; Corti, Giacomo; del Ventisette, Chiara

    2017-04-01

    To test the effect exerted by multiple magma emplacement on the deformation pattern, we have run analogue models with synchronous, as well as diachronous magma injection from different, aligned inlets. The distance between injection points, as well as the activation in time of injection points was varied for each model. Our model results show how the position and activation in time of injection points (which reproduce multiple magma batches in nature) strongly influence model evolution. In the case of synchronous injection at different inlets, the intrusions and associated surface deformation were elongated. Forced folds and annular bounding reverse faults were quite elliptical, and with the main axis of the elongated dome trending sub-parallel to the direction of the magma input points. Model results also indicate that the injection from multiple aligned sources could reproduce the same features of systems associated with planar feeder dikes, thereby suggesting that caution should be taken when trying to infer the feeding areas on the basis of the deformation features observed at the surface or in seismic profiles. Diachronous injection from different injection points showed that the deformation observed at surface does not necessarily reflect the location and/or geometry of their feeders. Most notably, these experiments suggest that coeval magma injection from different sources favor the lateral migration of magma rather than the vertical growth, promoting the development of laterally interconnected intrusions. Recently, some authors (Magee et al., 2014, 2016; Schofield et al., 2015) have suggested that, based on seismic reflection data analysis, interconnected sills and inclined sheets can facilitate the transport of magma over great vertical distances and laterally for large distances. Intrusions and volcanoes fed by sill complexes may thus be laterally offset significantly from the melt source. Our model results strongly support these findings, by reproducing

  19. Comparative analysis of nasal deformities according to patient satisfaction.

    PubMed

    Baykal, Bahadir; Erdim, Ibrahim; Kayhan, Fatma Tulin; Oghan, Fatih

    2014-03-01

    The study aim was to compare patient satisfaction levels among patient groups with nasal hump deformity (NHD), nasal axis deviation (NAD), and NHD plus NAD using the Rhinoplasty Outcomes Evaluation Questionnaire (ROEQ) pre- and postoperatively. Forty-seven patients were divided into the NHD (n = 16), NAD (n = 13), and NHD + NAD (n = 18) groups according to the patients' physical examination results. Deviation angles were measured using frontal views and the AutoCAD 2012 computer program. Levels of patient satisfaction were assessed by the ROEQ pre- and postoperatively. The preoperative ROE scores were 6 in the NAD group and 4.9 in the NHD group. In the NAD + NHD group, the preoperative ROE score was 6.6. The postoperative ROE scores were 17.4, 21.4, and 19.1, respectively. The pre- and postoperative ROEQ scores were significantly different for all groups. The preoperative ROE score was 5.6 in women. The score was 18.6 at 6 months after surgery. In male patients, the preoperative ROE score was 6.2. The score was 20.4 at 6 months after surgery. The preoperative ROE score was 6.3 in patients younger than 30 years; the score was 19.4 in the postoperative period for this group. Preoperatively, the ROE score was 5.2 for patients older than 30 years. Postoperatively, the ROE score was 19.3 (P < .05). Patient satisfaction and quality of life should improve after rhinoplasty. Patient satisfaction ranged from high to low for patients, with the NHD group the most satisfied, followed by the NAD + NHD group and the NAD group. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. The strain path dependence of plastic deformation response of AA5754: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.

    2013-12-01

    This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754.

  1. Comparison of optimization strategy and similarity metric in atlas-to-subject registration using statistical deformation model

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Murphy, R. J.; Grupp, R. B.; Sato, Y.; Taylor, R. H.; Armand, M.

    2015-03-01

    A robust atlas-to-subject registration using a statistical deformation model (SDM) is presented. The SDM uses statistics of voxel-wise displacement learned from pre-computed deformation vectors of a training dataset. This allows an atlas instance to be directly translated into an intensity volume and compared with a patient's intensity volume. Rigid and nonrigid transformation parameters were simultaneously optimized via the Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES), with image similarity used as the objective function. The algorithm was tested on CT volumes of the pelvis from 55 female subjects. A performance comparison of the CMA-ES and Nelder-Mead downhill simplex optimization algorithms with the mutual information and normalized cross correlation similarity metrics was conducted. Simulation studies using synthetic subjects were performed, as well as leave-one-out cross validation studies. Both studies suggested that mutual information and CMA-ES achieved the best performance. The leave-one-out test demonstrated 4.13 mm error with respect to the true displacement field, and 26,102 function evaluations in 180 seconds, on average.

  2. SU-F-R-41: Regularized PCA Can Model Treatment-Related Changes in Head and Neck Patients Using Daily CBCTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetvertkov, M; Henry Ford Health System, Detroit, MI; Siddiqui, F

    2016-06-15

    Purpose: To use daily cone beam CTs (CBCTs) to develop regularized principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients, to guide replanning decisions in adaptive radiation therapy (ART). Methods: Known deformations were applied to planning CT (pCT) images of 10 H&N patients to model several different systematic anatomical changes. A Pinnacle plugin was used to interpolate systematic changes over 35 fractions, generating a set of 35 synthetic CTs for each patient. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CTs and random fraction-to-fraction changes were superimposed on the DVFs. Standard non-regularizedmore » and regularized patient-specific PCA models were built using the DVFs. The ability of PCA to extract the known deformations was quantified. PCA models were also generated from clinical CBCTs, for which the deformations and DVFs were not known. It was hypothesized that resulting eigenvectors/eigenfunctions with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: As demonstrated with quantitative results in the supporting document regularized PCA is more successful than standard PCA at capturing systematic changes early in the treatment. Regularized PCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes. To be successful at guiding ART, regularized PCA should be coupled with models of when anatomical changes occur: early, late or throughout the treatment course. Conclusion: The leading eigenvector/eigenfunction from the both PCA approaches can tentatively be identified as a major systematic change during radiotherapy course when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the regularized PCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends

  3. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  4. Hypersurface-deformation algebroids and effective spacetime models

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin; Büyükçam, Umut; Brahma, Suddhasattwa; D'Ambrosio, Fabio

    2016-11-01

    In canonical gravity, covariance is implemented by brackets of hypersurface-deformation generators forming a Lie algebroid. Lie-algebroid morphisms, therefore, allow one to relate different versions of the brackets that correspond to the same spacetime structure. An application to examples of modified brackets found mainly in models of loop quantum gravity can, in some cases, map the spacetime structure back to the classical Riemannian form after a field redefinition. For one type of quantum corrections (holonomies), signature change appears to be a generic feature of effective spacetime, and it is shown here to be a new quantum spacetime phenomenon which cannot be mapped to an equivalent classical structure. In low-curvature regimes, our constructions not only prove the existence of classical spacetime structures assumed elsewhere in models of loop quantum cosmology, they also show the existence of additional quantum corrections that have not always been included.

  5. A voxel-based finite element model for the prediction of bladder deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.

    2012-01-15

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classicalmore » FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity

  6. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  7. Flow characteristics around a deformable stenosis under pulsatile flow condition

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon

    2018-01-01

    A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.

  8. Postoperative alignment of TKA in patients with severe preoperative varus or valgus deformity: is there a difference between surgical techniques?

    PubMed

    Rahm, Stefan; Camenzind, Roland S; Hingsammer, Andreas; Lenz, Christopher; Bauer, David E; Farshad, Mazda; Fucentese, Sandro F

    2017-06-21

    There have been conflicting studies published regarding the ability of various total knee arthroplasty (TKA) techniques to correct preoperative deformity. The purpose of this study was to compare the postoperative radiographic alignment in patients with severe preoperative coronal deformity (≥10° varus/valgus) who underwent three different TKA techniques; manual instrumentation (MAN), computer navigated instrumentation (NAV) and patient specific instrumentation (PSI). Patients, who received a TKA with a preoperative coronal deformity of ≥10° with available radiographs were included in this retrospective study. The groups were: MAN; n = 54, NAV; n = 52 and PSI; n = 53. The mechanical axis (varus / valgus) and the posterior tibial slope were measured and analysed using standing long leg- and lateral radiographs. The overall mean postoperative varus / valgus deformity was 2.8° (range, 0 to 9.9; SD 2.3) and 2.5° (range, 0 to 14.7; SD 2.3), respectively. The overall outliers (>3°) represented 30.2% (48 /159) of cases and were distributed as followed: MAN group: 31.5%, NAV group: 34.6%, PSI group: 24.4%. No significant statistical differences were found between these groups. The distribution of the severe outliers (>5°) was 14.8% in the MAN group, 23% in the NAV group and 5.6% in the PSI group. The PSI group had significantly (p = 0.0108) fewer severe outliers compared to the NAV group while all other pairs were not statistically significant. In severe varus / valgus deformity the three surgical techniques demonstrated similar postoperative radiographic alignment. However, in reducing severe outliers (> 5°) and in achieving the planned posterior tibial slope the PSI technique for TKA may be superior to computer navigation and the conventional technique. Further prospective studies are needed to determine which technique is the best regarding reducing outliers in patients with severe preoperative coronal deformity.

  9. Deformity Angular Ratio Describes the Severity of Spinal Deformity and Predicts the Risk of Neurologic Deficit in Posterior Vertebral Column Resection Surgery.

    PubMed

    Wang, Xiao-Bin; Lenke, Lawrence G; Thuet, Earl; Blanke, Kathy; Koester, Linda A; Roth, Michael

    2016-09-15

    Retrospective review of prospectively collected data. To assess the value of the deformity angular ratio (DAR, maximum Cobb measurement divided by number of vertebrae involved) in evaluating the severity of spinal deformity, and predicting the risk of neurologic deficit in posterior vertebral column resection (PVCR). Although the literature has demonstrated that PVCR in spinal deformity patients has achieved excellent outcomes, it is still high risk neurologically. This study, to our knowledge, is the largest series of PVCR patients from a single center, evaluating deformity severity, and potential neurologic deficit risk. A total of 202 consecutive pediatric and adult patients undergoing PVCRs from November 2002 to September 2014 were reviewed. The DAR (coronal DAR, sagittal DAR, and total DAR) was used to evaluate the complexity of the deformity. The incidence of spinal cord monitoring (SCM) events was 20.5%. Eight patients (4.0%) had new neurologic deficits. Patients with a high total DAR (≥25) were significantly younger (20.3 vs. 29.0 yr, P = 0.001), had more severe coronal and sagittal deformities, were more myelopathic (33.3% vs. 11.7%, P = 0.000), needed larger vertebral resections (1.8 vs. 1.3, P = 0.000), and had a significantly higher rate of SCM events than seen in the low total DAR (<25) patients (41.1% vs. 10.8%; P = 0.000). Patients with a high sagittal DAR (≥15) also had a significantly higher rate of SCM events (34.0% vs. 15.1%, P = 0.005) and a greater chance of neurologic deficits postoperatively (12.5% vs. 0, P = 0.000). For patients undergoing a PVCR, the DAR can be used to quantify the angularity of the spinal deformity, which is strongly correlated to the risk of neurologic deficits. Patients with a total DAR greater than or equal to 25 or sagittal DAR greater than or equal to 15 are at much higher risk for intraoperative SCM events and new neurologic deficits. 3.

  10. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  11. Modeling the Nonlinear, Strain Rate Dependent Deformation of Shuttle Leading Edge Materials with Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites, such as the Reinforced Carbon Carbon (RCC) material used on the leading edges of the Space Shuttle. In the developed model, the differences in the tension and compression deformation behaviors have also been accounted for. State variable viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear response is independent of the stiffness in the normal directions. The developed equations have been implemented into LS-DYNA through the use of user defined subroutines (UMATs). Several sample qualitative calculations have been conducted, which demonstrate the ability of the model to qualitatively capture the features of the deformation response present in woven ceramic matrix composites.

  12. Yang-Baxter deformations of supercoset sigma models with ℤ4m grading

    NASA Astrophysics Data System (ADS)

    Ke, San-Min; Yang, Wen-Li; Jang, Ke-Xia; Wang, Chun; Shuai, Xue-Min; Wang, Zhan-Yun; Shi, Gang

    2017-11-01

    We have studied Yang-Baxter deformations of supercoset sigma models with ℤ4m grading. The deformations are specified by a skew-symmetric classical r-matrix satisfying the classical Yang-Baxter equations. The deformed action is constructed and the Lax pair is also presented. When m=1, our results reduce to those of the type IIB Green-Schwarz superstring on AdS 5×S 5 background recently given by Kawaguchi, Matsumoto and Yoshida. Supported by National Natural Science Foundation of China (11375141, 11425522, 11547050), Natural Science Foundation of Shaanxi Province (2013JQ1011, 2017ZDJC-32, 2016JM1027), Special Foundation for Basic Scientific Research of Central Colleges (310812152001, 310812172001, 2013G1121082, CHD2012JC019), Scientific Research Program Funded by Shaanxi Provincial Education Department (2013JK0628), Xi’an Shiyou University Science and Technology Foundation (2010QN018) and partly supported by the Basic Research Foundation of Engineering University of CAPF (WJY-201506)

  13. General Multimechanism Reversible-Irreversible Time-Dependent Constitutive Deformation Model Being Developed

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, Steven M.

    2001-01-01

    Since most advanced material systems (for example metallic-, polymer-, and ceramic-based systems) being currently researched and evaluated are for high-temperature airframe and propulsion system applications, the required constitutive models must account for both reversible and irreversible time-dependent deformations. Furthermore, since an integral part of continuum-based computational methodologies (be they microscale- or macroscale-based) is an accurate and computationally efficient constitutive model to describe the deformation behavior of the materials of interest, extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis of structures. From a more recent and comprehensive perspective, the NASA Glenn Research Center in conjunction with the University of Akron has emphasized concurrently addressing three important and related areas: that is, 1) Mathematical formulation; 2) Algorithmic developments for updating (integrating) the external (e.g., stress) and internal state variables; 3) Parameter estimation for characterizing the model. This concurrent perspective to constitutive modeling has enabled the overcoming of the two major obstacles to fully utilizing these sophisticated time-dependent (hereditary) constitutive models in practical engineering analysis. These obstacles are: 1) Lack of efficient and robust integration algorithms; 2) Difficulties associated with characterizing the large number of required material parameters, particularly when many of these parameters lack obvious or direct physical interpretations.

  14. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  15. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  16. Tectonic and hydrological controls on multiscale deformations in the Levant: numerical modeling and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben Avraham, Zvi

    2016-04-01

    Understanding the role of the dynamics of water bodies in triggering deformations in the upper crust and subsequently leading to earthquakes has been attracting considerable attention. We suggest that dynamic changes in the levels of the water bodies occupying tectonic depressions along the Dead Sea Transform (DST) cause significant variations in the shallow crustal stress field and affect local fault systems in a way that eventually leads to earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. In this study we present a new thermo-mechanical model, constructed using the finite element method, and extended by including a fluid flow component in the upper crust. The latter is modeled on a basis of two-way poroelastic coupling with the momentum equation. This coupling is essential for capturing fluid flow evolution induced by dynamic water loading in the DST depressions and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, heat transfer, and fluid flow, have been extensively verified and presented in the study. The two-way coupling between localized plastic volumetric deformations and enhanced fluid flow is addressed, as well as the role of variability of the rheological and the hydrological parameters in inducing deformations in specific faulting environments. Correlations with historical and contemporary earthquakes in the region are discussed.

  17. Modeling and Analysis of Deformation for Spiral Bevel Gear in Die Quenching Based on the Hardenability Variation

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Wang, Gang; Shi, Wankai; Yang, Lin; Li, Zhichao

    2017-07-01

    Spiral bevel gears are widely used to transmit energy between intersecting axes. The strength and fatigue life of the gears are improved by carburizing and quenching. A die quenching process is used to control the deformation of the gear. The deformation is determined by the variations in the hardenability for a certain die quenching process. The relationship between hardenability, phase transformation and deformation needs to be studied to minimize deformation during the adjustment of the die quenching process parameters. In this paper, material properties for 22CrMoH steel are determined by the results of Jominy tests, dilatometry experiments and static mechanical property tests. The material models were built based on testing results under the consideration of hardenability variation. An finite element analysis model was developed to couple the phase transformation and deformation history of the complete carburizing and die quenching process for the spiral bevel gears. The final microstructures in the gear were bainite for low hardenability steel and a mixture of bainite and ferrite for high hardenability steel. The largest buckling deformation at the gear bottom surface is 0.375 mm at the outer circle for the low hardenability gear and 0.091 mm at the inner circle for the high hardenability gear.

  18. Development of deformation band clusters in porous quartz sandstones - Contribution from microstructural analysis and numerical modeling

    NASA Astrophysics Data System (ADS)

    Philit, S.; Soliva, R.; Chemenda, A. I.

    2017-12-01

    Because sandstones form good reservoirs for hydrocarbon, water or C02 storage, the understanding of the deformation processes in sandstones is major. The deformation band clusters result from the localization of the deformation in porous sandstones under the form of gathered low-permeability cataclastic deformation bands. It has recently been shown that this localization is favored in extensional tectonics. The clusters measure tens to hundreds of meters in extent and propagate vertically as long as the sandstone is clean. Because the clusters can form several kilometers long networks, they are likely to hamper fluid flow during reservoir exploitation. Yet, the processes of band accumulation linked to the evolution of the clusters to a potential faulting are poorly understood. An integrated study coupling a microscopic analysis of the deformed granular material in clusters from 7 sites in the world and distinct element numerical modeling permits to propose a model for cluster growth. Our microscopic analysis reveals that the clusters display varying degree of cataclasis, with the most important degrees in the bands. This cataclasis is accompanied by porosity reduction (more reduced in thrust Andersonian regime), and increased Particle Size Distribution. This testifies of an important packing and implies an increased number of particle coordination. During deformation, the grain shape is both smoothened and roughened; the averaged values of the roundness and circularity indicate a rapid roughening of the clasts at the first stages of deformation followed by a slight smoothening. The roughening of the clasts in densely packed material induces high friction and strengthens the material. High residual porosity at some band edges suggests a local dilatant behavior of sheared material. Our distinct element numerical models and other particle models in the literature confirm this observation. The development of force chains with low particle coordination at these

  19. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  20. On non-abelian T-duality and deformations of supercoset string sigma-models

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Wulff, Linus

    2017-10-01

    We elaborate on the class of deformed T-dual (DTD) models obtained by first adding a topological term to the action of a supercoset sigma model and then performing (non-abelian) T-duality on a subalgebra \\tilde{g} of the superisometry algebra. These models inherit the classical integrability of the parent one, and they include as special cases the so-called homogeneous Yang-Baxter sigma models as well as their non-abelian T-duals. Many properties of DTD models have simple algebraic interpretations. For example we show that their (non-abelian) T-duals — including certain deformations — are again in the same class, where \\tilde{g} gets enlarged or shrinks by adding or removing generators corresponding to the dualised isometries. Moreover, we show that Weyl invariance of these models is equivalent to \\tilde{g} being unimodular; when this property is not satisfied one can always remove one generator to obtain a unimodular \\tilde{g} , which is equivalent to (formal) T-duality. We also work out the target space superfields and, as a by-product, we prove the conjectured transformation law for Ramond-Ramond (RR) fields under bosonic non-abelian T-duality of supercosets, generalising it to cases involving also fermionic T-dualities.

  1. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  2. Determinants of Patient Satisfaction Two Year after Spinal Deformity Surgery: A Latent Class Analysis.

    PubMed

    Yang, Jingyan; Lafage, Virginie; Lafage, Renaud; Smith, Justin; Klineberg, Eric O; Shaffrey, Christopher I; Mundis, Gregory; Hostin, Richard; Burton, Douglas; Ames, Christopher P; Bess, Shay; Kim, Han Jo; Schwab, Frank

    2018-06-21

    Retrospective review of prospective multicenter database. To investigate the determinants of patient satisfaction with respect to changes in functional limitations two-year after spinal deformity surgery. For operatively treated adult spine deformity (ASD), patient satisfaction has become an important component of evaluating quality of care. 430 operative ASD patients with two-year follow-up were analyzed. Patient satisfaction was assessed using the Scoliosis Research Society 22-item (SRS-22r). Latent class analysis (LCA) was performed to assign individuals to classes based on the changes in pre- and 2-year post-operative functions, assessed using the Oswestry Disability Index (ODI). An ordered logistic regression was conducted to assess the association of class membership and satisfaction. LCA identified 4 classes. The worsened-condition class (WC: 1.4%) consisted of patients who were likely to experience worsened function, particularly in lifting and pain intensity. The remained-same class (RS: 13.0%) included patients who remained the same, as the majority reported approximately no change in walking, standing and sitting. The mild-improved class (Mild-I: 40.2%) included patients with mildly enhanced conditions, specifically, in standing, social life and employment. The most-improved class (Most-I: 45.3%) included patients with great improvement after surgery mainly in standing, followed by social life and employment. The odds of being satisfied were significantly increased by 3.91-(p < 0.001) and 16.99-fold (p < 0.001), comparing patients in Mild-I and Most-I to the RS/WC class, respectively, after controlling for confounders. Improvement in standing, social life and employment are the most important determinants of patient satisfaction post-surgery. Reduced pain intensity and enhanced walking ability also help to elevate patient satisfaction. However, lifting, personal care, sitting, sleeping and travelling may be of less importance. Examining the

  3. A Regression Model for Predicting Shape Deformation after Breast Conserving Surgery

    PubMed Central

    Zolfagharnasab, Hooshiar; Bessa, Sílvia; Oliveira, Sara P.; Faria, Pedro; Teixeira, João F.; Cardoso, Jaime S.

    2018-01-01

    Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS) has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained. PMID:29315279

  4. Modelling the Deformation Front of a Fold-Thrust Belt: the Effect of an Upper Detachment Horizon

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.; Koyi, H.; Nilfouroushan, F.; Cosgrove, J. W.

    2008-12-01

    Structures found at the deformation fronts of fold-thrust belts are variable in type, geometry and spatial organisation, as can be demonstrated from comparisons between structures in the Zagros Fold-Thrust Belt, Iran and the Sawtooth Range, Montana. A range of influencing factors has been suggested to account for this variation, including the mechanical properties and distribution of any detachment horizons within the cover rock succession. A series of analogue models was designed to test this hypothesis, under conditions scaled to represent the Sawtooth Range, Montana. A brittle sand pack, containing an upper ductile layer with variable geometry, was shortened above a ductile base and the evolution of the deformation front was monitored throughout the deformation using a high-accuracy laser scanner. In none of the experiments did the upper detachment horizon cover the entire model. In experiments where it pinched out perpendicular to the shortening direction, a triangle zone was formed when the deformation front reached the pinch out. This situation is analogous to the Teton Canyon region structures in the Sawtooth Range, Montana, where the Cretaceous Colorado Shale unit pinches out at the deformation front, favouring the development of a triangle zone in this region. When the pinch out was oblique to the shortening direction, a more complex series of structures was formed. However, when shortening stopped before the detachment pinch out was reached, the deformation front structures were foreland-propagating and no triangle zone was observed. This situation is analogous to foreland-propagating thrust structures developed at the deformation front in the Swift Dam region of the Sawtooth Range, Montana and to the development of fault-bend folds at the deformation front of the Zagros Fold-Thrust Belt, Iran. We suggest that the presence of a suitable intermediate detachment horizon within a sediment pile can be invoked as a valid explanation for the development of

  5. Health related quality of life and perception of deformity in patients with adolescent idiopathic scoliosis.

    PubMed

    Çolak, Tuğba Kuru; Akgül, Turgut; Çolak, Ilker; Dereli, Elif Elçin; Chodza, Mehmet; Dikici, Fatih

    2017-01-01

    Quality of life and cosmethic appearance have gained importance as outcomes in AIS treatment. Improving aesthetic appearance and quality of life are defined as the primary aims of scoliosis treatment by health professionals. Studies that assess and compare the different treatment results in the field of quality of life and cosmethics are some what limited. A cross-sectional study was designed to compare quality of life and deformity perception in patients with adolescent idiopathic scoliosis (AIS) received conservative (exercise or exercise + brace) or surgical treatment. A total of 68 (58 females) patients aged 10-18 years with AIS received conservative (exercise or exercise+brace) or surgical treatment were invited to participate in the study. Quality of life (Scoliosis Research Society-23 (SRS-23)) and perception of deformity (Walter Reed Visual Assessment (WRVAS)) were assessed. Conservatively treated patients had significantly superior scores in function domain of SRS-23 than surgically treated patients (exercise/surgery, exercise+brace/surgery; p= 0.009, 0.004). Otherwise, surgically treated patients had significantly superior scores in self-image (p= 0.000, 0.000), and satisfaction with management (p= 0.001, 0.006) domains of SRS-23, and WRVAS (p= 0.000, 0.000) than conservative groups. In addition to radiographic assessments, quality of life, aesthetic perception, functionality, satisfaction with management, psycho-social status should carefully be taken into consideration by health professionals in the teratment of AIS.

  6. Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.

    2013-12-01

    Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller

  7. A deformable surface model for real-time water drop animation.

    PubMed

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  8. Identifying Septal Support Reconstructions for Saddle Nose Deformity: The Cakmak Algorithm.

    PubMed

    Cakmak, Ozcan; Emre, Ismet Emrah; Ozkurt, Fazil Emre

    2015-01-01

    The saddle nose deformity is one of the most challenging problems in nasal surgery with a less predictable and reproducible result than other nasal procedures. The main feature of this deformity is loss of septal support with both functional and aesthetic implications. Most reports on saddle nose have focused on aesthetic improvement and neglected the reestablishment of septal support to improve airway. To explain how the Cakmak algorithm, an algorithm that describes various fixation techniques and grafts in different types of saddle nose deformities, aids in identifying saddle nose reconstructions that restore supportive nasal framework and provide the aesthetic improvements typically associated with procedures to correct saddle nose deformities. This algorithm presents septal support reconstruction of patients with saddle nose deformity based on the experience of the senior author in 206 patients with saddle nose deformity. Preoperative examination, intraoperative assessment, reconstruction techniques, graft materials, and patient evaluation of aesthetic success were documented, and 4 different types of saddle nose deformities were defined. The Cakmak algorithm classifies varying degrees of saddle nose deformity from type 0 to type 4 and helps identify the most appropriate surgical procedure to restore the supportive nasal framework and aesthetic dorsum. Among the 206 patients, 110 women and 96 men, mean (range) age was 39.7 years (15-68 years), and mean (range) of follow-up was 32 months (6-148 months). All but 12 patients had a history of previous nasal surgeries. Application of the Cakmak algorithm resulted in 36 patients categorized with type 0 saddle nose deformities; 79, type 1; 50, type 2; 20, type 3a; 7, type 3b; and 14, type 4. Postoperative photographs showed improvement of deformities, and patient surveys revealed aesthetic improvement in 201 patients and improvement in nasal breathing in 195 patients. Three patients developed postoperative infection

  9. Exercise-induced changes in mitral regurgitation in patients with prior myocardial infarction and left ventricular dysfunction: relation to mitral deformation and left ventricular function and shape.

    PubMed

    Giga, Vojislav; Ostojic, Miodrag; Vujisic-Tesic, Bosiljka; Djordjevic-Dikic, Ana; Stepanovic, Jelena; Beleslin, Branko; Petrovic, Milan; Nedeljkovic, Milan; Nedeljkovic, Ivana; Milic, Natasa

    2005-09-01

    The aim of this study was to assess the relationship between exercise-induced changes in mitral regurgitation (MR) and echocardiographic characteristics of mitral deformation, global left ventricular (LV) function and shape at rest and after exercise. Forty consecutive patients with ischaemic MR due to prior myocardial infarction (MI), ejection fraction <45% in sinus rhythm underwent exercise-echocardiographic testing. Exercise-induced changes in effective regurgitant orifice (ERO) were compared with baseline and exercise-induced changes in mitral deformation and global LV function and shape. There was significant correlation between exercise-induced changes in ERO and changes in coaptation distance (r=0.80, P<0.0001), tenting area (r=0.79, P<0.0001) and mitral annular diameter (r=0.65, P<0.0001), as well as in end-systolic sphericity index (r=-0.50, P=0.001, respectively), and wall motion score index (r=0.44, P=0.004). In contrast, exercise-induced changes in ERO were not related to the echocardiographic features at rest. By stepwise multiple regression model, the exercise-induced changes in mitral deformation were found to independently correlate with exercise-induced changes in ERO (generalized r(2)=0.80, P<0.0001). Exercise-induced changes in severity of ischaemic MR in patients with LV dysfunction due to prior MI were independently related to changes in mitral deformation.

  10. A transverse isotropic constitutive model for the aortic valve tissue incorporating rate-dependency and fibre dispersion: Application to biaxial deformation.

    PubMed

    Anssari-Benam, Afshin; Tseng, Yuan-Tsan; Bucchi, Andrea

    2018-05-26

    This paper presents a continuum-based transverse isotropic model incorporating rate-dependency and fibre dispersion, applied to the planar biaxial deformation of aortic valve (AV) specimens under various stretch rates. The rate dependency of the mechanical behaviour of the AV tissue under biaxial deformation, the (pseudo-) invariants of the right Cauchy-Green deformation-rate tensor Ċ associated with fibre dispersion, and a new fibre orientation density function motivated by fibre kinematics are presented for the first time. It is shown that the model captures the experimentally observed deformation of the specimens, and characterises a shear-thinning behaviour associated with the dissipative (viscous) kinematics of the matrix and the fibres. The application of the model for predicting the deformation behaviour of the AV under physiological rates is illustrated and an example of the predicted σ-λ curves is presented. While the development of the model was principally motivated by the AV biomechanics requisites, the comprehensive theoretical approach employed in the study renders the model suitable for application to other fibrous soft tissues that possess similar rate-dependent and structural attributes. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  11. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  12. Closed-loop model identification of cooperative manipulators holding deformable objects

    NASA Astrophysics Data System (ADS)

    Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.

    2017-11-01

    This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.

  13. Accidental degeneracies in nonlinear quantum deformed systems

    NASA Astrophysics Data System (ADS)

    Aleixo, A. N. F.; Balantekin, A. B.

    2011-09-01

    We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.

  14. A multilayer model of time dependent deformation following an earthquake on a strike-slip fault

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1981-01-01

    A multilayer model of the Earth to calculate finite element of time dependent deformation and stress following an earthquake on a strike slip fault is discussed. The model involves shear properties of an elastic upper lithosphere, a standard viscoelastic linear solid lower lithosphere, a Maxwell viscoelastic asthenosphere and an elastic mesosphere. Systematic variations of fault and layer depths and comparisons with simpler elastic lithosphere over viscoelastic asthenosphere calculations are analyzed. Both the creep of the lower lithosphere and astenosphere contribute to the postseismic deformation. The magnitude of the deformation is enhanced by a short distance between the bottom of the fault (slip zone) and the top of the creep region but is less sensitive to the thickness of the creeping layer. Postseismic restressing is increased as the lower lithosphere becomes more viscoelastic, but the tendency for the width of the restressed zone to growth with time is retarded.

  15. Neotectonic deformation model of the Northern Algeria from Paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Derder, M. E. M.; Henry, B.; Maouche, S.; Amenna, M.; Bayou, B.; Djellit, H.; Ymel, H.; Gharbi, S.; Abtout, A.; Ayache, M.

    2012-04-01

    The seismic activity of the Western Mediterranean area is partly concentrated in northern Africa, particularly in northern Algeria, as it is shown by the strongest recent earthquakes of "Zemmouri" 21 May 2003 Mw=6.9 and the "El Asnam" 10 October 1980 Ms= 7.3. This seismicity is due to the tectonic activity related to the convergence between Africa and Eurasia plates since at least the Oligocene. The deformation is mostly compressional with associated folds, strike-slip faults and thrusts, and a direction of shortening between N-S and NNW-SSE. This convergence involves a tectonic transpression which is expressed by active deformation along the plate boundary. In northern Algeria, the seismicity is concentrated in a coastal E-W thin band zone (the Tell Atlas). Active structures define there NE-SW trending folds and NE-SW sinistral transpressive faults, which affect the intermountain and coastal Neogene to Quaternary sedimentary basins (e.g. " Cheliff "basin, " Mitidja "basin, …). These reverse faults are associated with NW-SE to E-W strike-slips deep faults. The active tectonics could be explained by a simple blocks rotation kinematics model. In order to test the validity of this kinematic model, three different paleomagnetic studies have been conducted. The first one concerned the "Cheliff" basin where sedimentary Neogene formations were extensively sampled (66 sites). The second study was carried out on Miocene andesite and dacite rocks cropping out along the northern coastal zone of the "Cheliff" basin ("Beni Haoua" area, 19 sites). The third study has been carried out on the Miocene magmatic rocks (rhyolites and basalts) cropping out north-eastern part of the "Mitidja" basin ("Cap Djinet" - "Boumerdes" area, 23 sites). The obtained results show existence of paleomagnetic clockwise rotations in all the studied areas and then validates the kinematics block rotation model. Accordingly, the deformation related to the convergence between the Africa and Eurasia

  16. Lateral column length in adult flatfoot deformity.

    PubMed

    Kang, Steve; Charlton, Timothy P; Thordarson, David B

    2013-03-01

    In adult acquired flatfoot deformity, it is unclear whether the lateral column length shortens with progression of the deformity, whether it is short to begin with, or whether it is short at all. To our knowledge, no previous study has examined the lateral column length of patients with adult acquired flatfoot deformity compared to a control population. The purpose of our study was to compare the lateral column length in patients with and without adult acquired flatfoot deformity to see if there was a significant difference. The study was a retrospective radiographic review of 2 foot and ankle fellowship-trained orthopaedic surgeons' patients with adult flatfoot deformity. Our study population consisted of 75 patients, 85 feet (28 male, 57 female) with adult flatfoot deformity with a mean age of 64 (range, 23-93). Our control population consisted of 57 patients and 70 feet (23 male, 47 female) without flatfoot deformity with a mean age of 61 (range, 40-86 years). Weightbearing anteroposterior (AP) and lateral foot radiographs were analyzed for each patient, and the following measurements were made: medial and lateral column lengths, talonavicular uncoverage angle, talus-first metatarsal angle, calcaneal pitch angle, and medial and lateral column heights. An unpaired t test was used to analyze the measurements between the groups. Ten patients' radiographs were remeasured, and correlation coefficients were obtained to assess the reliability of the measuring techniques. For the flatfoot group, the mean medial and lateral column lengths on the AP radiograph were 108.6 mm and 95.8 mm, respectively; the mean talo-navicular uncoverage angle was 26.2 degrees; and the mean talus-first metatarsal angle was 20.0 degrees. In the control group, the mean medial and lateral column lengths on the AP radiograph were 108.8 mm and 96.5 mm, respectively; the mean talo-navicular uncoverage angle was 8.2 degrees; and the mean talus-first metatarsal angle was 7.7 degrees. On the lateral

  17. Marginal deformations of heterotic G 2 sigma models

    NASA Astrophysics Data System (ADS)

    Fiset, Marc-Antoine; Quigley, Callum; Svanes, Eirik Eik

    2018-02-01

    Recently, the infinitesimal moduli space of heterotic G 2 compactifications was described in supergravity and related to the cohomology of a target space differential. In this paper we identify the marginal deformations of the corresponding heterotic nonlinear sigma model with cohomology classes of a worldsheet BRST operator. This BRST operator is nilpotent if and only if the target space geometry satisfies the heterotic supersymmetry conditions. We relate this to the supergravity approach by showing that the corresponding cohomologies are indeed isomorphic. We work at tree-level in α' perturbation theory and study general geometries, in particular with non-vanishing torsion.

  18. Nuclear Deformation at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Gilbreth, C. N.; Bertsch, G. F.

    2014-12-01

    Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

  19. From labyrinthine aplasia to otocyst deformity.

    PubMed

    Giesemann, Anja Maria; Goetz, Friedrich; Neuburger, Jürgen; Lenarz, Thomas; Lanfermann, Heinrich

    2010-02-01

    Inner ear malformations (IEMs) are rare and it is unusual to encounter the rarest of them, namely labyrinthine aplasia (LA) and otocyst deformity. They do, however, provide useful pointers as to the early embryonic development of the ear. LA is characterised as a complete absence of inner ear structures. While some common findings do emerge, a clear definition of the otocyst deformity does not exist. It is often confused with the common cavity first described by Edward Cock. Our purpose was to radiologically characterise LA and otocyst deformity. Retrospective analysis of CT and MRI data from four patients with LA or otocyst deformity. Middle and inner ear findings were categorised by two neuroradiologists. The bony carotid canal was found to be absent in all patients. Posterior located cystic structures were found in association with LA and otocyst deformity. In the most severe cases, only soft tissue was present at the medial border of the middle ear cavity. The individuals with otocyst deformity also had hypoplasia of the petrous apex bone. These cases demonstrate gradual changes in the two most severe IEMs. Clarification of terms was necessary and, based on these findings, we propose defining otocyst deformity as a cystic structure in place of the inner ear, with the cochlea, IAC and carotid canal absent. This condition needs to be differentiated from the common cavity described by Edward Cook. A clear definition of inner ear malformations is essential if outcomes following cochlear implantation are to be compared.

  20. Deformations of superconformal theories

    DOE PAGES

    Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth

    2016-11-22

    Here, we classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d ≥ 3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and noncentral charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact thatmore » short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.« less

  1. External Validation of the Adult Spinal Deformity (ASD) Frailty Index (ASD-FI) in the Scoli-RISK-1 Patient Database.

    PubMed

    Miller, Emily K; Lenke, Lawrence G; Neuman, Brian J; Sciubba, Daniel M; Kebaish, Khaled M; Smith, Justin S; Qiu, Yong; Dahl, Benny T; Pellisé, Ferran; Matsuyama, Yukihiro; Carreon, Leah Y; Fehlings, Michael G; Cheung, Kenneth M; Lewis, Stephen; Dekutoski, Mark B; Schwab, Frank J; Boachie-Adjei, Oheneba; Mehdian, Hossein; Bess, Shay; Shaffrey, Christopher I; Ames, Christopher P

    2018-05-14

    Analysis of a prospective multicenter database. To assess the ability of the recently created Adult Spinal Deformity (ASD) Frailty Index (ASD-FI) to predict odds of major complications and length of hospital stay for patients who had more severe preoperative deformity and underwent more invasive ASD surgery compared with patients in the database used to create the index. Accurate preoperative estimates of risk are necessary given the high complication rates currently associated with ASD surgery. Patients were enrolled by participating institutions in Europe, Asia, and North America from 2009 to 2011. ASD-FI scores were used to classify 267 patients as not frail (NF) (<0.3), frail (0.3-0. 5), or severely frail (SF) (>0.5). Multivariable logistic regression, adjusted for preoperative and surgical covariates such as operative time and blood loss, was performed to determine the relationship between ASD-FI category and incidence of major complications, overall incidence of complications, and length of hospital stay. The mean ASD-FI score was 0.3 (range, 0-0.7). We categorized 105 patients as NF, 103 as frail, and 59 as SF. The adjusted odds of developing a major complication were higher for SF patients (odds ratio = 4.4; 95% CI 2.0, 9.9) compared with NF patients. After adjusting for covariates, length of hospital stay for SF patients increased by 19% (95% CI 1.4%, 39%) compared with NF patients. The odds of developing a major complication or having increased length of stay were similar between frail and NF patients. Greater patient frailty, as measured by the ASD-FI, is associated with a longer hospital stay and greater risk of major complications among patients who have severe preoperative deformity and undergo invasive surgical procedures. 2.

  2. Beta functions in Chirally deformed supersymmetric sigma models in two dimensions

    NASA Astrophysics Data System (ADS)

    Vainshtein, Arkady

    2016-10-01

    We study two-dimensional sigma models where the chiral deformation diminished the original 𝒩 = (2, 2) supersymmetry to the chiral one, 𝒩 = (0, 2). Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional 𝒩 = 1 theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the β functions in terms of the anomalous dimensions analogous to the NSVZ β function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.

  3. Beta Functions in Chirally Deformed Supersymmetric Sigma Models in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Vainshtein, Arkady

    We study two-dimensional sigma models where the chiral deformation diminished the original 𝒩 =(2, 2) supersymmetry to the chiral one, 𝒩 =(0, 2). Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional 𝒩 = 1 theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the β functions in terms of the anomalous dimensions analogous to the NSVZ β function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.

  4. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    NASA Astrophysics Data System (ADS)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  5. Modeling viscoelastic deformation of the earth due to surface loading by commercial finite element package - ABAQUS

    NASA Astrophysics Data System (ADS)

    Kit Wong, Ching; Wu, Patrick

    2017-04-01

    Wu (2004) developed a transformation scheme to model viscoelatic deformation due to glacial loading by commercial finite element package - ABAQUS. Benchmark tests confirmed that this method works extremely well on incompressible earth model. Bangtsson & Lund (2008),however, showed that the transformation scheme would lead to incorrect results if compressible material parameters are used. Their study implies that Wu's method of stress transformation is inadequate to model the load induced deformation of a compressible earth under the framework of ABAQUS. In light of this, numerical experiments are carried out to find if there exist other methods that serve this purpose. All the tested methods are not satisfying as the results failed to converge through iterations, except at the elastic limit. Those tested methods will be outlined and the results will be presented. Possible reasons of failure will also be discussed. Bängtsson, E., & Lund, B. (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth. International journal for numerical methods in engineering, 75(4), 479-502. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.

  6. Repair of Pectus Excavatum and Carinatum Deformities in 116 Adults

    PubMed Central

    Fonkalsrud, Eric W.; DeUgarte, Daniel; Choi, Edmund

    2002-01-01

    Objective To determine the feasibility of surgically correcting pectus excavatum and carinatum deformities in adult patients. Summary Background Data Although pectus chest deformities are common, many patients progress to adulthood without surgical repair and experience increasing symptoms. There are sparse published data regarding repair of pectus deformities in adults. Methods Since 1987, 116 patients over the age of 18 years with pectus excavatum (n = 104) or carinatum (n = 12) deformities underwent correction using a highly modified Ravitch repair, with a temporary internal support bar. The ages ranged from 19 to 53 years (mean 30.1). Eighty-six patients sought repair after reviewing information regarding pectus deformities available on the Internet. Each patient experienced dyspnea with mild exertion and decreased endurance; 84 had chest pain with activity; 75 had palpitations and/or tachycardia. Seven patients underwent repair for symptomatic recurrent deformities. The mean severity score (chest width divided by distance from sternum to spine) was 4.8. The sternal bar was removed from 101 patients 6 months after the repair without complications. Results Each of the patients with reduced endurance or dyspnea with mild exercise experienced marked improvement within 6 months. Chest discomfort was reduced in 82 of the 84 patients. Complications included pleural effusion (n = 7), pneumothorax (n = 2), pericarditis (n = 2), dislodged sternal bar (n = 3), and mildly hypertrophic scar (n = 12). Mean hospitalization was 2.9 days; mean blood loss was 122 mL. Pain was mild and of short duration (intravenous analgesics were used a mean of 2.1 days). There were no deaths. With a mean follow-up of 4.3 years, 109 of 113 respondents had a very good or excellent result. Conclusions Although technically more difficult than in children, pectus deformities may be repaired in adults with low morbidity, short hospital stay, and very good physiologic and cosmetic results. PMID

  7. Modeling Crustal Deformation Due to the Landers, Hector Mine Earthquakes Using the SCEC Community Fault Model

    NASA Astrophysics Data System (ADS)

    Gable, C. W.; Fialko, Y.; Hager, B. H.; Plesch, A.; Williams, C. A.

    2006-12-01

    More realistic models of crustal deformation are possible due to advances in measurements and modeling capabilities. This study integrates various data to constrain a finite element model of stress and strain in the vicinity of the 1992 Landers earthquake and the 1999 Hector Mine earthquake. The geometry of the model is designed to incorporate the Southern California Earthquake Center (SCEC), Community Fault Model (CFM) to define fault geometry. The Hector Mine fault is represented by a single surface that follows the trace of the Hector Mine fault, is vertical and has variable depth. The fault associated with the Landers earthquake is a set of seven surfaces that capture the geometry of the splays and echelon offsets of the fault. A three dimensional finite element mesh of tetrahedral elements is built that closely maintains the geometry of these fault surfaces. The spatially variable coseismic slip on faults is prescribed based on an inversion of geodetic (Synthetic Aperture Radar and Global Positioning System) data. Time integration of stress and strain is modeled with the finite element code Pylith. As a first step the methodology of incorporating all these data is described. Results of the time history of the stress and strain transfer between 1992 and 1999 are analyzed as well as the time history of deformation from 1999 to the present.

  8. Distributed and Localized Deformation Along the Lebanese Restraining Bend from Geomorphic Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Castelltort, S.; Klinger, Y.

    2014-12-01

    The Dead Sea Fault System changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh Fault (YF), is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates and strain partitioning in Lebanon still prevail. Here, we use morphometric analysis together with analytical and numerical models to constrain rates and modes of distributed and localized deformation along the Lebanese restraining bend.The rivers that drain the western flank of Mount Lebanon show a consistent counterclockwise rotation with respect to an expected orogen perpendicular orientation. Moreover, a pattern of divide disequilibrium in between these rivers emerges from an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. These geometrical patterns are compatible with simulation results using a landscape evolution model, which imposes a distributed velocity field along a domain that represents the western flank of Mount Lebanon. We further develop an analytical model that relates the river orientation to a set of kinematic parameters that represents a combined pure and simple shear strain field, and we find the parameters that best explain the present orientation of the western Lebanon rivers. Our results indicate that distributed deformation to the west of the YF takes as much as 30% of the relative Arabia-Sinai plate velocity since the late Miocene, and that the average slip rate along the YF during the same time interval has been 3.8-4.4 mm/yr. The theoretical model can further explain the inferred rotation from Paleomagnetic measurements.

  9. Spinal deformities rehabilitation - state of the art review.

    PubMed

    Weiss, Hans-Rudolf

    2010-12-24

    Medical rehabilitation aims at an improvement in function, capacity and participation. For the rehabilitation of spinal deformities, the goal is to maintain function and prevent secondary symptoms in the short- and long-term. In patients with scoliosis, predictable signs and symptoms include pain and reduced pulmonary function. A Pub Med review was completed in order to reveal substantial evidence for inpatient rehabilitation as performed in Germany. No evidence has been found in general to support claims for actual inpatient rehabilitation programmes as used today. Nevertheless, as there is some evidence that inpatient rehabilitation may be beneficial to patients with spinal deformities complicated by certain additional conditions, the body of evidence there is for conservative treatment of spinal deformities has been reviewed in order to allow suggestions for outpatient conservative treatment and inpatient rehabilitation. Today, for both children and adolescents, we are able to offer intensive rehabilitation programmes lasting three to five days, which enable the patients to acquire the skills necessary to prevent postures fostering scoliosis in everyday life without missing too much of school teaching subjects at home. The secondary functional impairments adult scoliosis patients might have, as in the opinion of the author, still today require the time of 3-4 weeks in the clinical in-patient setting. Time to address psychosocial as well as somatic limitations, namely chronic pains and cardiorespiratory malfunction is needed to preserve the patients working capability in the long-term. Outpatient treatment/rehabilitation is sufficient for adolescents with spinal deformities.Inpatient rehabilitation is recommended for patients with spinal deformities and pain or severe restrictive ventilation disorder.

  10. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.

    PubMed

    Jungreuthmayer, C; Jaasma, M J; Al-Munajjed, A A; Zanghellini, J; Kelly, D J; O'Brien, F J

    2009-05-01

    Tissue-engineered bone shows promise in meeting the huge demand for bone grafts caused by up to 4 million bone replacement procedures per year, worldwide. State-of-the-art bone tissue engineering strategies use flow perfusion bioreactors to apply biophysical stimuli to cells seeded on scaffolds and to grow tissue suitable for implantation into the patient's body. The aim of this study was to quantify the deformation of cells seeded on a collagen-GAG scaffold which was perfused by culture medium inside a flow perfusion bioreactor. Using a microCT scan of an unseeded collagen-GAG scaffold, a sequential 3D CFD-deformation model was developed. The wall shear stress and the hydrostatic wall pressure acting on the cells were computed through the use of a CFD simulation and fed into a linear elastostatics model in order to calculate the deformation of the cells. The model used numerically seeded cells of two common morphologies where cells are either attached flatly on the scaffold wall or bridging two struts of the scaffold. Our study showed that the displacement of the cells is primarily determined by the cell morphology. Although cells of both attachment profiles were subjected to the same mechanical load, cells bridging two struts experienced a deformation up to 500 times higher than cells only attached to one strut. As the scaffold's pore size determines both the mechanical load and the type of attachment, the design of an optimal scaffold must take into account the interplay of these two features and requires a design process that optimizes both parameters at the same time.

  11. Hysteresis compensation of piezoelectric deformable mirror based on Prandtl-Ishlinskii model

    NASA Astrophysics Data System (ADS)

    Ma, Jianqiang; Tian, Lei; Li, Yan; Yang, Zongfeng; Cui, Yuguo; Chu, Jiaru

    2018-06-01

    Hysteresis of piezoelectric deformable mirror (DM) reduces the closed-loop bandwidth and the open-loop correction accuracy of adaptive optics (AO) systems. In this work, a classical Prandtl-Ishlinskii (PI) model is employed to model the hysteresis behavior of a unimorph DM with 20 actuators. A modified control algorithm combined with the inverse PI model is developed for piezoelectric DMs. With the help of PI model, the hysteresis of the DM was reduced effectively from about 9% to 1%. Furthermore, open-loop regenerations of low-order aberrations with or without hysteresis compensation were carried out. The experimental results demonstrate that the regeneration accuracy with PI model compensation is significantly improved.

  12. Influence of mechanical cell salvage on red blood cell aggregation, deformability, and 2,3-diphosphoglycerate in patients undergoing cardiac surgery with cardiopulmonary bypass.

    PubMed

    Gu, Y John; Vermeijden, Wytze J; de Vries, Adrianus J; Hagenaars, J Ans M; Graaff, Reindert; van Oeveren, Willem

    2008-11-01

    Mechanical cell salvage is increasingly used during cardiac surgery. Although this procedure is considered safe, it is unknown whether it affects the red blood cell (RBC) function, especially the RBC aggregation, deformability, and the contents of 2,3-diphosphoglycerate (2,3-DPG). This study examines the following: (1) whether the cell salvage procedure influences RBC function; and (2) whether retransfusion of the salvaged blood affects RBC function in patients. Forty patients undergoing cardiac surgery with cardiopulmonary bypass were randomly allocated to a cell saver group (n = 20) or a control group (n = 20). In the cell saver group, the blood aspirated from the wound area and the residual blood from the heart-lung machine were processed with a continuous-flow cell saver before retransfusion. In the control group this blood was retransfused without processing. The RBC aggregation and deformability were measured with a laser-assisted optical rotational cell analyzer and 2,3,-DPG by conventional laboratory test. The cell saver procedure did not influence the RBC aggregation but significantly reduced the RBC deformability (p = 0.007) and the content of RBC 2,3-DPG (p = 0.032). However, in patients receiving the processed blood, their intraoperative and postoperative RBC aggregation, deformability, and 2,3-DPG content did not differ from those of the control patients. Both groups of patients had a postoperative drop of RBC function as a result of hemodilution. The mechanical cell salvage procedure reduces the RBC deformability and the cell 2,3-DPG content. Retransfusion of the processed blood by cell saver does not further compromise the RBC function in patients undergoing cardiac surgery with cardiopulmonary bypass.

  13. Neck formation and deformation effects in a preformed cluster model of exotic cluster decays

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Gupta, Raj K.

    1997-01-01

    Using the nuclear proximity approach and the two center nuclear shape parametrization, the interaction potential between two deformed and pole-to-pole oriented nuclei forming a necked configuration in the overlap region is calculated and its role is studied for the cluster decay half-lives. The barrier is found to move to a larger relative separation, with its proximity minimum lying in the neighborhood of the Q value of decay and its height and width reduced considerably. For cluster decay calculations in the preformed cluster model of Malik and Gupta, due to deformations and orientations of nuclei, the (empirical) preformation factor is found to get reduced considerably and agrees nicely with other model calculations known to be successful for their predictions of cluster decay half-lives. Comparison with the earlier case of nuclei treated as spheres suggests that the effects of both deformations and neck formation get compensated by choosing the position of cluster preformation and the inner classical turning point for penetrability calculations at the touching configuration of spherical nuclei.

  14. Finite Deformation of Magnetoelastic Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure andmore » an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.« less

  15. Rheological model analysis on depth of toppling deformation in the anti-dip rock slope

    NASA Astrophysics Data System (ADS)

    Zheng, Da

    2017-04-01

    The failure of the toppling deformation occurred in the layered rock mass, it is a kind of mode of deformation and failure, which is bent towards free direction and gradually develops into the slope under the combined forces of in-situ stress, gravity, and groundwater dynamic (hydrostatic) pressure and so on. The most common toppling deformation is the toppling of ductile bending. Obtaining the developmental depth of bending deformation is of great significance for judging the development scale of the plasmodium and the stability of the slope. At present, the developmental depth of toppling deformation mainly depends on the survey and statistic of the exploration adit, or the simulation of the deformation and failure process through the numerical simulation method, there is little research on the developmental depth of toppling deformation from mechanics point of view. In this paper, with the consideration of the time-sensitive characteristics of developmental process of the toppling deformation, the anti-dip layered slope can be considered as a multi-layer superposition cantilever with fixed end and free end, bending under self-weight and inter-layer stress. Under the premise of the initial stage of rheology of the rock slopes, which is considered to be the limit position of the toppling deformation and development, the Kelvin rheological model, which is usually used to describe the decay creep, is chosen to describe the time-sensitive process of rock slopes. The stress-strain analysis calculation is used to obtain the time-varying expression of a certain point on the rock beam. Furthermore, taking the time to infinity, the depth of the layered rock slopes is calculated as x=4Ccosβ/[2γcosαcosβ - γ2(cos (α + β)+2sin(α + β)tanφ)*((1+n) /2+(1-n) cos2α/ 2)] , which is obtained by using the strain reaches zero as the criterion of the depth at toppling deformation development limit position, combining the time-varying expression of a certain point on the beam

  16. Homogeneous Yang-Baxter deformations as generalized diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Sakamoto, Jun-ichi; Sakatani, Yuho; Yoshida, Kentaroh

    2017-10-01

    Yang-Baxter (YB) deformations of string sigma model provide deformed target spaces. We propose that homogeneous YB deformations always lead to a certain class of β-twisted backgrounds and represent the bosonic part of the supergravity fields in terms of the classical r-matrix associated with the YB deformation. We then show that various β-twisted backgrounds can be realized by considering generalized diffeomorphisms in the undeformed background. Our result extends the notable relation between the YB deformations and (non-commuting) TsT transformations. We also discuss more general deformations beyond the YB deformations.

  17. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  18. 3D modeling of unconstrained HPT process: role of strain gradient on high deformed microstructure formation

    NASA Astrophysics Data System (ADS)

    Ben Kaabar, A.; Aoufi, A.; Descartes, S.; Desrayaud, C.

    2017-05-01

    During tribological contact’s life, different deformation paths lead to the formation of high deformed microstructure, in the near-surface layers of the bodies. The mechanical conditions (high pressure, shear) occurring under contact, are reproduced through unconstrained High Pressure Torsion configuration. A 3D finite element model of this HPT test is developed to study the local deformation history leading to high deformed microstructure with nominal pressure and friction coefficient. For the present numerical study the friction coefficient at the interface sample/anvils is kept constant at 0.3; the material used is high purity iron. The strain distribution in the sample bulk, as well as the main components of the strain gradients according to the spatial coordinates are investigated, with rotation angle of the anvil.

  19. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    NASA Astrophysics Data System (ADS)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  20. Spring assisted cranioplasty: A patient specific computational model.

    PubMed

    Borghi, Alessandro; Rodriguez-Florez, Naiara; Rodgers, Will; James, Gregory; Hayward, Richard; Dunaway, David; Jeelani, Owase; Schievano, Silvia

    2018-03-01

    Implantation of spring-like distractors in the treatment of sagittal craniosynostosis is a novel technique that has proven functionally and aesthetically effective in correcting skull deformities; however, final shape outcomes remain moderately unpredictable due to an incomplete understanding of the skull-distractor interaction. The aim of this study was to create a patient specific computational model of spring assisted cranioplasty (SAC) that can help predict the individual overall final head shape. Pre-operative computed tomography images of a SAC patient were processed to extract a 3D model of the infant skull anatomy and simulate spring implantation. The distractors were modeled based on mechanical experimental data. Viscoelastic bone properties from the literature were tuned using the specific patient procedural information recorded during surgery and from x-ray measurements at follow-up. The model accurately captured spring expansion on-table (within 9% of the measured values), as well as at first and second follow-ups (within 8% of the measured values). Comparison between immediate post-operative 3D head scanning and numerical results for this patient proved that the model could successfully predict the final overall head shape. This preliminary work showed the potential application of computational modeling to study SAC, to support pre-operative planning and guide novel distractor design. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Ear molding in newborn infants with auricular deformities.

    PubMed

    Byrd, H Steve; Langevin, Claude-Jean; Ghidoni, Lorraine A

    2010-10-01

    A review of a single physician's experience in managing over 831 infant ear deformities (488 patients) is presented. The authors' methods of molding have advanced from the use of various tapes, glues, and stents, to a comprehensive yet simple system that shapes the antihelix, the triangular fossa, the helical rim, and the overly prominent conchal-mastoid angle (EarWell Infant Ear Correction System). The types of deformities managed, and their relative occurrence, are as follows: (1) prominent/cup ear, 373 ears (45 percent); (2) lidding/lop ear, 224 ears (27 percent); (3) mixed ear deformities, 83 ears (10 percent) (all had associated conchal crus); (4) Stahl's ear, 66 ears (8 percent); (5) helical rim abnormalities, 58 ears (7 percent); (6) conchal crus, 25 ears (3 percent); and (7) cryptotia, two ears (0.2 percent). Bilateral deformities were present in 340 patients (70 percent), with unilateral deformities in 148 patients (30 percent). Fifty-eight infant ears (34 patients) were treated using the final version of the EarWell Infant Ear Correction System with a success rate exceeding 90 percent (good to excellent results). The system was found to be most successful when begun in the first week of the infant's life. When molding was initiated after 3 weeks from birth, only approximately half of the infants had a good response. Congenital ear deformities are common and only approximately 30 percent self-correct. These deformities can be corrected by initiating appropriate molding in the first week of life. Neonatal molding reduces the need for surgical correction with results that often exceed what can be achieved with the surgical alternative.

  2. A simulation model for analysing brain structure deformations.

    PubMed

    Di Bona, Sergio; Lutzemberger, Ludovico; Salvetti, Ovidio

    2003-12-21

    Recent developments of medical software applications--from the simulation to the planning of surgical operations--have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  3. Metal-water reaction and cladding deformation models for RELAP5/MOD3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caraher, D.L.; Shumway, R.W.

    1989-06-01

    A model for calculating the reaction of zirconium with steam according to the Cathcart-Pawel correlation has been incorporated into RELAP5/MOD3. A cladding deformation model which computes swelling and rupture of the cladding according to the empirical correlations for Powers and Meyer has also been incorporated into RELAP5/MOD3. This report gives the background of the models, documents their implantation into the RELAP5 subroutines, and reports the developmental assessment done on the models. 4 refs., 9 figs., 9 tabs.

  4. Videogrammetric Model Deformation Measurement System User's Manual

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2002-01-01

    The purpose of this manual is to provide the user of the NASA VMD system, running the MDef software, Version 1.10, all information required to operate the system. The NASA Videogrammetric Model Deformation system consists of an automated videogrammetric technique used to measure the change in wing twist and bending under aerodynamic load in a wind tunnel. The basic instrumentation consists of a single CCD video camera and a frame grabber interfaced to a computer. The technique is based upon a single view photogrammetric determination of two-dimensional coordinates of wing targets with fixed (and known) third dimensional coordinate, namely the span-wise location. The major consideration in the development of the measurement system was that productivity must not be appreciably reduced.

  5. Modeling the Nonlinear, Strain Rate Dependent Deformation of Woven Ceramic Matrix Composites With Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.

  6. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model.

    PubMed

    Liu, Ling; Onck, Patrick R

    2017-08-04

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015).NCAOBW2041-172310.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  7. Static response of deformable microchannels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  8. Analytical magmatic source modelling from a joint inversion of ground deformation and focal mechanisms data

    NASA Astrophysics Data System (ADS)

    Cannavo', Flavio; Scandura, Danila; Palano, Mimmo; Musumeci, Carla

    2014-05-01

    Seismicity and ground deformation represent the principal geophysical methods for volcano monitoring and provide important constraints on subsurface magma movements. The occurrence of migrating seismic swarms, as observed at several volcanoes worldwide, are commonly associated with dike intrusions. In addition, on active volcanoes, (de)pressurization and/or intrusion of magmatic bodies stress and deform the surrounding crustal rocks, often causing earthquakes randomly distributed in time within a volume extending about 5-10 km from the wall of the magmatic bodies. Despite advances in space-based, geodetic and seismic networks have significantly improved volcano monitoring in the last decades on an increasing worldwide number of volcanoes, quantitative models relating deformation and seismicity are not common. The observation of several episodes of volcanic unrest throughout the world, where the movement of magma through the shallow crust was able to produce local rotation of the ambient stress field, introduces an opportunity to improve the estimate of the parameters of a deformation source. In particular, during these episodes of volcanic unrest a radial pattern of P-axes of the focal mechanism solutions, similar to that of ground deformation, has been observed. Therefore, taking into account additional information from focal mechanisms data, we propose a novel approach to volcanic source modeling based on the joint inversion of deformation and focal plane solutions assuming that both observations are due to the same source. The methodology is first verified against a synthetic dataset of surface deformation and strain within the medium, and then applied to real data from an unrest episode occurred before the May 13th 2008 eruption at Mt. Etna (Italy). The main results clearly indicate as the joint inversion improves the accuracy of the estimated source parameters of about 70%. The statistical tests indicate that the source depth is the parameter with the highest

  9. ICCD: interactive continuous collision detection between deformable models using connectivity-based culling.

    PubMed

    Tang, Min; Curtis, Sean; Yoon, Sung-Eui; Manocha, Dinesh

    2009-01-01

    We present an interactive algorithm for continuous collision detection between deformable models. We introduce multiple techniques to improve the culling efficiency and the overall performance of continuous collision detection. First, we present a novel formulation for continuous normal cones and use these normal cones to efficiently cull large regions of the mesh as part of self-collision tests. Second, we introduce the concept of "procedural representative triangles" to remove all redundant elementary tests between nonadjacent triangles. Finally, we exploit the mesh connectivity and introduce the concept of "orphan sets" to eliminate redundant elementary tests between adjacent triangle primitives. In practice, we can reduce the number of elementary tests by two orders of magnitude. These culling techniques have been combined with bounding volume hierarchies and can result in one order of magnitude performance improvement as compared to prior collision detection algorithms for deformable models. We highlight the performance of our algorithm on several benchmarks, including cloth simulations, N-body simulations, and breaking objects.

  10. Improved techniques for thermomechanical testing in support of deformation modeling

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Ellis, John R.

    1992-01-01

    The feasibility of generating precise thermomechanical deformation data to support constitutive model development was investigated. Here, the requirement is for experimental data that is free from anomalies caused by less than ideal equipment and procedures. A series of exploratory tests conducted on Hastelloy X showed that generally accepted techniques for strain controlled tests were lacking in at least three areas. Specifically, problems were encountered with specimen stability, thermal strain compensation, and temperature/mechanical strain phasing. The source of these difficulties was identified and improved thermomechanical testing techniques to correct them were developed. These goals were achieved by developing improved procedures for measuring and controlling thermal gradients and by designing a specimen specifically for thermomechanical testing. In addition, innovative control strategies were developed to correctly proportion and phase the thermal and mechanical components of strain. Subsequently, the improved techniques were used to generate deformation data for Hastelloy X over the temperature range, 200 to 1000 C.

  11. Modelling of reactive fluid transport in deformable porous rocks

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a

  12. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  13. Development of a Unified Rock Bolt Model in Discontinuous Deformation Analysis

    NASA Astrophysics Data System (ADS)

    He, L.; An, X. M.; Zhao, X. B.; Zhao, Z. Y.; Zhao, J.

    2018-03-01

    In this paper, a unified rock bolt model is proposed and incorporated into the two-dimensional discontinuous deformation analysis. In the model, the bolt shank is discretized into a finite number of (modified) Euler-Bernoulli beam elements with the degrees of freedom represented at the end nodes, while the face plate is treated as solid blocks. The rock mass and the bolt shank deform independently, but interact with each other through a few anchored points. The interactions between the rock mass and the face plate are handled via general contact algorithm. Different types of rock bolts (e.g., Expansion Shell, fully grouted rebar, Split Set, cone bolt, Roofex, Garford and D-bolt) can be realized by specifying the corresponding constitutive model for the tangential behavior of the anchored points. Four failure modes, namely tensile failure and shear failure of the bolt shank, debonding along the bolt/rock interface and loss of the face plate, are available in the analysis procedure. The performance of a typical conventional rock bolt (fully grouted rebar) and a typical energy-absorbing rock bolt (D-bolt) under the scenarios of suspending loosened blocks and rock dilation is investigated using the proposed model. The reliability of the proposed model is verified by comparing the simulation results with theoretical predictions and experimental observations. The proposed model could be used to reveal the mechanism of each type of rock bolt in realistic scenarios and to provide a numerical way for presenting the detailed profile about the behavior of bolts, in particular at intermediate loading stages.

  14. Teriparatide versus low-dose bisphosphonates before and after surgery for adult spinal deformity in female Japanese patients with osteoporosis.

    PubMed

    Seki, Shoji; Hirano, Norikazu; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Suzuki, Kayo; Watanabe, Kenta; Makino, Hiroto; Kanamori, Masahiko; Kimura, Tomoatsu

    2017-08-01

    Complications of adult spinal deformity surgery are problematic in osteoporotic individuals. We compared outcomes between Japanese patients treated perioperatively with teriparatide vs. low-dose bisphosphonates. Fifty-eight osteoporotic adult Japanese female patients were enrolled and assigned to perioperative teriparatide (33 patients) and bisphosphonate (25 patients) groups in non-blinded fashion. Pre- and post-operative X-ray and computed tomography imaging were used to assess outcome, and rates were compared between the groups and according to age. Pain scores and Oswestry Disability Indices (ODI) were calculated before and 2 years after surgery. Adjacent vertebral fractures and implant failure, fusion failure, and poor pain and ODI outcomes were significantly more common in the bisphosphonates group than the teriparatide group. Perioperative administration of teriparatide is more effective than that of low-dose bisphosphonates in preventing complications and maintaining fusion rates in osteoporotic Japanese females with spinal deformities undergoing surgery.

  15. Large-scale deformation associated with ridge subduction

    USGS Publications Warehouse

    Geist, E.L.; Fisher, M.A.; Scholl, D. W.

    1993-01-01

    Continuum models are used to investigate the large-scale deformation associated with the subduction of aseismic ridges. Formulated in the horizontal plane using thin viscous sheet theory, these models measure the horizontal transmission of stress through the arc lithosphere accompanying ridge subduction. Modelling was used to compare the Tonga arc and Louisville ridge collision with the New Hebrides arc and d'Entrecasteaux ridge collision, which have disparate arc-ridge intersection speeds but otherwise similar characteristics. Models of both systems indicate that diffuse deformation (low values of the effective stress-strain exponent n) are required to explain the observed deformation. -from Authors

  16. A virtual phantom library for the quantification of deformable image registration uncertainties in patients with cancers of the head and neck.

    PubMed

    Pukala, Jason; Meeks, Sanford L; Staton, Robert J; Bova, Frank J; Mañon, Rafael R; Langen, Katja M

    2013-11-01

    Deformable image registration (DIR) is being used increasingly in various clinical applications. However, the underlying uncertainties of DIR are not well-understood and a comprehensive methodology has not been developed for assessing a range of interfraction anatomic changes during head and neck cancer radiotherapy. This study describes the development of a library of clinically relevant virtual phantoms for the purpose of aiding clinicians in the QA of DIR software. These phantoms will also be available to the community for the independent study and comparison of other DIR algorithms and processes. Each phantom was derived from a pair of kVCT volumetric image sets. The first images were acquired of head and neck cancer patients prior to the start-of-treatment and the second were acquired near the end-of-treatment. A research algorithm was used to autosegment and deform the start-of-treatment (SOT) images according to a biomechanical model. This algorithm allowed the user to adjust the head position, mandible position, and weight loss in the neck region of the SOT images to resemble the end-of-treatment (EOT) images. A human-guided thin-plate splines algorithm was then used to iteratively apply further deformations to the images with the objective of matching the EOT anatomy as closely as possible. The deformations from each algorithm were combined into a single deformation vector field (DVF) and a simulated end-of-treatment (SEOT) image dataset was generated from that DVF. Artificial noise was added to the SEOT images and these images, along with the original SOT images, created a virtual phantom where the underlying "ground-truth" DVF is known. Images from ten patients were deformed in this fashion to create ten clinically relevant virtual phantoms. The virtual phantoms were evaluated to identify unrealistic DVFs using the normalized cross correlation (NCC) and the determinant of the Jacobian matrix. A commercial deformation algorithm was applied to the virtual

  17. Simultaneous shape and deformation measurements in a blood vessel model by two wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Andrés, Nieves; Pinto, Cristina; Lobera, Julia; Palero, Virginia; Arroyo, M. Pilar

    2017-06-01

    Holographic techniques have been used to measure the shape and the radial deformation of a blood vessel model and a real sheep aorta. Measurements are obtained from several holograms recorded for different object states. For each object state, two holograms with two different wavelengths are multiplexed in the same digital recording. Thus both holograms are simultaneously recorded but the information from each of them is separately obtained. The shape analysis gives a wrapped phase map whose fringes are related to a synthetic wavelength. After a filtering and unwrapping process, the 3D shape can be obtained. The shape data for each line are fitted to a circumference in order to determine the local vessel radius and center. The deformation analysis also results in a wrapped phase map, but the fringes are related to the laser wavelength used in the corresponding hologram. After the filtering and unwrapping process, a 2D map of the deformation in an out-of-plane direction is reconstructed. The radial deformation is then calculated by using the shape information.

  18. Early diagnosis of diabetic vascular complications: impairment of red blood cell deformability

    NASA Astrophysics Data System (ADS)

    Shin, Sehyun; Ku, Yunhee; Park, Cheol-Woo; Suh, Jang-Soo

    2006-02-01

    Reduced deformability of red blood cells (RBCs) may play an important role on the pathogenesis of chronic vascular complications of diabetes mellitus. However, available techniques for measuring RBC deformability often require washing process after each measurement, which is not optimal for day-to-day clinical use at point of care. The objectives of the present study are to develop a device and to delineate the correlation of impaired RBC deformability with diabetic nephropathy. We developed a disposable ektacytometry to measure RBC deformability, which adopted a laser diffraction technique and slit rheometry. The essential features of this design are its simplicity (ease of operation and no moving parts) and a disposable element which is in contact with the blood sample. We studied adult diabetic patients divided into three groups according to diabetic complications. Group I comprised 57 diabetic patients with normal renal function. Group II comprised 26 diabetic patients with chronic renal failure (CRF). Group III consisted of 30 diabetic subjects with end-stage renal disease (ESRD) on hemodialysis. According to the renal function for the diabetic groups, matched non-diabetic groups were served as control. We found substantially impaired red blood cell deformability in those with normal renal function (group I) compared to non-diabetic control (P = 0.0005). As renal function decreases, an increased impairment in RBC deformability was found. Diabetic patients with chronic renal failure (group II) when compared to non-diabetic controls (CRF) had an apparently greater impairment in RBC deformability (P = 0.07). The non-diabetic cohort (CRF), on the other hand, manifested significant impairment in red blood cell deformability compared to healthy control (P = 0.0001). The newly developed slit ektacytometer can measure the RBC deformability with ease and accuracy. In addition, progressive impairment in cell deformability is associated with renal function loss in all

  19. Numerical Investigations on Aerodynamic Forces of Deformable Foils in Hovering Motions

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Yin, Zhen; Su, Xiaohui; Zhang, Jiantao; Cao, Yuanwei

    2017-09-01

    The aerodynamic effects of wing deformation for hover flight are numerically investigated by a two-dimensional finite-volume (FV) Arbitrary Langrangian Eulerian (ALE) Navier-Stokes solver. Two deformation models are employed to study these effects in this paper, which are a full deformation model and a partial deformation one. Attentions are paid to the generation and development of leading edge vortex (LEV) and trailing edge vortex (TEV) which may illustrate the differences of lift force generation mechanisms from those of rigid wings. Moreover, lift coefficient Cl, drag coefficient Cd, and figure of merit, as well as energy consumption in hovering motion for different deformation foil models, are also studied. The results show that the deformed amplitude, 0.1*chord, among the cases simulated is an optimized camber amplitude for full deformation. The results obtained from the partial deformation foil model show that both Cl and Cd decrease with the increase of camber amplitude. It is found that the effect of deformation in the partial deformation model does not enhance lift force due to unfavorable camber. But TEV is significantly changed by the local AOA due to the deformation of the foil. Introduction.

  20. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  1. Application of the Deformation Information System for automated analysis and mapping of mining terrain deformations - case study from SW Poland

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Grzempowski, Piotr; Milczarek, Wojciech; Nowacka, Anna

    2015-04-01

    Monitoring, mapping and modelling of mining induced terrain deformations are important tasks for quantifying and minimising threats that arise from underground extraction of useful minerals and affect surface infrastructure, human safety, the environment and security of the mining operation itself. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and expanding with the progress in geographical information technologies. These include for example: terrestrial geodetic measurements, Global Navigation Satellite Systems, remote sensing, GIS based modelling and spatial statistics, finite element method modelling, geological modelling, empirical modelling using e.g. the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The presentation shows the results of numerical modelling and mapping of mining terrain deformations for two cases of underground mining sites in SW Poland, hard coal one (abandoned) and copper ore (active) using the functionalities of the Deformation Information System (DIS) (Blachowski et al, 2014 @ http://meetingorganizer.copernicus.org/EGU2014/EGU2014-7949.pdf). The functionalities of the spatial data modelling module of DIS have been presented and its applications in modelling, mapping and visualising mining terrain deformations based on processing of measurement data (geodetic and GNSS) for these two cases have been characterised and compared. These include, self-developed and implemented in DIS, automation procedures for calculating mining terrain subsidence with different interpolation techniques, calculation of other mining deformation parameters (i.e. tilt, horizontal displacement, horizontal strain and curvature), as well as mapping mining terrain categories based on classification of the values of these parameters as used in Poland. Acknowledgments. This work has been financed from the National Science Centre Project "Development of a numerical method of

  2. Shell-model-based deformation analysis of light cadmium isotopes

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Heyde, K. L. G.; Blazhev, A.; Jolie, J.

    2017-07-01

    Large-scale shell-model calculations for the even-even cadmium isotopes 98Cd-108Cd have been performed with the antoine code in the π (2 p1 /2;1 g9 /2) ν (2 d5 /2;3 s1 /2;2 d3 /2;1 g7 /2;1 h11 /2) model space without further truncation. Known experimental energy levels and B (E 2 ) values could be well reproduced. Taking these calculations as a starting ground we analyze the deformation parameters predicted for the Cd isotopes as a function of neutron number N and spin J using the methods of model independent invariants introduced by Kumar [Phys. Rev. Lett. 28, 249 (1972), 10.1103/PhysRevLett.28.249] and Cline [Annu. Rev. Nucl. Part. Sci. 36, 683 (1986), 10.1146/annurev.ns.36.120186.003343].

  3. Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.

    2018-04-01

    The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.

  4. A discrete-element model for viscoelastic deformation and fracture of glacial ice

    NASA Astrophysics Data System (ADS)

    Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.

    2015-10-01

    A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.

  5. Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.

    2013-12-01

    Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this

  6. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    PubMed Central

    Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-01-01

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925

  7. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    PubMed

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  8. Amniotic Constriction Bands: Secondary Deformities and Their Treatments.

    PubMed

    Drury, Benjamin T; Rayan, Ghazi M

    2018-01-01

    The purpose of this study was to report the surgical treatment experience of patients with amniotic constriction bands (ACB) over a 35-year interval and detail consequential limb deformities with emphasis on hands and upper extremities, along with the nature and frequency of their surgical treatment methods. Fifty-one patients were identified; 26 were males and 25 females. The total number of deformities was listed. The total number of operations, individual procedures, and operations plus procedures that were done for each patient and their frequency were recorded. The total number of operations was 117, and total number of procedures was 341. More procedures were performed on the upper extremity (85%) than the lower extremity (15%). Including the primary deformity ACB, 16 different hand deformities secondary to ACB were encountered. Sixteen different surgical methods for the upper extremity were utilized; a primary procedure for ACB and secondary reconstructions for all secondary deformities. Average age at the time of the first procedure was 9.3 months. The most common procedures performed, in order of frequency, were excision of ACB plus Z-plasty, release of partial syndactyly, release of fenestrated syndactyly, full-thickness skin grafts, resection of digital bony overgrowth from amputation stumps, and deepening of first and other digital web spaces. Many hand and upper extremity deformities secondary to ACB are encountered. Children with ACB may require more than one operation including multiple procedures. Numerous surgical methods of reconstruction for these children's secondary deformities are necessary in addition to the customary primary procedure of excision of ACB and Z-plasty.

  9. Studies of co- and postseismic deformation of the lithosphere from numerical models and space geodetic data

    NASA Astrophysics Data System (ADS)

    Barbot, Sylvain

    In this dissertation, I study the co- and postseismic deformation of the lithosphere using numerical models of three-dimensional time-dependent deformation and space geodetic data. I derive an original approach to simulate the static deformation due to faulting and volcanic unrest in a heterogeneous half space with vertical and lateral variations in elastic moduli. The method is based on a semi-analytic elastic Green function in the Fourier domain. I extend the model to include time-dependent inelastic properties of the lithosphere. This approach can be used to model time series of poroelastic rebound, viscoelastic flow and fault creep, three important mechanisms thought to participate in postseismic transients. I use kinematic inversions and forward models of deformation to infer the postseismic mechanisms responsible for the transient that followed the 2003 Altai earthquake. I find that synthetic aperture radar (SAR) data are most compatible with afterslip. The absence of an observable viscoelastic relaxation in the three years following the earthquake can be explained by an effective viscosity of the ductile substrate greater than 1019 Pa s. I use numerical models of coseismic deformation to explain anomalously strained areas in the East California Shear Zone imaged by SAR line-of-sight (LOS) data in the vicinity of the 1992 Landers and 1999 Hector Mine earthquakes. I find that the enhanced strain can be explained by compliant zones (CZs) surrounding long-lived faults in the Mojave desert. The LOS data is best explained by a 50% reduction of rigidity in volumes of the order of 1-2km thick around historical faults that extend from 5km depth for the Calico CZ to 9km depth for the Pinto Mountain CZ. Finally, I use kinematic inversion of GPS data and forward models to identify the location and rheology of the afterslip that followed the 2004 Parkfield earthquake. The time dependence and amplitude of GPS time series can be explained by slip on an asperity centered at

  10. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling

    NASA Astrophysics Data System (ADS)

    Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun

    2017-12-01

    Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.

  11. Percutaneous nephrolithotomy in ectopically located kidneys and in patients with musculoskeletal deformities.

    PubMed

    Srivastava, A; Gupta, P; Chaturvedi, S; Singh, P; Kapoor, R; Dubey, D; Kumar, A

    2010-01-01

    To assess the feasibility, safety and results of percutaneous nephrolithotomy (PNL) in ectopically located kidneys and in patients with musculoskeletal deformities. Thirteen such patients underwent PNL between June 2005 and May 2008. Mean stone size was 27.4 mm (16-37 mm). Six patients had severe kyphoscoliosis, 2 patients each had achondroplasia, cross-fused ectopia and pelvic ectopic kidney, and 1 patient had thoracic kidney. All had a preoperative CT scan of the abdomen. Preoperative ultrasound- or CT-guided percutaneous nephrostomy (PCN) was done in 10 patients. Three patients underwent laparoscopic-assisted PNL. All underwent standard PNL. The stone-free rate, complication rate and need for secondary intervention were evaluated. PNL was successfully completed in all. A second ultrasound-guided intraoperative puncture was required in 2 patients. Re-look PNL was required in 1 patient and the same patient later required shock wave lithotripsy for complete stone clearance. The remaining 12 patients (92.3%) were rendered stone-free in a single sitting. PNL is a feasible and effective modality in anomalous kidneys. Preoperative planning with CT and image-guided PCN is helpful in these situations. Laparoscopic-assisted PNL can be safely performed in patients where access to a renal collecting system by fluoroscopy or image-guided assistance (ultrasound or CT scan) is not possible. Copyright (c) 2010 S. Karger AG, Basel.

  12. Deformation Measurements of Smart Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Burner, Alpheus

    2005-01-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  13. State-variable theories for nonelastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.Y.

    The various concepts of mechanical equation of state for nonelastic deformation in crystalline solids, originally proposed for plastic deformation, have been recently extended to describe additional phenomena such as anelastic and microplastic deformation including the Bauschinger effect. It has been demonstrated that it is possible to predict, based on current state variables in a unified way, the mechanical response of a material under an arbitrary loading. Thus, if the evolution laws of the state variables are known, one can describe the behavior of a material for a thermal-mechanical path of interest, for example, during constant load (or stress) creep withoutmore » relying on specialized theories. Some of the existing theories of mechanical equation of state for nonelastic deformation are reviewed. The establishment of useful forms of mechanical equation of state has to depend on extensive experimentation in the same way as that involved in the development, for example, the ideal gas law. Recent experimental efforts are also reviewed. It has been possible to develop state-variable deformation models based on experimental findings and apply them to creep, cyclic deformation, and other time-dependent deformation. Attempts are being made to correlate the material parameters of the state-variable models with the microstructure of a material. 24 figures.« less

  14. Pneumatic tyres interacting with deformable terrains

    NASA Astrophysics Data System (ADS)

    Bekakos, C. A.; Papazafeiropoulos, G.; O'Boy, D. J.; Prins, J.

    2016-09-01

    In this study, a numerical model of a deformable tyre interacting with a deformable road has been developed with the use of the finite element code ABAQUS (v. 6.13). Two tyre models with different widths, not necessarily identical to any real industry tyres, have been created purely for research use. The behaviour of these tyres under various vertical loads and different inflation pressures is studied, initially in contact with a rigid surface and then with a deformable terrain. After ensuring that the tyre model gives realistic results in terms of the interaction with a rigid surface, the rolling process of the tyre on a deformable road was studied. The effects of friction coefficient, inflation pressure, rebar orientation and vertical load on the overall performance are reported. Regarding the modelling procedure, a sequence of models were analysed, using the coupling implicit - explicit method. The numerical results reveal that not only there is significant dependence of the final tyre response on the various initial driving parameters, but also special conditions emerge, where the desired response of the tyre results from specific optimum combination of these parameters.

  15. Deformable Dose Reconstruction to Optimize the Planning and Delivery of Liver Cancer Radiotherapy

    NASA Astrophysics Data System (ADS)

    Velec, Michael

    The precise delivery of radiation to liver cancer patients results in improved control with higher tumor doses and minimized normal tissues doses. A margin of normal tissue around the tumor requires irradiation however to account for treatment delivery uncertainties. Daily image-guidance allows targeting of the liver, a surrogate for the tumor, to reduce geometric errors. However poor direct tumor visualization, anatomical deformation and breathing motion introduce uncertainties between the planned dose, calculated on a single pre-treatment computed tomography image, and the dose that is delivered. A novel deformable image registration algorithm based on tissue biomechanics was applied to previous liver cancer patients to track targets and surrounding organs during radiotherapy. Modeling these daily anatomic variations permitted dose accumulation, thereby improving calculations of the delivered doses. The accuracy of the algorithm to track dose was validated using imaging from a deformable, 3-dimensional dosimeter able to optically track absorbed dose. Reconstructing the delivered dose revealed that 70% of patients had substantial deviations from the initial planned dose. An alternative image-guidance technique using respiratory-correlated imaging was simulated, which reduced both the residual tumor targeting errors and the magnitude of the delivered dose deviations. A planning and delivery strategy for liver radiotherapy was then developed that minimizes the impact of breathing motion, and applied a margin to account for the impact of liver deformation during treatment. This margin is 38% smaller on average than the margin used clinically, and permitted an average dose-escalation to liver tumors of 9% for the same risk of toxicity. Simulating the delivered dose with deformable dose reconstruction demonstrated the plans with smaller margins were robust as 90% of patients' tumors received the intended dose. This strategy can be readily implemented with widely

  16. The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery.

    PubMed

    Mummaneni, Praveen V; Shaffrey, Christopher I; Lenke, Lawrence G; Park, Paul; Wang, Michael Y; La Marca, Frank; Smith, Justin S; Mundis, Gregory M; Okonkwo, David O; Moal, Bertrand; Fessler, Richard G; Anand, Neel; Uribe, Juan S; Kanter, Adam S; Akbarnia, Behrooz; Fu, Kai-Ming G

    2014-05-01

    Minimally invasive surgery (MIS) is an alternative to open deformity surgery for the treatment of patients with adult spinal deformity. However, at this time MIS techniques are not as versatile as open deformity techniques, and MIS techniques have been reported to result in suboptimal sagittal plane correction or pseudarthrosis when used for severe deformities. The minimally invasive spinal deformity surgery (MISDEF) algorithm was created to provide a framework for rational decision making for surgeons who are considering MIS versus open spine surgery. A team of experienced spinal deformity surgeons developed the MISDEF algorithm that incorporates a patient's preoperative radiographic parameters and leads to one of 3 general plans ranging from MIS direct or indirect decompression to open deformity surgery with osteotomies. The authors surveyed fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 20 cases to establish interobserver reliability. They then resurveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and tabulated. Fleiss' analysis was performed using MATLAB software. Over a 3-month period, 11 surgeons completed the surveys. Responses for MISDEF algorithm case review demonstrated an interobserver kappa of 0.58 for the first round of surveys and an interobserver kappa of 0.69 for the second round of surveys, consistent with substantial agreement. In at least 10 cases there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.86 ± 0.15 (± SD) and ranged from 0.62 to 1. The use of the MISDEF algorithm provides consistent and straightforward guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity. The MISDEF algorithm was found to have substantial inter- and

  17. Model deformation measurements at a cryogenic wind tunnel using photogrammetry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1985-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility (NTF) is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. Data reduction procedures and the results of tunnel tests at the NTF are presented.

  18. Model Deformation Measurements at a Cryogenic Wind Tunnel Using Photogrammetry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1982-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility (NTF) is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. Data reduction procedures and the results of tunnel tests at the NTF are presented.

  19. Influence of the mode of deformation on recrystallisation behaviour of titanium through experiments, mean field theory and phase field model

    NASA Astrophysics Data System (ADS)

    Athreya, C. N.; Mukilventhan, A.; Suwas, Satyam; Vedantam, Srikanth; Subramanya Sarma, V.

    2018-04-01

    The influence of the mode of deformation on recrystallisation behaviour of Ti was studied by experiments and modelling. Ti samples were deformed through torsion and rolling to the same equivalent strain of 0.5. The deformed samples were annealed at different temperatures for different time durations and the recrystallisation kinetics were compared. Recrystallisation is found to be faster in the rolled samples compared to the torsion deformed samples. This is attributed to the differences in stored energy and number of nuclei per unit area in the two modes of deformation. Considering decay in stored energy during recrystallisation, the grain boundary mobility was estimated through a mean field model. The activation energy for recrystallisation obtained from experiments matched with the activation energy for grain boundary migration obtained from mobility calculation. A multi-phase field model (with mobility estimated from the mean field model as a constitutive input) was used to simulate the kinetics, microstructure and texture evolution. The recrystallisation kinetics and grain size distributions obtained from experiments matched reasonably well with the phase field simulations. The recrystallisation texture predicted through phase field simulations compares well with experiments though few additional texture components are present in simulations. This is attributed to the anisotropy in grain boundary mobility, which is not accounted for in the present study.

  20. Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

    2001-01-01

    The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

  1. Despite worse baseline status depressed patients achieved outcomes similar to those in nondepressed patients after surgery for cervical deformity.

    PubMed

    Poorman, Gregory W; Passias, Peter G; Horn, Samantha R; Frangella, Nicholas J; Daniels, Alan H; Hamilton, D Kojo; Kim, Hanjo; Sciubba, Daniel; Diebo, Bassel G; Bortz, Cole A; Segreto, Frank A; Kelly, Michael P; Smith, Justin S; Neuman, Brian J; Shaffrey, Christopher I; LaFage, Virginie; LaFage, Renaud; Ames, Christopher P; Hart, Robert; Mundis, Gregory M; Eastlack, Robert

    2017-12-01

    OBJECTIVE Depression and anxiety have been demonstrated to have negative impacts on outcomes after spine surgery. In patients with cervical deformity (CD), the psychological and physiological burdens of the disease may overlap without clear boundaries. While surgery has a proven record of bringing about significant pain relief and decreased disability, the impact of depression and anxiety on recovery from cervical deformity corrective surgery has not been previously reported on in the literature. The purpose of the present study was to determine the effect of depression and anxiety on patients' recovery from and improvement after CD surgery. METHODS The authors conducted a retrospective review of a prospective, multicenter CD database. Patients with a history of clinical depression, in addition to those with current self-reported anxiety or depression, were defined as depressed (D group). The D group was compared with nondepressed patients (ND group) with a similar baseline deformity determined by propensity score matching of the cervical sagittal vertical axis (cSVA). Baseline demographic, comorbidity, clinical, and radiographic data were compared among patients using t-tests. Improvement of symptoms was recorded at 3 months, 6 months, and 1 year postoperatively. All health-related quality of life (HRQOL) scores collected at these follow-up time points were compared using t-tests. RESULTS Sixty-six patients were matched for baseline radiographic parameters: 33 with a history of depression and/or current depression, and 33 without. Depressed patients had similar age, sex, race, and radiographic alignment: cSVA, T-1 slope minus C2-7 lordosis, SVA, and T-1 pelvic angle (p > 0.05). Compared with nondepressed individuals, depressed patients had a higher incidence of osteoporosis (21.2% vs 3.2%, p = 0.028), rheumatoid arthritis (18.2% vs 3.2%, p = 0.012), and connective tissue disorders (18.2% vs 3.2%, p = 0.012). At baseline, the D group had greater neck pain (7.9 of

  2. Three-dimensional analysis of cavity wall deformation after composite restoration of masticatory teeth.

    PubMed

    Manchorova-Veleva, Neshka A

    2011-01-01

    The aim of the present work was to study the size of cavity wall deformation in eight class I and II defects after composite restoration. 1. Creating a geometric model - data on the size of the left maxillary second premolar were obtained from a routine craniofacial scanning of a 20-year-old patient with a 2,5 Dental CT scanner (General Electric), with high resolution and 0.625mm-thin slices. The contour of each of the 33 cross-sections of tooth 25 was delineated using graphics software (CorelDraw 7.0) and transferred to a specialized product for engineering design (SolidWorks Office Premium 2010, SolidWorks Corp. USA). The pulp cavity and periodontal ligament were created in the same manner and were integrated in the premolar body; 2. Generation of a finite element method - the geometric model was exported to specialized software for analysis by the finite element method - COSMOSWorks 2010, which automatically builds a 3D finite elements mesh. Based on the generated model, eight additional models of class I and II cavities with different geometries, adhesive layer and nanofilled composite restorations were constructed. The polymerization shrinkage was modelled by thermal deformation, with a negative temperature difference (cooling), corresponding to the actual volume shrinkage of the composite materials by 2.1%. In models A and B, the maximum cavity wall displacement was small - 0.014 mm and 0.015 mm, respectively. In models Al, B1, C1 and C, the displacement was at the expense of large deformation of the dental tissues. The maximum cavity wall displacements were 0.020 mm, 0.026 mm, 0.020 mm, 0.035 mm, respectively. The least cavity wall displacement was in models A2 and B2 with 0.008 mm and 0.017 mm, respectively. The least displacement resulting from cavity wall deformation is found in patient-friendly class I and II preparations. Preservation of the dental tissues reduces the risk of mechanical pressure on the dentinal lymph and the likelihood of post

  3. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  4. Modeling patterns of anatomical deformations in prostate patients undergoing radiation therapy with an endorectal balloon

    NASA Astrophysics Data System (ADS)

    Brion, Eliott; Richter, Christian; Macq, Benoit; Stützer, Kristin; Exner, Florian; Troost, Esther; Hölscher, Tobias; Bondar, Luiza

    2017-03-01

    External beam radiation therapy (EBRT) treats cancer by delivering daily fractions of radiation to a target volume. For prostate cancer, the target undergoes day-to-day variations in position, volume, and shape. For stereotactic photon and for proton EBRT, endorectal balloons (ERBs) can be used to limit variations. To date, patterns of non-rigid variations for patients with ERB have not been modeled. We extracted and modeled the patient-specific patterns of variations, using regularly acquired CT-images, non-rigid point cloud registration, and principal component analysis (PCA). For each patient, a non-rigid point-set registration method, called Coherent Point Drift, (CPD) was used to automatically generate landmark correspondences between all target shapes. To ensure accurate registrations, we tested and validated CPD by identifying parameter values leading to the smallest registration errors (surface matching error 0.13+/-0.09 mm). PCA demonstrated that 88+/-3.2% of the target motion could be explained using only 4 principal modes. The most dominant component of target motion is a squeezing and stretching in the anterior-posterior and superior-inferior directions. A PCA model of daily landmark displacements, generated using 6 to 10 CT-scans, could explain well the target motion for the CT-scans not included in the model (modeling error decreased from 1.83+/-0.8 mm for 6 CT-scans to 1.6+/-0.7 mm for 10 CT-scans). PCA modeling error was smaller than the naive approximation by the mean shape (approximation error 2.66+/-0.59 mm). Future work will investigate the use of the PCA-model to improve the accuracy of EBRT techniques that are highly susceptible to anatomical variations such as, proton therapy

  5. Patient-specific model of a scoliotic torso for surgical planning

    NASA Astrophysics Data System (ADS)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-03-01

    A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter-patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model's MRIs in prone position and the test patient's X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0:975 +/- 0:012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0:976 +/- 0:009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.

  6. Principal component analysis-based anatomical motion models for use in adaptive radiation therapy of head and neck cancer patients

    NASA Astrophysics Data System (ADS)

    Chetvertkov, Mikhail A.

    Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment. Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create "digital phantom" images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients' actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution. Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA's ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into

  7. Deformation associated with continental normal faults

    NASA Astrophysics Data System (ADS)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  8. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Guo, Songtao; Li, Yongzeng; Peng, Di; Zhao, Xiaofeng; Liu, Yingzheng

    2018-04-01

    The mechanoluminescent (ML) sensor is a newly developed non-invasive technique for stress/strain measurement. However, its application has been mostly restricted to qualitative measurement due to the lack of a well-defined relationship between ML intensity and stress. To achieve accurate stress measurement, an intensity ratio model was proposed in this study to establish a quantitative relationship between the stress condition and its ML intensity in elastic deformation. To verify the proposed model, experiments were carried out on a ML measurement system using resin samples mixed with the sensor material SrAl2O4:Eu2+, Dy3+. The ML intensity ratio was found to be dependent on the applied stress and strain rate, and the relationship acquired from the experimental results agreed well with the proposed model. The current study provided a physical explanation for the relationship between ML intensity and its stress condition. The proposed model was applicable in various SrAl2O4:Eu2+, Dy3+-based ML measurement in elastic deformation, and could provide a useful reference for quantitative stress measurement using the ML sensor in general.

  9. Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy.

    PubMed

    Zhao, Yi-Jiao; Xiong, Yu-Xue; Wang, Yong

    2017-01-01

    In this study, the practical accuracy (PA) of optical facial scanners for facial deformity patients in oral clinic was evaluated. Ten patients with a variety of facial deformities from oral clinical were included in the study. For each patient, a three-dimensional (3D) face model was acquired, via a high-accuracy industrial "line-laser" scanner (Faro), as the reference model and two test models were obtained, via a "stereophotography" (3dMD) and a "structured light" facial scanner (FaceScan) separately. Registration based on the iterative closest point (ICP) algorithm was executed to overlap the test models to reference models, and "3D error" as a new measurement indicator calculated by reverse engineering software (Geomagic Studio) was used to evaluate the 3D global and partial (upper, middle, and lower parts of face) PA of each facial scanner. The respective 3D accuracy of stereophotography and structured light facial scanners obtained for facial deformities was 0.58±0.11 mm and 0.57±0.07 mm. The 3D accuracy of different facial partitions was inconsistent; the middle face had the best performance. Although the PA of two facial scanners was lower than their nominal accuracy (NA), they all met the requirement for oral clinic use.

  10. Unexpected angular or rotational deformity after corrective osteotomy

    PubMed Central

    2014-01-01

    Background Codman’s paradox reveals a misunderstanding of geometry in orthopedic practice. Physicians often encounter situations that cannot be understood intuitively during orthopedic interventions such as corrective osteotomy. Occasionally, unexpected angular or rotational deformity occurs during surgery. This study aimed to draw the attention of orthopedic surgeons toward the concepts of orientation and rotation and demonstrate the potential for unexpected deformity after orthopedic interventions. This study focused on three situations: shoulder arthrodesis, femoral varization derotational osteotomy, and femoral derotation osteotomy. Methods First, a shoulder model was generated to calculate unexpected rotational deformity to demonstrate Codman’s paradox. Second, femoral varization derotational osteotomy was simulated using a cylinder model. Third, a reconstructed femoral model was used to calculate unexpected angular or rotational deformity during femoral derotation osteotomy. Results Unexpected external rotation was found after forward elevation and abduction of the shoulder joint. In the varization and derotation model, closed-wedge osteotomy and additional derotation resulted in an unexpected extension and valgus deformity, namely, under-correction of coxa valga. After femoral derotational osteotomy, varization and extension of the distal fragment occurred, although the extension was negligible. Conclusions Surgeons should be aware of unexpected angular deformity after surgical procedure involving bony areas. The degree of deformity differs depending on the context of the surgical procedure. However, this study reveals that notable deformities can be expected during orthopedic procedures such as femoral varization derotational osteotomy. PMID:24886469

  11. Local deformation for soft tissue simulation

    PubMed Central

    Omar, Nadzeri; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2016-01-01

    ABSTRACT This paper presents a new methodology to localize the deformation range to improve the computational efficiency for soft tissue simulation. This methodology identifies the local deformation range from the stress distribution in soft tissues due to an external force. A stress estimation method is used based on elastic theory to estimate the stress in soft tissues according to a depth from the contact surface. The proposed methodology can be used with both mass-spring and finite element modeling approaches for soft tissue deformation. Experimental results show that the proposed methodology can improve the computational efficiency while maintaining the modeling realism. PMID:27286482

  12. Nursing care system development for patients with cleft lip-palate and craniofacial deformities in operating room Srinagarind Hospital.

    PubMed

    Riratanapong, Saowaluck; Sroihin, Waranya; Kotepat, Kingkan; Volrathongchai, Kanittha

    2013-09-01

    For a successful surgical outcome for patients with cleft lip/palate (CLP), the attending nurses must continuously develop their potential, knowledge, capacity and skills. The goal is to meet international standards of patient safety and efficiency. To assess and improve the nursing care system for patients with CLP and craniofacial deformities at the operating room (OR), Srinagarind Hospital, Khon Kaen University. Data were collected for two months (between March 1, 2011 and April 30, 2011). Part I was an enquiry regarding the attitude of OR staff on serving patients with CLP; and, Part 2.1) patient and caregiver satisfaction with service from the OR staff and 2.2) patient and caregiver satisfaction with the OR transfer service. The authors interviewed 28 staff in OR unit 2 of the OR nursing division and 30 patients with CLP and his/her caregiver. The respective validity according to the Cronbach's alpha coefficient was 0.87 and 0.93. The OR staff attitude visa-vis service provision for patients with CLP service was middling. Patient and caregiver satisfaction with both OR staff and the transfer service was very satisfactory. Active development of the nursing care system for patients with CLP and craniofacial deformities in the operating room, Srinagarind Hospital improved staff motivation with respect to serving patients with CLP. The operating theater staff was able to co-ordinate the multidisciplinary team through the provision of surgical service for patients with CLP.

  13. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  14. Zygomatic bone shape in intentional cranial deformations: a model for the study of the interactions between skull growth and facial morphology.

    PubMed

    Ketoff, S; Girinon, F; Schlager, S; Friess, M; Schouman, T; Rouch, P; Khonsari, R H

    2017-04-01

    Intentional cranial deformations (ICD) were obtained by exerting external mechanical constraints on the skull vault during the first years of life to permanently modify head shape. The repercussions of ICD on the face are not well described in the midfacial region. Here we assessed the shape of the zygomatic bone in different types of ICDs. We considered 14 non-deformed skulls, 19 skulls with antero-posterior deformation, nine skulls with circumferential deformation and seven skulls with Toulouse deformation. The shape of the zygomatic bone was assessed using a statistical shape model after mesh registration. Euclidian distances between mean models and Mahalanobis distances after canonical variate analysis were computed. Classification accuracy was computed using a cross-validation approach. Different ICDs cause specific zygomatic shape modifications corresponding to different degrees of retrusion but the shape of the zygomatic bone alone is not a sufficient parameter for classifying populations into ICD groups defined by deformation types. We illustrate the fact that external mechanical constraints on the skull vault influence midfacial growth. ICDs are a model for the study of the influence of epigenetic factors on craniofacial growth and can help to understand the facial effects of congenital skull malformations such as single or multi-suture synostoses, or of external orthopedic devices such as helmets used to correct deformational plagiocephaly. © 2016 Anatomical Society.

  15. A continuum membrane model for small deformations of a spider orb-web

    NASA Astrophysics Data System (ADS)

    Morassi, Antonino; Soler, Alejandro; Zaera, Ramón

    2017-09-01

    In this paper we propose a continuum membrane model for the infinitesimal deformation of a spider web. The model is derived in the simple context of axially-symmetric webs formed by radial threads connected with circumferential threads belonging to concentric circles. Under suitable assumption on the tensile pre-stress acting in the referential configuration, the out-of-plane static equilibrium and the free transverse and in-plane vibration of a supported circular orb-web are studied in detail. The accuracy of the model in describing a discrete spider web is numerically investigated.

  16. Scaling Properties of Arctic Sea Ice Deformation in a High‐Resolution Viscous‐Plastic Sea Ice Model and in Satellite Observations

    PubMed Central

    Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Abstract Sea ice models with the traditional viscous‐plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan‐Arctic sea ice‐ocean simulation, the small‐scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data. PMID:29576996

  17. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  18. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations.

    PubMed

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  19. Thalamus surface shape deformity in obsessive-compulsive disorder and schizophrenia.

    PubMed

    Kang, Do-Hyung; Kim, Sun Hyung; Kim, Chi-Won; Choi, Jung-Seok; Jang, Joon Hwan; Jung, Myung Hun; Lee, Jong-Min; Kim, Sun I; Kwon, Jun Soo

    2008-04-16

    The authors performed a three-dimensional shape deformation analysis to clarify the various patterns of specific thalamic nuclei abnormality using three age-matched and sex-matched groups of 22 patients with obsessive-compulsive disorder (OCD), 22 patients with schizophrenia and 22 control participants. Compared with the healthy volunteers, the anterior, lateral outward surface deformities of the thalamus were significant in OCD patients, whereas the posterior, medial outward deformities of the thalamus were prominent in schizophrenia patients. In terms of thalamic asymmetry, both OCD and schizophrenia patients exhibited the loss of a leftward pattern of asymmetry on the posterior, medial surface of the thalamus. Different patterns of shape abnormality of specific thalamic nuclei may be related to the different phenomenology of OCD and schizophrenia.

  20. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  1. Deformation evolution of Eastern Sichuan-Xuefeng fold-thrust belt in South China: Insights from analogue modelling

    NASA Astrophysics Data System (ADS)

    He, Wengang; Zhou, Jianxun; Yuan, Kang

    2018-04-01

    The Eastern Sichuan-Xuefeng fold-thrust belt (CXFTB) located in South China has received wide attention due to its distinctive deformation styles and close relationships with natural gas preservation, but its deformation evolution still remains controversial. In order to study further this issue, we designed three sets of analogue models. Based on the results of the models, we suggest that: 1) the deformation in the CXFTB may simultaneously initiate along two zones nearby the Dayong and Qiyueshan faults at ∼190 Ma, and then progressively propagate into the interiors of the Western Hunan-Hubei and Eastern Sichuan domains at ∼140-150 Ma, and finally reach the front of the Huayingshan fault at ∼120 Ma; 2) the difference in décollement depth is the main factor determining the patterns of folds in different domains of the CXFTB; and 3) the Eastern Sichuan domain may have a basement significantly different from those of the Western Sichuan and Western Hunan-Hubei domains.

  2. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  3. Modeling of karst deformation and analysis of acoustic emission during sinkhole formation

    NASA Astrophysics Data System (ADS)

    Bakeev, R. A.; Stefanov, Yu. P.; Duchkov, A. A.; Myasnikov, A. V.

    2017-12-01

    In this paper, the fracture pattern and formation of a sinkhole are estimated depending on the rock properties. The possibility of using geophysical methods for recording and analyzing acoustic emission to monitor and predict the state of the medium is considered. The problem of deformation of the sedimentary cover over the growing karst cavity is solved on the basis of the elastoplastic Drucker-Prager-Nikolaevsky model and the equation of damage accumulation. The specified kinetics of accumulation of damages allows us to describe slow processes of degradation of the strength of the medium under stresses that are low for the development of inelastic deformations. The results are obtained for different values of the strength of karst rock; we show the influence of the kinetic parameters of damage accumulation on the shape of collapse depressions. We also model acoustic emission caused by the material fracture. One can follow different stages of the karst development by looking at patterns of cells which fail at a given time. Our observations show the relation between the intensity of material fracture and the intensity of seismic emission.

  4. Total knee arthroplasty for severe valgus knee deformity.

    PubMed

    Zhou, Xinhua; Wang, Min; Liu, Chao; Zhang, Liang; Zhou, Yixin

    2014-01-01

    Primary total knee arthroplasty (TKA) in severe valgus knees may prove challenging, and choice of implant depends on the severity of the valgus deformity and the extent of soft-tissue release. The purpose of this study was to review 8 to 11 years (mean, 10 years) follow-up results of primary TKA for varient-III valgus knee deformity with use of different type implants. Between January 2002 and January 2005, 20 women and 12 men, aged 47 to 63 (mean, 57.19 ± 6.08) years old, with varient-III valgus knees underwent primary TKA. Of the 32 patients, 37 knees had varient-III deformities. Pie crusting was carefully performed with small, multiple inside-out incisions, bone resection balanced the knee in lieu of soft tissue releases that were not used in the series. Cruciate-retaining knees (Gemini MKII, Link Company, Germany) were used in 13 knees, Genesis II (Simth & Nephew Company, USA) in 14 knees, and hinged knee (Endo-Model Company, Germany) in 10 knees. In five patients with bilateral variant-III TKAs, three patients underwent 1-stage bilateral procedures, and two underwent 2-stage procedures. All implants were cemented and the patella was not resurfaced. The Hospital for Special Surgery (HSS) knee score was assessed. Patients were followed up from 8 to 11 years. The mean HSS knee score were improved from 50.33 ± 11.60 to 90.06 ± 3.07 (P < 0.001). The mean tibiofemoral alignment were improved from valgus 32.72° ± 9.68° pre-operation to 4.89° ± 0.90° post-operation (P < 0.001). The mean range of motion were improved from 93.72° ± 23.69° pre-operation to 116.61 ± 16.29° post-operation (P < 0.001). No patients underwent revision. One patient underwent open reduction and internal fixation using femoral condylar plates for supracondylar femoral fractures secondary to a fall at three years. Three patients developed transient peroneal nerve palsies, which resolved within nine months. Two patients developed symptomatic deep vein thrombosis that was managed with

  5. Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

    NASA Astrophysics Data System (ADS)

    Figiel, Łukasz; Dunne, Fionn P. E.; Buckley, C. Paul

    2010-01-01

    Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.

  6. Supracondylar femoral osteotomy and knee joint replacement during the same surgical procedure in a type A haemophiliac patient with knee flexion deformity and ankylosis.

    PubMed

    Osma Rueda, Jose Luis; Oliveros Vargas, Alejandra; Sosa, Cristian David

    2017-03-01

    Haemophilia A is the cause of diverse musculoskeletal disorders such as ankylosis, arthritis and associated angular deformity. There are few reported cases in patients with haemophilia A in which simultaneous supracondylar femoral osteotomy and knee joint replacement has been performed to treat knee angular deformity and ankylosis. Here we present the case of an 18year old male patient, with an evolution of two years, who was unable to walk due to the presence of an untreated supracondylar fracture in the left femur and ipsilateral haemophilic arthropathy which led him to develop an ankylosis in flexion close to 70°. Supracondylar osteotomy of the femur and of the left knee joint was performed in the same surgical procedure. Bleeding control was achieved with a protocol of factor VIII supply. The patient was followed up for eight years, and recovered a 0 to 90° range of motion and regained his gait pattern. This case potentially provides a new alternative approach for haemophilia patients presenting with angular deformities and complex ankylosis. We suggest that mixed lesions of intra- and extra-articular deformity in haemophiliac patients can be corrected during the same surgical intervention. In addition, interdisciplinary management including haematology for operative and immediately postoperative control of intra-bleeding using factor VIII supply and control, combined with a controlled rehabilitation plan, can yield good functional outcomes in patients with haemophilic arthropathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Clinical effect of total knee arthroplasty on patients with knee osteoarthritis combined with mild to moderate valgus knee deformity].

    PubMed

    Chen, Peng; Zeng, Min; Xie, Jie; Wang, Long; Su, Weiping; Hu, Yihe

    2016-09-28

    To investigate the clinical effect of total knee arthroplasty on patients with knee osteoarthritis combined with mild to moderate valgus knee deformity.
 A total of 15 patients received total knee arthroplasty for correcting mild (10°-15°) to moderate (15°-30°) valgus knee between January 2011 and February 2014 in Xiangya Hospital of Central South University. We adopted a stable prosthesis surgery through patellar medial approach, osteophytes cleaning, conventional osteotomy, a selective soft tissue release and balance technical correcting of knee valgus deformity. Then conventional anticoagulation and symptomatic rehabilitation was utilized. Preoperative and postoperative X-ray was conducted in patients with measuring femor-tibial angle (FTA) and inspecting the prosthesis position. FTA, visual analog scale (VAS) standard, and parallel knee scoring system (KSS) were used to evaluate the clinical effect.
 Fifteen patients were followed up for 14 to 36 (22.40±11.88) months. The hospitalization time was 7-13 (7.73±1.58) d; operative time was 58-110 (81.8±16.85) min, the dominant blood loss was 140-600 (337.30±143.65) mL. Two cases had knee extension hysteresis, and the knee activity recovered after exercise. Leg power lines were normal. Three postoperative cases suffered anterior knee pain. They were subjected to celecoxib analgesic treatment and the pain gradually eased after 3 months. One postoperative case showed incision discharge and swelling, which was healed after change of dressing. During follow-up, review of X-ray film does not show prosthesis loose, subsidence and other complications. The knee valgus angle (8.1±1.8)°, knee motion range (107.33±9.61)°, KSS knee score (74.7±14.5, 75.3±2.7) and pain score (2.5±0.9) were significantly better than the preoperative (P<0.05). The clinical and function KSS scores showed that the improvement rate was 80%. 
 Total knee arthroplasty is an effective way to treat patients with knee osteoarthritis

  8. Comparison of Three Optical Methods for Measuring Model Deformation

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Fleming, G. A.; Hoppe, J. C.

    2000-01-01

    The objective of this paper is to compare the current state-of-the-art of the following three optical techniques under study by NASA for measuring model deformation in wind tunnels: (1) video photogrammetry, (2) projection moire interferometry, and (3) the commercially available Optotrak system. An objective comparison of these three techniques should enable the selection of the best technique for a particular test undertaken at various NASA facilities. As might be expected, no one technique is best for all applications. The techniques are also not necessarily mutually exclusive and in some cases can be complementary to one another.

  9. Surface Deformation and Direct Field Observation to Constrain Conceptual Models of Hydraulic Fracture Growth and Form

    NASA Astrophysics Data System (ADS)

    Slack, W.; Murdoch, L.

    2016-12-01

    Hydraulic fractures can be created in shallow soil or bedrock to promote processes that destroy or remove chemical contaminants. The form of the fracture plays an important role in how it is used in such applications. We created more than 4500 environmental hydraulic fractures at approximately 300 sites since 1990, and we measured surface deformation at many. Several of these sites subsequently were excavated to evaluate fracture form in detail. In one recent example, six hydraulic fractures were created at 1.5m depth while we measured upward displacement and tilt at 15 overlying locations. We excavated in the vicinities of two of the fractures and mapped the exposed fractures. Tilt vectors were initially symmetric about the borehole but radiated from a point that moved southwest with time. Upward displacement of as much as 2.5 cm covered a region 5m to 6m across. The maximum displacement was roughly at the center of the deformed region but was 2m southwest of the borehole, consistent with the tilt data. Excavation revealed an oblong, proppant-filled fracture over 4.2 m in length with a maximum thickness of 1 cm, so the proppant covers a region that is smaller than the uplifted area and the proppant thickness is roughly half of the uplift. The fracture was shaped like a shallow saucer with maximum dips of approximately 15o at the southwestern end. The pattern of tilt and uplift generally reflect the aperture of the underlying pressurized fracture, but the deformation extends beyond the extent of the sand proppant so a quantitative interpretation requires inversion. Inversion of the tilt data using a simple double dislocation model under-estimates the extent but correctly predicts the depth, orientation, and off-centered location. Inversion of uplift using a model that assumes the overburden deforms like a plate over-estimates the extent. Neither can characterize the curved shape. A forward model using FEM analysis capable of representing 3D shapes is capable of

  10. Patient evaluation in idiopathic scoliosis: Radiographic assessment, trunk deformity and back asymmetry.

    PubMed

    Rigo, Manuel

    2011-01-01

    Progressive adolescent idiopathic scoliosis (AIS) produces specific signs and symptoms, including trunk and spinal deformity and imbalance, impairment of breathing function, pain, progression during adult life, and psychological problems, as a whole resulting in an alteration of the health-related quality of life. A scoliosis-specific rehabilitation program attempts to prevent, improve, or minimize these signs and symptoms by using exercises and braces as the main tools in the rehabilitation treatment. Patient evaluation is an essential point in the decision-making process and determines the selection of the specific exercises and the specifications of the brace design. However, this article is not addressed to scoliosis management. In this present article, a complete definition and discussion of radiological aspects, such as the Cobb angle, axial rotation, curve pattern classifications, and sagittal configuration, follow a short description of the three-dimensional nature of AIS. The relationship between AIS and growth is also discussed. There is also a section dedicated to the assessment of trunk deformity and back asymmetry. Other important clinical aspects, such as pain and disability, changes in other regions of the body, muscular balance, breathing function, and health-related quality of life, are not discussed in this present article.

  11. A non-Gaussian option pricing model based on Kaniadakis exponential deformation

    NASA Astrophysics Data System (ADS)

    Moretto, Enrico; Pasquali, Sara; Trivellato, Barbara

    2017-09-01

    A way to make financial models effective is by letting them to represent the so called "fat tails", i.e., extreme changes in stock prices that are regarded as almost impossible by the standard Gaussian distribution. In this article, the Kaniadakis deformation of the usual exponential function is used to define a random noise source in the dynamics of price processes capable of capturing such real market phenomena.

  12. Checking the validity of superimposing analytical deformation models and implications for numerical modelling of dikes and magma chambers

    NASA Astrophysics Data System (ADS)

    Pascal, K.; Neuberg, J. W.; Rivalta, E.

    2011-12-01

    The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system is represented by several sources, their respective deformation fields are summed, and the assumption of homogeneity in the half-space is violated. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying the pressure or opening of the sources and their relative position. We also investigated various numerical methods to model a dike as a dislocation tensile source or as a pressurized tabular crack. In the former case, the dike opening was either defined as two boundaries displaced from a central location, or as one boundary displaced relative to the other. We finally considered two case studies based on Soufrière Hills Volcano (Montserrat, West Indies) and the Dabbahu rift segment (Afar, Ethiopia) magmatic systems. We found that the discrepancies between simple superposition of the displacement field and a fully interacting numerical solution depend mostly on the source types and on their spacing. Their magnitude may be comparable with the errors due to neglecting the topography, the inhomogeneities in crustal properties or more realistic rheologies. In the models considered, the errors induced when neglecting the source interaction can be neglected (<5%) when the sources are separated by at least 4 radii for two combined Mogi sources and by at least 3 radii for juxtaposed Mogi and Okada sources. Furthermore, this study underlines

  13. Stair-shaped Achilles tendon lengthening in continuity - A new method to treat equinus deformity in patients with spastic cerebral palsy.

    PubMed

    Li, Zhengxun; Zhang, Ning; Wang, Yang; Cao, Songhua; Huang, Zheng; Hu, Yong

    2017-10-27

    Equinus of the ankle is a common deformity in spastic cerebral palsy. Achilles tendon lengthening is one of the effective options for the treatment of equinus deformity. In the study, a new stair-shaped Achilles tendon lengthening (ATL) procedure that preserves of the tendon continuity was performed in 28 tendons with equinus deformity (20 patients, mean age=10.5±2.6 years). The results were compared with a group of patients treated with the Z-lengthening procedure. During the latest follow-up visit, the American Orthopaedic Foot & Ankle Society (AOFAS) Ankle-Hindfoot scale score was much higher in the stair-shaped ATL group than in the Z-lengthening group (p<0.05). The two groups showed similar surgical correction angle after ATL(37.2±3.5° for stair-shaped ATL and 36.1±4.5° for Z-lengthening). During the latest follow-up visit, the correction angle in the Z-lengthening group decreased to 21.6±4.3°, which was lower than in the stair-shaped ATL group (29.0±3.1°; p<0.05). In addition, the data regarding the time required by each patient before being able to start rehabilitation and walking as well as gaining better stability for running indicated that the stair-shaped ATL group recovered significantly quicker than the Z-lengthening group. The stair-shaped ATL procedure resulted in a successful correction of the equinus deformity in spastic cerebral palsy, with the advantage of preserving a degree of continuity without a complete section of the tendon. This confers greater antigravity stability and quicker recovery in patients. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  14. Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system.

    PubMed

    Tsukada, K; Sekizuka, E; Oshio, C; Minamitani, H

    2001-05-01

    To measure erythrocyte deformability in vitro, we made transparent microchannels on a crystal substrate as a capillary model. We observed axisymmetrically deformed erythrocytes and defined a deformation index directly from individual flowing erythrocytes. By appropriate choice of channel width and erythrocyte velocity, we could observe erythrocytes deforming to a parachute-like shape similar to that occurring in capillaries. The flowing erythrocytes magnified 200-fold through microscopy were recorded with an image-intensified high-speed video camera system. The sensitivity of deformability measurement was confirmed by comparing the deformation index in healthy controls with erythrocytes whose membranes were hardened by glutaraldehyde. We confirmed that the crystal microchannel system is a valuable tool for erythrocyte deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. A decrease in erythrocyte deformability may be part of the cause of this complication. In order to identify the difference in erythrocyte deformability between control and diabetic erythrocytes, we measured erythrocyte deformability using transparent crystal microchannels and a high-speed video camera system. The deformability of diabetic erythrocytes was indeed measurably lower than that of erythrocytes in healthy controls. This result suggests that impaired deformability in diabetic erythrocytes can cause altered viscosity and increase the shear stress on the microvessel wall. Copyright 2001 Academic Press.

  15. The effects of needle deformation during lumbar puncture

    PubMed Central

    Özdemir, Hasan Hüseyin; Demir, Caner F.; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref

    2015-01-01

    Objective: The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. Materials and Methods: The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. Results: A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Conclusion: Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH. PMID:25883480

  16. The effects of needle deformation during lumbar puncture.

    PubMed

    Özdemir, Hasan Hüseyin; Demir, Caner F; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref

    2015-01-01

    The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH.

  17. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages.

    PubMed

    Desyatova, Anastasia; MacTaggart, Jason; Poulson, William; Deegan, Paul; Lomneth, Carol; Sandip, Anjali; Kamenskiy, Alexey

    2017-06-01

    Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.

  18. Towards quantitative quasi-static elastography with a gravity-induced deformation source

    NASA Astrophysics Data System (ADS)

    Griesenauer, Rebekah H.; Weis, Jared A.; Arlinghaus, Lori R.; Meszoely, Ingrid M.; Miga, Michael I.

    2017-03-01

    Biomechanical breast models have been employed for applications in image registration and analysis, breast augmentation simulation, and for surgical and biopsy guidance. Accurate applications of stress-strain relationships of tissue within the breast can improve the accuracy of biomechanical models that attempt to simulate breast movements. Reported stiffness values for adipose, glandular, and cancerous tissue types vary greatly. Variations in reported stiffness properties are mainly due to differences in testing methodologies and assumptions, measurement errors, and natural inter patient differences in tissue elasticity. Therefore, patient specific, in vivo determination of breast tissue properties is ideal for these procedural applications. Many in vivo elastography methods are not quantitative and/or do not measure material properties under deformation conditions that are representative of the procedure being simulated in the model. In this study, we developed an elasticity estimation method that is performed using deformations representative of supine therapeutic procedures. Reconstruction of material properties was performed by iteratively fitting two anatomical images before and after tissue stimulation. The method proposed is work flow friendly, quantitative, and uses a non-contact, gravity-induced deformation source. We tested this material property optimization procedure in a healthy volunteer and in simulation. In simulation, we show that the algorithm can reconstruct properties with errors below 1% for adipose and 5.6% for glandular tissue regardless of the starting stiffness values used as initial guesses. In clinical data, reconstruction errors are higher (3.6% and 24.2%) due to increased noise in the system. In a clinical context, the elastography method was shown to be promising for use in biomechanical model assisted supine procedures.

  19. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    PubMed

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  20. Lithosphere deformation methods and models constrained by surface fault data on Mars

    NASA Astrophysics Data System (ADS)

    Dimitrova, Lada L.

    Models of lithospheric deformation tie observed field measurements of gravity and topography with surface observations of tectonic features. An understanding of the sources of stress, and the expected style, orientation, and magnitudes of stress and associated elastic strain is important for understanding the evolution of faulting on Mars and its relationship to loading. At the same time, theoretical models of deformation mechanisms and forces, when tied to tectonic observations, can be interpreted in terms of major tectonic events and allow insights into the planet's history and evolution as well as its internal structure and processes. This is particularly important for understanding solid planetary bodies other than Earth where the seismic data is either sparse, e.g. the Moon, or non-existent, e.g. Mars. This kind of research has implications for, and benefits from, an understanding of the petrology and surface processes. In this work, I use MGS MOLA and Radio Science data products (topography and gravity) to systematically test new geodynamic models and evaluate lithosphere dynamics on Mars as a function of time, while satisfying geologic surface observations (surface features) that have been and are being catalogued and studied from Viking, MOLA, MOC, and THEMIS IR images. I investigate (1) the role of internal loads (internal body force effects), (2) loading from the surface and base of lithosphere, and the effects of this loading on membrane and flexural strains and stresses, and (3) the role of global contraction, all viewed in the context of how the surface elastic layer has changed as the planet has evolved. I show that deviatoric stresses associated with gravitational potential differences do a good job at matching the normal faults; however, fitting all the surface-breaking faults is more difficult. I argue that global planetary contraction is an unlikely source of significant deformation. Instead, the simplest inverse models show that small lateral

  1. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    PubMed

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  2. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    NASA Astrophysics Data System (ADS)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  3. TU-AB-303-11: Predict Parotids Deformation Applying SIS Epidemiological Model in H&N Adaptive RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, N; Guidi, G; University of Bologna, Bologna, Bologna

    2015-06-15

    Purpose: The aim is to investigate the use of epidemiological models to predict morphological variations in patients undergoing radiation therapy (RT). The susceptible-infected-susceptible (SIS) deterministic model was applied to simulate warping within a focused region of interest (ROI). Hypothesis is to consider each voxel like a single subject of the whole sample and to treat displacement vector fields like an infection. Methods: Using Raystation hybrid deformation algorithms and automatic re-contouring based on mesh grid, we post-processed 360 MVCT images of 12 H&N patients treated with Tomotherapy. Study focused on parotid glands, identified by literature and previous analysis, as ROI moremore » susceptible to warping in H&N region. Susceptible (S) and infectious (I) cases were identified in voxels with inter-fraction movement respectively under and over a set threshold. IronPython scripting allowed to export positions and displacement data of surface voxels for every fraction. A MATLAB homemade toolbox was developed to model the SIS. Results: SIS model was validated simulating organ motion on QUASAR phantom. Applying model in patients, within a [0–1cm] range, a single voxel movement of 0.4cm was selected as displacement threshold. SIS indexes were evaluated by MATLAB simulations. Dynamic time warping algorithm was used to assess matching between model and parotids behavior days of treatments. The best fit of the model was obtained with contact rate of 7.89±0.94 and recovery rate of 2.36±0.21. Conclusion: SIS model can follow daily structures evolutions, making possible to compare warping conditions and highlighting challenges due to abnormal variation and set-up errors. By epidemiology approach, organ motion could be assessed and predicted not in terms of average of the whole ROI, but in a voxel-by-voxel deterministic trend. Identifying anatomical region subjected to variations, would be possible to focus clinic controls within a cohort of pre

  4. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  5. An introductory review on gravitational-deformation induced structures, fabrics and modeling

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, Michel; Penna, Ivanna; Pedrazzini, Andrea; Baroň, Ivo; Crosta, Giovanni B.

    2013-10-01

    Recent studies have pointed out a similarity between tectonics and slope tectonic-induced structures. Numerous studies have demonstrated that structures and fabrics previously interpreted as of purely geodynamical origin are instead the result of large slope deformation, and this led in the past to erroneous interpretations. Nevertheless, their limit seems not clearly defined, but it is somehow transitional. Some studies point out continuity between failures developing at surface with upper crust movements. In this contribution, the main studies which examine the link between rock structures and slope movements are reviewed. The aspects regarding model and scale of observation are discussed together with the role of pre-existing weaknesses in the rock mass. As slope failures can develop through progressive failure, structures and their changes in time and space can be recognized. Furthermore, recognition of the origin of these structures can help in avoiding misinterpretations of regional geology. This also suggests the importance of integrating different slope movement classifications based on distribution and pattern of deformation and the application of structural geology techniques. A structural geology approach in the landslide community is a tool that can greatly support the hazard quantification and related risks, because most of the physical parameters, which are used for landslide modeling, are derived from geotechnical tests or the emerging geophysical approaches.

  6. Deformation of Reservoir Sandstones by Elastic versus Inelastic Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Pijnenburg, R.; Verberne, B. A.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Hydrocarbon or groundwater production from sandstone reservoirs can result in surface subsidence and induced seismicity. Subsidence results from combined elastic and inelastic compaction of the reservoir due to a change in the effective stress state upon fluid extraction. The magnitude of elastic compaction can be accurately described using poroelasticity theory. However inelastic or time-dependent compaction is poorly constrained. Specifically, the underlying microphysical processes controlling sandstone compaction remain poorly understood. We use sandstones recovered by the field operator (NAM) from the Slochteren gas reservoir (Groningen, NE Netherlands) to study the importance of elastic versus inelastic deformation processes upon simulated pore pressure depletion. We conducted conventional triaxial tests under true in-situ conditions of pressure and temperature. To investigate the effect of applied differential stress (σ1 - σ3 = 0 - 50 MPa) and initial sample porosity (φi = 12 - 24%) on instantaneous and time-dependent inelastic deformation, we imposed multiple stages of axial loading and relaxation. The results show that inelastic strain develops at all stages of loading, and that its magnitude increases with increasing value of differential stress and initial porosity. The stress sensitivity of the axial creep strain rate and microstructural evidence suggest that inelastic compaction is controlled by a combination of intergranular slip and intragranular cracking. Intragranular cracking is shown to be more pervasive with increasing values of initial porosity. The results are consistent with a conceptual microphysical model, involving deformation by poro-elasticity combined with intergranular sliding and grain contact failure. This model aims to predict sandstone deformation behavior for a wide range of stress conditions.

  7. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the

  8. The results of bone deformity correction using a spider frame with web-based software for lower extremity long bone deformities.

    PubMed

    Tekin, Ali Çağrı; Çabuk, Haluk; Dedeoğlu, Süleyman Semih; Saygılı, Mehmet Selçuk; Adaş, Müjdat; Esenyel, Cem Zeki; Büyükkurt, Cem Dinçay; Tonbul, Murat

    2016-03-22

    To present the functional and radiological results and evaluate the effectiveness of a computer-assisted external fixator (spider frame) in patients with lower extremity shortness and deformity. The study comprised 17 patients (14 male, 3 female) who were treated for lower extremity long bone deformity and shortness between 2012 and 2015 using a spider frame. The procedure's level of difficulty was determined preoperatively using the Paley Scale. Postoperatively, the results for the patients who underwent tibial operations were evaluated using the Paley criteria modified by ASAMI, and the results for the patients who underwent femoral operations were evaluated according to the Paley scoring system. The evaluations were made by calculating the External Fixator and Distraction indexes. The mean age of the patients was 24.58 years (range, 5-51 years). The spider frame was applied to the femur in 10 patients and to the tibia in seven. The mean follow-up period was 15 months (range, 6-31 months) from the operation day, and the mean amount of lengthening was 3.0 cm (range, 1-6 cm). The mean duration of fixator application was 202.7 days (range, 104-300 days). The mean External Fixator Index was 98 days/cm (range, 42-265 days/cm). The mean Distraction Index was 10.49 days/cm (range, 10-14 days/cm). The computer-assisted external fixator system (spider frame) achieves single-stage correction in cases of both deformity and shortness. The system can be applied easily, and because of its high-tech software, it offers the possibility of postoperative treatment of the deformity.

  9. Foldover-free shape deformation for biomedicine.

    PubMed

    Yu, Hongchuan; Zhang, Jian J; Lee, Tong-Yee

    2014-04-01

    Shape deformation as a fundamental geometric operation underpins a wide range of applications, from geometric modelling, medical imaging to biomechanics. In medical imaging, for example, to quantify the difference between two corresponding images, 2D or 3D, one needs to find the deformation between both images. However, such deformations, particularly deforming complex volume datasets, are prone to the problem of foldover, i.e. during deformation, the required property of one-to-one mapping no longer holds for some points. Despite numerous research efforts, the construction of a mathematically robust foldover-free solution subject to positional constraints remains open. In this paper, we address this challenge by developing a radial basis function-based deformation method. In particular we formulate an effective iterative mechanism which ensures the foldover-free property is satisfied all the time. The experimental results suggest that the resulting deformations meet the internal positional constraints. In addition to radial basis functions, this iterative mechanism can also be incorporated into other deformation approaches, e.g. B-spline based FFDs, to develop different deformable approaches for various applications. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. Parameter determination of hereditary models of deformation of composite materials based on identification method

    NASA Astrophysics Data System (ADS)

    Kayumov, R. A.; Muhamedova, I. Z.; Tazyukov, B. F.; Shakirzjanov, F. R.

    2018-03-01

    In this paper, based on the analysis of some experimental data, a study and selection of hereditary models of deformation of reinforced polymeric composite materials, such as organic plastic, carbon plastic and a matrix of film-fabric composite, was pursued. On the basis of an analysis of a series of experiments it has been established that organo-plastic samples behave like viscoelastic bodies. It is shown that for sufficiently large load levels, the behavior of the material in question should be described by the relations of the nonlinear theory of heredity. An attempt to describe the process of deformation by means of linear relations of the theory of heredity leads to large discrepancies between the experimental and calculated deformation values. The use of the theory of accumulation of micro-damages leads to much better description of the experimental results. With the help of the hierarchical approach, a good approximation of the experimental values was successful only in the first three sections of loading.

  11. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  12. Yang-Baxter deformations of W2,4 × T1,1 and the associated T-dual models

    NASA Astrophysics Data System (ADS)

    Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2017-08-01

    Recently, for principal chiral models and symmetric coset sigma models, Hoare and Tseytlin proposed an interesting conjecture that the Yang-Baxter deformations with the homogeneous classical Yang-Baxter equation are equivalent to non-abelian T-dualities with topological terms. It is significant to examine this conjecture for non-symmetric (i.e., non-integrable) cases. Such an example is the W2,4 ×T 1 , 1 background. In this note, we study Yang-Baxter deformations of type IIB string theory defined on W2,4 ×T 1 , 1 and the associated T-dual models, and show that this conjecture is valid even for this case. Our result indicates that the conjecture would be valid beyond integrability.

  13. [Shortening deformities of the clavicle after diaphyseal clavicular fractures : Influence on patient-oriented assessment of shoulder function].

    PubMed

    Jubel, A; Schiffer, G; Andermahr, J; Ries, C; Faymonville, C

    2016-06-01

    The aim of this study was the evaluation of patient-oriented outcome scores for shoulder function and residual complaints after diaphyseal clavicular fractures with respect to shortening deformities. The analysis was based on data of 172 adult patients (mean age 39 ± 14 years) with healed clavicular fractures treated operatively (n = 104) or conservatively (n = 67). The control population consisted of 35 healthy adults without shoulder problems and 25 patients with nonunion after conservative treatment. The subjective estimation of the level of pain was collated on a visual analog scale (VAS 1-100 points), together with the relative Constant and Murley score, the Cologne clavicle score, the disabilities of the arm, shoulder and hand (DASH) score and a bilateral comparison of the length difference of the clavicles. Patients with a clavicular length difference of > 2 cm had significantly (p < 0.001) more pain, a greater loss of mobility and significantly lower values in the scoring system of Constant and Murley, the DASH and Cologne clavicle scores compared to patients with clavicular length differences < 0.5 cm and healthy controls (p < 0.001). The results of this study showed that shortening deformities after clavicular fractures in adults have a large impact on the functional result and patient-oriented outcome scores. The aim of the therapy of diaphyseal clavicular fractures should therefore concentrate on reconstruction of the anatomical length of the clavicle.

  14. Finite Element Modeling of Tensile Deformation Behaviors of Iron Syntactic Foam with Hollow Glass Microspheres

    PubMed Central

    Cho, Yi Je; Lee, Wookjin; Park, Yong Ho

    2017-01-01

    The elastoplastic deformation behaviors of hollow glass microspheres/iron syntactic foam under tension were modeled using a representative volume element (RVE) approach. The three-dimensional microstructures of the iron syntactic foam with 5 wt % glass microspheres were reconstructed using the random sequential adsorption algorithm. The constitutive behavior of the elastoplasticity in the iron matrix and the elastic-brittle failure for the glass microsphere were simulated in the models. An appropriate RVE size was statistically determined by evaluating elastic modulus, Poisson’s ratio, and yield strength in terms of model sizes and boundary conditions. The model was validated by the agreement with experimental findings. The tensile deformation mechanism of the syntactic foam considering the fracture of the microspheres was then investigated. In addition, the feasibility of introducing the interfacial deboning behavior to the proposed model was briefly investigated to improve the accuracy in depicting fracture behaviors of the syntactic foam. It is thought that the modeling techniques and the model itself have major potential for applications not only in the study of hollow glass microspheres/iron syntactic foams, but also for the design of composites with a high modulus matrix and high strength reinforcement. PMID:29048346

  15. Dynamic model of intrusion of magma and/or magmatic fluids in the large-scale deformation source of the Campi Flegrei caldera (Italy).

    NASA Astrophysics Data System (ADS)

    Crescentini, Luca; Amoruso, Antonella; Luongo, Annamaria

    2015-04-01

    The Campi Flegrei (CF) caldera is located in a densely populated area close to Naples (Southern Italy). It is renowned as a site of continual slow vertical movements. After the last eruption in 1538, the caldera generally subsided until 1969 when minor uplift occurred. In the early 1970s this uplift became significant (~1.5 m max). A further large uplift episode occurred from 1982 to 1984 (~1.8 m max), and subsequently smaller uplift episodes have occurred since then. Amoruso et al. (2014a,b) have recently shown that the CF surface deformation field from 1980 to 2013 can be decomposed into two stationary parts. Large-scale deformation can be explained by a quasi-horizontal source, oriented NW to SE and mathematically represented by a pressurized finite triaxial ellipsoid (PTE) ~4 km deep, possibly related to the injection of magma and/or magmatic fluids from a deeper magma chamber into a sill, or pressurization of interconnected (micro)cavities. Residual deformation not accounted for by PTE is confined to the Solfatara fumarolic area and can be mathematically explained by a small (point) pressurized oblate spheroid (PS) ~2 km below the Solfatara fumarolic field, that has been equated with a poroelastic response of the substratum to pore pressure increases near the injection point of hot magmatic fluids into the hydrothermal system. A satisfying feature of this double source model is that the geometric source parameters of each are constant over the period 1980-2013 with the exception of volume changes (potencies). Several papers have ascribed CF deformation to the injection of magmatic fluids at the base of the hydrothermal system. All models predict complex spatial and temporal evolution of the deformation pattern and consequently contrast with the observed deformation pattern stationarity. Also recently proposed dynamic models of sill intrusion in a shallow volcanic environment do not satisfy the observed CF deformation pattern stationarity. We have developed an

  16. The Reverse Ludloff Osteotomy for Bunionette Deformity.

    PubMed

    Waizy, Hazibullah; Jastifer, James R; Stukenborg-Colsman, Christina; Claassen, Leif

    2016-08-01

    Background The typical bunionette deformity often presents as pain over the lateral margin of the fifth metatarsal head. There have been numerous operative treatments described for this pathology. The purpose of this study was to evaluate the results after a reverse Ludloff osteotomy in cases of severe bunionette deformities. Methods Between 2008 and 2012, 16 patients received a reverse Ludloff osteotomy of the fifth metatarsal due to a symptomatic type II or III bunionette that failed nonoperative treatment. We retrospectively reviewed charts, radiographic images, postoperative AOFAS (American Orthopaedic Foot and Ankle Society) lesser toe scores, and the EQ-5D at a mean of 41.9 months (range, 31-74 months) of follow-up. Additionally, limitation in activities of daily living, pain, and patient satisfaction were assessed. Results At latest follow-up, the mean AOFAS lesser toe score was 86.6 points and the mean EQ-5D score was 14.1. Fifteen patients had no or only little limitations. Fifteen out of 16 patients were satisfied or predominantly satisfied. Radiographic analysis showed for type II deformities a correction of the lateral bowing from 8.1° down to 0.67° (P < .001). The fourth-fifth intermetatarsal angle (4-5 IMA) improved from a mean of 13.2° to a mean of 5.2° (P < .001). The length of the fifth metatarsal was unchanged (P > .05). There were no observed complications, and no revision was necessary. Conclusion In the present study, the reverse Ludloff osteotomy had a high satisfaction rate and no complications. It provided radiographic correction of the deformity and may be considered in the surgical treatment of severe bunionette deformities. Therapeutic, Level IV: Case series. © 2016 The Author(s).

  17. Role of passive deformation on propulsion through a lumped torsional flexibility model

    NASA Astrophysics Data System (ADS)

    Arora, Nipun; Gupta, Amit

    2016-11-01

    Scientists and biologists have been affianced in a deeper examination of insect flight to develop an improved understanding of the role of flexibility on aerodynamic performance. Here, we mimic a flapping wing through a fluid-structure interaction framework based upon a lumped torsional flexibility model. The developed fluid and structural solvers together determine the aerodynamic forces and wing deformation, respectively. An analytical solution to the simplified single-spring structural dynamics equation is established to substantiate simulations. It is revealed that the dynamics of structural deformation is governed by the balance between inertia, stiffness and aerodynamics, where the former two oscillate at the plunging frequency and the latter oscillates at twice the plunging frequency. We demonstrate that an induced phase difference between plunging and passive pitching is responsible for a higher thrust coefficient. This phase difference is also shown to be dependent on aerodynamics to inertia and natural to plunging frequency ratios. For inertia dominated flows, pitching and plunging always remain in phase. As the aerodynamics dominates, a large phase difference is induced which is accountable for a large passive deformation and higher thrust. Authors acknowledge the financial support received from the Aeronautics Research and Development Board (ARDB) under SIGMA Project No. 1705 and thank the IIT Delhi HPC facility for computational resources.

  18. Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling

    NASA Astrophysics Data System (ADS)

    Revil-Baudard, Benoit; Cazacu, Oana; Flater, Philip; Chandola, Nitin; Alves, J. L.

    2016-03-01

    In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.

  19. Numerical modeling anti-personnel blast mines coupled to a deformable leg structure

    NASA Astrophysics Data System (ADS)

    Cronin, Duane; Worswick, Mike; Williams, Kevin; Bourget, Daniel; Pageau, Gilles

    2001-06-01

    The development of improved landmine protective footwear requires an understanding of the physics and damage mechanisms associated with a close proximity blast event. Numerical models have been developed to model surrogate mines buried in soil using the Arbitrary Lagrangian Eulerian (ALE) technique to model the explosive and surrounding air, while the soil is modeled as a deformable Lagrangian solid. The advantage of the ALE model is the ability to model large deformations, such as the expanding gases of a high explosive. This model has been validated using the available experimental data [1]. The effect of varying depth of burial and soil conditions has been investigated with these numerical models and compares favorably to data in the literature. The surrogate landmine model has been coupled to a numerical model of a Simplified Lower Leg (SLL), which is designed to mimic the response and failure mechanisms of a human leg. The SLL consists of a bone and tissue simulant arranged as concentric cylinders. A new strain-rate dependant hyperelastic material model for the tissue simulant, ballistic gelatin, has been developed to model the tissue simulant response. The polymeric bone simulant material has been characterized and implemented as a strain-rate dependent material in the numerical model. The numerical model results agree with the measured response of the SLL during experimental blast tests [2]. The numerical model results are used to explain the experimental data. These models predict that, for a surface or sub-surface buried anti-personnel mine, the coupling between the mine and SLL is an important effect. In addition, the soil properties have a significant effect on the load transmitted to the leg. [1] Bergeron, D., Walker, R. and Coffey, C., 1998, “Detonation of 100-Gram Anti-Personnel Mine Surrogate Charges in Sand”, Report number SR 668, Defence Research Establishment Suffield, Canada. [2] Bourget, D., Williams, K., Pageau, G., and Cronin, D.,

  20. Model of Nanostructuring Burnishing by a Spherical Indenter Taking into Consideration Plastic Deformations

    NASA Astrophysics Data System (ADS)

    Lyashenko, Ya. A.; Popov, V. L.

    2018-01-01

    A dynamic model of the nanostructuring burnishing of a surface of metallic details taking into consideration plastic deformations has been suggested. To describe the plasticity, the ideology of dimension reduction method supplemented with the plasticity criterion is used. The model considers the action of the normal burnishing force and the tangential friction force. The effect of the coefficient of friction and the periodical oscillation of the burnishing force on the burnishing kinetics are investigated.

  1. Sumatra-Andaman Megathrust Earthquake Slip: Insights From Mechanical Modeling of ICESat Surface Deformation Measurements

    NASA Astrophysics Data System (ADS)

    Harding, D. J.; Miuller, J. R.

    2005-12-01

    Modeling the kinematics of the 2004 Great Sumatra-Andaman earthquake is limited in the northern two-thirds of the rupture zone by a scarcity of near-rupture geodetic deformation measurements. Precisely repeated Ice, Cloud, and Land Elevation Satellite (ICESat) profiles across the Andaman and Nicobar Islands provide a means to more fully document the spatial pattern of surface vertical displacements and thus better constrain geomechanical modeling of the slip distribution. ICESat profiles that total ~45 km in length cross Car Nicobar, Kamorta, and Katchall in the Nicobar chain. Within the Andamans, the coverage includes ~350 km on North, Central, and South Andaman Islands along two NNE and NNW-trending profiles that provide elevations on both the east and west coasts of the island chain. Two profiles totaling ~80 km in length cross South Sentinel Island, and one profile ~10 km long crosses North Sentinel Island. With an average laser footprint spacing of 175 m, the total coverage provides over 2700 georeferenced surface elevations measurements for each operations period. Laser backscatter waveforms recorded for each footprint enable detection of forest canopy top and underlying ground elevations with decimeter vertical precision. Surface elevation change is determined from elevation profiles, acquired before and after the earthquake, that are repeated with a cross-track separation of less than 100 m by precision pointing of the ICESat spacecraft. Apparent elevation changes associated with cross-track offsets are corrected according to local slopes calculated from multiple post-earthquake repeated profiles. The surface deformation measurements recorded by ICESat are generally consistent with the spatial distribution of uplift predicted by a preliminary slip distribution model. To predict co-seismic surface deformation, we apply a slip distribution, derived from the released energy distribution computed by Ishii et al. (2005), as the displacement discontinuity

  2. Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.

    PubMed

    Warfield, Simon K; Haker, Steven J; Talos, Ion-Florin; Kemper, Corey A; Weisenfeld, Neil; Mewes, Andrea U J; Goldberg-Zimring, Daniel; Zou, Kelly H; Westin, Carl-Fredrik; Wells, William M; Tempany, Clare M C; Golby, Alexandra; Black, Peter M; Jolesz, Ferenc A; Kikinis, Ron

    2005-04-01

    During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures and tumor margin has lead, over the past decade, to the development of sophisticated intraoperative imaging techniques to enhance visualization. However, both rigid motion due to patient placement and nonrigid deformations occurring as a consequence of the surgical intervention disrupt the correspondence between preoperative data used to plan surgery and the intraoperative configuration of the patient's brain. Similar challenges are faced in other interventional therapies, such as in cryoablation of the liver, or biopsy of the prostate. We have developed algorithms to model the motion of key anatomical structures and system implementations that enable us to estimate the deformation of the critical anatomy from sequences of volumetric images and to prepare updated fused visualizations of preoperative and intraoperative images at a rate compatible with surgical decision making. This paper reviews the experience at Brigham and Women's Hospital through the process of developing and applying novel algorithms for capturing intraoperative deformations in support of image guided therapy.

  3. Shape Phase Transition from Octupole Deformation to Octupole Vibrations: The Analytic Quadrupole Octupole Axially Symmetric Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatsos, Dennis; Lenis, D.; Petrellis, D.

    An analytic collective model in which the relative presence of the quadrupole and octupole deformations is determined by a parameter ({phi}0), while axial symmetry is obeyed, is developed. The model [to be called the Analytic Quadrupole Octupole Axially symmetric model (AQOA)] involves an infinite well potential, provides predictions for energy and B(EL) ratios which depend only on {phi}0, draws the border between the regions of octupole deformation and octupole vibrations in an essentially parameter-independent way, and in the actinide region describes well 226Th and 226Ra, for which experimental energy data are shown to suggest that they lie close to thismore » border. The similarity of the AQOA results with {phi}0 = 45 deg. for ground state band spectra and B(E2) transition rates to the predictions of the X(5) model is pointed out.« less

  4. Perioperative Major Non-neurological Complications in 105 Patients Undergoing Posterior Vertebral Column Resection Procedures for Severe Rigid Deformities.

    PubMed

    Wang, Yingsong; Xie, Jingming; Zhao, Zhi; Zhang, Ying; Li, Tao; Bi, Ni; Liu, Zhou; Chen, Leijie; Shi, Zhiyue

    2015-08-15

    Retrospective study. To analyze the perioperative major non-neurological complications (MNNCs) in posterior vertebral column resection (PVCR) procedures for severe rigid deformities and to identify the factors that may increase the risk. Although surgeons constantly attempted to increase the corrective efficacy and neurological safety after PVCR, there are still significant risks of major and potentially life-threatening complications. A total of 105 consecutive patients with severe rigid deformity who underwent 1-stage PVCR at a single center from 2004 to 2013 were reviewed. The demographic data, medical and surgical histories, perioperative and final follow-up radiographical measurements, and prevalence of perioperative MNNCs were reviewed. The mean age of patients at the time of surgery was 18.9 years (range: 10-45 yr). The major curve of scoliosis was 108.9 ± 25.5 preoperatively and 37.2 ± 16.8 at the final follow-up, and segmental kyphosis was from 89.8 ± 31.1 to 30.4 ± 15.3. There were 31 MNNCs in 24 patients: 16 respiratory complications in 13 patients, 9 cardiovascular adverse events in 7 cases, 1 malignant hyperthermia, and 1 optic deficit. There were 3 patients with wound infection, and 1 of them had to undergo partial removal of the implant for infection control. One patient with neurofibromatosis died 1 day after operation. Factors that showed no relationships with an increased prevalence of MNNCs were age, sex, presence of cardiac disease or neural axis malformation, and both sagittal and coronal correction rate. Patients with T6 and upper resected level, undergoing PVCR at the early period, showed a trend toward more MNNCs encountered. Moreover, nonidiopathic deformity, large scoliotic curve greater than 150°, percent predicated forced vital capacity and forced expiratory volume in 1 second (FEV1.0) less than 40%, and estimated blood loss volume more than 5000 mL were identified as risk factors associated with MNNCs. Patients who had undergone

  5. Application of computer-aided design osteotomy template for treatment of cubitus varus deformity in teenagers: a pilot study.

    PubMed

    Zhang, Yuan Z; Lu, Sheng; Chen, Bin; Zhao, Jian M; Liu, Rui; Pei, Guo X

    2011-01-01

    Treatment of cubitus varus deformity from a malunited fracture is a challenge. Anatomically accurate correction is the key to obtaining good functional outcomes after corrective osteotomy. The aim of this study was to attempt to increase the accuracy of treatment by use of 3-dimensional (3D) computer-aided design. We describe a novel method for ensuring an accurate osteotomy method in the treatment of cubitus varus deformity in teenagers by means of 3D reconstruction and reverse engineering. Between January 2006 and May 2008, 12 male and 6 female patients with cubitus varus deformities underwent scanning with spiral computed tomography (CT) preoperatively. The mean age was 15.7 years, ranging from 13 to 19 years. Three-dimensional CT image data of the affected and contralateral normal bones of cubitus were transferred to a computer workstation. Three-dimensional models of cubitus were reconstructed by use of MIMICS software. The 3D models were then processed by Imageware software. An osteotomy template that best fitted the angle and range of osteotomy was "reversely" built from the 3D model. These templates were manufactured by a rapid prototyping machine. The osteotomy templates guide the osteotomy of cubitus. An accurate angle of osteotomy was confirmed by postoperative radiography. After 12 to 24 months' follow-up, the mean postoperative carrying angle in 18 patients with cubitus varus deformity was 7.3° (range, 5° to 11°), with a mean correction of 21.9° (range, 12° to 41°). The patient-specific template technique is easy to use, can simplify the surgical act, and generates highly accurate osteotomy in cubitus varus deformity in teenagers. Copyright © 2011 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  6. A Bayesian approach to modelling the impact of hydrodynamic shear stress on biofilm deformation

    PubMed Central

    Wilkinson, Darren J.; Jayathilake, Pahala Gedara; Rushton, Steve P.; Bridgens, Ben; Li, Bowen; Zuliani, Paolo

    2018-01-01

    We investigate the feasibility of using a surrogate-based method to emulate the deformation and detachment behaviour of a biofilm in response to hydrodynamic shear stress. The influence of shear force, growth rate and viscoelastic parameters on the patterns of growth, structure and resulting shape of microbial biofilms was examined. We develop a statistical modelling approach to this problem, using combination of Bayesian Poisson regression and dynamic linear models for the emulation. We observe that the hydrodynamic shear force affects biofilm deformation in line with some literature. Sensitivity results also showed that the expected number of shear events, shear flow, yield coefficient for heterotrophic bacteria and extracellular polymeric substance (EPS) stiffness per unit EPS mass are the four principal mechanisms governing the bacteria detachment in this study. The sensitivity of the model parameters is temporally dynamic, emphasising the significance of conducting the sensitivity analysis across multiple time points. The surrogate models are shown to perform well, and produced ≈ 480 fold increase in computational efficiency. We conclude that a surrogate-based approach is effective, and resulting biofilm structure is determined primarily by a balance between bacteria growth, viscoelastic parameters and applied shear stress. PMID:29649240

  7. Investigation of Deformation Dynamics in a Wrought Magnesium Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Qiao, Hua; An, Ke

    2014-11-01

    In the present research, the deformation dynamics and the effect of the deformation history on plastic deformation in a wrought magnesium alloy have been studied using real-time in-situ neutron diffraction measurements under a continuous loading condition and elastic-viscoplastic self-consistent (EVPSC) polycrystal modeling. The experimental results reveal that the pre-deformation delayed the activation of the tensile twinning during subsequent compression, mainly resulting from the residual strain. No apparent detwinning occurred during unloading and even in the elastic region during reverse loading. It is believed that the grain rotation played an important role in the elastic region during reverse loading. The EVPSCmore » model, which has been recently updated by implementing the twinning and detwinning model, was employed to characterize the deformation mechanism during the strain-path changes. The simulation result predicts well the experimental observation from the real-time in-situ neutron diffraction measurements. The present study provides a deep insight of the nature of deformation mechanisms in a hexagonal close-packed structured polycrystalline wrought magnesium alloy, which might lead to a new era of deformation-mechanism research.« less

  8. The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry

    NASA Astrophysics Data System (ADS)

    Williams, Charles A.; Wadge, Geoff

    We have used a three-dimensional elastic finite element model to examine the effects of topography on the surface deformation predicted by models of magma chamber deflation. We used the topography of Mt. Etna to control the geometry of our model, and compared the finite element results to those predicted by an analytical solution for a pressurized sphere in an elastic half-space. Topography has a significant effect on the predicted surface deformation for both displacement profiles and synthetic interferograms. Not only are the predicted displacement magnitudes significantly different, but also the map-view patterns of displacement. It is possible to match the predicted displacement magnitudes fairly well by adjusting the elevation of a reference surface; however, the horizontal pattern of deformation is still significantly different. Thus, inversions based on constant-elevation reference surfaces may not properly estimate the horizontal position of a magma chamber. We have investigated an approach where the elevation of the reference surface varies for each computation point, corresponding to topography. For vertical displacements and tilts this method provides a good fit to the finite element results, and thus may form the basis for an inversion scheme. For radial displacements, a constant reference elevation provides a better fit to the numerical results.

  9. Slow deformation of intervertebral discs.

    PubMed

    Broberg, K B

    1993-01-01

    Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. A mechanical model of lumbar disc functions allows one to calculate both the extent of fluid flow and its implications for disc height as well as the role played by viscoelastic deformation of annulus fibres. From such calculations changes in body height are estimated. Experimental results already documented in the literature offer bases for the determination of the parameters involved. Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.

  10. Dealing with difficult deformations: construction of a knowledge-based deformation atlas

    NASA Astrophysics Data System (ADS)

    Thorup, S. S.; Darvann, T. A.; Hermann, N. V.; Larsen, P.; Ólafsdóttir, H.; Paulsen, R. R.; Kane, A. A.; Govier, D.; Lo, L.-J.; Kreiborg, S.; Larsen, R.

    2010-03-01

    Twenty-three Taiwanese infants with unilateral cleft lip and palate (UCLP) were CT-scanned before lip repair at the age of 3 months, and again after lip repair at the age of 12 months. In order to evaluate the surgical result, detailed point correspondence between pre- and post-surgical images was needed. We have previously demonstrated that non-rigid registration using B-splines is able to provide automated determination of point correspondences in populations of infants without cleft lip. However, this type of registration fails when applied to the task of determining the complex deformation from before to after lip closure in infants with UCLP. The purpose of the present work was to show that use of prior information about typical deformations due to lip closure, through the construction of a knowledge-based atlas of deformations, could overcome the problem. Initially, mean volumes (atlases) for the pre- and post-surgical populations, respectively, were automatically constructed by non-rigid registration. An expert placed corresponding landmarks in the cleft area in the two atlases; this provided prior information used to build a knowledge-based deformation atlas. We model the change from pre- to post-surgery using thin-plate spline warping. The registration results are convincing and represent a first move towards an automatic registration method for dealing with difficult deformations due to this type of surgery.

  11. Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models

    NASA Astrophysics Data System (ADS)

    González, C.; Segurado, J.; LLorca, J.

    2004-07-01

    The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.

  12. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    NASA Astrophysics Data System (ADS)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  13. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  14. The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.

    PubMed

    Picker, Katharina M

    2004-04-01

    The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are

  15. Clinically Significant Thromboembolic Disease in Adult Spinal Deformity Surgery: Incidence and Risk Factors in 737 Patients.

    PubMed

    Kim, Han Jo; Iyer, Sravisht; Diebo, Basel G; Kelly, Michael P; Sciubba, Daniel; Schwab, Frank; Lafage, Virginie; Mundis, Gregory M; Shaffrey, Christopher I; Smith, Justin S; Hart, Robert; Burton, Douglas; Bess, Shay; Klineberg, Eric O

    2018-05-01

    Retrospective cohort study. Describe the rate and risk factors for venous thromboembolic events (VTEs; defined as deep venous thrombosis [DVT] and/or pulmonary embolism [PE]) in adult spinal deformity (ASD) surgery. ASD patients with VTE were identified in a prospective, multicenter database. Complications, revision, and mortality rate were examined. Patient demographics, operative details, and radiographic and clinical outcomes were compared with a non-VTE group. Multivariate binary regression model was used to identify predictors of VTE. A total of 737 patients were identified, 32 (4.3%) had VTE (DVT = 14; PE = 18). At baseline, VTE patients were less likely to be employed in jobs requiring physical labor (59.4% vs 79.7%, P < .01) and more likely to have osteoporosis (29% vs 15.1%, P = .037) and liver disease (6.5% vs 1.4%, P = .027). Patients with VTE had a larger preoperative sagittal vertical axis (SVA; 93 mm vs 55 mm, P < .01) and underwent larger SVA corrections. VTE was associated with a combined anterior/posterior approach (45% vs 25%, P = .028). VTE patients had a longer hospital stay (10 vs 7 days, P < .05) and higher mortality rate (6.3% vs 0.7%, P < .01). Multivariate analysis demonstrated osteoporosis, lack of physical labor, and increased SVA correction were independent predictors of VTE ( r 2 = .11, area under the curve = 0.74, P < .05). The incidence of VTE in ASD is 4.3% with a DVT rate of 1.9% and PE rate of 2.4%. Osteoporosis, lack of physical labor, and increased SVA correction were independent predictors of VTE. Patients with VTE had a higher mortality rate compared with non-VTE patients.

  16. Paleohydrologic controls on soft-sediment deformation in the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Bryant, Gerald; Cushman, Robert; Nick, Kevin; Miall, Andrew

    2016-10-01

    Many workers have noted the presence of contorted cross-strata in the Navajo Sandstone and other ancient eolianites, and have recognized their significance as indicators of sediment saturation during the accumulation history. Horowitz (1982) proposed a general model for the production of such features in ancient ergs by episodic, seismically induced liquefaction of accumulated sand. A key feature of that popular model is the prevalence of a flat water table, characteristic of a hyper-arid climatic regime, during deformation. Under arid climatic conditions, the water table is established by regional flow and liquefaction is limited to the saturated regions below the level of interdune troughs. However, various paleohydrological indicators from Navajo Sandstone outcrops point toward a broader range of water table configurations during the deformation history of that eolianite. Some outcrops reveal extensive deformation complexes that do not appear to have extended to the contemporary depositional surface. These km-scale zones of deformation, affecting multiple sets of cross-strata, and grading upward into undeformed crossbeds may represent deep water table conditions, coupled with high intensity triggers, which produced exclusively intrastratal deformation. Such occurrences contrast with smaller-scale complexes formed within the zone of interaction between the products of soft-sediment deformation and surface processes of deposition and erosion. The Horowitz model targets the smaller-scale deformation morphologies produced in this near-surface environment. This study examines the implications of a wet climatic regime for the Horowitz deformation model. It demonstrates how a contoured water table, characteristic of humid climates, may have facilitated deformation within active bedforms, as well as in the accumulation. Intra-dune deformation would enable deflation of deformation features during the normal course of dune migration, more parsimoniously accounting for

  17. The whole mesh deformation model: a fast image segmentation method suitable for effective parallelization

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Przemyslaw; Pereira, Manuela; Freire, Mário M.; Fernandes, José

    2013-12-01

    In this article, we propose a novel image segmentation method called the whole mesh deformation (WMD) model, which aims at addressing the problems of modern medical imaging. Such problems have raised from the combination of several factors: (1) significant growth of medical image volumes sizes due to increasing capabilities of medical acquisition devices; (2) the will to increase the complexity of image processing algorithms in order to explore new functionality; (3) change in processor development and turn towards multi processing units instead of growing bus speeds and the number of operations per second of a single processing unit. Our solution is based on the concept of deformable models and is characterized by a very effective and precise segmentation capability. The proposed WMD model uses a volumetric mesh instead of a contour or a surface to represent the segmented shapes of interest, which allows exploiting more information in the image and obtaining results in shorter times, independently of image contents. The model also offers a good ability for topology changes and allows effective parallelization of workflow, which makes it a very good choice for large datasets. We present a precise model description, followed by experiments on artificial images and real medical data.

  18. Extra-articular deformity correction using Taylor spatial frame prior to total knee arthroplasty.

    PubMed

    Tawari, Gautam J K; Maheshwari, Rajan; Madan, Sanjeev S

    2018-03-20

    A good long-term outcome following a total knee arthroplasty relies on restoration of the mechanical axis and effective soft tissue balancing of the prosthetic knee. Arthroplasty surgery in patients with secondary osteoarthritis of the knee with an extra-articular tibial deformity is a complex and challenging procedure. The correction of mal-alignment of the mechanical axis is associated with unpredictable result and with higher revision rates. Single-staged deformity correction and replacement surgery often result in the use of constraint implants. We describe our experience with staged correction of deformity using a Taylor Spatial Frame (TSF) followed by total knee arthroplasty in these patients and highlight the advantage of staged approach. The use of TSF fixator for deformity correction prior to a primary total knee arthroplasty has not been described in the literature. We describe three cases of secondary osteoarthritis of the knee associated with multiplanar tibial deformity treated effectively with a total knee arthroplasty following deformity correction and union using a TSF. All patients had an improved Knee Society score and Oxford Knee score postoperatively and were satisfied with their replacement outcome. Staged deformity correction followed by arthroplasty allows the use of standard primary arthroplasty implants with predicable results and flexible aftercare. This approach may also provide significant improvement of patient symptoms following correction of deformity resulting in deferment of the arthroplasty surgery.

  19. Non-affine deformations in polymer hydrogels

    PubMed Central

    Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.

    2012-01-01

    Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395

  20. WE-AB-303-11: Verification of a Deformable 4DCT Motion Model for Lung Tumor Tracking Using Different Driving Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woelfelschneider, J; Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE; Seregni, M

    2015-06-15

    Purpose: Tumor tracking is an advanced technique to treat intra-fractionally moving tumors. The aim of this study is to validate a surrogate-driven model based on four-dimensional computed tomography (4DCT) that is able to predict CT volumes corresponding to arbitrary respiratory states. Further, the comparison of three different driving surrogates is evaluated. Methods: This study is based on multiple 4DCTs of two patients treated for bronchial carcinoma and metastasis. Analyses for 18 additional patients are currently ongoing. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the modelmore » considers for inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. In this evaluation, three different approaches were used to extract the motion surrogate: for each 4DCT phase, the 3D thoraco-abdominal surface motion, the body volume and the anterior-posterior motion of a virtual single external marker defined on the sternum were investigated. The estimated volumes resulting from the model were compared to the ground-truth clinical 4DCTs using absolute HU differences in the lung volume and landmarks localized using the Scale Invariant Feature Transform (SIFT). Results: The results show absolute HU differences between estimated and ground-truth images with median values limited to 55 HU and inter-quartile ranges (IQR) lower than 100 HU. Median 3D distances between about 1500 matching landmarks are below 2 mm for 3D surface motion and body volume methods. The single marker surrogates Result in increased median distances up to 0.6 mm. Analyses for the extended database incl. 20 patients are currently in progress. Conclusion: The results depend mainly on the image quality of the initial 4DCTs and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT