Science.gov

Sample records for degradacion por corrosion

  1. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  2. Corrosion cracking

    SciTech Connect

    Goel, V.S.

    1986-01-01

    Various papers on corrosion cracking are presented. The topics addressed include: unique case studies on hydrogen embrittlement failures in components used in aeronautical industry; analysis of subcritical cracking in a Ti-5Al-2.5Sn liquid hydrogen control valve; corrosion fatigue and stress corrosion cracking of 7475-T7351 aluminum alloy; effects of salt water environment and loading frequency on crack initiation in 7075-T7651 aluminum alloy and Ti-6Al-4V; stress corrosion cracking of 4340 steel in aircraft ignition starter residues. Also discussed are: stress corrosion cracking of a titanium alloy in a hydrogen-free environment; automation in corrosion fatigue crack growth rate measurements; the breaking load method, a new approach for assessing resistance to growth of early stage stress corrosion cracks; stress corrosion cracking properties of 2090 Al-Li alloy; repair welding of cracked free machining Invar 36; radial bore cracks in rotating disks.

  3. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  4. Fireside Corrosion

    SciTech Connect

    Holcomb, Gordon

    2011-07-14

    Oxy-fuel fireside research goals are: (1) determine the effect of oxyfuel combustion on fireside corrosion - flue gas recycle choice, staged combustion ramifications; and (2) develop methods to use chromia solubility in ash as an ash corrosivity measurement - synthetic ashes at first, then boiler and burner rig ashes.

  5. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  6. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  7. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  8. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  9. PRINCIPLES OF CORROSION AND CORROSION MONITORING

    EPA Science Inventory

    Recent amendments to the National Interim Primary Drinking Water Regulations deal with corrosion and require utilities to assess corrosion in their distribution and home plumbing systems. Problems caused by corrosion can be grouped into 3 categories: health, aesthetics and econom...

  10. Liquefaction corrosion

    SciTech Connect

    DeVan, J.H.; Keiser, J.R.; Baylor, V.B.

    1980-01-01

    The goal of this program is to provide screening data on the susceptibility to corrosion of commercial base metals and welds that are candidate materials of construction for large coal liquefaction plants. Specimens are exposed in operating environments of liquefaction pilot plants and under controlled laboratory conditions to establish acceptable conditions of stress, temperature, time, and environment for candidate alloys. Chemical analyses have been carried out to identify the corrosion-causing constituents of the liquids. The behavior of potential containment materials is being assessed on the basis of results from both in-plant exposure of test specimens as well as results from laboratory tests at ORNL. One portion of the in-plant tests includes exposing stress corrosion cracking specimens in critical areas of liquefaction plants. The critical areas include the dissolver vessel, the pressure letdown vessels, and the factionation columns. Other in-plant tests consist of exposure of corrosion coupons in areas where general corrosion has been severe. These areas include the fractionation columns used for recovery of process and wash solvents. Laboratory tests are being conducted using selected liquid process streams from the pilot plants to simulate SRC environments. Sample materials include the full range of austenitic stainless steels, most of the Inconel, Incoloy and Hastelloy high-nickel alloys, ferritic stainless steels, and Cr-Mo steels, as well as pure materials such as titanium, aluminum and nickel.

  11. Atmospheric Corrosion

    PubMed Central

    Eyring, Henry; Robertson, Blake; Chu, Chih Chien; Andersen, Terrell

    1974-01-01

    A model of electrolytic corrosion is developed. It is shown that electrically conducting channels threading through the oxide layer and connecting anodic and cathodic areas, obey the equation for a reactant being catalyzed by its product. The resulting autocatalytic equation is compared with available experimental data and found to be widely applicable and capable of unifying many experimental observations. PMID:16592135

  12. CORROSION INHIBITION

    DOEpatents

    Cartledge, G.H.

    1958-06-01

    The protection of ferrous metsls from the corrosive action of aqueous solutions is accomplished by the incorporation of small amounts of certain additive agents into the aqueous solutions. The method comprises providing a small concentration of technetium, in the form of pertechnetate ion, dissolved in the solution.

  13. Atmospheric corrosion.

    PubMed

    Eyring, H; Robertson, B; Chu, C C; Andersen, T

    1974-02-01

    A model of electrolytic corrosion is developed. It is shown that electrically conducting channels threading through the oxide layer and connecting anodic and cathodic areas, obey the equation for a reactant being catalyzed by its product. The resulting autocatalytic equation is compared with available experimental data and found to be widely applicable and capable of unifying many experimental observations. PMID:16592135

  14. Corrosion/95 conference papers

    SciTech Connect

    1995-09-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge.

  15. Corrosion 99: Proceedings

    SciTech Connect

    1999-11-01

    This conference includes the following; Corrosion in Gas Treating; Advances in Scale and Deposit Control; Uses of Computers for Improved Corrosion Control; Erosion-Corrosion in Steam Generating Systems; Electrochemical Noise Measurements for Corrosion Evaluations; Materials Performance in Fossil Fuel Combustion and Conversion Systems; Corrosion in Super Critical Processes; Cathodic Protection of External Surfaces for Underground and Aboveground Storage Tanks; Microbiologically Influenced Corrosion; Advances in Materials for Oilfield Applications; Refining Industry Corrosion; Green Corrosion/Scale Inhibition Technologies; Managing Corrosion With Plastics; Corrosion Measurement Technology; Marine Corrosion; Improved Understanding and Mitigation of CO{sub 2} Corrosion; Thermal Spray Coatings for Corrosion Protection; Volatile Corrosion Inhibitors; Corrosion Testing in Concrete; Stress Corrosion Cracking: Field Laboratory Correlations; Materials Performance in Incineration and Waste Fuel Combustion Environments; Water Reuse in Industry; Corrosion Control and Prevention of Military and Aerospace Equipment; Corrosion in Nuclear Systems; Latest Developments in Aboveground Storage Tanks Corrosion Control, Monitoring and Evaluation Technology; Internal In-line Inspection of Pipelines and Evaluation of Results; New Developments in Cathodic Protection of Reinforcing Steels in Concrete; Cathodic Protection in Natural Waters; Corrosion in the Pulp and Paper Industry; Advanced Materials for High Temperature Service in Chemical Process Industry; Advances in Cooling Water Treatment; Materials, Fabrication, and Inspection Guidelines for Wet H{sub 2}S Service; Environmental Wear of Nonmetallics in Oilfield Service; and Corrosion and Scale Control in Low Pressure Boiler and Steam Systems in Buildings. Separate abstracts were prepared for most of the papers.

  16. Corrosion 99: Proceedings

    SciTech Connect

    Not Available

    1999-01-01

    This conference includes the following; Corrosion in Gas Treating; Advances in Scale and Deposit Control; Uses of Computers for Improved Corrosion Control; Erosion-Corrosion in Steam Generating Systems; Electrochemical Noise Measurements for Corrosion Evaluations; Materials Performance in Fossil Fuel Combustion and Conversion Systems; Corrosion in Super Critical Processes; Cathodic Protection of External Surfaces for Underground and Aboveground Storage Tanks; Microbiologically Influenced Corrosion; Advances in Materials for Oilfield Applications; Refining Industry Corrosion; Green Corrosion/Scale Inhibition Technologies; Managing Corrosion With Plastics; Corrosion Measurement Technology; Marine Corrosion; Improved Understanding and Mitigation of CO[sub 2] Corrosion; Thermal Spray Coatings for Corrosion Protection; Volatile Corrosion Inhibitors; Corrosion Testing in Concrete; Stress Corrosion Cracking: Field Laboratory Correlations; Materials Performance in Incineration and Waste Fuel Combustion Environments; Water Reuse in Industry; Corrosion Control and Prevention of Military and Aerospace Equipment; Corrosion in Nuclear Systems; Latest Developments in Aboveground Storage Tanks Corrosion Control, Monitoring and Evaluation Technology; Internal In-line Inspection of Pipelines and Evaluation of Results; New Developments in Cathodic Protection of Reinforcing Steels in Concrete; Cathodic Protection in Natural Waters; Corrosion in the Pulp and Paper Industry; Advanced Materials for High Temperature Service in Chemical Process Industry; Advances in Cooling Water Treatment; Materials, Fabrication, and Inspection Guidelines for Wet H[sub 2]S Service; Environmental Wear of Nonmetallics in Oilfield Service; and Corrosion and Scale Control in Low Pressure Boiler and Steam Systems in Buildings. Separate abstracts were prepared for most of the papers.

  17. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  18. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  19. Corrosion/96 conference papers

    SciTech Connect

    1996-07-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO{sub 2} corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base.

  20. Internal Corrosion and Deposition Control

    EPA Science Inventory

    This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...

  1. Corrosion inhibiting organic coatings

    SciTech Connect

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  2. Duralumin and Its Corrosion

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    The types of corrosion and factors of corrosion of duralumin are investigated. Salt water is the most common of the corroding media with which designers have to contend in using duralumin in aircraft and ships.

  3. PRINCIPLES OF INTERNAL CORROSION AND CORROSION MONITORING

    EPA Science Inventory

    Corrosion, a complex electrochemical phenomenon that cannot always be eliminated but can usually be controlled in a cost-effective manner, may be uniform and attack a surface evenly or may cause severe localized problems such as a crevice or pit. For the corrosion reaction to pro...

  4. Electrochemical corrosion testing: An effective tool for corrosion inhibitor evaluation

    SciTech Connect

    Bartley, L.S.; Van de Ven, P.; Mowlem, J.K.

    1996-10-01

    Corrosivity of an Antifreeze/Coolant can lead to localized attacks which are a major cause for metal failure. To prevent this phenomenon, specific corrosion inhibitors are used to protect the different metals in service. This paper will discuss the electrochemical principles behind corrosion, Realized corrosion and corrosion inhibition. It will also discuss electrochemical techniques which allow for the evaluation of these inhibitors.

  5. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  6. Stress corrosion resistant fasteners

    NASA Technical Reports Server (NTRS)

    Roach, T. A.

    1985-01-01

    A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships.

  7. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  8. Electrochemical corrosion studies

    NASA Technical Reports Server (NTRS)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  9. Effective corrosion monitoring

    SciTech Connect

    Britton, C.F.; Tofield, B.C.

    1988-04-01

    The results of two surveys (conducted in 1981 and 1984) of users of corrosion monitoring equipment are described. The benefits to be obtained from a well-designed corrosion monitoring system, especially if a corrosion control program is used, are outlined together with the difficulties and barriers that can obstruct successful application. Developing methods such as AC impedance, electrochemical noise, and thin layer activation are discussed in view of the comments received from the surveys.

  10. Microsensors for corrosion control

    SciTech Connect

    Chawla, S.K.; Anguish, T.; Payer, J.H. )

    1990-05-01

    Sensors have been developed and manufactured by microelectronic fabrication techniques to directly measure corrosion rates and to determine the effectiveness of corrosion control systems. Microsensors based on measurements of corrosion rate by linear polarization, electrical resistance change, and galvanic currents have been devised. Analytical measurements by potentiometric and amperometric techniques using thick-film planar transducers are illustrated. The use of generic sensor elements individually and in combination to attest the status of corrosion control and to provide data for the evaluation of future performance is highlighted.

  11. Corrosion Detection Devices

    SciTech Connect

    Howard, B.

    2003-12-01

    Nondestructive Examination Systems' (NDE) specialists at the Department of Energy's Savannah River Site have unique, remotely controllable, corrosion detection capabilities. The corrosion detection devices most frequently used are automated ultrasonic mapping systems, digital radiography imaging devices, infrared imaging, and eddy current mapping systems. These devices have been successfully used in a variety of applications, some of which involve high levels of background radiation. Not only is corrosion located and mapped but other types of anomalies such as cracks have been detected and characterized. Examples of actual corrosion that has been detected will be discussed along with the NDE systems that were used.

  12. Corrosion in bioprocessing applications.

    PubMed

    Junker, Beth

    2009-01-01

    Corrosion in bioprocessing applications is described for a 25-year-old bioprocessing pilot plant facility. Various available stainless steel alloys differ greatly in properties owing to the impact of specific alloying elements and their concentrations. The alloy property evaluated was corrosion resistance as a function of composition under typical bioprocessing conditions such as sterilization, fermentation, and cleaning. Several non-uniform forms of corrosion relevant to bioprocessing applications (e.g., pitting, crevice corrosion, intergranular attack) were investigated for their typical causes and effects, as well as alloy susceptibility. Next, the corrosion resistance of various alloys to specific bioprocessing-relevant sources of corrosion (e.g., medium components, acids/bases used for pH adjustment, organic acid by-products) was evaluated, along with the impact of temperature on corrosion progression. Best practices to minimize corrosion included considerations for fabrication (e.g., welding, heat treatments) and operational (e.g., sterilization, media component selection, cleaning) approaches. Assessments and repair strategies for observed corrosion events were developed and implemented, resulting in improved vessel and overall facility longevity. PMID:18512080

  13. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  14. Fireside Corrosion USC Steering

    SciTech Connect

    G. R. Holcomb; J. Tylczak

    2011-09-07

    Oxy-Fuel Fireside Research goals are: (1) Determine the effect of oxy-fuel combustion on fireside corrosion - (a) Flue gas recycle choice, Staged combustion ramifications, (c) JCOAL Collaboration; and (2) Develop methods to use chromia solubility in ash as an 'ash corrosivity' measurement - (a) Synthetic ashes at first, then boiler and burner rig ashes, (b) Applicable to SH/RH conditions.

  15. Crude unit corrosion and corrosion control

    SciTech Connect

    Bagdasarian, A.; Feather, J.; Hull, B.; Stephenson, R.; Strong, R.

    1996-08-01

    In the petroleum refining process, the Crude Unit is the initial stage of distillation of the crude oil into useable fractions, either as end products or feed to downstream units. The major pieces of equipment found on units will vary depending on factors such as the assay of the design crude, the age of the refinery, and other downstream units. The unit discussed in this paper has all of the major pieces of equipment found on crude units including double desalting, a preflash section, an atmospheric section, a vacuum section, and a stabilization section. This paper reviews fundamental corrosion issues concerning the Crude Unit process. It is, in concise form, a description of the process and major equipment found in the Crude Unit; types of corrosion and where they occur; corrosion monitoring and inspection advice; and a list of related references for further reading. 12 refs., 1 fig.

  16. The Corrosion and Preservation of Iron Antiques.

    ERIC Educational Resources Information Center

    Walker, Robert

    1982-01-01

    Discusses general corrosion reactions (iron to rust), including corrosion of iron, sulfur dioxide, chlorides, immersed corrosion, and underground corrosion. Also discusses corrosion inhibition, including corrosion inhibitors (anodic, cathodic, mixed, organic); safe/dangerous inhibitors; and corrosion/inhibition in concrete/marble, showcases/boxes,…

  17. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  18. Corrosion-resistant uranium

    SciTech Connect

    Bell, R.T.; Hovis, V.M.; Kollie, T.G.; Pullen, W.C.

    1983-05-31

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  19. Microbiologically influenced corrosion testing

    SciTech Connect

    Kearns, J.R.; Little, B.J.

    1994-01-01

    This symposium was held November 16--17, 1992 in Miami, Florida. The purpose of the symposium was to provide a forum for state-of-the-art information on the effects of microorganisms on the corrosion of metals. Many industrial needs in the area of microbial influenced corrosion testing are identified in the presentations along with latest laboratory and field testing techniques. Strategies to monitor and control corrosion and biofouling in water distribution systems, underground pipelines, buildings, and marine vessels are discussed. Individual papers have been processed separately for inclusion in the appropriate data bases.

  20. Irritants and corrosives.

    PubMed

    Tovar, Richard; Leikin, Jerrold B

    2015-02-01

    This article reviews toxic chemicals that cause irritation and damage to single and multiple organ systems (corrosion) in an acute fashion. An irritant toxic chemical causes reversible damage to skin or other organ system, whereas a corrosive agent produces irreversible damage, namely, visible necrosis into integumentary layers, following application of a substance for up to 4 hours. Corrosive reactions can cause coagulation or liquefaction necrosis. Damaged areas are typified by ulcers, bleeding, bloody scabs, and eventual discoloration caused by blanching of the skin, complete areas of alopecia, and scars. Histopathology should be considered to evaluate questionable lesions. PMID:25455665

  1. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  2. BWR steel containment corrosion

    SciTech Connect

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  3. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  4. Corrosion science and technology

    SciTech Connect

    Talbot, D.; Talbot, J.

    1998-01-01

    This book investigates the chemical, electrochemical, and metallurgical aspects of corrosion control in contemporary technologies. By examining the structures of water, oxides, and metals, the text identifies the interactions in which metals corrode in natural and artificial environments. The book also includes profiles of technological use in aviation, automobile manufacturing, food processing, and building construction; explanations of scientific principles, real world applications, and case histories; and extensive references for corrosion-related literature and other information.

  5. Method for inhibiting corrosion

    SciTech Connect

    Wu, Y.; Stapp, P. R.

    1985-12-03

    A composition comprising the reaction adduct or neutralized product resulting from the reaction of a maleic anhydride and an oil containing a polynuclear aromatic compound is provided which, when applied to a metal surface, forms a corrosion-inhibiting film thereon. The composition is particularly useful in the treatment of down-hole metal surfaces in oil and gas wells to inhibit the corrosion of the metal.

  6. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  7. Corrosion resistant filter unit

    SciTech Connect

    Gentry, J.M.

    1992-02-18

    This patent describes a fluid filter assembly adapted for the filtration of corrosive fluid to be injected into a well bore at pressure levels which may exceed 10,000 pounds per square. It comprises: a frame assembly for the mounting of a portion of the fluid filter assembly therein, the frame assembly; filter pods, the plurality of filter pods forming at least two banks of filter pods, each bank having at least two filter pods therein, each bank of the filter pods being supported by one or more the supports of the plurality of supports secured to selected struts of the frame assembly; an inlet manifold to direct the corrosive fluid to the plurality of filter pods, the inlet manifold being interconnected to the banks of filter pods formed by the filter pods whereby flow of the corrosive fluid can be directed to each bank of the filter pods; an outlet manifold to direct the corrosive fluid from the filter pods, the outlet manifold being interconnected to the banks of filter pods formed by the filter pods; a first valve means to control the flow of the corrosive fluid between banks of filter pods formed by the filter pods whereby the flow of the corrosive fluid can be selectively directed to each bank of the filter pods; a second valve means to selectively control the flow of the corrosive fluid between the inlet manifold and the outlet manifold; and union means for interconnecting the filter pods, inlet manifold and outlet manifold, each of the union means including mechanical connection means and internal seal means for isolating the corrosive fluids from the mechanical connection means.

  8. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea... Requests for Revocation in Part, 77 FR 59168 (September 26, 2012). \\2\\ The period of review (POR) ends...

  9. Corrosion testing using isotopes

    DOEpatents

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  10. Corrosion testing using isotopes

    DOEpatents

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  11. Corrosion Monitoring System

    SciTech Connect

    Dr. Russ Braunling

    2004-10-31

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  12. A model of corrosion expertise

    SciTech Connect

    Trethewey, K.R.; Roberge, P.R.

    1996-10-01

    This paper describes an approach to reduce the complexity of knowledge engineering projects in corrosion by developing an object-oriented framework to guide the elicitation and organization of corrosion and materials engineering expertise. A model is presented into which corrosion expertise can be structured in a qualitative and quantitative way. This model could be used as the framework for a corrosion management expert system.

  13. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  14. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  15. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K. NY); Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  16. DWPF corrosion study

    SciTech Connect

    Selby, C.L.

    1986-12-17

    Corrosion of candidate alloys for the DWPF SRAT, SME, and melter was tested in the large (1/3 scale) SRAT/SME, the 200th scale SRAT/SME, and the LSFM. Flat or twisted coupons with or without a weld bead and U-bend specimens (specimens bent into a ''U'' shape and bolted together at the ends to stress the bend area) were installed on racks that ensured electrical isolation to avoid galvanic effects. Teflon/reg sign/ washers isolated the low temperature exposure racks and ceramic washers isolated the high temperature exposure racks. Serrated washers simulated crevices, but crevice corrosion did not result. 9 refs., 9 tabs.

  17. Corrosion resistance of stainless steels

    SciTech Connect

    Dillon, C.P.

    1995-12-31

    This book reviews the mechanisms and forms of corrosion and examines the corrosion of stainless steels and similar chromium-bearing nickel containing higher alloys, detailing various corrosive environments including atmospheric and fire-side corrosion, corrosion by water and soil, and corrosion caused by particular industrial processes. It provides information on specific groups and grades of stainless steels; summarizes typical applications for specific stainless alloys; describes common corrosion problems associated with stainless steels; presents the acceptable isocorrosion parameters of concentration and temperature for over 250 chemicals for which stainless steels are the preferred materials of construction; discusses product forms and their availability; elucidates fabrication, welding, and joining techniques; and covers the effects of pickling and passivation.

  18. Corrosion potential analysis system

    NASA Astrophysics Data System (ADS)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  19. Mobile evaporator corrosion test results

    SciTech Connect

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  20. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  1. Corrosion guard tubing nipple

    SciTech Connect

    Guy, W.E.

    1988-09-27

    This patent describes the process of placing a string of tubing in an oil field well; a. the string of tubing when placed extending from the surface of the earth to an oil bearing formation far below the surface, b. the string made from i. a plurality of tubing sections, ii. each section having external threads on each end, and iii. cuffs with internal threads coupling the tubing sections together, c. each of the tubing sections having i. an axis, ii. a wall thickness, and iii. a corrosion resistant coating on its inside bore; wherein the improved method comprises: d. placing a section of tubing into the well with a cuff attached to the upper end at the surface of the earth, e. dropping a corrosion resistant nipple into the cuff, f. the nipple being loose in the cuff, g. attaching an additional section of tubing onto the cuff, and h. screwing the additional section tightly to the cuff.

  2. Corrosion studies with pixe

    NASA Astrophysics Data System (ADS)

    Anwar Chaudhri, M.; Crawford, A.

    1981-03-01

    To investigate the possible causes of corrosion of some of the tooth paste tubes of a major international cosmetic product manufacturer, the elemental compositions of corroded and clean unused tubes were compared, using PIXE. It was observed that some of the corroded tubes contained much higher amounts of Ti, Fe, Ga and Zn than the clean tubes, while the concentrations of Cr and Ni showed no significant difference between the two types of tubes. Only certain regions of one of the tubes were found to contain higher concentrations of Cu. Those regions were badly corroded and had the highest concentrations of Ti, Fe, Ga and Zn, too. It is suggested that the presence of higher amounts of Ti, Fe, Ga and Zn, and especially of Cu, in the aluminium sheets used to manufacture the tooth paste tubes, may be one of the reasons for the corrosion of some of the tooth paste tubes.

  3. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  4. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  5. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  6. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  7. Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Advanced testing of structural materials was developed by Lewis Research Center and Langley Research Center working with the American Society for Testing and Materials (ASTM). Under contract, Aluminum Company of America (Alcoa) conducted a study for evaluating stress corrosion cracking, and recommended the "breaking load" method which determines fracture strengths as well as measuring environmental degradation. Alcoa and Langley plan to submit the procedure to ASTM as a new testing method.

  8. Papering Over Corrosion

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Kennedy Space Center's battle against corrosion led to a new coating that was licensed to GeoTech and is commercially sold as Catize. The coating uses ligno sulfonic acid doped polyaniline (Ligno-Pani), also known as synthetic metal. Ligno-Pani can be used to extend the operating lives of steel bridges as one example of its applications. future applications include computers, televisions, cellular phones, conductive inks, and stealth technology.

  9. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  10. Corrosion in supercritical fluids

    SciTech Connect

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  11. Corrosion detection by induction

    NASA Astrophysics Data System (ADS)

    Roddenberry, Joshua L.

    Bridges in Florida are exposed to high amounts of humidity due to the state's geography. This excess moisture results in a high incidence of corrosion on the bridge's steel support cables. Also, the inclusion of ineffective waterproofing has resulted in additional corrosion. As this corrosion increases, the steel cables, responsible for maintaining bridge integrity, deteriorate and eventually break. If enough of these cables break, the bridge will experience a catastrophic failure resulting in collapse. Repairing and replacing these cables is very expensive and only increases with further damage. As each of the cables is steel, they have strong conductive properties. By inducing a current along each group of cables and measuring its dissipation over distance, a picture of structural integrity can be determined. The purpose of this thesis is to prove the effectiveness of using electromagnetic techniques to determine cable integrity. By comparing known conductive values (determined in a lab setting) to actual bridge values, the tester will be able to determine the location and severity of any damage, if present.

  12. Corrosion inhibitors from expired drugs.

    PubMed

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%. PMID:22561212

  13. [Microbial corrosion of dental alloy].

    PubMed

    Li, Lele; Liu, Li

    2004-10-01

    There is a very complicated electrolytical environment in oral cavity with plenty of microorganisms existing there. Various forms of corrosion would develop when metallic prosthesis functions in mouth. One important corrosive form is microbial corrosion. The metabolic products, including organic acid and inorganic acid, will affect the pH of the surface or interface of metallic prosthesis and make a change in composition of the medium, thus influencing the electron-chemical reaction and promoting the development of corrosion. The problem of develpoment of microbial corrosion on dental alloy in the oral environment lies in the primary condition that the bacteria adhere to the surface of alloy and form a relatively independent environment that promotes corrosion. PMID:15553877

  14. Chemical corrosion potential in boilers

    SciTech Connect

    Bairr, D.L.; McDonough, C.J.

    1998-12-31

    Misuse or abuse of chelants has long been recognized as a potential corrosion problem in boilers. In recent years all polymer chemical treatment programs have been introduced and although they are much more benign even all polymer programs must be properly designed and controlled. Under extreme conditions a similar corrosion potential exists. This paper discusses the potential for chelant or polymer corrosion in boilers and the proper safeguards. Case histories are presented.

  15. Accelerated Stress-Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  16. 49 CFR 172.558 - CORROSIVE placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SECURITY PLANS Placarding § 172.558 CORROSIVE placard. (a) Except for size and color, the CORROSIVE placard... the CORROSIVE placard must be black in the lower portion with a white triangle in the upper...

  17. 49 CFR 172.558 - CORROSIVE placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SECURITY PLANS Placarding § 172.558 CORROSIVE placard. (a) Except for size and color, the CORROSIVE placard... the CORROSIVE placard must be black in the lower portion with a white triangle in the upper...

  18. Corrosion and fatigue of surgical implants

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1975-01-01

    Implants for the treatment of femoral fractures, mechanisms leading to the failure or degradation of such structures, and current perspectives on surgical implants are discussed. Under the first heading, general usage, materials and procedures, environmental conditions, and laboratory analyses of implants after service are considered. Corrosion, crevice corrosion, stress corrosion cracking, intergranular corrosion, pitting corrosion, fatigue, and corrosion fatigue are the principal degradation mechanisms described. The need for improvement in the reliability of implants is emphasized.

  19. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  20. CURRENT CORROSION BY-PRODUCTS AND CORROSION CONTROL RESEARCH

    EPA Science Inventory

    USEPA research in the area of corrosion control consists of a combination of in-house research and extramural projects. he extramural projects have recently addressed the corrosion of solder in some Long Island water supplies, impacts of municipal ion-exchange softening on corros...

  1. Monitoring power plant fireside corrosion using corrosion probes

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.

    2005-01-01

    The ability to monitor the corrosion degradation of key components in fossil fuel power plants is of utmost importance for Futuregen and ultra-supercritical power plants. Fireside corrosion occurs in the high temperature sections of energy production facilities due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Problems occur when equipment designed for either oxidizing or reducing conditions is exposed to alternating oxidizing and reducing conditions. This can happen especially near the burners. The use of low NOx burners is becoming more commonplace and can produce reducing environments that accelerate corrosion. One method of addressing corrosion of these surfaces is the use of corrosion probes to monitor when process changes cause corrosive conditions. In such a case, corrosion rate could become a process control variable that directs the operation of a coal combustion or coal gasification system. Alternatively, corrosion probes could be used to provide an indication of total metal damage and thus a tool to schedule planned maintenance outages.

  2. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  3. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  4. Microbial corrosion of stainless steel.

    PubMed

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  5. Metal corrosion coupon contamination, corrosion study design, and interpretation problems

    SciTech Connect

    Lytle, D.A.; Schock, M.R.; Tackett, S.

    1992-01-01

    As a result of the new Lead and Copper Rule, some water utilities in the United States have begun or will soon begin corrosion demonstration studies. Demonstration studies may include pipe rig/loop tests, metal coupon tests, and partial-system tests (full-scale). Evaluation of corrosion control treatment through testing may be accomplished by weight loss measurement, metal leaching, corrosion rate, or coupon surface inspection techniques. The purpose of the paper is to (1) briefly introduce 2 corrosion control studies being conducted at the EPA Research Facility, (2) discuss design and operational problems and considerations associated with each of the studies, and (3) present solutions to the problems. The experiences related to the paper may provide useful and time-saving insights into the design, operation, and interpretation of corrosion control studies to water utilities and suppliers.

  6. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    SciTech Connect

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  7. Corrosion of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  8. INHIBITION OF CORROSION

    DOEpatents

    Atherton, J.E. Jr.; Gurinsky, D.H.

    1958-06-24

    A method is described for preventing corrosion of metallic container materials by a high-temperature liquid bismuth flowing therein. The method comprises fabricating the containment means from a steel which contains between 2 and 12% chromium, between 0.5 and 1.5% of either molybdenum and silicon, and a minimum of nickel and manganese, and maintaining zirconium dissolved in the liquid bismuth at a concentration between 50 parts per million and its saturation value at the lowest temperature in the system.

  9. Vacuum Ampoule Isolates Corrosive Materials

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Debnam, W. J.; Taylor, R.

    1983-01-01

    Quartz vacuum ampoule confines corrosive sample wafer between two quartz plugs inserted in quartz tube. One quartz plug is window for measuring sample thermodynamic properties while laser pulse entering other quartz plug heats sample to molten state. Confinement of sample in vacuum prevents contamination of measurement system by hot corrosive vapors and any interference by preferential evaporation of melt.

  10. Atlas 5013 tank corrosion test

    NASA Technical Reports Server (NTRS)

    Sutherland, W. M.; Girton, L. D.; Treadway, D. G.

    1978-01-01

    The type and cause of corrosion in spot welded joints were determined by X-ray and chemical analysis. Fatigue and static tests showed the degree of degradation of mechanical properties. The corrosion inhibiting effectiveness of WD-40 compound and required renewal period by exposing typical joint specimens were examined.

  11. INTERNAL CORROSION AND DEPOSITION CONTROL

    EPA Science Inventory

    Corrosion is one of the most important problems in the drinking water industry. It can affect public health, public acceptance of a water supply, and the cost of providing safe water. Deterioration of materials resulting from corrosion can necessitate huge yearly expenditures o...

  12. Corrosion beneath disbonded pipeline coatings

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.

    1997-04-01

    The relationship between coatings, cathodic protection (CP), and external corrosion of underground pipelines is described. Historically, this problem has been addressed by focusing on the corrosion and CP processes associated with holidays, e.g., coating disbondment and CP current flow within the disbonded region. These issues and those associated with disbonded areas distant from holidays are also discussed.

  13. Agricultural Polymers as Corrosion Inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  14. DPC materials and corrosion environments.

    SciTech Connect

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest; Clarity, J.

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  15. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  16. Corrosion of Titanium Matrix Composites

    SciTech Connect

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  17. Naval electrochemical corrosion reducer

    DOEpatents

    Clark, Howard L.

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  18. IN DRIFT CORROSION PRODUCTS

    SciTech Connect

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  19. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  20. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  1. Atmospheric corrosion model and monitor for low cost solar arrays

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.

    1981-01-01

    An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.

  2. Corrosion-resistant coating development

    SciTech Connect

    Stinton, D.P.; Kupp, D.M.; Martin, R.L.

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  3. Corrosion and corrosion fatigue of airframe aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  4. Searching for corrosion intelligence

    SciTech Connect

    Roberge, P.R.

    1999-11-01

    The incredible progress in computing power and availability has created a tremendous wealth of information available at the touch of a few buttons. However, such wealth can easily provoke what is commonly described as `information overload.` The massive number of connections produced by a single search of the Web, for example, can greatly overwhelm users of this new technology. The rapidity of Web searches is due to the synergy between progress made in network connectivity protocols, intelligent search strategies and supporting hardware. This paper will attempt to define the basic elements of machine intelligence in the context of corrosion engineering and examine what has been done or could be done to introduce artificial thinking into daily operations.

  5. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  6. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  7. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  8. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  9. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  10. Corrosion inhibition using mercury intensifiers

    SciTech Connect

    Cizek, A.

    1990-03-05

    This patent describes an intensified corrosion inhibitor composition for inhibiting the corrosion of steel in the presence of an acidic medium. It comprises: an effective amount of an acid soluble mercury metal intensifier; and a corrosion inhibitor. This patent also describes a method of treating a subterranean well for enhancement of production within the well, comprising the steps of introducing and positioning within the well a high alloy stec surface exposable to a treatment fluid therewith; introducing into the well and contacting the surface with a treatment fluid comprising an acidic injection medium, an acid corrosion inhibitor, and an intensifier for deposition on or effective treatment contact with the surface, the intensifier comprising an acid soluble mercury metal site circulating the fluid into the well for contact with at least one production zone within the well.

  11. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  13. Corrosion in volcanic hot springs

    SciTech Connect

    Lichti, K.A.; Swann, S.J.; Sanada, N.

    1997-12-31

    Volcanic hot pool environments on White Island, New Zealand have been used to study the corrosion properties of materials which might be used for engineering plant for energy production from deep-seated and magma-ambient geothermal systems. The corrosion chemistry of hot pools encountered in natural volcanic features varies, from being of near neutral pH- or alkalie pH-chloride type waters to acidic-chloride/sulfate waters which are more aggressive to metals and alloys. Potential-pH (Pourbaix) diagram models of corrosion product phase stability for common alloy elements contained in engineering alloys have been developed for hot pool environments using thermodynamic principles and conventional corrosion theory. These diagramatic models give reasons for the observed corrosion kinetics and can be used to help to predict the performance of other alloys in similar environments. Deficiencies in the knowledge base for selection of materials for aggressive geothermal environments are identified, and directions for future research on materials having suitable corrosion resistance for deep-seated and magma-ambient production fluids which have acidic properties are proposed.

  14. Corrosion testing in flash tanks

    SciTech Connect

    Clarke, S.J.; Stead, N.J.

    1999-07-01

    As kraft pulp mills adopt modified cooking processes, an increasing amount of corrosion of carbon steel digester systems is being encountered. Many mills have had severe corrosion in the flash tanks, in particular, the first ({number{underscore}sign}1) flash tank. The work described in this report was aimed at characterizing the corrosion. Coupons of carbon steel, several stainless steels and titanium were exposed at two mills. At mill A, identical sets of coupons were exposed in the {number{underscore}sign}1 and {number{underscore}sign}2 flash tank. At mill B, three identical sets of coupons were placed in flash tank {number{underscore}sign}1. The results of the exposures showed that both carbon steel and titanium suffered high rates of general corrosion, while the stainless steels suffered varying degrees of localized attack. The ranking of the resistance of corrosion in the flash tank was the same ranking as would be expected in a reducing acid environment. In the light of the coupon results, organic acids is concluded to be the most likely cause of corrosion of the flash tanks.

  15. Aircraft corrosion surveillance in the military

    SciTech Connect

    Tullmin, M.; Roberge, P.R.; Little, M.A.

    1997-12-01

    In the Canadian Forces, as for other operators of aging aircraft, the need has arisen to utilize new tools for managing corrosion problems more cost effectively. Corrosion surveillance methodologies are focused on the reduction of unnecessary inspections and on optimizing certain maintenance and inspection schedules. To accomplish the former, on-going development of on-board corrosion sensors is required, with the ultimate goal of establishing truly smart structures. For the optimization of these schedules, a link between the corrosivity of the operating environment and these schedules is needed. Information on atmospheric corrosivity of the operating environment and these schedules is needed. Information on atmospheric corrosivity at a marine base is sought in terms of an overall corrosivity map of the base, real-time atmospheric corrosivity measurements in the external atmosphere and air quality monitoring in air-conditioned hangars. Corrosion surveillance information should be integrated with complementary data and information to enhance its value and impact.

  16. Requirements for inhibition of localized corrosion

    SciTech Connect

    Gunaltun, Y.M.; Chevrot, T.

    1999-11-01

    Localized corrosion is the principal cause of line failure when corrosion is internal. As the inhibition is the most common way to control corrosion in wet gas and oil production lines, the inhibitor should be able to control localized corrosion in all cases where it may occur. Therefore, inhibitor selection philosophy should be based on this approach. Laboratory and field evaluation of corrosion inhibitors showed that some products are almost 100% efficient in preventing localized corrosion if their concentration in the water phase is above a threshold value. The main uncertainty, which then remains, is the inhibitor availability at the pipe surface.

  17. Permeability and corrosion behavior of phenoxy coatings

    SciTech Connect

    Tiburcio, A.C.; Manson, J.A.

    1993-12-31

    The corrosion behavior of a glass-bead-filled phenoxy coating system was studied by correlating permeability and electrochemical measurements with actual corrosion performance. The study emphasized the effects of filler and filler/polymer matrix interactions on corrosion behavior. Water vapor permeability, dissolved oxygen permeability and conductivity measurements were made to determine the rate of transport of the three key ingredients in cathodic delamination and corrosion process (H{sub 2}O, O{sub 2}, and cation). The glass bead filler had a greater effect on both cathodic delamination and corrosion behavior than filler/polymer matrix interaction. Overall, the permeability behavior controlled the delamination and corrosion performance.

  18. Migrating corrosion inhibitor protection of concrete

    SciTech Connect

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  19. General Corrosion and Localized Corrosion of the Drip Shield

    SciTech Connect

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  20. Chem I Supplement: Corrosion: A Waste of Energy.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1979

    1979-01-01

    This article, intended for secondary school chemistry students, discusses the corrosion of metals. The discussion includes: (1) thermodynamic aspects of corrosion; (2) electrochemical aspects of corrosion; and (3) inhibition of corrosion processes. (HM)

  1. Report on accelerated corrosion studies.

    SciTech Connect

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  2. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  3. Cooling tower hardware corrosion studies

    SciTech Connect

    Blue, S.C.

    1983-01-31

    The data presented in this report are interim results of a continuing investigation into the corrosion resistance of metals in the environment of a large cooling tower. Some of the significant observations are as follows: the corrosion of susceptible metals occurs most rapidly in the warm fog conditions between the deck and mist filters; the application of stainless steel must be made on the basis of alloy chemistry and processing history. Some corrosion resistant alloys may develop cracking problems after improper heat treating or welding; combinations of aluminum bronze, stainless steel, and silicon bronze hardware were not susceptible to galvanic corrosion; the service life of structural steel is extended by coal tar epoxy coatings; aluminum coatings appear to protect structural steel on the tower deck and below the distribution nozzles. The corrosion of cooling tower hardware can be easily controlled through the use of 316 stainless steel and silicon bronze. The use of other materials which exhibit general resistance should be specified only after they have been tested in the form of structural assemblies such as weldments and bolted joints in each of the different tower zones.

  4. Corrosion effects on friction factors

    SciTech Connect

    Magleby, H.L.; Shaffer, S.J.

    1996-03-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly.

  5. Influence of Cl- Deposition Content on Corrosion of LY12

    NASA Astrophysics Data System (ADS)

    Han, Desheng; Li, Di; Zheng, Tianliang

    A series of accelerated corrosion tests were conducted in the simulated marine atmosphere environment to study the corrosion of LY12 aluminum alloy under different Cl- deposition content. The change of corrosion morphology, weight gain and electrochemical parameters (Corrosion Electric Potential, AC Impedance) were inspected in the corrosion course. The different corrosion behaviors caused by the variation of Cl- deposition content were also discussed.

  6. Corrosion problems in light water nuclear reactors

    SciTech Connect

    Berry, W.E.

    1984-06-01

    The corrosion problems encountered during the author's career are reviewed. Attention is given to the development of Zircaloys and attendant factors that affect corrosion; the caustic and chloride stress corrosion cracking (SCC) of austenitic stainless steel steam generator tubing; the qualification of Inconel Alloy 600 for steam generator tubing and the subsequent corrosion problem of secondary side wastage, caustic SCC, pitting, intergranular attack, denting, and primary side SCC; and SCC in weld and furnace sensitized stainless steel piping and internals in boiling water reactor primary coolants. Also mentioned are corrosion of metallic uranium alloy fuels; corrosion of aluminum and niobium candidate fuel element claddings; crevice corrosion and seizing of stainless steel journal-sleeve combinations; SCC of precipitation hardened and martensitic stainless steels; low temperature SCC of welded austenitic stainless steels by chloride, fluoride, and sulfur oxy-anions; and corrosion problems experienced by condensers.

  7. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  8. Fireside corrosion probes--an update

    SciTech Connect

    Covino, B.S., Jr.; Bullard, S.J.; Holcomb, G.R.; Ziomek-Moroz, M.; Matthes, S.A.

    2007-01-01

    The ability to monitor the corrosion degradation of key metallic components in fossil fuel power plants will become increasingly important for FutureGen and ultra-supercritical power plants. A number of factors (ash deposition, coal composition changes, thermal gradients, and low NOx conditions, among others) which occur in the high temperature sections of energy production facilities, will contribute to fireside corrosion. Several years of research have shown that high temperature corrosion rate probes need to be better understood before corrosion rate can be used as a process variable by power plant operators. Our recent research has shown that electrochemical corrosion probes typically measure lower corrosion rates than those measured by standard mass loss techniques. While still useful for monitoring changes in corrosion rates, absolute probe corrosion rates will need a calibration factor to be useful. Continuing research is targeted to help resolve these issues.

  9. Method For Testing Properties Of Corrosive Lubricants

    DOEpatents

    Ohi, James; De La Cruz, Jose L.; Lacey, Paul I.

    2006-01-03

    A method of testing corrosive lubricating media using a wear testing apparatus without a mechanical seal. The wear testing apparatus and methods are effective for testing volatile corrosive lubricating media under pressure and at high temperatures.

  10. Corrosion and Preservation of Bronze Artifacts.

    ERIC Educational Resources Information Center

    Walker, Robert

    1980-01-01

    Reviews chemical information relating to the corrosion of bronze artifacts. Properties of copper alloys are reviewed, with a thorough discussion of the specialized properties of bronze. Techniques to reduce or eliminate corrosion are listed. (CS)

  11. Degreasing of titanium to minimize stress corrosion

    NASA Technical Reports Server (NTRS)

    Carpenter, S. R.

    1967-01-01

    Stress corrosion of titanium and its alloys at elevated temperatures is minimized by replacing trichloroethylene with methanol or methyl ethyl ketone as a degreasing agent. Wearing cotton gloves reduces stress corrosion from perspiration before the metal components are processed.

  12. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  13. Corrosion of metals by hydrazine

    NASA Technical Reports Server (NTRS)

    Lawton, E. A.; Moran, C. M.; Distefano, S.

    1985-01-01

    The mechanism of corrosion of metals by hydrazine has been studied by means of coupons in sealed ampoules and by electrochemical techniques. The variables considered were temperature, CO2 impurity level, alloy composition and microcrystalline structure. The coupon studies, to date, verify that increasng temperature and the presence of CO2 does increase the corrosion rate as expected. The presence of molybdenum in stainless steels to the 3 percent level is not necessarily deleterious, contrary to published reports. The influence of microcrystalline structure and surface characteristics are more dominant effects. However, with Ti-6Al-4V, two different microcrystalline structures showed no significant differences. Corrosion rates of CRES 304 L in hydrazine have also been measured by several electrochemical techniques such as Tafel plots, polarization resistance and A. C. Impedance. This is the first documented work to show that A. C. Impedance can be used with non-aqueous solvents. Preliminary data correlated satisfactorily with the results of the coupon studies.

  14. Corrosion in NiCd cells

    NASA Technical Reports Server (NTRS)

    Badcock, C.; Galligan, J.

    1981-01-01

    Corrosion in the terminals of nickel cadmium cells was investigated. Corrosion, crevice type corrosion, at the interface between the stainless steel material, the nickel material, and the braze was examined. It was concluded that in the welded areas there was no problem. There was corrosion of the crevice type in the brazed areas and some pitting was evident between the braze and the base material.

  15. Smart Coatings for Launch Site Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  16. Electrochemical Measurement of Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  17. Determination of thermodynamic data for modeling corrosion

    SciTech Connect

    Izatt, R.M.; Oscarson, J.L.; Gillespie, S.E.; Chen, X. )

    1992-08-01

    Preventing or diminishing corrosion in PWR steam generators requires an understanding of chemical reactions that occur at the metal-water interface. Tests performed with a high-temperature, corrosion-resistant flow calorimeter yielded important thermodynamic properties of several reactions involving potentially corrosive copper ions, nickel ions, and sodium ions.

  18. A corrosivity classification system for geothermal resources

    SciTech Connect

    Conover, Marshall F.

    1982-10-08

    The most important difference between traditional steam systems and those that utilize geothermal fluids is the potential for corrosion of metals. The recently developed sourcebook ''Materials Selection Guidelines for Geothermal Energy Utilization Systems'' is expected to facilitate corrosion engineering decision making and reduce the cost of geothermal systems where new resources are similar to those presented by the corrosivity classification system.

  19. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  20. NONDESTRUCTIVE TESTING OF CORROSION UNDER COATINGS

    EPA Science Inventory

    Surface corrosion on aluminum aircraft skins, nears joints and around fasteners is often an indicator of buried structural corrosion and cracking. Aircraft paints are routinely removed to reveal the presence of corrosion on the surface of metal structures, and the aircraft is su...

  1. Corrosion beneath disbonded coatings: A review

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.

    1996-12-01

    This paper describes the relationship between coatings, cathodic protection (CP), and external corrosion of underground pipelines. Historically, this problem has been addressed by focusing on the corrosion and CP processes associated with holidays, e.g., coating disbandment and CP current flow within the disbanded region. This paper addresses these issues but also considers corrosion associated with disbanded areas that are distant from holidays.

  2. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  3. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  4. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  5. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  6. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...

  7. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  8. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  9. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...

  10. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...

  11. Laser diagnostics for NTP fuel corrosion studies

    NASA Technical Reports Server (NTRS)

    Wantuck, Paul J.; Butt, D. P.; Sappey, A. D.

    1993-01-01

    Viewgraphs and explanations on laser diagnostics for nuclear thermal propulsion (NTP) fuel corrosion studies are presented. Topics covered include: NTP fuels; U-Zr-C system corrosion products; planar laser-induced fluorescence (PLIF); utilization of PLIF for corrosion product characterization of nuclear thermal rocket fuel elements under test; ZrC emission spectrum; and PLIF imaging of ZrC plume.

  12. Stress corrosion and hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Blackburn, M. J.; Smyrl, W. H.

    1973-01-01

    Service experience applications, experimental data generation, and the development of satisfactory quantitative theories relevant to the suppression and control of stress corrosion cracking in titanium are discussed. The impact of stress corrosion cracking (SCC) on the use of titanium alloys is considered, with emphasis on utilization in the aerospace field. Recent data on hot salt SCC, crack growth in hydrogen gas, and crack growth in liquid environments containing halide ions are reviewed. The status of the understanding of crack growth processes in these environments is also examined.

  13. Corrosion resistant thermal barrier coating

    SciTech Connect

    Levine, S.R.; Miller, R.A.; Hodge, P.E.

    1981-03-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates. Official Gazette of the U.S. Patent and Trademark Office

  14. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.

  15. Coatings for improved corrosion resistance

    SciTech Connect

    Natesan, K.

    1992-05-01

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

  16. METAL CORROSION COUPON CONTAMINATION, CORROSION STUDY DESIGN, AND INTERPRETATION PROBLEMS

    EPA Science Inventory

    As a result of the new Lead and Copper Rule, some water utilities in the United States have begun or will soon begin corrosion demonstration studies. emonstration studies may include pipe rig/loop tests, metal coupon tests, and partial-system tests (fullscale). valuation of corro...

  17. 219-S CORROSION STUDY

    SciTech Connect

    DIVINE JR; PARSONS GL

    2008-12-01

    A minor leak was detected in a drain line for Hood 2B located in the 222-S Laboratory. The line transfers radioactive waste, spent analytical standards, and chemicals used in various analytical procedures. Details are in the report provided by David Comstock, 2B NDE June 2008, work package LAB-WO-07-2012. Including the noted leak, the 222-S Laboratory has experienced two drain line leaks in approximately the last two years of operation. As a consequence, CH2M HILL Hanford Group, Inc. (CH2M HILL) requested the support of ChemMet, Ltd., PC (ChemMet) at the Hanford Site 222-S Laboratory. The corrosion expertise from ChemMet was required prior to preparation of a compatibility assessment for the 222-S Laboratory waste transfer system to assure the expected life of the piping system is extended as much as practicable. The system includes piping within the 222-S Laboratory and the 219-S Waste Storage and Transfer Facility and Operations Process. The ChemMet support was required for an assessment by 222-S staff to analyze what improvements to operational activities may be implemented to extend the tank/piping system life. This assessment will include a summary of the various material types, age, and locations throughout the facility. The assessment will also include a discussion of materials that are safe for drain line disposal on a regular basis, materials that are safe for disposal on a case-by-case basis including specific additional requirements such as flushing, neutralization to a specific pH, and materials prohibited from disposal. The assessment shall include adequate information for 222-S Laboratory personnel to make informed decisions in the future disposal of specific material types by discussing types of compatibility of system materials and potential wastes. The assessment is expected to contain some listing of acceptable waste materials but is not anticipated to be a complete or comprehensive list. Finally the assessment will encompass a brief discussion of

  18. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    SciTech Connect

    Farmer, J.C.; McCright, R.D.

    2000-01-28

    Alloy 22 is an extremely Corrosion Resistant Material, with a very stable passive film. Based upon exposures in the LTCTF, the GC rates of Alloy 22 are typically below the level of detection, with four outliers having reported rates up to 0.75 #mu#m per year. In any event, over the 10,000 year life of the repository, GC of the Alloy 22 (assumed to be 2 cm thick) should not be life limiting. Because measured corrosion potentials are far below threshold potentials, localized breakdown of the passive film is unlikely under plausible conditions, even in SSW at 120 deg C. The pH in ambient-temperature crevices formed from Alloy 22 have been determined experimentally, with only modest lowering of the crevice pH observed under plausible conditions. Extreme lowering of the crevice pH was only observed under situations where the applied potential at the crevice mouth was sufficient to result in catastrophic breakdown of the passive film above the threshold potential in non-buffered conditions not characteristic of the Yucca Mountain environment. In cases where naturally ocurring buffers are present in the crevice solution, little or no lowering of the pH was observed, even with significant applied potential. With exposures of twelve months, no evidence of crevice corrosion has been observed in SDW, SCW and SAW at temperatures up to 90 deg C. An abstracted model has been presented, with parameters determined experimentally, that should enable performance assessment to account for the general and localized corrosion of this material. A feature of this model is the use of the materials specification to limit the range of corrosion and threshold potentials, thereby making sure that substandard materials prone to localized attack are avoided. Model validation will be covered in part by a companion SMR on abstraction of this model.

  19. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  20. Corrosion inhibitor selection for wet pipelines

    SciTech Connect

    Buck, E.

    1995-12-31

    Selection of corrosion inhibitors for wet pipelines is based on laboratory testing and field confirmation. Both the use and selection of corrosion inhibitors are driven by economics. Economics of alternative corrosion protection methods is not treated in this paper, but the economics of proper inhibitor selection are. The key to successful inhibitor selection is careful analysis of pipeline flow conditions and experimental emulation of its corrosive environment. Transportation of inhibitor to the corroding interface must be explicitly considered in the emulation. Standard corrosion rate measurement methods are used to evaluate inhibitors. Inhibitor properties tabulated during evaluation form a core database for continuing quality control.

  1. Fiber optic approach for detecting corrosion

    NASA Astrophysics Data System (ADS)

    Kostecki, Roman; Ebendorff-Heidepriem, Heike; Davis, Claire; McAdam, Grant; Wang, Tianyu; Monro, Tanya M.

    2016-04-01

    Corrosion is a multi-billion dollar problem faced by industry. The ability to monitor the hidden metallic structure of an aircraft for corrosion could result in greater availability of existing aircraft fleets. Silica exposed-core microstructured optical fiber sensors are inherently suited towards this application, as they are extremely lightweight, robust, and suitable both for distributed measurements and for embedding in otherwise inaccessible corrosion-prone areas. By functionalizing the fiber with chemosensors sensitive to corrosion by-products, we demonstrate in-situ kinetic measurements of accelerated corrosion in simulated aluminum aircraft joints.

  2. Microclimate Corrosion Effects in Coastal Environments

    SciTech Connect

    Holcomb, G.R.; Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.

    1996-03-24

    The Albany Research Center is conducting atmospheric corrosion research in coastal environments to improve the performance of materials in the Nation's infrastructure. The corrosion of bare metals, and of painted, thermal-sprayed, and galvanized steels are presented for one-year exposures at sites located on bridges and utility poles along the Oregon coast. The effects of microclimates (for example distance from the ocean, high wind zones, and salt-fog prone regions) are examined in conjunction with sample orientation and sheltered/unsheltered comparisons. An atmospheric corrosion model examines the growth and dissolution of corrosion product layers to arrive at a steady-state thickness and corrosion rate.

  3. Analyses of containment structures with corrosion damage

    SciTech Connect

    Cherry, J.L.

    1996-12-31

    Corrosion damage to a nuclear power plant containment structure can degrade the pressure capacity of the vessel. For the low-carbon, low- strength steels used in containments, the effect of corrosion on material properties is discussed. Strain-to-failure tests, in uniaxial tension, have been performed on corroded material samples. Results were used to select strain-based failure criteria for corroded steel. Using the ABAQUS finite element analysis code, the capacity of a typical PWR Ice Condenser containment with corrosion damage has been studied. Multiple analyses were performed with the locations of the corrosion the containment, and the amount of corrosion varied in each analysis.

  4. Thermal control system corrosion study

    NASA Technical Reports Server (NTRS)

    Yee, Robert; Folsom, Rolfe A.; Mucha, Phillip E.

    1990-01-01

    During the development of an expert system for autonomous control of the Space Station Thermal Control System (TCS), the thermal performance of the Brassboard TCS began to gradually degrade. This degradation was due to filter clogging by metallic residue. A study was initiated to determine the source of the residue and the basic cause of the corrosion. The investigation focused on the TCS design, materials compatibility, Ames operating and maintenance procedures, and chemical analysis of the residue and of the anhydrous ammonia used as the principal refrigerant. It was concluded that the corrosion mechanisms involved two processes: the reaction of water alone with large, untreated aluminum parts in a high pH environment and the presence of chlorides and chloride salts. These salts will attack the aluminum oxide layer and may enable galvanic corrosion between the aluminum and the more noble stainless steel and other metallic elements present. Recommendations are made for modifications to the system design, the materials used, and the operating and maintenance procedures, which should largely prevent the recurrence of these corrosion mechanisms.

  5. STATISTICAL PROCEDURES FOR CORROSION STUDIES

    EPA Science Inventory

    Many utilities will be conducting pipe loop and other experimental studies to optimize corrosion control under the Lead and Copper Rule. his paper presents a discussion of the background and justifications for the selection of different statistical techniques to evaluate experime...

  6. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  7. Less-toxic corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1981-01-01

    Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

  8. Corrosion inhibition for distillation apparatus

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.; Schweighardt, Frank K.

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  9. Corrosion inhibition for distillation apparatus

    SciTech Connect

    Baumert, K.L.; Davis, B.H.; Sagues, A.A.; Schweighardt, F.K.

    1985-04-30

    Tower material corrosion in an atmospheric or subatmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  10. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    Reactor faul elements of the elongated cylindrical type which are jacketed in a corrosion resistant material are described. Each feel element is comprised of a plurality of jacketed cylinders of fissionable material in end to end abutting relationship, the jackets being welded together at their adjoining ends to retain the individual segments together and seat the interior of the jackets.

  11. Corrosion resistant metallic bipolar plate

    DOEpatents

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  12. The dual role of microbes in corrosion

    PubMed Central

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  13. The dual role of microbes in corrosion.

    PubMed

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  14. Corrosion and scaling in solar heating systems

    NASA Astrophysics Data System (ADS)

    Foresti, R. J., Jr.

    1981-12-01

    Corrosion, as experienced in solar heating systems, is described in simplistic terms to familiarize designers and installers with potential problems and their solutions. The role of a heat transfer fluid in a solar system is briefly discussed, and the choice of an aqueous solution is justified. The complexities of the multiple chemical and physical reactions are discussed in order that uncertainties of corrosion behavior can be anticipated. Some basic theories of corrosion are described, aggressive environments for some common metals are identified, and the role of corrosion inhibitors is delineated. The similarities of thermal and material characteristics of a solor system and an automotive cooling system are discussed. Based on the many years of experience with corrosion in automotive systems, it is recommended that similar antifreezes and corrosion inhibitors should be used in solar systems. The importance of good solar system design and fabrication is stressed and specific characteristics that affect corrosion are identified.

  15. Corrosion of retractable type fall arresters.

    PubMed

    Baszczyński, Krzysztof; Jachowicz, Marcin

    2009-01-01

    Retractable type fall arresters constitute a most effective group of components used in personal protection systems protecting against falls from a height. They are designed primarily for outdoor use, which results in exposure to atmospheric factors associated with risk of corrosion of metal elements. This paper presents the results of a study, in which retractable type fall arresters were exposed to a simulated corrosive environment, a neutral salt spray. It discusses the development of corrosion processes depending on the duration of exposure to corrosive conditions. Tests demonstrated that corrosion of elements decreased their strength and impaired the functioning of mobile parts. The article presents methods of testing the correct functioning of devices, necessary for assessing their resistance to corrosion, which have been developed for this purpose. It also analyzes the correlation between corrosion-related damage of retractable type fall arresters and potential hazards for their users. PMID:19744368

  16. Influence of NOM on copper corrosion

    SciTech Connect

    Korshin, G.V.; Ferguson, J.F.; Perry, S.A.L.

    1996-07-01

    Natural organic matter (NOM) profoundly affected the corrosion of copper in a moderately alkaline synthetic water. It decreased the rate of corrosion, increased the rate of copper leaching, and dispersed crystalline inorganic corrosion products. The interaction of NOM with corrosion products was modeled using separate phase of malachite and cuprous oxide. The authors concluded that NOM promotes the formation of pits in a certain narrow range of concentrations (0.1--0.2 mg/L in laboratory tests) and suppresses this type of corrosion at higher dosages. At low DOC concentrations, the main interaction between NOM and the surfaces of corroding metal and corrosion products is adsorption. The influence of NOM on corrosion of metals in real distribution systems must be studied in relation to long periods of surface aging, flow rate, concentration and type of oxidants, pH, and alkalinity.

  17. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  18. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  19. Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corrosion test methods

    SciTech Connect

    Li, J.; Li, M.; Sun, Z. )

    1999-05-01

    During recent decades, accelerated corrosion test equipment and methods simulating atmospheric corrosion have been developed to incorporate the many factors involved in complex accelerated corrosion. A new accelerated corrosion tester was developed to simulate various kinds of atmospheric corrosion environments. The equipment can be used to simulate various types of atmospheric corrosion environments with up to eight factors and can be used to carry out 18 kinds of standard corrosion and environmental tasks.

  20. Effect of corrosion and stress-corrosion cracking on pipe integrity and remaining life

    SciTech Connect

    Jaske, C.E.; Beavers, J.A.

    1996-07-01

    Process piping is often exposed to corrosive fluids. During service, such exposure may cause localized corrosion or stress-corrosion cracking that affects structural integrity. This paper presents a model that quantifies the effect of localized corrosion and stress-corrosion cracking on pipe failure stress. The model is an extension of those that have been developed for oil and gas pipelines. It accounts for both axial and hoop stress. Cracks are modeled using inelastic fracture mechanics. Both flow-stress and fracture-toughness dependent failure modes are addressed. Corrosion and crack-growth rates are used to predict remaining service life.

  1. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking.

    PubMed

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young's modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  2. Corrosion and stress corrosion cracking in coal liquefaction processes

    SciTech Connect

    Baylor, V. B.; Keiser, J. R.

    1980-01-01

    The liquefaction of coal to produce clean-burning synthetic fuels has been demonstrated at the pilot plant level. However, some significant materials problems must be solved before scale-up to commercial levels of production can be completed. Failures due to inadequate materials performance have been reported in many plant areas: in particular, stress corrosion cracking has been found in austenitic stainless steels in the reaction and separation areas and several corrosion has been observed in fractionation components. In order to screen candidate materials of construction, racks of U-bend specimens in welded and as-wrought conditions and unstressed surveillance coupons were exposed in pilot plant vessels and evaluated. Failed components were analyzed on-site and by subsequent laboratory work. Laboratory tests were also performed. From these studies alloys have been identified that are suitable for critical plant locations. 19 figures, 7 tables.

  3. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  4. CORROSION OF HIGH-TEMPERATURE ALLOYS

    SciTech Connect

    John P. Hurley; John P. Kay

    1999-10-01

    Five alloys were tested in the presence of water vapor and water vapor with HCl for 1000 hours using simulated combustion gas. Samples were removed at intervals during each test and measured for determination of corrosion rates. One sample of each alloy was examined with a SEM after the completion of each test. Cumulative corrosion depths were similar for the superstainless alloys. Corrosion for Alloy TP310 roughly doubled. Corrosion for the enhanced stainless alloys changed dramatically with the addition of chlorine. Corrosion for Alloy RA85H increased threefold, whereas Alloy TP347HFG showed an eightfold increase. SEM examination of the alloys revealed that water vapor alone allowed the formation of chromium oxide protective layers on the superstainless alloys. The enhanced stainless alloys underwent more corrosion due to greater attack of sulfur. Iron-rich oxide layers were more likely to form, which do not provide protection from further corrosion. The addition of chlorine further increased the corrosion because of its ability to diffuse through the oxide layers and react with iron. This resulted in a broken, discontinuous, and loose oxide layer that offered less protection. Niobium, although added to aid in creep strength, was found to be detrimental to corrosion resistance. The niobium tended to be concentrated in nodules and was easily attacked through sulfidation, providing conduits for further corrosion deep into the alloy. The alloys that displayed the best corrosion resistance were those which could produce chromium oxide protective layers. The predicted microstructure of all alloys except Alloy HR3C is the same and provided no further information relating to corrosion resistance. No correlation can be found relating corrosion resistance to the quantity of minor austenite-or ferrite-stabilizing elements. Also, there does not appear to be a correlation between corrosion resistance and the Cr:Ni ratio of the alloy. These alloys were tested for their

  5. Localized corrosion resistance of automotive exhaust alloys

    SciTech Connect

    Sabata, A.; Brossia, C.S.; Behling, M.

    1998-12-31

    Corrosion in automotive exhaust systems can be broadly classified as (a) cold end corrosion and (b) hot end corrosion. For the cold end, the requirements include inside-out perforation corrosion resistance and cosmetic corrosion resistance. Perforation corrosion causes noticeable degradation in noise quality and may even affect the back pressure. For the hot end, the key concern has been perforation corrosion resistance. With the use of oxygen sensors in catalytic converters, the failure criteria will become more stringent. Numerous accelerated corrosion tests have been used to rank materials for the Hot End and the Cold End. These include (a) Continuous Test, (b) Cyclic Tests -- Hot End, (c) Cyclic Tests -- Cold End, (d) Electrochemical Ranking. In this paper the authors evaluate some of the commonly used exhaust materials in these accelerated tests. These accelerated tests are easy to use, inexpensive to run as compared to proving ground testing or trailer testing and can provide information in a relatively short time. Here they report lab work to date on some of the accelerated corrosion testing for perforation corrosion resistance. Note that these tests are useful for ranking materials only. Life expectancy of the material can be given only after a correlation is established between the accelerated tests and field performance. The electrochemical tests were designed to gain insight into pit growth kinetics in the accelerated tests.

  6. Corrosion resistant materials in MCFC environment

    NASA Astrophysics Data System (ADS)

    Pigeaud, A.; Yuh, C. Y.; Singh, P.

    A 24-month effort in the development of a corrosion resistant hardware material for molten carbonate fuel cell (MFC) application is described. The objective was to identify an inexpensive alloy for MCFC current collector/bipolar plate application. For this, 310S was selected as the base alloy composition and La, Ce and Si were added to improve corrosion resistance. Eight candidate alloys, including 310S and 316L, were screened in MCFC anode and cathode atmospheres. The techniques used include isothermal corrosion, acoustic emission, thermal cycling corrosion, thermogravimetric analyses, electrical surface resistance, and dual atmosphere corrosion testing. Oxide scales formed were analyzed by standard metallographic techniques. The results indicate that COLT-25+ and Crutemp-25 alloys (both containing 25Cr-25Ni and balance Fe) have the best corrosion resistance in the MCFC environment. Rare earth additives, La and Ce, do not appear to improve isothermal or thermal cycling resistance. Silicon addition appears to improve thermal cycling but not isothermal corrosion resistance. High Mn content (approx. 18%) appears detrimental based on this limited investigation. Currently used 316L has the least corrosion resistance of all the alloys tested. Pressurized tests have shown that high pressure (10 atm) reduces corrosion rate in the anode atmosphere whereas it only slightly affects corrosion rate in the cathode atmosphere.

  7. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  8. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does...

  9. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does...

  10. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does...

  11. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does...

  12. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons... internal corrosion. Each coupon or other means of monitoring internal corrosion must be checked two...

  13. Space Shuttle Corrosion Protection Performance

    NASA Technical Reports Server (NTRS)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

  14. Magnetic field associated with active electrochemical corrosion

    NASA Astrophysics Data System (ADS)

    Abedi, Afshin

    The purpose of this work is to provide a better understanding of the underlying sources of the magnetic field associated with ongoing electrochemical corrosion, to investigate the spatio-temporal information content of the corrosion magnetic field, and to evaluate its potential utility in non-invasive quantification of hidden corrosion. The importance of this work lies in the fact that conventional electrochemical instruments and techniques are not well suited for non-invasive measurements of the rate and dynamics of corrosion in occluded regions such as in aircraft lap joints. With the increase in the number of aging engineered systems there is an increasing demand for more accurate corrosion predictive models that can improve the probability of detection of corrosion induced flaws in structures, and hence reduce the risk of catastrophic failures. Therefore, such rate information is of great importance to the corrosion community. At the present time, there are no other techniques capable of providing such information. This work is the first successful attempt at quantification of the rate of corrosion through non- invasive measurements of its associated magnetic field. It includes the development of appropriate experimental techniques and associated models. Herein we have reviewed previous experiments, explored various exposure conditions and sample geometries, and discussed appropriate experimental procedures. We have defined quantitative magnetic parameters and, in conjunction with mass loss calibration measurements, have used them to determine non-invasively the rate and dynamics of ongoing hidden corrosion. We conclude that the corrosion magnetic field contains spatial and temporal information that correlate with the distribution, magnitude, and time course of currents associated with electrochemical corrosion. In conjunction with appropriate calibration experiments, sample geometry, and experimental topology, the magnetic activity of a corroding sample can be

  15. Castable hot corrosion resistant alloy

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  16. Prevention of corrosion with polyaniline

    NASA Technical Reports Server (NTRS)

    MacDiarmid, Alan G. (Inventor); Ahmad, Naseer (Inventor)

    1997-01-01

    Methods for improving the corrosion inhibition of a metal or metal alloy substrate surface are provided wherein the substrate surface is coated with a polyaniline film. The polyaniline film coating is applied by contacting the substrate surface with a solution of polyaniline. The polyaniline is dissolved in an appropriate organic solvent and the solvent is allowed to evaporate from the substrate surface yielding the polyaniline film coating.

  17. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  18. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  19. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  20. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  1. Corrosion resistance of iron aluminides

    SciTech Connect

    Natesan, K.

    1992-04-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. This paper describes the corrosion performance of these alloys, determined at Argonne Naitonal Laboratory, in environments that simulate coal gasification and fluidized-bed combustion. Thermogravimetric analysis (TGA) was conducted at temperatures of 650--1000{degrees}C in air, 1 vol. % CO-CO{sub 2}, and H{sub 2}-H{sub 2}S environments at two sulfur activities. Upon completion of the kinetic runs, the morphology and structure of the scales formed on the alloy surface were evaluated by scanning electron microscopy and energy-dispersive X-ray analysis. Corrosion tests in simulated combustion environments were conducted at 900{degrees}C in the presence of reagent-grade CaSO{sub 4} and circulating-fluidized-bed deposits for 1000 and 3000 h. The test data on the aluminides from the TGA and combustion tests were compared with the corrosion performance of Type 310 stainless steel tested under similar conditions.

  2. Corrosion performance of iron aluminides

    SciTech Connect

    Natesan, K.

    1993-03-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe[sub 3]Al-based alloys to improve the engineering ductility of these alloys. This paper describes results from the ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne National Laboratory involvesthermogravimetric analyses of alloys exposed to environments that simulate coal gasification and fluidized-bed combustion. Experiments were conducted at 650--1000[degrees]C in simulated oxygen/sulfur gas mixtures. In addition, oxidation/sulfidation behavior of several alumina-forming Fe-Al and Fe-Cr-Ni-Al alloys was determined for comparison with the corrosion rates obtained on iron aluminides. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HC1-containing gases and in the presence of slag from a slogging gasifier. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales. Thermal cycling tests are used to examine the spalling resistance of the scales.

  3. Corrosion performance of iron aluminides

    SciTech Connect

    Natesan, K.

    1993-03-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve the engineering ductility of these alloys. This paper describes results from the ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne National Laboratory involvesthermogravimetric analyses of alloys exposed to environments that simulate coal gasification and fluidized-bed combustion. Experiments were conducted at 650--1000{degrees}C in simulated oxygen/sulfur gas mixtures. In addition, oxidation/sulfidation behavior of several alumina-forming Fe-Al and Fe-Cr-Ni-Al alloys was determined for comparison with the corrosion rates obtained on iron aluminides. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HC1-containing gases and in the presence of slag from a slogging gasifier. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales. Thermal cycling tests are used to examine the spalling resistance of the scales.

  4. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: HD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  5. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.; Copp, Tracy L.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  6. Mechanism of hot corrosion of IN-738

    NASA Technical Reports Server (NTRS)

    Meier, G. H.

    1982-01-01

    The Na2SO4 - induced hot corrosion of IN-738 in the temperature range 900 C to 1000 C is characterized by an initiation stage during which the corrosion rate is slow followed by a propagation stage during which the corrosion rate is markedly accelerated. In the second stage, corrosion is accelerated due essentially to a sulfidation/oxidation mechanism; in the third stage, the rate becomes catastrophic due to acid fluxing induced by an accumulation of refractory metal oxides (particularly MoO3) in the Na2SO4. The sequential stages in the corrosion process are described and a mechanism proposed. The influence of alloy microstructure on the corrosion mechanism is also discussed.

  7. Corrosion Behaviour of Sputtered Alumina Thin Films

    NASA Astrophysics Data System (ADS)

    Reddy, I. Neelakanta; Dey, Arjun; Sridhara, N.; Anoop, S.; Bera, Parthasarathi; Rani, R. Uma; Anandan, Chinnasamy; Sharma, Anand Kumar

    2015-10-01

    Corrosion studies of sputtered alumina thin films grown on stainless steel (SS) 304 were carried out by linear polarization and electrochemical impedance spectroscopy. Noticeable changes were not observed in morphology and surface roughness of films after carrying out the corrosion test. Corrosion current density (icorr) of alumina coated SS decreased up to 10-10 A cm-2 while icorr value in the range of 10-5-10-6 A cm-2 was observed for bare SS. The direct sputtered film showed superior corrosion resistance behaviour than the reactive sputtered film. This might be attributed to the difference in thickness of the films sputtered by direct and reactive methods. The electronic structure of deposited alumina films was studied both before and after corrosion test by X-ray photoelectron spectroscopy technique which also confirmed no structural changes of alumina film after exposing it to corrosive environment.

  8. Electrochemical corrosion testing of metal waste forms

    SciTech Connect

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-12-14

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys.

  9. The 43rd annual corrosion survey

    SciTech Connect

    Not Available

    1992-03-01

    Applying the science of corrosion prevention to energy (petroleums, oil, LNG) pipelines in actual field operating conditions is a vital aspect of safely and efficiently operating a pipeline system. Ignoring corrosion prevention will allow this never-sleeping enemy to steal the strength from steel pipelines, turning them into dangerous junk. Various methods, techniques and technologies are available to the corrosion control department of cross-country pipelines and gas distribution utilities around the world. Every year, billions of dollars on corrosion control, including everything from coatings to cathodic protection facilities to pigging, are spent to keep these energy pipeline systems in peak operational efficiency. This paper reports that for more than 4 decades, this corrosion survey has sought out the opinions of corrosion control experts, asking them what are the problems they face daily and innovative solutions they have tried to help solve these problems.

  10. CORROSION MONITORING OF PLUTONIUM OXIDE AND SNF

    SciTech Connect

    Douglas, D.G.; Haas, C.M.; Smith, C.M.; Ohl, P.C.

    2003-02-27

    While developing a method to measure pressure in totally sealed stainless steel containers holding spent nuclear fuel at the U.S. DOE Hanford Site, Vista Engineering Technologies, LLC (Vista Engineering) personnel adapted the central concept to corrosion monitoring techniques for the same containers. The ability to monitor corrosion within vessels containing spent nuclear fuel, plutonium and other hazardous materials is imperative for safe storage. Vista Engineering personnel have devised a way to monitor corrosion in a totally sealed stainless steel container using a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. The MCCG can be used to detect corrosion as well as measure corrosion rate and does not require any penetration of the containment vessel, which minimizes pressure boundary surface area and sensitive weld materials in the vessels.

  11. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  12. Corrosion and corrosion control of aluminum and steel in lightweight automotive applications

    SciTech Connect

    Simpson, T.C.; Moran, J.P.; Soepenberg, E.N.

    1995-12-31

    This book features 23 papers presented at the Corrosion/95 symposium, Corrosion of Light-Weight and Precoated Metals for Automotive Applications, and selected Corrosion/93 papers. It is one of the first symposia covering both lightweight and durability effects for steel and aluminum in automotive body construction. Topics include conversion coatings, laboratory and field testing, novel applications, and the study of automotive corrosion mechanisms.

  13. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  14. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  15. Corrosion control in water injection systems

    SciTech Connect

    Patton, C.C. )

    1993-08-01

    Corrosion control in water injection systems encompasses a wide range of technologies, including chemicals (corrosion inhibitors, biocides, and oxygen scavengers); corrosion-resistant materials (metallic and nonmetallic); internal coatings and linings; mechanical removal of dissolved oxygen; velocity control; and prevention of oxygen entry and galvanic couples. This article reviews the way that these technologies are used in modern water-injection systems (both seawater and produced water) to provide an acceptable service life and high-quality injection water.

  16. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  17. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  18. Fabrication and testing of corrosion resistant coatings

    SciTech Connect

    Stinton, D.P.; McLaughlin, J.C.; Riester, L.

    1991-01-01

    The susceptibility of SiC and Si{sub 3}N{sub n} to sodium corrosion mandates that corrosion resistant coatings be developed to protect silicon-based turbine engine components. Materials with good corrosion resistance and thermal expansions that nearly match SiC and Si{sub 3}N{sub 4} have been identified. Corrosion testing of hot-pressed pellets of these compounds has identified the most promising materials. Development of chemical vapor deposition system to apply these materials has been initiated. 20 refs., 3 figs.

  19. Boric Acid Corrosion of Concrete Rebar

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Yang, L.; Chiang, K.–T.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i) borated water flowing in a simulated concrete crack, (ii) borated water flowing over a concrete surface, (iii) borated water that has reacted with concrete, and (iv) 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS) and linear polarization resistance (LPR) probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or less)when the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  20. Corrosion probe. Innovative technology summary report

    SciTech Connect

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.

  1. Requirements for inhibition of localized corrosion

    SciTech Connect

    Gunaltun, Y.M.; Chevrot, T.

    1999-10-01

    In cases of pipeline failures from internal corrosion, localized corrosion (LC) is the principal cause. Inhibition is the most common way to control corrosion in wet gas and oil production lines. Therefore, the inhibitor should be able to control LC in all cases where it may occur. Inhibitor selection philosophy should be based on this requirement. Laboratory and field evaluation of corrosion inhibitors showed that some products were almost 100% efficient in preventing LC if their concentration in the water phase was above a threshold value. The major uncertainty was the inhibitor availability at the pipe surface.

  2. Influence of corrosion layers on quantitative analysis

    NASA Astrophysics Data System (ADS)

    Denker, A.; Bohne, W.; Opitz-Coutureau, J.; Rauschenberg, J.; Röhrich, J.; Strub, E.

    2005-09-01

    Art historians and restorers in charge of ancient metal objects are often reluctant to remove the corrosion layer evolved over time, as this would change the appearance of the artefact dramatically. Therefore, when an elemental analysis of the objects is required, this has to be done by penetrating the corrosion layer. In this work the influence of corrosion was studied on Chinese and Roman coins, where removal of oxidized material was possible. Measurements on spots with and without corrosion are presented and the results discussed.

  3. Corrosion behavior of 2205 duplex stainless steel.

    PubMed

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  4. High temperature electrochemical corrosion rate probes

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

    2005-09-01

    Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

  5. Novel methods for aircraft corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.

    1995-07-01

    Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.

  6. Aluminum alloy clad fiber optic corrosion sensor

    NASA Astrophysics Data System (ADS)

    Rutherford, Paul S.; Ikegami, Roy; Shrader, John E.; Sherrer, David; Zabaronick, Noel; Zeakes, Jason S.; Murphy, Kent A.; Claus, Richard O.

    1997-06-01

    Life extension programs for military metallic aircraft are becoming increasingly important as defense budgets shrink and world economies realign themselves to an uncertain future. For existing military weapon systems, metallic corrosion damage costs as estimated $DOL8 billion per year. One approach to reducing this cost is to develop a reliable method to detect and monitor corrosion in hidden metallic structure with the use of corrosion sensors which would give an early indication of corrosion without significant disassembly, thereby reducing maintenance costs. This presentation describes the development, analysis, and testing of a fiber optic corrosion sensor developed jointly with the Virginia Polytechnic Fiber and Electro-Optics Research Center and sponsored by Wright Laboratory Materials Directorate. In the sensor which was researched, the normal cladding is removed in the sensor region, and replaced with aluminum alloy and allowed to corrode on coupons representative of C/KC-135 body structure in an ASTM B117 salt spray chamber and a Boeing developed Crevice Corrosion Cell. In this approach, the optical signal output of the sensor was originally designed to increase as corrosion takes place, however interaction with the corrosion byproducts yielded different results than anticipated. These test results to determine a correlation between the sensor output and the structural degradation due to corrosion are discussed.

  7. NOVEL CORROSION SENSOR FOR VISION 21 SYSTEMS

    SciTech Connect

    Heng Ban

    2004-12-01

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall objective of this proposed project is to develop a technology for on-line corrosion monitoring based on a new concept. This report describes the initial results from the first-year effort of the three-year study that include laboratory development and experiment, and pilot combustor testing.

  8. Corrosion of austenitic alloys in aerated brines

    SciTech Connect

    Heidersbach, R.; Shi, A.; Sharp, S.

    1999-11-01

    This report discusses the results of corrosion exposures of three austenitic alloys--3l6L stainless steel, UNS N10276, and UNS N08367. Coupons of these alloys were suspended in a series of brines used for processing in the pharmaceutical industry. The effects of surface finish and welding processes on the corrosion behavior of these alloys were determined. The 316L coupons experienced corrosion in several environments, but the other alloys were unaffected during the one-month exposures of this investigation. Electropolishing the surfaces improved corrosion resistance.

  9. Failure Prevention by Short Time Corrosion Tests

    SciTech Connect

    MICKALONIS, JOHN

    2005-05-01

    Short time corrosion testing of perforated sheets and wire meshes fabricated from Type 304L stainless steel, Alloy 600 and C276 showed that 304L stainless steel perforated sheet should perform well as the material of construction for dissolver baskets. The baskets will be exposed to hot nitric acid solutions and are limited life components. The corrosion rates of the other alloys and of wire meshes were too high for useful extended service. Test results also indicated that corrosion of the dissolver should drop quickly during the dissolutions due to the inhibiting effects of the corrosion products produced by the dissolution processes.

  10. Real-World Water System Lead and Copper Corrosion Control

    EPA Science Inventory

    This presentation provides specific background on lead and copper corrosion control chemistry and strategies, and integrates it with other important distribution system corrosion control objectives. Topics covered include: driving force for corrosion (oxidants); impacts of oxida...

  11. Corrosion `98: 53. annual conference and exposition, proceedings

    SciTech Connect

    1998-12-31

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What`s All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO{sub 2} Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  12. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  13. Corrosion characteristics of nickel alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1979-01-01

    This bibliography cites 118 articles from the international literature concerning corrosion characteristics of nickel alloys. Articles dealing with corrosion resistance, corrosion tests, intergranular corrosion, oxidation resistance, and stress corrosion cracking of nickel alloys are included.

  14. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  15. Novel Corrosion Sensor for Vision 21 Systems

    SciTech Connect

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.

  16. Metal levels in corrosion of spinal implants

    PubMed Central

    Beguiristain, Jose; Duart, Julio

    2007-01-01

    Corrosion affects spinal instrumentations and may cause local and systemic complications. Diagnosis of corrosion is difficult, and nowadays it is performed almost exclusively by the examination of retrieved instrumentations. We conducted this study to determine whether it is possible to detect corrosion by measuring metal levels on patients with posterior instrumented spinal fusion. Eleven asymptomatic patients, with radiological signs of corrosion of their stainless steel spinal instrumentations, were studied by performing determinations of nickel and chromium in serum and urine. Those levels were compared with the levels of 22 patients with the same kind of instrumentation but without evidence of corrosion and to a control group of 22 volunteers without any metallic implants. Statistical analysis of our results revealed that the patients with spinal implants without radiological signs of corrosion have increased levels of chromium in serum and urine (P < 0.001) compared to volunteers without implants. Corrosion significantly raised metal levels, including nickel and chromium in serum and urine when compared to patients with no radiological signs of corrosion and to volunteers without metallic implants (P < 0.001). Metal levels measured in serum have high sensibility and specificity (area under the ROC curve of 0.981). By combining the levels of nickel and chromium in serum we were able to identify all the cases of corrosion in our series of patients. The results of our study confirm that metal levels in serum and urine are useful in the diagnosis of corrosion of spinal implants and may be helpful in defining the role of corrosion in recently described clinical entities such as late operative site pain or late infection of spinal implants. PMID:17256156

  17. Effect of vapor phase corrosion inhibitor on microbial corrosion of aluminum alloys.

    PubMed

    Yang, S S; Ku, C H; Bor, H J; Lin, Y T

    1996-02-01

    Vapor phase corrosion inhibitors were used to investigate the antimicrobial activities and anticorrosion of aluminum alloy. Aspergillus flavus, A. niger, A. versicolor, Chaetomium globosum and Penicillium funiculosum had moderate to abundant growth on the aluminum alloy AA 1100 at Aw 0.901, while there was less growth at Aw 0.842. High humidity stimulated microbial growth and induced microbial corrosion. Dicyclohexylammonium carbonate had a high inhibitory effect on the growth of test fungi and the microbial corrosion of aluminum alloy, dicyclohexylammonium caprate and dicyclohexylammonium stearate were the next. Aluminum alloy coating with vapor phase corrosion inhibitor could prevent microbial growth and retard microbial corrosion. PMID:10592784

  18. General Corrosion and Localized Corrosion of the Drip Shield

    SciTech Connect

    F. Hua; K. Mon

    2003-06-24

    The recommended waste package (WP) design is described in BSC (2001a). The design includes a double-wall WP underneath a protective drip shield (DS) (BSC 2003a). The purpose of the process-level models developed in this report is to model dry oxidation (DOX), general corrosion (GC) and localized corrosion (LC) of the DS plate material, which is made of Ti Grade 7. The DS design also includes structural supports fabricated from Ti Grade 24. Degradation of Ti Grade 24 is not considered in this report. The DS provides protection for the waste package outer barrier (WPOB) both as a barrier to seepage water contact and a physical barrier to potential rockfall. This Model Report (MR) serves as a feed to the Integrated Waste Package Degradation Model (IWPD) analyses, and was developed in accordance with the Technical Work Plan (TWP) (BSC 2002a). The models contained in this report serve as a basis to determine whether or not the performance requirements for the DS can be met.

  19. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    PubMed

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents. PMID:25188842

  20. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  1. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  2. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  3. Corrosion protected reversing heat exchanger

    SciTech Connect

    Zawierucha, R.

    1984-09-25

    A reversing heat exchanger of the plate and fin type having multiple aluminum parting sheets in a stacked arrangement with corrugated fins separating the sheets to form multiple flow paths, means for closing the ends of the sheets, an input manifold arrangement of headers for the warm end of of the exchanger and an output manifold arrangement for the cold end of the exchanger with the input air feed stream header and the waste gas exhaust header having an alloy of zinc and aluminum coated on the inside surface for providing corrosion protection to the stack.

  4. Beryllium fluoride film protects beryllium against corrosion

    NASA Technical Reports Server (NTRS)

    O donnell, P. M.; Odonnell, P. M.

    1967-01-01

    Film of beryllium fluoride protects beryllium against corrosion and stress corrosion cracking in water containing chloride ion concentrations. The film is formed by exposing the beryllium to fluorine gas at 535 degrees C or higher and makes beryllium suitable for space applications.

  5. Drywell corrosion stopped at Oyster Creek

    SciTech Connect

    Lipford, B.L. ); Flynn, J.C.

    1993-11-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results.

  6. Electromagnetic Metrology on Concrete and Corrosion.

    PubMed

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S 11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  7. A Course in Electrochemical and Corrosion Engineering.

    ERIC Educational Resources Information Center

    Van Zee, John

    1985-01-01

    Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)

  8. Magnetron Sputtering Deposits Corrosion-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Thakoor, A. P.; Williams, R. M.

    1986-01-01

    Dense, amorphous, metallic film resists corrosion attack by acid. Coatings thermally stable up to 800 degrees C and made corrosion resistant by proper choice of sputtering deposition conditions. Protective, corrosionresistant coatings applied to process equipment that comes in contact with aqueous, neutral, or acidic solutions in chemical, petroleum, and paper industries, in wastewater treatment, and in heat exchangers.

  9. TRW CHARGED DROPLET SCRUBBER CORROSION STUDIES

    EPA Science Inventory

    The report gives results of corrosion studies to provide definitive data concerning the corrosive nature of coke-oven waste-heat flue gas and its effects on wet electrostatic precipitators, and specifically on TRW's Charged Droplet Scrubber (CDS). The study characterized the chem...

  10. Biobased polymers for corrosion protection of metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  11. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  12. Microbial iron respiration: impacts on corrosion processes.

    PubMed

    Lee, A K; Newman, D K

    2003-08-01

    In this review, we focus on how biofilms comprising iron-respiring bacteria influence steel corrosion. Specifically, we discuss how biofilm growth can affect the chemistry of the environment around the steel at different stages of biofilm development, under static or dynamic fluid regimes. We suggest that a mechanistic understanding of the role of biofilm metabolic activity may facilitate corrosion control. PMID:12734693

  13. NON-UNIFORM COPPER CORROSION: RESEARCH UPDATE

    EPA Science Inventory

    Pinhole leaks due to copper pitting corrosion are a major cause of home plumbing failure. This study documents cases of copper pitting corrosion found in homes supplied by Butler County Environmental Services in Ohio. SEM. XRD, and optical microscopy were used to document pit s...

  14. Electromagnetic Metrology on Concrete and Corrosion*

    PubMed Central

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  15. Computer-Aided Corrosion Program Management

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis

    2010-01-01

    This viewgraph presentation reviews Computer-Aided Corrosion Program Management at John F. Kennedy Space Center. The contents include: 1) Corrosion at the Kennedy Space Center (KSC); 2) Requirements and Objectives; 3) Program Description, Background and History; 4) Approach and Implementation; 5) Challenges; 6) Lessons Learned; 7) Successes and Benefits; and 8) Summary and Conclusions.

  16. Study of corrosion of 1100 aluminum

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Loess, R. E.; Mori, S.

    1967-01-01

    Corrosion of 1100 aluminum in oxygen-saturated water at 70 degrees C under experimental conditions was studied, emphasizing effects of exposure interruption, the number of specimens, and the refreshment rate. A logarithmic equation was derived to express the corrosion rate.

  17. Study of stress corrosion in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Brummer, S. B.

    1967-01-01

    Mechanism of the stress corrosion cracking of high-strength aluminum alloys was investigated using electrochemical, mechanical, and electron microscopic techniques. The feasibility of detecting stress corrosion damage in fabricated aluminum alloy parts by nondestructive testing was investigated using ultrasonic surface waves and eddy currents.

  18. Corrosion problems with aqueous coolants, final report

    SciTech Connect

    Diegle, R B; Beavers, J A; Clifford, J E

    1980-04-11

    The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

  19. Factors affecting the corrosivity of pulping liquors

    NASA Astrophysics Data System (ADS)

    Hazlewood, Patrick Evan

    Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.

  20. The corrosion behavior of DWPF glasses

    SciTech Connect

    Ebert, W.L.; Bates, J.K.

    1995-06-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed.

  1. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  2. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  3. STIFLING OF CREVICE CORROSION IN ALLOY 22

    SciTech Connect

    K.G. Mon; G.M. Gordon; R.B. Rebak

    2005-07-01

    Artificially creviced Alloy 22 (N06022) specimens may be susceptible to crevice corrosion in presence of hot chloride containing solutions. The presence of oxyanions in the electrolyte, especially nitrate, may inhibit the nucleation and growth of crevice corrosion. Constant potential tests were performed using tightly creviced specimens of Alloy 22. It was found that crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. It was found that as the crevice corrosion nucleated, the current initially increased but later decreased. The net measured current can be converted into penetration following a power law fit of the experimental data. The average power law coefficient ''n'' was found to be 0.439, suggesting that even under constant applied potential, crevice corrosion penetration is diffusion controlled.

  4. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  5. Corrosion and Environmental Degradation, 2 Volume Set

    NASA Astrophysics Data System (ADS)

    Schütze, Michael; Cahn, Robert W.; Haasen, Peter; Kramer, E. J.

    2001-06-01

    Corrosion and corrosion protection is one of most important topics in applied materials science. Corrosion science is not only important from an economic point of view, but, due to its interdisciplinary nature combining metallurgy, materials physics and electrochemistry, it is also of high scientific interest. Nowadays corrosion science even gets new impetus from surface science and polymer chemistry. This two-volume reference work belonging to the well renown series Materials Science and Tehcnology provides the reader with a sound and broad survey on the whole subject - from the fundamentals to the latest research results. Written by a team of international top-experts it will become an indispensable reference for any materials scientist, physicist or chemist involved in corrosion science.

  6. Techniques for assessment of soil corrosivity

    SciTech Connect

    Durr, C.L.; Beavers, J.A.

    1998-12-31

    Techniques for the assessment of soil corrosivity were evaluated in conjunction with a program for the National Cooperative Highway Research Program on corrosion of steel pilings. The work consisted of a state-of-the-art survey of the literature, field corrosion monitoring, laboratory testing of soils, and the preparation of a recommended practice. The practice will provide guidance to state DOTS in the assessment of the corrosivity of field sites where underground structures have been, or will be, installed. This paper summarizes results of the state-of-the-art survey, the recommended practice, and application of the practice to several existing field sites. Results of the research indicate that a relatively small number of variables are required to describe the corrosivity of a field site. These variables include soil resistivity, pH, soil particle size and the position of the structure with respect to the water table.

  7. Detection and Assessment of Aircraft Corrosion

    SciTech Connect

    Maldonado, R L; Jones, K W

    1993-05-22

    The detection and assessment of existing corrosion, or the onset thereof, in aircraft structures, related systems and components is of major concern to the United States aviation community. In this work several types of ion- and photon-beam analytical techniques were applied to the detection and assessment of corrosion. A method of laboratory classification of surface corrosion, and the identification of a corrosion preventative compound (CPC)applied on skin material removed from aircraft structures was developed. The results of this research will be useful in the development of instrumentation and inspection techniques to detect and assess corrosion. These techniques also will be useful in studying the mechanisms and efficacy of current and future CPCs. Developed instrumentation and inspection techniques have enormous potential for commercial and military application in many areas, including the transportation, nuclear, petroleum, and building sectors.

  8. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  9. Microencapsulation Technologies for Corrosion Protective Coating Applications

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  10. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  11. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1995-08-01

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.

  12. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1995-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  13. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1983-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, anad silicon. Previously announced in STAR as N81-23243

  14. Stifling of Crevice Corrosion in Alloy 22

    SciTech Connect

    Mon, K G; Gordon, G M; Rebak, R B

    2005-06-08

    Artificially creviced Alloy 22 (N06022) specimens may be susceptible to crevice corrosion in presence of hot chloride containing solutions. The presence of oxyanions in the electrolyte, especially nitrate, may inhibit the nucleation and growth of crevice corrosion. Constant potential tests were performed using tightly creviced specimens of Alloy 22. It was found that crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. It was found that as the crevice corrosion nucleated, the current initially increased but later decreased. The net measured current can be converted into penetration following a power law fit of the experimental data. The average power law coefficient ''n'' was found to be 0.439, suggesting that even under constant applied potential crevice corrosion penetration is diffusion controlled.

  15. Corrosion protection with eco-friendly inhibitors

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3‑2 and NO‑3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10‑4 M 93% efficiency was exhibited at this concentration.

  16. Ultrasonic monitoring of pitting corrosion

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J. C.; Cegla, F. B.; Bazaz, H.; Lozev, M.

    2013-01-01

    Exposure to corrosive substances in high temperature environments can cause damage accumulation in structural steels, particularly in the chemical and petrochemical industries. The interaction mechanisms are complex and varied; however initial damage propagation often manifests itself in the form of localized areas of increased material loss. Recent development of an ultrasonic wall thickness monitoring sensor capable of withstanding temperatures in excess of 500°C has allowed permanent monitoring within such hostile environments, providing information on how the shape of a pulse which has reflected from a corroding surface can change over time. Reconstructing localized corrosion depth and position may be possible by tracking such changes in reflected pulse shape, providing extra information on the state of the backwall and whether process conditions should be altered to increase plant life. This paper aims to experimentally investigate the effect certain localized features have on reflected pulse shape by `growing' artificial defects into the backwall while wall thickness is monitored using the sensor. The size and complexity of the three dimensional scattering problem lead to the development of a semi-analytical simulation based on the distributed point source method (DPSM) which is capable of simulating pulse reflection from complex surfaces measuring approximately 17×10λ Comparison to experimental results show that amplitude changes are predicted to within approximately 1dB and that pulse shape changes are accurately modelled. All experiments were carried out at room temperature, measurements at high temperature will be studied in the future.

  17. Microbial corrosion of aluminum alloy.

    PubMed

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  18. Anti-Corrosive Powder Particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald; MacDowell, Louis, III

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks partners for a new approach in protecting embedded steel surfaces from corrosion. Corrosion of reinforced steel in concrete structures is a significant problem for NASA structures at Kennedy Space Center (KSC) because of the close proximity of the structures to salt spray from the nearby Atlantic Ocean. In an effort to minimize the damage to such structures, coatings were developed that could be applied as liquids to the external surfaces of a substrate in which the metal structures were embedded. The Metallic Pigment Powder Particle technology was developed by NASA at KSC. This technology combines the metallic materials into a uniform particle. The resultant powder can be sprayed simultaneously with a liquid binder onto the surface of concrete structures with a uniform distribution of the metallic pigment for optimum cathodic protection of the underlying steel in the concrete. Metallic Pigment Powder Particle technology improves upon the performance of an earlier NASA technology Liquid Galvanic Coating (U.S. Patent No. 6,627,065).

  19. Migrating corrosion inhibitor blend for reinforced concrete: Part 1 -- Prevention of corrosion

    SciTech Connect

    Elsener, B.; Buechler, M.; Stalder, F.; Boehni, H.

    1999-12-01

    The efficiency of a migrating corrosion inhibitor in preventing corrosion of mild steel was investigated in saturated calcium hydroxide (Ca[OH]{sub 2}) solutions and in mortar. The protective effect of the inhibitor against pitting corrosion caused by chloride attack and against uniform corrosion as a result of carbonation was determined. Results showed that high concentrations ({approx}10%) allowed the inhibition of pitting corrosion tritiation in solution containing 1 M/L sodium chloride (NaCl). However, inhibiting properties can be lost by evaporation of the volatile constituent of the inhibitor or by the precipitation of the nonvolatile fraction of the inhibitor in presence of calcium ions. Addition of the inhibitor blend to mortar yielded a retardation of the corrosion initiation in the case of chloride-induced corrosion, but o significant reduction in corrosion rate. No effect was found in carbonated samples, and no influence on the corrosion rate was detected. Additionally, the estimation of the extent of the retarding effect on corrosion initiation on real structures was difficult, as the inhibitor was found to evaporate from the mortar. This evaporation resulted in a loss of inhibiting properties. Hence, the long-term efficiency of the inhibitor could not be guaranteed.

  20. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion...

  1. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion...

  2. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion...

  3. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion...

  4. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  5. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  6. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  7. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported...

  8. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  9. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  10. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  11. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported...

  12. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  13. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  14. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  15. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported...

  16. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  17. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  18. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  19. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  20. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  1. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported...

  2. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  3. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  4. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  5. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  6. Antimony tartrate corrosion inhibitive composition for coolant systems

    SciTech Connect

    Payerle, N.E.

    1987-08-11

    An automobile coolant concentrate is described comprising (a) a liquid polyhydric alcohol chosen from the group consisting of ethylene glycol, propylene glycol, diethylene glycol and mixtures thereof, and (b) corrosion inhibitors in a corrosion inhibitory amount with respect to corrosion of lead-containing solders, the corrosion inhibitors comprising (i) an alkali metal antimony tartrate, and (ii) an azole compound.

  7. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  8. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: General. 192.475... Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported by... taken to minimize internal corrosion. (b) Whenever any pipe is removed from a pipeline for any...

  9. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  10. Mesoporous silica nanoparticles for active corrosion protection.

    PubMed

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect. PMID:21344888

  11. Novel NDE fiber optic corrosion sensor

    NASA Astrophysics Data System (ADS)

    Rutherford, Paul S.; Ikegami, Roy; Shrader, John E.; Sherrer, David; Zabaronick, Noel; Zeakes, Jason S.; Murphy, Kent A.; Claus, Richard O.

    1996-05-01

    Life extension programs for military metallic aircraft are becoming increasingly important as defense budgets shrink and world economies realign themselves to an uncertain future. For existing military weapon systems, metallic corrosion damage costs an estimated $8 billion per year. One approach to reducing this cost is to develop a reliable method to detect and monitor corrosion in hidden metallic structure with the use of corrosion sensors which would give an early indication of corrosion without significant disassembly. This paper describes the current status of the development, analysis, and testing of a fiber optic corrosion sensor developed jointly by Boeing and Virginia Tech Fiber & Electro-Optics Research Center and sponsored by USAF Wright Laboratory, Materials Directorate, contract #F33615-93-C-5368. In the sensor which is being developed under this contract, the normal cladding is removed in the sensor region, and replaced with aluminum alloy and allowed to corrode on coupons representative of C/KC-135 body structure in an ASTM B117 salt spray chamber. In this approach, the optical signal out of the sensor is designed to increase as corrosion takes place. These test results to determine the correlation between sensor output and structural degradation due to corrosion are discussed.

  12. Atmospheric corrosion of metals in industrial city environment

    PubMed Central

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust. PMID:26217736

  13. Atmospheric corrosion of metals in industrial city environment.

    PubMed

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust. PMID:26217736

  14. Atomistic insights into aqueous corrosion of copper.

    SciTech Connect

    Jeon, B.; Sankaranarayanan, S. K. R. S.; van Duin, A. C. T.; Ramanathan, S.

    2011-06-21

    Corrosion is a fundamental problem in electrochemistry and represents a mode of failure of technologically important materials. Understanding the basic mechanism of aqueous corrosion of metals such as Cu in presence of halide ions is hence essential. Using molecular dynamics simulations incorporating reactive force-field (ReaxFF), the interaction of copper substrates and chlorine under aqueous conditions has been investigated. These simulations incorporate effects of proton transfer in the aqueous media and are suitable for modeling the bond formation and bond breakage phenomenon that is associated with complex aqueous corrosion phenomena. Systematic investigation of the corrosion process has been carried out by simulating different chlorine concentration and solution states. The structural and morphological differences associated with metal dissolution in the presence of chloride ions are evaluated using dynamical correlation functions. The simulated atomic trajectories are used to analyze the charged states, molecular structure and ion density distribution which are utilized to understand the atomic scale mechanism of corrosion of copper substrates under aqueous conditions. Increased concentration of chlorine and higher ambient temperature were found to expedite the corrosion of copper. In order to study the effect of solution states on the corrosion resistance of Cu, partial fractions of proton or hydroxide in water were configured, and higher corrosion rate at partial fraction hydroxide environment was observed. When the Cl{sup -} concentration is low, oxygen or hydroxide ion adsorption onto Cu surface has been confirmed in partial fraction hydroxide environment. Our study provides new atomic scale insights into the early stages of aqueous corrosion of metals such as copper.

  15. Corrosion and hydrogen embrittlement of nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Desai, Tapas

    Nanocrystalline (nc) materials have attracted the interest of the scientific community because of their unique physical and mechanical properties. However, limited research has been performed to analyze their electrochemical behavior. The majority of research in the field of electrochemical and corrosion behavior exists for electrodeposited nanocrystalline metals. This research studies the behavior of sputter-deposited nc Nickel films in corrosive and hydrogen environment by potentiodynamic polarization and microindentation. The surface morphology and composition of the samples was examined by Scanning Electron Microscopy and Energy Dispersive X-Ray spectroscopy. Bulk Ni samples exhibit mild passivation in 3.5 % NaCl solution. The surface reveals a fine distribution of small pits and numerous large pits. However, nc Ni films show a higher corrosion potential, but lower corrosion rate. This can be attributed to the rapid formation of a passive film to resist the corrosion, and better purity of sputtered films. A very uniform and periodic corrosion pattern is observed on the surface, without any pitting. In 0.1 N H2 SO4 solution, active dissolution of Ni was observed in both bulk and nanocrystalline samples. This is due to the absence of passivation for Ni in this environment. Nc Ni shows a higher corrosion rate and higher anodic corrosion potential. This behavior is attributed to a higher density of grain boundaries that act as a catalyst to the hydrogen reduction reaction and increase the corrosion rate. Effect of electrochemically charged hydrogen was observed for bulk and nanocrystalline Nickel. Bulk Ni displayed a slight increase in hardness and signs of hydrogen induced plastic deformation. On the other hand, the nanocrystalline Ni shows brittle failure by buckling and spalling. This is attributed to its limited ductility and the high density that act as preferred sites for hydrogen adsorption and subsequently enhance hydrogen diffusion, leading to

  16. Novel Corrosion Sensor for Vision 21 Systems

    SciTech Connect

    Heng Ban

    2005-12-01

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall objective of this project is to develop a technology for on-line corrosion monitoring based on a new concept. This objective is to be achieved by a laboratory development of the sensor and instrumentation, testing of the measurement system in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. The initial plan for testing at the coal-fired pilot-scale furnace was replaced by testing in a power plant, because the operation condition at the power plant is continuous and more stable. The first two-year effort was completed with the successful development sensor and measurement system, and successful testing in a muffle furnace. Because of the potential high cost in sensor fabrication, a different type of sensor was used and tested in a power plant burning eastern bituminous coals. This report summarize the experiences and results of the first two years of the three-year project, which include laboratory

  17. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  18. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  19. Corrosion performance and application limits of corrosion-resistant alloys in oilfield service

    SciTech Connect

    Miyasaka, A.; Ogawa, H.

    1995-03-01

    The corrosion behavior of corrosion-resistant alloys (CRA) in sour environment was investigated using a duplex stainless steel as a representative CRA. Changes in corrosion morphologies resulting from changes in environmental aggressiveness were elucidated. The application limits of CRA were shown to be determined by whether pitting corrosion occurred. A theory was proposed for predicting the corrosion morphologies and, thus, determining the application limits of the CRA. The validity of prediction by this new theory was confirmed by good agreement with results from long-term immersion tests and a field test for actual-size test pipes. Since this theory was based on the corrosion mechanism, it showed many advantages: the prediction was accurate, the results for one environment could be extended to other environments, and the prediction was conducted very quickly.

  20. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  1. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  2. New sulfur-containing corrosion inhibitor

    SciTech Connect

    Prince, P.

    2000-04-01

    No corrosion inhibitor available today is ideal in every way, but a new class of sulfur-containing compounds promises to address many field requirements. This article describes the performance characteristics of these compounds and discusses possible inhibition mechanisms. The emphasis in this work was on better understanding corrosion inhibition by sulfur-containing inhibitors under high shear-stress conditions, with special focus on localized (pitting) corrosion. The results indicate that the new sulfur-containing inhibitors (e.g., mercaptoalcohol [MA]) could be more effective in the field than currently available inhibitors.

  3. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA )

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  4. Corrosion resistant coatings from conducting polymers

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1993-12-01

    Cr-based corrosion resistant undercoatings will have to be replaced because of environmental and health concerns. A coating system of a conducting polyaniline primer layer topcoated with epoxy or polyurethane, is being evaluated for corrosion resistance on mild steel in 0.1 M HCl or in a marine setting. Results of both laboratory and Beach Site testing indicate that this coating is very effective; even when the coatings are scratched to expose bare metal, the coated samples show very little signs of corrosion in the exposed area. 3 figs, 6 refs.

  5. Corrosion of electronic materials and devices.

    PubMed

    Comizzoli, R B; Frankenthal, R P; Milner, P C; Sinclair, J D

    1986-10-17

    Electronic materials and devices corrode in the same ways as automobiles, bridges, and pipelines, but their typically small dimensions make them orders of magnitude more susceptible to corrosion failure. As elsewhere, the corrosion involves interactions with the environment. Under control, these interactions can be put to use, as in the formation of protective and functional oxide films for superconducting devices. Otherwise, they cause damage, as in the electrolytic dissolution of conductors, even gold, in the presence of humidity and ionic contamination from atmospheric particles and gases. Preventing corrosion entails identifying the damaging interactions and excluding species that allow them to occur. PMID:17834532

  6. Air- and Oxy-Fired Fireside Corrosion

    SciTech Connect

    Holcomb, G. R.; Tylczak, J.; Carney, C.; Laughlin, D.; Zhu, J.; Wise, A.

    2014-03-04

    The primary goal of this work was to examine the corrosion effects from flue gas composition changes arising from oxy‐combustion. At 700°C, increased SO{sub X}, CO{sub 2}, and H{sub 2}O contents in the gas phase arising from various oxy‐combustion flue gas recirculation scenarios, while maintaining constant ash deposit chemistry, do not increase corrosion in superheater or reheater tubing. At 400°C, for both oxidative and reducing conditions, the corrosion rates were lower than at 700°C.

  7. Corrosion-Indicating Pigment And Probes

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bugga, Ratnakumar V.; Attia, Alan I.

    1993-01-01

    Proposed hydrogen-sensitive paint for metal structures changes color at onset of corrosion, involving emission of hydrogen as result of electrochemical reactions. Pigment of suitable paint includes rhodium compound RhCl(PPh3)3, known as Wilkinson's catalyst. As coating on critical parts of such structures as bridges and aircraft, paint gives early warning of corrosion, and parts thus repaired or replaced before failing catastrophically. Reveals corrosion before it becomes visible to eye. Inspection for changes in color not ordinarily necessitate removal of structure from service, and costs less than inspection by x-ray or thermal neutron radiography, ultrasonic, eddy-current, or acoustic-emission techniques.

  8. A survey of techniques for corrosion monitoring

    SciTech Connect

    Mickalonis, J.I.

    1992-10-01

    Corrosion monitoring techniques have improved with advances in instrumentation technology and corrosion research. Older techniques, such as coupon immersion, generally provide historical information. The new electrochemical techniques, which have not been used widely at SRS, allow on-line monitoring and correlation with process changes. These techniques could improve the corrosion assessment of the waste tanks to be used for In-Tank Precipitation and Extended Sludge Processing. A task was initiated to place an electrochemical probe into tank 48 for testing the utility of this technique for waste tank applications.

  9. On the Problem of Stress Corrosion

    NASA Technical Reports Server (NTRS)

    Graf, L.

    1946-01-01

    The object of the present work is first to investigate accurately the processes during stress corrosion, in particular, for light metal alloys and, as the first part of the investigation, to determine its laws; and secondly to explain its causes for various alloys and thereby find means for its partial or complete elimination and thus make possible the production of light metal alloys free from any stress corrosion. In the present paper some of the results of the investigation are given and the fundamental problems of stress corrosion discussed.

  10. Corrosive Esophagitis Caused by Ingestion of Picosulfate

    PubMed Central

    Seo, Jae Yong; Kang, Ho Suk; Kim, Seong Eun; Park, Ji Won; Moon, Sung Hoon; Kim, Jong Hyeok; Park, Choong Kee

    2015-01-01

    Corrosive esophagitis is characterized by caustic injury due to the ingestion of chemical agents, mainly alkaline substances such as detergents. Esophageal bleeding, perforation, or stricture can be worsened by high-degree corrosive esophagitis. Picosulfate is a commonly used laxative frequently administered for bowel preparation before colonoscopy or colon surgery. Picosulfate powder should be completely dissolved in water before ingestion because the powder itself may cause chemical burning of the esophagus and stomach. Here, we report a case of corrosive esophagitis due to the ingestion of picosulfate powder that was not completely dissolved in water. PMID:25674529

  11. Proceedings: 1984 Workshop on Secondary-Side Stress Corrosion Cracking and Intergranular Corrosion of PWR Steam Generator Tubing

    SciTech Connect

    1986-03-01

    During 1984, research investigating intergranular corrosion and stress corrosion cracking in PWR steam generators provided data to formulate a corrosion-product transport theory. In addition, the research showed that changing the pH of liquids in generator crevices will retard and sometimes arrest the corrosion process.

  12. Macrocyclic compounds as corrosion inhibitors

    SciTech Connect

    Quraishi, M.A.; Rawat, J.; Ajmal, M.

    1998-12-01

    The influence of three macrocyclic compounds on corrosion of mild steel (MS) in hydrochloric acid (HCl) was investigated using weight loss, potentiodynamic polarization, alternating current (AC) impedance, and hydrogen permeation techniques. All the investigated compounds showed significant efficiencies and reduced permeation of hydrogen through MS in HCl. Inhibition efficiency (IE) varied with the nature and concentrations of the inhibitors, temperature, and concentrations of the acid solutions. The addition of iodide ions (I{sup {minus}}) increased IE of all the tested compounds as a result of the synergistic effect. Potentiodynamic polarization results revealed that macrocyclic compounds acted as mixed inhibitors in 1 M HCl to 5 M HCl. Adsorption on the metal surface obeyed Temkin`s adsorption isotherm. Auger electron spectroscopy (AES) of the polished MS surface, exposed with tetraphenyldithia-octaazacyclotetradeca-hexaene (PTAT) proved adsorption of this compound on the surface through nitrogen and sulfur atoms.

  13. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  14. Terahertz NDE for Under Paint Corrosion Detection and Evaluation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Corrosion under paint is not visible until it has caused paint to blister, crack, or chip. If corrosion is allowed to continue then structural problems may develop. Identifying corrosion before it becomes visible would minimize repairs and costs and potential structural problems. Terahertz NDE imaging under paint for corrosion is being examined as a method to inspect for corrosion by examining the terahertz response to paint thickness and to surface roughness.

  15. Waste of cleaning emulsion sewage as inhibitors of steel corrosion

    NASA Astrophysics Data System (ADS)

    Fazullin, D. D.; Mavrin, G. V.; Shaikhiev, I. G.

    2016-06-01

    The article describes the corrosion test of steel of the brand 20 in the stratal water. To increase corrosion resistance as a corrosion inhibitor the concentrate waste emulsion of the mark "Incam- 1" was provided. The article presents studies of the corrosion rate with different dosages of corrosion inhibitor in the stratal water. Based on these research results are revealed that the degree of protection of steel is 27% at a dosage of 3.8 g / dm3.

  16. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    SciTech Connect

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  17. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  18. Electrochemical noise measurement for determining corrosion rates

    SciTech Connect

    Reichert, D.L.

    1996-12-31

    Electrochemical noise measurements (ENM), linear polarization tests and mass loss measurements were performed in sulfuric acid, acetic acid and other solutions. The ENM data were converted to corrosion rates by calculating the noise resistance, R{sub n} = {sigma}V/{sigma}I where {sigma}V and {sigma}I are the standard deviations of the potential and current. Good correlation among the three methods was obtained for low to moderate corrosion rates, but poor correlation was observed for high rates. ENM has proven valuable for determining corrosion rates in low-conductivity solutions, which are not suitable for linear polarization resistance (LPR) testing, and for measuring very low corrosion rates in which mass loss tests would have required at least 30 days exposure to provide meaningful results.

  19. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  20. Galvanic corrosion reduced in aluminum fabrications

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Titanium alloy fasteners dipped at zinc chromate primer are installed while wet in protective coated aluminum panels to reduce galvanic corrosion. Moisture tight seals at fastener points are also provided.

  1. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  2. Corrosion performance of aluminum in coal railcars

    SciTech Connect

    Hersh, J.F.

    1988-01-01

    Aluminum has been used for construction of coal railcars and on an experimental basis as a metallized coating over steel railcars. When aluminum is used in areas which contact the lading, resistance to general corrosion has been outstanding. Galvanic corrosion of joints which connect the aluminum to a steel undercarriage has not been a problem provided appropriate measures were taken during vehicle construction. Laboratory test data are presented which illustrate the impact of variations in joint preparation on galvanic corrosion performance. Painting the steel and the use of a sealant are recommended to obtain satisfactory long term joint performance. The corrosion performance and long term durability of an aluminum metallized coating has been demonstrated when applied to new cars constructed of carbon steel. Test results of coating durability when applied to cars constructed of constructed of weathering steel or carbon steel which were in revenue coal service prior to coating have been mixed.

  3. Minimizing corrosion in coal liquid distillation

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  4. High resolution in situ ultrasonic corrosion monitor

    DOEpatents

    Grossman, R.J.

    1984-01-10

    An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.

  5. High resolution in situ ultrasonic corrosion monitor

    DOEpatents

    Grossman, Robert J.

    1985-01-01

    An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.

  6. Ozone inhibits corrosion in cooling towers

    NASA Technical Reports Server (NTRS)

    French, K. R.; Howe, R. D.; Humphrey, M. F.

    1980-01-01

    Commercially available corona discharge ozone generator, fitted onto industrial cooling tower, significantly reduces formation of scales (calcium carbonate) and corrosion. System also controls growth of algae and other microorganisms. Modification lowers cost and improves life of cooling system.

  7. Stress-corrosion cracking in metals

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  8. Final examination of IDMS corrosion coupons

    SciTech Connect

    Imrich, K.J.; Jenkins, C.F.

    1993-09-16

    The metallurgical examination of corrosion coupons removed from the Integrated DWPF Melter System (IDMS) was performed as part of the IDMS Materials Evaluation Program. The findings and conclusions of the evaluation program are presented in this report.

  9. A corrosion database system for exposure tests

    SciTech Connect

    Yamamoto, Masahiro; Kato, Chuichi; Nogami, Atsushi; Matsuoka, Ai

    1997-12-31

    A computerized corrosion database system for exposure tests has been designed and developed. This system was developed to help researchers carry out each experimental procedure in exposure tests. The system includes a function to manage not only the experimental data but also the timetable of exposure tests and the environmental factors of exposure sites. An easily used graphical user interface (GUI) and graph plot software are provided for users to help analyze exposure test results from various viewpoints. The data accumulated in this system are measurements of past exposure tests and exposure tests in progress. The analyses of past exposure tests using the present database system resulted in several ideas on atmospheric corrosion different from the conventional ideas on atmospheric corrosion. If the data of exposure tests in progress are compared with past data, the relationships between atmospheric corrosion and environmental factors will be more clarified.

  10. Metalworking corrosion inhibition/drawing lubricant

    SciTech Connect

    Lipinski, H.F.; Wantling, S.J.

    1980-05-06

    A metalworking lubricant composition is disclosed which is effective as both a corrosion inhibitor and drawing lubricant and comprises a mineral oil and an additive combination of barium lanolate soap and barium sulfonate.

  11. REDUCED-POLLUTION CORROSION-PROTECTION SYSTEMS

    EPA Science Inventory

    Coating systems, designed to protect metallic components against corrosive attack using environmentally compatible materials and processes, were evaluated as potential alternatives for their higher polluting counterparts. Viable replacements were established for cyanide cadmium, ...

  12. Corrosion Inhibitors as Penetrant Dyes for Radiography

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    Liquid/vapor-phase corrosion inhibitors (LVCIs) have been found to be additionally useful as penetrant dyes for neutron radiography (and perhaps also x-radiography). Enhancement of radiographic contrasts by use of LVCIs can reveal cracks, corrosion, and other defects that may be undetectable by ultrasonic inspection, that are hidden from direct optical inspection, and/or that are difficult or impossible to detect in radiographs made without dyes.

  13. Aqueous Corrosion Rates for Waste Package Materials

    SciTech Connect

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  14. Conducting polymers as corrosion resistant coatings

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1994-09-01

    Although the majority of top coatings used for corrosion protection are electrically insulating, previous workers have proposed using an electrically active barrier for corrosion control. The most effective corrosion resistant undercoatings in use today are based on chromium compounds. Coatings based on other materials will need to replace these coatings by the turn of the century because of environmental and health concerns. For this reason the authors have begun an investigation of the use of conducting polymers as corrosion resistant coatings as an alternative to metal-based coatings. Conducting polymers have long been considered to be unsuitable for commercial processing, hindering their use for practical applications. Research in the field of electrically conducting polymers has recently produced a number of polymers such as polyaniline and its derivatives which are readily soluble in common organic solvents. The authors coating system, consisting of a conducting polyaniline primer layer, topcoated with epoxy or polyurethane, has been evaluated for corrosion resistance on mild steel substrates. In this paper, the authors report the results of laboratory testing under acidic and saline conditions and the results of testing in the severe launch environment at the Beach Testing Facility at Kennedy Space Center. The launch environment consists of exposure to corrosive HCl exhaust fumes and the salt spray from the Atlantic Ocean.

  15. Electrochemistry Corrosion Properties of Pulsed Laser Welding Hastelloy C-276

    NASA Astrophysics Data System (ADS)

    Ma, G.; Niu, F.; Wu, D.; Qu, Y.

    Based on the welding quality requirement of Hastelloy C276 in the extreme environment, the electrochemistry corrosion property of laser welding Hastelloy C276 was evaluated in the neutral, acid and alkaline solutions, and the corroded surface was observed by the co-focal laser scanning microscope to confirm the corrosion mechanism. The results indicated, the corrosion trend of the weld was weaker than that of base metal in the neutral and acid solutions, but in the alkaline solutions, the corrosion trend of the base metal was weaker. However, the corrosion rate of the weld was much slower than that of base metal in all solutions. At the point of corrosion mechanism, in the acid and alkaline solutions, the base metal and weld showed the uniform corrosion. However, in the neutral solution, the selective corrosion and intergranular corrosion occurred in the base metal and the weld, respectively.

  16. Recent Developments on Autonomous Corrosion Protection Through Encapsulation

    NASA Technical Reports Server (NTRS)

    Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.

    2015-01-01

    This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.

  17. Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.

  18. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  19. EVALUATION OF WATER CORROSIVITY USING THE LANGELIER INDEX AND RELATIVE CORROSION RATE MODELS

    EPA Science Inventory

    The corrosive behaviors of waters with different calcium carbonate saturation indexes were evaluated using mild steel in jar tests that utilized a weight loss method. The corrosivity of the waters was assessed to determine whether the Langelier index, widely used in the drinking ...

  20. SEATTLE DISTRIBUTION SYSTEM CORROSION CONTROL STUDY. VOLUME 5. COUNTERACTIVE EFFECTS OF DISINFECTION AND CORROSION CONTROL

    EPA Science Inventory

    This study consisted of three research phases designed to evaluate the counteractive effects of corrosion treatment (pH adjustment) and disinfection (chlorination): (1) Electrochemical Tests - Copper corrosion rates were measured under varying pH, free chlorine residual and chlor...

  1. THE CANADIAN PERSPECTIVE ON CORROSION CONTROL: HEALTH CANADA'S CORROSION CONTROL GUIDELINE

    EPA Science Inventory

    Health Canada has proposed a Corrosion Control Guideline, based on lead, which is undergoing public consultation and expected to be finalized in 2007. In Canada, there are no regulations and little guidance to address corrosion problems and existing sampling methods are inappropr...

  2. Localized Corrosion of Alloy 22 -Fabrication Effects-

    SciTech Connect

    Rebak, R B

    2005-11-05

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation: When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container: Alloy 22 has been extensively tested for

  3. Prediction of corrosion rates of water distribution pipelines according to aggressive corrosive water in Korea.

    PubMed

    Chung, W S; Yu, M J; Lee, H D

    2004-01-01

    The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area. PMID:14982159

  4. Initiation and growth of mesa corrosion attack during CO{sub 2} corrosion of carbon steel

    SciTech Connect

    Nyborg, R.

    1998-12-31

    The initiation and development of mesa corrosion attack during CO{sub 2} corrosion of carbon steel has been studied in flow loop experiments performed at 80 C and pH 5.8. Video recordings of growing mesa attacks have been performed in a test section with a glass window in the corrosion loop. These observations have shown that the mesa attack can grow both laterally and in depth below a lid of original corrosion film before the film is torn away stepwise by the flow. Possible mechanisms for initiation of mesa corrosion attack are discussed based on the observations from the video recordings. Mesa attacks can result from several small local attacks growing together into one large mesa attack.

  5. Corrosion of selected metal alloys in Utah geothermal waters

    SciTech Connect

    Hong, Y.K.; Pitt, C.H.

    1983-09-01

    A potentiodynamic polarization technique has been applied to characterize the corrosion behavior of AISI 316L stainless steel, an iron-based alloy (9Cr-1Mo), a nickel-based alloy (INCONEL/SUP R/ alloy 625), and mild steel ASTM A-36. Corrosion rate was affected greatly by temperature. The pitting potentials decreased with increasing temperature. The nickel-based alloywas resistant to the geothermal water and did not undergo pitting corrosion. All measurements of corrosion--corrosion rate, pit density, maximum pit depth, charge consumed, and polarization resistance--corroborate the decrease in corrosion rate at tested temperatures.

  6. Continuous injection of corrosion-inhibiting liquids

    SciTech Connect

    Spivey, M.F.

    1987-01-13

    A portable system is described for the continuous injection of corrosion-inhibiting chemical into a production well, comprising: a portable skid; a corrosion-inhibiting chemical tank, and a water tank, mounted on the skid; pump means for pumping an desired amounts and proportions of chemical and water from the tanks for injection into a production well. The pump means is mounted on the skid. A conduit means operatively interconnects is the pumps and tanks for delivery of corrosion-inhibiting chemical to a production well, the conduit means including an end conduit for operative interconnection to a production well. A control means is mounted on the skid for controlling the operation of the pump means to provide desired amounts and proportions of a mix of corrosion-inhibiting chemical and water to the end conduit. A method is described for delivering a mix of corrosion-inhibiting chemical and water to a production well utilizing a portable skid having a chemical tank and water tank mounted thereon, comprising: transporting the skid to a single production well site; operatively interconnecting the chemical and water tanks to an injection tube string, or an annulus associated with a side mandrel, of the production well; and controlling delivery of a mix of corrosion-inhibiting chemical and water from the tanks to the production well so that any desired amounts and proportions of a mix of chemical and water are continuously injected into the well to provide corrosion-inhibiting of a production tube string of the well without interruption of production through the production tube string.

  7. Review of critical factors affecting crude corrosivity

    SciTech Connect

    Tebbal, S.; Kane, R.D.

    1996-08-01

    Lower quality opportunity crudes are now processed in most refineries and the source of the crudes may vary daily. These feedstocks, if not properly handled, can result in reduction in service life of equipment as well as costly failure and downtime. Analytical tools are needed to predict their high temperature corrosivity toward distillation units. Threshold in total sulfur and total acid number (TAN) have been used for many years as rules of thumb for predicting crude corrosivity, However, it is now realized that they are not accurate in their predictive ability. Crudes with similar composition and comparable with respect to process considerations have been found to be entirely different in their impact on corrosion. Naphthenic acid content, sulfur content, velocity, temperature, and materials of construction are the main factors affecting the corrosion process, Despite progress made in elucidating the role of the different parameters on the crude corrosivity process, the main problem is in calculating their combined effect, especially when the corroding stream is such a complex mixture. The TAN is usually related directly to naphthenic acid content. However, discrepancies between analytical methods and interference of numerous components of the crude itself lead to unreliable reported content of naphthenic acid. The sulfur compounds, with respect to corrosivity, appear to relate more to their decomposition at elevated temperature to form hydrogen sulfide than to their total content in crude. This paper reviews the present situation regarding crude corrosivity in distillation units, with the aim of indicating the extent of available information, and areas where further research is necessary.

  8. Papermaking: Corrosion and corrosion control. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning corrosive behavior of the pulping process and papermaking chemicals on paper manufacturing equipment, and corrosion control procedures. Stainless steel resistance to corrosive materials, chemical additives used to control corrosive actions, electrochemical corrosion control applications, and the effects of various pulping materials on corrosive behavior are among the topics discussed. Performance evaluations of corrosion control processes are also examined. (Contains a minimum of 221 citations and includes a subject term index and title list.)

  9. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to

  10. Corrosion in Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Akavipat, Sanay

    Magnesium and a magnesium alloy (AZ91C) have been ion implanted over a range of ions energies (50 to 150 keV) and doses (1 x 10('16) to 2 x 10('17) ions/cm('2)) to modify the corrosion properties of the metals. The corrosion tests were done by anodic polarization in chloride -free and chloride-containing aqueous solutions of a borated -boric acid with a pH of 9.3. Anodic polarization measurements showed that some implantations could greatly reduce the corrosion current densities at all impressed voltages and also increased slightly the pitting potential, which indicated the onset of the chloride attack. These improvements in corrosion resistance were caused by boron implantations into both types of samples. However, iron implantations were found to improve only the magnesium alloy. To study the corrosion in more detail, Scanning Auger Microprobe Spectrometer (SAM), Scanning Electron Microscope (SEM) with an X-ray Energy Spectrometry (XES) attachment, and Transmission Electron Microscope (TEM) measurements were used to analyze samples before, after, and at various corrosion stages. In both the unimplanted pure magnesium and AZ91C samples, anodic polarization results revealed that there were three active corrosion stages (Stages A, C, and E) and two passivating stages (Stages B and D). Examination of Stages A and B in both types of samples showed that only a mild, generalized corrosion had occurred. In Stage C of the TD samples, a pitting breakdown in the initial oxide film was observed. In Stage C of the AZ91C samples, galvanic and intergranular attack around the Mg(,17)Al(,12) intermetallic islands and along the matrix grain boundaries was observed. Stage D of both samples showed the formation of a thick, passivating oxygen containing, probably Mg(OH)(,2) film. In Stage E, this film was broken down by pits, which formed due to the presence of the chloride ions in both types of samples. Stages A through D of the unimplanted samples were not seen in the boron or iron

  11. Understanding Naphthenic Acid Corrosion in Refinery Settings

    NASA Astrophysics Data System (ADS)

    Patrick, Brian Neil

    Naphthenic acid corrosion has plagued refineries for nearly a century. However, the vast majority of naphthenic acid corrosion research to date is solely focused on remediation, and not understanding the fundamental mechanism of corrosion. To further the current state of understanding in order to mitigate corrosion, experiments were performed to address the corrosion mechanism of iron, as well as of the ferrous alloying elements. In addition, electrochemical methods were used to determine the presence of acids within nonpolar solvents, such as a crude. The structure of the acids in solution was studied with FT-IR and Raman spectroscopy to understand how the acids self-associate as a function of temperature, concentration and presence of a metal. The results have yielded that iron corrodes via an etch pitting mechanism. In addition, this work has determined that the mechanism of resistance of chromium and molybdenum are their passive films, and that these metals are susceptible to naphthenic acid attack if the passive films break down. The mechanism of resistance of these elements provides insight into the failure mode of 304 and the 400 series stainless steels in naphthenic acid service. A particular result of interest is that nickel catalytically decomposes naphthenic acids at high temperatures (e.g. 270°C) via a catalytic mechanism. Finally, a palladium hydride reference electrode was developed that functions in aprotic solvents, and an ionic liquid was synthesized that allowed for the electrochemical detection of naphthenic acids in toluene.

  12. Corrosion in Non-Hermetic Microelectronic Devices

    SciTech Connect

    Braithwaite, J.W.; Sorensen, N.R.

    1999-03-16

    Many types of integrated and discrete microelectronic devices exist in the enduring stockpile. In the past, most of these devices have used conventional ceramic hermetic packaging (CHP) technology. Sometime in the future, plastic encapsulated microelectronic (PEM) devices will almost certainly enter the inventory. In the presence of moisture, several of the aluminum-containing metallization features common to both types of packaging become susceptible to atmospheric corrosion (Figure 1). A breach in hermeticity (e.g., due to a crack in the ceramic body or lid seal) could allow moisture and/or contamination to enter the interior of a CHP device. For PEM components, the epoxy encapsulant material is inherently permeable to moisture. A multi-year project is now underway at Sandia to develop the knowledge base and analytical tools needed to quantitatively predict the effect of corrosion on microelectronic performance and reliability. The issue of corrosion-induced failure surfaced twice during the past year because cracks were found in their ceramic bodies of two different CHP devices: the SA371 1/3712 MOSFET and the SA3935 ASIC (acronym for A Simple Integrated Circuit). Because of our inability to perform a model-based prediction at that time, the decision was made to determine the validity of the corrosion concern for these specific situations by characterizing the expected environment and assessing its relative degree of corrosivity. The results of this study are briefly described in this paper along with some of the advancements made with the predictive model development.

  13. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1992-08-01

    The problems connected with gas side corrosion for the design of the 1A4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. The results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.

  14. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering EG and G Energy Measurements, Inc., Las Vegas, NV )

    1992-08-01

    The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.

  15. Control of metallic corrosion through microbiological route.

    PubMed

    Maruthamuthu, S; Ponmariappan, S; Mohanan, S; Palaniswamy, N; Palaniappan, R; Rengaswamy, N S

    2003-09-01

    Involvement of biofilm or microorganisms in corrosion processes is widely acknowledged. Although majority of the studies on microbiologically induced corrosion (MIC) have concentrated on aerobic/anaerobic bacteria. There are numerous aerobic bacteria, which could hinder the corrosion process. The microbiologically produced exopolymers provide the structural frame work for the biofilm. These polymers combine with dissolved metal ions and form organometallic complexes. Generally heterotrophic bacteria contribute to three major processes: (i) synthesis of polymers (ii) accumulation of reserve materials like poly-beta-hydroxy butrate (iii) production of high molecular weight extracellular polysaccharides. Poly-beta-hydroxy butyrate is a polymer of D(-)beta-hydroxy butrate and has a molecular weight between 60,000 and 2,50,000. Some extracellular polymers also have higher molecular weights. It seems that higher molecular weight polymer acts as biocoating. In the present review, role of biochemistry on corrosion inhibition and possibilities of corrosion inhibition by various microbes are discussed. The role of bacteria on current demand during cathodic protection is also debated. In addition, some of the significant contributions made by CECRI in this promising area are highlighted. PMID:15242295

  16. Constituent Particle Clustering and Pitting Corrosion

    NASA Astrophysics Data System (ADS)

    Harlow, D. Gary

    2012-08-01

    Corrosion is a primary degradation mechanism that affects the durability and integrity of structures made of aluminum alloys, and it is a concern for commercial transport and military aircraft. In aluminum alloys, corrosion results from local galvanic coupling between constituent particles and the metal matrix. Due to variability in particle sizes, spatial location, and chemical composition, to name a few critical variables, corrosion is a complex stochastic process. Severe pitting is caused by particle clusters that are located near the material surface, which, in turn, serve as nucleation sites for subsequent corrosion fatigue crack growth. These evolution processes are highly dependent on the spatial statistics of particles. The localized corrosion growth rate is primarily dependent on the galvanic process perpetuated by particle-to-particle interactions and electrochemical potentials. Frequently, severe pits are millimeters in length, and these pits have a dominant impact on the structural prognosis. To accommodate large sizes, a model for three-dimensional (3-D) constituent particle microstructure is proposed. To describe the constituent particle microstructure in three dimensions, the model employs a fusion of classic stereological techniques, spatial point pattern analyses, and qualitative observations. The methodology can be carried out using standard optical microscopy and image analysis techniques.

  17. Analyses of containment structures with corrosion damage

    SciTech Connect

    Cherry, J.L.

    1997-01-01

    Corrosion damage that has been found in a number of nuclear power plant containment structures can degrade the pressure capacity of the vessel. This has prompted concerns regarding the capacity of corroded containments to withstand accident loadings. To address these concerns, finite element analyses have been performed for a typical PWR Ice Condenser containment structure. Using ABAQUS, the pressure capacity was calculated for a typical vessel with no corrosion damage. Multiple analyses were then performed with the location of the corrosion and the amount of corrosion varied in each analysis. Using a strain-based failure criterion, a {open_quotes}lower bound{close_quotes}, {open_quotes}best estimate{close_quotes}, and {open_quotes}upper bound{close_quotes} failure level was predicted for each case. These limits were established by: determining the amount of variability that exists in material properties of typical containments, estimating the amount of uncertainty associated with the level of modeling detail and modeling assumptions, and estimating the effect of corrosion on the material properties.

  18. Hot corrosion of ceramic engine materials

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Jacobson, Nathan S.; Smialek, James L.

    1988-01-01

    A number of commercially available SiC and Si3N4 materials were exposed to 1000 C in a high velocity, pressurized burner rig as a simulation of a turbine engine environment. Sodium impurities added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si4N4 and formation of substantial Na2O-x(SiO2) corrosion product. Room temperature strength of the materials decreased. This was a result of the formation of corrosion pits in SiC, and grain boundary dissolution and pitting in Si3N4. Corrosion regimes for such Si-based ceramics have been predicted using thermodynamics and verified in rig tests of SiO2 coupons. Protective mullite coatings are being investigated as a solution to the corrosion problem for SiC and Si3N4. Limited corrosion occurred to cordierite (Mg2Al4Si5O18) but some cracking of the substrate occurred.

  19. Handbook of corrosion data, 2nd edition

    SciTech Connect

    Craig, B.; Anderson, D.

    1995-12-31

    As in the prior edition, in one convenient volume this book makes it easy to find what effect environment has on the corrosion of metals and alloys. Coverage on all the environments in the first edition has been updated and expanded and some 80 or more environments have been added, including food products (chocolate, milk, cider, beer, etc.), fruit juices (grape, pineapple, lemon, etc.), soil, blood, gasoline, fertilizers, etc. Presentation of the tabular information for all environments has been standardized throughout the book. The environments are listed alphabetically. Each listing includes a general description of the conditions, a comment on the corrosion characteristics of various alloys in such a situation, a bibliography of recent articles specific to the environment, tables consolidating and comparing corrosion rates at various temperatures and concentrations for various alloys, and graphical information. also included are summaries on the general corrosion characteristics of major metals and alloys. This separate section of the book considers each material group, such as aluminum, stainless steel, zinc and so forth. Additional tables are presented here to give the corrosion characteristics of various alloys in hundreds of environments.

  20. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  1. Remote measurement of corrosion using ultrasonic techniques

    SciTech Connect

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy`s treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation.

  2. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  3. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    SciTech Connect

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  4. Corrosion Performance of Inconel 625 in High Sulphate Content

    NASA Astrophysics Data System (ADS)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  5. pH Responsive Microcapsules for Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco

    2008-01-01

    The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.

  6. PH and Electrochemical Responsive Materials for Corrosion Smart Coating Applications

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2008-01-01

    Corrosion is a costly issue for military operations and civil industries. While most corrosion initiates from localized corrosion form, such as pitting, failure directly caused by localized corrosion is the most dangerous kind, because it is difficult to anticipate and prevent, occurs very suddenly and can be catastrophic. One way of preventing these failures is with a coating that can detect and heal localized corrosion. pH and other electrochemical changes are often associated with localized corrosion, so it is expected that materials that are pH or otherwise electrochemical responsive can be used to detect and control corrosion. This paper will review various pH and electrochemical responsive materials and their potential applications in corrosion smart coatings. Current research results in this field will also be reported.

  7. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  8. Protection of reinforcement with corrosion inhibitors, phase 1. Final report

    SciTech Connect

    Allyn, M.; Frantz, G.C.; Stephens, J.E.

    1998-11-01

    Costs due to corrosion in reinforcement in concrete caused by deicing salts has been estimated at up to $1 billion per year in the US alone. For most situations, corrosion inhibiting admixtures offer significant advantages over other protection methods to delay initiation of corrosion for the service life of the structure. Two new prototype corrosion inhibiting chemicals were evaluated and compared with two commercial corrosion inhibiting admixtures as well as with a typical air-entrained control concrete. Corrosion testing consisted of weekly wetting (with salt solution) and drying cycles applied to slab type specimens and to both 2-inch and 3-inch diameter lollipop specimens. Some lollipop specimens were also `pre-cracked` prior to corrosion testing. Linear polarization techniques measured corrosion rates. Reinforcing bar were removed and visually examined at completion of testing. Other concrete material test results included compression strength, freeze-thaw resistance, and absorption.

  9. Effect of Slug Flow on CO2 Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Y. B.; Yan, K.; Che, D. F.

    2010-03-01

    Multiphase flow induced CO2 corrosion has resulted in serious losses in oil and gas production. In this paper, gas-liquid two-phase vertical upward slug flow has been analyzed from aspects containing flow structure, hydrodynamic characteristics, mass transfer characteristics and their effects on pipe wall and corrosion product film, and it is found that slug flow has a distinct effect on transports of corroding species to and of corrosion products from the wall, momentum interchange between fluid and wall and the formation and damage of corrosion product film. In addition, the transports of corrosive species and corrosion product are also an important step in CO2 corrosion process. It is assumed that the slug flow induced CO2 corrosion of pipeline is dependent on the non-linear coupling of the characteristics including the shear stress, the normal stress, the mass transfer coefficient, and the electrochemical reaction.

  10. Pitting corrosion monitoring with an improved electrochemical noise technique

    SciTech Connect

    Chen, J.F.; Shadley, J.; Rybicki, E.F.

    1999-11-01

    The electrochemical emission spectroscopy (EES) technique is a newly developed on-line corrosion monitoring technique, which is capable of detecting localized corrosion as well as measuring uniform corrosion. The main difference between this technique and the traditional electrochemical noise technique is the use of an inert microelectrode to sense the current signal from a working electrode instead of using two identical working electrodes to generate the current signal. In this paper, the ability of the EES technique is evaluated for pitting corrosion monitoring. Pitting corrosion is generated on three systems: stainless steel types 304 and 316 in aerated 3% NaCl solution at 50 C and stainless steel type 304 in 6% FeCl{sub 3} solution at room temperature. In all cases, the on-set of pitting corrosion is clearly indicated in both potential and current spectrums. A parameter called the corrosion admittance, which is defined in the EES technique, is capable of indicating instantaneous localized corrosion activities.

  11. A rapid stress-corrosion test for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Helfrich, W. J.

    1968-01-01

    Stressed alloy specimens are immersed in a salt-dichromate solution at 60 degrees C. Because of the minimal general corrosion of these alloys in this solution, stress corrosion failures are detected by low-power microscopic examination.

  12. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  13. Corrosion behavior of the expandable tubular in formation water

    NASA Astrophysics Data System (ADS)

    Gao, Shu-jun; Dong, Chao-fang; Fu, An-qing; Xiao, Kui; Li, Xiao-gang

    2015-02-01

    The corrosion behavior of expandable tubular materials was investigated in simulated downhole formation water environments using a series of electrochemical techniques. The corrosion morphologies in the real downhole environment after three months of application were also observed by stereology microscopy and scanning electron microscopy (SEM). The results show that, compared with the unexpanded sample, the area of ferrite increases dramatically after a 7.09% expansion. The expanded material shows a higher corrosion current in the polarization curve and a lower corrosion resistance in the electrochemical impedance spectroscopy (EIS) plot at every studied temperature. The determined critical pitting temperatures (CPT) before and after expansion are 87.5°C and 79.2°C, respectively. SEM observations demonstrate stress corrosion cracks, and CO2 corrosion and H2S corrosion also occur in the downhole environment. Due to additional defects generated during the plastic deformation, the corrosion performance of the expanded tubing deteriorates.

  14. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    SciTech Connect

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.

  15. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    NASA Astrophysics Data System (ADS)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  16. Erosion/corrosion of HVOF sprayed coatings

    SciTech Connect

    Simard, S.; Arsenault, B.; Legoux, J.G.; Hawthorne, H.M.

    1999-11-01

    Cermet based materials are known to have an excellent performance under several different wear conditions. High velocity oxy-fuel (HVOF) thermal spraying technology allows the deposition of such hard materials in the form of protective coatings onto different surfaces. Under slurry erosion, the performance of the coating is influenced by the occurrence of corrosion reactions with the metallic matrix. Slurry erosion tests were conducted with a jet impingement rig with a 9.1wt% alumina particle/water slurry. Indeed, wet conditions promote the dissolution of metallic binder resulting in a potential synergy between the corrosion and wear mechanisms. Coatings based on tungsten carbide embedded in four different metallic binders were evaluated with regard to wear and corrosion. Depending on the composition of the metallic binder, different degradation rates were observed.

  17. Superheater Corrosion Produced By Biomass Fuels

    SciTech Connect

    Sharp, William; Singbeil, Douglas; Keiser, James R

    2012-01-01

    About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

  18. Corrosion Minimization for Research Reactor Fuel

    SciTech Connect

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  19. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  20. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  1. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  2. Inhibitor prevents corrosion, scale in Chinese waterflood

    SciTech Connect

    Yong, W.; Jianhua, W. )

    1994-03-14

    An imidazoline derivative-based series inhibitor has prevented both corrosion and scale formation in produced-water treatment and water-injection equipment in China National Petroleum Co.'s (CNPC) Shengli oil field. Development of the inhibitor started in 1986, and after successful field trials the chemical is now being extensively applied. To increase oil recovery, water injection is widely used in China's onshore oil fields. Oil production in the Shengli oil field, for example, requires injection of about 4 bbl of water/1 bbl of oil produced. The large volumes of produced formation water contain many substances that can cause serious corrosion and scale. Also, the makeup water from other sources, subsurface or surface, complicates water handling. The paper discusses the following: corrosion and scale, oxygen, carbon dioxide, H[sub 2]S and sulfur reducing bacteria, temperature, inhibition, field tests, applications, and economics.

  3. Atmospheric corrosion of mild steel in Oman

    NASA Astrophysics Data System (ADS)

    Gismelseed, Abbasher; Al-Harthi, S. H.; Elzain, M.; Al-Rawas, A. D.; Yousif, A.; Al-Saadi, S.; Al-Omari, I.; Widatallah, H.; Bouziane, K.

    2006-01-01

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Mössbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  4. Atmospheric corrosion of mild steel in Oman

    NASA Astrophysics Data System (ADS)

    Gismelseed, Abbasher; Al-Harthi, S. H.; Elzain, M.; Al-Rawas, A. D.; Yousif, A.; Al-Saadi, S.; Al-Omari, I.; Widatallah, H.; Bouziane, K.

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Mossbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  5. Corrosion- Degradation of Structure Negating Original Structural Analysis

    NASA Astrophysics Data System (ADS)

    Goodin, James Ronald

    2010-09-01

    Most of the papers presented at International Safety Conferences are dedicated to safety tools and few, if any, to hardware. The intent of this paper on the hazard of corrosion and failure modes associated with corrosion is to draw attention to the grass roots of system safety - improving hardware robustness and resilience. This paper outlines the causes of corrosion, test techniques, and design practices to reduce the probability of system failure due to corrosion.

  6. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  7. TANK 241-AN-107 CORROSION COUPON LABORATORY ANALYSIS

    SciTech Connect

    DUNCAN JB; ANANTATMULA RP

    2001-09-27

    To support the corrosion study for Tank 241-AN-107, corrosion coupons consisting of C-rings and pins were removed from four detectors of the corrosion probe retrieved from the tank. The detectors were located as follows: one in the sludge layer, one in the liquid layer, one in the lower head space and the last in the upper head space. ASTM Method G-190 was used to determine the amount of corrosion product present.

  8. Corrosion probes for fireside monitoring in coal-fired boilers

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Holcomb, Gordon R.

    2005-01-01

    Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.

  9. Effect of chlorides on solution corrosivity of methyldiethanolamine (MDEA) solutions

    SciTech Connect

    Rooney, P.C.; Bacon, T.R.; DuPart, M.S.; Willbanks, K.D.

    1997-08-01

    Solution corrosivity of MDEA/water solutions containing added HCl or NaCl have been measured by weight loss coupons at 250 F and by linear polarization resistance (LPR) at 208 F using carbon steel, 304SS, 316SS and 410SS. General corrosion as well as pitting or crevice corrosion tendencies were recorded for each species. Based on these results, recommendations are made for chlorides in MDEA that minimizes corrosion in gas treating operations.

  10. TRU drum corrosion task team report

    SciTech Connect

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  11. Proceedings: 1983 Workshop on Secondary-Side Stress Corrosion Cracking and Intergranular Corrosion of PWR Steam Generator Tubing

    SciTech Connect

    1986-03-01

    Participants in this international workshop discussed research investigating mechanisms and propagation rates of intergranular corrosion in PWR steam generators. Laboratory test results, which have been consistent with power plant experience, permitted preliminary definition of corrosion rates in alloy 600 tubing.

  12. 40 CFR 261.22 - Characteristic of corrosivity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Characteristic of corrosivity. 261.22... Characteristic of corrosivity. (a) A solid waste exhibits the characteristic of corrosivity if a representative... Methods for Evaluating Solid Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated...

  13. PD/MG BIMETALLIC CORROSION CELLS FOR DECHLORINATING PCBS

    EPA Science Inventory

    Two dissimilar metals immersed in a conducting solution develop different corrosion potentials forming a bimetallic corrosion cell. Enhanced corrosion of an active metal like Mg combined with catalytic hydrogenation properties of a noble metal like Pd in such bimetallic cells can...

  14. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Interference currents... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator whose pipeline system is subjected to stray currents shall have in effect a continuing program...

  15. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Interference currents... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator whose pipeline system is subjected to stray currents shall have in effect a continuing program...

  16. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Interference currents... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator whose pipeline system is subjected to stray currents shall have in effect a continuing program...

  17. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Interference currents... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator whose pipeline system is subjected to stray currents shall have in effect a continuing program...

  18. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Interference currents... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator whose pipeline system is subjected to stray currents shall have in effect a continuing program...

  19. 46 CFR 54.01-35 - Corrosion (modifies UG- 25).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Corrosion (modifies UG- 25). 54.01-35 Section 54.01-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-35 Corrosion (modifies UG- 25). (a) Vessels or portions of vessels subject to corrosion shall be as required by UG-25...

  20. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. PMID:26841228

  1. Corrosion Studies of Wrought and Cast NASA-23 Alloy

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1997-01-01

    Corrosion studies were carried out for wrought and cast NASA-23 alloy using electrochemical methods. The scanning reference electrode technique (SRET), the polarization resistance technique (PR), and the electrochemical impedance spectroscopy (EIS) were employed. These studies corroborate the findings of stress corrosion studies performed earlier, in that the material is highly resistant to corrosion.

  2. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  3. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  4. Corrosion of muffler materials in automotive exhaust gas condensates

    SciTech Connect

    Ujiro, Takumi; Kitazawa, Makoto; Togashi, Fusao . Iron and Steel Research Lab.)

    1994-12-01

    The corrosion of automotive mufflers collected in North America was investigated. Aluminum (Al)-plated steels corroded severely in the substrate under the Al plating. Type 409 (UNS S40900) stainless steels sustained a large number of pits. The effects of ions in the condensate and activated carbon on the corrosion resistance of muffler materials were studied with a newly developed condensate corrosion test.

  5. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  6. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  7. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  8. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  9. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  10. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  11. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  12. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  13. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  14. 46 CFR 54.25-5 - Corrosion allowance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-5 Corrosion allowance. The corrosion allowance must be as required in 46 CFR 54.01-35. ... 46 Shipping 2 2012-10-01 2012-10-01 false Corrosion allowance. 54.25-5 Section 54.25-5...

  15. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  16. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  17. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  18. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  19. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  20. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under...

  1. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  2. 46 CFR 54.25-5 - Corrosion allowance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-5 Corrosion allowance. The corrosion allowance must be as required in 46 CFR 54.01-35. ... 46 Shipping 2 2014-10-01 2014-10-01 false Corrosion allowance. 54.25-5 Section 54.25-5...

  3. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under...

  4. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  5. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  6. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  7. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  8. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  9. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  10. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  11. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  12. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  13. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  14. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under...

  15. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  16. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  17. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  18. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  19. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  20. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  1. Bacterial Exopolysaccharides For Corrosion Inhibition on Metal Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilms, composed of extra-cellular polymers secreted by bacteria, have been observed to both increase as well as decrease the rate of metal corrosion. Exopolysaccharides derived from Leuconostoc mesenteroides cultures have been shown to inhibit corrosion on corrosion-sensitive metals. The substa...

  2. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  3. 46 CFR 54.25-5 - Corrosion allowance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-5 Corrosion allowance. The corrosion allowance must be as required in 46 CFR 54.01-35. ... 46 Shipping 2 2013-10-01 2013-10-01 false Corrosion allowance. 54.25-5 Section 54.25-5...

  4. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  5. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  6. Study of crevice-galvanic corrosion of aluminum

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Loess, R. E.; Mori, S.

    1967-01-01

    Corrosion effects of aluminum-copper and aluminum-nickel couples in oxygenated distilled water, and aluminum alloys in oxygenated copper sulfate solution were studied. One of each of the couples had a water tight seal, and showed no substantial corrosion, and of the unsealed couples, only the aluminum-copper developed corrosion.

  7. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, R.H.; Zhang, S.

    1997-01-14

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.

  8. Corrosion intelligence: An application to oil and gas pipelines

    SciTech Connect

    Calvarano, M.; Condanni, D.; Bazzoni, B.

    1997-08-01

    The transfer of sound corrosion knowledge from human experts to dedicated software tools has been individuated as a strategic activity, and, accordingly, a number of applications have been developed in recent years. This approach to corrosion, which represents a new phase, coming after those of corrosion science and corrosion engineering, has been labelled corrosion intelligence, and it matches several needs of an oil company, as: standardization of design procedures; capitalization of available knowledge in programs easy to update; decentralization of the expertise. The paper illustrates an expert system dealing with all aspects related to oil and gas pipeline corrosion, including: internal and external corrosion; material selection and corrosion control requirements; internal corrosion monitoring; coatings; cathodic protection; corrosion in transient phases; intelligent pig inspection; costs comparison. In particular, the modules for internal and external corrosion assessment are described. The general architecture of the application, based on independent expert modules, is discussed in detail and examples of results, with relevant interfaces, are shown. The expert system is also evaluated with respect to another software application for the assessment of corrosion risks.

  9. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, Rolf H.; Zhang, Shengtao

    1997-01-01

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.

  10. EFFECT OF CREVICE FORMER ON CORROSION DAMAGE PROPAGATION

    SciTech Connect

    J.H. Payer; U. Landau; X. Shan; A.S. Agarwal

    2006-03-01

    The objectives of this report are: (1) To determine the effect of the crevice former on the localized corrosion damage propagation; (2) FOCUS on post initiation stage, crevice propagation and arrest processes; (3) Determine the evolution of damage--severity, shape, location/distribution, damage profile; and (4) Model of crevice corrosion propagation, i.e. the evolution of the crevice corrosion damage profile.

  11. Evaluation of EMP/EMI requirements versus corrosion prevention methods

    NASA Astrophysics Data System (ADS)

    Gooch, Jan W.; Hawley, Paul M.; Daher, John K.; Lagesse, Daniel M.

    1992-10-01

    Final report covers the application of conductive sealants on an E-3 aircraft for nine months and evaluating the Electromagnetic Pulse (EMP) / Electromagnetic Interference (EMI) Requirements and corrosion damage. Also, additional testing was performed on three conductive sealants for corrosion protection via the salt fog chambers. Using conductive sealants will meet both EMP/EMI and corrosion requirements.

  12. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Internal corrosion control monitoring devices must be checked at least two times each calendar year, but... 49 Transportation 3 2010-10-01 2010-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion...

  13. Radiation effects on corrosion of zirconium alloys

    SciTech Connect

    Johnson, A.B. Jr.

    1989-06-01

    From the wide use of zirconium alloys as components in nuclear reactors, has come clear evidence that reactor radiation is a major corrosion parameter. The evidence emerges from comparisons of zirconium alloy corrosion behavior in different reactor types, for example, BWRs versus PWRs and in corresponding reactor loop chemistries; also, oxidation rates differ with location along components such as fuel rods and reactor pressure tubes. In most respects, oxidation effects on power reactor components are paralleled by oxidation behavior on specimens exposed to radiation in reactor loops.

  14. Reducing corrosion in aluminum-steel joints

    SciTech Connect

    Not Available

    1994-01-01

    This article examines how galvanic corrosion in aluminum-intensive steel structures can be controlled, without losing performance, by using transition materials. The topics of the article include the transition material concept, corrosion resistance, experimental conditions, and the results of the experiment including mass loss of lap joints, strength retention, joining methods. The results show how use of steel-clad aluminum transition material in joining aluminum and steel deals successfully addresses the problems of joining and durability associated with increasing use of aluminum on automobiles.

  15. High frequency ultrasonic mitigation of microbial corrosion

    NASA Astrophysics Data System (ADS)

    Almahamedh, Hussain H.; Meegan, G. Douglas; Mishra, Brajendra; Olson, David L.; Spear, John R.

    2012-05-01

    Microbiologically Influenced Corrosion (MIC) is a major problem in oil industry facilities, and considerable effort has been spent to mitigate this costly issue. More environmentally benign methods are under consideration as alternatives to biocides, among which are ultrasonic techniques. In this study, a high frequency ultrasonic technique (HFUT) was used as a mitigation method for MIC. The killing percentages of the HFUT were higher than 99.8 percent and their corrosivity on steel was reduced by more than 50 percent. The practice and result will be discussed.

  16. Reusable crucible for containing corrosive liquids

    DOEpatents

    de Pruneda, Jean A. H.

    1995-01-01

    A reusable, non-wetting, corrosion-resistant material suitable for containment of corrosive liquids is formed of a tantalum or tantalum alloy substrate that is permeated with carbon atoms. The substrate is carburized to form surface layers of TaC and Ta.sub.2 C, and then is heated at high temperature under vacuum until the carbon atoms in the carbide layers diffuse throughout the substrate to form a solid solution of carbon atoms randomly interspersed in the tantalum or tantalum alloy lattice.

  17. Reusable crucible for containing corrosive liquids

    DOEpatents

    Pruneda, J.A.H. de.

    1995-01-24

    A reusable, non-wetting, corrosion-resistant material suitable for containment of corrosive liquids is formed of a tantalum or tantalum alloy substrate that is permeated with carbon atoms. The substrate is carburized to form surface layers of TaC and Ta[sub 2]C, and then is heated at high temperature under vacuum until the carbon atoms in the carbide layers diffuse throughout the substrate to form a solid solution of carbon atoms randomly interspersed in the tantalum or tantalum alloy lattice. 10 figures.

  18. Stress corrosion of high strength aluminum alloys.

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Brummer, S. B.

    1972-01-01

    An investigation has been carried out to examine the relationship of the observed chemical and mechanical properties of Al-Cu and Al-Zn-Mg alloys to the stress corrosion mechanisms which dominate in each case. Two high purity alloys and analogous commercial alloys were selected. Fundamental differences between the behavior of Al-Cu and of Al-Zn-Mg alloys were observed. These differences in the corrosion behavior of the two types of alloys are augmented by substantial differences in their mechanical behavior. The relative cleavage energy of the grain boundaries is of particular importance.

  19. Corrosion tests in Hawaiian geothermal fluids

    SciTech Connect

    Larsen-Basse, J.; Lam, Kam-Fai

    1984-01-01

    Exposure tests were conductd in binary geothermal brine on the island of Hawaii. The steam which flashes from the high pressure, high temperature water as it is brought to ambient pressure contains substantial amounts of H{sub 2}S. In the absence of oxygen this steam is only moderately aggressive but in the aerated state it is highly aggressive to carbon steels and copper alloys. The liquid after flasing is intermediately aggressive. The Hawaiian fluid is unique in chemistry and corrosion behavior; its corrosiveness is relatively mild for a geothermal fluid falling close to the Iceland-type resources. 24 refs., 7 figs., 5 tabs.

  20. Mapping climate conditions with materials corrosion

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The world's first comprehensive materials corrosion mapping system can predict the effects that climatic conditions have on the life cycle of products ranging from automobiles to bridges, according to Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Industrial Galvanizers Corporation. Both jointly announced the system on 14 November.The mapping system, which incorporates conditions such as moisture, salinity pollution, and prevailing winds, can predict the corrosion of materials in any part of Australia, they said. Ivan Cole of CSIRO Materials Engineering said the mapping system even takes into account durability factors impacting on greenhouse gas contributions and soil conditions, making it a unique tool for Australian industry.

  1. Glass corrosion in natural environments

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  2. Engineering Task Plan for Fourth Generation Hanford Corrosion Monitoring System

    SciTech Connect

    NORMAN, E.C.

    2000-06-20

    This Engineering Task Plan (ETP) describes the activities associated with the installation of cabinets containing corrosion monitoring equipment on tanks 241-AN-102 and 241-AN-107. The new cabinets (one per tank) will be installed adjacent to existing corrosion probes already installed in riser WST-RISER-016 on both tanks. The corrosion monitoring equipment to be installed utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring systems are designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the systems also facilitate the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates.

  3. Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454

    SciTech Connect

    Frankel, G.S.; Xia, Z.

    1999-02-01

    The susceptibility of welded and unwelded samples of Al 5454 (UNS A95454) in the -O and -H34 tempers to pitting corrosion and stress corrosion cracking (SCC) in chloride solutions was studied. Welded samples were fabricated using the relatively new friction stir welding (FSW) process as well as a standard gas-tungsten arc welding process for comparison. Pitting corrosion was assessed through potentiodynamic polarization experiments. U-bend and slow strain rate tests were used to determine SCC resistance. The FSW samples exhibited superior resistance to pitting corrosion compared to the base metal and arc-welded samples. U-bend tests indicated adequate SCC resistance for the FSW samples. However, the FSW samples exhibited discontinuities that probably were associated with remnant boundaries of the original plates. These defects resulted in intermittent increased susceptibility to pitting and, particularly for Al 5454-H34 samples, poor mechanical properties in general.

  4. Microstructure Instability of Candidate Fuel Cladding Alloys: Corrosion and Stress Corrosion Cracking Implications

    NASA Astrophysics Data System (ADS)

    Jiao, Yinan; Zheng, Wenyue; Guzonas, David; Kish, Joseph

    2016-02-01

    This paper addresses some of the overarching aspects of microstructure instability expected from both high temperature and radiation exposure that could affect the corrosion and stress corrosion cracking (SCC) resistance of the candidate austenitic Fe-Cr-Ni alloys being considered for the fuel cladding of the Canadian supercritical water-cooled reactor (SCWR) concept. An overview of the microstructure instability expected by both exposures is presented prior to turning the focus onto the implications of such instability on the corrosion and SCC resistance. Results from testing conducted using pre-treated (thermally-aged) Type 310S stainless steel to shed some light on this important issue are included to help identify the outstanding corrosion resistance assessment needs.

  5. The effects of radiolysis on the corrosion and stress corrosion behavior of 316 stainless steels

    SciTech Connect

    Duquette, D.J.; Steiner, D.

    1993-09-01

    This program is focused on the corrosion, stress corrosion and corrosion fatigue behavior of Type 316 stainless steel (316SS) at 50, 90, and 130 C in high-purity water. Irradiated solution tests are performed using high-energy photon radiation. Purpose of this work is to determine the effects of radiolysis products on the environmental stability of 316SS in support of the ITER first wall/shield/blanket design. Preliminary results suggest that irradiation of pure water at 50 C results in a shift in the electrochemical potential for 316SS of approximately 100mV in the active direction and nearly an order of magnitude increase in the passive current density as compared to non-irradiated conditions. This proposal outlines a three-year program to develop corrosion design criteria for the use of 316SS in an ITER environment.

  6. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells.

    PubMed

    Bozzini, Benedetto; Gianoncelli, Alessandra; Kaulich, Burkhard; Kiskinova, Maya; Prasciolu, Mauro; Sgura, Ivonne

    2010-07-19

    Nafion contamination by ferrous-alloy corrosion products, resulting in dramatic drops of the Ohmic potential, is a suspected major failure mode of polymer electrolyte membrane fuel cells that make use of metallic bipolar plates. This study demonstrates the potential of scanning transmission X-ray microscopy combined with X-ray absorption and fluorescence microspectroscopy for exploring corrosion processes of Ni and Fe electrodes in contact with a hydrated Nafion film in a thin-layer cell. The imaged morphology changes of the Ni and Fe electrodes and surrounding Nafion film that result from relevant electrochemical processes are correlated to the spatial distribution, local concentration, and chemical state of Fe and Ni species. The X-ray fluorescence maps and absorption spectra, sampled at different locations, show diffusion of corrosion products within the Nafion film only in the case of the Fe electrodes, whereas the Ni electrodes appear corrosion resistant. PMID:20564283

  7. A study on corrosion test methods for automotive steel sheet

    SciTech Connect

    Miyoshi, Y.; Kitayama, M.; Ito, Y.; Koyahara, H.

    1984-01-01

    The corrosion behavior of an automobile body caused by de-icing salt was classified into various corrosion phenomena, of which paint exfoliation and perforation were studied fundamentally. There are 2 types of paint exfoliation. One is paint adhesion, where underfilm corrosion plays a decisive role. Another is wet adhesion, where water immersion through the paint film into the paint/substrate interface is important. Perforation corrosion can be simulated by corrosion test using lapped panel specimens. CCT conditions which should be applied for all exposure tests were determined on the basis of experimental data.

  8. Apollo experience report: The problem of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1973-01-01

    Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.

  9. Increasing corrosion resistance of carbon steels by surface laser cladding

    NASA Astrophysics Data System (ADS)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  10. Long Term Corrosion/Degradation Test Six Year Results

    SciTech Connect

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  11. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  12. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    SciTech Connect

    J.H. Payer

    2005-03-10

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

  13. Coating disbondment leads causes of external pipeline corrosion

    SciTech Connect

    Roche, M. )

    1991-04-01

    Internal corrosion has proved the most persistent corrosion problem on the approximately 670 miles of pipelines operated since 1959 by Elf Gabon. Causes include the presence of CO{sub 2} in polyphasic lines, residual oxygen and sulfate-reducing bacteria (SRB) in water-injection lines, and bacterial corrosion in crude-oil lines. External corrosion has been less troublesome, caused either by atmospheric marine exposure with frequent wetting or by disbonded coatings on buried lines. These were the major conclusions of a review conducted by the company and presented here in two parts. This article focuses on external corrosion.

  14. Recent Developments on Microencapsulation for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun

    2014-01-01

    This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.

  15. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  16. Corrosion assessment of dry fuel storage containers

    SciTech Connect

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  17. General Corrosion and Passive Film Stability

    SciTech Connect

    Orme, C; Gray, J; Hayes, J; Wong, L; Rebak, R; Carroll, S; Harper, J; Gdowski, G

    2005-07-19

    This report summarizes both general corrosion of Alloy 22 from 60 to 220 C and the stability of the passive (oxide) film from 60 to 90 C over a range of solution compositions that are relevant to the in-drift chemical environment at the waste package surface. The general corrosion rates were determined by weight-loss measurements in a range of complex solution compositions representing the products of both the evaporation of seepage water and also the deliquescence of dust previously deposited on the waste canisters. These data represent the first weight-loss measurements performed by the program at temperatures above 90 C. The low corrosion rates of Alloy 22 are attributed to the protective oxide film that forms at the metal surface. In this report, changes in the oxide film composition are correlated with weight loss at the higher temperatures (140-220 C) where film characterization had not been previously performed. The stability of the oxide film was further analyzed by conducting a series of electrochemical tests in progressively more acidic solutions to measure the general corrosion rates in solutions that mimic crevice or pit environments.

  18. Microbial influenced corrosion by thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay K.

    2012-03-01

    The present study was undertaken to investigate microbial influenced corrosion (MIC) on stainless steels due to thermophilic bacteria Desulfotomaculum nigrificans. The objective of the study was to measure the extent of corrosion and correlate it with the growth of the biofilm by monitoring the composition of its extracellular polymeric substances (EPS). The toxic effect of heavy metals on MIC was also observed. For this purpose, stainless steels 304L, 316L and 2205 were subjected to electrochemical polarization and immersion tests in the modified Baar's media, control and inoculated, in anaerobic conditions at room temperature. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) were used to identify the chemicals present in/outside the pit. The results show maximum corrosive conditions when bacterial activity is highest, which in turn minimizes the amount of carbohydrate and protein along with the increase in the fraction of uronic acid in carbohydrate in EPS of the biofilm. However, although bacterial activity and corrosion rate decreases, the amount of biofilm components continue to increase. It is also observed that the toxicity of metals ions affect the bacterial activity and EPS production. It was observed that Desulfotomaculum sp. has the ability to biodegrade its own EPS.

  19. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  20. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.