Science.gov

Sample records for degree field galaxy

  1. New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey.

    PubMed

    Elgarøy, Ø; Lahav, O; Percival, W J; Peacock, J A; Madgwick, D S; Bridle, S L; Baugh, C M; Baldry, I K; Bland-Hawthorn, J; Bridges, T; Cannon, R; Cole, S; Colless, M; Collins, C; Couch, W; Dalton, G; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, R S; Frenk, C S; Glazebrook, K; Jackson, C; Lewis, I; Lumsden, S; Maddox, S; Norberg, P; Peterson, B A; Sutherland, W; Taylor, K

    2002-08-01

    We constrain f(nu) identical with Omega(nu)/Omega(m), the fractional contribution of neutrinos to the total mass density in the Universe, by comparing the power spectrum of fluctuations derived from the 2 Degree Field Galaxy Redshift Survey with power spectra for models with four components: baryons, cold dark matter, massive neutrinos, and a cosmological constant. Adding constraints from independent cosmological probes we find f(nu)<0.13 (at 95% confidence) for a prior of 0.1

  2. Magnetic fields in irregular galaxies

    NASA Astrophysics Data System (ADS)

    Chyzy, Krzysztof T.

    Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.

  3. The SCUBA HAlf Degree Extragalactic Survey (SHADES) - V. Submillimetre properties of near-infrared-selected galaxies in the Subaru/XMM -Newton deep field

    NASA Astrophysics Data System (ADS)

    Takagi, T.; Mortier, A. M. J.; Shimasaku, K.; Coppin, K.; Pope, A.; Ivison, R. J.; Hanami, H.; Serjeant, S.; Clements, D. L.; Priddey, R. S.; Dunlop, J. S.; Takata, T.; Aretxaga, I.; Chapman, S. C.; Eales, S. A.; Farrah, D.; Granato, G. L.; Halpern, M.; Hughes, D. H.; van Kampen, E.; Scott, D.; Sekiguchi, K.; Smail, I.; Vaccari, M.

    2007-11-01

    We have studied the submillimetre (submm) properties of the following classes of near-infrared-selected (NIR-selected) massive galaxies at high redshifts: BzK-selected star-forming galaxies (BzKs); distant red galaxies (DRGs); and extremely red objects (EROs). We used the SCUBA HAlf Degree Extragalactic Survey (SHADES), the largest uniform submm survey to date. Partial overlap of SIRIUS/NIR images and SHADES in Subaru/XMM-Newton deep field has allowed us to identify four submm-bright NIR-selected galaxies, which are detected in the mid-IR, 24μ m, and the radio, 1.4GHz. We find that all of our submm-bright NIR-selected galaxies satisfy the BzK selection criteria, i.e. BzK ≡ (z - K)AB - (B - z)AB >= -0.2, except for one galaxy whose B - z and z - K colours are however close to the BzK colour boundary. Two of the submm-bright NIR-selected galaxies satisfy all of the selection criteria we considered, i.e. they belong to the BzK-DRG-ERO overlapping population, or `extremely red' BzKs. Although these extremely red BzKs are rare (0.25 arcmin-2), up to 20 per cent of this population could be submm galaxies. This fraction is significantly higher than that found for other galaxy populations studied here. Via a stacking analysis, we have detected the 850-μ m flux of submm-faint BzKs and EROs in our SCUBA maps. While the contribution of z ~ 2 BzKs to the submm background is about 10-15 per cent and similar to that from EROs typically at z ~ 1, BzKs have a higher fraction (~30 per cent) of submm flux in resolved sources compared with EROs and submm sources as a whole. From the spectral energy distribution (SED) fitting analysis for both submm-bright and submm-faint BzKs, we found no clear signature that submm-bright BzKs are experiencing a specifically luminous evolutionary phase, compared with submm-faint BzKs. An alternative explanation might be that submm-bright BzKs are more massive than submm-faint ones.

  4. Galaxy Evolution Within the Kilo-Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; La Barbera, F.; Roy, N.; Radovich, M.; Getman, F.; Brescia, M.; Cavuoti, S.; Capaccioli, M.; Longo, G.

    The ESO Public Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will scan 1,500 deg2 in four optical filters (u, g, r, i). Designed to be a weak lensing survey, it is ideal for galaxy evolution studies, thanks to the high spatial resolution of VST, the excellent seeing and the photometric depth. The surface photometry has provided with structural parameters (e.g. size and Sérsic index), aperture and total magnitudes have been used to obtain photometric redshifts from Machine Learning methods and stellar masses/luminositites from stellar population synthesis. Our project aimed at investigating the evolution of the colour and structural properties of galaxies with mass and environment up to redshift z ˜ 0.5 and more, to put constraints on galaxy evolution processes, as galaxy mergers.

  5. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  6. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  7. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  8. Redshift Distribution of Galaxies in the Southern Milky Way Region 210 degrees < L < 360 degrees and B < 15 degrees

    NASA Astrophysics Data System (ADS)

    Visvanathan, Natarajan; Yamada, Toru

    1996-12-01

    We have carried out a redshift survey of an IRAS flux-limited (f60 > 0.6) galaxy sample behind the southern Milky Way, 210° < l < 360° at |b| < 15°. The survey includes redshifts for 951 galaxies, ˜500 of which are new. Of these 951 galaxies, 462 are in the zone 5° galaxies show a high degree of completeness (˜70%) in the zones 5°< b < 15° and -15° < b < -5°. The cone diagrams exhibiting the detailed distribution of IRAS galaxies in the region 210° < 1 < 360°, |b| < 15Xe0 shows two clusters in the Puppis region (l = 240°, b = -7° v = 2400 km s-1; 1 = 245°, b = -5° V = 7500 km s-1), the A3627 cluster (l = 325°, b = -7°; v = 450° km s-1), the S4 cluster (l=280°, b=7° v=5500 km s-1), and a possible void at l=245°, v=3000 km s-1. The region 270° < l < 350° is dominated by overdensity of galaxies representing the extension of the Hydra-Centaurus complex in the positive latitudes and the Pavo-Indus complex in the negative latitudes. A velocity histogram of galaxies in the GA region 2900 galaxies in the velocity range 2400-5000 km s-1. The centroid of this overdensity is located at 4000 km s-1. The broad increased density of galaxies seen in our data corresponds with the distant concentration seen at 4500 km s-1 in the supergalactic plane survey that covers the same longitude range like ours in l, but a larger range in latitude b (-30° to -10° and +10° to +45°) This lends support to the idea that the overdensity extends all the way from the Centaurus-Hydra complex (l = 302°, b = +22°) in the north to the major concentration of the Pavo-Indus supercluster (l = 332°, b = -24°) in the south, through the Milky Way. We conclude that the peak of the overdensity responsible for the peculiar velocity field in the local

  9. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  10. Magnetic fields in young galaxies

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Rögnvaldsson, Örnólfur

    We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.

  11. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  12. Field Galaxy Evolution with the MUNICS Survey

    NASA Astrophysics Data System (ADS)

    Drory, Niv; Feulner, Georg; Hopp, Ulrich; Snigula, Jan; Bender, Ralf

    The Munich Near-IR Cluster Survey (MUNICS) is a K'-selected survey uniformly covering 1 square degree in the J and K' near-IR bands. The survey area consists of 8 13.2 × 26.2 arcmin randomly selected fields at high galactic latitude, as well as 13 7 × 7 arcmin fields targeted towards 0.6 < z <1.5 QSOs. The 3 σ detection limits for a point source are 19.5 in the K'-band and 21.5 in the J-band. The data have been acquired at the 3.5m telescope at Calar Alto Observatory using the Ω - Prime camera. Optical photometry in the V, R, and I bands was obtained for a subsample of the survey fields covering 0.35 square degrees in total. These data have been obtained at the 2.2m telescope at Calar Alto Observatory and the 2.7m telescope at McDonald Observatory. These data enable us to determine photometric redshifts for the galaxies and thus are of great importance in selecting and confirming cluster candidates as well as individual galaxies for follow-up spectroscopy. The project has two main scientific aims, namely - the identification of galaxy clusters at redshifts around unity, and - the selection of a fair sample of field early-type galaxies at similar redshifts for evolutionary studies. Near-IR selection is an efficient tool for tracing the massive galaxy population at redshifts around unity because of its high sensitivity for evolved stellar populations even in the presence of moderate star formation activity. The formation and evolution of the population of massive galaxies is still a matter of lively and controversial debate. While models of hierarchical galaxy formation consistently predict a steep decline in the number density of massive spheroidals, they have a rather large number of free parameters, some of which involve ill-understood processes. Observation has not yet been successful in constraining the ranges of the involved model parameters tightly enough, so that comparisons between theory and experiment are difficult to interpret.

  13. GREEN GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Pan, Zhizheng; Kong, Xu; Fan, Lulu E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  14. Green Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu

    2013-10-01

    We present research on the morphologies, spectra, and environments of ≈2350 "green valley" galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV-r + color is used to define "green valley"; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M 20 planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ10) distributions at z > 0.7. At z < 0.7, the fractions of M * < 1010.0 M ⊙ green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M * < 1010.0 M ⊙ blue galaxies into red galaxies, especially at z < 0.5.

  15. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  16. Cluster tidal fields: Effects on disk galaxies

    NASA Technical Reports Server (NTRS)

    Valluri, Monica

    1993-01-01

    A variety of observations of galaxies in clusters indicate that the gas in these galaxies is strongly affected by the cluster environment. We present results of a study of the dynamical effects of the mean cluster tidal field on a disk galaxy as it falls into a cluster for the first time on a bound orbit with constant angular momentum (Valluri 1992). The problem is studied in the restricted 3-body framework. The cluster is modelled by a modified Hubble potential and the disk galaxy is modelled as a flattened spheroid.

  17. Integral field spectroscopy of QSO host galaxies

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Wisotzki, L.; Sánchez, S. F.; Christensen, L.; Becker, T.; Kelz, A.; Roth, M. M.

    2004-02-01

    We describe a project to study the state of the ISM in ˜20 low redshift (z<0.3) QSO host galaxies observed with the PMAS integral field spectrograph. We describe the development of the method to access the stellar and gas components of the spectrum without the strong nuclear emission, in order to access the host galaxy properties in the central region. It shows that integral field spectroscopy promises to be very efficient in studying the gas distribution and its velocity field, and also the spatially resolved stellar population in the host galaxies of luminous AGN.

  18. Red Galaxy Structures Toward a Large Quasar Group Field

    NASA Astrophysics Data System (ADS)

    Williger, Gerard M.; Feil, E. C.; Haberzettl, L.; Clowes, R.; Campusano, L.; Haines, C. P.; Valls-Gabaud, D.; Lehnert, M.; Nesvadba, N.; LQG Team

    2014-01-01

    We present data from deep FUV-NUV-griz images toward a 2 sq degree region in the Clowes-Campusano Large Quasar Group field, which contains structures of quasars on the >100 Mpc scale at 0.8 and 1.2. Large Quasar Groups may be the signal posts for galaxy structures analogous to superclusters at high redshift. Using the six band photometry, we calculate photometric redshifts for red-selected galaxies to identify supercluster-size structures, and compare their locations with the quasars in the field.

  19. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  20. Magnetic field amplification in young galaxies

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2013-12-01

    The Universe at present is highly magnetized, with fields of a few 10-5 G and coherence lengths greater than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was already amplified to these values during the formation and the early evolution of galaxies. Turbulence in young galaxies is driven by accretion, as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial seed fields on short timescales. Amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth rate on the smallest nonresistive scale. In the following nonlinear phase the magnetic energy is shifted toward larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively, we modeled the microphysics in the interstellar medium (ISM) of young galaxies and determined the growth rate of the small-scale dynamo. We estimated the resulting saturation field strengths and dynamo timescales for two turbulent forcing mechanisms: accretion-driven turbulence and SN-driven turbulence. We compare them to the field strength that is reached when only stellar magnetic fields are distributed by SN explosions. We find that the small-scale dynamo is much more efficient in magnetizing the ISM of young galaxies. In the case of accretion-driven turbulence, a magnetic field strength on the order of 10-6 G is reached after a time of 24-270 Myr, while in SN-driven turbulence the dynamo saturates at field strengths of typically 10-5 G after only 4-15 Myr. This is considerably shorter than the Hubble time. Our work can help for understanding why present-day galaxies are highly magnetized.

  1. Estimated number of field stars toward Galactic globular clusters and Local Group Galaxies

    NASA Technical Reports Server (NTRS)

    Ratnatunga, K. U.; Bahcall, J. N.

    1985-01-01

    Field star densities are estimated for 89 fields with /b/ greater than 10 degrees based on the Galaxy model of Bahcall and Soneira (1980, 1984; Bahcall et al. 1985). Calculated tables are presented for 76 of the fields toward Galactic globular clusters, and 16 Local Group Galaxies in 13 fields. The estimates can be used as an initial guide for planning both ground-based and Space Telescope observations of globular clusters at intermediate-to-high Galactic latitudes.

  2. HUNDRED THOUSAND DEGREE GAS IN THE VIRGO CLUSTER OF GALAXIES

    SciTech Connect

    Sparks, W. B.; Pringle, J. E.; Martin, R.; Cracraft, M.; Carswell, R. F.; Donahue, M.; Voit, M.; Manset, N.; Hough, J. H.

    2012-05-01

    The physical relationship between low-excitation gas filaments at {approx}10{sup 4} K, seen in optical line emission, and diffuse X-ray emitting coronal gas at {approx}10{sup 7} K in the centers of many galaxy clusters is not understood. It is unclear whether the {approx}10{sup 4} K filaments have cooled and condensed from the ambient hot ({approx}10{sup 7} K) medium or have some other origin such as the infall of cold gas in a merger, or the disturbance of an internal cool reservoir of gas by nuclear activity. Observations of gas at intermediate temperatures ({approx}10{sup 5}-10{sup 6} K) can potentially reveal whether the central massive galaxies are gaining cool gas through condensation or losing it through conductive evaporation and hence identify plausible scenarios for transport processes in galaxy cluster gas. Here we present spectroscopic detection of {approx}10{sup 5} K gas spatially associated with the H{alpha} filaments in a central cluster galaxy, M87, in the Virgo Cluster. The measured emission-line fluxes from triply ionized carbon (C IV 1549 A) and singly ionized helium (He II 1640 A) are consistent with a model in which thermal conduction determines the interaction between hot and cold phases.

  3. Weak lensing galaxy cluster field reconstruction

    NASA Astrophysics Data System (ADS)

    Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.

    2014-02-01

    In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

  4. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Dolag, Klaus; Lesch, Harald

    2015-08-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of $\\mu$G amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution

  5. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  6. IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1993-01-01

    A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.

  7. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; Barbera, F. La; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.

    2015-09-01

    We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the OmegaCAM camera, which aims to tackle open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi-Layer Perceptron with Quasi-Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base that was obtained by merging spectroscopic data sets from the Galaxy and Mass Assembly (GAMA) data release 2 and the Sloan Digital Sky Survey III (SDSS-III) data release 9. The overall 1σ uncertainty on Δz = (zspec - zphot)/(1 + zspec) is ˜0.03, with a very small average bias of ˜0.001, a normalized median absolute deviation of ˜0.02 and a fraction of catastrophic outliers (|Δz| > 0.15) of ˜0.4 per cent.

  8. Complex Investigation of SBS Galaxies in Seven Selected Fields

    NASA Astrophysics Data System (ADS)

    Hakopian, Susanna

    2014-07-01

    It is known that the main criterion for the selection of active objects in the First Byurakan, otherwise Markarian survey was the presence of signs of UV-excess in their low-dispersion spectra. Using the presence of emission lines as the second criteria became real during the Second Byurakan survey because of its improved technique. Extended (not stellated) objects, selected with the use of this criterion, made the main part of the separate sample of SBS galaxies. Originally, this sample included 1286 objects, selected in 65 fields of the survey (16 square degree each), to which, with the help of other sources than the survey, there were later added some objects. We studied a subsample of SBS galaxies in seven selected fields (the deepest according to the V/Vmax criterion), including about the third of the whole sample. The first, already completed phase of this program was started with carrying out a follow-up slit spectroscopy of all, about 500 objects, based on observations with long-slit spectrographs with 6m telescope of SAO Russia and 2.6.m telescope of Byurakan. As a result redshifts were determined, as well as spectral classification was made for all of objects, using the scheme adapted to the spectral material. Besides other, obtained data allowed us to estimate the efficiency of used criteria for the selection of galaxies of different classes of starformation and nuclear activity along the full scale of the apparent magnitudes, including close to the limit values (18.5 < m pg < 19.5), etc. The fact that the total area of seven fields as the total number of objects in them comparable with these values for the survey as a whole, allows us to extrapolate the results to the whole sample of galaxies as an upper estimate. The second stage is to conduct detailed studies of individual galaxies in the first place, the most interesting in terms of morphology. They are based on panoramic spectroscopy obtained from observations at 6 m telescope of Russia and 2.6m

  9. THE VELOCITY FIELD AROUND GROUPS OF GALAXIES

    SciTech Connect

    Hartwick, F. D. A.

    2011-06-15

    A statistical method is presented for determining the velocity field in the immediate vicinity of groups of galaxies using only positional and redshift information with the goal of studying the perturbation of the Hubble flow around groups more distant than the Local Group. The velocities are assumed to obey a Hubble-like expansion law, i.e., V = H{sub exp} R, where the expansion rate H{sub exp} is to be determined. The method is applied to a large, representative group catalog and evidence is found for a sub-Hubble expansion rate within two well-defined radii beyond the virial radii of the groups. This result is consistent with that of Teerikorpi et al. who found a similar expansion law around three nearby groups and extends it to a more representative volume of space.

  10. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    SciTech Connect

    Mulchaey, John S.; Jeltema, Tesla E. E-mail: tesla@ucolick.or

    2010-05-20

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L {sub X}-L {sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L {sub K} {approx_lt} L {sub *} suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L {sub K} {approx_lt} L {sub *} galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  11. Magnetic Fields in Barred Spiral Galaxies: NGC 2442 & NGC 7552

    NASA Astrophysics Data System (ADS)

    Ehle, M.; Harnett, J. I.; Beck, R.; Haynes, R. F.; Gray, A.

    2002-12-01

    We report on the total and polarised radio continuum emission of the southern barred galaxies NGC 2442 and NGC 7552 observed with the ATCA at λ6 cm (cf. Harnett et al. 2002). These galaxies form part of a sample of 20 barred galaxies mapped at several wavelengths with the ATCA and VLA (Beck et al. 2002) to study the role of magnetic fields in the bar with respect to the gas flow and star formation.

  12. ENVIRONMENT OF MAMBO GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Aravena, M.; Bertoldi, F.; Carilli, C.; Schinnerer, E.; McCracken, H. J.; Salvato, M.; Riechers, D.; Smolcic, V.; Sheth, K.; Capak, P.; Koekemoer, A. M.; Menten, K. M.

    2010-01-01

    Submillimeter galaxies (SMGs) represent a dust-obscured high-redshift population undergoing massive star formation activity. Their properties and space density have suggested that they may evolve into spheroidal galaxies residing in galaxy clusters. In this Letter, we report the discovery of compact ({approx}10''-20'') galaxy overdensities centered at the position of three SMGs detected with the Max-Planck millimeter bolometer camera in the COSMOS field. These associations are statistically significant. The photometric redshifts of galaxies in these structures are consistent with their associated SMGs; all of them are between z = 1.4and2.5, implying projected physical sizes of {approx}170 kpc for the overdensities. Our results suggest that about 30% of the radio-identified bright SMGs in that redshift range form in galaxy density peaks in the crucial epoch when most stars formed.

  13. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  14. Field measurement of slow metamorphic reaction rates at temperatures of 500 degrees to 600 degrees C

    PubMed

    Baxter; DePaolo

    2000-05-26

    High-temperature metamorphic reaction rates were measured using strontium isotopic ratios of garnet and whole rock from a field site near Simplon Pass, Switzerland. For metamorphic conditions of cooling from 612 degrees +/- 17 degrees C to 505 degrees +/- 15 degrees C at pressures up to 9.1 kilobars, the inferred bulk fluid-rock exchange rate is 1.3(-0.4)(+1.1) x 10(-7) grams of solid reacted per gram of solid per year, several orders of magnitude lower than laboratory-based estimates. The inferred reaction rate suggests that mineral chemistry may lag the evolving conditions in Earth's crust during mountain building. PMID:10827949

  15. The Hector Survey: integral field spectroscopy of 100,000 galaxies

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.

    2015-02-01

    In March 2013, the Sydney-AAO Multi-object Integral field spectrograph (SAMI) began a major survey of 3400 galaxies at the AAT, the largest of its kind to date. At the time of writing, over a third of the targets have been observed and the scientific impact has been immediate. The Manga galaxy survey has now started at the SDSS telescope and will target an even larger sample of nearby galaxies. In Australia, the community is now gearing up to deliver a major new facility called Hector that will allow integral field spectroscopy of 100 galaxies observed simultaneously. By the close of the decade, it will be possible to obtain integral field spectroscopy of 100,000 galaxies over 3000 square degrees of sky down to r=17 (median). Many of these objects will have HI imaging from the new ASKAP radio surveys. We discuss the motivation for such a survey and the use of new cosmological simulations that are properly matched to the integral field observations. The Hector survey will open up a new and unique parameter space for galaxy evolution studies.

  16. DISTANT GALAXY IDENTIFICATION TECHNIQUE IN HUBBLE FIELD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Series of four panels that illustrate the distant-galaxy identification technique. Four panels that show (top to bottom, or right to left when rotated correctly) F814W filter, F606W filter, F450W filter, and F300W filter images, or near-infrared through near-ultraviolet images. The identified galaxy is prominent in the near-infrared image but totally absent in any of the other images. It is this spectroscopic signature that identifies this galaxy as a very distant object. Credit: Ken Lanzetta and Amos Yahil (State University of New York at Stony Brook), and NASA

  17. Formation, evolution and properties of isolated field elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias; Heinämäki, Pekka; Nurmi, Pasi; Saar, Enn

    2010-06-01

    We study the properties, evolution and formation mechanisms of isolated field elliptical (IfE) galaxies. We create a `mock' catalogue of IfE galaxies from the Millennium Simulation Galaxy Catalogue, and trace their merging histories. The formation, identity and assembly redshifts of simulated isolated and non-isolated elliptical galaxies are studied and compared. Observational and numerical data are used to compare age, mass and the colour-magnitude relation. Our results, based on simulation data, show that almost 7 per cent of all elliptical galaxies brighter than -19mag in B band can be classified as IfE galaxies. Results also show that isolated elliptical galaxies have a rather flat luminosity function; a number density of ~3 × 10-6h3Mpc-3mag-1, throughout their B-band magnitudes. IfE galaxies show bluer colours than non-isolated elliptical galaxies and they appear younger, in a statistical sense, according to their mass-weighted age. IfE galaxies also form and assemble at lower redshifts compared to non-isolated elliptical galaxies. About 46 per cent of IfE galaxies have undergone at least one major merging event in their formation history, while the same fraction is only ~33 per cent for non-isolated ellipticals. Almost all (~98 per cent) isolated elliptical galaxies show merging activity during their evolution, pointing towards the importance of mergers in the formation of IfE galaxies. The mean time of the last major merging is at z ~ 0.6 or 6Gyr ago for isolated ellipticals, while non-isolated ellipticals experience their last major merging significantly earlier at z ~ 1.1 or 8Gyr ago. After inspecting merger trees of simulated IfE galaxies, we conclude that three different, yet typical, formation mechanisms can be identified: solitude, coupling and cannibalism. Our results also predict a previously unobserved population of blue, dim and light galaxies that fulfil observational criteria to be classified as IfE galaxies. This separate population comprises

  18. Reconstructing magnetic fields of spiral galaxies from radiopolarimetric observations

    NASA Astrophysics Data System (ADS)

    Shneider, C.

    2015-12-01

    We live in a magnetic universe with magnetic fields spanning an enormous range of spatial and temporal scales. In particular, magnetic fields at the scale of a galaxy are known as galactic magnetic fields and are the focus of this PhD thesis. These galactic magnetic fields are very important since they affect the dynamics of the interstellar gas as well as the gas distribution. The presence of these magnetic fields induces a certain type of radiation to occur at radio frequencies known as synchrotron radiation. The observed polarization properties of this synchrotron radiation then serves to record the imprint of these magnetic fields. The goal of this thesis has been to infer the structure of the magnetic field across various spatial scales in our own Galaxy as well as the strength and structure of the magnetic field in other galaxies using radiopolarimetric observations.

  19. Galaxy and mass assembly: Redshift space distortions from the clipped galaxy field

    NASA Astrophysics Data System (ADS)

    Simpson, F.; Blake, C.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Heavens, A. F.; Heymans, C.; Loveday, J.; Norberg, P.

    2016-01-01

    We present the first cosmological measurement derived from a galaxy density field subject to a "clipping" transformation. By enforcing an upper bound on the galaxy number density field in the galaxy and mass assembly survey (GAMA), contributions from the nonlinear processes of virialization and galaxy bias are greatly reduced. This leads to a galaxy power spectrum which is easier to model, without calibration from numerical simulations. We develop a theoretical model for the power spectrum of a clipped field in redshift space, which is exact for the case of anisotropic Gaussian fields. Clipping is found to extend the applicability of the conventional Kaiser prescription by more than a factor of 3 in wave numbers, or a factor of 30 in terms of the number of Fourier modes. By modeling the galaxy power spectrum on scales k <0.3 h Mpc-1 and density fluctuations δg<4 we measure the normalized growth rate f σ8(z =0.18 )=0.29 ±0.10 .

  20. Galaxy Merger Identification in the CANDELS GOODS-South Field

    NASA Astrophysics Data System (ADS)

    O'Leary, Erin M.; Kartaltepe, J. S.

    2013-01-01

    We analyzed a catalog of 7,628 galaxies at 0field in order to identify a sample of galaxy mergers and interactions. Mergers are believed to play a fundamental role in galaxy evolution. Developing methods to robustly and efficiently identify mergers becomes vital as we look to higher redshifts. We explored merger identification based on visual morphology classification and preliminary attempts with automated methods. Using multiple detailed visual morphology classifications for each galaxy conducted by the CANDELS structure and morphology team, we created selection criteria to identify mergers from this visual classification catalog. We chose galaxies with high interaction classification and evidence of merger signatures (i.e. tidal features, double nuclei) to generate a catalog of 1051 galaxies we are confident are mergers. This represents a conservative sample of possible mergers. For comparison, we also tested automated merger identification techniques previously used for lower redshift (z<1) galaxies. This is one of the first large investigations of galaxy mergers at z>1. O’Leary was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  1. Kinematic and Structural Evolution of Field and Cluster Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ziegler, B. L.; Kutdemir, E.; Da Rocha, C.; Böhm, A.; Peletier, R. F.; Verdugo, M.

    2010-10-01

    To understand the processes that build up galaxies we investigate the stellar structure and gas kinematics of spiral and irregular galaxies out to redshift 1. We target 92 galaxies in four cluster ( z = 0.3 & 0.5 ) fields to study the environmental influence. Their stellar masses derived from multiband VLT/FORS photometry are distributed around but mostly below the characteristic Schechter-fit mass. From HST/ACS images we determine morphologies and structural parameters like disk length, position angle and ellipticity. Combining the spectra of three slit positions per galaxy using the MXU mode of VLT/FORS2 we construct the two-dimensional velocity field from gas emission lines for 16 cluster members and 33 field galaxies. The kinematic position angle and flatness are derived by a Fourier expansion of elliptical velocity profiles. To trace possible interaction processes, we define three irregularity indicators based on an identical analysis of local galaxies from the SINGS project. Our distant sample displays a higher fraction of disturbed velocity fields with varying percentages (10%, 30% and 70%) because they trace different features. While we find far fewer candidates for major mergers than the SINS sample at z ˜ 2, our data are sensitive enough to trace less violent processes. Most irregular signatures are related to star formation events and less massive disks are affected more than Milky-Way type objects. We detect similarly high fractions of irregular objects both for the distant field and cluster galaxies with similar distributions. We conclude that we may witness the building-up of disk galaxies still at redshifts z ˜ 0.5 via minor mergers and gas accretion, while some cluster members may additionally experience stripping, evaporation or harassment interactions.

  2. Towards a census of supercompact massive galaxies in the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; Roy, N.; Radovich, M.; Cavuoti, S.; Brescia, M.; Longo, G.; Getman, F.; Capaccioli, M.; Grado, A.; Kuijken, K. H.; de Jong, J. T. A.; McFarland, J. P.; Puddu, E.

    2016-04-01

    The abundance of compact, massive, early-type galaxies (ETGs) provides important constraints to galaxy formation scenarios. Thanks to the area covered, depth, excellent spatial resolution and seeing, the ESO Public optical Kilo Degree Survey (KiDS), carried out with the VLT Survey Telescope, offers a unique opportunity to conduct a complete census of the most compact galaxies in the Universe. This paper presents a first census of such systems from the first 156 deg2 of KiDS. Our analysis relies on g-, r- and i-band effective radii (Re), derived by fitting galaxy images with point spread function (PSF)-convolved Sérsic models, high-quality photometric redshifts, zphot, estimated from machine learning techniques, and stellar masses, M⋆, calculated from KiDS aperture photometry. After massiveness ({M_{⋆}}≳ 8 × 10^{10} M_{⊙}) and compactness ({R_e}≲ 1.5 kpc in g, r and i bands) criteria are applied, a visual inspection of the candidates plus near-infrared photometry from VIKING-DR1 are used to refine our sample. The final catalogue, to be spectroscopically confirmed, consists of 92 systems in the redshift range z ˜ 0.2-0.7. This sample, which we expect to increase by a factor of 10 over the total survey area, represents the first attempt to select massive supercompact ETGs (MSCGs) in KiDS. We investigate the impact of redshift systematics in the selection, finding that this seems to be a major source of contamination in our sample. A preliminary analysis shows that MSCGs exhibit negative internal colour gradients, consistent with a passive evolution of these systems. We find that the number density of MSCGs is only mildly consistent with predictions from simulations at z > 0.2, while no such system is found at z < 0.2.

  3. Strong magnetic fields in normal galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Bernet, Martin L.; Miniati, Francesco; Lilly, Simon J.; Kronberg, Philipp P.; Dessauges-Zavadsky, Miroslava

    2008-07-01

    The origin and growth of magnetic fields in galaxies is still something of an enigma. It is generally assumed that seed fields are amplified over time through the dynamo effect, but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant (and hence ancient) quasars are comparable to those seen today, but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high-resolution spectra that demonstrate that the quasars with strong MgII absorption lines are unambiguously associated with larger rotation measures. Because MgII absorption occurs in the haloes of normal galaxies along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one-third of its present age.

  4. Effects of simulated cosmological magnetic fields on the galaxy population

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Vogelsberger, Mark

    2016-02-01

    We investigate the effects of varying the intensity of the primordial magnetic seed field on the global properties of the galaxy population in ideal magnetohydrodynamic cosmological simulations performed with the moving-mesh code AREPO. We vary the seed field in our calculations in a range of values still compatible with the current cosmological upper limits. We show that above a critical intensity of ≃10-9 G, the additional pressure arising from the field strongly affects the evolution of gaseous structures, leading to a suppression of the cosmic star formation history, which is stronger for larger seed fields. This directly reflects into a lower total galaxy count above a fixed stellar mass threshold at all redshifts, and a lower galaxy number density at fixed stellar mass and a less massive stellar component at fixed virial mass at all mass scales. These signatures may be used, in addition to the existing methods, to derive tighter constraints on primordial magnetic seed field intensities.

  5. The 400 Square Degree ROSAT PSPC Galaxy Cluster Survey: Catalog and Statistical Calibration

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Vikhlinin, A.; Hornstrup, A.; Ebeling, H.; Quintana, H.; Mescheryakov, A.

    2007-10-01

    We present a catalog of galaxy clusters detected in a new ROSAT PSPC survey. The survey is optimized to sample, at high redshifts, the mass range corresponding to T>5 keV clusters at z=0. Technically, our survey is the extension of the 160 square degree survey (160d). We use the same detection algorithm, thus preserving high quality of the resulting sample; the main difference is a significant increase in sky coverage. The new survey covers 397 deg2 and is based on 1610 high Galactic latitude ROSAT PSPC pointings, virtually all pointed ROSAT data suitable for the detection of distant clusters. The search volume for X-ray luminous clusters within z<1 exceeds that of the entire local universe (z<0.1). We detected 287 extended X-ray sources with fluxes f>1.4×10-13 ergs s-1 cm-2 in the 0.5-2 keV energy band, of which 266 (93%) are optically confirmed as galaxy clusters, groups or individual elliptical galaxies. This paper provides a description of the input data, the statistical calibration of the survey via Monte Carlo simulations, and the catalog of detected clusters. We also compare the basic results to those from previous, smaller area surveys and find good agreement for the logN-logS distribution and the local X-ray luminosity function. Our sample clearly shows a decrease in the number density for the most luminous clusters at z>0.3. The comparison of our ROSAT-derived fluxes with the accurate Chandra measurements for a subset of high-redshift clusters demonstrates the validity of the 400 square degree survey's statistical calibration.

  6. Confusion-limited galaxy fields. II - Classical analyses

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1989-01-01

    Chokshi and Wright presented a detailed model for simulating angular distribution of galaxy images in fields that extended to very high redshifts. Standard tools are used to analyze these simulated galaxy fields for the Omega(O) = 0 and the Omega(O) = 1 cases in order to test the discriminatory power of these tools. Classical number-magnitude diagrams and surface brightness-color-color diagrams are employed to study crowded galaxy fields. An attempt is made to separate the effects due to stellar evolution in galaxies from those due to the space time geometry. The results show that this discrimination is maximized at near-infrared wavelengths where the stellar photospheres are still visible but stellar evolution effects are less severe than those observed at optical wavelenghts. Rapid evolution of the stars on the asymptotic giant branch is easily recognized in the simulated data for both cosmologies and serves to discriminate between the two extreme values of Omega(O). Measurements of total magnitudes of individual galaxies are not essential for studying light distribution in galaxies as a function of redshift. Calculations for the extragalactic background radiation are carried out using the simulated data, and compared to integrals over the evolutionary models used.

  7. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital

  8. MAGNETIC FIELDS IN COSMOLOGICAL SIMULATIONS OF DISK GALAXIES

    SciTech Connect

    Pakmor, Rüdiger; Marinacci, Federico; Springel, Volker

    2014-03-01

    Observationally, magnetic fields reach equipartition with thermal energy and cosmic rays in the interstellar medium of disk galaxies such as the Milky Way. However, thus far cosmological simulations of the formation and evolution of galaxies have usually neglected magnetic fields. We employ the moving-mesh code AREPO to follow for the first time the formation and evolution of a Milky Way-like disk galaxy in its full cosmological context while taking into account magnetic fields. We find that a prescribed tiny magnetic seed field grows exponentially by a small-scale dynamo until it saturates around z = 4 with a magnetic energy of about 10% of the kinetic energy in the center of the galaxy's main progenitor halo. By z = 2, a well-defined gaseous disk forms in which the magnetic field is further amplified by differential rotation, until it saturates at an average field strength of ∼6 μG in the disk plane. In this phase, the magnetic field is transformed from a chaotic small-scale field to an ordered large-scale field coherent on scales comparable to the disk radius. The final magnetic field strength, its radial profile, and the stellar structure of the disk compare well with observational data. A minor merger temporarily increases the magnetic field strength by about a factor of two, before it quickly decays back to its saturation value. Our results are highly insensitive to the initial seed field strength and suggest that the large-scale magnetic field in spiral galaxies can be explained as a result of the cosmic structure formation process.

  9. Violent galaxy evolution in the Frontier Fields clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald; McPartland, Conor; Blumenthal, Kelly; Roediger, Elke

    2015-08-01

    In a recent study we used customized morphological selection criteria to identify potential ram-pressure stripping events in shallow HST images of MACS clusters at z=0.3-0.7 and found tantalising evidence of such violent evolution (a) being at least partly triggered by galaxy mergers and (b) causing extensive star formation and thus brightening of the affected galaxies. Due to the limited depth of the HST data used, our project focused (by design and necessity) on the brightest galaxies. We here present results of a similar survey for “jellyfish” galaxies conducted using the much deeper, multi-passband imaging data of the Frontier Fields clusters that allow us to probe much farther into the luminosity function of ram-pressure stripping in some of the most massive and most dynamically disturbed clusters known.

  10. The magnetic field in the disk of our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Qiao, G. J.

    1994-08-01

    The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.

  11. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    Viola, M.; Cacciato, M.; Brouwer, M.; Kuijken, K.; Hoekstra, H.; Norberg, P.; Robotham, A. S. G.; van Uitert, E.; Alpaslan, M.; Baldry, I. K.; Choi, A.; de Jong, J. T. A.; Driver, S. P.; Erben, T.; Grado, A.; Graham, Alister W.; Heymans, C.; Hildebrandt, H.; Hopkins, A. M.; Irisarri, N.; Joachimi, B.; Loveday, J.; Miller, L.; Nakajima, R.; Schneider, P.; Sifón, C.; Verdoes Kleijn, G.

    2015-10-01

    The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ˜1400 spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly survey. We detect a highly significant signal (signal-to-noise-ratio ˜120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M ˜ 1013-1014.5 h-1 M⊙. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the brightest cluster galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power law with slope 1.16 ± 0.13 (1σ) and with the group velocity dispersion as a power law with slope 1.89 ± 0.27 (1σ). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations project, ruling out models without AGN feedback.

  12. The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: Bridging the Gap between Low and High Redshift

    NASA Astrophysics Data System (ADS)

    Edge, A.; Sutherland, W.; Kuijken, K.; Driver, S.; McMahon, R.; Eales, S.; Emerson, J. P.

    2013-12-01

    VIKING is a medium-deep survey of 1500 square degrees over two areas of the extragalactic sky with VISTA in zYJHKs bands to sample the restframe optical for galaxies at z >~ 1. VIKING complements the two other surveys — VHS with its large area but shallower depth and VIDEO with its greater photometric depth and smaller spatial coverage. In addition to a 0.7 < z < 2 galaxy survey, the area and depth of VIKING enables other studies, such as detection of distant quasars and low-mass stars and many galaxy clusters and superclusters. The early results are summarised and future prospects presented.

  13. A study of the luminosity function for field galaxies. [non-rich-cluster galaxies

    NASA Technical Reports Server (NTRS)

    Felten, J. E.

    1977-01-01

    Nine determinations of the luminosity function (LF) for field galaxies are analyzed and compared. Corrections for differences in Hubble constants, magnitude systems, galactic absorption functions, and definitions of the LF are necessary prior to comparison. Errors in previous comparisons are pointed out. After these corrections, eight of the nine determinations are in fairly good agreement. The discrepancy in the ninth appears to be mainly an incompleteness effect. The LF data suggest that there is little if any distinction between field galaxies and those in small groups.

  14. Bars in Field and Cluster Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Ediscs Collaboration

    2009-12-01

    We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.

  15. WBUCS: A Web Simulator for Deep Galaxy Fields

    NASA Astrophysics Data System (ADS)

    Magee, D. K.; Bouwens, R.; Illingworth, G. D.

    2005-12-01

    Today's deep high resolution multiwavelength surveys contain a wealth of information about galaxies at different epochs. Fully exploiting this information to trace out galaxy assembly requires the ability to archive galaxy samples and resimulate these samples at different redshifts. Here we describe some of the tools developed for these ends as well as a simulator now available on the web for demonstration use. Based upon a pixel-by-pixel modeling of object SEDs and their selection volumes, this simulator will provide users with the ability to make realistic multicolor simulations of galaxy fields from galaxy samples at all redshifts: from z˜0 samples selected from the Sloan Digital Sky Survey to z˜1-6 samples selected from the Great Observatories Origins Deep Survey. Users only need specify the passbands, noise, and PSFs, or equivalently the exposure times on well-known instruments like HST or ground-based telescopes. As such, this simulator will provide the community with a real world virtual observatory, useful both at the proposal stage and for making comparisons with observations in hand. The engine for the simulator is the well-known BUCS (Bouwens' Universe Construction Set) library developed for galaxy evolution studies, while the web interface is analogous to that used for the popular web archives. The purpose of this poster is to introduce this effort to the computational community as a whole.

  16. The galaxy velocity field and CDM models

    NASA Technical Reports Server (NTRS)

    Tormen, Giuseppe; Moscardini, Lauro; Lucchin, Francesco; Matarrese, Sabino

    1993-01-01

    It is generally accepted that some kind of non-baryonic dark matter accounts for most of the mass density of the universe. Considering such a component has become, in the last decade, a key ingredient in current theories of structure formation. In particular, the Cold Dark Matter (CDM) scenario has proven to be quite successful in explaining most of the observed properties of galaxies and of their large-scale distribution. The standard CDM model is characterized by a primordial Zel'dovich spectrum, of random-phase adiabatic perturbations in a universe with density parameter omega sub 0 = 1 and vanishing cosmological constant. This poster paper presents an analysis of observational data on peculiar motion of optical galaxies in comparison to the predictions of CDM models where the assumptions of the standard scenario: omega sub 0 = 1, n = 1, and bias parameter b = 1 are relaxed. In particular, CDM models with 0 less than n less than 1 and 0.4 less than omega sub 0 less than 1 are considered.

  17. Magnetic fields in galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Bernet, Martin Leo; Gaensler, Bryan; Lilly, Simon; O'Sullivan, Shane; Miniati, Francesco

    2013-04-01

    We have recently demonstrated an association between high Faraday Rotation of radio quasars and the presence of intervening strong MgII absorption and determined that the magnetized plasma in the associated galaxies extends up to 60 kpc. These findings are based on Rotation Measure (RM) observations typically performed at 5 GHz, but they can not be reproduced using RMs obtained at lower frequencies, e.g. using the Taylor et al. (2009) RM catalogue at 1.4 GHz. This apparent discrepancy can be explained by a model which takes into account the depolarization of the sources due to inhomogeneous Faraday Rotation screens and their partial coverage of the sources. We propose here to observe 27 sources of our sample which are accessible by the ATCA to test this hypothesis. Our goal is to observe the selected sources over the broad frequency range 1.1 -10.8 GHz to obtain depolarization curves and to perform Faraday Rotation Measure Synthesis. With this sample we will be able to determine the homogeneity of the Faraday screens in the intervening galaxies and to further strengthen the original result. Finally the outcome of this experiment has important implications for the design of future RM surveys.

  18. Effects of Magnetic Fields on Bar Substructures in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae

    2015-03-01

    To study the effects of magnetic fields on the properties of bar substructures, we run two-dimensional, ideal MHD simulations of barred galaxies under the influence of a non-axisymmetric bar potential. In the bar regions, magnetic fields reduce density compression in the dust-lane shocks, while removing angular momentum further from the gas at the shocks. This evidently results in a smaller and more distributed ring, and a larger mass inflows rate to the galaxy center in models with stronger magnetic fields. In the outer regions, an MHD dynamo due to the combined action of the bar potential and background shear operates, amplifying magnetic fields near the corotation resonance. In the absence of spiral arms, the amplified fields naturally shape into trailing magnetic arms with strong fields and low density. The reader is refereed to Kim & Stone (2012) for a detailed presentation of the simulation outcomes.

  19. Galaxy Transformation as probed by Morphology and Velocity Fields of Distant Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Ziegler, Bodo

    2005-07-01

    We seek to obtain ACS imaging of four distant {0.3galaxies within a 6'x6' field covered by a 2x2 mosaic to determine morphological and structural parameters of late-type galaxies. We specifically concentrate on peculiarities indicative of past or ongoing interaction processes. The 90 target galaxies have been {Period74} or will be {P75} observed with 3D-spectroscopy at ESO-VLT yielding 2D-velocity fields with unprecedented spatial coverage and sampling. The good spatial resolution of the ground-based data will be further enhanced by a deconvolution method based on the proposed ACS images. The velocity field and the morphology in restframe-UV light will reveal possible transformation mechanisms affecting not only the stellar populations but also the mass distribution of the galaxies. Additionally, it will be possible to pin down the nature of the interaction {e.g. tidally or ram-pressure induced}. This assessment gets supported by our N-body/SPH simulations {including star formation} of different interaction processes that allow the direct comparison of structural and kinematical characteristics at each time step with the observations on an individual basis taking into account all observational constraints for a given galaxy. All together, we will be able to explore the relative efficiency of the various proposed transformation phenomena. In the case of non-disturbed spirals, a rotation curve can be extracted from the full 2D velocity field with unprecedented quality, from which the maximum rotation speed can be derived with high confidence. In combination with accurate size and luminosity determinations from the ACS images, we will be able to establish the Tully-Fisher and Fundamental Plane relations of cluster spiral members at cosmological epochs. At these distances cluster assembly is predicted to peak and we can probe the galaxies' luminosity, size and mass evolution with robust methods. Together with our already existing sample of 200

  20. Quiescent Compact Galaxies at Intermediate Redshift in the COSMOS Field. II. The Fundamental Plane of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Damjanov, Ivana; Geller, Margaret J.; Chilingarian, Igor

    2015-06-01

    We examine the relation between surface brightness, velocity dispersion, and size—the fundamental plane (FP)—for quiescent galaxies at intermediate redshifts in the COSMOS field. The COSMOS sample consists of ˜150 massive quiescent galaxies with an average velocity dispersion of σ ˜ 250 km s-1 and redshifts between 0.2 < z < 0.8. More than half of the galaxies in the sample are compact. The COSMOS galaxies exhibit a tight relation (˜0.1 dex scatter) between surface brightness, velocity dispersion, and size. At a fixed combination of velocity dispersion and size, the COSMOS galaxies are brighter than galaxies in the local universe. These surface brightness offsets are correlated with the rest-frame g - z color and Dn4000 index; bluer galaxies and those with smaller Dn4000 indices have larger offsets. Stellar population synthesis models indicate that the massive COSMOS galaxies are younger and therefore brighter than similarly massive quiescent galaxies in the local universe. Passive evolution alone brings the massive compact quiescent (MCQ) COSMOS galaxies onto the local FP at z = 0. Therefore, evolution in size or velocity dispersion for MCQ galaxies since z ˜ 1 is constrained by the small scatter observed in the FP. We conclude that MCQ galaxies at z ≲ 1 are not a special class of objects but rather the tail of the mass and size distribution of the normal quiescent galaxy population.

  1. First discoveries of z ˜ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey

    NASA Astrophysics Data System (ADS)

    Venemans, B. P.; Verdoes Kleijn, G. A.; Mwebaze, J.; Valentijn, E. A.; Bañados, E.; Decarli, R.; de Jong, J. T. A.; Findlay, J. R.; Kuijken, K. H.; Barbera, F. La; McFarland, J. P.; McMahon, R. G.; Napolitano, N.; Sikkema, G.; Sutherland, W. J.

    2015-11-01

    We present the results of our first year of quasar search in the ongoing ESO public Kilo-Degree Survey (KiDS) and VISTA Kilo-Degree Infrared Galaxy (VIKING) surveys. These surveys are among the deeper wide-field surveys that can be used to uncover large numbers of z ˜ 6 quasars. This allows us to probe a more common population of z ˜ 6 quasars that is fainter than the well-studied quasars from the main Sloan Digital Sky Survey. From this first set of combined survey catalogues covering ˜250 deg2 we selected point sources down to ZAB = 22 that had a very red i - Z (i - Z > 2.2) colour. After follow-up imaging and spectroscopy, we discovered four new quasars in the redshift range 5.8 < z < 6.0. The absolute magnitudes at a rest-frame wavelength of 1450 Å are between -26.6 < M1450 < -24.4, confirming that we can find quasars fainter than M*, which at z = 6 has been estimated to be between M* = -25.1 and M* = -27.6. The discovery of four quasars in 250 deg2 of survey data is consistent with predictions based on the z ˜ 6 quasar luminosity function. We discuss various ways to push the candidate selection to fainter magnitudes and we expect to find about 30 new quasars down to an absolute magnitude of M1450 = -24. Studying this homogeneously selected faint quasar population will be important to gain insight into the onset of the co-evolution of the black holes and their stellar hosts.

  2. Field Galaxies and Their AGNs: Nature Versus Nurture

    NASA Astrophysics Data System (ADS)

    Micic, M.

    2013-06-01

    This review attempts to present most recent findings related to the very controversial question of which processes guide the flow of gas to the galactic centers where the accretion and growth of supermassive black holes occurs. Also, we put this question in the context of influence of the environment (galaxy clusters versus field) onto these processes.

  3. Dwarf galaxies in multistate scalar field dark matter halos

    NASA Astrophysics Data System (ADS)

    Martinez-Medina, L. A.; Robles, V. H.; Matos, T.

    2015-01-01

    We analyze the velocity dispersion for eight of the Milky Way dwarf spheroidal satellites in the context of finite temperature scalar field dark matter. In this model the finite temperature allows the scalar field to be in configurations that possess excited states, a feature that has proved to be necessary in order to explain the asymptotic rotational velocities found in low surface brightness (LSB) galaxies. In this work we show that excited states are not only important in large galaxies but also have visible effects in dwarf spheroidals. Additionally, we stress that contrary to previous works where the scalar field dark matter halos are consider to be purely Bose-Einstein condensates, the inclusion of excited states in these halo configurations provides a consistent framework capable of describing LSB and dwarf galaxies of different sizes without arriving to contradictions within the scalar field dark matter model. Using this new framework we find that the addition of excited states accounts very well for the raise in the velocity dispersion in Milky Way dwarf spheroidal galaxies improving the fit compared to the one obtained assuming all the dark matter to be in the form of a Bose-Einstein condensate.

  4. Astrophysical Magnetic Fields and Topics in Galaxy Formation

    NASA Technical Reports Server (NTRS)

    Field, George B.

    1997-01-01

    The grant was used to support theoretical research on a variety of astro-physical topics falling broadly into those described by the proposal: galaxy formation, astrophysical magnetic fields, magnetized accretion disks in AGN, new physics, and other astrophysical problems. Work accomplished; references are to work authored by project personel.

  5. On the relevance of alternative low degree archeomagnetic field models

    NASA Astrophysics Data System (ADS)

    Licht, A.; Hulot, G.; Gallet, Y.; Thebault, E.

    2011-12-01

    Much effort has been spent over the past decade to collect quality archeomagnetic, lava and sediment data and enrich the now substantial database of ancient indirect geomagnetic field data. These efforts have been a strong incentive for field modelers and have led to an impressive series of archeomagnetic field models, in particular the extensively used CALSxk series. These now extend over more than three millennia back in time and aim at reaching temporal and spatial resolution closer to that of historical field models. Not all authors however agree that such a resolution can be achieved and some have argued that despite its size, and because of its still limited geographical coverage, the current database does not make it possible to recover much more than the past dipole field behavior. To investigate the relevance of such claims we decided to rely on a different strategy to that used in the CALSxk series of models. We searched for alternative low degree spherical harmonic and low temporal resolution spline representations of the field over the past three millennia. These models were optimized so as to recover as much spatio-temporal resolution as allowed by the data without resorting to highly damped, and therefore essentially unresolved, high degree spherical harmonics and temporal frequencies. As we will show, such alternative models, and the various tests we carried out in the process of building them, provide an interesting different insight to that provided by the CALSxk series of models.

  6. Ram pressure stripping in elliptical galaxies - II. Magnetic field effects

    NASA Astrophysics Data System (ADS)

    Shin, Min-Su; Ruszkowski, Mateusz

    2014-12-01

    We investigate the effects of magnetic fields and turbulence on ram pressure stripping in elliptical galaxies using ideal magnetohydrodynamic simulations. We consider weakly magnetized interstellar medium (ISM) characterized by subsonic turbulence, and two orientations of the magnetic fields in the intracluster medium (ICM) - parallel and perpendicular to the direction of the galaxy motion through the ICM. While the stronger turbulence enhances the ram pressure stripping mass-loss, the magnetic fields tend to suppress the stripping rates, and the suppression is stronger for parallel fields. However, the effect of magnetic fields on the mass stripping rate is mild. Nevertheless, the morphology of the stripping tails depends significantly on the direction of the ICM magnetic field. The effect of the magnetic field geometry on the tail morphology is much stronger than that of the level of the ISM turbulence. The tail has a highly collimated shape for parallel fields, while it has a sheet-like morphology in the plane of the ICM magnetic field for perpendicular fields. The magnetic field in the tail is amplified irrespectively of the orientation of the ICM field. More strongly magnetized regions in the ram pressure stripping tails are expected to have systematically higher metallicity due to the strong concentration of the stripped ISM than the less magnetized regions. Strong dependence of the morphology of the stripped ISM on the magnetic field could potentially be used to constrain the relative orientation of the ram pressure direction and the dominant component of the ICM magnetic field.

  7. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  8. Wide Integral Field Infrared Spectroscopic Survey of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh; Moon, Dae-Sik; Zaritsky, Dennis F.; Chou, Richard; Meyer, Elliot; Ma, Ke; Jarvis, Miranda; Eisner, Joshua A.

    2015-01-01

    We are constructing a novel infrared integral field spectrograph with a large field of view (~50'x20') that will be available on the Kitt Peak 90' Bok telescope this spring. This wide integral field infrared spectrograph (WIFIS) operates over two wavelength ranges, zJ-band (0.9-1.35 microns) and H-band (1.5-1.8 microns), and has moderate spectral resolving power, 3,000 in zJ-band and 2,200 in H-band, respectively. WIFIS' field-of-view is comparable to current optical integral field spectrographs that are carrying out large galaxy surveys, e.g. SAMI, CALIFA, and MaNGA. We are designing a large nearby galaxy survey to complement the data already been taken by these optical integral field spectroscopic surveys. The near-infrared window provides a sensitive probe of the initial mass functions of stellar populations, the OB stellar fractions in massive star forming regions, and the kinematics of and obscured star formation within merging systems. This will be the first large scale infrared integral field spectroscopic survey of nearby galaxies.

  9. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  10. Faint Submillimeter Galaxies Behind the Frontier Field Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Cowie, Lennox; Barger, Amy; Wang, Wei-Hao; Chen, Chian-Chou

    2015-08-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. To explore this faint submillimeter population, we have been observing nine galaxy clusters with the SCUBA-2 camera on the James Clerk Maxwell Telescope, including five of the clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array to determine the positions of our detected sources precisely. Our recent observations have discovered several high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies but which are undetected in current deep radio, optical and near-infrared images. These remarkable results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  11. The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Cacciato, Marcello; Hoekstra, Henk; Brouwer, Margot; van Uitert, Edo; Viola, Massimo; Baldry, Ivan; Brough, Sarah; Brown, Michael J. I.; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hildebrandt, Hendrik; Joachimi, Benjamin; de Jong, Jelte T. A.; Kuijken, Konrad; McFarland, John; Miller, Lance; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Robotham, Aaron S. G.; Schneider, Peter; Kleijn, Gijs Verdoes

    2015-12-01

    We use the first 100 deg2 of overlap between the Kilo-Degree Survey and the Galaxy And Mass Assembly survey to determine the average galaxy halo mass of ˜10 000 spectroscopically confirmed satellite galaxies in massive (M > 1013 h-1 M⊙) galaxy groups. Separating the sample as a function of projected distance to the group centre, we jointly model the satellites and their host groups with Navarro-Frenk-White density profiles, fully accounting for the data covariance. The probed satellite galaxies in these groups have total masses log ≈ 11.7-12.2 consistent across group-centric distance within the errorbars. Given their typical stellar masses, log ˜ 10.5, such total masses imply stellar mass fractions of / ≈ 0.04 h-1. The average subhalo hosting these satellite galaxies has a mass Msub ˜ 0.015Mhost independent of host halo mass, in broad agreement with the expectations of structure formation in a Λ cold dark matter universe.

  12. A Slow Merger History of Field Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin; Fukugita, Masataka; Ellis, Richard S.; Kodama, Tadayuki; Conselice, Christopher J.

    2004-02-01

    Using deep infrared observations conducted with the CISCO imager on the Subaru Telescope, we investigate the field-corrected pair fraction and the implied merger rate of galaxies in redshift survey fields with Hubble Space Telescope (HST) imaging. In the redshift interval, 0.5galaxies. At z~1, we estimate this to be 2×109+/-0.2 Msolar galaxy-1 Gyr-1. Although uncertainties remain, our results suggest that the growth of galaxies via the accretion of preexisting fragments remains as significant a phenomenon in the redshift range studied as that estimated from ongoing star formation in independent surveys. Based on data acquired at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Heald, G. H.; Elstner, D.; Gallagher, J. S.

    2016-05-01

    Aims: It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. We also discuss whether NGC 2976 could serve as a potential source of the intergalactic magnetic field. Methods: For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey for which a rotation measure (RM) synthesis was performed. A new weighting scheme for the RM synthesis algorithm, consisting of including information about the quality of data in individual frequency channels, was proposed and investigated. Application of this new weighting to the simulated data, as well as to the observed data, results in an improvement of the signal-to-noise ratio in the Faraday depth space. Results: The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 μG) and ordered (3 μG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Conclusions: Tidal

  14. Low-degree Structure in Mercury's Planetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.

    2012-01-01

    The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.

  15. The Discovery of Seven Extremely Low Surface Brightness Galaxies in the Field of the Nearby Spiral Galaxy M101

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Abraham, Roberto

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ g ~ 25.5-27.5 mag arcsec-2. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range -11.6 <~ MV <~ -9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ~ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.

  16. THE DISCOVERY OF SEVEN EXTREMELY LOW SURFACE BRIGHTNESS GALAXIES IN THE FIELD OF THE NEARBY SPIRAL GALAXY M101

    SciTech Connect

    Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 mag arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.

  17. DEEP OPTICAL PHOTOMETRY OF SIX FIELDS IN THE ANDROMEDA GALAXY

    SciTech Connect

    Brown, Thomas M.; Smith, Ed; Ferguson, Henry C.; Kalirai, Jason S.; Guhathakurta, Puragra; Renzini, Alvio; Rich, R. Michael; VandenBerg, Don A. E-mail: edsmith@stsci.edu E-mail: jkalirai@stsci.edu E-mail: randy.a.kimble@nasa.gov E-mail: alvio.renzini@oapd.inaf.it E-mail: vandenbe@uvic.ca

    2009-09-01

    Using the Advanced Camera for Surveys on the Hubble Space Telescope, we have obtained deep optical images reaching well below the oldest main-sequence turnoff in six fields of the Andromeda Galaxy. The fields fall at four positions on the southeast minor axis, one position in the giant stellar stream, and one position on the northeast major axis. These data were obtained as part of three large observing programs designed to probe the star formation history of the stellar population in various structures of the galaxy. In this paper, we present the images, catalogs, and artificial star tests for these observing programs as a supplement to the analyses published previously. These high-level science products are also archived at the Multimission Archive at the Space Telescope Science Institute.

  18. Slipher, Galaxies, and Cosmological Velocity Fields

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.

    2013-04-01

    By 1917, V. M. Slipher had singlehandedly established a general tendency for ‘spiral nebulae’ to be redshifted (21 out of 25 cases). From a modern perspective, it could seem surprising that the discovery of the expansion of the universe was not announced at this point. Examination of the data and arguments contained in Slipher's papers shows that he reached a more subtle conclusion: the identification of cosmological peculiar velocities, including the bulk motion of the Milky Way, leading to a beautiful argument in favor of spiral nebulae as distant stellar systems. Nevertheless, Slipher's data actually contain evidence at >8σ for a positive mean velocity, even after subtracting the best-fitting dipole pattern owing to motion of the observer. In 1929, Hubble provided distance estimates for a sample of no greater depth, using redshifts due almost entirely to Slipher. Hubble's distances turned out to be flawed in two distinct ways: in addition to an incorrect absolute calibration, the largest distances were systematically under-estimated. Nevertheless, he claimed the detection of a linear distance-redshift relation. Statistically, the evidence for such a correlation is less strong than the simple evidence for a positive mean velocity in Hubble's sample. Comparison with modern data shows that a sample of more than twice Hubble's depth would generally be required in order to reveal clearly the global linear expansion in the face of the ‘noise’ from peculiar velocities. When the theoretical context of the time is examined, the role of the de Sitter model and its prediction of a linear distance-redshift relation looms large. A number of searches for this relation were performed prior to Hubble over the period 1924-1928, with a similar degree of success. All were based on the velocities measured by Slipher, whose work from a Century ago stands out both for the precision of his measurements and for the subtle clarity of the arguments he employed to draw correct

  19. Finding Galaxy Groups in the Fields of Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Bautz, M. W.

    2006-09-01

    Gravitationally lensed quasars can be used as an invaluable cosmological tool, however, the asymmetry observed in many lensed systems requires models of the lens to include a strong external shear component in addition to the lensing galaxy. The lensing galaxy may be a member of a group or cluster which could provide sufficient shear to account for the lensed image configuration. We are searching for X-ray emission from groups and clusters of galaxies in the fields of multiply-imaged quasars using Chandra's resolving power to separate the faint diffuse emission from the much brighter quasar images. We have analyzed all observations of gravitationally lensed quasars available in the Chandra archive from launch through the end of 2005 to search for this diffuse emission. We present a catalog of cluster and group properties for those fields with significant diffuse emission, and upper limits on group properties in fields where no diffuse emission is detected. These measurements are compared with optical data, where available, and with quasar lensing models. This research was supported by NASA contracts NAS-8-38252 and NAS-8-37716.

  20. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  1. A Swarm lithospheric magnetic field model to SH degree 80

    NASA Astrophysics Data System (ADS)

    Thébault, Erwan; Vigneron, Pierre; Langlais, Benoit; Hulot, Gauthier

    2016-07-01

    The Swarm constellation of satellites was launched in November 2013 and since then has delivered high-quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency to provide a number of scientific products to be made available to the scientific community on a regular basis. In this study, we present the dedicated lithospheric field inversion model. It uses carefully selected magnetic field scalar and vector measurements from the three Swarm satellites between March 2014 and December 2015 and directly benefits from the explicit expression of the magnetic field gradients by the lower pair of Swarm satellites. The modeling scheme is a two-step one and relies first on a regional modeling approach that is very sensitive to small spatial scales and weak signals which we seek to describe. The final model is built from adjacent regional solutions and consists in a global spherical harmonics model expressed between degrees 16 and 80. The quality of the derived model is assessed through a comparison with independent models based on Swarm and the CHAMP satellites. This comparison emphasizes the high level of accuracy of the current model after only 2 years of measurements but also highlights the possible improvements which will be possible once the lowest two satellites reach lower altitudes.

  2. TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy E-mail: elmegreen@vassar.ed

    2010-10-20

    Tadpole galaxies have a head-tail shape with a large clump of star formation at the head and a diffuse tail or streak of stars off to one side. We measured the head and tail masses, ages, surface brightnesses, and sizes for 66 tadpoles in the Hubble Ultra Deep Field (UDF) and looked at the distribution of neighbor densities and tadpole orientations with respect to neighbors. The heads have masses of 10{sup 7}-10{sup 8} M{sub sun} and photometric ages of {approx}0.1 Gyr for z {approx} 2. The tails have slightly larger masses than the heads and comparable or slightly older ages. The most obvious interpretation of tadpoles as young merger remnants is difficult to verify. They have no enhanced proximity to other resolved galaxies as a class, and the heads, typically <0.2 kpc in diameter, usually have no obvious double-core structure. Another possibility is ram pressure interaction between a gas-rich galaxy and a diffuse cosmological flow. Ram pressure can trigger star formation on one side of a galaxy disk, giving the tadpole shape when viewed edge-on. Ram pressure can also strip away gas from a galaxy and put it into a tail, which then forms new stars and gravitationally drags along old stars with it. Such an effect might have already been observed in the Virgo Cluster. Another possibility is that tadpoles are edge-on disks with large, off-center clumps. Analogous lop-sided star formation in UDF clump clusters is shown.

  3. AMUSE-Field. II. Nucleation of early-type galaxies in the field versus cluster environment

    SciTech Connect

    Baldassare, Vivienne F.; Gallo, Elena; Miller, Brendan P.; Plotkin, Richard M.; Valluri, Monica; Treu, Tommaso; Woo, Jong-Hak

    2014-08-20

    The optical light profiles of nearby early-type galaxies are known to exhibit a smooth transition from nuclear light deficits to nuclear light excesses with decreasing galaxy mass, with as much as 80% of the galaxies with stellar masses below 10{sup 10} M {sub ☉} hosting a massive nuclear star cluster (NSC). At the same time, while all massive galaxies are thought to harbor nuclear supermassive black holes (SMBHs), observational evidence for SMBHs is slim at the low end of the mass function. Here, we explore the environmental dependence of the nucleation fraction by comparing two homogeneous samples of nearby field versus cluster early-type galaxies with uniform Hubble Space Telescope (HST) coverage. Existing Chandra X-ray Telescope data for both samples yield complementary information on low-level accretion onto nuclear SMBHs. Specifically, we report on dual-band (F475W and F850LP) Advanced Camera for Surveys (ACS) imaging data for 28 out of the 103 field early-type galaxies that compose the AMUSE-Field Chandra survey, and compare our results against the companion HST and Chandra surveys for a sample of 100 Virgo Cluster early-types (ACS Virgo Cluster and AMUSE-Virgo surveys, respectively). We model the two-dimensional light profiles of the field targets to identify and characterize NSCs, and find a field nucleation fraction of 26%{sub −11%}{sup +17%} (at the 1σ level), consistent with the measured Virgo nucleation fraction across a comparable mass distribution (30%{sub −12%}{sup +17%}). Coupled with the Chandra result that SMBH activity is higher for the field, our findings indicate that, since the last epoch of star formation, the funneling of gas to the nuclear regions has been inhibited more effectively for Virgo galaxies, arguably via ram pressure stripping.

  4. The Wide-Field Nearby Galaxy-Cluster Survey (WINGS) and Its Extension OMEGAWINGS

    NASA Astrophysics Data System (ADS)

    Poggianti, B. M.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W.; D'Onofrio, M.; Dressler, A.; Fritz, J.; Kjaergaard, P.; Gullieuszik, M.; Moles, M.; Moretti, A.; Omizzolo, A.; Paccagnella, A.; Varela, J.; Vulcani, B.

    WINGS is a wide-field multi-wavelength survey of 76 X-ray selected clusters at low redshift. The WINGS database has been used for a variety of cluster and cluster galaxy studies, investigating galaxy star formation, morphologies, structure, stellar mass functions and other properties. We present the recent wider-field extension of WINGS, OMEGAWINGS, conducted with OmegaCAM@VST and AAOmega@AAT. We show two of our latest results regarding jellyfish galaxies and galaxy sizes. OMEGAWINGS has allowed the first systematic search of galaxies with signs of ongoing ram pressure stripping (jellyfishes), yielding a catalog of ˜ 240 galaxies in 41 clusters. We discuss the first results obtained from this sample and the prospects for integral field data. Finally, we summarize our results regarding the discovery of compact massive galaxies at low redshift, their properties, dependence on environment and the implications for the evolution of galaxy sizes from high- to low-z.

  5. Modelling feedback and magnetic fields in radio galaxy evolution

    NASA Astrophysics Data System (ADS)

    Huarte-Espinosa, Martin

    2012-08-01

    The intra-cluster medium (ICM) in galaxy clusters contains magnetic fields on Mpc scales. The main probe of these cluster magnetic fields (CMFs) is the Faraday rotation of the polarized emission from radio sources that are either embedded in, or behind the ICM. Several questions are open concerning the structure and evolution of the magnetic fields in both the ICM and the radio sources. We present three-dimensional magnetohydrodynamical numerical simulations to study randomly tangled magnetic fields in the core of a cluster under the effects of light and hypersonic AGN jets. We investigate the power of the jets and carry out synthetic observations to explore the observational signatures of our model radio sources. Our polarization maps agree with the observations, and show that the magnetic structure inside the sources is shaped by the backflow of the jets. Filaments in the synthetic synchrotron emissivity maps suggest that turbulence develops in evolved sources. The polarimetry statistics correlate with time, with the viewing angle and with the jet-to-ambient density contrast. As the sources expand, the linear polarization fraction decreases and the magnetic structure inside thin sources seems more uniform than inside fat ones. Moreover, we see that the jets distort and amplify the CMFs especially at the head of the jets and that this effect correlates with the power and evolution of the jets. We find good agreement with the RM fluctuations of Hydra A. One of the most important results is that the jet-produced RM enhancements may lead to an overestimate of the strength of the CMFs by a factor of about 70%. The physics of radio source expansion may explain the flattening of the RM structure functions at large scales. The advection of metals from a central active galaxy to the ICM in a cool-core cluster is also investigated with an additional suite of hydrodynamical simulations. These metals provide information about the ICM dynamical history and of the CMFs as well

  6. THE MAGNETIC FIELD OF THE IRREGULAR GALAXY NGC 4214

    SciTech Connect

    Kepley, Amanda A.; Zweibel, Ellen G.; Wilcots, Eric M.; Johnson, Kelsey E.; Robishaw, Timothy E-mail: zweibel@astro.wisc.edu E-mail: kej7a@virginia.edu

    2011-08-01

    We examine the magnetic field in NGC 4214, a nearby irregular galaxy, using multi-wavelength radio continuum polarization data from the Very Large Array. We find that the global radio continuum spectrum shows signs that free-free absorption and/or synchrotron losses may be important. The 3 cm radio continuum morphology is similar to that of the H{alpha} while the 20 cm emission is more diffuse. We estimate that 50% of the radio continuum emission in the center of the galaxy is thermal. Our estimate of the magnetic field strength is 30 {+-} 9.5 {mu}G in the center and 10 {+-} 3 {mu}G at the edges. We find that the hot gas, magnetic, and the gravitational pressures are all the same order of magnitude. Inside the central star-forming regions, we find that the thermal and turbulent pressures of the H II regions dominate the pressure balance. We do not detect any significant polarization on size scales greater than 200 pc. We place an upper limit of 8 {mu}G on the uniform field strength in this galaxy. We suggest that the diffuse synchrotron region, seen to the north of the main body of emission at 20 cm, is elongated due to a uniform magnetic field with a maximum field strength of 7.6 {mu}G. We find that, while the shear in NGC 4214 is comparable to that of the Milky Way, the supernova rate is half that of the Milky Way and suggest that the star formation episode in NGC 4214 needs additional time to build up enough turbulence to drive an {alpha}-{omega} dynamo.

  7. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  8. SPH simulations of magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Bartelmann, M.; Lesch, H.

    1999-08-01

    We perform cosmological, hydrodynamic simulations of magnetic fields in galaxy clusters. The computational code combines the special-purpose hardware Grape for calculating gravitational interaction, and smooth-particle hydrodynamics for the gas component. We employ the usual MHD equations for the evolution of the magnetic field in an ideally conducting plasma. As a first application, we focus on the question what kind of initial magnetic fields yield final field configurations within clusters which are compatible with Faraday-rotation measurements. Our main results can be summarised as follows: (i) Initial magnetic field strengths are amplified by approximately three orders of magnitude in cluster cores, one order of magnitude above the expectation from spherical collapse. (ii) Vastly different initial field configurations (homogeneous or chaotic) yield results that cannot significantly be distinguished. (iii) Micro-Gauss fields and Faraday-rotation observations are well reproduced in our simulations starting from initial magnetic fields of ~ 10(-9) G strength at redshift 15. Our results show that (i) shear flows in clusters are crucial for amplifying magnetic fields beyond simple compression, (ii) final field configurations in clusters are dominated by the cluster collapse rather than by the initial configuration, and (iii) initial magnetic fields of order 10(-9) G are required to match Faraday-rotation observations in real clusters.

  9. Far-Ultraviolet Number Counts of Field Galaxies

    NASA Technical Reports Server (NTRS)

    Voyer, Elysse N.; Gardner, Jonathan P.; Teplitz, Harry I.; Siana, Brian D.; deMello, Duilia F.

    2010-01-01

    The Number counts of far-ultraviolet (FUV) galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of star-forming galaxies. We report on the results of measurements of the rest-frame FUV number counts computed from data of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and the GOODS-North and -South fields. These data were obtained from the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts cover an AB magnitude range from 20-29 magnitudes, covering a total area of 15.9 arcmin'. We show that the number counts are lower than those in previous studies using smaller areas. The differences in the counts are likely the result of cosmic variance; our new data cover more area and more lines of sight than the previous studies. The slope of our number counts connects well with local FUV counts and they show good agreement with recent semi-analytical models based on dark matter "merger trees".

  10. Recovering the tidal field in the projected galaxy distribution

    NASA Astrophysics Data System (ADS)

    Alonso, David; Hadzhiyska, Boryana; Strauss, Michael A.

    2016-07-01

    We present a method to recover and study the projected gravitational tidal forces from a galaxy survey containing little or no redshift information. The method and the physical interpretation of the recovered tidal maps as a tracer of the cosmic web are described in detail. We first apply the method to a simulated galaxy survey and study the accuracy with which the cosmic web can be recovered in the presence of different observational effects, showing that the projected tidal field can be estimated with reasonable precision over large regions of the sky. We then apply our method to the Two Micron All-Sky survey and present a publicly available full-sky map of the projected tidal forces in the local Universe. As an example of an application of these data, we further study the distribution of galaxy luminosities across the different elements of the cosmic web, finding that, while more luminous objects are found preferentially in the most dense environments, there is no further segregation by tidal environment.

  11. Recovering the Tidal Field in the Projected Galaxy Distribution

    NASA Astrophysics Data System (ADS)

    Alonso, David; Hadzhiyska, Boryana; Strauss, Michael A.

    2016-04-01

    We present a method to recover and study the projected gravitational tidal forces from a galaxy survey containing little or no redshift information. The method and the physical interpretation of the recovered tidal maps as a tracer of the cosmic web are described in detail. We first apply the method to a simulated galaxy survey and study the accuracy with which the cosmic web can be recovered in the presence of different observational effects, showing that the projected tidal field can be estimated with reasonable precision over large regions of the sky. We then apply our method to the 2MASS survey and present a publicly available full-sky map of the projected tidal forces in the local Universe. As an example of an application of these data we further study the distribution of galaxy luminosities across the different elements of the cosmic web, finding that, while more luminous objects are found preferentially in the most dense environments, there is no further segregation by tidal environment.

  12. Recovering the tidal field in the projected galaxy distribution

    NASA Astrophysics Data System (ADS)

    Alonso, David; Hadzhiyska, Boryana; Strauss, Michael A.

    2016-07-01

    We present a method to recover and study the projected gravitational tidal forces from a galaxy survey containing little or no redshift information. The method and the physical interpretation of the recovered tidal maps as a tracer of the cosmic web are described in detail. We first apply the method to a simulated galaxy survey and study the accuracy with which the cosmic web can be recovered in the presence of different observational effects, showing that the projected tidal field can be estimated with reasonable precision over large regions of the sky. We then apply our method to the 2MASS survey and present a publicly available full-sky map of the projected tidal forces in the local Universe. As an example of an application of these data we further study the distribution of galaxy luminosities across the different elements of the cosmic web, finding that, while more luminous objects are found preferentially in the most dense environments, there is no further segregation by tidal environment.

  13. The origin of magnetic fields in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Shukurov, Anvar

    We argue that interstellar gas in elliptical galaxies can be turbulent, with turbulent scale and velocity of 400 pc and 20 km s-1 respectively. An upper limit on turbulent velocity, ~=50 km s-1, follows from the requirement that the turbulence dissipation rate does not exceed the X-ray gas luminosity. The turbulence can generate random magnetic fields of 0.3 μG strength at the above scale via fluctuation dynamo action. The resulting Faraday rotation is random, with a typical value of 5-30 rad m-2, consistent with observational evidence available.

  14. Evolution of Field Spiral Galaxies up to Redshifts z = 1

    NASA Astrophysics Data System (ADS)

    Böhm, Asmus; Ziegler, Bodo L.

    2007-10-01

    We have gained intermediate-resolution spectroscopy with the FORS instruments of the Very Large Telescope (VLT) and high-resolution imaging with the Advanced Camera for Surveys aboard HST for a sample of 220 distant field spiral galaxies within the FORS Deep Field and William Herschel Deep Field. Spatially resolved rotation curves were extracted and fitted with synthetic velocity fields that take into account all geometric and observational effects, such as blurring due to the slit width and seeing influence. Using these fits, the maximum rotation velocity Vmax could be determined for 124 galaxies that cover the redshift range 0.1galaxies. On the other hand, we derive stellar mass-to-luminosity ratios (M/L) that indicate a luminosity-dependent evolution in the sense that distant low-luminosity disks have much lower M/L than their local counterparts, while high-luminosity disks barely evolved in M/L over the covered redshift range. This could be the manifestation of the ``downsizing'' effect, i.e., the successive shift of the peak of star formation from high-mass to low-mass galaxies toward lower redshifts. This trend might be canceled out in the TF diagram due to the simultaneous evolution of multiple parameters. We also estimate the ratios

  15. Galaxy Mergers Drive Shocks: An Integral Field Study of GOALS Galaxies

    NASA Astrophysics Data System (ADS)

    Rich, J. A.; Kewley, L. J.; Dopita, M. A.

    2015-12-01

    We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph focuses on determining the detailed properties of the emission-line gas, including a careful treatment of multicomponent emission-line profiles. The resulting information obtained from the spectral fits is used to map the kinematics of the gas, sources of ionizing radiation, and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission-line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the Hα luminosity in the latest-stage mergers in our sample. We discuss some possible implications of our result and consider the presence of active galactic nuclei and their effects on the spectra in our sample.

  16. Determining degree-day thresholds from field observations

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Spano, Donatella; Cesaraccio, Carla; Duce, Pierpaolo

    This paper compares several methods for determining degree-day (°D) threshold temperatures from field observations. Three of the methods use the mean developmental period temperature and simple equations to estimate: (1) the smallest standard deviation in °D, (2) the least standard deviation in days, and (3) a linear regression intercept. Two additional methods use iterations of cumulative °D and threshold temperatures to determine the smallest root mean square error (RMSE). One of the iteration methods uses a linear model and the other uses a single triangle °D calculation method. The method giving the best results was verified by comparing observed and predicted phenological periods using 7 years of kiwifruit data and 10 years of cherry tree data. In general, the iteration method using the single triangle method to calculate °D provided threshold temperatures with the smallest RMSE values. However, the iteration method using a linear °D model also worked well. Simply using a threshold of zero gave predictions that were nearly as good as those obtained using the other two methods. The smallest standard deviation in °D performed the worst. The least standard deviation in days and the regression methods did well sometimes; however, the threshold temperatures were sometimes negative, which does not support the idea that development rates are related to heat units.

  17. A method for determining AGN accretion phase in field galaxies

    NASA Astrophysics Data System (ADS)

    Micic, Miroslav; Martinović, Nemanja; Sinha, Manodeep

    2016-09-01

    Recent observations of active galactic nucleus (AGN) activity in massive galaxies (log M*/ M⊙ > 10.4) show the following: (1) at z < 1, AGN-hosting galaxies do not show enhanced merger signatures compared with normal galaxies, (2) also at z < 1, most AGNs are hosted by quiescent galaxies and (3) at z > 1, the percentage of AGNs in star-forming galaxies increases and becomes comparable to the AGN percentage in quiescent galaxies at z ˜ 2. How can major mergers explain AGN activity in massive quiescent galaxies that have no merger features and no star formation to indicate a recent galaxy merger? By matching merger events in a cosmological N-body simulation to the observed AGN incidence probability in the COSMOS survey, we show that major merger-triggered AGN activity is consistent with the observations. By distinguishing between `peak' AGNs (recently merger-triggered and hosted by star-forming galaxies) and `faded' AGNs (merger-triggered a long time ago and now residing in quiescent galaxies), we show that the AGN occupation fraction in star-forming and quiescent galaxies simply follows the evolution of the galaxy merger rate. Since the galaxy merger rate drops dramatically at z < 1, the only AGNs left to be observed are the ones triggered by old mergers that are now in the declining phase of their nuclear activity, hosted by quiescent galaxies. As we go towards higher redshifts, the galaxy merger rate increases and the percentages of `peak' AGNs and `faded' AGNs become comparable.

  18. Anisotropic thermal conduction with magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald

    2015-08-01

    Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives

  19. Magnetic Fields in the Barred Galaxies NGC 1097 and NGC 1365

    NASA Astrophysics Data System (ADS)

    Shoutenkov, V.; Beck, R.; Shukurov, A.; Sokoloff, D.

    New polarization observations of the barred galaxies NGC 1097 and NGC 1365 have been made with the VLA at 6.2 and 3.5 cm. At both frequencies, NGC 1097 shows a strip of depolarization along the bar where the magnetic field is deflected by almost 90 degrees. Beck et al. (Nature, Vol. 397, p. 324) interpreted this strip as the location of a shear shock front which does not coincide with the dust lanes. Similar depolarized strips, also shifted from the dust lanes, are seen in NGC 1365. However, the magnetic field in this galaxy reveals a much smoother change in orientation than in NGC1097. Furthermore, high-resolution images of central ring in NGC 1097 have been obtained. The total power image shows individual blobs which correspond to magnetic field concentrations, not to star-formation regions in the ring. The magnetic field in the ring has a complex structure with a dominant spiral component. This may lead to mass inflow towards the active nucleus.

  20. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    SciTech Connect

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan E-mail: cbp@kias.re.kr E-mail: kjhan@kias.re.kr

    2014-12-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.

  1. The clustering of galaxies and galaxy clusters: constraints on primordial non-Gaussianity from future wide-field surveys

    NASA Astrophysics Data System (ADS)

    Fedeli, C.; Carbone, C.; Moscardini, L.; Cimatti, A.

    2011-06-01

    We investigate the constraints on primordial non-Gaussianity with varied bispectrum shapes that can be derived from the power spectrum of galaxies and clusters of galaxies detected in future wide field optical/near-infrared surveys. Having in mind the proposed ESA space mission Euclid as a specific example, we combine the spatial distribution of spectroscopically selected galaxies with that of weak lensing selected clusters. We use the physically motivated halo model in order to represent the correlation function of arbitrary tracers of the large-scale structure in the Universe. As naively expected, we find that galaxies are much more effective in jointly constrain the level of primordial non-Gaussianity fNL and the amplitude of the matter power spectrum σ8 than clusters of galaxies, due to the much lower abundance of the latter that is not adequately compensated by the larger effect on the power spectrum. Nevertheless, combination of the galaxy power spectrum with the cluster-galaxy cross-spectrum can decrease the error on the determination of fNL by up to a factor of ˜2. This decrement is particularly evident for the less studied non-Gaussian bispectrum shapes, the so-called enfolded and the orthogonal ones. Setting constraints on these models can shed new light on various aspects of the physics of the early Universe, and hence it is of extreme importance. By combining the power spectra of clusters and galaxies with the cluster-galaxy cross-spectrum we find constraints on primordial non-Gaussianity of the order ΔfNL˜ a few, competitive and possibly superior to future cosmic microwave background experiments.

  2. Kinematic alignment of non-interacting CALIFA galaxies. Quantifying the impact of bars on stellar and ionised gas velocity field orientations

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Falcón-Barroso, J.; García-Lorenzo, B.; van de Ven, G.; Aguerri, J. A. L.; Mendez-Abreu, J.; Spekkens, K.; Lyubenova, M.; Sánchez, S. F.; Husemann, B.; Mast, D.; García-Benito, R.; Iglesias-Paramo, J.; Del Olmo, A.; Márquez, I.; Masegosa, J.; Kehrig, C.; Marino, R. A.; Verdes-Montenegro, L.; Ziegler, B.; McIntosh, D. H.; Bland-Hawthorn, J.; Walcher, C. J.; Califa Collaboration

    2014-08-01

    We present 80 stellar and ionised gas velocity maps from the Calar Alto Legacy Integral Field Area (CALIFA) survey in order to characterise the kinematic orientation of non-interacting galaxies. The study of galaxies in isolation is a key step towards understanding how fast-external processes, such as major mergers, affect kinematic properties in galaxies. We derived the global and individual (projected approaching and receding sides) kinematic position angles (PAs) for both the stellar and ionised gas line-of-sight velocity distributions. When compared to the photometric PA, we find that morpho-kinematic differences are smaller than 22 degrees in 90% of the sample for both stellar and nebular components and that internal kinematic misalignments are generally smaller than 16 degrees. We find a tight relation between the global stellar and ionised gas kinematic PA consistent with circular-flow pattern motions in both components (~90% of the sample has differences smaller than 16 degrees). This relation also holds, generally in barred galaxies across the bar and galaxy disc scales. Our findings suggest that even in the presence of strong bars, both the stellar and the gaseous components tend to follow the gravitational potential of the disc. As a result, kinematic orientation can be used to assess the degree of external distortions in interacting galaxies. Appendices are available in electronic form at http://www.aanda.org

  3. Activity in galactic nuclei of cluster and field galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Hwang, H. S.; Park, C.; Elbaz, D.; Choi, Y.-Y.

    2012-02-01

    Aims: We study the environmental effects on the activity in galactic nuclei by comparing galaxies in clusters and in the field. Methods: Using a spectroscopic sample of galaxies in Abell clusters from the Sloan Digital Sky Survey Data Release 7, we investigate the dependence of nuclear activity on the physical parameters of clusters as well as the nearest neighbor galaxy. We also compare galaxy properties between active galactic nuclei (AGNs) hosts and non-AGN galaxies. Results: We find that the AGN fraction of early-type galaxies starts to decrease around one virial radius of clusters (r200,cl) as decreasing clustercentric radius, while that of late types starts to decrease close to the cluster center (R ~ 0.1-0.5r200,cl). The AGN fractions of early-type cluster galaxies, on average, are found to be lower than those of early-type field galaxies by a factor ~3. However, the mean AGN fractions of late-type cluster galaxies are similar to those of late-type field galaxies. The AGN fraction of early-type brightest cluster galaxies lies between those of other early-type, cluster and field galaxies with similar luminosities. In the field, the AGN fraction is strongly dependent on the morphology of and the distance to the nearest neighbor galaxy. We find an anti-correlation between the AGN fraction and the velocity dispersion of clusters for all subsamples divided by morphology and luminosity of host galaxies. The AGN power indicated by L [OIII] /MBH is found to depend strongly on the mass of host galaxies rather than the clustercentric radius. The difference in physical parameters such as luminosity, (u - r) colors, star formation rates, and (g - i) color gradients between AGN hosts and non-AGN galaxies is seen for both early and late types at all clustercentric radii, while the difference in structure parameters between the two is significant only for late types. Conclusions: These results support the idea that the activity in galactic nuclei is triggered through

  4. Large scale magnetic fields in galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Bernet, M. L.; Miniati, F.; Lilly, S. J.; Kronberg, P. P.; Dessauges-Zavadsky, M.

    2012-09-01

    In a recent study we have used a large sample of extragalactic radio sources to investigate the redshift evolution of the Rotation Measure (RM) of polarized quasars up to z ≈ 3.0. We found that the dispersion in the RM distribution of quasars increases at higher redshifts and hypothesized that MgII intervening systems were responsible for the observed trend. To test this hypothesis, we have recently obtained high-resolution UVES/VLT spectra for 76 quasars in our sample and in the redshift range 0.6 < z < 2.0. We found a clear correlation between the presence of strong MgII systems and large RMs. This implies that normal galaxies at z ≈ 1 already had large-scale magnetic fields comparable to those seen today.

  5. REJUVENATING POWER SPECTRA. II. THE GAUSSIANIZED GALAXY DENSITY FIELD

    SciTech Connect

    Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2011-04-20

    We find that, even in the presence of discreteness noise, a Gaussianizing transform (producing a more Gaussian one-point distribution) reduces nonlinearities in the power spectra of cosmological matter and galaxy density fields, in many cases drastically. Although Gaussianization does increase the effective shot noise, it also increases the power spectrum's fidelity to the linear power spectrum on scales where the shot noise is negligible. Gaussianizing also increases the Fisher information in the power spectrum in all cases and resolutions, although the gains are smaller in redshift space than in real space. We also find that the gain in cumulative Fisher information from Gaussianizing peaks at a particular grid resolution depends on the sampling level.

  6. Wide-Field Imaging of the Hubble Deep Field-South Region. II. The Evolution of Galaxy Clustering at z < 1

    NASA Astrophysics Data System (ADS)

    Teplitz, Harry I.; Hill, Robert S.; Malumuth, Eliot M.; Collins, Nicholas R.; Gardner, Jonathan P.; Palunas, Povilas; Woodgate, Bruce E.

    2001-02-01

    We present the galaxy-galaxy angular correlations as a function of photometric redshift in a deep, wide galaxy survey centered on the Hubble Deep Field-South (HDF-S). Images were obtained with the Big Throughput Camera on the Blanco 4 m telescope at CTIO, of 1/2 square degree in broadband uBVRI, reaching ~24 mag. Approximately 40,000 galaxies are detected in the survey. We determine photometric redshifts using galaxy template fitting to the photometry. Monte Carlo simulations show that redshifts from these data should be reliable out to z~1, where the 4000 Å break shifts into the I band. The inferred redshift distribution, n(z), shows good agreement with the distribution of galaxies measured in the Hubble Deep Field-North (HDF-N) and the Canada-France Redshift Survey. After assigning galaxies to redshift bins with width Δz=0.33, we determine the two-point angular correlation function in each bin. We find that the amplitude of the correlation, Aw, drops across the three bins to redshift z~1. Simple ɛ models of clustering evolution fit this result, with the best agreement for ɛ=0. Hierarchical cold dark matter models best fit in a low-density, Λ-dominated universe. Based on observations obtained at Cerro Tololo Inter-American Observatory, a division of the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  7. Understanding the Factors Affecting Degree Completion of Doctoral Women in the Science and Engineering Fields

    ERIC Educational Resources Information Center

    Ampaw, Frim D.; Jaeger, Audrey J.

    2011-01-01

    The rate of doctoral degree completion, compared to all other degrees, is the lowest in the academy, with only 57 percent of doctoral students completing their degree within a ten-year period. In the science, engineering, and mathematics (SEM) fields, 62 percent of the male students complete their doctoral degree in ten years, which is better than…

  8. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  9. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    SciTech Connect

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-08-10

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100 Degree-Sign -117 Degree-Sign , within 30 Degree-Sign of the Galactic plane. For |b| < 15 Degree-Sign , we observe a symmetric RM distribution about the Galactic plane. This is consistent with a disk field in the Perseus arm of even parity across the Galactic mid-plane. In the range 15 Degree-Sign < |b| < 30 Degree-Sign , we find median RMs of -15 {+-} 4 rad m{sup -2} and -62 {+-} 5 rad m{sup -2} in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 {mu}G (7 {mu}G) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  10. Life in low density environments - Field galaxies from z~1.2 to the present

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger; Fisher, Scott; Kwan, Teiler; Bieker, Jacob; Woodrum, Charity

    2015-08-01

    We present results on the stellar populations in field galaxies observed as part of the observations for the Gemini/HST Galaxy Cluster project. Our analysis is based on high signal-to-noise spectra in rest frame 3700Å to 5400Å. We focus on the relations between the galaxy internal velocity dispersions and the absorption line indices CN3883, Mgb, and several indices for Balmer lines and iron lines. The properties of the field galaxies are compared to those of cluster galaxies at similar redshifts.This poster is presented by the PI of the Gemini/HST Galaxy Cluster project on behalf of students at University of Oregon. The project serves as a research project for the student group.

  11. An analytical dynamo solution for large-scale magnetic fields of galaxies

    NASA Astrophysics Data System (ADS)

    Chamandy, Luke

    2016-08-01

    We present an effectively global analytical asymptotic galactic dynamo solution for the regular magnetic field of an axisymmetric thin disc in the saturated state. This solution is constructed by combining two well-known types of local galactic dynamo solution, parameterized by the disc radius. Namely, the critical (zero growth) solution obtained by treating the dynamo equation as a perturbed diffusion equation is normalized using a non-linear solution that makes use of the `no-z' approximation and the dynamical α-quenching non-linearity. This overall solution is found to be reasonably accurate when compared with detailed numerical solutions. It is thus potentially useful as a tool for predicting observational signatures of magnetic fields of galaxies. In particular, such solutions could be painted onto galaxies in cosmological simulations to enable the construction of synthetic polarized synchrotron and Faraday rotation measure (RM) datasets. Further, we explore the properties of our numerical solutions, and their dependence on certain parameter values. We illustrate and assess the degree to which numerical solutions based on various levels of approximation, common in the dynamo literature, agree with one another.

  12. The alignment of galaxy spin with the shear field in observations

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Libeskind, Noam I.; Tempel, Elmo; Hoffman, Yehuda; Tully, R. Brent; Courtois, Hélène M.; Gottlöber, Stefan; Steinmetz, Matthias; Sorce, Jenny G.

    2016-03-01

    Tidal torque theory suggests that galaxies gain angular momentum in the linear stage of structure formation. Such a theory predicts alignments between the spin of haloes and tidal shear field. However, non-linear evolution and angular momentum acquisition may alter this prediction significantly. In this paper, we use a reconstruction of the cosmic shear field from observed peculiar velocities combined with spin axes extracted from galaxies within 115 Mpc (˜8000 km s-1) from 2MASS Redshift Survey (2MRS) catalogue to test whether or not galaxies appear aligned with principal axes of shear field. Although linear reconstructions of the tidal field have looked at similar issues, this is the first such study to examine galaxy alignments with velocity shear field. Ellipticals in the 2MRS sample show a statistically significant alignment with two of the principal axes of the shear field. In general, elliptical galaxies have their short axis aligned with the axis of greatest compression and perpendicular to the axis of slowest compression. Spiral galaxies show no signal. Such an alignment is significantly strengthened when considering only those galaxies that are used in velocity field reconstruction. When examining such a subsample, a weak alignment with the axis of greatest compression emerges for spiral galaxies as well. This result indicates that although velocity field reconstructions still rely on fairly noisy and sparse data, the underlying alignment with shear field is strong enough to be visible even when small numbers of galaxies are considered - especially if those galaxies are used as constraints in the reconstruction.

  13. Alignment of Red-Sequence Cluster Dwarf Galaxies: From the Frontier Fields to the Local Universe

    NASA Astrophysics Data System (ADS)

    Barkhouse, Wayne Alan; Archer, Haylee; Burgad, Jaford; Foote, Gregory; Rude, Cody; Lopez-Cruz, Omar

    2015-08-01

    Galaxy clusters are the largest virialized structures in the universe. Due to their high density and mass, they are an excellent laboratory for studying the environmental effects on galaxy evolution. Numerical simulations have predicted that tidal torques acting on dwarf galaxies as they fall into the cluster environment will cause the major axis of the galaxies to align with their radial position vector (a line that extends from the cluster center to the galaxy's center). We have undertaken a study to measure the redshift evolution of the alignment of red-sequence cluster dwarf galaxies based on a sample of 57 low-redshift Abell clusters imaged at KPNO using the 0.9-meter telescope, and 64 clusters from the WINGS dataset. To supplement our low-redshift sample, we have included galaxies selected from the Hubble Space Telescope Frontier fields. Leveraging the HST data allows us to look for evolutionary changes in the alignment of red-sequence cluster dwarf galaxies over a redshift range of 0 < z < 0.35. The alignment of the major axis of the dwarf galaxies is measured by fitting a Sersic function to each red-sequence galaxy using GALFIT. The quality of each model is checked visually after subtracting the model from the galaxy. The cluster sample is then combined by scaling each cluster by r200. We present our preliminary results based on the alignment of the red-sequence dwarf galaxies with: 1) the major axis of the brightest cluster galaxy, 2) the major axis of the cluster defined by the position of cluster members, and 3) a radius vector pointing from the cluster center to individual dwarf galaxies. Our combined cluster sample is sub-divided into different radial regions and redshift bins.

  14. IMAGE OF A DISTANT GALAXY CANDIDATE IN THE HUBBLE DEEP FIELD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small portion of the Hubble Deep Field image -- the deepest view of the universe taken with NASA's Hubble Space Telescope. Arrow points to a very faint galaxy that appears to be more distant than any known previously. Other galaxies in the image are at smaller distances. Credit: Ken Lanzetta and Amos Yahil (State University of New York at Stony Brook), and NASA

  15. THE FIRST Hi-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5

    SciTech Connect

    Elia, D.; Molinari, S.; Schisano, E.; Pestalozzi, M.; Benedettini, M.; Di Giorgio, A. M.; Pezzuto, S.; Rygl, K. L. J.; Fukui, Y.; Hayakawa, T.; Yamamoto, H.; Olmi, L.; Veneziani, M.; Schneider, N.; Piazzo, L.; Mizuno, A.; Onishi, T.; Polychroni, D.; Maruccia, Y.

    2013-07-20

    We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5 and -2 Degree-Sign {approx}< b {approx}< 0 Degree-Sign ) as a part of the Hi-GAL survey. The maps between 70 and 500 {mu}m, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate into 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to {approx}5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d {approx}< 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M){proportional_to}M {sup -1.0{+-}0.2}. Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.

  16. Galaxy Zoo CANDELS Data Release I: Morphologies of ~50,000 Galaxies With z ≤ 3 in Deep Hubble Legacy Fields

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Lintott, Chris; Masters, Karen; Willett, Kyle; Kartaltepe, Jeyhan S.; Closson Ferguson, Henry; Faber, Sandra M.; Galaxy Zoo Team, CANDELS Team

    2016-01-01

    We present quantified visual morphologies of approximately 48,000 galaxies in rest-frame optical to z ~ 3, using galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic And Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. Each galaxy received an average of 43 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly errant classifications. Comparing the Galaxy Zoo classifications to previous human and machine classifications of the same galaxies shows very good agreement; in some cases the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of "smooth" galaxies with parametric morphologies to select a sample of featureless disks at 1 ≤ z ≤ 2, which may represent a dynamically warmer progenitor population to the settled disk galaxies seen at later epochs.

  17. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. III. KINEMATIC INCLINATIONS FROM H{alpha} VELOCITY FIELDS

    SciTech Connect

    Andersen, David R.; Bershady, Matthew A. E-mail: mab@astro.wisc.edu

    2013-05-01

    Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometric and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.

  18. Magnetic fields in the nearby spiral galaxy IC 342: A multi-frequency radio polarization study

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-06-01

    Context. Magnetic fields play an important role in the formation and stabilization of spiral structures in galaxies, but the interaction between interstellar gas and magnetic fields has not yet been understood. In particular, the phenomenon of "magnetic arms" located between material arms is a mystery. Aims: The strength and structure of interstellar magnetic fields and their relation to spiral arms in gas and dust are investigated in the nearby and almost face-on spiral galaxy IC 342. Methods: The total and polarized radio continuum emission of IC 342 was observed with high spatial resolution in four wavelength bands with the Effelsberg and VLA telescopes. At λ6.2 cm the data from both telescopes were combined. I separated thermal and nonthermal (synchrotron) emission components with the help of the spectral index distribution and derived maps of the magnetic field strength, degree of magnetic field order, magnetic pitch angle, Faraday rotation measure, and Faraday depolarization. Results: IC 342 hosts a diffuse radio disk with an intensity that decreases exponentially with increasing radius. The frequency dependence of the scalelength of synchrotron emission indicates energy-dependent propagation of the cosmic-ray electrons, probably via the streaming instability. The equipartition strength of the total field in the main spiral arms is typically 15 μG, that of the ordered field about 5 μG. The total radio emission, observed with the VLA's high resolution, closely follows the dust emission in the infrared at 8 μm (Spitzer telescope) and 22 μm (WISE telescope). The polarized emission is not diffuse, but concentrated in spiral arms of various types: (1) a narrow arm of about 300 pc width, displaced inwards with respect to the eastern arm by about 200 pc, indicating magnetic fields compressed by a density wave; (2) a broad arm of 300-500 pc width around the northern arm with systematic variations in polarized emission, polarization angles, and Faraday rotation

  19. An Empirical Relation between the Large-scale Magnetic Field and the Dynamical Mass in Galaxies

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Martinsson, T. P. K.; Knapen, J. H.; Beckman, J. E.; Koribalski, B.; Elmegreen, B. G.

    2016-02-01

    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields that govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density, SPI, and the rotation speed, vrot, of galaxies. This leads to an almost linear correlation between the large-scale magnetic field \\bar{B} and vrot, assuming that the number of cosmic-ray electrons is proportional to the star formation rate, and a super-linear correlation assuming equipartition between magnetic fields and cosmic rays. This correlation cannot be attributed to an active linear α-Ω dynamo, as no correlation holds with global shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, \\bar{B}˜ \\{M}{{dyn}}0.25-0.4. Hence, faster rotating and/or more massive galaxies have stronger large-scale magnetic fields. The observed \\bar{B}-{v}{{rot}} correlation shows that the anisotropic turbulent magnetic field dominates \\bar{B} in fast rotating galaxies as the turbulent magnetic field, coupled with gas, is enhanced and ordered due to the strong gas compression and/or local shear in these systems. This study supports a stationary condition for the large-scale magnetic field as long as the dynamical mass of galaxies is constant.

  20. The many assembly histories of massive void galaxies as revealed by integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Pimbblet, Kevin A.; Penny, Samantha J.; Brown, Michael J. I.

    2016-06-01

    We present the first detailed integral field spectroscopy study of nine central void galaxies with M⋆ > 1010 M⊙ using the Wide Field Spectrograph to determine how a range of assembly histories manifest themselves in the current day Universe. While the majority of these galaxies are evolving secularly, we find a range of morphologies, merger histories and stellar population distributions, though similarly low Hα-derived star formation rates (<1 M⊙ yr-1). Two of our nine galaxies host active galactic nuclei, and two have kinematic disruptions to their gas that are not seen in their stellar component. Most massive void galaxies are red and discy, which we attribute to a lack of major mergers. Some have disturbed morphologies and may be in the process of evolving to early-type thanks to ongoing minor mergers at present times, likely fed by tendrils leading off filaments. The diversity in our small galaxy sample, despite being of similar mass and environment means that these galaxies are still assembling at present day, with minor mergers playing an important role in their evolution. We compare our sample to a mass and magnitude-matched sample of field galaxies, using data from the Sydney-AAO Multi-object Integral field spectrograph galaxy survey. We find that despite environmental differences, galaxies of mass M⋆ > 1010 M⊙ have similarly low star formation rates (<3 M⊙ yr-1). The lack of distinction between the star formation rates of the void and field environments points to quenching of massive galaxies being a largely mass-related effect.

  1. Blue galaxies identified with submilliJansky radio sources in the 1300 + 3034 field

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.; Patterson, Richard J.; Condon, J. J.; Mitchell, K. J.

    1992-01-01

    We have obtained deep B and R CCD frames in order to optically identify sub-mJy radio sources discovered in a deep 1.49 GHz VLA survey field centered at alpha (1950) = 13h00m37s, delta(1950) = + 30 deg 34 arcmin. B and R photometry is presented for 37 optical identifications. Using spectral evolution models, we conclude that galaxies brighter than B about 25 identified with sub-mJy radio sources are much bluer than giant elliptical galaxies, but are similar to starburst galaxies with absolute magnitude M(v) = about -23-20 and redshifts in the range 2 = about 0.1-0.8. This population of blue galaxies is the same as that found by Thuan and Condon (1987) in the 0852 + 1716 field using different techniques (optical and near-infrared photometry), suggesting that this population of starburst galaxies at intermediate redshifts is universal.

  2. The role of magnetic fields in starburst galaxies as revealed by OH megamasers

    SciTech Connect

    McBride, James; Quataert, Eliot; Heiles, Carl; Bauermeister, Amber E-mail: eliot@astro.berkeley.edu

    2014-01-10

    We present estimates of magnetic field strengths in the interstellar media of starburst galaxies derived from measurements of Zeeman splitting associated with OH megamasers. The results for eight galaxies with Zeeman detections suggest that the magnetic energy density in the interstellar medium of starburst galaxies is comparable to their hydrostatic gas pressure, as in the Milky Way. We discuss the significant uncertainties in this conclusion, and possible measurements that could reduce these uncertainties. We also compare the Zeeman splitting derived magnetic field estimates to magnetic field strengths estimated using synchrotron fluxes and assuming that the magnetic field and cosmic rays have comparable energy densities, known as the 'minimum energy' argument. We find that the minimum energy argument systematically underestimates magnetic fields in starburst galaxies, and that the conditions that would be required to produce agreement between the minimum energy estimate and the Zeeman derived estimate of interstellar medium magnetic fields are implausible. The conclusion that magnetic fields in starburst galaxies exceed the minimum energy magnetic fields is consistent with starburst galaxies adhering to the linearity of the far-infrared-radio correlation.

  3. Reconstructing the galaxy density field with photometric redshifts. I. Methodology and validation on stellar mass functions

    NASA Astrophysics Data System (ADS)

    Malavasi, N.; Pozzetti, L.; Cucciati, O.; Bardelli, S.; Cimatti, A.

    2016-01-01

    Context. Measuring environment for large numbers of galaxies in the distant Universe is an open problem in astrophysics, as environment is important in determining many properties of galaxies during their formation and evolution. In order to measure galaxy environments, we need galaxy positions and redshifts. Photometric redshifts are more easily available for large numbers of galaxies, but at the price of larger uncertainties than spectroscopic redshifts. Aims: We study how photometric redshifts affect the measurement of galaxy environment and how the reconstruction of the density field may limit an analysis of the galaxy stellar mass function (GSMF) in different environments. Methods: Through the use of mock galaxy catalogues, we measured galaxy environment with a fixed aperture method, using each galaxy's true and photometric redshifts. We varied the parameters defining the fixed aperture volume and explored different configurations. We also used photometric redshifts with different uncertainties to simulate the case of various surveys. We then computed GSMF of the mock galaxy catalogues as a function of redshift and environment to see how the environmental estimate based on photometric redshifts affects their analysis. Results: We found that the most extreme environments can be reconstructed in a fairly accurate way only when using high-precision photometric redshifts with σΔz/ (1 + z) ≲ 0.01, with a fraction ≥ 60 ÷ 80% of galaxies placed in the correct density quartile and a contamination of ≤10% by opposite quartile interlopers. A length of the volume in the radial direction comparable to the ±1.5σ error of photometric redshifts and a fixed aperture radius of a size similar to the physical scale of the studied environment grant a better reconstruction than other volume configurations. When using this kind of an estimate of the density field, we found that any difference between the starting GSMF (divided accordingly to the true galaxy environment

  4. Field of Bachelor's Degree in the United States: 2009. American Community Survey Reports. ACS-18

    ERIC Educational Resources Information Center

    Siebens, Julie; Ryan, Camille L.

    2012-01-01

    This report provides information on fields of bachelor's degrees in the United States using data from the 2009 American Community Survey (ACS). It includes estimates of fields of bachelor's degree by demographic characteristics including age, sex, race, Hispanic origin, nativity, and educational attainment. This report also looks at geographic and…

  5. AzTEC half square degree survey of the SHADES fields - I. Maps, catalogues and source counts

    NASA Astrophysics Data System (ADS)

    Austermann, J. E.; Dunlop, J. S.; Perera, T. A.; Scott, K. S.; Wilson, G. W.; Aretxaga, I.; Hughes, D. H.; Almaini, O.; Chapin, E. L.; Chapman, S. C.; Cirasuolo, M.; Clements, D. L.; Coppin, K. E. K.; Dunne, L.; Dye, S.; Eales, S. A.; Egami, E.; Farrah, D.; Ferrusca, D.; Flynn, S.; Haig, D.; Halpern, M.; Ibar, E.; Ivison, R. J.; van Kampen, E.; Kang, Y.; Kim, S.; Lacey, C.; Lowenthal, J. D.; Mauskopf, P. D.; McLure, R. J.; Mortier, A. M. J.; Negrello, M.; Oliver, S.; Peacock, J. A.; Pope, A.; Rawlings, S.; Rieke, G.; Roseboom, I.; Rowan-Robinson, M.; Scott, D.; Serjeant, S.; Smail, I.; Swinbank, A. M.; Stevens, J. A.; Velazquez, M.; Wagg, J.; Yun, M. S.

    2010-01-01

    We present the first results from the largest deep extragalactic mm-wavelength survey undertaken to date. These results are derived from maps covering over 0.7deg2, made at λ = 1.1mm, using the AzTEC continuum camera mounted on the James Clerk Maxwell Telescope. The maps were made in the two fields originally targeted at λ = 850μm with the Submillimetre Common-User Bolometer Array (SCUBA) in the SCUBA Half-Degree Extragalactic Survey (SHADES) project, namely the Lockman Hole East (mapped to a depth of 0.9-1.3 mJy rms) and the Subaru/XMM-Newton Deep Field (mapped to a depth of 1.0-1.7 mJy rms). The wealth of existing and forthcoming deep multifrequency data in these two fields will allow the bright mm source population revealed by these new wide-area 1.1mm images to be explored in detail in subsequent papers. Here, we present the maps themselves, a catalogue of 114 high-significance submillimetre galaxy detections, and a thorough statistical analysis leading to the most robust determination to date of the 1.1mm source number counts. These new maps, covering an area nearly three times greater than the SCUBA SHADES maps, currently provide the largest sample of cosmological volumes of the high-redshift Universe in the mm or sub-mm. Through careful comparison, we find that both the Cosmic Evolution Survey (COSMOS) and the Great Observatories Origins Deep Survey (GOODS) North fields, also imaged with AzTEC, contain an excess of mm sources over the new 1.1mm source-count baseline established here. In particular, our new AzTEC/SHADES results indicate that very luminous high-redshift dust enshrouded starbursts (S1.1mm > 3mJy) are 25-50 per cent less common than would have been inferred from these smaller surveys, thus highlighting the potential roles of cosmic variance and clustering in such measurements. We compare number count predictions from recent models of the evolving mm/sub-mm source population to these sub-mm bright galaxy surveys, which provide important

  6. Three-Dimensional Spectroscopy and Star Formation Histories of Field E+A Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Charles T.; Wolf, Marsha; Hooper, Eric J.; Bather, Joshua

    2015-02-01

    We present the initial results of an integral field spectroscopic survey of E+A galaxies in the field, which combined with radio continuum measurements and multi-wavelength photometry and imaging provides significant insight into the dynamical and star formation histories of these transitioning post-starburst systems. We focus on the E+A galaxy known as G515 (z = 0.088), a massive merger remnant that began its star formation quenching process ~ 1.0 Gyr ago. Its relatively young stellar population contrasts with its light profile and kinematics, which are more consistent with a slowly-rotating, early-type galaxy.

  7. Discovery of three z > 6.5 quasars in the VISTA kilo-degree infrared galaxy (VIKING) survey

    SciTech Connect

    Venemans, B. P.; Findlay, J. R.; Sutherland, W. J.; De Rosa, G.; McMahon, R. G.; González-Solares, E. A.; Lewis, J. R.; Simcoe, R.; Kuijken, K.

    2013-12-10

    Studying quasars at the highest redshifts can constrain models of galaxy and black hole formation, and it also probes the intergalactic medium in the early universe. Optical surveys have to date discovered more than 60 quasars up to z ≅ 6.4, a limit set by the use of the z-band and CCD detectors. Only one z ≳ 6.4 quasar has been discovered, namely the z = 7.08 quasar ULAS J1120+0641, using near-infrared imaging. Here we report the discovery of three new z ≳ 6.4 quasars in 332 deg{sup 2} of the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the number from 1 to 4. The newly discovered quasars have redshifts of z = 6.60, 6.75, and 6.89. The absolute magnitudes are between –26.0 and –25.5, 0.6-1.1 mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the Mg II emission line in all three objects. The quasars are powered by black holes with masses of ∼(1-2) × 10{sup 9} M {sub ☉}. In our probed redshift range of 6.44 < z < 7.44 we can set a lower limit on the space density of supermassive black holes of ρ(M {sub BH} > 10{sup 9} M {sub ☉}) > 1.1 × 10{sup –9} Mpc{sup –3}. The discovery of three quasars in our survey area is consistent with the z = 6 quasar luminosity function when extrapolated to z ∼ 7. We do not find evidence for a steeper decline in the space density of quasars with increasing redshift from z = 6 to z = 7.

  8. An 84-μG Magnetic Field in a Galaxy at Z=0.692?

    NASA Astrophysics Data System (ADS)

    Wolfe, Arthur M.; Jorgenson, Regina A.; Robishaw, Timothy; Heiles, Carl; Prochaska, Jason X.

    2009-03-01

    The magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain. Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970). The full text of this paper was published in Nature (Wolfe et al. 2008).

  9. Morphological Classification of High-redshift Massive Galaxies in the COSMOS/UltraVISTA Field

    NASA Astrophysics Data System (ADS)

    Guan-wen, Fang; Zhong-yang, Ma; Xu, Kong

    2016-04-01

    Utilizing the multi-band photometric data of the COSMOS (Cosmic Evolution Survey)/UltraVISTA (Ultra-deep Visible and Infrared Survey Telescope for Astronomy) field and the high-resolution HST WFC3 (Hubble Space Telescope Wide Field Camera 3) near-infrared images in the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) field, we have selected 362 galaxies with the redshifts of 1≤ z ≤3 and the stellar masses of M* ≥ 1010.5M⊙, and made the classification study on the morphologies of these massive galaxies. The results from the UVJ ((U-V) vs (V-J)) two-color diagram classification, visual classification, non-model based classification (Gini coefficient G and moment index M20), and model based classification (Sérsic index n) are in good agreement with each other. Compared with the star-forming galaxies (SFGs), the quiescent galaxies (QGs) defined by the UVJ two-color diagram exhibit the compact elliptical structures, and generally have larger n and G, but smaller M20 and galaxy's effective radius re. The evolution of galaxy size with the redshift is obvious for various QG and SFG samples defined by the different classification systems (two-color diagram classification system, model and non-model based classification systems), and this evolutionary tendency is stronger for QGs in comparison with SFGs, independent to the selection of galaxy classification methods.

  10. RADIO DETECTION OF GREEN PEAS: IMPLICATIONS FOR MAGNETIC FIELDS IN YOUNG GALAXIES

    SciTech Connect

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak; Cardamone, Carolin

    2012-02-10

    Green Peas are a new class of young, emission line galaxies that were discovered by citizen volunteers in the Galaxy Zoo project. Their low stellar mass, low metallicity, and very high star formation rates make Green Peas the nearby (z {approx} 0.2) analogs of the Lyman break galaxies which account for the bulk of the star formation in the early universe (z {approx} 2-5). They thus provide accessible laboratories in the nearby universe for understanding star formation, supernova feedback, particle acceleration, and magnetic field amplification in early galaxies. We report the first direct radio detection of Green Peas with low frequency Giant Metrewave Radio Telescope observations and our stacking detection with archival Very Large Array FIRST data. We show that the radio emission implies that these extremely young galaxies already have magnetic fields ({approx}> 30 {mu}G) even larger than that of the Milky Way. This is at odds with the present understanding of magnetic field growth based on amplification of seed fields by dynamo action over a galaxy's lifetime. Our observations strongly favor models with pregalactic magnetic fields at {mu}G levels.

  11. Distances and stellar populations of seven low surface brightness galaxies in the field of M101

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter

    2014-10-01

    We have recently discovered seven large, extremely low surface brightness galaxies in the field of the nearby massive spiral galaxy M101. The galaxies were found with Dragonfly, a telescope that is optimized for the detection of low surface brightness emission. If the galaxies are associated with M101, their properties are similar to those of faint dwarf galaxies around the Milky Way and M31, and this would be the first time that a population of "typical", low luminosity dwarfs has been identified around a galaxy outside of the Local Group. Available CFHT imaging does not resolve the galaxies into stars, which makes it difficult to determine their distances and to characterize their stellar populations. Here we propose to obtain ACS imaging of these seven low surface brightness galaxies, with the aim of resolving them into individual stars. The primary goal is to determine their distances using the tip of the red giant branch, and the secondary goal is to constrain their star formation histories from the distribution of stars in the color-magntiude diagram.

  12. The effect of supernova rate on the magnetic field evolution in barred galaxies

    NASA Astrophysics Data System (ADS)

    Kulpa-Dybeł, K.; Nowak, N.; Otmianowska-Mazur, K.; Hanasz, M.; Siejkowski, H.; Kulesza-Żydzik, B.

    2015-03-01

    Context. For the first time, our magnetohydrodynamical numerical calculations provide results for a three-dimensional model of barred galaxies involving a cosmic-ray driven dynamo process that depends on star formation rates. Furthermore, we argue that the cosmic-ray driven dynamo can account for a number of magnetic features in barred galaxies, such as magnetic arms observed along the gaseous arms, magnetic arms in the inter-arm regions, polarized emission that is at the strongest in the central part of the galaxy, where the bar is situated, polarized emission that forms ridges coinciding with the dust lanes along the leading edges of the bar, as well as their very strong total radio intensity. Aims: Our numerical model probes what kind of physical processes could be responsible for the magnetic field topology observed in barred galaxies (modes, etc.). We compare our modelled results directly with observations, constructing models of high-frequency (Faraday rotation-free) polarized radio emission maps out of the simulated magnetic field and cosmic ray pattern in our modeled galaxy. We also take the effects of projection into account as well as the limited resolution. Methods: We applied global 3D numerical calculations of a cosmic-ray driven dynamo in barred galaxies with different physical input parameters such as the supernova (SN) rate. Results: Our simulation results lead to the modelled magnetic field structure similar to the one observed on the radio maps of barred galaxies. Moreover, they cast new light on a number of properties in barred and spiral galaxies, such as fast exponential growth of the total magnetic energy to the present values. The quadrupole modes of magnetic field are often identified in barred galaxies, but the dipole modes (e.g., in NGC 4631) are found very seldom. In our simulations the quadrupole configuration dominates and the dipole configuration only appears once in the case of model S100, apparently as a consequence of the choice of

  13. CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey

    NASA Astrophysics Data System (ADS)

    Walcher, C. J.; Wisotzki, L.; Bekeraité, S.; Husemann, B.; Iglesias-Páramo, J.; Backsmann, N.; Barrera Ballesteros, J.; Catalán-Torrecilla, C.; Cortijo, C.; del Olmo, A.; Garcia Lorenzo, B.; Falcón-Barroso, J.; Jilkova, L.; Kalinova, V.; Mast, D.; Marino, R. A.; Méndez-Abreu, J.; Pasquali, A.; Sánchez, S. F.; Trager, S.; Zibetti, S.; Aguerri, J. A. L.; Alves, J.; Bland-Hawthorn, J.; Boselli, A.; Castillo Morales, A.; Cid Fernandes, R.; Flores, H.; Galbany, L.; Gallazzi, A.; García-Benito, R.; Gil de Paz, A.; González-Delgado, R. M.; Jahnke, K.; Jungwiert, B.; Kehrig, C.; Lyubenova, M.; Márquez Perez, I.; Masegosa, J.; Monreal Ibero, A.; Pérez, E.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Sanchez-Blazquez, P.; Spekkens, K.; Tundo, E.; van de Ven, G.; Verheijen, M. A. W.; Vilchez, J. V.; Ziegler, B.

    2014-09-01

    We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45'' and 79.2'' and with a redshift 0.005 < z < 0.03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 > Mr > -23.1 and over a stellar mass range between 109.7 and 1011.4 M⊙. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses <109.7 M⊙) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies

  14. The evolution of field early-type galaxies in the FDF and WHDF

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Böhm, Asmus; Ziegler, Bodo L.

    2009-03-01

    We explore the properties of 24 field early-type galaxies in the redshift range 0.20 < z < 0.75 down to MB <= -19.30 in a sample extracted from the FORS Deep Field and the William Herschel Deep Field. Target galaxies were selected on the basis of a combination of luminosity, spectrophotometric type, morphology and photometric redshift or broad-band colours. High signal-to-noise ratio intermediate-resolution spectroscopy has been acquired at the Very Large Telescope, complemented by deep high-resolution imaging with the Advanced Camera for Surveys onboard the Hubble Space Telescope (HST) and additional ground-based multiband photometry. All galaxy spectra were observed under subarcsecond conditions and allow us to derive accurate kinematics and stellar population properties of the galaxies. To clarify the low level of star formation detected in some galaxies, we identify the amount of active galactic nuclei (AGN) activity in our sample using archive data of Chandra and XMM-Newton X-ray surveys. None of the galaxies in our sample was identified as secure AGN source based on their X-ray emission. The rest-frame B- and K-band scaling relations of the Faber-Jackson relation and the Fundamental Plane display a moderate evolution for the field early-type galaxies. Lenticular (S0) galaxies feature on average a stronger luminosity evolution and bluer rest-frame colours which can be explained that they comprise more diverse stellar populations compared to elliptical galaxies. The evolution of the FP can be interpreted as an average change in the dynamical (effective) mass-to-light ratio of our galaxies as <Δlog(M/LB)/z> = -0.74 +/- 0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, which gets supported by recent studies of field galaxies up to z ~ 1. Independent evidence for recent star formation activity is provided by spectroscopic ([OII] emission, Hδ) and photometric (rest-frame broad

  15. The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology.

    PubMed

    Brinchmann; Ellis

    2000-06-20

    We discuss a new method for inferring the stellar mass of a distant galaxy of known redshift based on the combination of a near-IR luminosity and multiband optical photometry. The typical uncertainty for field galaxies with I<22 in the redshift range 0field galaxies with redshifts and Hubble Space Telescope morphologies enabling us to construct the stellar mass density associated with various morphologies as a function of redshift. We find a marked decline with time in the stellar mass associated with peculiar galaxies accompanied by a modest rise in that observed for elliptical galaxies. The result suggests that peculiar galaxies decline in abundance because they transform and merge into regular systems. The star formation rate per unit stellar mass indicates that massive systems completed the bulk of their star formation before redshift 1, whereas dwarf galaxies continue to undergo major episodes of activity until the present epoch. PMID:10859122

  16. High-Resolution Hα Velocity Fields of Nearby Spiral Galaxies with the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl; Williams, Ted; Spekkens, Kristine; Lee-Waddell, Karen; Kuzio de Naray, Rachel; Sellwood, Jerry

    2016-01-01

    In an effort to test ΛCDM predictions of galaxy mass distributions, we have obtained spectrophotometric observations of several nearby spiral galaxies with the Southern African Large Telescope (SALT) Fabry-Pérot (FP) interferometer as part of the RSS Imaging spectroscopy Nearby Galaxy Survey. Utilizing the SALT FP's 8 arcmin field of view and 2 arcsec angular resolution, we have derived 2D velocity fields of the Hα emission line to high spatial resolution at large radii. We have modeled these velocity fields with the DiskFit software package and found them to be in good agreement with lower-resolution velocity fields of the HI 21 cm line for the same galaxies. Here we present our Hα kinematic map of the barred spiral galaxy NGC 578. At the distance to this galaxy (22 Mpc), our kinematic data has a spatial resolution of 185 pc and extends to galactocentric radii of 13 kpc. The high spatial resolution of this data allows us to resolve the inner rising part of the rotation curves, which is compromised by beam smearing in lower-resolution observations. We are using these Hα kinematic data, combined with HI 21 cm kinematics and broadband photometric observations, to place constraints on NGC 578's mass distribution.

  17. The Differential Size Growth of Field and Cluster Galaxies at z = 2.1 Using the ZFOURGE Survey

    NASA Astrophysics Data System (ADS)

    Allen, Rebecca J.; Kacprzak, Glenn G.; Spitler, Lee R.; Glazebrook, Karl; Labbé, Ivo; Tran, Kim-Vy H.; Straatman, Caroline M. S.; Nanayakkara, Themiya; Brammer, Gabriel B.; Quadri, Ryan F.; Cowley, Michael; Monson, Andy; Papovich, Casey; Persson, S. Eric; Rees, Glen; Tilvi, V.; Tomczak, Adam R.

    2015-06-01

    There is ongoing debate regarding the extent that environment affects galaxy size growth beyond z ≥ 1. To investigate the differences in star-forming and quiescent galaxy properties as a function of environment at z = 2.1, we create a mass-complete sample of 59 cluster galaxies and 478 field galaxies with log(M*/{{M}⊙ }) ≥ 9 using photometric redshifts from the ZFOURGE survey. We compare the mass-size relation of field and cluster galaxies using measured galaxy semi-major axis half-light radii ({{r}1/2,maj}) from CANDELS Hubble Space Telescope (HST)/F160W imaging. We find consistent mass-normalized (log(M*/{{M}⊙ }) = 10.7) sizes for quiescent field galaxies ({{r}1/2,maj}=1.81+/- 0.29 kpc) and quiescent cluster galaxies ({{r}1/2,maj}=2.17+/- 0.63 kpc). The mass-normalized size of star-forming cluster galaxies ({{r}1/2,maj}=4.00+/- 0.26 kpc) is 12% larger (Kolmogorov-Smirnov (KS) test 2.1σ ) than star-forming field galaxies ({{r}1/2,maj}=3.57+/- 0.10 kpc). From the mass-color relation we find that quiescent field galaxies with 9.7 < log(M*/{{M}⊙ }) ≤slant 10.4 are slightly redder (KS test 3.6σ) than quiescent cluster galaxies, while cluster and field quiescent galaxies with log(M*/{{M}⊙ }) > 10.4 have consistent colors. We find that star-forming cluster galaxies are on average 20% redder than star-forming field galaxies at all masses. Furthermore, we stack galaxy images to measure average radial color profiles as a function of mass. Negative color gradients are only present for massive star-forming field and cluster galaxies with log(M*/{{M}⊙ }) \\gt 10.4; the remaining galaxy masses and types have flat profiles. Our results suggest, given the observed differences in size and color of star-forming field and cluster galaxies, that the environment has begun to influence/accelerate their evolution. However, the lack of differences between field and cluster quiescent galaxies indicates that the environment has not begun to significantly influence their

  18. The Spitzer Mid-Infrared Survey of the Inner 2 x 1.5 Degrees of the Galaxy

    NASA Astrophysics Data System (ADS)

    Smith, H. A.; Stolovy, S.; Ramirez, S.; Law, C.; Gezari, D.; Arendt, R.; Cotera, A.; Karr, J.; Yusef-Zadeh, F.; Moseley, H.; Sellgren, K.; Smith, R.

    2006-08-01

    We present IRAC observations of the central 2 x 1.5 degrees (280 x 210 pc) of the Galaxy with 1-2" spatial resolution, corresponding to 0.04-0.08 pc. These data represent the highest spatial resolution and sensitivity large-scale map made to date of the GC at mid-infrared wavelengths. The IRAC data provide a census of the optically obscured stellar sources as well as a detailed map of the highly filamentary structure in the interstellar medium, much of which is dominated by PAH emission from small grains in star-forming regions. Dark clouds displaying a large variety of sizes and morphologies are imaged, many of which remain opaque at IRAC wavelengths. Different views of the GC, spanning radio through x-ray wavelengths, provide comparisons we can use to determine which objects are likely to be foreground. We discuss in particular the 10x10 arcminute area around the Sickle, the Pistol star and the Pistol nebula. The Sickle, the ionized edge of a molecular cloud, has previously been observed in thermal radio emission to have a curved appearance with a center of curvature near the Quintuplet star cluster. Our Spitzer observations at 2'' resolution reveal that the Sickle is comprised of a series of finger-like structures. We interpret these to be formed by photoevaporation of the dense molecular material by the intense UV radiation from the hot, massive stars in the Quintuplet cluster.

  19. Clustering of the AKARI NEP deep field 24 μm selected galaxies

    NASA Astrophysics Data System (ADS)

    Solarz, A.; Pollo, A.; Takeuchi, T. T.; Małek, K.; Matsuhara, H.; White, G. J.; Pȩpiak, A.; Goto, T.; Wada, T.; Oyabu, S.; Takagi, T.; Ohyama, Y.; Pearson, C. P.; Hanami, H.; Ishigaki, T.; Malkan, M.

    2015-10-01

    Aims: We present a method of selection of 24 μm galaxies from the AKARI north ecliptic pole (NEP) deep field down to 150 μJy and measurements of their two-point correlation function. We aim to associate various 24 μm selected galaxy populations with present day galaxies and to investigate the impact of their environment on the direction of their subsequent evolution. Methods: We discuss using of Support Vector Machines (SVM) algorithm applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy higher than 80%. The photometric redshift information, obtained through the CIGALE code, is used to explore the redshift dependence of the correlation function parameter (r0) as well as the linear bias evolution. This parameter relates galaxy distribution to the one of the underlying dark matter. We connect the investigated sources to their potential local descendants through a simplified model of the clustering evolution without interactions. Results: We observe two different populations of star-forming galaxies, at zmed ~ 0.25, zmed ~ 0.9. Measurements of total infrared luminosities (LTIR) show that the sample at zmed ~ 0.25 is composed mostly of local star-forming galaxies, while the sample at zmed ~ 0.9 is composed of luminous infrared galaxies (LIRGs) with LTIR ~ 1011.62 L⊙. We find that dark halo mass is not necessarily correlated with the LTIR: for subsamples with LTIR = 1011.15 L⊙ at zmed ~ 0.7 we observe a higher clustering length (r0 = 6.21 ± 0.78[ h-1Mpc ]) than for a subsample with mean LTIR = 1011.84 L⊙ at zmed ~ 1.1 (r0 = 5.86 ± 0.69h-1Mpc). We find that galaxies at zmed ~ 0.9 can be ancestors of present day L∗ early type galaxies, which exhibit a very high r0 ~ 8h-1 Mpc.

  20. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    SciTech Connect

    Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu

    2009-09-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.

  1. FAINT TIDAL FEATURES IN GALAXIES WITHIN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY WIDE FIELDS

    SciTech Connect

    Atkinson, Adam M.; Abraham, Roberto G.; Ferguson, Annette M. N.

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M{sub r{sup '}}<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide raw material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >10{sup 10.5} M {sub Sun }, and red galaxies are twice as likely to show tidal features than are blue galaxies.

  2. Results and analyses of faint field galaxy surveys with the Keck Telescope

    NASA Astrophysics Data System (ADS)

    Hogg, D. W.

    1996-12-01

    A large collaboration at Caltech has been using the Keck and other telescopes to perform UBVRIKL imaging and take spectra of faint galaxies. The spectroscopic samples contain several hundred objects to K=20 mag or R=24 mag and the imaging samples contain thousands of sources to R~ 27. Faint field galaxies are found to be strongly clustered in velocity space; the angular coherence, masses and morphologies in configuration space of these structures are investigated. In cooperation with the University of Hawaii group, the luminosity function of galaxies is computed in the near-infrared; strong evolution is found in the number of low-luminosity galaxies to z~ 1, although the statistical properties of high-luminosity objects are relatively constant. A range of models for the faint galaxy counts are constructed, not on the basis of a priori information about galaxy properties (from, say, cosmogonic theory) but rather by ``inverting'' the data under a range of qualitatively distinct simplifying assumptions. Predictions are made for ongoing or future imaging and spectroscopy surveys which will clearly distinguish the models. The prospects for a ``meta-analysis'' of a large collection of heterogeneous surveys to create consistent galaxy evolution models from z=0 to the highest observed redshifts are discussed.

  3. Faint Tidal Features in Galaxies within the Canada-France-Hawaii Telescope Legacy Survey Wide Fields

    NASA Astrophysics Data System (ADS)

    Atkinson, Adam M.; Abraham, Roberto G.; Ferguson, Annette M. N.

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M_{r^\\prime }<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide raw material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >1010.5 M ⊙, and red galaxies are twice as likely to show tidal features than are blue galaxies.

  4. Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Xu, Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  5. CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS

    SciTech Connect

    Cheung, Yeuk-Kwan E.; Xu Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  6. Integral field observations of damped Lyman-α galaxies

    NASA Astrophysics Data System (ADS)

    Christensen, L.; Sánchez, S. F.; Jahnke, K.; Becker, T.; Kelz, A.; Wisotzki, L.; Roth, M. M.

    2004-02-01

    We report preliminary results from a targeted investigation on quasars containing damped Lyman-α absorption (DLA) lines as well strong metal absorption lines, carried out with the Potsdam Multi Aperture Spectrophotometer (PMAS). We search for line-emitting objects at the same redshift as the absorption lines and close to the line of sight of the QSOs. We have observed and detected the already confirmed absorbing galaxies in Q2233+131 (zabs=3.15) and Q0151+045 (zabs=0.168), while failing to find spectral signatures for the z=0.091 absorber in Q0738+313. From the Q2233+131 DLA galaxy, we have detected extended Lyα emission from an area of 3″×5″.

  7. X-ray sources in dwarf galaxies in the Virgo cluster and the nearby field

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Marina; Phillipps, S.; Young, A. J.

    2016-08-01

    The extent to which dwarf galaxies represent essentially scaled down versions of giant galaxies is an important question with regards the formation and evolution of the galaxy population as a whole. Here, we address the specific question of whether dwarf galaxies behave like smaller versions of giants in terms of their X-ray properties. We discuss two samples of around 100 objects each, dwarfs in the Virgo cluster and dwarfs in a large Northern hemisphere area. We find nine dwarfs in each sample with Chandra detections. For the Virgo sample, these are in dwarf elliptical (or dwarf lenticular) galaxies and we assume that these are (mostly) low-mass X-ray binaries (LMXB) [some may be nuclear sources]. We find a detection rate entirely consistent with scaling down from massive ellipticals, viz. about one bright (i.e. LX > 1038 erg s-1) LMXB per 5 × 109 M⊙ of stars. For the field sample, we find one (known) Seyfert nucleus, in a galaxy which appears to be the lowest mass dwarf with a confirmed X-ray emitting nucleus. The other detections are in star-forming dwarf irregular or blue compact dwarf galaxies and are presumably high-mass X-ray binaries (HMXB). This time, we find a very similar detection rate to that in large late-type galaxies if we scale down by star formation rate, roughly one HMXB for a rate of 0.3 M⊙ per year. Nevertheless, there does seem to be one clear difference, in that the dwarf late-type galaxies with X-ray sources appear strongly biased to very low metallicity systems.

  8. A Ly{alpha} GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD

    SciTech Connect

    Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta; Cooper, Michael; Weiner, Benjamin E-mail: James.Rhoads@asu.edu E-mail: m.cooper@uci.edu

    2012-06-20

    Ly{alpha} emitting galaxies can be used to study cosmological reionization, because a neutral intergalactic medium (IGM) scatters Ly{alpha} photons into diffuse halos whose surface brightness falls below typical survey detection limits. Here, we present the Ly{alpha} emitting galaxy LAE J095950.99+021219.1, identified at redshift z = 6.944 in the COSMOS field using narrowband imaging and follow-up spectroscopy with the IMACS instrument on the Magellan I Baade telescope. With a single object spectroscopically confirmed so far, our survey remains consistent with a wide range of IGM neutral fraction at z Almost-Equal-To 7, but further observations are planned and will help clarify the situation. Meantime, the object we present here is only the third Ly{alpha}-selected galaxy to be spectroscopically confirmed at z {approx}> 7, and is {approx}2-3 times fainter than the previously confirmed z Almost-Equal-To 7 Ly{alpha} galaxies.

  9. Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Kendrew, S.; Zieleniewski, S.; Houghton, R. C. W.; Thatte, N.; Devriendt, J.; Tecza, M.; Clarke, F.; O'Brien, K.; Häußler, B.

    2016-05-01

    We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z = 2-4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z = 2-4, assuming different light profiles; for this population, we estimate that integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M* ≳ 1010.7 M⊙. Secondly, we use HSIM to perform a mock observation of a typical star-forming 1010 M⊙ galaxy at z = 3 generated from the high-resolution cosmological simulation NUTFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-h observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONI's performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.

  10. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median

  11. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    SciTech Connect

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.; Israel, F. P.; Van der Werf, P. P.; Serjeant, S.; Bendo, G. J.; Clements, D. L.; Brinks, E.; Irwin, J. A.; Knapen, J. H.; Leech, J.; Tan, B. K.; Matthews, H. E.; Muehle, S.; Mortimer, A. M. J.; Petitpas, G.; Spekkens, K.; Tilanus, R. P. J.; Usero, A. E-mail: wilson@physics.mcmaster.c E-mail: israel@strw.leidenuniv.n

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allow us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.

  12. Differences in the Structural Properties and Star-formation Rates of Field and Cluster Galaxies at z~1

    NASA Astrophysics Data System (ADS)

    Allen, Rebecca J.; Kacprzak, Glenn G.; Glazebrook, Karl; Tran, Kim-Vy H.; Spitler, Lee R.; Straatman, Caroline M. S.; Cowley, Michael; Nanayakkara, Themiya

    2016-07-01

    We investigate the dependence of galaxy sizes and star formation rates (SFRs) on their environment using a mass-limited sample of quiescent and star-forming galaxies with log(M */{M}ȯ ) ≥ 9.5 at \\bar{z}=0.92 selected from the NEWFIRM medium-band Survey (NMBS). Using the Galaxy Environment Evolution Collaboration 2 spectroscopic cluster catalog and the accurate photometric redshifts from the NMBS, we select quiescent and star-forming cluster (\\bar{σ }=490 km s‑1) galaxies within two virial radius, R vir, intervals of 2 > R vir > 0.5 and R vir < 0.5. Galaxies residing outside of the 2 R vir of both the cluster centers and the additional candidate over-densities are defined as our field sample. Galaxy structural parameters are measured from the COSMOS legacy Hubble Space Telescope/ACS F814W image. The sizes and Sérsic indices of quiescent field and cluster galaxies have the same distribution regardless of R vir. However, cluster star-forming galaxies within 0.5 R vir have lower mass-normalized average sizes by 16+/- 7 % , and a higher fraction of Sérsic indices with n\\gt 1, than field star-forming galaxies. The average SFRs of star-forming cluster galaxies show a trend of decreasing SFR with clustocentric radius. The mass-normalized average SFR of cluster star-forming galaxies is a factor of 2{--}2.5 (7{--}9σ ) lower than that of star-forming galaxies in the field. While we find no significant dependence on environment for quiescent galaxies, the properties of star-forming galaxies are affected, which could be the result of environment acting on their gas content.

  13. Impact of magnetic fields on ram pressure stripping in disk galaxies

    SciTech Connect

    Ruszkowski, M.; Brüggen, M.; Lee, D.; Shin, M.-S.

    2014-03-20

    Ram pressure stripping can remove significant amounts of gas from galaxies in clusters and massive groups and thus has a large impact on the evolution of cluster galaxies. Recent observations have shown that key properties of ram-pressure-stripped tails of galaxies, such as their width and structure, are in conflict with predictions by simulations. To increase the realism of existing simulations, we simulated for the first time a disk galaxy exposed to a uniformly magnetized wind including radiative cooling and self-gravity of the gas. We find that magnetic fields have a strong effect on the morphology of the gas in the tail of the galaxy. While in the purely hydrodynamical case the tail is very clumpy, the magnetohydrodynamical case shows very filamentary structures in the tail. The filaments can be strongly supported by magnetic pressure and, wherever this is the case, the magnetic fields vectors tend to be aligned with the filaments. The ram pressure stripping process may lead to the formation of magnetized density tails that appear as bifurcated in the plane of the sky and resemble the double tails observed in ESO 137-001 and ESO 137-002. Such tails can be formed under a variety of situations, both for the disks oriented face-on with respect to the intracluster medium (ICM) wind and for the tilted ones. While this bifurcation is the consequence of the generic tendency for the magnetic fields to produce very filamentary tail morphology, the tail properties are further shaped by the combination of the magnetic field orientation and the sliding of the field past the disk surface exposed to the wind. Despite the fact that the effect of the magnetic field on the morphology of the tail is strong, magnetic draping does not strongly change the rate of gas stripping. For a face-on galaxy, the field tends to reduce the amount of gas stripping compared to the pure hydrodynamical case, and is associated with the formation of a stable magnetic draping layer on the side of

  14. The Galaxy Luminosity Function at Redshifts 7 < z < 9 from the Hubble Ultradeep Field 2012

    NASA Astrophysics Data System (ADS)

    Schenker, Matthew; McLure, R.; Ono, Y.; Ellis, R. S.; Dunlop, J.; Koekemoer, A. M.; Robertson, B. E.; UDF12 Team

    2013-01-01

    The UV-selected galaxy luminosity function at z > 6 provides a crucial observational constraint on the earliest phases of galaxy evolution and the likely role galaxies play in cosmic reionization. Within this context, we present new results on the galaxy luminosity function at redshifts 7 < z < 9 arising from the unprecedented deep near-IR imaging data provided by the Hubble Space Telescope (HST) Ultra Deep Field 2012 (UDF12) program undertaken with the near-infrared arm of the Wide Field Camera 3 (WFC3/IR). Compared to previous data in the UDF, the new UDF12 program quadruples the integration time in the vital Y-band filter (F105W), reaching a 5-sigma detection limit of 30.0 AB, and provides the first ultra-deep imaging (5-sigma limit=29.8 AB) in the previously unused J-band/F140W filter. Using a combination of traditional drop-out selection and photometric redshift techniques we have assembled a well defined sample of over 200 galaxies at z>6.5, drawn from UDF12 and wider field HST imaging sampling a total area of 300 square arcmin. Our combined analyses provide the most accurate measures to data of the faint end of the luminosity function at z=7 and z=8, and the first census of the population at z=9. High redshift galaxy samples derived from the UDF12 program will provide a premier resource for studying high-redshift galaxy evolution in the era prior to the launch of the James Webb Space Telescope.

  15. Probing the large-scale velocity field with clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1994-01-01

    What is the role of clusters of galaxies in probing the large-scale velocity field of the universe? We investigate the distribution of peculiar velocities of clusters of galaxies in the popular low-density (omega = 0.3) flat cold dark matter (CDM) cosmological model, which best fits many large-scale structure observations. An omega = 1 CDM model is also studied for comparison. We find that clusters of galaxies are efficient tracers of the large-scale velocity field. The clusters exhibit a Maxwellian distribution of peculiar velocities, as expected from Gaussian initial density fluctuations. The cluster three-dimensional velocity distribution for the omega = 0.3 model peaks at nu approximately greater than 400 km/s and extends to high velocities of nu approximately 1200 km/s. The rms peculiar velocity of the clusters is 440 km/s. Approximately 10% of all model clusters move with high peculiar velocities nu greater or equal to 700 km/s. The observed velocity distribution of clusters of galaxies is compared with the predictions from cosmological models. The observed data exhibit a larger velocity tail than seen in the model simulations; however, due to the large observational uncertainties, the data are consistent at approximately equal to 3 sigma level with the odel predictions, and with a Gaussian initial density field. The large peculiar velocities reported for some clusters of galaxies (nu approximately greater than 3000 km/s) are likely to be overestimated, if the current model is viable.

  16. A sub-millimetre survey of dust enshrouded galaxies in the Hubble Deep Field region

    NASA Astrophysics Data System (ADS)

    Borys, Colin James Kelvin

    This thesis investigates the emission of sub-millimetre- wave radiation from galaxies in the Hubble Deep Field North region. The data were obtained from dedicated observing runs from our group and others using the SCUBA camera on the James Clerk Maxwell Telescope. The data were combined using techniques specifically developed here for low signal-to-noise source recovery. The sources found represent over 10% of all cosmological sources SCUBA has detected since it was commissioned. The number of sub-mm galaxies we detect account for a significant fraction of the sub-mm back-ground, and we show that mild extrapolations can reproduce it entirely. We comment on their clustering properties, both with themselves and other high-redshift galaxy types. A multi-wavelength analysis of these galaxies shows that SCUBA sources do not all have similar properties, and are made of a collection including: star-forming radio galaxies; optically invisible objects; active galactic nuclei; and extremely red objects. Reasonable attempts to determine the redshift distribution of the sample show that SCUBA galaxies have a median redshift of around 2, and suggest that the global star formation rate may be dominated by such objects at redshifts beyond about 1. The thesis summarises the current state of extra-galactic sub-mm astronomy, and comments on how new surveys and detectors will allow us to place stronger constraints on the evolution properties of the high-redshift Universe.

  17. The Evolution of Star Formation of Galaxies in the COSMOS Field1,2

    NASA Astrophysics Data System (ADS)

    Fang, Guan-Wen; Ma, Zhong-Yang; Chen, Yang; Kong, Xu

    2015-07-01

    Based on the multi-band photometric data of the COSMOS (Cosmic Evolution Survey)/Ultra VISTA (Ultra-deep Visible and Infrared Survey Telescope for Astronomy) field, we have selected a mass-limited sample of galaxies with the redshifts of 0 < z < 3.5. And according to the rest-frame UVJ twocolor (U-V vs. V-J) criteria, we classify the sample galaxies into the star-forming galaxies (SFGs) and the quiescent galaxies (QGs) in different redshift bins. In the redshift range of 0 < z < 1.5, the fraction of QGs with a mass of M* > 1011Mʘ is greater than 70%. In the range of 0 < z < 3.5, the star formation rates (SFRs) of SFGs exhibit a strong main sequence (MS) relation with the stellar mass M*. For a fixed stellar mass M*, the galaxy SFR and specific SFR (sSFR) increase with the redshift, indicating that the SFGs at high redshifts are more active in star formation. Relative to the low-mass galaxies, the large-mass SFGs have a lower sSFR, implying that the growth of a low-mass galaxy is more relying on the star formation activity of itself. In combination with the data given by the other literature, it is found that for the galaxies at higher redshifts (2 < z < 8), the evolution of sSFR with the redshift becomes weak, and the evolutionary relation is sSFR∝ (1 + z)0.94±0.17.

  18. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  19. THE STRUCTURE OF MASSIVE QUIESCENT GALAXIES AT Z {approx} 3 IN THE CANDELS-COSMOS FIELD

    SciTech Connect

    Fan Lulu; Chen Yang; Pan Zhizheng; Lv Xuanyi; Li Jinrong; Lin Lin; Kong Xu; Fang Guanwen

    2013-07-10

    In this Letter, we use a two-color (J - L) versus (V - J) selection criterion to search massive quiescent galaxy (QG) candidates at 2.5 {<=} z {<=} 4.0 in the CANDELS-COSMOS field. We construct an H{sub F160W}-selected catalog and complement it with public auxiliary data. We finally obtain 19 passive VJL-selected (hereafter pVJL) galaxies as the possible massive QG candidates at z {approx} 3 by several constrains. We find the sizes of our pVJL galaxies are on average three to four times smaller than those of local early-type galaxies (ETGs) with analogous stellar mass. The compact size of these z {approx} 3 galaxies can be modeled by assuming their formation at z{sub form} {approx} 4-6 according to the dissipative collapse of baryons. Up to z < 4, the mass-normalized size evolution can be described by r{sub e} {proportional_to}(1 + z){sup -1.0}. Low Sersic index and axis ratio, with median values n {approx}1.5 and b/a {approx} 0.65, respectively, indicate that most of the pVJL galaxies are disk-dominated. Despite large uncertainty, the inner region of the median mass profile of our pVJL galaxies is similar to those of QGs at 0.5 < z < 2.5 and local ETGs. It indicates that local massive ETGs have been formed according to an inside-out scenario: the compact galaxies at high redshift make up the cores of local massive ETGs and then build up the outskirts according to dissipationless minor mergers.

  20. Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    PubMed Central

    O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-01-01

    Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral

  1. Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Merloni, A.; Brusa, M.; Magnelli, B.; Salvato, M.; Mignoli, M.; Zamorani, G.; Fiore, F.; Rosario, D.; Mainieri, V.; Hao, H.; Comastri, A.; Vignali, C.; Balestra, I.; Bardelli, S.; Berta, S.; Civano, F.; Kampczyk, P.; Le Floc'h, E.; Lusso, E.; Lutz, D.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Shankar, F.; Silverman, J.

    2012-12-01

    Using the wide multiband photometry available in the Cosmic Evolution Survey (COSMOS) field, we explore the host galaxy properties of a large sample of active galactic nuclei (AGNs; ˜1700 objects) with Lbol ranging from 1043 to 1047 erg s-1, obtained by combining X-ray and optical spectroscopic selections. Based on a careful study of their spectral energy distributions, which have been parametrized using a two-component (AGN+galaxy) model fit, we have derived dust-corrected rest-frame magnitudes, colours and stellar masses of the obscured and unobscured AGN hosts up to high redshift (z≲3). Moreover, for the sample of obscured AGNs, we have also derived reliable star formation rates (SFRs). We find that AGN hosts span a large range of stellar masses and SFRs. No colour-bimodality is seen at any redshift in the AGN hosts, which are found to be mainly massive, red galaxies. Once we have accounted for the colour-mass degeneracy in well-defined mass-matched samples, we find a residual (marginal) enhancement of the incidence of AGNs in redder galaxies with lower specific SFRs. We argue that this result might emerge because of our ability to properly account for AGN light contamination and dust extinction, compared to surveys with a more limited multiwavelength coverage. However, because these colour shifts are relatively small, systematic effects could still be considered responsible for some of the observed trends. Interestingly, we find that the probability for a galaxy to host a black hole that is growing at any given 'specific accretion rate' (i.e. the ratio of X-ray luminosity to the host stellar mass) is almost independent of the host galaxy mass, while it decreases as a power law with LX/M*. By analysing the normalization of such a probability distribution, we show how the incidence of AGNs increases with redshift as rapidly as (1 + z)4, which closely resembles the overall evolution of the specific SFR of the entire galaxy population. We provide analytical

  2. NEAR-INFRARED IMAGING OF SIX METAL-RICH QUASAR ABSORBER GALAXY FIELDS

    SciTech Connect

    Straka, Lorrie A.; Kulkarni, Varsha P.; York, Donald G.

    2011-06-15

    Absorption lines in quasar spectra allow us to locate and study intervening galaxies. In order to obtain a clearer picture of these absorber galaxies, we have used the Near-Infrared Camera Fabry-Perot System at Apache Point Observatory to obtain near-infrared broadband images in one or more filters (J and K{sub s} ) of six quasar fields containing metal-rich low-z damped or sub-damped Ly{alpha} systems. These data allow us to search for the galaxies and constrain their luminosities. Candidate absorber galaxies are detected at 2.''01-7.''38 separation from the quasar in three out of six fields in the J and K{sub s} bands at >3{sigma} level with luminosities ranging from log(L/L{sub sun}) = 10.44-10.36 in the J band (for E-Sc type galaxies) and log(L/L{sub sun}) = 11.59-10.03 in the K{sub s} band for our detections. We place limits on the remaining fields with no detections of log(L/L{sub sun}) <10.83-9.75 for the J band and log(L/L{sub sun}) <10.43-10.05 for the K{sub s} band. We are also able to utilize Sloan Digital Sky Survey spectra for each field to calculate optical fluxes and limits as well as limits on star formation rate via [O II]{lambda}3727 emission in spectra. Our data, combined with other recent imaging results for metal-rich absorbers, suggest a possible positive correlation between absorber metallicity and galaxy luminosity, although the samples are still small.

  3. The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North

    SciTech Connect

    Somerville, R; Stanford, S A; Budavari, T; Conselice, C J

    2004-03-03

    The redshift distribution of well-defined samples of distant early-type galaxies offers a means to test the predictions of monolithic and hierarchical galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North in the F110W and F160W filters, when combined with the available WFPC2 data, allow us to calculate photometric redshifts and determine the morphological appearance of galaxies at rest-frame optical wavelengths out to z {approx} 2.5. Here we report results for two subsamples of early-type galaxies, defined primarily by their morphologies in the F160W band, which were selected from the NICMOS data down to H{sub 160AB} < 24.0. A primary subsample is defined as the 34 galaxies with early-type galaxy morphologies and early-type galaxy spectral energy distributions. The secondary subsample is defined as those 42 objects which have early-type galaxy morphologies with non-early type galaxy spectral energy distributions. The observed redshift distributions of our two early-type samples do not match that predicted by a monolithic collapse model, which shows an overabundance at z > 1.5. A (V/V{sub max}) test confirms this result. When the effects of passive luminosity evolution are included in the calculation, the mean value of Vmax for the primary sample is 0.22 {+-} 0.05, and 0.31 {+-} 0.04 for all the early-types. A hierarchical formation model better matches the redshift distribution of the HDF-N early-types at z > 1.5, but still does not adequately describe the observed early-types. The hierarchical model predicts significantly bluer colors on average than the observed early-type colors, and underpredicts the observed number of early-types at z {approx} 2. Though the observed redshift distribution of the early-type galaxies in our HDF-NICMOS sample is better matched by a hierarchical galaxy formation model, the reliability of this conclusion is tempered by the restricted sampling area and relatively small number of early-type galaxies selected by

  4. Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices.

    PubMed

    Luis, Alfredo

    2007-04-01

    We assess the degree of coherence of vectorial electromagnetic fields in the space-frequency domain as the distance between the cross-spectral density matrix and the identity matrix representing completely incoherent light. This definition is compared with previous approaches. It is shown that this distance provides an upper bound for the degree of coherence and visibility for any pair of scalar waves obtained by linear combinations of the original fields. This same approach emerges when applying a previous definition of global coherence to a Young interferometer. PMID:17361292

  5. An assessment of the "too big to fail" problem for field dwarf galaxies in view of baryonic feedback effects

    NASA Astrophysics Data System (ADS)

    Papastergis, E.; Shankar, F.

    2016-06-01

    Recent studies have established that extreme dwarf galaxies - whether satellites or field objects - suffer from the so called "too big to fail" (TBTF) problem. Put simply, the TBTF problem consists of the fact that it is difficult to explain both the measured kinematics of dwarfs and their observed number density within the lambda cold dark matter (ΛCDM) framework. The most popular proposed solutions to the problem involve baryonic feedback processes. For example, reionization and baryon depletion can decrease the abundance of halos that are expected to host dwarf galaxies. Moreover, feedback related to star formation can alter the dark matter density profile in the central regions of low-mass halos. In this article we assess the TBTF problem for field dwarfs, taking explicitly into account the baryonic effects mentioned above. We find that 1) reionization feedback cannot resolve the TBTF problem on its own, because the halos in question are too massive to be affected by it; and that 2) the degree to which profile modification can be invoked as a solution to the TBTF problem depends on the radius at which galactic kinematics are measured. Based on a literature sample of ~90 dwarfs with interferometric observations in the 21 cm line of atomic hydrogen (HI), we conclude that the TBTF problem persists despite baryonic effects. However, the preceding statement assumes that the sample under consideration is representative of the general population of field dwarfs. In addition, the unexplained excess of dwarf galaxies in ΛCDM could be as small as a factor of ≈ 1.8, given the current uncertainties in the measurement of the galactic velocity function. Both of these caveats highlight the importance of upcoming uniform surveys with HI interferometers for advancing our understanding of the issue.

  6. Ultra-diffuse Galaxies in Clusters and the Field: Masses and Stellar Populations

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron; Laine, Seppo; Krick, Jessica; van Dokkum, Pieter; Villaume, Alexa; Brodie, Jean

    2016-08-01

    Ultra-diffuse galaxies (UDGs) were recognized only last year as a novel class of galaxies, with luminosities like dwarfs but sizes like giants. Although some UDGs appear to be just unusually extended dwarfs, others show evidence of being very different and unexpected: their dark matter halos are overmassive by factors of ~10, with one UDG even being arguably a 'failed Milky Way.' These exotic galaxies might be a byproduct of environmental processes within galaxy clusters, but UDGs have also now been found in the field. It is crucial for understanding their origins to test if UDGs have the same properties in cluster and field environments. Here we propose studying the stellar populations (ages and metallicities) of seven UDGs using Spitzer/IRAC 3.6- and 4.5-micron imaging combined with optical photometry, along with mass estimation of three of the UDGs using HST/ACS imaging to provide globular cluster number counts and colors (proxies for halo mass). This ultra low surface brightness photometry in the near infrared, on an important new class of galaxies, could become a legacy result from the Spitzer mission.

  7. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  8. Astrophysical dynamos and the growth of magnetic fields in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2015-08-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Observations of galaxies at high-redshift give evidence for strong galactic magnetic fields even in the early Universe which are consistently measured at later times up to the present age. However, primordial magnetic fields and seed field generation by battery processes cannot explain such high field strengths, suggesting the presence of a rapid growth mechanism in those high-redshift galaxies and subsequent maintenance against decay. Astrophysical dynamo theory provides efficient means of field amplification where even weak initial fields can grow exponentially on sufficiently fast timescales, driving the conversion of kinetic energy into magnetic energy. We investigate the role which feedback mechanisms play in the creation of the turbulence necessary for dynamos to operate. Performing magnetohydrodynamic simulations of cooling halos of dwarf and Milky Way-like high-redshift progenitors, we compare the magnetic field evolution of weak seed fields with various topologies and stellar feedback mechanisms. We find that strong feedback can drive galactic gas turbulence which gives rise to velocity fields with fast exponential magnetic field growth. The simulations display a high gas fraction and a clumpy morphology with kinematics resembling Kolmogorov turbulence and magnetic energy spectra as predicted by Kazantsev dynamo theory. Magnetic fields reach equipartition with $\\mu$G field strength. In a final quiescent phase where feedback is turned off, gas turbulence is reduced and a quadrupole symmetry is observed in the magnetic field. These findings support the theory of rapid magnetic field amplification inside high-redshift galaxies, when the Universe was still young.

  9. The relative class numbers of imaginary cyclic fields of degrees 4, 6, 8, and 10

    NASA Astrophysics Data System (ADS)

    Girstmair, Kurt

    1993-10-01

    We express the relative class number of an imaginary abelian number field K of prime power conductor as a sort of Maillet determinant. Thereby we obtain explicit relative class number formulas for fields K of conductor p, p ≥ 3 prime, and degree 2d = [K:Q] ≤ 10 , in terms of sums of 2d-power residues. In particular, tables are given for p ≤ 10000 .

  10. Stability of an ellipsoidal stellar cluster in the tidal force field of the Galaxy

    NASA Astrophysics Data System (ADS)

    Kozhanov, T. S.

    1992-02-01

    Attention is given to the dynamical characteristics of an ellipsoidal stellar cluster which rotates on an elliptical orbit relative to the center of the Galaxy in the field of its tidal forces. Regions of stability and instability of the cluster as a function of its form are defined on the basis of a numerical solution of the equations of the motion of stars inside the cluster. It is shown that, if the flattening of the cluster along the Y-axis, which coincides with the rotation direction, is larger than along the X-axis, which is directed toward the center of the Galaxy), the cluster is unstable.

  11. The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5

    NASA Astrophysics Data System (ADS)

    Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Davidzon, I.; Guzzo, L.; Hudelot, P.; McCracken, H. J.; Van Werbaeke, L.; Morrison, G. E.; Le Fèvre, O.; Comte, V.; Bolzonella, M.; Fritz, A.; Garilli, B.; Scodeggio, M.

    2016-05-01

    We investigate the evolution of the galaxy stellar mass function and stellar mass density from redshift z = 0.2 to z = 1.5 of a Ks < 22-selected sample with highly reliable photometric redshifts and over an unprecedentedly large area. Our study is based on near-infrared observations carried out with the WIRCam instrument at CFHT over the footprint of the VIPERS spectroscopic survey and benefits from the high-quality optical photometry from the CFHTLS and ultraviolet observations with the GALEX satellite. The accuracy of our photometric redshifts is σΔz/ (1 + z) < 0.03 and 0.05 for the bright (iAB< 22.5) and faint (iAB > 22.5) samples, respectively. The galaxy stellar mass function is measured with ~760 000 galaxies down to Ks ~ 22 and over an effective area of ~22.4 deg2, the latter of which drastically reduces the statistical uncertainties (i.e. Poissonian error and cosmic variance). We point out the importance of carefully controlling the photometric calibration, whose effect becomes quickly dominant when statistical uncertainties are reduced, which will be a major issue for future cosmological surveys with EUCLID or LSST, for instance. By exploring the rest-frame (NUV-r) vs. (r-Ks) colour-colour diagram with which we separated star-forming and quiescent galaxies, (1) we find that the density of very massive log (M∗/M⊙) > 11.5 galaxies is largely dominated by quiescent galaxies and increases by a factor 2 from z ~ 1 to z ~ 0.2, which allows for additional mass assembly through dry mergers. (2) We also confirm the scenario in which star formation activity is impeded above a stellar mass log(ℳ*SF/M⊙) = 10.64±0.01. This value is found to be very stable at 0.2 galaxies, and we finally (4) characterise another quenching mechanism that is required to explain the clear excess of low-mass quiescent galaxies that is observed at low redshift.

  12. X-RAY GROUPS OF GALAXIES IN THE AEGIS DEEP AND WIDE FIELDS

    SciTech Connect

    Erfanianfar, G.; Lerchster, M.; Nandra, K.; Connelly, J. L.; Mirkazemi, M.; Finoguenov, A.; Tanaka, M.; Laird, E.; Bielby, R.; Faber, S. M.; Kocevski, D.; Jeltema, T.; Newman, J. A.; Coil, A. L.; Brimioulle, F.; Davis, M.; McCracken, H. J.; Willmer, C.; Gerke, B.; and others

    2013-03-10

    We present the results of a search for extended X-ray sources and their corresponding galaxy groups from 800 ks Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). This yields one of the largest X-ray-selected galaxy group catalogs from a blind survey to date. The red-sequence technique and spectroscopic redshifts allow us to identify 100% of reliable sources, leading to a catalog of 52 galaxy groups. These groups span the redshift range z {approx} 0.066-1.544 and virial mass range M{sub 200} {approx} 1.34 Multiplication-Sign 10{sup 13}-1.33 Multiplication-Sign 10{sup 14} M{sub Sun }. For the 49 extended sources that lie within DEEP2 and DEEP3 Galaxy Redshift Survey coverage, we identify spectroscopic counterparts and determine velocity dispersions. We select member galaxies by applying different cuts along the line of sight or in projected spatial coordinates. A constant cut along the line of sight can cause a large scatter in scaling relations in low-mass or high-mass systems depending on the size of the cut. A velocity-dispersion-based virial radius can cause a larger overestimation of velocity dispersion in comparison to an X-ray-based virial radius for low-mass systems. There is no significant difference between these two radial cuts for more massive systems. Independent of radial cut, an overestimation of velocity dispersion can be created in the case of the existence of significant substructure and compactness in X-ray emission, which mostly occur in low-mass systems. We also present a comparison between X-ray galaxy groups and optical galaxy groups detected using the Voronoi-Delaunay method for DEEP2 data in this field.

  13. Near-Infrared Faint Galaxies in the Subaru Deep Field: Comparing the Theory with Observations for Galaxy Counts, Colors, and Size Distributions to K ~ 24.5

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori; Yoshii, Yuzuru; Maihara, Toshinori; Iwamuro, Fumihide; Motohara, Kentaro

    2001-10-01

    Galaxy counts in the K band, (J-K) colors, and apparent size distributions of faint galaxies in the Subaru Deep Field (SDF) down to K~24.5 were studied in detail. Special attention has been paid to take into account various selection effects, including the cosmological dimming of surface brightness, to avoid any systematic bias that may be the origin of controversy in previously published results. We also tried to be very careful about systematic model uncertainties; we present a comprehensive survey of these systematic uncertainties and dependence on various parameters, and we have shown that the dominant factors to determine galaxy counts in this band are cosmology and number evolution. We found that the pure luminosity evolution (PLE) model is very consistent with all the SDF data down to K~22.5, without any evidence for number or size evolution in a low-density, Λ-dominated flat universe, which is now favored by various cosmological observations. On the other hand, a number evolution of galaxies with η~2, when invoked as the luminosity conserving mergers as φ*~(1+z)η and L*~(1+z)-η for all types of galaxies, is necessary to explain the data in the Einstein-de Sitter universe. If the popular Λ-dominated universe is taken for granted, our result then gives a strong constraint on the number evolution of giant elliptical or early-type galaxies to z~1-2 that must be met by any models in the hierarchically clustering universe, since such galaxies are the dominant population in this magnitude range (K<~22.5). A number evolution with η~1 is already difficult to reconcile with the data in this universe. On the other hand, number evolution of late-type galaxies and/or dwarf galaxies, which has been suggested by previous studies of optical galaxies, is allowed from the data. In the fainter magnitude range of K>~22.5, we found a slight excess of observed counts over the prediction of the PLE model when elliptical galaxies are treated as a single population. We

  14. Degrees Earned by Foreign Graduate Students: Fields of Study and Plans after Graduation. Issue Brief.

    ERIC Educational Resources Information Center

    Young, Beth Aronstamm; Bae, Yupin

    This issue brief uses narrative, tables, and graphs to summarize data on degrees earned by foreign graduate students in the United States, the percentage of foreign graduate students in the United States, the home countries of foreign doctoral students, their major fields of study, and their plans after graduation. Data were obtained from two…

  15. Mining the gap: evolution of the magnitude gap in X-ray galaxy groups from the 3-square-degree XMM coverage of CFHTLS

    NASA Astrophysics Data System (ADS)

    Gozaliasl, G.; Finoguenov, A.; Khosroshahi, H. G.; Mirkazemi, M.; Salvato, M.; Jassur, D. M. Z.; Erfanianfar, G.; Popesso, P.; Tanaka, M.; Lerchster, M.; Kneib, J. P.; McCracken, H. J.; Mellier, Y.; Egami, E.; Pereira, M. J.; Brimioulle, F.; Erben, T.; Seitz, S.

    2014-06-01

    We present a catalog of 129 X-ray galaxy groups, covering a redshift range 0.04 field overlapping XMM observations performed under the XMM-LSS project. We carry out a statistical study of the redshift evolution out to redshift one of the magnitude gap between the first and the second brightest cluster galaxies of a well defined mass-selected group sample. We find that the slope of the relation between the fraction of groups and the magnitude gap steepens with redshift, indicating a larger fraction of fossil groups at lower redshifts. We find that 22.2 ± 6% of our groups at z ≤ 0.6 are fossil groups. We compare our results with the predictions of three semi-analytic models based on the Millennium simulation. The intercept of the relation between the magnitude of the brightest galaxy and the value of magnitude gap becomes brighter with increasing redshift. This trend is steeper than the model predictions which we attribute to the younger stellar age of the observed brightest cluster galaxies. This trend argues in favor of stronger evolution of the feedback from active galactic nuclei at z< 1 compared to the models. The slope of the relation between the magnitude of the brightest cluster galaxy and the value of the gap does not evolve with redshift and is well reproduced by the models, indicating that the tidal galaxy stripping, put forward as an explanation of the occurrence of the magnitude gap, is both a dominant mechanism and sufficiently well modeled. Appendix A is available in electronic form at http://www.aanda.org

  16. THE MASS-DEPENDENT CLUSTERING HISTORY OF K-SELECTED GALAXIES AT z < 4 IN THE SXDS/UDS FIELD

    SciTech Connect

    Furusawa, Junko; Sekiguchi, Kazuhiro; Takata, Tadafumi; Furusawa, Hisanori; Shimasaku, Kazuhiro; Simpson, Chris; Akiyama, Masayuki

    2011-02-01

    We investigate mass-dependent galaxy evolution based on a large sample of (more than 50,000) K-band selected galaxies in a multi-wavelength catalog of the Subaru/XMM-Newton Deep Survey and the UKIRT Infrared Deep Sky Survey/Ultra Deep Survey. We employ optical to near-infrared photometry to determine photometric redshifts of these galaxies. Then, we estimate the stellar mass of our sample galaxies using a standard fitting procedure as we used for estimation of the photometric redshift. From the sample galaxies, we obtain the stellar mass function of galaxies and the cosmic stellar mass density up to z {approx} 4. Our results are consistent with previous studies and we find a considerable number of low-mass galaxies (M{sub *} {approx} 10{sup 10.5}) at the redshift range 3 < z < 4. By combining stellar masses and spatial distributions of galaxies derived from a large number of galaxies in the contiguous wide and deep field, we examine properties of the mass-dependent clustering of galaxies. The correlation functions of our sample galaxies show clear evolution and they connect to that in the local universe consistently. Also, we find that the massive galaxies show strong clustering throughout our studied redshift range. The correlation length of massive galaxies rapidly decreases from z = 4 to 2. The mass of dark halos hosting the intermediate-mass value galaxies changes from high (10{sup 14} M{sub sun}) to low (10{sup 13} M{sub sun}) with decreasing redshift at around z {approx} 2. We also find some high-mass density regions of massive galaxies at 1.4 {<=} z < 2.5 in our sample. These concentrations of massive galaxies may be candidate progenitors of the present-day clusters of galaxies. At this redshift range, massive star-forming galaxies are the dominant population making up the structures and the passively evolving galaxies show stronger clustering and they may have formed earlier than those star-forming galaxies.

  17. Morphological Classification of High-redshift Massive Galaxies in the COSMOS/UltraVISTA Field

    NASA Astrophysics Data System (ADS)

    Fang, G. W.; Ma, Z. Y.; Kong, X.

    2015-09-01

    Utilizing the multi-band photometry catalog of the COSMOS (Cosmic Evolution Survey)/UltraVISTA (Ultra-deep Visible and Infrared Survey Telescope for Astronomy) field and the high-resolution HST WFC3 (Hubble Space Telescope Wide Field Camera 3) near-infrared imaging from the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) field, we present a quantitative study of the morphological classification of galaxy for a large mass-selected sample. Our sample includes 362 galaxies within photometric redshift 1leq zleq3 and stellar mass M_{*}geq 10^{10.5} M_{odot}. The results from the rest-frame (U-V) vs. (V-J) (UVJ) colors classification, visual inspection, nonparametric morphology analysis, and structural parameters study are in good agreement with each other. Quiescent galaxies (QGs) classified by UVJ colors generally have larger Sérsic index (n) and Gini coefficient (G), smaller size (r_mathrm{e}) and moment (M_{20}), and they are visually compact. While star-forming galaxies (SFGs) are reversed. In the meantime, we explore the size evolution with redshift for various divisions of QG and SFG samples, and confirm that both of size will enlarge with time, but QGs are rapider than SFGs. Moreover, we find that the choice of division between QGs and SFGs (i.e. colour, shape, morphology) is not particularly critical.

  18. Rings and Bent Chain Galaxies in the GEMS and GOODS Fields

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2006-11-01

    Twenty-four galaxies with rings or partial rings were studied in the GEMS and GOODS fields out to z~1.4. Most resemble local collisional ring galaxies in morphology, size, and clumpy star formation. Clump ages range from 108 to 109 yr, and clump masses go up to several × 108 Msolar, based on color evolution models. The clump ages are consistent with the expected lifetimes of ring structures if they are formed by collisions. Fifteen other galaxies that resemble the arcs in partial ring galaxies but have no evident disk emission were also studied. Their clumps have bluer colors at all redshifts compared to the clumps in the ring and partial ring sample, and their clump ages are younger than in rings and partial rings by a factor of ~10. In most respects, they resemble chain galaxies except for their curvature; we refer to them as ``bent chains.'' Several rings are symmetric with centered nuclei and no obvious companions. They could be outer Lindblad resonance rings, although some have no obvious bars or spirals to drive them. If these symmetric cases are resonance rings, then they could be the precursors of modern resonance rings, which are only ~30% larger on average. This similarity in radius suggests that the driving pattern speed has not slowed by more by ~30% during the last ~7 Gyr. Those without bars could be examples of dissolved bars.

  19. Extremely red objects in the fields of high redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Persson, S. E.; Mccarthy, P. J.; Dressler, Alan; Matthews, Keith

    1993-01-01

    We are engaged in a program of infrared imaging photometry of high redshift radio galaxies. The observations are being done using NICMOS2 and NICMOS3 arrays on the DuPont 100-inch telescope at Las Campanas Observatory. In addition, Persson and Matthews are measuring the spectral energy distributions of normal cluster galaxies in the redshift range 0 to 1. These measurements are being done with a 58 x 62 InSb array on the Palomar 5-m telescope. During the course of these observations we have imaged roughly 20 square arcminutes of sky to limiting magnitudes greater than 20 in the J, H, and K passbands (3 sigma in 3 square arcseconds). We have detected several relatively bright, extremely red, extended objects during the course of this work. Because the radio galaxy program requires Thuan-Gunn gri photometry, we are able to construct rough photometric energy distributions for many of the objects. A sample of the galaxy magnitudes within 4 arcseconds diameter is given. All the detections are real; either the objects show up at several wavelengths, or in subsets of the data. The reddest object in the table, 9ab'B' was found in a field of galaxies in a rich cluster at z = 0.4; 9ab'A' lies 8 arcseconds from it.

  20. Probing Bursty Star Formation in Faint Galaxies with the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven; Livermore, Rachael; Song, Mimi

    2015-08-01

    The Hubble Frontier Fields have magnified our view into the formation and evolution of galaxies in the first billion years after the Big Bang. One key issue these data can probe is how galaxies grow their stellar masses. Do they grow smoothly with time, dominated by steady gas inflow? Or is their growth more stochastic, dominated by starburst triggering events such as mergers or clumpy gas inflows? A bevy of observational studies have shown that the star formation rates (SFRs) of distant galaxies increase with time, while theoretical studies, which broadly agree on long timescales, show that the SFRs may vary significantly on shorter timescales. We have compiled a sample of galaxies over a wide dynamic range in SFR by combining the HFF imaging with the CANDELS and HUDF datasets. By comparing the scatter in SFRs to SPH and semi-analytic models with known star formation histories, we directly measure the fraction of galaxies at a given epoch undergoing starbursts. This has a variety of implications on the distant universe, including reionization, as a significant burst fraction could both increase the number of ionizing photons being produced, as well as disturb the interstellar medium enough to allow these photons to escape.

  1. Radio-Optical Galaxy Shape Correlations in theCOSMOS Field

    NASA Astrophysics Data System (ADS)

    Tunbridge, Ben; Harrison, Ian; Brown, Michael L.

    2016-09-01

    We investigate the correlations in galaxy shapes between optical and radio wavelengths using archival observations of the COSMOS field. Cross-correlation studies between different wavebands will become increasingly important for precision cosmology as future large surveys may be dominated by systematic rather than statistical errors. In the case of weak lensing, galaxy shapes must be measured to extraordinary accuracy (shear systematics of <0.01%) in order to achieve good constraints on dark energy parameters. By using shape information from overlapping surveys in optical and radio bands, robustness to systematics may be significantly improved without loss of constraining power. Here we use HST-ACS optical data, VLA radio data, and extensive simulations to investigate both our ability to make precision measurements of source shapes from realistic radio data, and to constrain the intrinsic astrophysical scatter between the shapes of galaxies as measured in the optical and radio wavebands. By producing a new image from the VLA-COSMOS L-band radio visibility data that is well suited to galaxy shape measurements, we are able to extract precise measurements of galaxy position angles. Comparing to corresponding measurements from the HST optical image, we set a lower limit on the intrinsic astrophysical scatter in position angles, between the optical and radio bands, of σα > 0.212π radians (or 38.2°) at a 95% confidence level.

  2. The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dünner, Rolando; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Hughes, John P.; Infante, Leopoldo; Kosowsky, Arthur; Marsden, Danica; Marriage, Tobias A.; Moodley, Kavilan; Niemack, Michael D.; Page, Lyman A.; Spergel, David N.; Staggs, Suzanne T.; Trac, Hy; Wollack, Edward J.

    2016-09-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1-15) × 1014 M⊙. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1.10 ± 0.13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  3. The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees

    NASA Technical Reports Server (NTRS)

    Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; Wollack, Edward J.

    2016-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  4. Shocked magnetic fields in the perturbed galaxies NGC 3627 and NGC 4254

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Soida, M.; Urbanik, M.; Beck, R.

    Normal spiral galaxies usually show magnetic fields well aligned with spiral arms. However, recently Beck et al. (1999, Nature 397, 324) discovered a sudden magnetic field jump in the barred spiral NGC~1097 associated (but not coincident) with the bar-driven shock. To study such phenomena in detail we performed a VLA study at 8.44~GHz and 4.85~GHz of two perturbed galaxies: the tidally interacting NGC~3627 and the wind-swept NGC~4254. NGC~3627 shows a sudden jump of magnetic field direction close to a heavy dust lane in the western arm. However, contrary to predictions of the density wave shock models, the magnetic "shock" is displaced by about 1~kpc upstream from the dust lane. In the eastern arm, the magnetic field ignores the region of strong gas compression, running across the heavy dust lane at a high angle. Such behaviour was never seen before in spiral galaxies. NGC~4254 shows a bright narrow polarized ridge along its southern edge, suggestive for a shock caused by the intergalactic wind. However, against classical shock models the magnetic field shows a shock-like, sudden deviation along the line perpendicular to the ridge. Strong gradients of Faraday rotation in this region imply a complex, three dimensional magnetic field twisting.

  5. GMM-1: A 50 degree and order gravitational field model for Mars

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Knowledge of the gravitational field, in combination with surface topography, provides one of the principal means of inferring the internal structure of a planetary body. The highest resolution gravitational field for Mars published thus far was derived from Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft and is complete to degree and order 18 corresponding to a half wavelength resolution of approximately 600 km. This field, which is characterized by a spatial resolution that is slightly better than that of the highest resolution (16x16) topographic model, has been utilized extensively in analyses of the state of stress and isostatic compensation of the Martian lithosphere. However, the resolution and quality of current gravity and topographic fields are such that the origin and evolution of even the major physiographic features on Mars, such as the hemispheric dichotomy and Tharsis rise, are not well understood. We have re-analyzed the Viking and Mariner data sets and have derived a new gravitational field, which we designated GMM-1 (Goddard Mars Model-1). This model is complete to spherical harmonic degree and order 50 with a corresponding (half wavelength) spatial resolution of 200-300 km where the data permit. In contrast to previous models, GMM-1 was solved to as high degree and order as necessary to nearly exhaust the attenuated gravitational signal contained in the tracking data.

  6. Field of Degree and Earnings by Selected Employment Characteristics: 2011. American Community Survey Briefs. ACSBR/11-10

    ERIC Educational Resources Information Center

    Ryan, Camille

    2012-01-01

    This brief provides information about the field or major of bachelor's degrees, earnings, and selected employment characteristics for the population aged 25 and over with a bachelor's degree or higher. Data on field of bachelor's degree was first collected in the American Community Survey (ACS) in 2009. Respondents who reported that their highest…

  7. From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems

    NASA Astrophysics Data System (ADS)

    Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.

    2013-12-01

    The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.

  8. The Deep2 Galaxy Redshift Survey: Mean Ages and Metallicities ofRed Field Galaxies at Z ~; 0.9 from Stacked Keck/Deimos Spectra

    SciTech Connect

    Schiavon, Ricardo P.; Faber, S.M.; Konidaris, Nicholas; Graves,Genevieve; Willmer, Christopher N.A.; Weiner, Benjamin J.; Coil, AlisonL.; Cooper, Michael C.; Davis, Marc; Harker, Justin; Koo, David C.; Newman, Jeffrey A.; Yan, Renbin

    2006-10-19

    As part of the DEEP2 galaxy redshift survey, we analyze absorption line strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no emission lines, at redshifts 0.7 {approx}< z {approx}< 1. Comparison with models of stellar population synthesis shows that red galaxies at z {approx} 0:9 have mean luminosity-weighted ages of the order of only 1 Gyr and at least solar metallicities. These ages cannot be reconciled with a scenario where all stars evolved passively after forming at very high z. Rather, a significant fraction of stars can be no more than 1 Gyr old, which means that some star formation in the stacked populations continued to at least z {approx} 1:2. Furthermore, a comparison of these distant galaxies with a local SDSS sample, using stellar populations synthesis models, shows that the drop in the equivalent width of H{delta} from z {approx} 0:9 to 0.1 is less than predicted by passively evolving models. This admits of two interpretations: either each individual galaxy experiences continuing low-level star formation, or the red-sequence galaxy population from z {approx} 0:9 to 0.1 is continually being added to by new galaxies with younger stars.

  9. Artificial neural networks as a tool for galaxy classification.

    NASA Astrophysics Data System (ADS)

    Lahav, O.

    The author describes an Artificial Neural Network (ANN) approach to classification of galaxy images and spectra. ANNs can replicate the classification of galaxy images by a human expert to the same degree of agreement as that between two human experts. Similar methods are applied to classification of galaxy spectra. In particular, Principal Component Analysis of galaxy spectra can be used to compress the data, to suppress noise and to provide input to the ANNs. These and other classification methods will soon be applied to the Anglo-Australian 2-degree-Field redshift survey of 250,000 galaxies.

  10. Origin of strong magnetic fields in Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-08-01

    Magnetic fields are observed on all scales in the Universe (see e.g. Kronberg 1994), but little is known about the origin and evolution of those fields with cosmic time. Seed fields of arbitrary source must be amplified to present-day values and distributed among cosmic structures. Therefore, the emergence of cosmic magnetic fields and corresponding dynamo processes (see e.g. Zel'dovich et al. 1983; Kulsrud et al. 1997) can only be jointly understood with the very basic processes of structure and galaxy formation (see e.g. Mo et al. 2010).

  11. AN INTEGRAL FIELD STUDY OF ABUNDANCE GRADIENTS IN NEARBY LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rich, J. A.; Kewley, L. J.; Dopita, M. A.; Torrey, P.; Rupke, D. S. N.

    2012-07-01

    We present for the first time metallicity maps generated using data from the Wide Field Spectrograph on the ANU 2.3 m of 10 luminous infrared galaxies (LIRGs) and discuss the abundance gradients and distribution of metals in these systems. We have carried out optical integral field spectroscopy (IFS) of several LIRGs in various merger phases to investigate the merger process. In a major merger of two spiral galaxies with preexisting disk abundance gradients, the changing distribution of metals can be used as a tracer of gas flows in the merging system as low-metallicity gas is transported from the outskirts of each galaxy to their nuclei. We employ this fact to probe merger properties by using the emission lines in our IFS data to calculate the gas-phase metallicity in each system. We create abundance maps and subsequently derive a metallicity gradient from each map. We compare our measured gradients to merger stage as well as several possible tracers of merger progress and observed nuclear abundances. We discuss our work in the context of previous abundance gradient observations and compare our results to new galaxy merger models that trace metallicity gradient. Our results agree with the observed flattening of metallicity gradients as a merger progresses. We compare our results with new theoretical predictions that include chemical enrichment. Our data show remarkable agreement with these simulations.

  12. THE EXTENT OF MAGNETIC FIELDS AROUND GALAXIES OUT TO z {approx} 1

    SciTech Connect

    Bernet, M. L.; Miniati, F.; Lilly, S. J. E-mail: fm@phys.ethz.ch

    2013-08-01

    Radio quasar sightlines with strong Mg II absorption lines display statistically enhanced Faraday rotation measures (RMs), indicating the presence of additional magneto-active plasma with respect to sightlines free of such absorption. In this Letter, we use multi-color optical imaging to identify the galaxies likely hosting the magneto-active plasma, and to constrain the location of the latter with respect to the putative parent halo. We find that all of the sightlines with high |RM| pass within 50 kpc of a galaxy and that the |RM| distribution for low impact parameters, D < 50 kpc, is significantly different than for larger impact parameters. In addition, we find a decrease in the ratio of the polarization at 21 cm and 1.5 cm, p{sub 21}/p{sub 1.5}, toward lower D. These two effects are most likely related, strengthen the association of excess |RM| with intervening galaxies, and suggest that intervening galaxies operate as inhomogeneous Faraday screens. These results are difficult to reconcile with only a disk model for the magnetic field, but are consistent with highly magnetized winds associated with Mg II systems. We infer strong magnetic fields of a few tens of {mu}G, consistent with the values required by the lack of evolution of the FIR-radio correlation at high redshifts. Finally, these findings lend support to the idea that the small-scale helicity bottleneck of {alpha}-{Omega} galactic dynamos can be significantly alleviated via galactic winds.

  13. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  14. Cosmic Ray Propagation through the Magnetic Fields of the Galaxy with Extended Halo

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    In this project we perform theoretical studies of 3-dimensional cosmic ray propagation in magnetic field configurations of the Galaxy with an extended halo. We employ our newly developed Markov stochastic process methods to solve the diffusive cosmic ray transport equation. We seek to understand observations of cosmic ray spectra, composition under the constraints of the observations of diffuse gamma ray and radio emission from the Galaxy. The model parameters are directly are related to properties of our Galaxy, such as the size of the Galactic halo, particle transport in Galactic magnetic fields, distribution of interstellar gas, primary cosmic ray source distribution and their confinement in the Galaxy. The core of this investigation is the development of software for cosmic ray propagation models with the Markov stochastic process approach. Values of important model parameters for the halo diffusion model are examined in comparison with observations of cosmic ray spectra, composition and the diffuse gamma-ray background. This report summarizes our achievement in the grant period at the Florida Institute of Technology. Work at the co-investigator's institution, the University of New Hampshire, under a companion grant, will be covered in detail by a separate report.

  15. WBUCS: A Web-based tool for simulating deep galaxy fields

    NASA Astrophysics Data System (ADS)

    Bouwens, R. J.; Magee, D. K.; Illingworth, G. D.

    2003-12-01

    To enhance the ability of astronomers to perform simulations of deep galaxy fields, we are developing a web simulator with this express purpose. Because our simulator uses real galaxy templates extracted from deep multicolor HST observations (the recently released GOODS fields), it represents a distinct improvement over the relatively rudimentary simulation tools currently available (artdata or skymaker) or standardly available exposure time calculators, both for the purposes of visualization and for making comparisons against real observations. Objects on these images are generated by a pixel-by-pixel resampling of objects, paying special attention to the best-fit pixel spectral energy distributions. Users can specify simulations with up to five different filters, with different pixel sizes, point spread functions, and zero points depending upon the passband. For our engine, we use the BUCS software already used in a variety of faint galaxy work. To facilitate these complex simulations we have begun to develop a simple web-base interface to the BUCS engine. While the site has only recently begun construction, long term plans may include adding galaxy templates from a variety of different surveys as well as the ability to perform no-evolution simulations based upon local, intermediate-redshift, and high-redshift surveys. Cameras from a number of well-known telescopes (HST, Keck, VLT) should also be a welcome addition. We see this as being an extremely useful tool come proposal time.

  16. Discovery of an Ultra-faint Dwarf Galaxy in the Intracluster Field of the Virgo Center: A Fossil of the First Galaxies?

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Lee, Myung Gyoon

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch with isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =-2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be MV = -6.5 ± 0.2 and r eff = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ V, 0 = 26.37 ± 0.05 mag arcsec-2. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.

  17. DISCOVERY OF AN ULTRA-FAINT DWARF GALAXY IN THE INTRACLUSTER FIELD OF THE VIRGO CENTER: A FOSSIL OF THE FIRST GALAXIES?

    SciTech Connect

    Jang, In Sung; Lee, Myung Gyoon E-mail: mglee@astro.snu.ac.kr

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch with isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =–2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be M{sub V} = –6.5 ± 0.2 and r {sub eff} = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ {sub V,} {sub 0} = 26.37 ± 0.05 mag arcsec{sup –2}. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.

  18. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta < 0.2, which agrees with the sensitivities expected from the Balmer-break in our dataset. Five parallel fields observed by NICMOS have sensitivities in the H160-band of 80% at mAB = 25.4 and 50% at mAB = 26.7. Because the sample is H160-band selected, it is sensitive to stellar mass rather than UV luminosities. We also use Monte Carlo simulations to determine that the parameters from the best-fit SEDs are robust for the redshift ranges z > or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  19. An excess of star-forming galaxies in the fields of high-redshift QSOs

    NASA Astrophysics Data System (ADS)

    Stevens, J. A.; Jarvis, Matt J.; Coppin, K. E. K.; Page, M. J.; Greve, T. R.; Carrera, F. J.; Ivison, R. J.

    2010-07-01

    We present submillimetre (submm) and mid-infrared (MIR) imaging observations of five fields centred on quasi-stellar objects (QSOs) at 1.7< z<2.8. All five QSOs were detected previously at submm wavelengths. At 850 (450) m, we detect 17 (11) submillimetre galaxies (SMGs) in addition to the QSOs. The total area mapped at 850 m is arcmin2 down to rms noise levels of 1-2 mJybeam-1, depending on the field. Integral number counts are computed from the 850-m data using the same analytical techniques adopted by `blank-field' submm surveys. We find that the `QSO-field' counts show a clear excess over the blank-field counts at deboosted flux densities of mJy at higher flux densities, the counts are consistent with the blank-field counts. Robust MIR counterparts are identified for all four submm detected QSOs and per cent of the SMGs. The MIR colours of the QSOs are similar to those of the local ultraluminous infrared galaxy (ULIRG)/active galactic nuclei (AGN) Mrk 231 if placed at 1< z<3 whilst most of the SMGs have colours very similar to those of the local ULIRG Arp 220 at 1< z<3. MIR diagnostics therefore find no strong evidence that the SMGs host buried AGN although we cannot rule out such a possibility. Taken together our results suggest that the QSOs sit in regions of the early universe which are undergoing an enhanced level of major star formation activity, and should evolve to become similarly dense regions containing massive galaxies at the present epoch. Finally, we find evidence that the level of star formation activity in individual galaxies appears to be lower around the QSOs than it is around more powerful radio-loud AGN at higher redshifts.

  20. Galactic ménage à trois: simulating magnetic fields in colliding galaxies

    NASA Astrophysics Data System (ADS)

    Kotarba, H.; Lesch, H.; Dolag, K.; Naab, T.; Johansson, P. H.; Donnert, J.; Stasyszyn, F. A.

    2011-08-01

    We present high-resolution simulations of a multiple merger of three disc galaxies, including the evolution of magnetic fields, performed with the N-body/smoothed particle hydrodynamics (SPH) code GADGET. For the first time, we embed the galaxies in a magnetized, low-density medium, thus modelling an ambient intergalactic medium (IGM). The simulations include radiative cooling and a model for star formation and supernova feedback. Magnetohydrodynamics is followed using the SPH method. The progenitor discs have initial magnetic seed fields in the range 10-9-10-6 G and the IGM has initial fields of 10-12-10-9 G. The simulations are compared to a run excluding magnetic fields. We show that the propagation of interaction-driven shocks depends significantly on the initial magnetic field strength. The shocks propagate faster in simulations with stronger initial field, suggesting that the shocks are supported by magnetic pressure. The Mach numbers of the shocks range from approximately M= 1.5 for the non-magnetized case up to M= 6 for the highest initial magnetization, resulting in higher temperatures of the shock-heated IGM gas. The magnetic field in the system saturates rapidly after the mergers at ˜10-6 G within the galaxies and ˜10-8 G in the IGM independent of the initial value. These field strengths agree with observed values and correspond to the equipartition value of the magnetic pressure with the turbulent pressure in the system. We also present synthetic radio and polarization maps for different phases of the evolution, showing that shocks driven by the interaction produce a high amount of polarized emission. These idealized simulations indicate that magnetic fields play an important role for the hydrodynamics of the IGM during galactic interactions. We also show that even weak seed fields are efficiently strengthened during multiple galactic mergers. This interaction-driven amplification might have been a key process for the magnetization of the Universe.

  1. Star Formation in the Galaxy and the Fluctuating UV Radiation Field

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Parravano, A.; McKee, C.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV radiation field, and the effect of this Field on the star-forming interstellar medium. Following previous researchers such as Habing (1968), we calculate the average interstellar radiation field at the Solar Circle of the Galaxy. However, our new calculations follow more closely the time dependence of the field at any point. We show that there is a significant difference between the mean field and the median field, and that there are substantial fluctuations of the field (on timescales of order 100 million years) at a given point. Far Ultraviolet Radiation (FUV, photon energies of 6 eV - 13.6 eV) has been recognized as the main source of heating of the neutral interstellar gas. Given the pressure of the interstellar medium (ISM) the FUV field determines whether the thermal balance of the neutral gas results in cold (T approximately 50 - 100 K) clouds (CNM), warm (T about 10,000 K) (WNM), for a combination of the two (the two phase ISM) We present results for the time history of the FUV field for points in the local ISM of the Milky Way Galaxy. The presence of this fluctuating heating rate converts CNM to WNM and vice versa. We show how to calculate the average fractions of the gas in the CNM and WNM when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties (i.e. mean density and composition) and on the FUV-sources (i.e. the star formation rate, or the IMF, or the size distribution of associations) is a basic step in building any detailed model of the large scale behavior of the ISM and the mutual relation between the ISM and the SFR.

  2. Multi-wavelength seds of Herschel-selected galaxies in the cosmos field

    SciTech Connect

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Hung, Chao-Ling; Scoville, N. Z.; Capak, Peter; Bock, J.; Le Floc'h, Emeric; Aussel, Hervé; Ilbert, Olivier; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Oliver, S. J.; Salvato, Mara; Aravena, M.; Berta, S.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from

  3. THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD

    SciTech Connect

    Kurczynski, Peter; Gawiser, Eric; Rafelski, Marc; Teplitz, Harry I.; Acquaviva, Viviana; Brown, Thomas M.; Coe, Dan; Grogin, Norman A.; Koekemoer, Anton M.; De Mello, Duilia F.; Finkelstein, Steven L.; Lee, Kyoung-soo; Scarlata, Claudia; Siana, Brian D.

    2014-09-20

    We estimate the UV continuum slope, β, for 923 galaxies in the range 1 < z < 8 in the Hubble Ultradeep Field (HUDF). These data include 460 galaxies at 1 < z < 2 down to an absolute magnitude M{sub UV}=−14(∼0.006 L{sub z=1}{sup ∗};0.02 L{sub z=0}{sup ∗}), comparable to dwarf galaxies in the local universe. We combine deep HST/UVIS photometry in F225W, F275W, F336W wavebands (UVUDF) with recent data from HST/WFC3/IR (HUDF12). Galaxies in the range 1 < z < 2 are significantly bluer than local dwarf galaxies. We find their mean (median) values <β > = – 1.382(– 1.830) ± 0.002 (random) ± 0.1 (systematic). We find comparable scatter in β (standard deviation = 0.43) to local dwarf galaxies and 30% larger scatter than z > 2 galaxies. We study the trends of β with redshift and absolute magnitude for binned sub-samples and find a modest color-magnitude relation, dβ/dM = –0.11 ± 0.01, and no evolution in dβ/dM with redshift. A modest increase in dust reddening with redshift and luminosity, ΔE(B – V) ∼ 0.1, and a comparable increase in the dispersion of dust reddening at z < 2, appears likely to explain the observed trends. At z > 2, we find trends that are consistent with previous works; combining our data with the literature in the range 1 < z < 8, we find a color evolution with redshift, dβ/dz = –0.09 ± 0.01 for low luminosity (0.05 L{sub z=3}{sup ∗}), and dβ/dz = –0.06 ± 0.01 for medium luminosity (0.25 L{sub z=3}{sup ∗}) galaxies.

  4. Searching for intermediate groups of galaxies with Suzaku in Bootes field

    NASA Astrophysics Data System (ADS)

    Tawara, Yuzuru; Mitsuishi, Ikuyuki

    2016-07-01

    To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 6 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to examine the AGN fractions and magnitude gaps in our samples and discuss the redshift

  5. Searching for intermediate groups of galaxies with Suzaku in Bootes field

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Maejima, Masato; Kobayashi, Hiroaki; Babazaki, Yasunori; Matsumoto, Hironori; Tawara, Yuzuru; Miller, Eric D.

    2015-08-01

    To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 4 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively while no significant emissions from diffuse sources were found from the other two targets. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to

  6. THE ROTATION PROFILE OF SOLAR MAGNETIC FIELDS BETWEEN {+-}60 Degree-Sign LATITUDES

    SciTech Connect

    Shi, X. J.; Xie, J. L.

    2013-08-10

    Through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotation Nos. 1625 to 2129 (from 1975 February to 2012 October), the sidereal rotation rates of solar magnetic fields between {+-}60 Degree-Sign latitudes are investigated. It seems that the temporal variation of rotation rates should be related to the solar cycle phase. The rotation profile of magnetic fields is obtained: the sidereal rotation rates decrease from the equator to mid-latitude and reach their minimum values of about 13.16 deg day{sup -1} (13.17 deg day{sup -1}) at 53 Degree-Sign (54 Degree-Sign ) latitude in the northern (southern) hemisphere, then increase toward higher latitudes. This rotation profile is different from the differential rotation law obtained by Snodgrass from a cross-correlation analysis of daily magnetograms, in which the rotation rates show a steep decrease from the equator to the poles. However, it is much closer to the quasi-rigid rotation law derived by Stenflo from an auto-correlation analysis of daily magnetograms. Some possible interpretations are discussed for the resulting rotation profile.

  7. A high-resolution spherical harmonic degree 1500 lunar gravity field from the GRAIL mission

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Konopliv, A. S.; Yuan, D. N.; Asmar, S.; Watkins, M. M.; Williams, J.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The highest resolution lunar gravity field to date has been generated by analyzing Gravity Recovery And Interior Laboratory (GRAIL) data from the Primary and Extended Missions. The Extended Mission Ka-band inter-spacecraft range-rate data have a precision near 0.05 micron/second with spacecraft altitudes as low as a few kilometers above the lunar surface. This new spherical harmonic degree 1500 field involves solving for nearly 2.3 million parameters in a least-square estimation procedure with 5 million observations. This results in an upper triangular 20 TB covariance matrix, computed using the NASA Pleiades Supercomputer. The first figure compares RMS unconstrained gravity field coefficients with uncertainties. The constrained global gravity spectrum (magenta) is determined to about n=900, whereas the Bouguer spectrum is accurate to about n=600. The correlation with gravity derived from constant density topography in the second figure shows that the high-order coefficients (n>700) are improved significantly over the previous degree 1200 field. Moreover, the Ka-band residual RMS is significantly improved for the low-altitude orbit solutions of the last month of the extended mission. The maximum local resolution of this new gravity field corresponds to a surface resolution of 3.6 km.

  8. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  9. A LABOCA Survey of the Extended Chandra Deep Field South—Submillimeter Properties of Near-infrared Selected Galaxies

    NASA Astrophysics Data System (ADS)

    Greve, T. R.; Weiβ, A.; Walter, F.; Smail, I.; Zheng, X. Z.; Knudsen, K. K.; Coppin, K. E. K.; Kovács, A.; Bell, E. F.; de Breuck, C.; Dannerbauer, H.; Dickinson, M.; Gawiser, E.; Lutz, D.; Rix, H.-W.; Schinnerer, E.; Alexander, D.; Bertoldi, F.; Brandt, N.; Chapman, S. C.; Ivison, R. J.; Koekemoer, A. M.; Kreysa, E.; Kurczynski, P.; Menten, K.; Siringo, G.; Swinbank, M.; van der Werf, P.

    2010-08-01

    Using the 330 hr ESO-MPG 870 μm survey of the Extended Chandra Deep Field South (ECDF-S) obtained with the Large Apex BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX), we have carried out a stacking analysis at submillimeter (submm) wavelengths of a sample of 8266 near-infra-red (near-IR) selected (K vega <= 20) galaxies, including 893 BzK galaxies, 1253 extremely red objects (EROs), and 737 distant red galaxies (DRGs), selected from the Multi-wavelength Survey by Yale-Chile (MUSYC). We measure average 870 μm fluxes of 0.22 ± 0.01 mJy (22.0σ), 0.48 ± 0.04 mJy (12.0σ), 0.39 ± 0.03 mJy (13.0σ), and 0.43 ± 0.04 mJy (10.8σ) for the K vega <= 20, BzK, ERO, and DRG samples, respectively. For the BzK, ERO, and DRG sub-samples, which overlap to some degree and are likely to be at z ~= 1-2, this implies an average far-IR luminosity of ~(1-5) × 1011 Lsun and star formation rate (SFR) of ~20-90 Msun . Splitting the BzK galaxies into star-forming (sBzK) and passive (pBzK) galaxies, the former is significantly detected (0.50 ± 0.04 mJy, 12.5σ) while the latter is only marginally detected (0.34 ± 0.10 mJy, 3.4σ), thus confirming that the sBzK and pBzK criteria to some extent select obscured, star-forming, and truly passive galaxies, respectively. The K vega <= 20 galaxies are found to contribute 7.27 ± 0.34 Jy deg-2 (16.5% ± 5.7%) to the 870 μm extragalactic background light (EBL). sBzK and pBzK galaxies contribute 1.49 ± 0.22 Jy deg-2 (3.4% ± 1.3%) and 0.20 ± 0.14 Jy deg-2 (0.5% ± 0.3%) to the EBL. We present the first delineation of the average submm signal from the K vega <= 20 selected galaxies and their contribution to the submm EBL as a function of (photometric) redshift, and find a decline in the average submm signal (and therefore IR luminosity and SFR) by a factor ~2-3 from z ~ 2 to z ~ 0. This is in line with a cosmic star formation history in which the star formation activity in galaxies increases significantly at z >~ 1. A

  10. Probing the magnetic field of the nearby galaxy pair Arp 269

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Jamrozy, M.; Soida, M.; Urbanik, M.; Knapik, J.

    2016-06-01

    We present a multiwavelength radio study of the nearby galaxy pair Arp 269 (NGC 4490/85). High sensitivity to extended structures gained by using the merged interferometric and single-dish maps allowed us to reveal a previously undiscovered extension of the radio continuum emission. Its direction is significantly different from that of the neutral gas tail, suggesting that different physical processes might be involved in their creation. The population of radio-emitting electrons is generally young, signifying an ongoing, vigorous star formation - this claim is supported by strong magnetic fields (over 20 μG), similar to the ones found in much larger spiral galaxies. From the study of the spectral energy distribution, we conclude that the electron population in the intergalactic bridge between member galaxies originates from the disc areas, and therefore its age (approximately 3.7-16.9 Myr, depending on the model used) reflects the time-scale of the interaction. We have also discovered an angularly near compact steep source - which is a member of a different galaxy pair - at a redshift of approximately 0.125.

  11. X-ray Evolution of Normal Galaxies in the 6 Ms Chandra Deep Field-South

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Basu-Zych, Antara; Mineo, Stefano; Brandt, W. Niel; Eufrasio, Rafael T.; Fragos, Tassos; Hornschemeier, Ann E.; Luo, Bin; Xue, Yongquan; Bauer, Franz E.; Gilfanov, Marat; Kalogera, Vassiliki; Ranalli, Piero; Schneider, Donald P.; Shemmer, Ohad; Tozzi, Paolo; Trump, Jonathan R.; Vignali, Cristian; Wang, JunXian; Yukita, Mihoko; Zezas, Andreas

    2016-04-01

    I will discuss recent efforts to quantify the evolution of X-ray binary (XRB) populations through cosmic time using the 6 Ms Chandra Deep Field-South (CDF-S) survey. The formation of XRBs is sensitive to galaxy properties like stellar age and metallicity---properties that have evolved significantly in the broader galaxy population throughout cosmic history. I will show that scaling relations between X-ray emission from low-mass XRBs (LMXBs) with stellar mass (LX/M) and high-mass XRBs (HMXBs) with star-formation rate (LX/SFR) change significantly with redshift, such that LX(LMXB)/M ~ (1+z)^2-3 and LX(HMXB)/SFR ~ (1+z). These findings are consistent with population synthesis models, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. These findings have important implications for the X-ray emission from young, low-metallicity galaxies at high redshift, which are likely to be more X-ray luminous per SFR and play a significant role in the heating of the intergalactic medium.

  12. HEAO 1 hard X-ray observation of clusters of galaxies and intracluster magnetic fields

    NASA Technical Reports Server (NTRS)

    Rephaeli, Yoel; Gruber, D. E.

    1988-01-01

    The results of HEAO 1 hard X-ray measurements of three clusters of galaxies, Abell 401, Abell 2255, and Abell 2256 are reported. Nonthermal components were not detected above the level of 10 to the -5th photons/sq cm/s/keV. Comparison of the flux upper limits with theoretical predictions yields lower limits of about 10 to the -7th gauss on the mean value of the intracluster magnetic fields in the central regions of these clusters.

  13. Systematic differences between the field and cluster elliptical galaxies

    NASA Technical Reports Server (NTRS)

    De Carvalho, R. R.; Djorgovski, S.

    1992-01-01

    Multivariate statistical techniques and fundamental plane fits are used here to study possible systematic differences between field ellipticals (FEs) and cluster ellipticals (CEs). The FEs show more intrinsic scatter in their properties, especially when stellar population variables are included. Pairwise correlations for the two samples are different; the correlations are systematically better for the cluster sample, meaning that ellipticals in the two samples populate their fundamental planes in different ways. Bivariate correlations are different for the two samples, implying that they have different fundamental planes. This is especially true for the correlations which include the population variables Mg2 and (B-V), which are sensitive both to the enrichment history and the storm formation history.

  14. Disc colours in field and cluster spiral galaxies at 0.5 ≲z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Cantale, Nicolas; Jablonka, Pascale; Courbin, Frédéric; Rudnick, Gregory; Zaritsky, Dennis; Meylan, Georges; Desai, Vandana; De Lucia, Gabriella; Aragón-Salamanca, Alfonso; Poggianti, Bianca M.; Finn, Rose; Simard, Luc

    2016-04-01

    We present a detailed study of the colours of late-type galaxy discs for ten of the EDisCS galaxy clusters with 0.5 ≲ z ≲ 0.8. Our cluster sample contains 172 spiral galaxies, and our control sample is composed of 96 field disc galaxies. We deconvolved their ground-based V and I images obtained with FORS2 at the VLT with initial spatial resolutions between 0.4 and 0.8 arcsec to achieve a final resolution of 0.1 arcsec with 0.05 arcsec pixels, which is close to the resolution of the ACS at the HST. After removing the central region of each galaxy to avoid pollution by the bulges, we measured the V-I colours of the discs. We find that 50% of cluster spiral galaxies have disc V-I colours redder by more than 1σ of the mean colours of their field counterparts. This is well above the 16% expected for a normal distribution centred on the field disc properties. The prominence of galaxies with red discs depends neither on the mass of their parent cluster nor on the distance of the galaxies to the cluster cores. Passive spiral galaxies constitute 20% of our sample. These systems are not abnormally dusty. They are are made of old stars and are located on the cluster red sequences. Another 24% of our sample is composed of galaxies that are still active and star forming, but less so than galaxies with similar morphologies in the field. These galaxies are naturally located in the blue sequence of their parent cluster colour-magnitude diagrams. The reddest of the discs in clusters must have stopped forming stars more than ~5 Gyr ago. Some of them are found among infalling galaxies, suggesting preprocessing. Our results confirm that galaxies are able to continue forming stars for some significant period of time after being accreted into clusters, and suggest that star formation can decline on seemingly long (1 to 5 Gyr) timescales.

  15. Disc colours in field and cluster spiral galaxies at 0.5 ≲z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Cantale, Nicolas; Jablonka, Pascale; Courbin, Frédéric; Rudnick, Gregory; Zaritsky, Dennis; Meylan, Georges; Desai, Vandana; De Lucia, Gabriella; Aragón-Salamanca, Alfonso; Poggianti, Bianca M.; Finn, Rose; Simard, Luc

    2016-05-01

    We present a detailed study of the colours of late-type galaxy discs for ten of the EDisCS galaxy clusters with 0.5 ≲ z ≲ 0.8. Our cluster sample contains 172 spiral galaxies, and our control sample is composed of 96 field disc galaxies. We deconvolved their ground-based V and I images obtained with FORS2 at the VLT with initial spatial resolutions between 0.4 and 0.8 arcsec to achieve a final resolution of 0.1 arcsec with 0.05 arcsec pixels, which is close to the resolution of the ACS at the HST. After removing the central region of each galaxy to avoid pollution by the bulges, we measured the V-I colours of the discs. We find that 50% of cluster spiral galaxies have disc V-I colours redder by more than 1σ of the mean colours of their field counterparts. This is well above the 16% expected for a normal distribution centred on the field disc properties. The prominence of galaxies with red discs depends neither on the mass of their parent cluster nor on the distance of the galaxies to the cluster cores. Passive spiral galaxies constitute 20% of our sample. These systems are not abnormally dusty. They are are made of old stars and are located on the cluster red sequences. Another 24% of our sample is composed of galaxies that are still active and star forming, but less so than galaxies with similar morphologies in the field. These galaxies are naturally located in the blue sequence of their parent cluster colour-magnitude diagrams. The reddest of the discs in clusters must have stopped forming stars more than ~5 Gyr ago. Some of them are found among infalling galaxies, suggesting preprocessing. Our results confirm that galaxies are able to continue forming stars for some significant period of time after being accreted into clusters, and suggest that star formation can decline on seemingly long (1 to 5 Gyr) timescales.

  16. An alma survey of sub-millimeter galaxies in the extended Chandra deep field south: Sub-millimeter properties of color-selected galaxies

    SciTech Connect

    Decarli, R.; Walter, F.; Hodge, J. A.; Rix, H.-W.; Schinnerer, E.; Smail, I.; Swinbank, A. M.; Karim, A.; Simpson, J. M.; Chapman, S.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Greve, T. R.; Ivison, R.; Knudsen, K. K.; Lindroos, L.; Van der Werf, P.; Weiß, A.

    2014-01-10

    We study the sub-millimeter properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-millimeter wavelengths. We base our study on 344 GHz ALMA continuum observations of ∼20''-wide fields centered on 86 sub-millimeter sources detected in the LABOCA Extended Chandra Deep Field South (ECDFS) Sub-millimeter Survey. We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects, and distant red galaxies) according to their optical/near-infrared fluxes. We find clear, >10σ detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust spectral energy distribution of these galaxies. We find that their dust emission is well described by a modified blackbody with T {sub dust} ≈ 30 K and β = 1.6 and infrared luminosities of (5-11) × 10{sup 11} L {sub ☉} or implied star formation rates of 75-140 M {sub ☉} yr{sup –1}. We compare our results with those of previous studies based on single-dish observations at 870 μm and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4 GHz observations of the whole ECDFS. Hence, we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.

  17. Bright z ~ 3 Lyman break galaxies in deep wide field surveys

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan

    In my thesis I investigate the luminous z ˜ 3 Lyman break galaxies in deep wide field surveys. In the first part of the thesis, I use the LBT/LUCIFER to observe a lensed high-redshift star-forming galaxy (J0900+2234) at z = 2.03. With the high S/N near-IR spectroscopic observations, I reveal the detailed physical properties of this high-redshift galaxy, including SFR, metallicity, dust extinction, dynamical mass, and electron number density. In the second part of the thesis, I select a large sample of LBGs at z ˜ 3 from our new LBT Bootes field survey, and study the bright end luminosity function (LF), stellar mass function (SMF) and clustering properties of bright LBGs (1L* < L < 2.5L*). Together with other LF and SMF measurements, the evolution of LF and SMF can be well described by continuously rising star formation history model. Using the clustering measurements in this work and other works, a tight relation between the average host galaxy halo mass and the galaxy star formation rate is found, which can be interpreted as arising from cold flow accretion. The relation also suggests that the cosmic star formation efficiency is about 5%-20% of the total cold flow mass. This cosmic star formation efficiency does not evolve with redshift (from z ˜ 5 to z ˜ 3), hosting dark matter halo mass (1011 -- 1013 M⊙ ), or galaxy luminosity (from 0.3L* to 3L* ). In the third and fourth parts, with the spectroscopic follow-up observations of the bright LBGs, I establish a sample of spectroscopically-confirmed ultraluminous LBGs (ULBGs) in NOAO Boo¨tes field. With this new ULBG sample, the rest-frame UV LF of LBG at M1700A = -23.0 was measured for the first time. I find that the ULBGs have larger outflow velocity, broader Lyalpha emission and ISM absorption line profiles, and more prominent C IV P-Cygni profile. This profile may imply a top-heavy IMF in these ULBGs. The ULBGs have larger stellar mass and SFR, but smaller dust extinction than the typical L* LBGs at z ˜ 2

  18. Generation and maintenance of bisymmetric spiral magnetic fields in disk galaxies in differential rotation

    NASA Astrophysics Data System (ADS)

    Sawa, Takeyasu; Fujimoto, M.

    1993-05-01

    The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.

  19. Young Galaxy Candidates in the Hubble Frontier Fields. III. MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Infante, L.; Troncoso Iribarren, P.; Zheng, W.; Molino, A.; Bauer, F. E.; Bina, D.; Broadhurst, Tom; Chilingarian, I.; Huang, X.; Garcia, S.; Kim, S.; Marques-Chaves, R.; Moustakas, J.; Pelló, R.; Pérez-Fournon, I.; Shu, X.; Streblyanska, A.; Zitrin, A.

    2016-04-01

    In this paper we present the results of our search for and study of z≳ 6 galaxy candidates behind the third Frontier Fields (FFs) cluster, MACS J0717.5+3745, and its parallel field, combining data from Hubble and Spitzer. We select 39 candidates using the Lyman break technique, for which the clear non-detection in optical make the extreme mid-z interlopers hypothesis unlikely. We also take benefit from z≳ 6 samples selected using the previous FF data sets of Abell 2744 and MACS 0416 to improve the constraints on the properties of very high redshift objects. We compute the redshift and the physical properties such emission lines properties, star formation rate, reddening, and stellar mass for all FF objects from their spectral energy distribution using templates including nebular emission lines. We study the relationship between several physical properties and confirm the trend already observed in previous surveys for evolution of star formation rate with galaxy mass and between the size and the UV luminosity of our candidates. The analysis of the evolution of the UV luminosity function with redshift seems more compatible with an evolution of density. Moreover, no robust z≥slant 8.5 object is selected behind the cluster field and few z∼ 9 candidates have been selected in the two previous data sets from this legacy survey, suggesting a strong evolution in the number density of galaxies between z∼ 8 and 9. Thanks to the use of the lensing cluster, we study the evolution of the star formation rate density produced by galaxies with L > 0.03 {L}\\star , and confirm the strong decrease observed between z∼ 8 and 9.

  20. Properties of submillimeter galaxies in the CANDELS-S goods-south field

    SciTech Connect

    Wiklind, Tommy; Dahlen, Tomas; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Dickinson, Mark E.; Guo, Yicheng; Barro, Guillermo; Fontana, Adriano; Castellano, Marco; Davé, Romeel; Yan, Haojing; Acquaviva, Viviana; Ashby, Matthew L. N.; Caputi, Karina I.; Dekel, Avishai; Donley, Jennifer L.; and others

    2014-04-20

    We derive physical properties of 10 submillimeter galaxies located in the CANDELS coverage of the GOODS-S field. The galaxies were first identified as submillimeter sources with the LABOCA bolometer and subsequently targeted for 870 μm continuum observation with ALMA. The high angular resolution of the ALMA imaging allows secure counterparts to be identified in the CANDELS multiband data set. The CANDELS data provide deep photometric data from UV through near-infrared wavelengths. Using synthetic spectral energy distributions, we derive photometric redshifts, stellar masses, extinction, ages, and the star formation history. The redshift range is z = 1.65-4.76, with two of the galaxies located at z > 4. Two submillimeter galaxy (SMG) counterparts have stellar masses 2-3 orders of magnitude lower than the rest. The remaining SMG counterparts have stellar masses around 1 × 10{sup 11} M {sub ☉}. The stellar population in the SMGs is typically older than the expected duration of the submillimeter phase, suggesting that the star formation history of SMGs is more complex than a single burst. Non-parametric morphology indices suggest that the SMG counterparts are among the most asymmetric systems compared with galaxies of the same stellar mass and redshift. The Hubble Space Telescope images show that three of the SMGs are associated with ongoing mergers. The remaining counterparts are isolated. Estimating the dust and molecular gas mass from the submillimeter fluxes, and comparing with our stellar masses shows that the gas mass fraction of SMGs is ∼28% and that the final stellar mass is likely to be ∼(1-2) × 10{sup 11} M {sub ☉}.

  1. A 360-degree floating 3D display based on light field regeneration.

    PubMed

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-01

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method. PMID:23669981

  2. Morphological evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Heap, Sara R.; Malumuth, Eliot M.; Hill, Robert S.; Smith, Eric P.

    1997-05-01

    Recent studies of the Hubble Deep Field (Abraham et al. 1996) [1] and Medium Deep Survey (Driver, Windhorst & Griffiths 1995) [6] find that the frequency of irregular/peculiar/merger systems rises with increasing redshift. However, this finding must be carefully interpreted in light of UV images of low-redshift galaxies obtained by the Ultraviolet Imaging Telescope (Stecher et al. 1992) [9]. These UV images imply that K-correction effects may be at least partially responsible for the apparent increase in Irr galaxies with redshift. To assess the degree to which there is an overabundance of Irregular galaxies (relative to the present epoch), we must understand the degree to which the K-correction biases morphological studies. We demonstrate the importance of the morphological K-correction to the classification schemes used in the HDF. We find that high-redshift spiral galaxies are misclassified as Irr galaxies, while Elliptical/S0 galaxies, should not be affected substantially. We have been granted 40 orbits in Cycle 7 with STIS to place these conclusions on a statistical basis.

  3. The gaseous extent of galaxies and the origin of Lyman-alpha absorption systems: A survey of galaxies in the fields of Hubble Space Telescope spectroscopic target QSOs

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.; Bowen, David B.; Tytler, David; Webb, John K.

    1995-01-01

    We present initial results of an imaging and spectroscopic survey of faint galaxies in fields of Hubble Space Telescope (HST) spectroscopic target QSOs. The primary objectives of the survey are (1) to determine the incidence, extent, and covering factor of extended gaseous envelopes of luminous galaxies and (2) to determine the fraction of Ly(alpha) absorption systems that arise in luminous galaxies. The goal of the survey is to identify in each field under construction all objects with apparent r-band magnitudes satisfying r less than 21.5 within angular distances to the QSOs satisfying 0 less thyan 1.3'. The current observations cover six fields and are 37% complete to the goal ofthe survey. These observations identify 46 galaxies at redshifts spanning z = 0.0700-0.5526 and at impact parameters to the QSOs spanning rho = 16.6-346.9/h kpc. Of these galaxies, 11 are coincident in redshift with absorption systems and 21 do not give rise to absorption to within sensitive upper limits. Nine galaxies are coincident in redshift with 'Ly(alpha)-forest' absorption systems that show Ly(alpha) absorption but no corresponding metal-line absorption, and two galaxies are coincident in redshift with C IV absorption systems that show both Ly(alpha) and C IV absorption. Various lines of evidence demonstrate that the coincident galaxies are responsible for the corresponding absorption systems and are not present as the result of chance coincidence or merely spatial correlated with the absorption systems. The most important evidence is that there exists a statistical anti-correlation between Ly(aplha) rest-frame equivalent width and the impact parameter. Each of five galaxies with rho = 70-160/h kpc give rise to Ly(alpha) absorption, and just one of nine galaxies with rho greater than 70-160/h kpc gives rise to Ly(alpha) absorption. At least eight of 23 Ly(alpha) absorption systyems arise in galaxies. On the basis of these results we reach the following conclusions: (1) At z less

  4. The stellar-to-halo mass relation of GAMA galaxies from 100 square degrees of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    van Uitert, Edo; Cacciato, Marcello; Hoekstra, Henk; Brouwer, Margot; Sifón, Cristóbal; Viola, Massimo; Baldry, Ivan; Bland-Hawthorn, Joss; Brough, Sarah; Brown, M. J. I.; Choi, Ami; Driver, Simon P.; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Joachimi, Benjamin; Kuijken, Konrad; Liske, Jochen; Loveday, Jon; McFarland, John; Miller, Lance; Nakajima, Reiko; Peacock, John; Radovich, Mario; Robotham, A. S. G.; Schneider, Peter; Sikkema, Gert; Verdoes Kleijn, Gijs

    2016-04-01

    We study the stellar-to-halo mass relation of central galaxies in the range 9.7 < log10(M★/h-2M⊙) < 11.7 and z < 0.4, obtained from a combined analysis of the Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. We use ˜100 deg2 of KiDS data to study the lensing signal around galaxies for which spectroscopic redshifts and stellar masses were determined by GAMA. We show that lensing alone results in poor constraints on the stellar-to-halo mass relation due to a degeneracy between the satellite fraction and the halo mass, which is lifted when we simultaneously fit the stellar mass function. At M★ > 5 × 1010h-2M⊙, the stellar mass increases with halo mass as ˜ {}M_h^{0.25}. The ratio of dark matter to stellar mass has a minimum at a halo mass of 8 × 1011h-1M⊙ with a value of M_h/M_*=56_{-10}^{+16} [h]. We also use the GAMA group catalogue to select centrals and satellites in groups with five or more members, which trace regions in space where the local matter density is higher than average, and determine for the first time the stellar-to-halo mass relation in these denser environments. We find no significant differences compared to the relation from the full sample, which suggests that the stellar-to-halo mass relation does not vary strongly with local density. Furthermore, we find that the stellar-to-halo mass relation of central galaxies can also be obtained by modelling the lensing signal and stellar mass function of satellite galaxies only, which shows that the assumptions to model the satellite contribution in the halo model do not significantly bias the stellar-to-halo mass relation. Finally, we show that the combination of weak lensing with the stellar mass function can be used to test the purity of group catalogues.

  5. X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region

    NASA Technical Reports Server (NTRS)

    Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external

  6. Discovery of a z ˜ 6 Galaxy in the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Bunker, A. J.; Stanway, E. R.; Ellis, R. S.; McMahon, R. G.; McCarthy, P. J.

    2003-05-01

    We report the discovery of a luminous z=5.78 star-forming galaxy in the Chandra Deep Field South. This galaxy was selected as an ``i-drop'' from the GOODS public survey imaging with HST/ACS (object 3 in Stanway, Bunker & McMahon 2003, astro-ph/0302212). The large colour of (i'-z')AB=1.6 indicated a spectral break consistent with the Lyman-α forest absorption short-ward of Lyman-α at z≈ 6. The galaxy is very compact (marginally resolved with ACS with a half-light radius of 0.08 arcsec, so rhl<0.5 h-170 kpc). We have obtained a deep (5.5-hour) spectrum of this z'AB=24.7 galaxy with the DEIMOS optical spectrograph on Keck, and here we report the discovery of a single emission line centered on (8245+/- 1) Å detected at 20 σ with a flux of f≈ 2x 10-17 ergs cm-2 s-1. The line is clearly resolved with detectable structure at our resolution of better than 55 km s-1, and the only plausible interpretation consistent with the ACS photometry is that we are seeing Lyman-α emission from a z=5.78 galaxy. This is the highest redshift galaxy to be discovered and studied using HST data. The velocity width (Δ vFWHM=260 km s-1) and rest-frame equivalent width (Wrest Lyα =20 Å ) indicate that this line is most probably powered by star formation, as an AGN would typically have larger values. The starburst interpretation is supported by our non-detection of the high-ionization Nriptsize V λ 1240 Å emission line, and the absence of this source from the deep Chandra X-ray images. The star formation rate inferred from the rest-frame UV continuum is 33.8 h70-2 Msun yr-1 (Ω M=0.3, Ω Λ =0.7). This is the most luminous starburst known at z>5. Our spectroscopic redshift for this object confirms the validity of the i'-drop selection technique of Stanway, Bunker & McMahon (2003) to select star-forming galaxies at z≈ 6.

  7. Commentary: collaboration in dual degree programs contributes something new to both fields.

    PubMed

    Boumil, Marcia M

    2014-05-01

    Dual degree programs in public health and law have blossomed in the United States and beyond. They are traditionally promoted on the premise that public health efforts often require legal authority to legitimize and implement their goals and objectives, and that participation of lawyers safeguards respect for individual rights, privacy, and autonomy against governmental intrusion in furtherance of public health objectives. Thus, lawyers who understand public health are far more valuable in promoting population health than traditional constitutional and administrative law practitioners without such understanding. On the public health side, epidemiologists and other practitioners trained in the law ensure that reliable data inform public policy. In the classroom, we have found that dual degree students enrich the educational experience in both fields, broadening understanding and creating conversations that transcend law or public health alone. PMID:24552767

  8. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    SciTech Connect

    Lora, V.; Magaña, Juan E-mail: juan.magana@uv.cl

    2014-09-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m{sub φ}<8) ×10{sup -22} eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m{sub φ}≈2×10{sup -21} eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero.

  9. Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields

    NASA Astrophysics Data System (ADS)

    Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.

    2016-06-01

    New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.

  10. Interaction of Radio Jets with Magnetic Fields in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    1997-10-01

    High Faraday rotation measures in the centers of cooling-flow clusters indicate the presence of strong magnetic fields. We examine the effects of these strong fields on the propagation of radio jets emerging from the central cD galaxies of these clusters, and the deformation of the magnetic fields by the fast-propagating jets. We argue that active regions will develop around these radio jets as a result of the violent response of the strong ambient magnetic fields. The magnetic tension can act back on the jets by influencing the development of Rayleigh-Taylor and Kelvin-Helmholtz instability modes, and by exerting a nonaxisymmetric force on the jets. If the jet propagation direction is not along the magnetic field lines, then the jet will be sharply bent by the magnetic tension. Future MHD numerical simulations that will study these effects more quantitatively should be compared directly with specific clusters. If, indeed, some properties of jets expanding from cD galaxies in cooling-flow clusters will turn out to result from interaction with strong magnetic fields in the intracluster medium at the centers of these clusters, then this will strengthen the cooling-flow model, since it will support the presence of inflow.

  11. Star Formation in Distant Red Galaxies: Spitzer Observations in the Hubble Deep Field-South

    NASA Astrophysics Data System (ADS)

    Webb, Tracy M. A.; van Dokkum, Pieter; Egami, Eiichi; Fazio, Giovanni; Franx, Marijn; Gawiser, Eric; Herrera, David; Huang, Jiasheng; Labbé, Ivo; Lira, Paulina; Marchesini, Danilo; Maza, José; Quadri, Ryan; Rudnick, Gregory; van der Werf, Paul

    2006-01-01

    We present Spitzer 24 μm imaging of 1.5galaxies (DRGs) in the 10'×10' extended Hubble Deep Field-South of the Multiwavelength Survey by Yale-Chile. We detect 65% of the DRGs with KAB<23.2 mag at S24μm>~40 μJy and conclude that the bulk of the DRG population is dusty active galaxies. A mid-infrared (MIR) color analysis with IRAC data suggests that the MIR fluxes are not dominated by buried AGNs, and we interpret the high detection rate as evidence for a high average star formation rate of =130+/-30 Msolar yr-1. From this, we infer that DRGs are important contributors to the cosmic star formation rate density at z~2, at a level of ~0.02 Msolar yr-1 Mpc-3 to our completeness limit of KAB=22.9 mag.

  12. Sharp edges to neutral hydrogen disks in galaxies and the extragalactic radiation field

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    It is shown that the very sharp truncation of the neutral hydrogen distribution seen in NGC 3198 (and probably M33) is well modeled as the result of ionization of the atomic gas by the extragalactic radiation field. Below a critical column density of about a few times 10 exp 19/sq cm the gas is dominantly ionized and undetectable in the 21-cm line. It is inferred from the photoionization models that the total disk gas distribution in NGC 3198 is actually fairly axisymmetric. The critical column density for ionization is not a strong function of galaxy mass or mass distribution; thus, all galaxies should show a cutoff at approximately the same column density. Specific models of 3198 suggest that the extragalactic ionizing photon flux is 5000-10,000 photons/sq cm s.

  13. AGN Search From Multicolor CCD Photometric Observations of Faint ROSAT X-ray Sources in a One Square Degree Field

    NASA Astrophysics Data System (ADS)

    Xue, Suijian; Zhou, Xu; Zhang, H.

    We present the optical identifications of 75 X-ray sources in a 1 sq. deg. overlapping region, T329 of BATC sky survey with a medium deep ROSAT survey (Molthagen et al. 1997), based on multi-color CCD imaging observations made for the T329 utilizing BAO 60/90 cm Schmidt telescope with 15 intermediate-band filters covering the wavelength range 3360-9745 AA. These X-ray sources are relatively faint (CR << 0.2 s-1) and thus mostly are not included in the RBS catalogue and also remained as unidentified sources in a previous identification program carried out by the Hamburg Quasar Survey. Within their position-error circles, All of the X-ray sources were observed to have one or more spatially associated optical counterparts down to the magnitude mv=21.5. The majority of these optical objects could be classified according to their SED information constructed from the 15 color photometric catalogue of T329. This finally leads to 43 (~57%) of 75 X-ray sources are identified with AGNs, 19 (~25%) and 8 (~11%) are identified with various types of galaxies and late stars respectively. About one third sources in the AGN list (including 4 known AGNs) have follow up spectroscopic observations, confirming their QSO/Seyfert or NELG nature. Further more spectroscopic observations are partially ongoing with the Multiple Object Fiber Spectrograph (MOFS) of SAO 6m telescope, which will help to form a complete, X-ray flux limited AGN sample in a 1 square degree field.

  14. Mapping the properties of blue compact dwarf galaxies: integral field spectroscopy with PMAS

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Zurita, C.; Kehrig, C.; Roth, M.; Weilbacher, P.

    2010-09-01

    Context. Blue compact dwarf (BCD) galaxies are low-luminosity, low-metal content dwarf systems undergoing violent bursts of star formation. They present a unique opportunity to probe galaxy formation and evolution and to investigate the process of star formation in a relatively simple scenario. Spectrophotometric studies of BCDs are essential to disentangle and characterize their stellar populations. Aims: We perform integral field spectroscopy of a sample of BCDs with the aim of analyzing their morphology, the spatial distribution of some of their physical properties (excitation, extinction, and electron density) and their relationship with the distribution and evolutionary state of the stellar populations. Methods: Integral field spectroscopy observations of the sample galaxies were carried out with the Potsdam Multi-Aperture Spectrophotometer (PMAS) at the 3.5 m telescope at Calar Alto Observatory. An area 16 arcsec × 16 arcsec in size was mapped with a spatial sampling of 1 arcsec × 1 arcsec. We obtained data in the 3590-6996 Å spectral range, with a linear dispersion of 3.2 Å per pixel. From these data we built two-dimensional maps of the flux of the most prominent emission lines, of two continuum bands, of the most relevant line ratios, and of the gas velocity field. Integrated spectra of the most prominent star-forming regions and of whole objects within the FOV were used to derive their physical parameters and the gas metal abundances. Results: Six galaxies display the same morphology both in emission line and in continuum maps; only in two objects, Mrk 32 and Tololo 1434+032, the distributions of the ionized gas and of the stars differ considerably. In general the different excitation maps for a same object display the same pattern and trace the star-forming regions, as expected for objects ionized by hot stars; only the outer regions of Mrk 32, I Zw 123 and I Zw 159 display higher [S II]/Hα values, suggestive of shocks. Six galaxies display an

  15. GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY

    SciTech Connect

    Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Stalder, B.; Ashby, M. L. N.; Bayliss, M.; De Haan, T.; Aird, K. A.; Allen, S. W.; Applegate, D. E.; Bautz, M.; Benson, B. A.; Crawford, T. M.; Crites, A. T.; Bocquet, S.; Chiu, I.; Desai, S.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; and others

    2015-02-01

    We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg{sup 2} of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg{sup 2} SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ∼ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M {sub 500c}(ρ{sub crit}) ∼3.5×10{sup 14} M{sub ⊙} h{sub 70}{sup −1}, the median redshift is z {sub med} = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.

  16. Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the 2500-square-degree SPT-SZ survey

    SciTech Connect

    Bleem, L.E.; et al.

    2015-01-29

    We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg(2) of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg(2) SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates, the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts, we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M (500c)(ρ(crit)) $\\sim 3.5\\times 10^{14}\\,M_\\odot \\,h_{70}^{-1}$, the median redshift is z (med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.

  17. Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the 2500-Square-Degree SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Bleem, L. E.; Stalder, B.; de Haan, T.; Aird, K. A.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-02-01

    We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg2 of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg2 SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M 500c(ρcrit) ˜ 3.5× 1014 M_⊙ h70-1, the median redshift is z med = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.

  18. Ensembles of low degree archeomagnetic field models for the past three millennia

    NASA Astrophysics Data System (ADS)

    Licht, Alexis; Hulot, Gauthier; Gallet, Yves; Thébault, Erwan

    2013-11-01

    We introduce ensembles of time-varying archeomagnetic field models, consisting of a reference model, a mean model and a thousand individual models. We present a set of three such ensembles, built from archeomagnetic, volcanic and sedimentary data sets, that cover the past three millennia. These ensembles can be used to describe the field at any location from the core surface to the magnetosphere, and assess the way uncertainties due to the limited distribution and quality of the data affect any of its component or parameter, such as individual Gauss coefficients. They provide alternative - and, we argue, more complete - descriptions of the archeomagnetic field to those provided by previously published archeomagnetic field models, being better suited to existing and emerging needs, such as those of geomagnetic data assimilation. We present the data sets we rely on - essentially the same as those used by other recent archeomagnetic field models - and describe how errors affecting the data, and errors due to non-modelled small spatial scales of the field, are taken into account. We next explain our modeling strategy and motivation for building low degree spherical harmonic degree ensembles of models. We carry on a number of end-to-end simulations to both illustrate the usefulness of such ensembles and point at the type of errors one should expect. Practical illustrations of what can be done with these three ensembles of models, with examples of geomagnetic inferences, are also described. Northern high-latitude flux patches, for instance, appear to be the most robust features of all. These patches tend to fluctuate, but clearly have some favored locations, resulting in the same clear signature with three tongues (over Northern America, Europe and Asia) in the time-averaged field at the core-mantle boundary, similar to what had been found in earlier models. Inferences about the field behavior in the Southern hemisphere are more difficult to draw. Still, some suggestions

  19. Magnetic fields in halos of spiral galaxies and the interstellar disk-halo connection

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf-Jürgen

    2005-09-01

    Observations of magnetic fields in halos of edge-on disk galaxies are discussed in relation to the different gaseous phases of the interstellar medium. For this comparison the presence of diffuse ionized gas (DIG) is introduced as a valuable tracer for gaseous halos which are originating from the star-formation driven disk-halo connection of the interstellar medium. The distribution of extraplanar DIG correlates on local and global scales with cosmic rays and magnetic fields as inferred from observations of the non-thermal radio continuum radiation and its polarization. From the polarization a large scale and well ordered magnetic field in these gaseous halos can be deduced. These observations indicate the presence of physical processes which generate and maintain magnetic fields on galactic scales. The importance of differential rotation of the gaseous halos for such processes is briefly discussed and the possible influence of magnetic fields on the dynamics of dust particles is addressed.

  20. Average Frobenius distribution for the degree two primes of a number field

    NASA Astrophysics Data System (ADS)

    James, Kevin; Smith, Ethan

    2013-05-01

    Let $K$ be a number field and $r$ an integer. Given an elliptic curve $E$, defined over $K$, we consider the problem of counting the number of degree two prime ideals of $K$ with trace of Frobenius equal to $r$. Under certain restrictions on $K$, we show that "on average" the number of such prime ideals with norm less than or equal to $x$ satisfies an asymptotic identity that is in accordance with standard heuristics. This work is related to the classical Lang-Trotter conjecture and extends the work of several authors.

  1. Changes in the earth's rotation and low-degree gravitational field induced by earthquakes

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Gross, Richard S.

    1987-01-01

    Analytical formulas based on the normal-mode theory are used together with a spherically symmetric earth model and the centroid-moment tensor solutions for earthquake sources to compute the earthquake-induced changes in the earth's rotation and low-degree harmonics of the gravitational field for the period 1977-1985. Spectral and statistical analyses are conducted on these changes. It is found that the earthquake-induced changes are two orders of magnitude smaller than those observed; most of these changes show strong evidence of nonrandomness either in their polarity or in their directions.

  2. The Extent of Magnetic Fields around Galaxies out to z ~ 1

    NASA Astrophysics Data System (ADS)

    Bernet, M. L.; Miniati, F.; Lilly, S. J.

    2013-08-01

    Radio quasar sightlines with strong Mg II absorption lines display statistically enhanced Faraday rotation measures (RMs), indicating the presence of additional magneto-active plasma with respect to sightlines free of such absorption. In this Letter, we use multi-color optical imaging to identify the galaxies likely hosting the magneto-active plasma, and to constrain the location of the latter with respect to the putative parent halo. We find that all of the sightlines with high |RM| pass within 50 kpc of a galaxy and that the |RM| distribution for low impact parameters, D < 50 kpc, is significantly different than for larger impact parameters. In addition, we find a decrease in the ratio of the polarization at 21 cm and 1.5 cm, p 21/p 1.5, toward lower D. These two effects are most likely related, strengthen the association of excess |RM| with intervening galaxies, and suggest that intervening galaxies operate as inhomogeneous Faraday screens. These results are difficult to reconcile with only a disk model for the magnetic field, but are consistent with highly magnetized winds associated with Mg II systems. We infer strong magnetic fields of a few tens of μG, consistent with the values required by the lack of evolution of the FIR-radio correlation at high redshifts. Finally, these findings lend support to the idea that the small-scale helicity bottleneck of α-Ω galactic dynamos can be significantly alleviated via galactic winds. Based on observations made with the ESO Telescopes at the La Silla Observatories under program 082.A-0917 and 085.A-0417.

  3. Searching for Galaxy Overdensities in the Fields of 10 z>6 Quasars

    NASA Astrophysics Data System (ADS)

    Bradli, Jaclyn C.; Walter, Fabian; Venemans, Bram; Decarli, Roberto; Zschaechner, Laura

    2016-01-01

    The highest-redshift quasars (z>6) host supermassive black holes (MBH > 1e9 M⊙) and presumably reside in massive host galaxies located in some of the largest galaxy overdensities at early cosmic epochs. However, optical searches for such overdensities have so far been inconclusive. One caveat is that the sources could be too faint in optical wavelengths, so while overdensities may be present, they must be detected at a longer wavelength regime. The Atacama Large Millimeter Array (ALMA) now provides the sensitivity and resolution required to detect and resolve faint sources at very high redshift (z>5-6). Instead of blind surveys, the data we present are observations of known bright quasars from the ALMA archive. Examining the sidelines of these quasars and comparing them with the number count of sources in blind surveys enables us to learn whether quasars are present in galaxy overdensities or if their environments are indistinguishable from a blank field. We use ALMA cycle 0, 1 and 2 data to map the vicinity of ten quasars at z>6 in the continuum at ~1.2mm, tracing the far infrared dust emission, to perform an independent search for companions around the quasars. We also examine the presence of the [CII] line in these fields. We compare the number density of such sources to 'blank field' studies to see if there is evidence for an overdensity of sources in the immediate vicinity of the quasars. Either outcome ('overdensity' or 'no overdensity') would have important implications for early structure formation. Preliminary results show there is an excess of positive flux in these fields, and there is a total of a few (<10) +5σ detections in the ten fields, but further work to estimate the number of spurious detections is necessary.

  4. Star Formation in the Galaxy and the Fluctuating UV Radiation Field

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Parravano, Antonio; McKee, Christopher H.; Fonda, Mark (Technical Monitor)

    2001-01-01

    We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV radiation field, and the effect of this field on the star-forming interstellar medium (ISM). There are substantial fluctuations of the UV radiation field in space (scales of 100's of parsecs) and time (time-scales of order 100 million years) at the solar circle. The Far Ultraviolet (FUV) (6 eV< hv < 13.6 eV) field and the pressure determines whether the thermal balance of the neutral gas results in cold clouds or warm (T - 10(exp 4) neutral medium. We show how to calculate the average fractions of the gas in the cold and warm phases when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties and on the FUV sources is a basic step in building a model of the large scale behavior of the ISM and the mutual relation between the ISM and the star formation rate. Application is made to observations of spiral galaxies which correlate the star formation rate per unit area with the surface density of the gas. We acknowledge support from the NASA Astrophysical Theory program.

  5. Precision Velocity Fields in Spiral Galaxies. I. Noncircular Motions and rms Noise in Disks

    NASA Astrophysics Data System (ADS)

    Beauvais, Charles; Bothun, G.

    1999-11-01

    Investigation of the symmetry of the major- and minor-axis rotation curves reveals strong evidence of nonconcentric gas orbits with the maximum center shift of ~300 pc. Comparisons between kinematic and photometric structure (e.g., position angles, inclinations, centers) show considerable noise on small scales. Although large-scale averages are in agreement, this noise is a matter of some concern in the application of the Tully-Fisher method to disk galaxies. Moreover, cases of significant misalignment in position angle between the inner and outer disks are seen in two of the sample galaxies and may indicate the transition between luminous and dark-matter-dominated regions (i.e., where the maximum-disk hypothesis begins to fail). The kinematic disk models are used to find the residual velocity fields, and typical residuals are found to be 10-15 km s-1 over regions 0.5-1.5 kpc in diameter. Correlations are shown to exist between the residual velocity fields and both the Hα intensity and the velocity dispersion images. This suggests that kinematic feedback to the gas from star formation is an important source of noncircular motion. However, the relative quiescence of the large-scale velocity field indicates that the effect does not cause a significant deviation from circular symmetry, kinematically indicating that star formation is not a hidden parameter in the Tully-Fisher relation. Finally, the residual velocity fields are examined for signs of noncircular orbits by looking for azimuthal angular harmonics that would be present if disk galaxies are embedded in a triaxial dark matter potential. For our sample we find the ellipticity of the gas orbits to be <~0.08, which implies the potential is relatively round. This is consistent with disks being maximal.

  6. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Loomis, B. D.; Chinn, D. S.; Caprette, D.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  7. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  8. EXOPLANETS FROM THE ARCTIC: THE FIRST WIDE-FIELD SURVEY AT 80 Degree-Sign N

    SciTech Connect

    Law, Nicholas M.; Sivanandam, Suresh; Carlberg, Raymond; Salbi, Pegah; Ngan, Wai-Hin Wayne; Kerzendorf, Wolfgang; Ahmadi, Aida; Steinbring, Eric; Murowinski, Richard

    2013-03-15

    Located within 10 Degree-Sign of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 Degree-Sign N, near Eureka, Nunavut, for a 152 hr observing campaign in 2012 February. The 16 megapixel camera systems were based on commercial f/1.2 lenses with 70 mm and 42 mm apertures, and they continuously imaged 504 and 1295 deg{sup 2}, respectively. In total, the cameras took over 44,000 images and produced better than 1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1%-2% in each 10 s exposure. Binning the short exposures into 10 minute chunks provided a photometric stability of 2-3 mmag, sufficient for the detection of transiting exoplanets around the bright stars targeted by our survey. We estimate that the cameras, when operated over the full Arctic winter, will be capable of discovering several transiting exoplanets around bright (m{sub V} < 9.5) stars.

  9. Simulations of deep galaxy fields. 1: Monte Carlo simulations of optical and near-infrared counts

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Lonsdale, Carol J.; Mazzei, Paola; De Zotti, Gianfranco

    1994-01-01

    Monte Carlo simulations of three-dimensional galaxy distributions are performed, following the 1988 prescription of Chokshi & Wright, to study the photometric properties of evolving galaxy populations in the optical and near-infrared bands to high redshifts. In this paper, the first of a series, we present our baseline model in which galaxy numbers are conserved, and in which no explicit 'starburst' population is included. We use the model in an attempt to simultaneously fit published blue and near-infrared photometric and spectroscopic observations of deep fields. We find that our baseline models, with a formation redshift, z(sub f), of 1000, and H(sub 0) = 50, are able to reproduce the blue counts to b(sub j) = 22, independent of the value of Omega(sub 0), and also to provide a satisfactory fit to the observed blue-band redshift distributions, but for no value of Omega(sub 0) do we achieve an acceptable fit to the fainter blue counts. In the K band, we fit the number counts to the limit of the present-day surveys only for an Omega(sub 0) = 0 cosmology. We investigate the effect on the model fits of varying the cosmological parameters H(sub 0), the formation red-shift z(sub f), and the local luminosity function. Changing H(sub 0) does not improve the fits to the observations. However, reducing the epoch of a galaxy formation used in our simulations has a substantial effect. In particular, a model with z(sub f) approximately equal to 5 in a low Omega(sub 0) universe improves the fit to the faintest photometric blue data without any need to invoke a new population of galaxies, substantial merging, or a significant starburst galaxy population. For an Omega(sub 0) = 1 universe, however, reducing z(sub f) is less successful at fitting the blue-band counts and has little effect at all at K. Varying the parameters of the local luminosity function can also have a significant effect. In particular the steep low end slope of the local luminosity function of Franceschini et

  10. CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino; Raccanelli, Alvise; Piattella, Oliver F.; Pietrobon, Davide; Giannantonio, Tommaso E-mail: alvise.raccanelli@port.ac.uk E-mail: davide.pietrobon@jpl.nasa.gov E-mail: sabino.matarrese@pd.infn.it

    2011-03-01

    We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for a range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.

  11. An integral field spectroscopic survey for high redshift damped Lyman-α galaxies

    NASA Astrophysics Data System (ADS)

    Christensen, L.; Wisotzki, L.; Roth, M. M.; Sánchez, S. F.; Kelz, A.; Jahnke, K.

    2007-06-01

    Aims:We search for galaxy counterparts to damped Lyman-α absorbers (DLAs) at z > 2 towards nine quasars, which have 14 DLAs and 8 sub-DLAs in their spectra. Methods: We use integral field spectroscopy to search for Lyα emission line objects at the redshifts of the absorption systems. Results: Besides recovering two previously confirmed objects, we find six statistically significant candidate Lyα emission line objects. The candidates are identified as having wavelengths close to the DLA line where the background quasar emission is absorbed. In comparison with the six currently known Lyα emitting DLA galaxies the candidates have similar line fluxes and line widths, while velocity offsets between the emission lines and systemic DLA redshifts are larger. The impact parameters are larger than 10 kpc, and lower column density systems are found at larger impact parameters. Conclusions: Assuming that a single gas cloud extends from the QSO line of sight to the location of the candidate emission line, we find that the average candidate DLA galaxy is surrounded by neutral gas with an exponential scale length of ~5 kpc. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated by the Max-Planck Institut für Astronomie and the Instituto Astrofisica de Andalucia (CSIC). Full Fig. [see full text] is only available in electronic form at http://www.aanda.org

  12. The extragalactic radiation field and sharp edges to HI disks in galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip Richard

    1990-01-01

    Observations of neutral hydrogen (HI) are widely used as a probe of the interstellar medium in galaxies and of galactic kinematics and dynamics. The 21-cm line can be used to determine galactic rotation curves far beyond the optical disk, and is one of the prime sources of evidence for the existence of dark haloes in spiral galaxies. However, a recent attempt to measure the 21-cm emission from NGC 3198 to very low column densities (N sub H approx. equals 5 times 10 to the 18th power) found that the HI disk is very sharply truncated at a column density of a few times 10 to the 19th power (Sancisi 1989, private communication). This discovery reinforces the earlier suggestion (Briggs et al. 1980) that extended, low-column density envelopes of neutral hydrogen are not common around galaxies. Here the author suggests that the sharp edge seen in the HI disk in NGC 3198 is consistent with a model in which a self-gravitating neutral HI disk is photoionized by the extragalactic radiation field. The possibility that the extragalactic background would produce sharp edges to HI disks was first suggested by Silk and Sunyaev (1976).

  13. Discovery of intermediate redshift galaxy clusters in the ROSAT NEP field. [North Ecliptic Pole

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Huchra, J.; Mackenty, J.; Mclean, B.; Geller, M.; Hasinger, G.; Marzke, R.; Schmidt, M.; Truemper, J.

    1992-01-01

    We report preliminary results from a program to identify optical counterparts of ROSAT sources in the North Ecliptic Pole (NEP) region. The most striking X-ray feature reported by Hasinger et al. (1991) is an extended low surface brightness region of X-ray emission. Within the two X-ray contours of highest count rate we find a cluster of galaxies at a redshift of 0.09 and an early-type galaxy at a redshift of 0.03. X-ray emission from these objects may provide an explanation for the observed X-ray morphology. We also find evidence that other X-ray sources in this region are coincident with clusters or groups of galaxies at redshifts between 0.08 and 0.09. The presence of at least five X-ray detected clusters or groups in this narrow redshift band within a 1.5 deg radius field seems to indicate the existence of a moderate redshift supercluster. The existence of these clusters will have major implications for the study of large-scale structure through X-ray surveys such as ROSAT.

  14. Clear and measurable signature of modified gravity in the galaxy velocity field.

    PubMed

    Hellwing, Wojciech A; Barreira, Alexandre; Frenk, Carlos S; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v_{12} are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ_{12}(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity. PMID:24949751

  15. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Grogin, Norman; Hathi, Nimish; Ryan, Russell; Straughn, Amber; Windhorst, Rogier A. Pirzkal, Norbert; Xu Chun; Koekemoer, Anton; Panagia, Nino; Dickinson, Mark; Ferreras, Ignacio; Gronwall, Caryl; Kuemmel, Martin; Walsh, Jeremy; Meurer, Gerhardt; Pasquali, Anna; Yan, H.-J.

    2009-05-20

    We present the faintest spectroscopically confirmed sample of z {approx} 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - i > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Ly{alpha} emission properties of our sample. We find that Ly{alpha} emission is detected in {approx}1/4 of the sample, and that the liberal V-dropout color selection includes {approx}55% of previously published line-selected Ly{alpha} sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended ({approx}1'') Ly{alpha} emission is not a generic property of these LBGs, but that a modest extension of the Ly{alpha} photosphere (compared to the starlight) may be present in those galaxies with prominent Ly{alpha} emission.

  16. The optical-infrared colour distribution of a statistically complete sample of faint field spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Menanteau, F.; Ellis, R. S.; Abraham, R. G.; Barger, A. J.; Cowie, L. L.

    1999-10-01

    In hierarchical models, where spheroidal galaxies are primarily produced via a continuous merging of disc galaxies, the number of intrinsically red systems at faint limits will be substantially lower than in `traditional' models where the bulk of star formation was completed at high redshifts. In this paper we analyse the optical-near-infrared colour distribution of a large flux-limited sample of field spheroidal galaxies identified morphologically from archival Hubble Space Telescope data. The I_814-HK' colour distribution for a sample jointly limited at I_814<23mag and HK'<19.5mag is used to constrain their star formation history. We compare visual and automated methods for selecting spheroidals from our deep HST images and, in both cases, detect a significant deficit of intrinsically red spheroidals relative to the predictions of high-redshift monolithic-collapse models. However, the overall space density of spheroidals (irrespective of colour) is not substantially different from that seen locally. Spectral synthesis modelling of our results suggests that high-redshift spheroidals are dominated by evolved stellar populations polluted by some amount of subsidiary star formation. Despite its effect on the optical-infrared colour, this star formation probably makes only a modest contribution to the overall stellar mass. We briefly discuss the implications of our results in the context of earlier predictions based on models where spheroidals assemble hierarchically.

  17. A DEEP, WIDE-FIELD H{alpha} SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    SciTech Connect

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-04-01

    We present the results of a wide-field H{alpha} imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured H{alpha} fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M{sub Sun} yr{sup -1}. This paper describes the observations, data processing, and source identification procedures, and presents an H{alpha} and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted H{alpha} emission in more distant clusters.

  18. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    SciTech Connect

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.

    2013-11-20

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.

  19. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the cosmos field

    SciTech Connect

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.; Kobayashi, M. A. R.; Shioya, Y.; Capak, P.; Ilbert, O.; Koekemoer, A. M.; Salvato, M.; Scoville, N. Z.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M {sub star} > 10{sup 9.5} M {sub ☉} decreases with time from ∼0.35 at 0.8 < z < 1.0 to ∼0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ∼ 0.9 to z ∼ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.

  20. DWARF IRREGULAR GALAXY LEO A: SUPRIME-CAM WIDE-FIELD STELLAR PHOTOMETRY

    SciTech Connect

    Stonkutė, Rima; Narbutis, Donatas; Vansevičius, Vladas; Arimoto, Nobuo; Hasegawa, Takashi; Tamura, Naoyuki

    2014-10-01

    We have surveyed a complete extent of Leo A—an apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The B, V, and I passband CCD images (typical seeing ∼0.''8) were obtained with the Subaru Telescope equipped with the Suprime-Cam mosaic camera. The wide-field (20' × 24') photometry catalog of 38,856 objects (V ∼ 16-26 mag) is presented. This survey is also intended to serve as ''a finding chart'' for future imaging and spectroscopic observation programs of Leo A.

  1. Frequency and properties of bars in cluster and field galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Desai, V.; Jogee, S.; Aragón-Salamanca, A.; De Lucia, G.; Saglia, R. P.; Halliday, C.; Poggianti, B. M.; Dalcanton, J. J.; Rudnick, G.; Milvang-Jensen, B.; Noll, S.; Simard, L.; Clowe, D. I.; Pelló, R.; White, S. D. M.; Zaritsky, D.

    2009-04-01

    We present a study of large-scale bars in field and cluster environments out to redshifts of ~0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for relations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The properties of bars and disks are determined by ellipse fits to the surface brightness distribution of the galaxies using HST/ACS images in the F814W filter. The bar identification is based on quantitative criteria after highly inclined (> 60°) systems have been excluded. The total optical bar fraction in the redshift range z = 0.4-0.8 (median z = 0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (~31%) than at larger distances (~18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with local studies, we find that disk-dominated galaxies have a higher optical bar fraction (~45%) than bulge-dominated galaxies (~15%). This result is based on Hubble types and effective radii and does not change with redshift. The latter finding implies that bar formation or dissolution is strongly connected to the emergence of the morphological structure of a disk and is typically accompanied by a transition in the Hubble type. The question whether internal or external factors are more important for bar formation and evolution cannot be answered definitely. On the one hand, the bar fraction and properties of cluster and field samples of disk galaxies are quite similar, indicating that

  2. SOURCE IDENTIFICATION IN THE IGR J17448-3232 FIELD: DISCOVERY OF THE SCORPIUS GALAXY CLUSTER

    SciTech Connect

    Barrière, Nicolas M.; Tomsick, John A.; Wik, Daniel R.; Chaty, Sylvain; Rodriguez, Jérome

    2015-01-20

    We use a 43 ks XMM-Newton observation to investigate the nature of sources first distinguished by a follow-up Chandra observation of the field surrounding INTEGRAL source IGR J17448-3232, which includes extended emission and a bright point source previously classified as a blazar. We establish that the extended emission is a heretofore unknown massive galaxy cluster hidden behind the Galactic bulge. The emission-weighted temperature of the cluster within the field of view is 8.8 keV, with parts of the cluster reaching temperatures of up to 12 keV; no cool core is evident. At a redshift of 0.055, the cluster is somewhat under-luminous relative to the X-ray luminosity-temperature relation, which may be attributable to its dynamical state. We present a preliminary analysis of its properties in this paper. We also confirm that the bright point source is a blazar, and we propose that it is either a flat spectrum radio quasar or a low-frequency peaked BL Lac object. We find four other fainter sources in the field, which we study and tentatively identify. Only one, which we propose is a foreground Galactic X-ray binary, is hard enough to contribute to IGR J17448-3232, but it is too faint to be significant. We thus determine that IGR J17448-3232 is in fact the galaxy cluster up to ≈45 keV and the blazar beyond.

  3. Integral field spectroscopy of the circum-nuclear region of the radio Galaxy Pictor A

    NASA Astrophysics Data System (ADS)

    Couto, Guilherme S.; Storchi-Bergmann, Thaisa; Robinson, Andrew; Riffel, Rogemar A.; Kharb, Preeti; Lena, Davide; Schnorr-Müller, Allan

    2016-05-01

    We present optical integral field spectroscopy of the inner 2.5 × 3.4 kpc2 of the broad-line radio galaxy Pictor A, at a spatial resolution of ≈400 pc. Line emission is observed over the whole field of view, being strongest at the nucleus and in an elongated linear feature (ELF) crossing the nucleus from the south-west to the north-east along PA ≈70°. Although the broad double-peaked Hα line and the [O I]6300/Hα and [S II]6717+31/Hα ratios are typical of active galactic nuclei (AGNs), the [N II]6584/Hα ratio (0.15-0.25) is unusually low. We suggest that this is due to the unusually low metallicity of the gas. Centroid velocity maps show mostly blueshifts to the south and redshifts to the north of the nucleus, but the velocity field is not well fitted by a rotation model. Velocity dispersions are low (<100 km s- 1 ) along the ELF, ruling out a jet-cloud interaction as the origin of this structure. The ELF shows both blueshifts and redshifts in channel maps, suggesting that it is close to the plane of the sky. The ELF is evidently photoionized by the AGN, but its kinematics and inferred low metallicity suggest that this structure may have originated in a past merger event with another galaxy. We suggest that the gas acquired in this interaction may be feeding the ELF.

  4. Galaxies in southern bright star fields. I. Near-infrared imaging

    NASA Astrophysics Data System (ADS)

    Baker, Andrew J.; Davies, Richard I.; Lehnert, M. D.; Thatte, N. A.; Vacca, W. D.; Hainaut, O. R.; Jarvis, M. J.; Miley, G. K.; Röttgering, H. J. A.

    2003-08-01

    As a prerequisite for cosmological studies using adaptive optics techniques, we have begun to identify and characterize faint sources in the vicinity of bright stars at high Galactic latitudes. The initial phase of this work has been a program of Ks imaging conducted with SOFI at the ESO NTT. From observations of 42 southern fields evenly divided between the spring and autumn skies, we have identified 391 additional stars and 1589 galaxies lying at separations Delta theta <= 60arcsec from candidate guide stars in the magnitude range 9.0 <= R <= 12.4. When analyzed as a ``discrete deep field'' with 131 arcmin2 area, our dataset gives galaxy number counts that agree with those derived previously over the range 16 <= Ks < 20.5. This consistency indicates that in the aggregate, our fields should be suitable for future statistical studies. We provide our source catalogue as a resource for users of large telescopes in the southern hemisphere. Based on observations obtained at the European Southern Observatory, Chile, for programmes 66.A-0361 and 68.A-0440. The entirety of Table \\ref{t-src} is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/593}

  5. Erratum: Precision Velocity Fields in Spiral Galaxies. I. Noncircular Motions and rms Noise in Disks

    NASA Astrophysics Data System (ADS)

    Beauvais, Charles; Bothun, G.

    2000-05-01

    In the paper ``Precision Velocity Fields in Spiral Galaxies. I. Noncircular Motions and rms Noise in Disks'' by Charles Beauvais and G. Bothun (ApJS, 125, 99) the abstract was incorrect. The corrected abstract is as follows: Imaging Fabry-Perot data have been acquired for a sample of spiral galaxies from which two-dimensional velocity fields have been constructed on a subkiloparsec resolution scale. These velocity fields are then examined for evidence of noncircular motions. Individual spectra are extracted and the resultant line profiles are fitted with Voigt, Gaussian, and Lorentzian functions. Gaussians are shown to provide a better model for simultaneously fitting a large number of line profiles, successfully fitting a higher fraction. The kinematic disk (i.e., tilted ring) modeling procedure is studied in detail and is shown to accurately recover the underlying rotational structure of galactic disks. The process of obtaining rotation curves from full two-dimensional velocity data is examined. Small-scale ``bumps and wiggles'' on the rotation curves are shown to be due to the inclusion of noncircular motions. Use of the rotation curve estimate returned by the modeling procedure rather than deprojection of the velocity field is recommended to avoid their inclusion. Investigation of the symmetry of the major- and minor-axis rotation curves reveal strong evidence of nonconcentric gas orbits with the maximum center shift of ~300 pc. Comparisons between kinematic and photometric structure (e.g., position angles, inclinations, centers) show considerable noise on small scales. Although large-scale averages are in agreement, this noise is a matter of some concern in the application of the Tully-Fisher method to disk galaxies. Moreover, cases of significant misalignment in position angle between the inner and outer disks are seen in two of the sample galaxies and may indicate the transition between luminous and dark-matter-dominated regions (i.e., where the maximum disk

  6. Starburst galaxies in the COSMOS field: clumpy star-formation at redshift 0 < z < 0.5

    NASA Astrophysics Data System (ADS)

    Hinojosa-Goñi, R.; Muñoz-Tuñón, C.; Méndez-Abreu, J.

    2016-08-01

    Context. At high redshift, starburst galaxies present irregular morphologies with 10-20% of their star formation occurring in giant clumps. These clumpy galaxies are considered the progenitors of local disk galaxies. To understand the properties of starbursts at intermediate and low redshift, it is fundamental to track their evolution and the possible link with the systems at higher z. Aims: We present an extensive, systematic, and multiband search and analysis of the starburst galaxies at redshift (0 < z < 0.5) in the COSMOS field, as well as detailed characteristics of their star-forming clumps by using Hubble Space Telescope/Advance Camera for Surveys (HST/ACS) images. Methods: The starburst galaxies are identified using a tailor-made intermediate-band color excess selection, tracing the simultaneous presence of Hα and [OIII] emission lines in the galaxies. Our methodology uses previous information from the zCOSMOS spectral database to calibrate the color excess as a function of the equivalent width of both spectral lines. This technique allows us to identify 220 starburst galaxies at redshift 0 < z < 0.5 using the SUBARU intermediate-band filters. Combining the high spatial resolution images from the HST/ACS with ground-based multi-wavelength photometry, we identify and parametrize the star-forming clumps in every galaxy. Their principal properties, sizes, masses, and star formation rates are provided. Results: The mass distribution of the starburst galaxies is remarkably similar to that of the whole galaxy sample with a peak around M/M⊙ ~ 2 × 108 and only a few galaxies with M/M⊙ > 1010. We classify galaxies into three main types, depending on their HST morphology: single knot (Sknot), single star-forming knot plus diffuse light (Sknot+diffuse), and multiple star-forming knots (Mknots/clumpy) galaxy. We found a fraction of Mknots/clumpy galaxy fclumpy = 0.24 considering out total sample of starburst galaxies up to z ~ 0.5. The individual star

  7. Partial sequencing of recent Portuguese myxoma virus field isolates exhibits a high degree of genetic stability.

    PubMed

    Muller, A; Silva, E; Abrantes, J; Esteves, P J; Ferreira, P G; Carvalheira, J C; Nowotny, N; Thompson, G

    2010-01-01

    To study genetic changes underlying myxoma virus evolution in its new host, the European rabbit (Oryctolagus cuniculus), we sequenced selected genomic regions of nine recent virulent field strains and a live attenuated vaccine strain ("MAV", Germany). DNA was extracted from cell culture passaged myxoma virus. A total of 4863 bp (approximately 3% of the genome) of 10 regions spanning 12 genes of the myxoma viruses was sequenced and compared to the original virulent strain "Lausanne" and its attenuated field derivative strain "6918". The field strains displayed a maximum of three (strains C43, C95) and a minimum of one (strains CD01, CD05) nucleotide substitutions. These were distributed through all analysed coding regions, except gene M022L (major envelope protein), where all strains were identical to "Lausanne" and "6918". Two new single nucleotide insertions were observed in some of the field strains: within the intergenic region M014L/M015L and within gene M009L, where it leads to a frameshift. These insertions were located after homopolymeric regions. The vaccine strain displayed 37 nucleotide substitutions, predominantly (95%) located in genes M022L and M036L. Interestingly, regions M009L and M014L/M015L of the vaccine were not amplified successfully, suggesting major genomic changes that could account for its attenuated phenotype. Our results support a high degree of genetic stability of myxoma virus over the past five decades. None of the analysed genome regions by its own seems sufficient for the genetic characterisation of field strains. PMID:19709821

  8. Exploiting spatiotemporal degrees of freedom for far-field subwavelength focusing using time reversal in fractals

    NASA Astrophysics Data System (ADS)

    Dupré, Matthieu; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2016-05-01

    Materials which possess a high local density of states varying at a subwavelength scale theoretically permit the focusing of waves onto focal spots much smaller than the free space wavelength. To do so, metamaterials—manmade composite media exhibiting properties not available in nature—are usually considered. However, this approach is limited to narrow bandwidths due to their resonant nature. Here, we prove that it is possible to use a fractal resonator alongside time reversal to focus microwaves onto λ /15 subwavelength focal spots from the far field, on extremely wide bandwidths. We first numerically prove that this approach can be realized using a multiple-channel time reversal mirror that utilizes all the degrees of freedom offered by the fractal resonator. Then, we experimentally demonstrate that this approach can be drastically simplified by coupling the fractal resonator to a complex medium, here a cavity, that efficiently converts its spatial degrees of freedom into temporal ones. This makes it possible to achieve deep subwavelength focusing of microwave radiation by time reversing a single channel. Our method can be generalized to other systems coupling complex media and fractal resonators.

  9. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission

    NASA Astrophysics Data System (ADS)

    Konopliv, Alex S.; Park, Ryan S.; Yuan, Dah-Ning; Asmar, Sami W.; Watkins, Michael M.; Williams, James G.; Fahnestock, Eugene; Kruizinga, Gerhard; Paik, Meegyeong; Strekalov, Dmitry; Harvey, Nate; Smith, David E.; Zuber, Maria T.

    2013-07-01

    The lunar gravity field and topography provide a way to probe the interior structure of the Moon. Prior to the Gravity Recovery and Interior Laboratory (GRAIL) mission, knowledge of the lunar gravity was limited mostly to the nearside of the Moon, since the farside was not directly observable from missions such as Lunar Prospector. The farside gravity was directly observed for the first time with the SELENE mission, but was limited to spherical harmonic degree n ≤ 70. The GRAIL Primary Mission, for which results are presented here, dramatically improves the gravity spectrum by up to ~4 orders of magnitude for the entire Moon and for more than 5 orders-of-magnitude over some spectral ranges by using interspacecraft measurements with near 0.03 μm/s accuracy. The resulting GL0660B (n = 660) solution has 98% global coherence with topography to n = 330, and has variable regional surface resolution between n = 371 (14.6 km) and n = 583 (9.3 km) because the gravity data were collected at different spacecraft altitudes. The GRAIL data also improve low-degree harmonics, and the uncertainty in the lunar Love number has been reduced by ~5× to k2 = 0.02405 ± 0.00018. The reprocessing of the Lunar Prospector data indicates ~3× improved orbit uncertainty for the lower altitudes to ~10 m, whereas the GRAIL orbits are determined to an accuracy of 20 cm.

  10. ALMA-backed NIR high resolution integral field spectroscopy of the NUGA galaxy NGC 1433

    NASA Astrophysics Data System (ADS)

    Smajić, Semir; Moser, Lydia; Eckart, Andreas; Valencia-S., Mónica; Combes, Françoise; Horrobin, Matthew; García-Burillo, Santiago; García-Marín, Macarena; Fischer, Sebastian; Zuther, Jens

    2014-07-01

    Aims: We present the results of near-infrared (NIR) H- and K-band European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 1433. We investigate the central 500 pc of this nearby galaxy, concentrating on excitation conditions, morphology, and stellar content. NGC 1433 was selected from our extended NUGA(-south) sample, which was additionally observed with the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 1433 is a ringed, spiral galaxy with a main stellar bar in roughly east-west direction (PA 94°) and a secondary bar in the nuclear region (PA 31°). Several dusty filaments are detected in the nuclear region with the Hubble Space Telescope. ALMA detects molecular CO emission coinciding with these filaments. The active galactic nucleus is not strong and the galaxy is also classified as a low-ionization emission-line region (LINER). Methods: The NIR is less affected by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy, allowing us to analyse several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 10″ × 10″ field of view (FOV). Results: We present emission and absorption line measurements in the central kpc of NGC 1433. We detect a narrow Balmer line and several H2 lines. We find that the stellar continuum peaks in the optical and NIR in the same position, indicating that there is no covering of the center by a nuclear dust lane. A strong velocity gradient is detected in all emission lines at that position. The position angle of this gradient is at 155° whereas the galactic rotation is at a position angle of 201°. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation at the nucleus is caused by thermal excitation, i.e., shocks that can be associated with active galactic

  11. Expanding the Social Frame of Knowledge: Interdisciplinary, Degree-Granting Fields in American Colleges and Universities, 1975-2000

    ERIC Educational Resources Information Center

    Brint, Steven G.; Turk-Bicakci, Lori; Proctor, Kristopher; Murphy, Scott Patrick

    2009-01-01

    The number of interdisciplinary, degree-granting fields in American colleges and universities has grown rapidly, with socially incorporative programs (women's studies, ethnic studies, and non-Western area studies) accounting for a large share. These fields have diffused widely over time, while other interdisciplinary fields have not. Variables…

  12. The merging dwarf galaxy UM 448: chemodynamics of the ionized gas from VLT integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    James, B. L.; Tsamis, Y. G.; Barlow, M. J.; Walsh, J. R.; Westmoquette, M. S.

    2013-01-01

    Using Very Large Telescope/Fibre Large Array Multi Element Spectrograph optical integral field unit observations, we present a detailed study of UM 448, a nearby blue compact galaxy (BCG) previously reported to have an anomalously high N/O abundance ratio. New Technology Telescope/Superb-Seeing Imager images reveal a morphology suggestive of a merger of two systems of contrasting colour, whilst our Hα emission maps resolve UM 448 into three separate regions that do not coincide with the stellar continuum peaks. UM 448 exhibits complex emission line profiles, with most lines consisting of a narrow [full width at half-maximum (FWHM) ≲ 100 km s-1], central component, an underlying broad component (FWHM ˜ 150-300 km s-1) and a third, narrow blueshifted component. Radial velocity maps of all three components show signs of solid body rotation across UM 448, with a projected rotation axis that correlates with the continuum morphology of the galaxy. A spatially resolved, chemodynamical analysis, based on the [O iii] λλ4363, 4959, [N ii] λ6584, [S ii] λλ6716, 6731 and [Ne iii] λ3868 line maps, is presented. Whilst the eastern tail of UM 448 has electron temperatures (Te) that are typical of BCGs, we find a region within the main body of the galaxy where the narrow and broad [O iii] λ4363 line components trace temperatures differing by 5000 K and oxygen abundances differing by 0.4 dex. We measure spatially resolved and integrated ionic and elemental abundances for O, N, S and Ne throughout UM 448, and find that they do not agree, possibly due the flux weighting of Te from the integrated spectrum. This has significant implications for abundances derived from long-slit and integrated spectra of star-forming galaxies in the nearby and distant universe. A region of enhanced N/O ratio is indeed found, extended over a ˜0.6 kpc2 region within the main body of the galaxy. Contrary to previous studies, however, we do not find evidence for a large Wolf-Rayet (WR

  13. ENVIRONMENTAL EFFECTS ON THE STAR FORMATION ACTIVITY IN GALAXIES AT z {approx_equal} 1.2 IN THE COSMOS FIELD

    SciTech Connect

    Ideue, Y.; Nagao, T.; Sasaki, S.; Taniguchi, Y.; Shioya, Y.; Saito, T.; Murayama, T.; Trump, J. R.; Koekemoer, A. M.; Aussel, H.; Ilbert, O.; Sanders, D. B.; McCracken, H.; Mobasher, B.

    2009-08-01

    We investigate the relation between the star formation activity in galaxies and environment at z {approx_equal} 1.2 in the Cosmic Evolution Survey field, using the fraction of [O II] emitters and the local galaxy density. The fraction of [O II] emitters appears to be almost constant over the surface density of galaxies between 0.2 and 10 Mpc{sup -2}. This trend is different from that seen in the local universe where the star formation activity is weaker in higher density regions. To understand this difference between z {approx} 1 and z {approx} 0, we study the fraction of non-isolated galaxies as a function of local galaxy density. We find that the fraction of non-isolated galaxies increases with increasing density. Our results suggest that the star formation in galaxies at z {approx} 1 is triggered by galaxy interaction and/or mergers.

  14. 3D view on Virgo and field dwarf elliptical galaxies: late-type origin and environmental transformations

    NASA Astrophysics Data System (ADS)

    Ryś, Agnieszka; Falcón-Barroso, Jesús; van de Ven, Glenn

    2015-03-01

    In our contribution we show the effects of environmental evolution on cluster and field dwarf elliptical galaxies (dEs), presenting the first large-scale integral-field spectroscopic data for this galaxy class. Our sample con sists of 12 galaxies and no two of them are alike. We find that the level of rotation is not tied to flattening; we observe kinematic twists; we discover large-scale kinematically-decoupled components; we see varying gradient s in line-strength maps: from nearly flat to strongly peaked in the center. The great variety of morphological, kinematic, and stellar population parameters seen in our data supports the claim that dEs are defunct dwarf spiral/irregular galaxies and points to a formation scenario that allows for a stochastic shaping of galaxy properties. The combined influence of ram-pressure stripping and harassment fulfills these requirements, still, the exact impact of the two is not yet understood. We further investigate the properties of our sample by performing a detailed comprehensive analysis of its kinematic, dynamical, and stellar population parameters. The combined knowledge of the dynamical properties and star-formation histories, together with model predictions for different formation mechanisms, will be used to quant itatively determine the actual transformation paths for these galaxies.

  15. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    SciTech Connect

    Ono, Yoshiaki; Ouchi, Masami; Curtis-Lake, Emma; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Cirasuolo, Michele; Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Schneider, Evan; Stark, Daniel P.; Koekemoer, Anton M.; Charlot, Stephane; Shimasaku, Kazuhiro; Furlanetto, Steven R.

    2013-11-10

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ∼ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≅ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ∼ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≅ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z) {sup s}, we obtain a best-fit index of s=-1.30{sup +0.12}{sub -0.14} over z ∼ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0 L{sub z=3}. The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies.

  16. Candidate high-redshift and primeval galaxies in Hubble Deep Field South

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Eales, S. A.; Baker, A. C.

    1999-09-01

    We present the results of colour selection of candidate high-redshift galaxies in Hubble Deep Field South (HDF-S) using the Lyman dropout scheme. The HDF-S data we discuss were taken in a number of different filters extending from the near-UV (F300W) to the infrared (F222M) in two different fields. This allows us to select candidates with redshifts from z~3 to z~12. We find 15 candidate z~3 objects (F300W dropouts), one candidate z~4 object (F450W dropout) and 16 candidate z~5 objects (F606W dropouts) in the ~4.7-arcmin^2 WFPC-2 field, and four candidate z~6 objects (optical dropouts) and one candidate z~8 object (F110W dropout) in the 0.84-arcmin^2 NICMOS-3 field. No F160W dropouts are found (z~12). We compare our selection technique with existing data for Hubble Deep Field North (HDF-N) and discuss alternative interpretations of the objects. We conclude that there are a number of lower redshift interlopers in the selections, including one previously identified object, and reject those objects most likely to be foreground contaminants. Even after this we conclude that the F606W dropout list is likely to still contain substantial foreground contamination. The lack of candidate very-high-redshift UV-luminous galaxies supports earlier conclusions by Lanzetta et al. We discuss the morphologies and luminosity functions of the high-redshift objects, and their cosmological implications.

  17. Young Galaxy Candidates in the Hubble Frontier Fields. II. MACS J0416-2403

    NASA Astrophysics Data System (ADS)

    Infante, Leopoldo; Zheng, Wei; Laporte, Nicolas; Troncoso Iribarren, Paulina; Molino, Alberto; Diego, Jose M.; Bauer, Franz E.; Zitrin, Adi; Moustakas, John; Huang, Xingxing; Shu, Xinwen; Bina, David; Brammer, Gabriel B.; Broadhurst, Tom; Ford, Holland C.; García, Stefano; Kim, Sam

    2015-12-01

    We searched for z ≳ 7 Lyman-break galaxies in the optical-to-mid-infrared Hubble Frontier Field and associated parallel field observations of the strong-lensing cluster MACS J0416-2403. We discovered 22 candidates, of which 6 lie at z ≳ 9 and 1 lies at z ≳ 10. Based on the Hubble and Spitzer photometry, all have secure photometric redshifts and a negligible probability of being at lower redshifts according to their peak-probability ratios, {R}. This substantial increase in the number of known high-redshift galaxies allows a solid determination of the luminosity function (LF) at z ≳ 8. The number of high-z candidates in the parallel field is considerably higher than that in the Abell 2744 parallel field. Our candidates have median stellar masses of {log}({M}*)˜ {8.44}-0.31+0.55 M⊙, star formation rates (SFRs) of ˜ {1.8}-0.4+0.5 M⊙ yr-1, and SFR-weighted ages of ≲ {300}-140+70 {Myr}. Finally, we are able to put strong constraints on the z = 7, 8, 9, and 10 LFs. One of the objects in the cluster field is a z ≃ 10 candidate, with a magnification of μ ˜ 20 ± 13. This object is likely the faintest z ˜ 10 object known to date, allowing a first look into the extreme faint end (L ˜ 0.04 L*) of the z ˜ 10 LF (It is named “Tayna” in the Aymara language).

  18. A supernova scenario for magnetic fields and rotation measures in galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Dolag, Klaus; Lesch, Harald

    2015-08-01

    process naturally occuring during galaxy formation. SN explosions provide magnetic seed fields, which are amplified and distribution by the very process of galaxy formation.

  19. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids. PMID:24580436

  20. Molecular gas in the centre of nearby galaxies from VLT/SINFONI integral field spectroscopy - II. Kinematics

    NASA Astrophysics Data System (ADS)

    Mazzalay, X.; Maciejewski, W.; Erwin, P.; Saglia, R. P.; Bender, R.; Fabricius, M. H.; Nowak, N.; Rusli, S. P.; Thomas, J.

    2014-03-01

    We present an analysis of the H2 emission-line gas kinematics in the inner ≲4 arcsec radius of six nearby spiral galaxies, based on adaptive optics-assisted integral-field observations obtained in the K band with SINFONI/VLT. Four of the six galaxies in our sample display ordered H2 velocity fields, consistent with gas moving in the plane of the galaxy and rotating in the same direction as the stars. However, the gas kinematics is typically far from simple circular motion. We can classify the observed velocity fields into four different types of flows, ordered by increasing complexity: (1) circular motion in a disc (NGC 3351); (2) oval motion in the galaxy plane (NGC 3627 and NGC 4536); (3) streaming motion superimposed on circular rotation (NGC 4501); and (4) disordered streaming motions (NGC 4569 and NGC 4579). The H2 velocity dispersion in the galaxies is usually higher than 50 km s-1 in the inner 1-2 arcsec radii. The four galaxies with ordered kinematics have v/σ < 1 at radii less than 40-80 pc. The radius at which v/σ = 1 is independent of the type of nuclear activity. While the low values of v/σ could be taken as an indication of a thick disc in the innermost regions of the galaxies, other lines of evidence (e.g. H2 morphologies and velocity fields) argue for a thin disc interpretation in the case of NGC 3351 and NGC 4536. We discuss the implications of the high values of velocity dispersion for the dynamics of the gaseous disc and suggest caution when interpreting the velocity dispersion of ionized and warm tracers as being entirely dynamical. Understanding the nature and role of the velocity dispersion in the gas dynamics, together with the full 2D information of the gas, is essential for obtaining accurate black hole masses from gas kinematics.

  1. New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density

    NASA Astrophysics Data System (ADS)

    McLeod, D. J.; McLure, R. J.; Dunlop, J. S.; Robertson, B. E.; Ellis, R. S.; Targett, T. A.

    2015-07-01

    We present the results of a new search for galaxies at redshift z ≃ 9 in the first two Hubble Frontier Fields with completed HST WFC3/IR and ACS imaging. To ensure robust photometric redshift solutions, and to minimize incompleteness, we confine our search to objects with H160 < 28.6 (AB mag), consider only image regions with an rms noise σ160 > 30 mag (within a 0.5-arcsec diameter aperture), and insist on detections in both H160 and J140. The result is a survey covering an effective area (after accounting for magnification) of 10.9 arcmin2, which yields 12 galaxies at 8.4 < z < 9.5. Within the Abell-2744 cluster and parallel fields, we confirm the three brightest objects reported by Ishigaki et al., but recover only one of the four z > 8.4 sources reported by Zheng et al. In the MACSJ0416.1-240 cluster field, we report five objects, and explain why each of these eluded detection or classification as z ≃ 9 galaxies in the published searches of the shallower CLASH data. Finally, we uncover four z ≃ 9 galaxies from the MACSJ0416.1-240 parallel field. Based on the published magnification maps, we find that only one of these 12 galaxies is likely boosted by more than a factor of 2 by gravitational lensing. Consequently, we are able to perform a fairly straightforward reanalysis of the normalization of the z ≃ 9 UV galaxy luminosity function as explored previously in the HUDF12 programme. We conclude that the new data strengthen the evidence for a continued smooth decline in UV luminosity density (and hence star formation rate density) from z ≃ 8 to 9, contrary to recent reports of a marked drop-off at these redshifts. This provides further support for the scenario in which early galaxy evolution is sufficiently extended to explain cosmic reionization.

  2. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; Xu, Chun; Gronwall, Caryl; Koekemoer, Anton M.; Walsh, Jeremy; diSeregoAlighieri, Sperello

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  3. CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE'S WIDE FIELD CAMERA 3

    SciTech Connect

    Szomoru, Daniel; Franx, Marijn; Bouwens, Rychard J.; Van Dokkum, Pieter G.; Trenti, Michele; Illingworth, Garth D.; Oesch, Pascal A.; Carollo, C. Marcella

    2010-05-10

    We present very deep Wide Field Camera 3 (WFC3) photometry of a massive, compact galaxy located in the Hubble Ultra Deep Field. This quiescent galaxy has a spectroscopic redshift z = 1.91 and has been identified as an extremely compact galaxy by Daddi et al. We use new H {sub F160W} imaging data obtained with Hubble Space Telescope/WFC3 to measure the deconvolved surface brightness profile to H {approx} 28 mag arcsec{sup -2}. We find that the surface brightness profile is well approximated by an n = 3.7 Sersic profile. Our deconvolved profile is constructed by a new technique which corrects the best-fit Sersic profile with the residual of the fit to the observed image. This allows for galaxy profiles which deviate from a Sersic profile. We determine the effective radius of this galaxy: r{sub e} = 0.42 {+-} 0.14 kpc in the observed H {sub F160W} band. We show that this result is robust to deviations from the Sersic model used in the fit. We test the sensitivity of our analysis to faint 'wings' in the profile using simulated galaxy images consisting of a bright compact component and a faint extended component. We find that due to the combination of the WFC3 imaging depth and our method's sensitivity to extended faint emission we can accurately trace the intrinsic surface brightness profile, and that we can therefore confidently rule out the existence of a faint extended envelope around the observed galaxy down to our surface brightness limit. These results confirm that the galaxy lies a factor {approx}10 off from the local mass-size relation.

  4. Spitzer mid-infrared point sources in the fields of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Bonanos, A. Z.

    2016-03-01

    Aims: To complement the study of transient phenomena and to assist subsequent observations in the mid-infrared, we extract point source photometry from archival mosaics of nearby galaxies with high star formation rates within 4 Mpc. Methods: Point spread function photometry was performed on sources detected in both Spitzer IRAC 3.6 μm and 4.5 μm bands at greater than 3σ above background. These data were then supplemented by aperture photometry in the IRAC 5.8 μm and 8.0 μm bands conducted at the positions of the shorter wavelength sources. For sources with no detected object in the longer wavelengths, we estimated magnitude limits based on the local sky background. Results: We present Spitzer IRAC mid-infrared point source catalogs for mosaics covering the fields of the nearby (≲4 Mpc) galaxies NGC 55, NGC 253, NGC 2366, NGC 4214, and NGC 5253. We detect a total of 20159 sources in these five fields. The individual galaxy point source breakdown is the following: NGC 55, 8746 sources; NGC 253, 9001 sources; NGC 2366, 505 sources; NGC 4214, 1185 sources; NGC 5253, 722 sources. The completeness limits of the full catalog vary with bandpass and were found to be m3.6 = 18.0, m4.5 = 17.5, m5.8 = 17.0, and m8.0 = 16.5 mag. For all galaxies, this corresponds to detection of point sources brighter than M3.6 = -10. These catalogs can be used as a reference for stellar population investigations, individual stellar object studies, and in planning future mid-infrared observations with the James Webb Space Telescope. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.Full Tables 2-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A121

  5. Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620. A fresh view on a restarted AGN and doubeltjes

    NASA Astrophysics Data System (ADS)

    Orrù, E.; van Velzen, S.; Pizzo, R. F.; Yatawatta, S.; Paladino, R.; Iacobelli, M.; Murgia, M.; Falcke, H.; Morganti, R.; de Bruyn, A. G.; Ferrari, C.; Anderson, J.; Bonafede, A.; Mulcahy, D.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Heald, G.; Hoeft, M.; van der Horst, A. J.; Intema, H.; Juette, E.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Loose, M.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Miley, G.; Moldon, J.; Molenaar, G.; Munk, H.; Nelles, A.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Scaife, A.; Schoenmakers, A.; Schwarz, D.; Serylak, M.; Shulevski, A.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tasse, C.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.

    2015-12-01

    Context. The existence of double-double radio galaxies (DDRGs) is evidence for recurrent jet activity in active galactic nuclei (AGN), as expected from standard accretion models. A detailed study of these rare sources provides new perspectives for investigating the AGN duty cycle, AGN-galaxy feedback, and accretion mechanisms. Large catalogues of radio sources, on the other hand, provide statistical information about the evolution of the radio-loud AGN population out to high redshifts. Aims: Using wide-field imaging with the LOFAR telescope, we study both a well-known DDRG as well as a large number of radio sources in the field of view. Methods: We present a high resolution image of the DDRG B1834+620 obtained at 144 MHz using LOFAR commissioning data. Our image covers about 100 square degrees and contains over 1000 sources. Results: The four components of the DDRG B1834+620 have been resolved for the first time at 144 MHz. Inner lobes were found to point towards the direction of the outer lobes, unlike standard FR II sources. Polarized emission was detected at +60 rad m-2 in the northern outer lobe. The high spatial resolution allows the identification of a large number of small double-lobed radio sources; roughly 10% of all sources in the field are doubles with a separation smaller than 1'. Conclusions: The spectral fit of the four components is consistent with a scenario in which the outer lobes are still active or the jets recently switched off, while emission of the inner lobes is the result of a mix-up of new and old jet activity. From the presence of the newly extended features in the inner lobes of the DDRG, we can infer that the mechanism responsible for their formation is the bow shock that is driven by the newly launched jet. We find that the density of the small doubles exceeds the density of FR II sources with similar properties at 1.4 GHz, but this difference becomes smaller for low flux densities. Finally, we show that the significant challenges of

  6. Optical-faint, Far-infrared-bright Herschel Sources in the CANDELS Fields: Ultra-luminous Infrared Galaxies at z > 1 and the Effect of Source Blending

    NASA Astrophysics Data System (ADS)

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Somerville, Rachel; Ashby, Matthew L. N.; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven "SDSS-invisible," very bright 250 μm sources (S 250 > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ~ 1-2 whose high L IR is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  7. OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF SOURCE BLENDING

    SciTech Connect

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Ashby, Matthew L. N.; Somerville, Rachel; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 μm sources (S {sub 250} > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ∼ 1-2 whose high L {sub IR} is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  8. SpIOMM and SITELLE: Wide-field Imaging FTS for the Study of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Bernier, Anne-Pier; Robert, Carmelle; Robert

    2011-12-01

    SpIOMM, a wide-field Imaging Fourier Transform Spectrometer attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in 1.7 million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We present a short description of these instruments and illustrate their capabilities to study nearby galaxies with the results of a data cube of M51.

  9. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  10. The Galaxy Evolution Explorer

    NASA Astrophysics Data System (ADS)

    Martin, Christopher; Barlow, Thomas; Barnhart, William; Bianchi, Luciana; Blakkolb, Brian K.; Bruno, Dominique; Bushman, Joseph; Byun, Yong-Ik; Chiville, Michael; Conrow, Timothy; Cooke, Brian; Donas, Jose; Fanson, James L.; Forster, Karl; Friedman, Peter G.; Grange, Robert; Griffiths, David; Heckman, Timothy; Lee, James; Jelinsky, Patrick N.; Kim, Sug-Whan; Lee, Siu-Chun; Lee, Young-Wook; Liu, Dankai; Madore, Barry F.; Malina, Roger; Mazer, Alan; McLean, Ryan; Milliard, Bruno; Mitchell, William; Morais, Marco; Morrissey, Patrick F.; Neff, Susan G.; Raison, Frederic; Randall, David; Rich, Michael; Schiminovich, David; Schmitigal, Wes; Sen, Amit; Siegmund, Oswald H. W.; Small, Todd; Stock, Joseph M.; Surber, Frank; Szalay, Alexander; Vaughan, Arthur H.; Weigand, Timothy; Welsh, Barry Y.; Wu, Patrick; Wyder, Ted; Xu, C. Kevin; Zsoldas, Jennifer

    2003-02-01

    The Galaxy Evolution Explorer (GALEX), a NASA Small Explorer Mission planned for launch in Fall 2002, will perform the first Space Ultraviolet sky survey. Five imaging surveys in each of two bands (1350-1750Å and 1750-2800Å) will range from an all-sky survey (limit mAB~20-21) to an ultra-deep survey of 4 square degrees (limit mAB~26). Three spectroscopic grism surveys (R=100-300) will be performed with various depths (mAB~20-25) and sky coverage (100 to 2 square degrees) over the 1350-2800Å band. The instrument includes a 50 cm modified Ritchey-Chrétien telescope, a dichroic beam splitter and astigmatism corrector, two large sealed tube microchannel plate detectors to simultaneously cover the two bands and the 1.2 degree field of view. A rotating wheel provides either imaging or grism spectroscopy with transmitting optics. We will use the measured UV properties of local galaxies, along with corollary observations, to calibrate the UV-global star formation rate relationship in galaxies. We will apply this calibration to distant galaxies discovered in the deep imaging and spectroscopic surveys to map the history of star formation in the universe over the red shift range zero to two. The GALEX mission will include an Associate Investigator program for additional observations and supporting data analysis. This will support a wide variety of investigations made possible by the first UV sky survey.

  11. Galaxy Detection in 2MASS: Global Expectations and Results from Several Fields

    NASA Technical Reports Server (NTRS)

    Chester, T.; Jarrett, T.

    1995-01-01

    An alogorithm has been developed and used to find galaxies in the 2MASS data. It uses the central surface brightness and measured size to discriminate galaxies from the much larger stellar population.

  12. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  13. What do you gain from deconvolution? - Observing faint galaxies with the Hubble Space Telescope Wide Field Camera

    NASA Technical Reports Server (NTRS)

    Schade, David J.; Elson, Rebecca A. W.

    1993-01-01

    We describe experiments with deconvolutions of simulations of deep HST Wide Field Camera images containing faint, compact galaxies to determine under what circumstances there is a quantitative advantage to image deconvolution, and explore whether it is (1) helpful for distinguishing between stars and compact galaxies, or between spiral and elliptical galaxies, and whether it (2) improves the accuracy with which characteristic radii and integrated magnitudes may be determined. The Maximum Entropy and Richardson-Lucy deconvolution algorithms give the same results. For medium and low S/N images, deconvolution does not significantly improve our ability to distinguish between faint stars and compact galaxies, nor between spiral and elliptical galaxies. Measurements from both raw and deconvolved images are biased and must be corrected; it is easier to quantify and remove the biases for cases that have not been deconvolved. We find no benefit from deconvolution for measuring luminosity profiles, but these results are limited to low S/N images of very compact (often undersampled) galaxies.

  14. Crowded Field Photometry in the CLASH Clusters: Measuring the Red Sequence of Cluster Galaxies with Robust Photometry

    NASA Astrophysics Data System (ADS)

    Connor, Thomas; Donahue, Megan; Moustakas, John; Kelson, Daniel; Coe, Dan A.; Postman, Marc; CLASH Team

    2016-01-01

    The Cluster Lensing And Supernova survey with Hubble (CLASH) is an HST multi-cycle treasury program investigating 25 massive clusters of galaxies with X-ray gas Tx > 5 keV, spanning ~5 to ~30 x 10^14 solar masses, and a redshift range of 0.15 < z < 0.9. With 500 orbits of HST time and 16-filter, ultraviolet to infrared photometry of each cluster, this survey offers an unprecedented dataset for cluster galaxy photometry across a span of age and mass, but obtaining robust photometry for the cluster members has been hampered by the crowded field. We have developed a new technique to detect and define objects despite the presence of overlapping light profiles and to measure photometry of galaxies overlapping the extended haloes of massive galaxies. Utilizing spectral energy distribution fitting, we infer the properties of the detected galaxies, including their abundances and the time since their first star formation. Here we will discuss our technique and results, including the role metallicity and age play in shaping the red sequence of cluster galaxies.

  15. Galaxies at z~7-8: z850-Dropouts in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Bouwens, R. J.; Thompson, R. I.; Illingworth, G. D.; Franx, M.; van Dokkum, P. G.; Fan, X.; Dickinson, M. E.; Eisenstein, D. J.; Rieke, M. J.

    2004-12-01

    We have detected likely z~7-8 galaxies in the 144''×144'' Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) observations of the Hubble Ultra Deep Field. Objects are required to be >=3 σ detections in both NICMOS bands, J110 and H160. The selection criteria for this sample are (z850-J110)AB>0.8, (z850-J110)AB>0.66(J110-H160)AB+0.8, (J110-H160)AB<1.2 and no detection at less than 8500 Å. The five selected sources have total magnitudes H160,AB~27. Four of the five sources are quite blue compared to typical lower redshift dropout galaxies and are clustered within a 1 arcmin2 region. Because all five sources are near the limit of the NICMOS data, we have carefully evaluated their reality. Each of the candidates is visible in different splits of the data and a median stack. We analyzed several noise images and estimate the number of spurious sources to be 1+/-1. A search using an independent reduction of this same data set clearly revealed three of the five candidates and weakly detected a fourth candidate, suggesting that the contamination could be higher. For comparison with predictions from lower redshift samples, we take a conservative approach and adopt four z~7-8 galaxies as our sample. With the same detection criteria on simulated data sets, assuming no evolution from z~3.8, we predict 10 sources at z~7-8, or 14 if we use a more realistic (1+z)-1 size scaling. We estimate that the rest-frame continuum UV (~1800 Å) luminosity density at z~7.5 (integrated down to 0.3L*z=3) is just 0.20+0.12-0.08 times that found at z~3.8 (or 0.20+0.23-0.12 times this quantity including cosmic variance). Effectively this sets an upper limit on the luminosity density down to 0.3L*z=3 and is consistent with significant evolution at the bright end of the luminosity function from z~7.5 to 3.8. Even with the lower UV luminosity density at z~7.5, it appears that galaxies could still play an important role in reionization at these redshifts, although definitive measurements

  16. RADIO GALAXY 3C 230 OBSERVED WITH GEMINI LASER ADAPTIVE-OPTICS INTEGRAL-FIELD SPECTROSCOPY

    SciTech Connect

    Steinbring, Eric

    2011-11-15

    The Altair laser-guide-star adaptive optics facility combined with the near-infrared integral-field spectrometer on Gemini North have been employed to study the morphology and kinematics of 3C 230 at z = 1.5, the first such observations of a high-redshift radio galaxy. These suggest a bi-polar outflow spanning 0.''9 ({approx}16 kpc projected distance for a standard {Lambda} CDM cosmology) reaching a mean relative velocity of 235 km s{sup -1} in redshifted H{alpha} +[N II] and [S II] emission. Structure is resolved to 0.''1 (0.8 kpc), which is well correlated with optical images from the Hubble Space Telescope and Very Large Array radio maps obtained at similar spatial resolution. Line diagnostics suggest that over the 10{sup 7} yr to 10{sup 8} yr duration of its active galactic nucleus activity, gas has been ejected into bright turbulent lobes at rates comparable to star formation, although constituting perhaps only 1% of the baryonic mass in the galaxy.

  17. Did Galaxies Reionize the Universe?: New Insight from the Hubble Ultra Deep Field 2012

    NASA Astrophysics Data System (ADS)

    Robertson, Brant E.; Schneider, E.; Ellis, R. S.; McLure, R.; Koekemoer, A. M.; Dunlop, J.; Schenker, M. A.; Ono, Y.; UDF12 Team

    2013-01-01

    The Hubble Space Telescope (HST) Ultra Deep Field 2012 (UDF12), comprising the deepest near-infrared observations so far acquired by HST, provides our most sensitive probe of the Epoch of Reionization - the period when intergalactic hydrogen was first ionized. Determining which sources provided the necessary ionizing photons for this important transition in cosmic history is a key science goal and one now enabled by the unique sensitivity afforded by the UDF12 program. Using deep WFC3/IR images newly-obtained this year to provide refined and more robust catalogs of the luminosity distribution and intrinsic properties of galaxies at beyond redshift 6, the UDF12 results provide the most detailed information to date on the Epoch of Reionization and the role of early star forming galaxies. We demonstrate the significant advances achieved by the UDF12 in comparison to the earlier UDF datasets and discuss how the UDF12 results serve as our best preparation for future high-redshift science programs with the James Webb Space Telescope later this decade.

  18. The Gemini Frontier Field: Multi-conjugate Adaptive Optics Ks-band imaging of selected HST Frontier Field galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sivo, Gaetano; Carrasco, Rodrigo; Schirmer, Mischa; Pessev, Peter; Winge, Claudia; Garrel, Vincent; Neichel, Benoit; Vidal, Fabrice

    2015-01-01

    We use the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI) at the Gemini South telescope to image three of the six Hubble Space Telescope (HST) Frontier Field targets. These observations cover the gap between the HST observations beyond 1.7 microns and the 3.6 micron provided by Spitzer. GeMS is the first multi-conjugate adaptive optics system in use at an 8meter telescope. It delivers and uniform, close to diffraction-limited near-infrared images over a 2‧ field of view. In this presentation we describe the release of 100'' x 100'' high resolution wide-field images obtained for the galaxy clusters MACS J0416.1-2403 and Abell 2744 in Ks-band. The angular resolution achieved is between 70 to 110 mas, twice as high as HST/WFC3, using a single natural guide star only. This is a demonstration that even for fields at high galactic latitude, where natural guide stars are scarce, current multi-conjugated adaptive optics technology at 8m-telescopes has opened a new window on the distant Universe.

  19. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of i=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ∼ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  20. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    SciTech Connect

    Ryan, R. E. Jr.; McCarthy, P. J.; Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Bond, H. E.; Bushouse, H.; O'Connell, R. W.; Balick, B.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  1. The Size Evolution of Passive Galaxies: Observations from the Wide-Field Camera 3 Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Ryan, R. E., Jr.; McCarthy, P. J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O'Connell, R. W.; Balick, B.; Bond, H. E.; Bushouse, H.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; Kaviraj, S.; Kimble, R. A.; MacKenty, J.; Mutchler, M.; Paresce, F.; Saha, A.; Silk, J. I.; Trauger, J.; Walker, A. R.; Whitmore, B. C.; Young, E.

    2012-04-01

    We present the size evolution of passively evolving galaxies at z ~ 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z >~ 1.5. We identify 30 galaxies in ~40 arcmin2 to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 μm <~ λobs <~ 1.6 μm with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of ~0.033(1 + z). We determine effective radii from Sérsic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M * ~ 1011 M ⊙) undergo the strongest evolution from z ~ 2 to the present. Parameterizing the size evolution as (1 + z)-α, we find a tentative scaling of α ≈ (- 0.6 ± 0.7) + (0.9 ± 0.4)log (M */109 M ⊙), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M *-Re relation for red galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  2. The Size Evolution of Passive Galaxies: Observations From the Wide-Field Camera 3 Early Release Science Program

    NASA Technical Reports Server (NTRS)

    Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.; Balick, B.; Bond, H. E.; Bushouse, H.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D., N., B.; Holtzman, J. A.; Kaviraj, S.; Kimble, R. A.; MacKenty, J.; Trauger, J.; Young, E.

    2012-01-01

    We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.

  3. Star Formation In the Galaxy and the Fluctuating UV Radiation Field

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Parravano, Antonio; McKee, Christopher H.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV (ultraviolet) radiation field, and the effect of this field on the star-forming interstellar medium. There are substantial fluctuations of the UV radiation field in space (scales of 100's of parsecs) and time (time-scales of order 100 million years). The FUV (far ultraviolet) (6 eV less than hv less than 13.6 eV) field and the pressure determines whether the thermal balance of the neutral gas results in cold clouds or warm (T approx. 10(exp 4) K) neutral medium. We show how to calculate the average fractions of the gas in the cold and warm phases when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties and on the FUV sources is a basic step in building a model of the large scale behavior of the ISM (interstellar medium) and the mutual relation between the ISM and the star formation rate.

  4. H-Band dropouts in the deepest CANDELS field. A new population of bright massive galaxies at z >3

    NASA Astrophysics Data System (ADS)

    Alcalde Pampliega, B.; Pérez-González, P. G.; Domínguez Sánchez, H.; Esquej, P.; Eliche-Moral, M. C.; Barro, G.

    2015-05-01

    The recent increase in depth, spatial and wavelength coverage of extragalactic surveys has improved dramatically our understanding of galaxy formation and evolution and is revealing a new population of galaxies at high redshift. That is consistent with a downsizing (Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839; Heavens, A., Panter, B., Jiménez, R., & Dunlop, J. 2004, Nature, 428, 625; Juneau, S., et al. 2005, ApJ, 619, L135; Bauer, A. E., Drory, N., Hill, G. J., & Feulner, G. 2005, ApJ, 621, L89; Pérez-González et al. 2008, ApJ, 675, 234) scenario, which implies that the most massive galaxies formed early in the history of the universe and evolved quickly. Red color criteria and the analysis of deep mid-IR, has been proven to very useful to identify high-z extremely red galaxies as shown in (Caputi, K. et al. 2012, ApJ, 750, L20 and Huang, J.-S., Zheng, X. Z., Rigopoulou, D. et al., 2011, ApJ, 742, L13). We present our analysis of the deepest near-infrared (F160W/H-band from CANDELS) and mid-infrared (IRAC from GOODS) data taken by HST and Spitzer (in the GOODS fields) to select sources only detected by IRAC and with no CANDELS counterpart (i.e., H>27, [3.6]≤25). These H-Band dropouts constitute a previously unknown population of dust-enshrouded and/or quiescent massive red galaxies at z>3. Using the wealth of data available in the GOODS field, especially the SHARDS data, we characterize the properties of this population of red galaxies and discuss on its relevance for previous estimations of the stellar mass function at z=3-5, and the evolution of massive galaxies in the early Universe.

  5. The data acquisition system for the Anglo-Australian Observatory 2-degree field project

    NASA Technical Reports Server (NTRS)

    Shortridge, K.; Farrell, T. J.; Bailey, J.

    1992-01-01

    The Anglo-Australian Observatory (AAO) is building a system that will provide a two-degree field of view at prime focus. A robot positioner will be used to locate up to 400 optical fibers at pre-determined positions in this field. While observations are being made using one set of 400 fibers, the robot will be positioning a second set of fibers in a background field that can be moved in to replace the first when the telescope is moved to a new position. The fibers feed two spectrographs each with a 1024 square CCD detector. The software system being produced to control this involves Vaxes for overall control and data recording, UNIX workstations for fiber configuration calculations and on-line data reduction, and VME systems running VxWorks for real-time control of critical parts such as the positioner robot. The system has to be able to interact with the observatory's present data acquisition systems, which use the ADAM system. As yet, the real-time parts of ADAM have not been ported to Unix, and so we are having to produce a smaller-scale system that is similar but inherently distributed (which ADAM is not). We are using this system as a testbed for ideas that we hope may eventually influence an ADAM II system. The system we are producing is based on a message system that is designed to be able to handle inter-process and inter-processor messages of any length, efficiently, and without ever requiring a task to block (i.e., be unresponsive to 'cancel' messages, enquiry messages), other than when deliberately waiting for external input - all of which will be through such messages. The essential requirement is that a message 'send' operation should never be able to block. The messages will be hierarchical, self-defining, machine-independent data structures. This allows us to provide very simple monitoring of messages for diagnostic purposes, and allows general purpose interface programs to be written without needing to share precise byte by byte message format

  6. GLOBAL SIMULATIONS OF THE MAGNETIC FIELD EVOLUTION IN BARRED GALAXIES UNDER THE INFLUENCE OF THE COSMIC-RAY-DRIVEN DYNAMO

    SciTech Connect

    Kulpa-Dybel, K.; Otmianowska-Mazur, K.; Kulesza-Zydzik, B.; Kowal, G.; Hanasz, M.; Woltanski, D.; Kowalik, K.

    2011-06-01

    We present three-dimensional global numerical simulations of the cosmic-ray (CR) driven dynamo in barred galaxies. We study the evolution of the interstellar medium of the barred galaxy in the presence of non-axisymmetric component of the potential, i.e., the bar. The magnetohydrodynamical dynamo is driven by CRs, which are continuously supplied to the disk by supernova (SN) remnants. No magnetic field is present at the beginning of simulations but one-tenth of SN explosions is a source of a small-scale randomly oriented dipolar magnetic field. In all models we assume that 10% of 10{sup 51} erg SN kinetic energy output is converted into CR energy. To compare our results directly with the observed properties of galaxies, we construct realistic maps of polarized radio emission. The main result is that the CR-driven dynamo can amplify weak magnetic fields up to a few {mu}G within a few Gyr in barred galaxies. The obtained e-folding time is equal to 300 Myr and the magnetic field reaches equipartition at time t {approx} 4.0 Gyr. Initially, the completely random magnetic field evolves into large-scale structures. An even (quadrupole-type) configuration of the magnetic field with respect to the galactic plane can be observed. Additionally, the modeled magnetic field configuration resembles maps of the polarized intensity observed in barred galaxies. Polarization vectors are distributed along the bar and between spiral arms. Moreover, the drift of magnetic arms with respect to the spiral pattern in the gas density distribution is observed during the entire simulation time.

  7. Spectroscopic identification of a redshift 1.55 supernova host galaxy from the Subaru Deep Field Supernova Survey

    NASA Astrophysics Data System (ADS)

    Frederiksen, Teddy F.; Graur, Or; Hjorth, Jens; Maoz, Dan; Poznanski, Dovi

    2014-03-01

    Context. The Subaru Deep Field (SDF) Supernova Survey discovered ten Type Ia supernovae (SNe Ia) in the redshift range 1.5 < z < 2.0, determined solely from photometric redshifts of the host galaxies. However, photometric redshifts might be biased, and the SN sample could be contaminated by active galactic nuclei (AGNs). Aims: We aim to obtain the first robust redshift measurement and classification of a z > 1.5 SDF SN Ia host galaxy candidate. Methods: We use the X-shooter (U-to-K-band) spectrograph on the Very Large Telescope to allow the detection of different emission lines in a wide spectral range. Results: We measure a spectroscopic redshift of 1.54563 ± 0.00027 of hSDF0705.25, consistent with its photometric redshift of 1.552 ± 0.018. From the strong emission-line spectrum we rule out AGN activity, thereby confirming the optical transient as a SN. The host galaxy follows the fundamental metallicity relation showing that the properties of this high-redshift SN Ia host galaxy is similar to other field galaxies. Conclusions: Spectroscopic confirmation of additional SDF SN hosts would be required to confirm the cosmic SN rate evolution measured in the SDF. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program ID 089.A-0739.

  8. Comparisons of a standard galaxy model with stellar observations in five fields

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Soneira, R. M.

    1984-01-01

    Modern data on the distribution of stellar colors and on the number of stars as a function of apparent magnitude in five directions in the Galaxy are analyzed. It is found that the standard model is consistent with all the available data. Detailed comparisons with the data for five separate fields are presented. The bright end of the spheroid luminosity function and the blue tip of the spheroid horizontal branch are analyzed. The allowed range of the disk scale heights and of fluctuations in the volume density is determined, and a lower limit is set on the disk scale length. Calculations based on the thick disk model of Gilmore and Reid (1983) are presented.

  9. On the local standard of rest. [comoving with young objects in gravitational field of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Yuan, C.

    1983-01-01

    Under the influence of a spiral gravitational field, there should be differences among the mean motions of different types of objects with different dispersion velocities in a spiral galaxy. The old stars with high dispersion velocity should have essentially no mean motion normal to the galactic rotation. On the other hand, young objects and interstellar gas may be moving relative to the old stars at a velocity of a few kilometer per second in both the radial (galacto-centric), and circular directions, depending on the spiral model adopted. Such a velocity is usually referred as the systematic motion or the streaming motion. The conventionally adopted local standard of rest is indeed co-moving with the young objects of the solar vicinity. Therefore, it has a net systematic motion with respect to the circular motion of an equilibrium galactic model, defined by the old stars. Previously announced in STAR as N83-24443

  10. High Energy Particle Acceleration and Turbulent Magnetic Field Amplification in Shell Type Supernova Remnants. Degree awarded by Minnesota Univ.

    NASA Technical Reports Server (NTRS)

    Keohane, Jonathan Wilmore

    1998-01-01

    Thesis submitted to the faculty of the Graduate School of the University of Minnesota in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Part I discusses the spatial correlation between the x-ray and radio morphologies of Cas A, and in the process address: the effect of inhomogeneous absorption on the apparent x-ray morphology, the interaction between the SNR and a molecular cloud, and the rapid move toward equipartition between the magnetic and gas energy densities. Discussions of the x-ray./radio correlation continues in Chapter 5, where we present a new, deep, ROSAT HRI image of Cas A. Chapter 7 presents ASCA spectra, with non-thermal spectral fits for 13 of the youngest SNRs in the Galaxy.

  11. FR II radio galaxies at low frequencies – I. Morphology, magnetic field strength and energetics

    PubMed Central

    Harwood, Jeremy J.; Croston, Judith H.; Intema, Huib T.; Stewart, Adam J.; Ineson, Judith; Hardcastle, Martin J.; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K.; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W.

    2016-01-01

    Due to their steep spectra, low-frequency observations of Fanaroff–Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity. PMID:27284270

  12. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics

    NASA Astrophysics Data System (ADS)

    Harwood, Jeremy J.; Croston, Judith H.; Intema, Huib T.; Stewart, Adam J.; Ineson, Judith; Hardcastle, Martin J.; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K.; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W.

    2016-06-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.

  13. WINGS: A WIde-field Nearby Galaxy-cluster Survey. II. Deep optical photometry of 77 nearby clusters

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Moles, M.; Pignatelli, E.; Poggianti, B. M.; Valentinuzzi, T.

    2009-04-01

    Context: This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04 < z < 0.07) located far from the galactic plane (|b|≥ 20°). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. Aims: This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. Methods: We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. Results: We publish deep optical photometric catalogs (90% complete at V ~ 21.7, which translates to ˜ M^*_V+6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of “unknown” classification (~6%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2^m. The star/galaxy classification of the bright objects (V < 20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data

  14. Evaluating the usefulness in neuro-ophthalmology of visual field examinations peripheral to 30 degrees.

    PubMed Central

    Wirtschafter, J D; Hard-Boberg, A L; Coffman, S M

    1984-01-01

    The value of the information obtained from Goldmann manual kinetic perimetry beyond 30 degrees was examined. Of 229 randomly selected patients in a University eye clinic who had visual fields performed for reasons other than glaucoma or ocular hypertension only 3 patients had abnormalities confined to the PVF of one or both eyes. In none of these three patients was the PVF necessary to detect disease (Graves' disease, 2 cases; retinoschisis, 1 case). The PVF was useful in determining the localization of the disorder and/or the therapeutic management in 14 patients of whom 4 of these had retinitis pigmentosa and 5 had other disorders where the PVF showed the extent of the retinal damage. For ergo-ophthalmologic purposes the PVF was useful in 45 patients; most frequently because the extent of abnormality provided a basis for warning the patient. In some cases the PVF was considered to be useful for economic disability determination or to exclude significant PVF defects in a patient with only one visually useful eye. In 77 patients the PVF of each eye was abnormal but not of ergo-ophthalmologic significance. If these data can be extrapolated to automated static perimetry, there will be a very great incremental cost for any clinically useful information obtained from the examination of the PVF. Because the cost-effectiveness of the examination must be compared with competing methods of obtaining information, it is proposed that the PVF be examined (1) whenever indicated for ergo-ophthalmologic reasons, or (2) when the CVF examination does not resolve a clinical problem for which there is a reasonably high probability that (a) additional clinically useful information will be obtained by examination of the PVF after the results of the CVF examination have been analyzed, or (b) the eye is likely to have a condition that can be detected or followed best by PVF examination. PMID:6442949

  15. High-Redshift Candidates and the Nature of Small Galaxies in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, Lisa J.; Weymann, Ray J.; Thompson, Rodger I.

    2003-07-01

    We present results on two related topics: (1) a discussion of high-redshift candidates (z>4.5) and (2) a study of very small galaxies at intermediate redshifts, both sets being detected in the region of the northern Hubble Deep Field (HDF) covered by the deep NICMOS observations at 1.6 and 1.1 μm. The high-redshift candidates are just those with redshift z>4.5 as given in the recent catalog of Thompson, Weymann, and Storrie-Lombardi, while the ``small galaxy'' sample is defined to be those objects with isophotal area <=0.2 arcsec2 and with photometric redshift 1<=z<=4.5. Of the 19 possible high-redshift candidates listed in the Thompson et al. catalog, 11 have (nominal) photometric redshifts less than 5.0. Of these, however, only four are ``robust'' in the sense of yielding high redshifts when the fluxes are randomly perturbed with errors comparable to the estimated measuring error in each wave band. For the eight other objects with nominal photometric redshifts greater than 5.0, one (WFPC2 4-473) has a published spectroscopic redshift. Of the remaining seven, four are robust in the sense indicated above. Two of these form a close pair (NIC 586 and NIC 107). The redshift of the object having formally the highest redshift, at 6.56 (NIC 118=WFPC2 4-601), is problematic, since F606W and F814W flux are clearly present, and the nature of this object poses a dilemma. Previous work by Colley et al. has suggested that compact sources in the WFPC2 HDF images are subgalactic components at redshifts z>0.5 since they are correlated on scales less than 1", corresponding to physical scales of less than 8 kpc (H0=65 km s-1 Mpc-1, q0=0.125). We confirm these correlations in the WFPC2 data. However, we do not detect the correlation of close pairs of galaxies on small scales in the ~0.65 arcmin2 region of the HDF that we surveyed with NICMOS. The smaller area surveyed and lower resolution will make any real correlation more difficult to measure in these data. We have examined

  16. Counts and Sizes of Galaxies in the Hubble Deep Field South: Implications for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Satyapal, Shobita

    2000-06-01

    Science objectives for the Next Generation Space Telescope (NGST) include a large component of galaxy surveys, both imaging and spectroscopy. The Hubble Deep Field data sets include the deepest observations ever made in the ultraviolet, optical, and near-infrared, reaching depths comparable to that expected for NGST spectroscopy. We present the source counts, galaxy sizes, and isophotal filling factors of the Hubble Deep Field South (HDF-S) images. The observed integrated galaxy counts reach over 500 galaxies per square arcminute at magnitudes AB < 30. We extend these counts to fainter levels and further into the infrared using galaxy-count models. It was determined from the HDF (North) and other deep Wide Field Planetary Camera 2 imaging that fainter galaxies are smaller. This trend continues to AB=29 in the high-resolution HDF-S Space Telescope Imaging Spectrograph (STIS) image, where galaxies have a typical half-light radius of 0.1". We have run extensive Monte Carlo simulations of the galaxy detection in the HDF-S, and we show that the small measured sizes are not due to selection effects until AB > 29. We compare observed sizes in the optical and near-infrared using the HDF-S Near Infrared Camera and Multi-Object Spectrometer image, showing that after taking into account the different point-spread functions and pixel sizes of the images, galaxies are smaller in the near-infrared than they are in the optical. We analyze the isophotal filling factor of the HDF-S STIS image and show that this image is mostly empty sky even at the limits of galaxy detection, a conclusion we expect to hold true for NGST spectroscopy. At the surface brightness limits expected for NGST imaging, however, about a quarter of the sky is occupied by the outer isophotes of AB < 30 galaxies, requiring deblending to detect the faintest objects. We discuss the implications of these data on several design concepts for the NGST near-infrared spectrography. We compare the effects of resolution

  17. VizieR Online Data Catalog: Galaxies in the field of MACS J1206.2-0847 (Ebeling+, 2009)

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Ma, C. J.; Kneib, J.-P.; Jullo, E.; Courtney, N. J. D.; Barrett, E.; Edge, A. C.; Le Borgne, J.-F.

    2015-07-01

    Spectroscopic observations of presumed cluster galaxies as well as of the giant arc in MACS J1206.2-0847 were performed with the FORS1 spectrograph in multi-object spectroscopy mode at the UT3 Melipal telescope of the VLT on 2002 April 11. Additional multi-object spectroscopy of colour-selected galaxies in the field of MACS J1206.2-0847 was performed on 2003 May 8, using the multi-object (MOS) spectrograph on the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. (1 data file).

  18. An Integral View on Virgo and Field Dwarf Elliptical Galaxies: Late-Type Origin and Environmental Transformations

    NASA Astrophysics Data System (ADS)

    Rys, Agnieszka; Falcon-Barroso, J.; van de Ven, G.

    2013-01-01

    Dwarf elliptical galaxies (dEs) are the most common galaxy class in dense environments. They are also a surprisingly inhomogenous class, which has made it challenging both to relate different dE subtypes to each other, as well as place the whole class in the larger context of galaxy assembly and (trans)formation processes. Here we will show the effects of environmental evolution on Virgo Cluster and field dEs, presenting the first large-scale integral-field spectroscopic (SAURON) data for this galaxy class. Our sample consists of 12 galaxies and no two of them are alike. We find that the level of rotation is not tied to flattening; we observe kinematic twists; we discover large-scale kinematically-decoupled components; we see varying gradients in line-strength maps. This great variety of morphological, kinematic, and stellar population parameters supports the claim that dEs are defunct dwarf spiral/irregular galaxies and points to a formation scenario that allows for a stochastic shaping of galaxy properties. The combined influence of ram-pressure stripping and harassment fulfils this requirement, still, their exact impact is not yet understood. We thus further investigate the properties of our sample by performing a detailed comprehensive analysis of its kinematic, dynamical, and stellar population properties. We infer the total (dark and baryonic) matter distribution by fitting the observed stellar velocity and velocity dispersion with the solutions of the Jeans equations. We obtain 2D age, metallicity, and enrichment information from line-strength analysis. We then tie these results to the galaxies' intrinsic (i.e. deprojected) locations in the cluster with the use of surface-brightness fluctuation distances. This step is essential to providing unbiased correlations with the local environment density. We show that the dark matter fraction, unlike the level of rotational support, appears to correlate with the clustrocentric distance, and that our dwarfs have

  19. Near-Infrared Galaxy Counts and Evolution from the Wide-Field ALHAMBRA Survey

    NASA Astrophysics Data System (ADS)

    Cristóbal-Hornillos, D.; Aguerri, J. A. L.; Moles, M.; Perea, J.; Castander, F. J.; Broadhurst, T.; Alfaro, E. J.; Benítez, N.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Fernández-Soto, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Márquez, I.; Martínez, V. J.; Masegosa, J.; del Olmo, A.; Prada, F.; Quintana, J. M.; Sánchez, S. F.

    2009-05-01

    The ALHAMBRA survey aims to cover 4 deg2 using a system of 20 contiguous, equal width, medium-band filters spanning the range 3500 Å-9700 Å plus the standard JHKs filters. Here we analyze deep near-IR number counts of one of our fields (ALH08) for which we have a relatively large area (0.5 deg2) and faint photometry (J = 22.4, H = 21.3, and K = 20.0 at the 50% of recovery efficiency for point-like sources). We find that the logarithmic gradient of the galaxy counts undergoes a distinct change to a flatter slope in each band: from 0.44 at [17.0, 18.5] to 0.34 at [19.5, 22.0] for the J band; for the H band 0.46 at [15.5, 18.0] to 0.36 at [19.0, 21.0], and in Ks the change is from 0.53 in the range [15.0, 17.0] to 0.33 in the interval [18.0, 20.0]. These observations together with faint optical counts are used to constrain models that include density and luminosity evolution of the local type-dependent luminosity functions. Our models imply a decline in the space density of evolved early-type galaxies with increasing redshift, such that only 30%-50% of the bulk of the present day red ellipticals was already in place at z ~ 1. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).

  20. Keck Deep Fields. IV. Luminosity-dependent Clustering and Galaxy Downsizing in UV-selected Galaxies at z = 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Savoy, Jonathan; Sawicki, Marcin; Thompson, David; Sato, Taro

    2011-08-01

    We investigate the luminosity-dependent clustering of rest-frame UV-selected galaxies at z ~ 4, 3, 2.2, and 1.7 in the Keck Deep Fields, which are complete to {R} = 27 and cover 169 arcmin2. We find that at z ~ 4 and 3, UV-bright galaxies cluster more strongly than UV-faint ones, but at z ~ 2.2 and 1.7, the UV-bright galaxies are no longer the most strongly clustered. We derive mass estimates for objects in our sample by comparing our measurements to the predicted clustering of dark matter halos in the Millennium Simulation. From these estimates, we infer relationships between halo mass and star formation rate (SFR), and find that the most massive dark matter halos in our sample host galaxies with high SFRs (M 1700 < -20, or >50 M sun yr-1) at z ~ 3 and 4, moderate SFRs (-20 < M 1700 < -19, or ~20 M sun yr-1) at z ~ 2.2, and lower SFRs (-19 < M 1700 < -18, or ~2 M sun yr-1) at z ~ 1.7. We believe our measurements may provide a new line of evidence for galaxy downsizing by extending that concept from stellar to halo mass. We also find that the objects with blue UV colors in our sample are much more strongly clustered than those with red UV colors, and we propose that this may be due to the presence of the 2175 Å dust absorption bump in more massive halos, which contain the older stellar populations and dust needed to produce the feature. The relatively small area covered by the survey means that the absolute values of the correlation lengths and halo masses we derive are heavily dependent on the "integral constraint" correction, but the uniformly deep coverage across a large-redshift interval allows us to detect several important trends that are independent of this correction. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  1. KECK DEEP FIELDS. IV. LUMINOSITY-DEPENDENT CLUSTERING AND GALAXY DOWNSIZING IN UV-SELECTED GALAXIES AT z = 4, 3, AND 2

    SciTech Connect

    Savoy, Jonathan; Sawicki, Marcin; Sato, Taro; Thompson, David

    2011-08-20

    We investigate the luminosity-dependent clustering of rest-frame UV-selected galaxies at z {approx} 4, 3, 2.2, and 1.7 in the Keck Deep Fields, which are complete to R = 27 and cover 169 arcmin{sup 2}. We find that at z {approx} 4 and 3, UV-bright galaxies cluster more strongly than UV-faint ones, but at z {approx} 2.2 and 1.7, the UV-bright galaxies are no longer the most strongly clustered. We derive mass estimates for objects in our sample by comparing our measurements to the predicted clustering of dark matter halos in the Millennium Simulation. From these estimates, we infer relationships between halo mass and star formation rate (SFR), and find that the most massive dark matter halos in our sample host galaxies with high SFRs (M{sub 1700} < -20, or >50 M{sub sun} yr{sup -1}) at z {approx} 3 and 4, moderate SFRs (-20 < M{sub 1700} < -19, or {approx}20 M{sub sun} yr{sup -1}) at z {approx} 2.2, and lower SFRs (-19 < M{sub 1700} < -18, or {approx}2 M{sub sun} yr{sup -1}) at z {approx} 1.7. We believe our measurements may provide a new line of evidence for galaxy downsizing by extending that concept from stellar to halo mass. We also find that the objects with blue UV colors in our sample are much more strongly clustered than those with red UV colors, and we propose that this may be due to the presence of the 2175 A dust absorption bump in more massive halos, which contain the older stellar populations and dust needed to produce the feature. The relatively small area covered by the survey means that the absolute values of the correlation lengths and halo masses we derive are heavily dependent on the 'integral constraint' correction, but the uniformly deep coverage across a large-redshift interval allows us to detect several important trends that are independent of this correction.

  2. The most distant galaxy clusters in the SPT Spitzer Deep Field Survey

    NASA Astrophysics Data System (ADS)

    Rettura, Alessandro; Stanford, S. A.; Stern, D.; Mei, S.; Brodwin, M.; Gonzalez, A. H.; Gettings, D.; Ashby, M.; Bartlett, J.; Rosati, P.

    2014-01-01

    We present a sample of more than 300 galaxy cluster candidates at z>1.3 selected within 94 deg2 from the Spitzer SPT Deep Field (SSDF) survey. To discover distant clusters at z>1.3, we have used a three-filter algorithm based upon Spitzer/IRAC color ([3.6]-[4.5]>-0.1,AB) combined with a non-detection in shallow optical data. Our sample is selected to be a complete stellar mass-limited sample at z>1.3 and therefore has a well defined survey volume. The uniqueness of SSDF resides not just in its area, one of the very largest with Spitzer, but also in its coverage by deep observations for the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). Deeper observations are also planned with the new SPT camera, SPTpol, that will reach, for the first time, SZ clusters up to 2 (George et al., 2012). This field also has deep X-ray observations from the XMM XXL Survey (Pierre et al., 2012). Thanks to this rich data set, we will be able to determine accurate cluster masses for the vast majority of our SSDF clusters at 1.3

  3. The Arecibo Galaxy Environment Survey: Observations towards the NGC 7817/7798 Galaxy Pair

    NASA Astrophysics Data System (ADS)

    Harrison, Amanda; Robert Minchin

    2016-01-01

    The Arecibo Galaxy Environment Survey (AGES) examines the environment of neutral hydrogen gas in the interstellar medium. AGES uses the 305m Arecibo Radio Telescope and the Arecibo L-Band Feed Array to create a deep field neutral hydrogen survey which we used to detect galaxies in an area five square degrees around the galaxy pair NGC 7817/7798. By finding and investigating hydrogen rich galaxies we hope to gain a better understanding of how the environment affects galaxy evolution. H1 line profiles were made for the detected H1 emission and ten galaxies which had the characteristic double-horned feature were found. NGC 7798 was not detected, but NGC 7817 and the other galaxies were cross-identified in NASA/IPAC Extragalactic Database as well as in Sloan Digital Sky Survey to obtain optical data. Out of the ten, two of the sources were uncatalogued. We analyzed the hydrogen spectra and aperture photometry to learn about the characteristics of these galaxies such as their heliocentric velocity, flux, and mass of the neutral hydrogen. Furthermore, we graphed the Tully-Fisher and the Baryonic Tully-Fisher of the ten sources and found that most followed the relation. One that is the biggest outlier is suspected be a galaxy cluster while other outliers may be caused by ram pressure stripping deforming the galaxy.

  4. On the Frontier of the Hunt for Jellyfish Galaxies: Ram-Pressure Stripping in the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    McPartland, Conor; Ebeling, Harald

    2015-08-01

    Using quantitative morphological selection criteria, we search for evidence of galaxies experiencing ram-pressure stripping (RPS) in the Hubble Frontier Fields. The broader areal coverage of these clusters, provided by the complementary parallel fields, allow us to sample regions near to the expected stripping radius of the cluster (˜1 Mpc), where we expect to find the highest density of events. Expanding the number of known events (especially at large cluster-centric radii) will allow us to disentangle the relative contributions of "normal" galaxy infall and cluster mergers in producing the events we observe. We present observational characteristics of the best RPS candidates from the Frontier Fields. Finally, we use these objects, along with RPS events previously identified in the literature, to make quantitative comparisons with predictions of theoretical and numerical models of ram-pressure stripping.

  5. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes

    SciTech Connect

    Hanna, Chad; Mandel, Ilya; Vousden, Will E-mail: imandel@star.sr.bham.ac.uk

    2014-03-20

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ∼10-100 deg{sup 2}; this presents a challenge for following up GW signals from compact binary mergers. Even for wide-field instruments, tens or hundreds of pointings may be required. Prioritizing pointings based on the relative probability of successful imaging is important since it may not be possible to tile the entire gravitational-wave localization region in a timely fashion. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The relatively limited range of initial GW instruments meant that few galaxies were present per pointing and galaxy catalogs were complete within the search volume. The next generation of GW detectors will have a 10-fold increase in range thereby increasing the expected number of galaxies per unit solid angle by a factor of ∼1000. As an additional complication, catalogs will be highly incomplete. Nevertheless, galaxy catalogs can still play an important role in prioritizing pointings for the next era of GW searches. We show how to quantify the advantages of using galaxy catalogs to prioritize wide-field follow-ups as a function of only two parameters: the three-dimensional volume within the field of view of a telescope after accounting for the GW distance measurement uncertainty, and the fraction of the GW sky localization uncertainty region that can be covered with telescope pointings. We find that the use of galaxy catalogs can improve the probability of successful imaging by ∼10% to ∼300% relative to follow-up strategies that

  6. A VLT VIMOS integral-field spectroscopic study of perturbed blue compact galaxies: UM 420 and UM 462

    NASA Astrophysics Data System (ADS)

    James, B. L.; Tsamis, Y. G.; Barlow, M. J.

    2010-01-01

    We report on optical integral-field spectroscopy of two unrelated blue compact galaxies mapped with the 13× 13 arcsec2 Visible Multi-Object Spectrograph integral field unit at a resolution of 0.33× 0.33 arcsec2. Continuum and background subtracted emission line maps in the light of [OIII] λ5007, Hα and [NII] λ6584 are presented. Both galaxies display signs of ongoing perturbation and/or interaction. UM 420 is resolved for the first time to be a merging system composed of two starbursting components with an `arm-like' structure associated with the largest component. UM 462 which is a disrupted system of irregular morphology is resolved into at least four starbursting regions. Maps of the Hα radial velocity and full width at half-maximum are discussed. No underlying broad-line region was detected from either galaxy as the emission lines are well fitted with single Gaussian profiles only. Electron temperatures and densities as well as the abundances of helium, oxygen, nitrogen and sulphur were computed from spectra integrated over the whole galaxies and for each area of recent star formation. Maps of the O/H ratio are presented: these galaxies show oxygen abundances that are ~20 per cent solar. No evidence of substantial abundance variations across the galaxies that would point to significant nitrogen or oxygen self-enrichment is found (<~0.2 dex limit). Contrary to previous observations, this analysis does not support the classification of these blue compact dwarf galaxies as Wolf-Rayet galaxies as the characteristic broad-emission-line features have not been detected in our spectra. Baldwin-Phillips-Terlevich emission-line-ratio diagrams which were constructed on a pixel-by-pixel basis indicate that the optical spectra of these systems are predominantly excited by stellar photoionization. Based on observations collected at the European Southern Observatory (ESO), Chile, under programmes 078.B-0353(B, E). E-mail: bj@star.ucl.ac.uk

  7. GALAXYCOUNT: a JAVA calculator of galaxy counts and variances in multiband wide-field surveys to 28 AB mag

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Bland-Hawthorn, J.

    2007-05-01

    We provide a consistent framework for estimating galaxy counts and variances in wide-field images for a range of photometric bands. The variances include both Poissonian noise and variations due to large-scale structure. We demonstrate that our statistical theory is consistent with the counts in the deepest multiband surveys available. The statistical estimates depend on several observational parameters (e.g. seeing, signal-to-noise ratio), and include a sophisticated treatment of detection completeness. The JAVA calculator is freely available1 and offers the user the option to adopt our consistent framework or a different scheme. We also provide a summary table of statistical measures in the different bands for a range of different fields of view. Reliable estimation of the background counts has profound consequences in many areas of observational astronomy. We provide two such examples. One is from a recent study of the Sculptor galaxy NGC300 where stellar photometry has been used to demonstrate that the outer disc extends to 10 effective radii, far beyond what was thought possible for a normal low-luminosity spiral. We confirm this finding by a re-analysis of the background counts. Secondly, we determine the luminosity function of the galaxy cluster Abell 2734, both through spectroscopically determined cluster membership, and through statistical subtraction of the background galaxies using the calculator and offset fields. We demonstrate very good agreement, suggesting that expensive spectroscopic follow-up, or off-source observations, may often be bypassed via determination of the galaxy background with GALAXYCOUNT.

  8. THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745

    SciTech Connect

    Schmidt, K. B.; Treu, T.; Wang, X.; Jones, T. A.; Mason, C.; Brammer, G. B.; Stiavelli, M.; Bradač, M.; Hoag, A.; Dijkstra, M.; Dressler, A.; Fontana, A.; Pentericci, L.; Gavazzi, R.; Henry, A. L.; Kelly, P. L.; Malkan, M. A.; Poggianti, B.; Trenti, M.; Von der Linden, A.; and others

    2014-02-20

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z ≳ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z ≳ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ∼5 × 10{sup –18} erg s{sup –1} cm{sup –2}. Taking lensing magnification into account, our flux sensitivity reaches ∼0.2-5 × 10{sup –18} erg s{sup –1}cm{sup –2}. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.

  9. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  10. The Stellar Content of the COSMOS Field as Derived from Morphological and SED-based Star/Galaxy Separation

    NASA Astrophysics Data System (ADS)

    Robin, A. C.; Rich, R. M.; Aussel, H.; Capak, P.; Tasca, L. A. M.; Jahnke, K.; Kakazu, Y.; Kneib, J.-P.; Koekemoer, A.; Leauthaud, A. C.; Lilly, S.; Mobasher, B.; Scoville, N.; Taniguchi, Y.; Thompson, D. J.

    2007-09-01

    We report on the stellar content of the COSMOS two degree field, as derived from a rigorous star-galaxy separation approach developed for using stellar sources to define the point-spread function variation map used in a study of weak galaxy lensing. The catalog obtained in one filter from the ACS (Advanced Camera for Surveys on the Hubble Space Telescope) is cross-identified with ground-based multiwavelength catalogs obtained using the Suprime-Cam instrument on the Subaru Telescope, which makes possible detailed spectral energy distribution (SED) fitting in order to separate stars from QSOs and compact galaxies. The classification is reliable to magnitude F814W=24, and the sample is complete even fainter. We construct a color-magnitude diagram and color histograms and compare them with predictions of a standard model of population synthesis at (l,b)=(236.816deg,+42.12deg). We find features corresponding to the halo subdwarf main-sequence turnoff, the thick disk, and the thin disk. We propose improvements to the standard model that give a better fit: this data set provides constraints on the thick disk and spheroid density laws and on the initial mass function at low mass, although complementary lines of sight would help in lifting the degeneracy between model parameters as well as mitigating any variations in the stellar populations. The depth of this survey makes it possible to explore the spheroid up to distances of ~80 kpc; we find no evidence of a sharp spheroid edge out to this distance, which corresponds to a galactocentric radius of 83 kpc. We identify a blue population of white dwarfs with counts that agree with model predictions. We find a hint for a possible slight stellar overdensity at about 22-34 kpc, but the data are not strong enough at present to claim detection of a stream feature in the halo. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of

  11. Investigating the Clustering and Color of Galaxies in the COMBO-17 Chandra Deep Field South Survey and Possible Effects on Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Davis, Benjamin L.; Berlanga Medina, J. E.; Shields, D. W.; Kennefick, J.; Kennefick, D.; Berrier, J.; Seigar, M. S.; Lacy, C. H. S.; AGES

    2010-01-01

    Recent studies by the Arkansas Galaxy Evolution Survey (AGES) collaboration have shown that there is a strong correlation between the pitch angles of field spiral galaxies and the mass of the galaxy's supermassive black holes (SMBHs). For this reason, we are interested in the consistency of measures of average pitch angle across galaxies in different environments. Since galaxies in clusters are more susceptible to galaxy harassment and other effects, we are particularly interested in whether environmental pressures in clusters may have an effect on pitch angle. We have measured the pitch angles of 125 galaxies lying in the Chandra Deep Field South (CDFS). Upon cross-referencing this set with the larger COMBO-17 Survey, we identified several over-dense regions which have been identified as possible clusters in recent literature. Initial results show that when comparing the pitch angle of galaxies in and out of over-dense regions, there seems to be little to no difference on average, suggesting environmental effect of clusters on pitch angle may be limited. Additionally, there appears to be no appreciable difference between the pitch angles of red and blue galaxies at this point in our study. We also plan to look for evidence of variation of pitch angle with cluster age. This work is funded in part by a grant from NASA EPSCoR.

  12. Multi - Wavelength Analysis of Intermediate Class Absorption Line Galaxies in CFHTLS Field

    NASA Astrophysics Data System (ADS)

    Baburao Pandge, Mahadev

    2015-08-01

    We present optical and X-ray analysis of a sample of some absorption line galaxies (ALGs). These galaxies are lie in the redshift range 0.14 < z < 0.34 and have X-ray luminosities L{0.5-10keV} = 1041-1043 erg s-1. The distribution of log (fX/fO) imply that these objects are intermediate class objects, i.e. lie between normal and classical active galaxies. From X-ray analysis of two of the intermediate class galaxies, namely ALG2 and ALG3, exhibit extended nature, perhaps linked with their cluster environment. Thus, from the X-ray spectral and optical imaging analysis, it is likely that all the targeted ALGs studied here can be the group/cluster candidates. Hardness ratio of these 5 candidates is found to be -0.42 \\pm 0.10, consistent with that reported for galaxies.

  13. Frontier Fields: Subaru Weak-Lensing Analysis of the Merging Galaxy Cluster A2744

    NASA Astrophysics Data System (ADS)

    Medezinski, Elinor; Umetsu, Keiichi; Okabe, Nobuhiro; Nonino, Mario; Molnar, Sandor; Massey, Richard; Dupke, Renato; Merten, Julian

    2016-01-01

    We present a weak-lensing analysis of the merging Frontier Fields (FF) cluster Abell 2744 using new Subaru/Suprime-Cam imaging. The wide-field lensing mass distribution reveals this cluster is comprised of four distinct substructures. Simultaneously modeling the two-dimensional reduced shear field using a combination of a Navarro-Frenk-White (NFW) model for the main core and truncated NFW models for the subhalos, we determine their masses and locations. The total mass of the system is constrained as {M}200{{c}}=(2.06+/- 0.42)× {10}15 {M}⊙ . The most massive clump is the southern component with {M}200{{c}}=(7.7+/- 3.4)× {10}14 {M}⊙ , followed by the western substructure ({M}200{{c}}=(4.5+/- 2.0)× {10}14 {M}⊙ ) and two smaller substructures to the northeast ({M}200{{c}}=(2.8+/- 1.6)× {10}14 {M}⊙ ) and northwest ({M}200{{c}}=(1.9+/- 1.2)× {10}14 {M}⊙ ). The presence of the four substructures supports the picture of multiple mergers. Using a composite of hydrodynamical binary simulations we explain this complicated system without the need for a “slingshot” effect to produce the northwest X-ray interloper, as previously proposed. The locations of the substructures appear to be offset from both the gas ({87}-28+34 arcsec, 90% CL) and the galaxies ({72}-53+34 arcsec, 90% CL) in the case of the northwestern and western subhalos. To confirm or refute these findings, high resolution space-based observations extending beyond the current FF limited coverage to the west and northwestern area are essential. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.

  14. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    SciTech Connect

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  15. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    SciTech Connect

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.; and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  16. VEGAS: A VST Early-type GAlaxy Survey. I. Presentation, wide-field surface photometry, and substructures in NGC 4472

    NASA Astrophysics Data System (ADS)

    Capaccioli, Massimo; Spavone, Marilena; Grado, Aniello; Iodice, Enrichetta; Limatola, Luca; Napolitano, Nicola R.; Cantiello, Michele; Paolillo, Maurizio; Romanowsky, Aaron J.; Forbes, Duncan A.; Puzia, Thomas H.; Raimondo, Gabriella; Schipani, Pietro

    2015-09-01

    Context. We present the VST Early-type GAlaxy Survey (VEGAS), which is designed to obtain deep multiband photometry in g,r,i, of about one hundred nearby galaxies down to 27.3, 26.8, and 26 mag/arcsec2 respectively, using the ESO facility VST/OmegaCAM. Aims: The goals of the survey are 1) to map the light distribution up to ten effective radii, re; 2) to trace color gradients and surface brightness fluctuation gradients out to a few re for stellar population characterization; and 3) to obtain a full census of the satellite systems (globular clusters and dwarf galaxies) out to 20% of the galaxy virial radius. The external regions of galaxies retain signatures of the formation and evolution mechanisms that shaped them, and the study of nearby objects enables a detailed analysis of their morphology and interaction features. To clarify the complex variety of formation mechanisms of early-type galaxies (ETGs), wide and deep photometry is the primary observational step, which at the moment has been pursued with only a few dedicated programs. The VEGAS survey has been designated to provide these data for a volume-limited sample with exceptional image quality. Methods: In this commissioning photometric paper we illustrate the capabilities of the survey using g- and i-band VST/OmegaCAM images of the nearby galaxy NGC 4472 and of smaller ETGs in the surrounding field. Results: Our surface brightness profiles reach rather faint levels and agree excellently well with previous literature. Genuine new results concern the detection of an intracluster light tail in NGC 4472 and of various substructures at increasing scales. We have also produced extended (g - i) color profiles. Conclusions: The VST/OmegaCAM data that we acquire in the context of the VEGAS survey provide a detailed view of substructures in the optical emission from extended galaxies, which can be as faint as a hundred times below the sky level. Appendices are available in electronic form at http://www.aanda.org

  17. Precise Strong Lensing Mass Modeling of Four Hubble Frontier Field Clusters and a Sample of Magnified High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Kawamata, Ryota; Oguri, Masamune; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Ouchi, Masami

    2016-03-01

    We conduct precise strong lensing mass modeling of four Hubble Frontier Field (HFF) clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, for which HFF imaging observations are completed. We construct a refined sample of more than 100 multiple images for each cluster by taking advantage of the full-depth HFF images, and conduct mass modeling using the glafic software, which assumes simply parametrized mass distributions. Our mass modeling also exploits a magnification constraint from the lensed SN Ia HFF14Tom for Abell 2744 and positional constraints from the multiple images S1-S4 of the lensed supernova SN Refsdal for MACS J1149.6+2223. We find that our best-fitting mass models reproduce the observed image positions with rms errors of ˜0.″4, which are smaller than rms errors in previous mass modeling that adopted similar numbers of multiple images. Our model predicts a new image of SN Refsdal with a relative time delay and magnification that are fully consistent with a recent detection of reappearance. We then construct catalogs of z ˜ 6-9 dropout galaxies behind the four clusters and estimate magnification factors for these dropout galaxies with our best-fitting mass models. The dropout sample from the four cluster fields contains ˜120 galaxies at z ≳ 6, about 20 of which are predicted to be magnified by a factor of more than 10. Some of the high-redshift galaxies detected in the HFF have lensing-corrected magnitudes of MUV ˜ -15 to -14. Our analysis demonstrates that the HFF data indeed offer an ideal opportunity to study faint high-redshift galaxies. All lensing maps produced from our mass modeling will be made available on the Space Telescope Science Institute website (https://archive.stsci.edu/prepds/frontier/lensmodels/).

  18. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M 82

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Miyamoto, Yusuke; Yamauchi, Aya; Tsuru, Takeshi G.

    2013-06-01

    We present large-field (15.7 × 16.9 arcmin2) CO(J = 1→0) observations of the starburst galaxy M 82, at an angular resolution of 22" with the NRO 45-m telescope. The CO emission was detected in the galactic disk, outflow (driven by the galactic wind) up to ˜2 kpc above the galactic plane in the halo, and in tidal streams. The kinematics of the outflow (including CO line splitting) suggests that it has the shape of a cylinder that is diverging outwards. The mass and kinetic energy of the molecular gas outflow are estimated to be (0.26-1.0) × 109 M⊙ and (1-4) × 1056 erg. A clump of CO gas was discovered 3.5 kpc above the galactic plane; it coincides with a dark lane previously found in X-ray observations, and a peak in H I emission. A comparison with H I, hot molecular hydrogen and dust suggests that the molecular gas shows signatures of warm and cool components in the outflow and tidal streams, respectively.

  19. Filaments from the galaxy distribution and from the velocity field in the local universe

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Tempel, Elmo; Hoffman, Yehuda; Tully, R. Brent; Courtois, Hélène

    2015-10-01

    The cosmic web that characterizes the large-scale structure of the Universe can be quantified by a variety of methods. For example, large redshift surveys can be used in combination with point process algorithms to extract long curvilinear filaments in the galaxy distribution. Alternatively, given a full 3D reconstruction of the velocity field, kinematic techniques can be used to decompose the web into voids, sheets, filaments and knots. In this Letter, we look at how two such algorithms - the Bisous model and the velocity shear web - compare with each other in the local Universe (within 100 Mpc), finding good agreement. This is both remarkable and comforting, given that the two methods are radically different in ideology and applied to completely independent and different data sets. Unsurprisingly, the methods are in better agreement when applied to unbiased and complete data sets, like cosmological simulations, than when applied to observational samples. We conclude that more observational data is needed to improve on these methods, but that both methods are most likely properly tracing the underlying distribution of matter in the Universe.

  20. On the Nature of the Eclipsing Bright X-ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Wu, K.; Tennant, A. F.; Swartz, D. A.

    2003-01-01

    The X-ray spectrum and light curve of the bright source CG X-1 in the field of the Circinus galaxy are re-examined. Previous analyses have concluded that the source is an accreting black hole of about 50 solar masses although it was noted that the light curve resembles that of an AM Her-type system. Here we show that the light curve and orbital dynamics constrain the mass of the compact object to less than 30 solar masses and the mass of the companion to less than 1 solar mass. Combining the mass constraints with the observed X-ray flux, we show that an accreting object must either radiate anisotropically or strongly violate the Eddington limit. If the emission is beamed, then the companion star, which intercepts this flux during eclipse, will be driven out of thermal equilibrium and evaporate within approx. 103 yr. We find, therefore, that the observations are most consistent with the interpretation of CG X-1 as a bright, long-period, AM Her system in the Milky Way.

  1. What are the mechanical degrees of freedom of the Dirac field?

    SciTech Connect

    Garcia-Chung, Angel A.; Morales-Tecotl, Hugo A.

    2012-08-24

    The study of the behavior of quantum fields at very high energies, possibly at the Planck scale, is an open problem today. Recent attempts by Hossain et al explore a polymer quantized scalar field in which the canonical algebra of the tower of oscillators making up the field is replaced by the polymer one, inspired in loop quantum gravity. A smoking gun of such a quantization appears in the form of deformed dispersion relations at very high energies and hence in the corresponding propagator. In this work we provide some steps towards the generalization of these results to a Dirac field. In particular we use a Fourier decomposition to look for the analogue of the oscillators of the scalar field. It turns out the corresponding energy spectrum can be intepreted as containing for each mode the contribution of four Fermi oscillators.

  2. NIR/Optical observations of the GOODS-S field . Tracing the mass assembly history of galaxies

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Fontana, A.; De Santis, C.; Salimbeni, S.; Nonino, M.; Giallongo, E.; Gallozzi, S.; Menci, N.; Vanzella, E.; Cristiani, S.

    The GOODS Survey (Great Observatory Origin Deep Survey) is providing unprecedented valuable data in the optical-NIR bands to investigate galaxies up to the extreme redshifts (z˜7) over a relatively large area of the sky. The survey is the result of a combined effort of space observatories (HST, Spitzer) as well as ground based telescopes (Keck, VLT). Using this public dataset, and focusing in particular on the VLT data in the Chandra Deep Field South region, we have produced a high quality multicolor catalog (from the U to the Ks band) for ˜14000 galaxies over an area of 135 sq. arcmin, complete to both Z(AB)=26 and Ks(AB)=24 magnitudes. To optimally match the HST high resolution images with the ground-based ones, we have designed a software for high precision photometry (ConvPhot) and an SQL database to manage properly this Multi Wavelength Catalog. This survey will give a uniquely comprehensive history of galaxies, from early epochs to the relatively recent past: at this purpose, we are focusing the attention on the Distant Red Galaxy (DRG) population at z˜1-3 to shed light on their still unclear nature and to avoid cosmic variance thanks to the large and deep area investigated. We will finally discuss how this work is useful to prepare future surveys with the LBC instrument at the LBT telescope.

  3. Integral field spectroscopy of extended Lyα emission from the DLA galaxy in Q2233+131

    NASA Astrophysics Data System (ADS)

    Christensen, L.; Sánchez, S. F.; Jahnke, K.; Becker, T.; Wisotzki, L.; Kelz, A.; Popović, L. Č.; Roth, M. M.

    2004-04-01

    This paper presents observations of an extended Lyman-α emission nebula surrounding the galaxy responsible for the Damped Lyman-α Absorption (DLA) line in the spectrum of the quasar Q2233+131. With the Potsdam Multi Aperture Spectrophotometer (PMAS) we measure the properties of the extended Lyα emission in an area of 3 arcsec × 5 arcsec having a total line flux of (2.8 ± 0.3) × 10-16 erg cm-2 s-1, which at redshift z=3.15 corresponds to a luminosity of (2.4-0.2+0.3)×1043 erg s-1 and a size of 23 × 38 kpc. The location of the emission is spatially coincident with the previously detected DLA galaxy, but extends significantly beyond its limb. We argue that the Lyα emission is likely to be caused by an outflow from the DLA galaxy, presumably powered by star formation. In the case of negligible dust extinction, the Lyα luminosity indicates a star-formation rate of 19 ± 10 M⊙ yr-1 consistent with that derived from the UV continuum flux from the parent galaxy. The wind velocity indicated by the integral field spectra is of the order of several hundred km s-1. We find no indication of emission originating in a rotating disk.

  4. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  5. X-ray observations of dust obscured galaxies in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.

    2016-08-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra deep field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields, the Chandra deep field north (CDF-N), and the Chandra deep field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT

  6. The Chandra Deepest Fields in the Infrared: Making the Connection between Normal Galaxies and AGN

    NASA Astrophysics Data System (ADS)

    Grogin, N. A.; Ferguson, H. C.; Dickinson, M. E.; Giavalisco, M.; Mobasher, B.; Padovani, P.; Williams, R. E.; Chary, R.; Gilli, R.; Heckman, T. M.; Stern, D.; Winge, C.

    2001-12-01

    Within each of the two Chandra Deepest Fields (CDFs), there are ~10'x15' regions targeted for non-proprietary, deep SIRTF 3.6--24μ m imaging as part of the Great Observatories Origins Deep Survey (GOODS) Legacy program. In advance of the SIRTF observations, the GOODS team has recently begun obtaining non-proprietary, deep ground-based optical and near-IR imaging and spectroscopy over these regions, which contain virtually all of the current ≈1 Msec CXO coverage in the CDF North and much of the ≈1 Msec coverage in the CDF South. In particular, the planned depth of the near-IR imaging (JAB ~ 25.3; HAB ~ 24.8; KAB ~ 24.4) combined with the deep Chandra data can allow us to trace the evolutionary connection between normal galaxies, starbursts, and AGN out to z ~ 1 and beyond. We describe our CDF Archival program, which is integrating these GOODS-supporting observations together with the CDF archival data and other publicly-available datasets in these regions to create a multi-wavelength deep imaging and spectroscpic database available to the entire community. We highlight progress toward near-term science goals of this program, including: (a) pushing constraints on the redshift distribution and spectral-energy distributions of the faintest X-ray sources to the deepest possible levels via photometric redshifts; and (b) better characterizing the heavily-obscured and the high-redshift populations via both a near-IR search for optically-undetected CDF X-ray sources and also X-ray stacking analyses on the CXO-undetected EROs in these fields.

  7. Young galaxy candidates in the Hubble Frontier Fields. I. A2744

    SciTech Connect

    Zheng, Wei; Ford, Holland C.; Huang, Xingxing; Shu, Xinwen; Zitrin, Adi; Broadhurst, Tom; Kelson, Daniel D.; Smit, Renske

    2014-11-01

    We report the discovery of 24 Lyman-break candidates at 7 ≲ z ≲ 10.5, in the Hubble Frontier Fields (HFF) imaging data of A2744 (z = 0.308), plus Spitzer/IRAC data and archival ACS data. The sample includes a triple image system with a photometric redshift of z ≅ 7.4. This high redshift is geometrically confirmed by our lens model corresponding to deflection angles that are 12% larger than the lower-redshift systems used to calibrate the lens model at z = 2.019. The majority of our high-redshift candidates are not expected to be multiply lensed given their locations in the image plane and the brightness of foreground galaxies, but are magnified by factors of ∼1.3-15, so that we are seeing further down the luminosity function than comparable deep-field imaging. It is apparent that the redshift distribution of these sources does not smoothly extend over the full redshift range accessible at z < 12, but appears to break above z = 9. Nine candidates are clustered within a small region of 20'' across, representing a potentially unprecedented concentration. Given the poor statistics, however, we must await similar constraints from the additional HFF clusters to properly examine this trend. The physical properties of our candidates are examined using the range of lens models developed for the HFF program by various groups including our own, for a better estimate of underlying systematics. Our spectral-energy-distribution fits for the brightest objects suggest stellar masses of ≅ 10{sup 9} M {sub ☉}, star formation rates of ≅ 4 M {sub ☉} yr{sup –1}, and a typical formation redshift of z ≲ 19.

  8. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, i.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  9. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields.

    PubMed

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of

  10. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields

    PubMed Central

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women

  11. The UDF05 Program: Searching for Galaxies at z>6.5 in the Hubble Ultra-Deep Field

    NASA Astrophysics Data System (ADS)

    Lucas, R. A.; Stiavelli, M.; Beckwith, S. V. W.; Bergeron, L. E.; Carollo, C. M.; Ferguson, H. C.; Gardner, J. P.; Hook, R.; Kim, S.-Y.; Koekemoer, A. M.; Lilly, S. J.; Mobasher, B.; Panagia, N.; Pavlovsky, C. M.; Rix, H.-W.; Robberto, M.

    2005-12-01

    The original HST/ACS UDF was a program designed to probe the early epochs of galaxy formation, and comprised the deepest optical image ever taken of the universe. Situated in the center of a well-studied area (the Chandra Deep Field-South, GOODS-S, GEMS, and a number of ground-based surveys), in addition to the primary observations taken with the HST Advanced Camera for Surveys (ACS), the NICMOS Ultra-Deep Field (Thompson et al.) overlies it. The ACS UDF also included more parallel HST observations in NICMOS, WFCP2, and STIS. The NICMOS and WFPC2 parallel images taken in parallel to ACS were also the deepest IR and UV images ever taken. ACS observations in parallel with the NICMOS UDF and NICMOS observations in parallel to ACS grism surveys on the UDF (e.g. the GRAPES program) and other NICMOS GO pure parallels also add to the total of surrounding area imaged in multiple optical and IR bandpasses. As such, it is prime territory for exploring problems such as, for example, the luminosity function of galaxy populations at the early epochs of galaxy formation, at the end of the era of reionization. We have been granted further HST observations in NICMOS and ACS to go deeper in IR in the original UDF and to yield useful depth in optical passbands in ACS on the original UDF deep NICMOS parallel fields. We will present these observations in more detail.

  12. Detection of a SN near the center of the galaxy cluster field MACS1149 consistent with predictions of a new image of Supernova Refsdal

    NASA Astrophysics Data System (ADS)

    Kelly, P. L.; Rodney, S. A.; Brammer, G.; Strolger, L. G.; Foley, R. J.; Treu, T.; Zitrin, A.; Filippenko, A. V.; Jha, S. W.; Riess, A. G.; Hjorth, J.; Schmidt, K. B.; Graur, O.; Bradac, M.; Weiner, B. J.; Linden, A. von der; McCully, C.; Molino, A.; Selsing, J.; Nonino, M.; Coe, D.

    2015-12-01

    In Hubble Space Telescope (HST) WFC3-IR exposures taken on UT 2015 December 10 (GO-14199; PI: Kelly), we discovered a new transient source in the MACS J1149.6+2223 (Ebeling et al. 2003) galaxy cluster field.

  13. H I CONTENT AND OPTICAL PROPERTIES OF FIELD GALAXIES FROM THE ALFALFA SURVEY. II. MULTIVARIATE ANALYSIS OF A GALAXY SAMPLE IN LOW-DENSITY ENVIRONMENTS

    SciTech Connect

    Toribio, M. Carmen; Solanes, Jose M.; Giovanelli, Riccardo; Haynes, Martha P.; Martin, Ann M. E-mail: jm.solanes@ub.edu E-mail: haynes@astro.cornell.edu

    2011-05-10

    This is the second paper of two reporting results from a study of the H I content and stellar properties of nearby galaxies detected by the Arecibo Legacy Fast ALFA blind 21 cm line survey and the Sloan Digital Sky Survey in a 2160 deg{sup 2} region of high galactic latitude sky covered by both surveys, in the general Virgo direction. Here, we analyze a complete H I flux-limited subset of 1624 objects with homogeneously measured 21 cm and multi-wavelength optical attributes extracted from the control sample of H I emitters in environments of low local galactic density assembled by Toribio et al. (Paper I). Strategies of multivariate data analysis are applied to this data set in order to (i) investigate the correlation structure of the space defined by an extensive set of potentially independent observables describing gas-rich systems, (ii) identify the intrinsic parameters that best define their neutral gas content, and (iii) explore the scaling relations arising from the joint distributions of the quantities most strongly correlated with the H I mass. The principal component analysis performed over a set of five galaxy properties reveals that they are strongly interrelated, supporting previous claims that nearby H I emitters show a high degree of correlation. The best predictors for the expected value of M{sub HI} are the diameter of the stellar disk, D{sub 25,r}, followed by the total luminosity (both in the r band), and the maximum rotation speed, while morphological proxies such as color show only a moderately strong correlation with the gaseous content attenuated by observational error. Among the various inferred prescriptions, the simplest and most accurate is log(M{sub HI}/M{sub sun}) = 8.72 + 1.25 log(D{sub 25,r}/kpc). We find a slope of -8.2 {+-} 0.5 for the relation between optical magnitude and log rotation speed, in good agreement with Tully-Fisher studies, as well as a log slope of 1.55 {+-} 0.06 for the H I mass-optical galaxy size relation. Given the

  14. H I Content and Optical Properties of Field Galaxies from the ALFALFA Survey. II. Multivariate Analysis of a Galaxy Sample in Low-density Environments

    NASA Astrophysics Data System (ADS)

    Toribio, M. Carmen; Solanes, José M.; Giovanelli, Riccardo; Haynes, Martha P.; Martin, Ann M.

    2011-05-01

    This is the second paper of two reporting results from a study of the H I content and stellar properties of nearby galaxies detected by the Arecibo Legacy Fast ALFA blind 21 cm line survey and the Sloan Digital Sky Survey in a 2160 deg2 region of high galactic latitude sky covered by both surveys, in the general Virgo direction. Here, we analyze a complete H I flux-limited subset of 1624 objects with homogeneously measured 21 cm and multi-wavelength optical attributes extracted from the control sample of H I emitters in environments of low local galactic density assembled by Toribio et al. (Paper I). Strategies of multivariate data analysis are applied to this data set in order to (i) investigate the correlation structure of the space defined by an extensive set of potentially independent observables describing gas-rich systems, (ii) identify the intrinsic parameters that best define their neutral gas content, and (iii) explore the scaling relations arising from the joint distributions of the quantities most strongly correlated with the H I mass. The principal component analysis performed over a set of five galaxy properties reveals that they are strongly interrelated, supporting previous claims that nearby H I emitters show a high degree of correlation. The best predictors for the expected value of M H I are the diameter of the stellar disk, D 25,r , followed by the total luminosity (both in the r band), and the maximum rotation speed, while morphological proxies such as color show only a moderately strong correlation with the gaseous content attenuated by observational error. Among the various inferred prescriptions, the simplest and most accurate is log(M H I /M ⊙) = 8.72 + 1.25 log(D 25,r /kpc). We find a slope of -8.2 ± 0.5 for the relation between optical magnitude and log rotation speed, in good agreement with Tully-Fisher studies, as well as a log slope of 1.55 ± 0.06 for the H I mass-optical galaxy size relation. Given the homogeneity of the

  15. The effect of inlet stagnation supercooling degree on the aerodynamics of the steam flow field around a rotor tip section

    NASA Astrophysics Data System (ADS)

    Beheshti Amiri, H.; Kermani, M. J.

    2015-01-01

    In this paper, the effects of inlet stagnation supercooling degree on the aerodynamics of the flow field around the rotor tip section of a steam turbine are investigated. To do so, non-equilibrium thermodynamics model for simulating the condensing flow is employed. The results show that formation of liquid droplets and their further growth can remarkably change the design parameters like deviation angle, pressure loss coefficient, mass flow rate and shock wave pattern.

  16. 0114 + 074 - A very asymmetric galaxy in the field of an intermediate-redshift QSO

    SciTech Connect

    Akujor, C.E. Max-Planck-Institut fuer Radioastronomie, Bonn )

    1989-10-01

    New radio-continuum observations of 0114 + 074 (4C 07.4) are presented. It is shown that this radio source consists of two distinct objects: a point source identified with an 18.0 mag QSO and a highly asymmetric 18.5 mag galaxy. The patently asymmetric structure of the galaxy is most plausibly due to intrinsically asymmetric energy funding of the lobes by the central machine or nucleus, rather than external influences. 41 refs.

  17. A comparison of the near-infrared spectral features of early-type galaxies in the Coma Cluster, the Virgo cluster and the field

    NASA Technical Reports Server (NTRS)

    Houdashelt, Mark L.; Frogel, Jay A.

    1993-01-01

    Earlier researchers derived the relative distance between the Coma and Virgo clusters from color-magnitude relations of the early-type galaxies in each cluster. They found that the derived distance was color-dependent and concluded that the galaxies of similar luminosity in the two clusters differ in their red stellar populations. More recently, the color-dependence of the Coma-Virgo distance modulus has been called into question. However, because these two clusters differ so dramatically in their morphologies and kinematics, it is plausible that the star formation histories of the member galaxies also differed. If the conclusions of earlier researchers are indeed correct, then some signature of the resulting stellar population differences should appear in the near-infrared and/or infrared light of the respective galaxies. We have collected near-infrared spectra of 17 Virgo and 10 Coma early-type galaxies; this sample spans about four magnitudes in luminosity in each cluster. Seven field E/S0 galaxies have been observed for comparison. Pseudo-equivalent widths have been measured for all of the field galaxies, all but one of the Virgo members, and five of the Coma galaxies. The features examined are sensitive to the temperature, metallicity, and surface gravity of the reddest stars. A preliminary analysis of these spectral features has been performed, and, with a few notable exceptions, the measured pseudo-equivalent widths agree well with previously published values.

  18. Galaxy Evolution over the Last Eight Billion Years

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Blanton, M. R.; Hogg, D. W.; Eisenstein, D. J.; Coil, A. L.; Cool, R. J.; Moustakas, J.; Wong, K. C.

    2011-01-01

    We study galaxy evolution over the last eight billion years with large, deep galaxy surveys, PRIMUS, SDSS and DEEP2. Galaxies have changed dramatically over this period of time. The global star formation rate has declined by roughly an order-of-magnitude. Red galaxies have grown substantially in number and mass. Blue galaxies have faded and grown redder as their star formation rate dropped. I demonstrate these evolutionary features with new results from these surveys. I also introduce PRIMUS, the largest faint galaxy survey to date. We have measured 140,000 robust redshifts to the depths of i (AB) 23 up to z 1, covering 9.1 square degrees of the sky. I show that with the existing deep multi-wavelength imaging in PRIMUS fields we are able to study the evolution in greater detail and investigate proposed physical mechanisms responsible for the evolution.

  19. Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Dennefeld, M.; Materne, J.

    1980-09-01

    Among the 338 exotic, intriguing and/or fascinating objects contained in Arp's catalogue of peculiar galaxies, two, Arp 146 and 147, are calling special attention as a presumably separate class of objects displaying closed rings with almost empty interior. It is difficult to find out when, historically speaking, attention was called first to this type of object as a peculiar class, but certainly ga1axies with rings were widely found and recognized in the early sixties, ul}der others by Vorontsov-Velyaminov (1960), Sandage (1961) in the Hubble Atlas or de Vaucouleurs (1964) in the first reference catalogue of ga1axies. The most recent estimates by Arp and Madore (1977) from a search on about 200 Schmidt plates covering 7,000 square degrees give 3.6 per cent of ring galaxies among 2,784 peculiar galaxies found. However, despite the mythological perfection associated with a circle, some ordering is necessary before trying to understand the nature of such objects. This is particularly true because a large fraction of those galaxies with rings are probably normal spiral galaxies of type RS or S(r) as defined by de Vaucouleurs, where the spiral arms are simply "closing the circle". A good example of such "ordinary" galaxy is NGC 3081 in the Hubble Atlas .

  20. H I CONTENT AND OPTICAL PROPERTIES OF FIELD GALAXIES FROM THE ALFALFA SURVEY. I. SELECTION OF A CONTROL SAMPLE

    SciTech Connect

    Toribio, M. Carmen; Solanes, Jose M.; Giovanelli, Riccardo; Haynes, Martha P.; Masters, Karen L. E-mail: jm.solanes@ub.edu E-mail: haynes@astro.cornell.edu

    2011-05-10

    We report results from a study of the H I content and stellar properties of nearby galaxies detected by the Arecibo Legacy Fast ALFA blind 21 cm line survey and the Sloan Digital Sky Survey. We consider two declination strips covering a total area of 9 hr x 16 deg in the general direction of the Virgo Cluster. The present analysis focuses on gas-rich galaxies expected to show little or no evidence of interaction with their surroundings. We seek to assemble a control sample suitable for providing absolute measures of the H I content of gaseous objects, as well as to study the relationship between H I emission and widely used optical measures of morphology. From a database which includes more than 15,000 H I detections, we have assembled three samples that could provide adequate H I standards. The most reliable results are obtained with a sample of 5647 sources found in low-density environments, as defined by a nearest neighbor approach. The other two samples contain several hundred relatively isolated galaxies each, as determined from standard isolation algorithms based either on a combination of spectroscopic and photometric information or solely on photometric data. We find that isolated objects are not particularly gas-rich compared to their low-density-environment counterparts, while they suffer from selection bias and span a smaller dynamic range. All this makes them less suitable for defining a reference for H I content. We have explored the optical morphology of gaseous galaxies in quiet environments, finding that, within the volume surveyed, the vast majority of them display unequivocal late-type galaxy features. In contrast, bona fide gas-rich early-type systems account only for a negligible fraction of the 21 cm detections. We argue that H I emission provides the most reliable way to determine the morphological population to which a galaxy belongs. We have also observed that the color distribution of flux-limited samples of optically selected field H I

  1. CLASH-VLT: Dissecting the Frontier Fields Galaxy Cluster MACS J0416.1-2403 with ∼800 Spectra of Member Galaxies

    NASA Astrophysics Data System (ADS)

    Balestra, I.; Mercurio, A.; Sartoris, B.; Girardi, M.; Grillo, C.; Nonino, M.; Rosati, P.; Biviano, A.; Ettori, S.; Forman, W.; Jones, C.; Koekemoer, A.; Medezinski, E.; Merten, J.; Ogrean, G. A.; Tozzi, P.; Umetsu, K.; Vanzella, E.; van Weeren, R. J.; Zitrin, A.; Annunziatella, M.; Caminha, G. B.; Broadhurst, T.; Coe, D.; Donahue, M.; Fritz, A.; Frye, B.; Kelson, D.; Lombardi, M.; Maier, C.; Meneghetti, M.; Monna, A.; Postman, M.; Scodeggio, M.; Seitz, S.; Ziegler, B.

    2016-06-01

    We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS J0416.1-2403 (z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over ∼600 arcmin2, including ∼800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ∼2.2 r 200 (∼4 Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M 200 ∼ 0.9 × 1015 M ⊙ and σ V,r200 ∼ 1000 km s‑1) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by ΔV rf ∼ 1100 km s‑1 with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE–SW direction, with a prominent sub-clump ∼600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z ∼ 0.390, ∼10‧ south of the cluster center, projected at ∼3 Mpc, with a relative line-of-sight velocity of ΔV rf ∼ ‑1700 km s‑1. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the “universal” NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster

  2. PhD and EdD Degrees for Mid-Career Professionals: Fielding Graduate University

    ERIC Educational Resources Information Center

    Kuipers, Judith L.

    2011-01-01

    Adult professionals are continuing their learning over the lifespan entering graduate school in their thirties, forties, fifties, and, even sixties. Knowledge is the new economic currency today and the increasing rate at which new knowledge is generated in the global world requires continuous learning. The author describes Fielding Graduate…

  3. Colors of Luminous Bulges in Cluster MS 1054-03 and Field Galaxies at Redshifts z~0.83

    NASA Astrophysics Data System (ADS)

    Koo, David C.; Datta, Susmita; Willmer, Christopher N. A.; Simard, Luc; Tran, Kim-Vy; Im, Myungshin

    2005-11-01

    Using Hubble Space Telescope images, we separate the bulgelike (dubbed ``pbulge'') and disklike (``pdisk'') components of 71 galaxies in the rich cluster MS 1054-03 and of 21 in the field. Our key finding is that luminous pbulges are very red, with rest-frame U-B~0.45, while predicted colors are bluer by 0.20 mag. Moreover, these very red colors appear to be independent of environment, pbulge luminosity, pdisk color, and pbulge fraction. These results challenge any model of hierarchical galaxy formation that predicts the colors of distant (z~0.8) luminous field and cluster bulges will differ. Our findings also disagree with other claims that 30% to 50% of bright bulges and elliptical galaxies at z~1 are very blue (U-B<=0). Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration; made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and associated with proposals GO-7372, GTO-5090, and GTO-5109.

  4. The SLUGGS survey: wide-field stellar kinematics of early-type galaxies

    SciTech Connect

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Woodley, Kristin A.; Forbes, Duncan A.; Blom, Christina; Kartha, Sreeja S.; Pastorello, Nicola; Pota, Vincenzo; Usher, Christopher; Strader, Jay; Spitler, Lee R.; Foster, Caroline

    2014-08-20

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ∼2-4 R {sub e} (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (σ{sub inst} ∼ 25 km s{sup –1}) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, σ, h {sub 3}, and h {sub 4}) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R {sub e} often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS{sup 3D} survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.

  5. Evolution of the Fraction of Clumpy Galaxies at 0.2 < z < 1.0 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.; Kobayashi, M. A. R.; Shioya, Y.; Capak, P.; Ilbert, O.; Koekemoer, A. M.; Salvato, M.; Scoville, N. Z.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M star > 109.5 M ⊙ decreases with time from ~0.35 at 0.8 < z < 1.0 to ~0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with M star > 1010.5 M ⊙ at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ~ 0.9 to z ~ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with

  6. The Lyman continuum escape fraction of galaxies at z = 3.3 in the VUDS-LBC/COSMOS field

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Giallongo, E.; Gerbasi, R.; Fiore, F.; Fontana, A.; Le Fèvre, O.; Pentericci, L.; Vanzella, E.; Zamorani, G.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Tasca, L. A. M.; Thomas, R.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Giavalisco, M.; Hathi, N. P.; Ilbert, O.; Lemaux, B. C.; Paltani, S.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Bonchi, A.; Boutsia, K.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Merlin, E.; Paris, D.; Pforr, J.; Pilo, S.; Santini, P.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-01-01

    Context. The ionizing Lyman continuum flux escaping from high-redshift galaxies into the intergalactic medium is a fundamental quantity to understand the physical processes involved in the reionization epoch. However, from an observational point of view, direct detections of HI ionizing photons at high redshifts are feasible for galaxies mainly in the interval z ~ 3-4. Aims: We have investigated a sample of star-forming galaxies at z ~ 3.3 to search for possible detections of Lyman continuum ionizing photons escaping from galaxy halos. Methods: We used deep ultraviolet (UV) imaging in the COSMOS field, obtained with the prime focus camera LBC at the LBT telescope, along with a catalogue of spectroscopic redshifts obtained by the VIMOS Ultra Deep Survey (VUDS) to build a sample of 45 galaxies at z ~ 3.3 with L> 0.5 L∗. We obtained deep LBC images of galaxies with spectroscopic redshifts in the interval 3.27 galaxies apparently shows escape fractions >28%, but a detailed analysis of their properties reveals that, with the exception of two marginal detections (S/N ~ 2) in the U-band, all the other eight galaxies are most likely contaminated by the UV flux of low-redshift interlopers located close (in angular position) to the high-z targets. The average escape fraction derived from the stacking of the cleaned sample was constrained to fescrel < 2%. The implied hydrogen photoionization rate is a factor two lower than that needed to keep the intergalactic medium ionized at z ~ 3, as observed in the Lyman-α forest of high

  7. Galactic cosmic ray currents and magnetic field irregularity degree in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Kuzmin, A. I.; Samsonov, I. S.; Samsonova, Z. N.

    1985-01-01

    Currents of galactic cosmic rays (GCR) obtained by global survey method are analyzed. The cases of almost total disappearance of GCR currents are compared with the results of direct measurements of the solar wind parameters. The conclusion is made on a restricted application of the convective-diffusive mechanism of the GCR modulation by the solar wind during the occurrence of stationary and regular magnetic fields in the interplanetary medium.

  8. Two spectroscopically confirmed galaxy structures at z = 0.61 and 0.74 in the CFHTLS Deep 3 field

    NASA Astrophysics Data System (ADS)

    Adami, C.; Cypriano, E. S.; Durret, F.; Le Brun, V.; Lima Neto, G. B.; Martinet, N.; Perez, F.; Rouze, B.; Sodré, L.

    2015-03-01

    Context. Galaxy evolution is known to depend on environment since it differs in clusters and in the field, but studies are sometimes limited to the relatively nearby Universe (z < 0.5). It is still necessary to increase our knowledge of cluster galaxy properties above z = 0.5. Aims: In a previous paper we have detected several cluster candidates at z> 0.5 as part of a systematic search for clusters in the Canada France Hawaii Telescope Legacy Survey by applying the Adami & MAzure Cluster FInder (AMACFI), based on photometric redshifts. We focus here on two of them, located in the Deep 3 (hereafter D3) field: D3-6 and D3-43. Methods: We have obtained spectroscopy with Gemini/GMOS instrument and measured redshifts for 23 and 14 galaxies in the two structures. These redshifts were combined with those available in the literature. A dynamical and a weak lensing analysis were also performed, together with the study of X-ray Chandra archive data. Results: Cluster D3-6 is found to be a single structure of eight spectroscopically confirmed members at an average redshift z = 0.607, with a velocity dispersion of 423 km s-1. It appears to be a relatively low-mass cluster. D3-43-S3 has 46 spectroscopically confirmed members at an average redshift z = 0.739. The cluster can be decomposed into two main substructures, having a velocity dispersion of about 600 and 350 km s-1. An explanation of the fact that D3-43-S3 is detected through weak lensing (only marginally, at the ~3σ level) but not in X-rays could be that the two substructures are just beginning to merge more or less along the line of sight. We also show that D3-6 and D3-43-S3 have similar global galaxy luminosity functions, stellar mass functions, and star formation rate (SFR) distributions. The only differences are that D3-6 exhibits a lack of faint early-type galaxies, a deficit of extremely high stellar mass galaxies compared to D3-43-S3, and an excess of very high SFR galaxies. Conclusions: This study shows the

  9. Discovery of a Damped Lyα Absorber at z = 3.3 along a Galaxy Sight-line in the SSA22 Field

    NASA Astrophysics Data System (ADS)

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Yamada, T.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(NH i/cm-2) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M⊙ yr-1, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M* ≳ 5 × 1010M⊙ or a heavily dust-obscured galaxy with E(B - V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  10. Temporal variation of the earth's low-degree zonal gravitational field caused by atmospheric mass redistribution - 1980-1988

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Au, Andrew Y.

    1991-01-01

    Temporal variations in the low-degree zonal harmonics of the earth's gravitational field have recently been observed by satellite laser ranging. A host of geophysical processes contribute to these variations. The present paper studies quantitatively a prime contributor, atmospheric mass redistribution, using ECMWF global surface pressure data for the period of 1980-1988. The annual and semiannual amplitudes and phases of the zonal J(l) coefficient with degree l = 2-6 with and without the oceanic inverted-barometer (IB) effect are computed to obtain the predicted effects on the orbit nodal residuals of Lageos and Starlette. These predicted values are then compared with observations. It is found that the atmospheric influence, combined with the hydrological influence agree well with the Lageos observation for the annual term. The corresponding match appears poorer for Starlette.

  11. The creation of 360 degree domain walls in ferromagnetic nanorings by circular applied magnetic fields

    NASA Astrophysics Data System (ADS)

    Bickel, Jessica; Smith, Spencer; Aidala, Katherine

    2014-03-01

    360° domain walls (DWs) are the proposed transition state of ferromagnetic nanorings which are candidate devices for magnetic memory. Using micromagnetic simulations, we examine the formation of 360° DWs created by the application of a circular Oersted field for the transition of a 5nm thick ring from a CCW to a CW vortex. The magnetic reversal begins by canting of the magnetization either inward or outward. As the spin continues to rotate, exchange interactions result in the rotation of adjacent spins. Finally, the rotate spin aligns with the applied magnetic field, creating a transition state made of two 180° DWs of opposite winding number. As the center of the rotated domain grows, the 180° walls of adjacent domains meet. Adjacent domains cant in opposite directions to lower the magnetostatic energy relative to canting in the same direction. Therefore 180° DWs at the boundaries have the same winding number and combine to form 360° DWs. Each pair of rotated domains results in a pair of two 360° DWs of opposite winding number. This work provides better understanding of the formation of 360° DWs and may lead to the ability to control the formation of DWs via geometry.

  12. VIMOS integral field spectroscopy of blue compact galaxies. I. Morphological properties, diagnostic emission-line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P. M.

    2015-05-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-luminosity, low-metallicity systems that undergo a violent burst of star formation. These galaxies offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopic study of a sample of BCGs, with the aim of probing the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium. Methods: Eight BCGs were observed with the VIMOS integral field unit at the Very Large Telescope using blue and orange grisms in high-resolution mode. At a spatial sampling of 0''&dotbelow;67 per spaxel, we covered about 30″ × 30″ on the sky, with a wavelength range of 4150...7400 Å. Emission lines were fitted with a single Gaussian profile to measure their wavelength, flux, and width. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines, as well as diagnostic line ratios, extinction, and kinematic maps. Results: An atlas has been produced with the following: emission-line fluxes and continuum emission; ionization, interstellar extinction, and electron density maps from line ratios; velocity and velocity dispersion fields. From integrated spectroscopy, it includes tables of the extinction corrected line fluxes and equivalent widths, diagnostic-line ratios, physical parameters, and the abundances for the brightest star-forming knots and for the whole galaxy. Based on observations made with ESO Telescopes at the Paranal Observatory under program ID 079.B-0445.The reduced datacubes and their error maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp

  13. From star-forming spirals to passive spheroids: integral field spectroscopy of E+A galaxies

    NASA Astrophysics Data System (ADS)

    Swinbank, A. M.; Balogh, M. L.; Bower, R. G.; Zabludoff, A. I.; Lucey, J. R.; McGee, S. L.; Miller, C. J.; Nichol, R. C.

    2012-02-01

    We present three-dimensional spectroscopy of 11 E+A galaxies at z= 0.06-0.12. These galaxies were selected for their strong Hδ absorption but weak (or non-existent) [O II] λ3727 and Hα emission. This selection suggests that a recent burst of star formation was triggered but subsequently abruptly ended. We probe the spatial and spectral properties of both the young (≲1 Gyr) and old (≳few Gyr) stellar populations. Using the Hδ equivalent widths we estimate that the burst masses must have been at least 10 per cent by mass (Mburst≳ 1010 M⊙), which is also consistent with the star formation history inferred from the broad-band spectral energy distributions. On average the A stars cover ˜33 per cent of the galaxy image, extending over 2-15 kpc2, indicating that the characteristic E+A signature is a property of the galaxy as a whole and not due to a heterogeneous mixture of populations. In approximately half of the sample, we find that the A stars, nebular emission and continuum emission are not co-located, suggesting that the newest stars are forming in a different place than those that formed ≲1 Gyr ago, and that recent star formation has occurred in regions distinct from the oldest stellar populations. At least 10 of the galaxies (91 per cent) have dynamics that class them as 'fast rotators' with magnitudes, v/σ, λR and bulge-to-total (B/T) ratio comparable to local, representative ellipticals and S0s. We also find a correlation between the spatial extent of the A stars and the dynamical state of the galaxy such that the fastest rotators tend to have the most compact A star populations, providing new constraints on models that aim to explain the transformation of later type galaxies into early types. Finally, we show that there are no obvious differences between the line extents and kinematics of E+A galaxies detected in the radio (active galactic nucleus, AGN) compared to non-radio sources, suggesting that AGN feedback does not play a dramatic role in

  14. Spherically-arranged piecewise planar hologram for capturing a diffracted object wave field in 360 degree

    NASA Astrophysics Data System (ADS)

    Oh, Seungtaik; Seo, Hoyong; Hwang, Chi-Young; Lee, Beom-Ryeol; Son, Wookho

    2013-05-01

    We present a new method to record and reconstruct a diffracted object wave field in all directions. For this, we are going to use spherically-arranged holograms instead of a single spherical hologram. Our spherically-arranged holograms are constructed to store all components of plane waves propagating in all directions. One can use the well-known efficient FFT-based diffraction formulae such as Fresnel transform and angular spectrum method in generation and reconstruction of our spherically-arranged holograms. It is possible to synthesize a new hologram with an arbitrary position and orientation without the geometry of the object. Numerical experiments are presented to show the effectiveness of our method.

  15. A redshift survey of IRAS galaxies. III - Reconstruction of the velocity and density fields in N-body model universes

    NASA Technical Reports Server (NTRS)

    Davis, Marc; Strauss, Michael A.; Yahil, Amos

    1991-01-01

    N-body simulations of a 'cold dark matter' universe are presently used to calibrate the accuracy, and assess the limitations, of the procedure previously employed to predict the velocity field within 8000 km/sec of the Local Group through the application of linear gravitational theory to a full-sky, flux-limited sample of IRAS galaxies. The rms difference between the one-dimensional acceleration and velocity of field particles is an increasing function of local density; linear theory can in this way account for all but one-sixth of kinetic energy. A series of artificial IRAS catalogs closely matching the real sample in space density and clustering amplitude is constructed. Velocity correlation functions are used to demonstrate that the predicted velocity fields are in good agreement with the true velocity fields on large scales.

  16. The Mass of the Galaxy from Large Samples of Field Horizontal-Branch Stars in the SDSS Early Data Release

    NASA Astrophysics Data System (ADS)

    Beers, T. C.; Chiba, M.; Sakamoto, T.; Wilhelm, R.; Allende Prieto, C.; Sommer-Larsen, J.; Newberg, H. J.; Yanny, B.; Marsteller, B.; Pier, J. R.

    2004-07-01

    We present a new estimate of the mass of the Milky Way, making use of a large sample of 955 field horizontal-branch (FHB) stars from the Early Data Release of the Sloan Digital Sky Survey. This sample of stars has been classified on the basis of an automated analysis approach, in combination with other methods, in order to obtain estimates of the physical parameters of the stars, i.e., T_eff, log g, [Fe/H], and should be relatively free of contamination from halo blue stragglers. The stars all have measured radial velocities and photometric distance estimates, and the sample includes objects as distant as ˜ 75 kpc from the Galactic center. Application of a Bayesian likelihood method, for a specific model of the Galaxy, indicates that the total mass of the Galaxy lies in the range 1.5-4.0 x 1012 M⊙. Our sample appears to reveal a clear signature of a dual halo population of FHB stars, with the boundary between the inner and outer halo around 20 kpc, and the possibility of rather striking differences in the rotational properties of the Galaxy at low metallicity.

  17. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. I. Optical Spectroscopic Catalog

    NASA Astrophysics Data System (ADS)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-04-01

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg2 of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10‑16 erg cm‑2 s‑1 in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra-COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of this sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ3727, [Ne iii] λ3869, Hβ, [O iii] λλ4959, 5007, Hα, and [N ii] λλ6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.

  18. REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Song, J.; Zenteno, A.; Desai, S.; Bazin, G.; Stalder, B.; Ashby, M. L. N.; Bayliss, M.; Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Aird, K. A.; Armstrong, R.; Bertin, E.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; and others

    2012-12-10

    We present the results of the ground- and space-based optical and near-infrared (NIR) follow-up of 224 galaxy cluster candidates detected with the Sunyaev-Zel'dovich (SZ) effect in the 720 deg{sup 2} of the South Pole Telescope (SPT) survey completed in the 2008 and 2009 observing seasons. We use the optical/NIR data to establish whether each candidate is associated with an overdensity of galaxies and to estimate the cluster redshift. Most photometric redshifts are derived through a combination of three different cluster redshift estimators using red-sequence galaxies, resulting in an accuracy of {Delta}z/(1 + z) = 0.017, determined through comparison with a subsample of 57 clusters for which we have spectroscopic redshifts. We successfully measure redshifts for 158 systems and present redshift lower limits for the remaining candidates. The redshift distribution of the confirmed clusters extends to z = 1.35 with a median of z{sub med} = 0.57. Approximately 18% of the sample with measured redshifts lies at z > 0.8. We estimate a lower limit to the purity of this SPT SZ-selected sample by assuming that all unconfirmed clusters are noise fluctuations in the SPT data. We show that the cumulative purity at detection significance {xi} > 5({xi} > 4.5) is {>=}95% ({>=}70%). We present the red brightest cluster galaxy (rBCG) positions for the sample and examine the offsets between the SPT candidate position and the rBCG. The radial distribution of offsets is similar to that seen in X-ray-selected cluster samples, providing no evidence that SZ-selected cluster samples include a different fraction of recent mergers from X-ray-selected cluster samples.

  19. Redshifts, Sample Purity, and BCG Positions for the Galaxy Cluster Catalog from the First 720 Square Degrees of the South Pole Telescope Survey

    NASA Astrophysics Data System (ADS)

    Song, J.; Zenteno, A.; Stalder, B.; Desai, S.; Bleem, L. E.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bertin, E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; George, E. M.; Gettings, D.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Natoli, T.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Šuhada, R.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.

    2012-12-01

    We present the results of the ground- and space-based optical and near-infrared (NIR) follow-up of 224 galaxy cluster candidates detected with the Sunyaev-Zel'dovich (SZ) effect in the 720 deg2 of the South Pole Telescope (SPT) survey completed in the 2008 and 2009 observing seasons. We use the optical/NIR data to establish whether each candidate is associated with an overdensity of galaxies and to estimate the cluster redshift. Most photometric redshifts are derived through a combination of three different cluster redshift estimators using red-sequence galaxies, resulting in an accuracy of Δz/(1 + z) = 0.017, determined through comparison with a subsample of 57 clusters for which we have spectroscopic redshifts. We successfully measure redshifts for 158 systems and present redshift lower limits for the remaining candidates. The redshift distribution of the confirmed clusters extends to z = 1.35 with a median of z med = 0.57. Approximately 18% of the sample with measured redshifts lies at z > 0.8. We estimate a lower limit to the purity of this SPT SZ-selected sample by assuming that all unconfirmed clusters are noise fluctuations in the SPT data. We show that the cumulative purity at detection significance ξ > 5(ξ > 4.5) is >=95% (>=70%). We present the red brightest cluster galaxy (rBCG) positions for the sample and examine the offsets between the SPT candidate position and the rBCG. The radial distribution of offsets is similar to that seen in X-ray-selected cluster samples, providing no evidence that SZ-selected cluster samples include a different fraction of recent mergers from X-ray-selected cluster samples.

  20. The SAMI Galaxy Survey: instrument specification and target selection

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-03-01

    The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.

  1. Integral field spectroscopy and multi-wavelength imaging of the nearby spiral galaxy NGC 5668: a case for MEGARA

    NASA Astrophysics Data System (ADS)

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Muñoz-Mateos, J. C.; Sánchez, S. F.; Pérez-González, P. G.; Gallego, J.; Zamorano, J.; Alonso-Herrero, A.; Boissier, S.

    2013-05-01

    In order to improve our understanding of the mechanisms that drive the evolution of disk galaxies we analyze the full bi-dimensional spectral cube of the nearby spiral galaxy NGC 5668, which was obtained as a mosaic of 6 pointings, covering a total area of 2 × 3 arcmin^{2}, obtained with the PPAK Integral Field Unit at the Calar Alto (CAHA) observatory 3.5 m telescope. From these data we obtain the bidimensional spatial distribution maps of the attenuation of the ionized gas, and chemical abundances of oxygen. We find a mean ionized-gas attenuation of A_V˜1 mag, with the gas attenuation appearing larger than the continuum attenuation by a factor of 3. With respect to the oxygen abundance, we find that, while inwards of r ˜36''˜ 4.4kpc ˜ 0.36 ({D_{25}}/{2}) the derived O/H ratio follows the radial gradient typical of the disks of spiral galaxies, the abundance gradient beyond r˜36'' flattens out. The multi-wavelength surface brightness profiles of NGC 5668 are compared with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks in the context of the inside-out scenario of disk formation. Both the deviations of the color profiles and the shape of the metallicity radial distribution indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC5668 beyond what is predicted by the inside-out scenario. This study demonstrates the strength of the combination of IFU and multi-wavelength imaging data. With MEGARA, the future optical IFU & MOS for 10.4-m GTC we will fill the gap currently existing in astronomical instrumentation with high spectral resolution and large area coverage simultaneously addressing such fundamental issues in galactic structure and evolution.

  2. A COMPREHENSIVE, WIDE-FIELD STUDY OF PULSATING STARS IN THE CARINA DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Vivas, A. Katherina; Mateo, Mario E-mail: mmateo@umich.edu

    2013-12-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dwarf spheroidal galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids (DCs), which are mostly located ∼2.5 mag below the horizontal branch and have very short periods (<0.1 days), typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal DCs were found in our survey up to a distance of ∼1° from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids, some of which were found outside the galaxy's tidal radius as well. This supports past works that suggest that Carina is undergoing tidal disruption. We use the period-luminosity relationship for DCs to estimate a distance modulus of μ{sub 0} = 20.17 ± 0.10 mag, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the DCs of Carina and those in Fornax and the LMC, the only extragalactic samples of DCs currently known. These differences may reflect a metallicity spread, depth along the line of sight, and/or different evolutionary paths of the DC stars.

  3. What Are Masters Doing? Master's Degree Recipients with Physics Training in the Workforce: The Impact of Highest Degree Field and Employment Sector on Career Outcomes. AIP Report.

    ERIC Educational Resources Information Center

    Rosdil, Donald

    This is the first in a series of reports that explore the career experiences of workers with physics training. A survey conducted in 1994 examined the education and employment experiences of a large sample of members of an academic honors society for undergraduate physics students. The analysis focused on 328 holders of bachelor's degrees in…

  4. HIGH ANGULAR RESOLUTION INTEGRAL-FIELD SPECTROSCOPY OF THE GALAXY'S NUCLEAR CLUSTER: A MISSING STELLAR CUSP?

    SciTech Connect

    Do, T.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Larkin, J.; Lu, J. R.; Matthews, K.

    2009-10-01

    We report on the structure of the nuclear star cluster in the innermost 0.16 pc of the Galaxy as measured by the number density profile of late-type giants. Using laser guide star adaptive optics in conjunction with the integral field spectrograph, OSIRIS, at the Keck II telescope, we are able to differentiate between the older, late-type (approx 1 Gyr) stars, which are presumed to be dynamically relaxed, and the unrelaxed young (approx 6 Myr) population. This distinction is crucial for testing models of stellar cusp formation in the vicinity of a black hole, as the models assume that the cusp stars are in dynamical equilibrium in the black hole potential. In the survey region, we classified 60 stars as early-type (22 newly identified) and 74 stars as late-type (61 newly identified). We find that contamination from young stars is significant, with more than twice as many young stars as old stars in our sensitivity range (K' < 15.5) within the central arcsecond. Based on the late-type stars alone, the surface stellar number density profile, SIGMA(R) propor to R {sup -G}AMMA, is flat, with GAMMA = -0.27 +- 0.19. Monte Carlo simulations of the possible de-projected volume density profile, n(r) propor tor {sup -g}amma, show that gamma is less than 1.0 at the 99.7% confidence level. These results are consistent with the nuclear star cluster having no cusp, with a core profile that is significantly flatter than that predicted by most cusp formation theories, and even allows for the presence of a central hole in the stellar distribution. Of the possible dynamical interactions that can lead to the depletion of the red giants observable in this survey-stellar collisions, mass segregation from stellar remnants, or a recent merger event-mass segregation is the only one that can be ruled out as the dominant depletion mechanism. The lack of a stellar cusp around a supermassive black hole would have important implications for black hole growth models and inferences on the

  5. Steadily increasing star formation rates in galaxies observed at 3 ≲ z ≲ 5 in the CANDELS/GOODS-S field

    SciTech Connect

    Lee, Seong-Kook; Ferguson, Henry C.; Dahlen, Tomas; Somerville, Rachel S.; Giavalisco, Mauro; Wiklind, Tommy

    2014-03-10

    We investigate the star formation histories (SFHs) of high redshift (3 ≲ z ≲ 5) star-forming galaxies selected based on their rest-frame ultraviolet (UV) colors in the CANDELS/GOODS-S field. By comparing the results from the spectral-energy-distribution-fitting analysis with two different assumptions about the SFHs—i.e., exponentially declining SFHs as well as increasing ones, we conclude that the SFHs of high-redshift star-forming galaxies increase with time rather than exponentially decline. We also examine the correlations between the star formation rates (SFRs) and the stellar masses. When the galaxies are fit with rising SFRs, we find that the trend seen in the data qualitatively matches the expectations from a semi-analytic model of galaxy formation. The mean specific SFR is shown to increase with redshift, also in agreement with the theoretical prediction. From the derived tight correlation between stellar masses and SFRs, we derive the mean SFH of star-forming galaxies in the redshift range of 3 ≤ z ≤ 5, which shows a steep power-law (with power α = 5.85) increase with time. We also investigate the formation timescales and mean stellar population ages of these star-forming galaxies. Our analysis reveals that UV-selected star-forming galaxies have a broad range of the formation redshift. The derived stellar masses and the stellar population ages show positive correlation in a sense that more massive galaxies are on average older, but with significant scatter. This large scatter implies that the galaxies' mass is not the only factor which affects the growth or star formation of high-redshift galaxies.

  6. A Zoo of Galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  7. EMISSION-LINE GALAXIES FROM THE HUBBLE SPACE TELESCOPE PROBING EVOLUTION AND REIONIZATION SPECTROSCOPICALLY (PEARS) GRISM SURVEY. I. THE SOUTH FIELDS

    SciTech Connect

    Straughn, Amber N.; Gardner, Jonathan P.; Pirzkal, Norbert; Grogin, Norman; Panagia, Nino; Meurer, Gerhardt R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; Jansen, Rolf A.; Hathi, Nimish P.; Di Serego Alighieri, Sperello; Gronwall, Caryl; Walsh, Jeremy; Pasquali, Anna; Xu, Chun

    2009-10-15

    We present results of a search for emission-line galaxies (ELGs) in the southern fields of the Hubble Space Telescope Probing Evolution And Reionization Spectroscopically (PEARS) grism survey. The PEARS South Fields consist of five Advanced Camera for Surveys pointings (including the Hubble Ultra Deep Field) with the G800L grism for a total of 120 orbits, revealing thousands of faint object spectra in the GOODS-South region of the sky. ELGs are one subset of objects that are prevalent among the grism spectra. Using a two-dimensional detection and extraction procedure, we find 320 emission lines originating from 226 galaxy 'knots' within 192 individual galaxies. Line identification results in 118 new grism-spectroscopic redshifts for galaxies in the GOODS-South Field. We measure emission-line fluxes using standard Gaussian fitting techniques. At the resolution of the grism data, the H{beta} and [O III] doublet are blended. However, by fitting two Gaussian components to the H{beta} and [O III] features, we find that many of the PEARS ELGs have high [O III]/H{beta} ratios compared to other galaxy samples of comparable luminosities. The star formation rates of the ELGs are presented, as well as a sample of distinct giant star-forming regions at z {approx} 0.1-0.5 across individual galaxies. We find that the radial distances of these H II regions in general reside near the galaxies' optical continuum half-light radii, similar to those of giant H II regions in local galaxies.

  8. Electric-Field Enhancement by Nodular Defects in Multilayer Coatings Irradiated at Normal and 45 (degree) Incidence

    SciTech Connect

    Stolz, C J; Genin, F Y; Pistor,T V

    2003-09-18

    The standing-wave electric-field profile within multilayer coatings is significantly perturbated by a nodular defect. The intensity, which is proportional to the electric field squared, is increased in the high index material by {>=}3x at normal incidence and {>=}12x at 45 degrees incidence angle. Therefore it is not surprising that nodular defects are initiation sites of laser-induced damage. In this study, the impact of reflectance-band centering and incident angle are explored for a 1 {micro}m diameter nodular defect seed overcoated with a 24 layer high-reflector constructed of quarter-wave thick alternating layers of hafnia and silica. The modeling was performed using a three-dimensional finite-element analysis code.

  9. The Power of Wide Field HI Surveys: ALFALFA Imaging of Massive Tidal Features in the Leo Cloud of Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Almost Darks Team

    2016-01-01

    Tidal interactions are well known to play an important role in galactic evolution in group environments, but the extent of these interactions, and their relative impact on the morphology-density relation is still unclear. Neutral hydrogen (HI) mapping can reveal the recent interaction history of group galaxies, but is difficult to execute due to the need for high sensitivity over wide fields. The Arecibo Legacy Fast ALFA survey (ALFALFA; Giovanelli et al. 2005; Haynes et al. 2011) provides high sensitivity, unbiased, wide field maps of HI in the local volume; here we will present a 50 deg2 ALFALFA map of a well studied region of the Leo Cloud of galaxies, which includes the NGC3226/7 group and HCG44. These observations reveal HI tails and plumes with extents exceeding 1.4 deg (~600 kpc), well beyond the primary beams of previous observations. These tails constitute a significant fraction of the total HI mass in NGC3226/7 (Arp 94) and HCG44. We will also present WSRT maps of the extended emission near Arp 94, which show tail morphologies inconsistent with 2 body interactions. These observations demonstrate that large scale group interactions will be an important science outcome for future sensitive, wide field HI surveys.This work is supported by NSF grants AST-0607007 and AST-1107390 and by grants from the Brinson Foundation.

  10. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  11. Effects of 36.6 GHz and static magnetic field on degree of endoreduplication in Drosophila melanogaster polytene chromosomes.

    PubMed

    Dyka, Liliia D; Shakina, Lyubov A; Strashnyuk, Volodymyr Yu; Shckorbatov, Yuriy G

    2016-01-01

    Purpose To study the effect of microwave (MW) irradiation and consistent action of microwaves and static magnetic field (MF) on the giant chromosomes endoreduplication in Drosophila melanogaster Meig. Materials and methods Experiments were carried out on inbred wild type Canton-S strain. Exposure to microwaves (frequency - 36.64 GHz, power density - 1 W/m(2), exposure time - 30 sec) and static magnetic field (intensity - 25 mT, exposure time - 5 min) applied at the egg stage after a 2-h oviposition. Giant chromosomes were investigated in squashed preparations of the salivary glands stained by acetoorcein by the cytomorphometric method. Preparations were obtained from Drosophila larvae at the 0 h prepupae stage. Results Exposure to microwaves increased the degree of polyteny in chromosomes (DPC) by 7.5%, and the statistical power of the impact was: h(2) = 35.3%. A similar effect occurred after the sequential action of microwaves and static magnetic field: The polyteny level of chromosomes increased by 7.4%, statistical power was: h(2) = 30.6%. Conclusions Exposure to microwaves on the stage of embryogenesis has a stimulating effect on endoreduplication in Drosophila development. The effect of microwaves was not modified by the action of the static magnetic field. PMID:26882320

  12. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Schechtman-Rook, Andrew; Andersen, David R.; Swaters, Rob A.

    2013-09-01

    We present ionized-gas ([Oiii]λ5007 Å) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (hR). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370 Å observed at a mean resolution of λ/Δλ = 7700 (σinst = 17 km s-1). These data are a fundamental product of our survey and will be used in companion papers to, e.g., derive the detailed (baryonic+dark) mass budget of each galaxy in our sample. Our presentation provides a comprehensive description of the observing strategy and data reduction, including a robust measurement and removal of shift, scale, and rotation effects in the data due to instrumental flexure. Using an in-plane coordinate system determined by fitting circular-speed curves to our velocity fields, we derive azimuthally averaged rotation curves and line-of-sight velocity dispersion (σLOS) and luminosity profiles for both the stars and [Oiii]-emitting gas. Along with a clear presentation of the data, we demonstrate: (1) The [Oiii] and stellar rotation curves exhibit a clear signature of asymmetric drift with a rotation difference that is 11% of the maximum rotation speed of the galaxy disk, comparable to measurements in the solar neighborhood in the Milky Way. (2) The e-folding length of the stellar velocity dispersion (hσ) is 2hR on average, as expected for a disk with a constant scale height and mass-to-light ratio, with a scatter that is notably smaller for massive, high-surface-brightness disks in the most luminous galaxies. (3) At radii larger than 1.5hR, σLOS tends to decline slower than the best-fitting exponential function, which may be due to an increase in the disk mass-to-light ratio, disk flaring, or disk heating by the dark-matter halo. (4) A strong correlation exists between the central vertical stellar velocity dispersion of the disks (σz,0) and their circular rotational speed at 2.2hR (V2.2h

  13. A Panchromatic Catalog of Early-type Galaxies at Intermediate Redshift in the Hubble Space Telescope Wide Field Camera 3 Early Release Science Field

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. J.; Cohen, S. H.; Kaviraj, S.; O'Connell, R. W.; Hathi, N. P.; Windhorst, R. A.; Ryan, R. E., Jr.; Crockett, R. M.; Yan, H.; Kimble, R. A.; Silk, J.; McCarthy, P. J.; Koekemoer, A.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; Paresce, F.; Saha, A.; Trauger, J. T.; Walker, A. R.; Whitmore, B. C.; Young, E. T.

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 lsim z lsim 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 1011 < M *[M ⊙]<1012. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1σ standard deviations sime1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent (lsim50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  14. Tracing the mass growth and star formation rate evolution of massive galaxies from Z ∼ 6 to Z ∼ 1 in the Hubble ultra-deep field

    SciTech Connect

    Lundgren, Britt F.; Van Dokkum, Pieter; Oesch, Pascal; Franx, Marijn; Labbe, Ivo; Bouwens, Rychard; Trenti, Michele; Gonzalez, Valentino; Illingworth, Garth; Magee, Daniel

    2014-01-01

    We present an analysis of an H {sub 160}-selected photometric catalog of galaxies in the Hubble Ultra-Deep Field, using imaging from the WFC3/IR camera on the Hubble Space Telescope in combination with archival ultraviolet, optical, and near-infrared imaging. Using these data, we measure the spectral energy distributions of ∼1500 galaxies to a limiting H {sub 160} magnitude of 27.8, from which we fit photometric redshifts and stellar population estimates for all galaxies with well-determined Spitzer IRAC fluxes, allowing for the determination of the cumulative mass function within the range 1 < z < 6. By selecting samples of galaxies at a constant cumulative number density, we are able to explore the coevolution of stellar masses and star formation rates (SFRs) for progenitor galaxies and their descendants from z ∼ 6. We find a steady increase in the SFRs of galaxies at constant number density from z ∼ 6 to z ∼ 3, accompanied by gradually declining specific star formation rates (sSFRs) during this same period. The peak epoch of star formation is also found to shift to later times for galaxies with increasing number densities, in agreement with the expectations from cosmic downsizing. The observed SFRs can fully account for the mass growth to z ∼ 2 among galaxies with cumulative number densities greater than 10{sup –3.5} Mpc{sup –3}. For galaxies with a lower constant number density (higher mean mass), we find the observed stellar masses are ∼three times greater than that which may be accounted for by the observed star formation alone at late times, implying that growth from mergers plays an important role at z < 2. We additionally observe a decreasing sSFR, equivalent to approximately one order of magnitude, from z ∼ 6 to z ∼ 2 among galaxies with number densities less than 10{sup –3.5} Mpc{sup –3}, along with significant evidence that at any redshift the sSFR is higher for galaxies at higher number density. The combination of these findings

  15. Studying high redshift galaxy groups with the Athena Wide-Field-Imager

    NASA Astrophysics Data System (ADS)

    Pacaud, Florian; Reiprich, Thomas; Ramos Ceja, Miriam Elizabeth; Lovisari, Lorenzo

    2016-07-01

    In this contribution, we will discuss the potential of Athena to study high redshift galaxy groups (1galaxy groups (average gas temperature, luminosity). Based on these tools, we discuss the science achievable with such systems thanks to Athena and its dependance on the final instrumental set-up. In particular, we investigate the impact of different levels of contamination by AGNs and assumptions on the luminosity of the groups as a function of their mass.

  16. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  17. A Z = 5.34 Galaxy Pair in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Spinrad, Hyron; Stern, Daniel; Bunker, Andrew; Dey, Arjun; Lanzetta, Kenneth; Yahil, Amos; Pascarelle, Sebastian; Fernández-Soto, Alberto

    1998-12-01

    We present spectrograms of the faint V-drop (V_606 = 28.1, I_814 = 25.6) galaxy pair HDF 3-951.1 and HDF 3-951.2 obtained at the Keck II Telescope. In a recent study, Fernández-Soto, Lanzetta, & Yahil derive a photometric redshift of z_ph=5.28^+0.34_-0.41 (2 sigma) for these galaxies; our integrated spectrograms show a large and abrupt discontinuity near 7710 +/- 5 Å. This break is almost certainly due to the Lyalpha forest because its amplitude (1-f^short_nu/f^long_nu>0.87, 95% confidence limit) exceeds any discontinuities observed in stellar or galactic rest-frame optical spectra. The resulting absorption break redshift is z = 5.34 +/- 0.01. Optical/near-IR photometry from the HDF yields an exceptionally red (V_606 - I_814) color, consistent with this large break. A more accurate measure of the continuum depression blueward of Lyalpha utilizing the imaging photometry yields D_A = 0.88. The system as a whole is slightly brighter than L^*_1500 relative to the z ~ 3 Lyman break population, and the total star formation rate inferred from the UV continuum is ~22 h^-2_50 M_⊙ yr^-1 (q_0 = 0.5) assuming the absence of dust extinction. The two individual galaxies are quite small (size scales <~1 h^-1_50 kpc). Thus these galaxies superficially resemble the ``building blocks'' of Pascarelle and coworkers; if they comprise a gravitationally bound system, the pair will likely merge in a timescale ~100 Myr.

  18. Comparison of X-ray and optically selected galaxy clusters in the XXL-N field

    NASA Astrophysics Data System (ADS)

    Alis, Sinan; Pacaud, Florian; Pierre, Marguerite; Benoist, Christophe; Maurogordato, Sophie; Clerc, Nicolas; Faccioli, Lorenzo; Sadibekova, Tatyana

    2016-07-01

    Optically selected clusters from the CFHTLS and X-ray selected clusters from the intersecting XXL Survey are compared. We first compare the properties of the ˜100 galaxy clusters common to both catalogues in the redshift range of 0.1 < z < 1.2. Then we focus on the properties of the missed clusters on both sides and stress the impact of AGN contamination in this comparison. Finally scaling relations involving optical and X-ray quantities will be presented.

  19. A Multiwavelength Study of a Sample of 70 μm Selected Galaxies in the COSMOS Field. II. The Role of Mergers in Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Le Floc'h, E.; Frayer, D. T.; Aussel, H.; Arnouts, S.; Ilbert, O.; Salvato, M.; Scoville, N. Z.; Surace, J.; Yan, L.; Capak, P.; Caputi, K.; Carollo, C. M.; Cassata, P.; Civano, F.; Hasinger, G.; Koekemoer, A. M.; Le Fèvre, O.; Lilly, S.; Liu, C. T.; McCracken, H. J.; Schinnerer, E.; Smolčić, V.; Taniguchi, Y.; Thompson, D. J.; Trump, J.; Baldassare, V. F.; Fiorenza, S. L.

    2010-09-01

    We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 < z < 3.5 with a median redshift of 0.5 and an infrared luminosity range of 108 < L IR(8 - 1000 μm)< 1014 L sun with a median luminosity of 1011.4 L sun. In general, these galaxies are massive, with a stellar mass range of 1010-1012 M sun, and luminous, with -25 < M K < -20. We find a strong correlation between the fraction of major mergers and L IR, with the fraction at the highest luminosity (L IR > 1012 L sun) being up to ~50%. We also find that the fraction of spirals drops dramatically with L IR. Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L IR < 1011.5 L sun). The precise fraction of mergers in any given L IR bin varies by redshift due to sources at z > 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z < 1, where the morphological classifications are most robust, major mergers clearly dominate the ULIRG population (~50%-80%) and are important for the LIRG population (~25%-40%). At z > 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U - V color of the galaxies in our sample peaks in the green valley (langU - Vrang = 1.1) with a large spread at bluer and redder colors and with the

  20. A SEARCH FOR LYMAN BREAK GALAXIES IN THE CHANDRA DEEP FIELD SOUTH USING SWIFT ULTRAVIOLET/OPTICAL TELESCOPE

    SciTech Connect

    Basu-Zych, Antara R.; Hornschemeier, Ann E.; Hoversten, Erik A.; Gronwall, Caryl; Lehmer, Bret E-mail: Ann.Hornschemeier@nasa.gov E-mail: caryl@astro.psu.edu

    2011-10-01

    While the Swift satellite is primarily designed to study gamma-ray bursts, its ultraviolet and optical imaging and spectroscopy capabilities are also being used for a variety of scientific programs. In this study, we use the UV/Optical Telescope (UVOT) instrument on board Swift to discover 0.5 < z < 2 Lyman break galaxies (LBGs). UVOT has covered {approx}266 arcmin{sup 2} at >60 ks exposure time, achieving a limiting magnitude of u < 24.5, in the Chandra Deep Field South (CDF-S). Applying UVOT near-ultraviolet color selection, we select 50 UV-dropouts from this UVOT CDF-S data. We match the selected sources with available multiwavelength data from Great Observatories Origins Deep Survey (GOODS) South, Multiwavelength Survey by Yale-Chile, and COMBO-17 to characterize the spectral energy distributions for these galaxies and determine stellar masses, star formation rates (SFRs), and dust attenuations. We compare these properties for LBGs selected in this paper versus z {approx} 3 LBGs and other CDF-S galaxies in the same redshift range (0.5 < z < 2), identified using photometric redshift techniques. The z {approx} 1 LBGs have stellar masses of (logM{sub *}/M{sub sun}) = 9.4 {+-} 0.6, which is slightly lower than z {approx} 3 LBGs ((logM{sub *}/Ms{sub un}) = 10.2 {+-} 0.4) and slightly higher compared with the z {approx} 1 CDF-S galaxies ((logM{sub *}/M{sub sun}) = 8.7 {+-} 0.7). Similarly, our sample of z {approx} 1 LBGs has SFRs (derived using both ultraviolet and infrared data, where available) of (logSFR/(M{sub sun} yr{sup -1})) = 0.7 {+-} 0.6, nearly an order of magnitude lower than z {approx} 3 LBGs ((logSFR/M{sub sun} yr{sup -1}) = 1.5 {+-} 0.4), but slightly higher than the comparison z {approx} 1 sample of CDF-S galaxies ((logSFR/M{sub sun} yr{sup -1}) = 0.2 {+-} 0.7). We find that our z {approx} 1 UV-dropouts have (A{sub FUV}) = 2.0 {+-} 1.0, which is higher than z {approx} 3 LBGs ((A{sub FUV}) = 1.0 {+-} 0.5), but similar to the distribution of dust

  1. 360 Degree DW formation during vortex to vortex switching in thin ferromagnetic nanorings in an applied circular field

    NASA Astrophysics Data System (ADS)

    Sun, Yineng; Goldman, Abby; Licht, Abigail; Li, Yihan; Pradhan, Nihar; Yang, Tianyu; Tuominen, Mark; Aidala, Katherine

    2012-02-01

    We present simulations of the switching process between clockwise and counterclockwise vortex states in ferromagnetic nanorings in an applied circular field, relevant to potential data storage devices. This circular field can be experimentally generated by passing current through the solid metal tip of an atomic force microscope, which has achieved vortex-to-vortex switching in thicker asymmetric rings [1]. We find that in sufficiently thin rings, the vortex switching process occurs through the nucleation and annihilation of pairs of 360 degree domain walls (DW), with opposite topological indices. The DW with the same circulation as the vortex annihilates first. We can control which DW annihilates first by offsetting the center of our circular field to target a specific DW. Both exchange energy and demagnetization energy must be considered in predicting the energy barrier to DW annihilation. [1] T. Yang, N.R. Pradhan, A. Goldman, A.S. Licht, Y.Li, M. Kemei, M.T. Tuominen, K.E. Aidala. APL, 98, 242505 (2011).

  2. Massive Spheroidal Galaxies: Nature and Evolution During 0.6Fields

    NASA Astrophysics Data System (ADS)

    Rizer, Zachary; McIntosh, Daniel H.; Cook, Joshua; Kartaltepe, Jeyhan S.; Wuyts, Stijn; van der Wel, Arjen; Barro, Guillermo; Koekemoer, Anton M.; Conselice, Christopher; Bell, Eric F.; Kocevski, Dale; Koo, David C.; Giavalisco, Mauro

    2015-01-01

    Spheroidal galaxies are linked to the observed buildup of massive non-star-forming (quiescent) galaxies over cosmic time. Yet, it remains unclear whether the primary growth channel involves the formation of new bulge-dominated galaxies followed by the quenching of star formation (SF), or the cessation of star production preceded by the transformation from disk-dominated to spheroidal galaxies. Using a new comprehensive catalog of visual classifications based on the HST/WFC3 imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we study the nature and evolution of high-mass (Mstar>1e10 Msun) 'spheroids' (elliptical and bulge-dominated galaxies) over a wide redshift range (0.6fields. These spheroids are rounder, smaller and more centrally-concentrated than visually disk-dominated galaxies. Using either rest-frame UVJ colors or total SF rates (IR + UV) when available, which we've verified yield similar selections in these fields, we find a clear increase in the fraction of high-mass galaxies that are quiescent spheroids with decreasing redshift, accompanied by a relatively constant low fraction (10-25%) of star-forming spheroids at z>1, and a possible drop to lower fractions at z<1. We find quantitatively similar results using spheroid samples defined solely or jointly by automatic (Sérsic n>2) selection. We find that as the high-mass galaxy population becomes more quenched, it also becomes more dominated by spheroids with very few quiescent disks (<10%) at any redshift. Taken together, these results are consistent with a scenario in which new spheroids were continuously added and subsequently quenched, and inconsistent with an evolutionary process that primarily added newly quenched disks. The actual picture likely includes contributions from multiple channels and requires detailed modeling to better constrain the relative

  3. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    SciTech Connect

    Ma, Chung-Pei; Greene, Jenny E.; Murphy, Jeremy D.; McConnell, Nicholas; Janish, Ryan; Blakeslee, John P.; Thomas, Jens

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  4. CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY

    SciTech Connect

    Rettura, A.; Stern, D.; Martinez-Manso, J.; Gettings, D.; Gonzalez, A. H.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Stanford, S. A.; Bartlett, J. G.

    2014-12-20

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg{sup 2} Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density n{sub c}=(0.7{sub −0.6}{sup +6.3})×10{sup −7} h{sup 3} Mpc{sup −3} and a spatial clustering correlation scale length r {sub 0} = (32 ± 7) h {sup –1} Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M {sub min}, we derive that at z = 1.5 these clusters reside in halos larger than M{sub min}=1.5{sub −0.7}{sup +0.9}×10{sup 14} h{sup −1} M{sub ⊙}. We find that the mean mass of our cluster sample is equal to M{sub mean}=1.9{sub −0.8}{sup +1.0}×10{sup 14} h{sup −1} M{sub ⊙}; thus, our sample contains the progenitors of

  5. Candidate Clusters of Galaxies at z > 1.3 Identified in the Spitzer South Pole Telescope Deep Field Survey

    NASA Astrophysics Data System (ADS)

    Rettura, A.; Martinez-Manso, J.; Stern, D.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Gettings, D.; Gonzalez, A. H.; Stanford, S. A.; Bartlett, J. G.

    2014-12-01

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg2 Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z <= 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density nc = (0.7+6.3-0.6) × 10-7 h3 {Mpc}-3 and a spatial clustering correlation scale length r 0 = (32 ± 7) h -1 Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M min, we derive that at z = 1.5 these clusters reside in halos larger than Mmin = 1.5+0.9-0.7 × 1014 h-1 M⊙ . We find that the mean mass of our cluster sample is equal to Mmean = 1.9+1.0-0.8 × 1014 h-1 M⊙ ; thus, our sample contains the progenitors of present-day massive galaxy clusters.

  6. COLOR-MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS

    SciTech Connect

    Xue, Y. Q.; Brandt, W. N.; Luo, B.; Rafferty, D. A.; Schneider, D. P.; Alexander, D. M.; Lehmer, B. D.; Bauer, F. E.; Silverman, J. D.

    2010-09-01

    We extend color-magnitude relations for moderate-luminosity X-ray active galactic nucleus (AGN) hosts and non-AGN galaxies through the galaxy formation epoch (z {approx} 1-4) in the Chandra Deep Field-North and Chandra Deep Field-South (CDF-N and CDF-S, respectively; jointly CDFs) surveys. This study was enabled by the deepest available X-ray data from the 2 Ms CDF surveys as well as complementary ultradeep multiwavelength data in these regions. We utilized analyses of color-magnitude diagrams (CMDs) to assess the role of moderate-luminosity AGNs in galaxy evolution. First, we confirm some previous results and extend them to higher redshifts, finding, for example, that (1) there is no apparent color bimodality (i.e., the lack of an obvious red sequence and blue cloud) for AGN hosts from z {approx} 0to2, but non-AGN galaxy color bimodality exists up to z {approx} 3 and the relative fraction of red-sequence galaxies generally increases as the redshift decreases (consistent with a blue-to-red migration of galaxies), (2) most AGNs reside in massive hosts and the AGN fraction rises strongly toward higher stellar mass, up to z {approx} 2-3, and (3) the colors of both AGN hosts and non-AGN galaxies become redder as the stellar mass increases, up to z {approx} 2-3. Second, we point out that, in order to obtain a complete and reliable picture, it is critical to use mass-matched samples to examine color-magnitude relations of AGN hosts and non-AGN galaxies. We show that for mass-matched samples up to z {approx} 2-3, AGN hosts lie in the same region of the CMD as non-AGN galaxies; i.e., there is no specific clustering of AGN hosts in the CMD around the red sequence, the top of the blue cloud, or the green valley in between. The AGN fraction ({approx} 10%) is mostly independent of host-galaxy color, providing an indication of the duty cycle of supermassive black hole growth in typical massive galaxies. These results are in contrast to those obtained with non

  7. Influence of neglected covariances on the estimation of Earth rotation parameters, geophysical excitation functions and second degree gravity field coefficients

    NASA Astrophysics Data System (ADS)

    Heiker, Andrea; Kutterer, Hansjörg

    2010-05-01

    The Earth rotation variability is redundantly described by the combination of Earth rotation parameters (polar motion and length of day), geophysical excitation functions and second degree gravity field coefficients. There exist some publications regarding the comparison of the Earth rotation parameters and excitation functions. However, most authors do not make use of the redundancy. In addition, existing covariances between the input parameters are not considered. As shown in previous publications we use the redundancy for the independent mutual validation of the Earth rotation parameters, excitation functions and second degree gravity field coefficients based on an extended Gauss-Markov model and least-squares adjustment. The work regarding the mutual validation is performed within the project P9 "Combined analysis and validation of Earth rotation models and observations" of the research Unit FOR 584 ("Earth rotation and global dynamic processes") which is funded by the German Research Unit (DFG); see also abstract "Combined Analysis and Validation of Earth Rotation Models and Observations". The adjustment model is determined at first by the joint functional relations between the parameters and second by the stochastic model of the input data. A variance-covariance component estimation is included in the adjustment model. The functional model is based on the linearized Euler-Liouville equation. The construction of an appropriate stochastic model is prevented in practice by insufficient knowledge on variances and covariances. However, some numerical results derived from arbitrarily chosen stochastic models indicate that the stochastic model may be crucial for a correct estimation. The missing information is approximated by analyzing the input data. Synthetic variance-covariance matrices are constructed by considering empirical auto- and cross-correlation functions. The influence of neglected covariances is quantified and discussed by comparing the results derived

  8. 3D galaxy clustering with future wide-field surveys: Advantages of a spherical Fourier-Bessel analysis

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2015-06-01

    Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry, comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Aims: Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,k'), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum C(ij)_ℓ. The goal of this paper is to perform a new investigation of the information that can be extracted from these two analyses in the context of planned stage IV wide-field galaxy surveys. Methods: We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses, which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for the first time. Results: Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ≃ 0.4, N = 30 for zmed ≃ 1.0, and N = 42 for zmed ≃ 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the

  9. The UV continua and inferred stellar populations of galaxies at z ≃ 7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.; Rogers, A. B.; McLure, R. J.; Ellis, R. S.; Robertson, B. E.; Koekemoer, A.; Dayal, P.; Curtis-Lake, E.; Wild, V.; Charlot, S.; Bowler, R. A. A.; Schenker, M. A.; Ouchi, M.; Ono, Y.; Cirasuolo, M.; Furlanetto, S. R.; Stark, D. P.; Targett, T. A.; Schneider, E.

    2013-07-01

    We use the new ultra-deep, near-infrared imaging of the Hubble Ultra-Deep Field (HUDF) provided by our UDF12 Hubble Space Telescope (HST) Wide Field Camera 3/IR campaign to explore the rest-frame ultraviolet (UV) properties of galaxies at redshifts z > 6.5. We present the first unbiased measurement of the average UV power-law index, <β>, (fλ ∝ λβ) for faint galaxies at z ≃ 7, the first meaningful measurements of <β> at z ≃ 8, and tentative estimates for a new sample of galaxies at z ≃ 9. Utilizing galaxy selection in the new F140W (J140) imaging to minimize colour bias, and applying both colour and power-law estimators of β, we find <β> = -2.1 ± 0.2 at z ≃ 7 for galaxies with MUV ≃ -18. This means that the faintest galaxies uncovered at this epoch have, on average, UV colours no more extreme than those displayed by the bluest star-forming galaxies at low redshift. At z ≃ 8 we find a similar value, <β> = -1.9 ± 0.3. At z ≃ 9, we find <β> = -1.8 ± 0.6, essentially unchanged from z ≃ 6 to 7 (albeit highly uncertain). Finally, we show that there is as yet no evidence for a significant intrinsic scatter in β within our new, robust z ≃ 7 galaxy sample. Our results are most easily explained by a population of steadily star-forming galaxies with either ≃ solar metallicity and zero dust, or moderately sub-solar (≃10-20 per cent) metallicity with modest dust obscuration (AV ≃ 0.1-0.2). This latter interpretation is consistent with the predictions of a state-of-the-art galaxy-formation simulation, which also suggests that a significant population of very-low metallicity, dust-free galaxies with β ≃ -2.5 may not emerge until MUV > -16, a regime likely to remain inaccessible until the James Webb Space Telescope.

  10. Tracing the cosmic velocity field at z∼ 0.1 from galaxy luminosities in the SDSS DR7

    SciTech Connect

    Feix, Martin; Nusser, Adi; Branchini, Enzo E-mail: adi@physics.technion.ac.il

    2014-09-01

    Spatial modulations in the distribution of observed luminosities (computed using redshifts) of ∼ 5× 10{sup 5} galaxies from the SDSS Data Release 7, probe the cosmic peculiar velocity field out to z∼ 0.1. Allowing for luminosity evolution, the r-band luminosity function, determined via a spline-based estimator, is well represented by a Schechter form with M{sup *}(z)-5 log{sub 10} h = -20.52 -1.6(z-0.1)± 0.05 and α{sup *} = -1.1± 0.03. Bulk flows and higher velocity moments in two redshift bins, 0.02 < z < 0.07 and 0.07 < z < 0.22, agree with the predictions of the ΛCDM model, as obtained from mock galaxy catalogs designed to match the observations. Assuming a ΛCDM model, we estimate σ{sub 8} ≈ 1.1± 0.4 for the amplitude of the linear matter power spectrum, where the low accuracy is due to the limited number of galaxies. While the low z bin is robust against coherent photometric uncertainties, the bias of results from the second bin is consistent with the ∼1% magnitude tilt reported by the SDSS collaboration. The systematics are expected to have a significantly lower impact in future datasets with larger sky coverage and better photometric calibration.

  11. Situating Ontario's Colleges between the American and European Models for Providing Opportunity for the Attainment of Baccalaureate Degrees in Applied Fields of Study

    ERIC Educational Resources Information Center

    Skolnik, Michael L.

    2016-01-01

    During the last third of the twentieth century, college sectors in many countries took on the role of expanding opportunities for baccalaureate degree attainment in applied fields of study. In many European countries, colleges came to constitute a parallel higher education sector that offered degree programs of an applied nature in contrast to the…

  12. BROAD-LINE REVERBERATION IN THE KEPLER-FIELD SEYFERT GALAXY Zw 229-015

    SciTech Connect

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Choi, Jieun; Duchene, Gaspard; Ganeshalingam, Mohan; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Childress, Michael; Cucciara, Antonino; Comerford, Julia M.; Da Silva, Robert; Gates, Elinor L.; Gerke, Brian F.

    2011-05-10

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from H{beta} reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad H{beta} flux. From cross-correlation measurements, we find that the H{beta} light curve has a rest-frame lag of 3.86{sup +0.69}{sub -0.90} days with respect to the V-band continuum variations. We also measure reverberation lags for H{alpha} and H{gamma} and find an upper limit to the H{delta} lag. Combining the H{beta} lag measurement with a broad H{beta} width of {sigma}{sub line} = 1590 {+-} 47 km s{sup -1} measured from the rms variability spectrum, we obtain a virial estimate of M{sub BH} = 1.00{sup +0.19}{sub -0.24} x 10{sup 7} M{sub sun} for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  13. A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Rexer, Moritz; Scheinert, Mirko; Pail, Roland; Claessens, Sten; Holmes, Simon

    2016-02-01

    The current high-degree global geopotential models EGM2008 and EIGEN-6C4 resolve gravity field structures to ˜ 10 km spatial scales over most parts of the of Earth's surface. However, a notable exception is continental Antarctica, where the gravity information in these and other recent models is based on satellite gravimetry observations only, and thus limited to about ˜ 80-120 km spatial scales. Here, we present a new degree-2190 global gravity model (GGM) that for the first time improves the spatial resolution of the gravity field over the whole of continental Antarctica to ˜ 10 km spatial scales. The new model called SatGravRET2014 is a combination of recent Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite gravimetry with gravitational signals derived from the 2013 Bedmap2 topography/ice thickness/bedrock model with gravity forward modelling in ellipsoidal approximation. Bedmap2 is a significantly improved description of the topographic mass distribution over the Antarctic region based on a multitude of topographic surveys, and a well-suited source for modelling short-scale gravity signals as we show in our study. We describe the development of SatGravRET2014 which entirely relies on spherical harmonic modelling techniques. Details are provided on the least-squares combination procedures and on the conversion of topography to implied gravitational potential. The main outcome of our work is the SatGravRET2014 spherical harmonic series expansion to degree 2190, and derived high-resolution grids of 3D-synthesized gravity and quasigeoid effects over the whole of Antarctica. For validation, six data sets from the IAG Subcommission 2.4f "Gravity and Geoid in Antarctica" (AntGG) database were used comprising a total of 1,092,981 airborne gravimetric observations. All subsets consistently show that the Bedmap2-based short-scale gravity modelling improves the agreement over satellite

  14. Discovery of new dwarf galaxies around NGC4631 with Subaru/Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Tanaka, Mikito; Komiyama, Yutaka; Chiba, Masashi

    2015-08-01

    We have been carrying out archaeological surveys of nearby galaxies using the Hyper Suprime-Cam (HSC) on the prime focus of the 8.2m Subaru telescope in order to understand an universal formation scenario of galactic halos, based on wide-field observations of the Local Group galaxies and the Local Volume galaxies. HSC consists of 104 effective 2048 x 4096 CCDs with a scale of 0.17 arcsec per pixel and covers a circular field of view with 1.5 degree in diameter. Especially, it is important to understand the variety of morphology of galactic halos through a detailed comparison of structures already found in the Local Group galaxies with structures recently detected in the Local Volume galaxies. In this conference, we report the discovery of new classical dwarf galaxies in the outskirts of NGC4631, which is a nearby edge-on Local Volume spiral galaxy interacting with the spiral NGC4656, using Subaru/HSC. We have confirmed dwarf galaxies detected by Karachentsev+14 and have newly found 8 uncatalogued dwarf galaxies based on visual inspection. We have measured physical parameters of these dwarf galaxies, such as a total magnitude, a half-light radius and a surface brightness profile described by a sersic parameter, based on our i-band HSC image. Furthermore, we show spatial distribution of blue young stars of each dwarf galaxy and comparisons with UV sources from GALEX. The relation between total absolute magnitude and half-light radius of dwarf galaxies of the NGC4631 group suggests that these dwarf galaxies with brighter total luminosity probably tend to be more extending. Finally, we conclude that provided that the luminosity to half-light radius relation of dwarf galaxies in the NGC4631 group is the same as that observed in the Local Group, the dwarf galaxy system of the NGC4631 group may have formed through the same manner as that of the Local Group.

  15. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; Ptak, A.; Sivakoff, G. R.; Tzanavaris, P.; Yukita, M.

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  16. The X-ray luminosity functions of field low-mass X-ray binaries in early-type galaxies: Evidence for a stellar age dependence

    SciTech Connect

    Lehmer, B. D.; Tzanavaris, P.; Yukita, M.; Berkeley, M.; Basu-Zych, A.; Hornschemeier, A. E.; Ptak, A.; Zezas, A.; Alexander, D. M.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Kalogera, V.; Sivakoff, G. R.

    2014-07-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span ≈3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background active galactic nuclei/galaxies. We find that the 'young' early-type galaxy NGC 3384 (≈2-5 Gyr) has an excess of luminous field LMXBs (L {sub X} ≳ (5-10) × 10{sup 37} erg s{sup –1}) per unit K-band luminosity (L{sub K} ; a proxy for stellar mass) than the 'old' early-type galaxies NGC 3115 and 3379 (≈8-10 Gyr), which results in a factor of ≈2-3 excess of L {sub X}/L{sub K} for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  17. Constraints on Photoionization Feedback from Number Counts of Ultra-faint High-redshift Galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Yue, B.; Ferrara, A.; Merlin, E.; Fontana, A.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.

    2016-06-01

    We exploit a sample of ultra-faint high-redshift galaxies (demagnified Hubble Space Telescope, HST, H 160 magnitude > 30) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function in the presence of photoionization feedback. The objects have been selected on the basis of accurate photometric redshifts computed from multi-band photometry including seven HST bands and deep K s and IRAC observations. Magnification is computed on an object-by-object basis from all available lensing models of the two clusters. We take into account source detection completeness as a function of luminosity and size, magnification effects, and systematics in the lens modeling of the clusters under investigation. We find that our sample of high-z galaxies constrain the cutoff halo circular velocity below which star formation is suppressed by photoionization feedback to {v}c{{cut}}\\lt 50 km s‑1. This circular velocity corresponds to a halo mass of ≈5.6 × 109 M ⊙ and ≈2.3 × 109 M ⊙ at z = 5 and 10, respectively: higher-mass halos can thus sustain continuous star formation activity without being quenched by external ionizing flux. More stringent constraints are prevented by the uncertainty in the modeling of the cluster lens, as embodied by systematic differences among the lens models available.

  18. On the Nature of the Bright Short-Period X-Ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Wu, Kinwah; Tennant, Allyn F.; Swartz, Douglas A.; Ghosh, Kajal K.

    2004-01-01

    The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are reexamined. Previous analyses have concluded that the source is an accreting black hole of mass > or approx. 50 solar masses although it has been noted that the light curve resembles that of an AM Herculis system. Here we show that the short period and an assumed main-sequence companion constrain the mass of the companion to less than 1 solar mass. Furthermore, a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrain the mass of the compact object to less than 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star that intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within approx. 10(exp 3) yr. We find that the observations cannot rule out an AM Herculis system in the Milky Way and that such a system can account for the variations seen in the light curve.

  19. On the Nature of the Bright Short-Period X-ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Tennant, Allyn F.; Wu, Kinwah; Swartz, Douglas A.; Ghosh, Kajal K.

    2003-01-01

    The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are re-examined. Previous analyses have concluded that the source is an accreting black hole of mass approx. greater than 50 solar masses although it was noted that the light curve resembles that of an AM Her system. Here we show that the short period and an assumed main sequence companion constrain the mass of the companion to less than 1 solar mass. Further a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrains the mass of the compact object to less than 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star which intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within approx. 10(exp 3) yr. We find that the observations cannot rule out an AM Her system in the Milky Way and that such a system can account for the variations seen in the light curve.

  20. NEW LIGHT IN STAR-FORMING DWARF GALAXIES: THE PMAS INTEGRAL FIELD VIEW OF THE BLUE COMPACT DWARF GALAXY Mrk 409

    SciTech Connect

    Cairos, Luz M.; Kehrig, Carolina; Weilbacher, Peter; Roth, Martin M.; Caon, Nicola; Zurita, Cristina; Papaderos, Polychronis E-mail: kehrig@aip.d E-mail: mmroth@aip.d E-mail: czurita@iac.e

    2009-12-20

    We present an integral field spectroscopic study of the central 2 x 2 kpc{sup 2} of the blue compact dwarf galaxy Mrk 409, observed with the Potsdam MultiAperture Spectrophotometer (PMAS). This study focuses on the morphology, two-dimensional chemical abundance pattern, excitation properties, and kinematics of the ionized interstellar medium in the starburst component. We also investigate the nature of the extended ring of ionized gas emission surrounding the bright nuclear starburst region of Mrk 409. PMAS spectra of selected regions along the ring, interpreted with evolutionary and population synthesis models, indicate that their ionized emission is mainly due to a young stellar population with a total mass of approx1.5 x 10{sup 6} M{sub sun}, which started forming almost coevally approx10 Myr ago. This stellar component is likely confined to the collisional interface of a spherically expanding, starburst-driven super-bubble with denser, swept-up ambient gas, approx600 pc away from the central starburst nucleus. The spectroscopic properties of the latter imply a large extinction (C{sub Hb}eta>0.9), and the presence of an additional non-thermal ionization source, most likely a low-luminosity active galactic nucleus. Mrk 409 shows a relatively large oxygen abundance (12 + log(O/H) approx 8.4) and no chemical abundance gradients out to R approx 600 pc. The ionized gas kinematics displays an overall regular rotation on a northwest-southeast axis, with a maximum velocity of 60 km s{sup -1}; the total mass inside the star-forming ring is about 1.4 x 10{sup 9} M{sub sun}.

  1. The role of interactions in galaxy evolution: A new perspective from the CALIFA and MaNGA Integral Field Spectroscopic surveys.

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Sanchez, S. F.; Califa Collaboration

    2016-06-01

    Interactions and mergers have been playing a paramount role to understand how galaxies evolve. In recent years integral field spectroscopic (IFS) observations have become routinely allowing researchers to conduct large IFS surveys. In this context, these surveys are providing a new observational scenario to probe the properties of galaxies at different stages of the interaction —from close pairs to post-merger galaxies. Even more, these surveys also include homogeneous observations of non-interacting galaxies which in turns allows to distinguish the processes induce by secular evolution from those driven by interactions. In this talk, We review the studies of interacting studies from the CALIFA survey. They consider from the thorough analysis of a single interactive systems (e.g., the Mice, Wild et al. 2014) to the the statistical study of physical properties of a large sample of interacting/merging galaxies such as their internal structure via their stellar and gas line-of-sight kinematic maps (Barrera-Ballesteros et al. 2015a) or the spatial distribution of the star-forming gas in these galaxies (Barrera-Ballesteros et al. 2015b). Then we present some of the on-going studies within the MaNGA survey. Due to its statistical power (sample size ~10000 objects), this survey will allow us to probe the properties of galaxies in a wide range of the interaction-parameter space. This in turn provides a unique view on the key parameters that affect the internal structure and properties of galaxies during the interaction and subsequent merger.

  2. The Thousand-Ruby Galaxy

    NASA Astrophysics Data System (ADS)

    2008-09-01

    (farther out than those seen in this image) are populated with baby stars. X-ray observations of the heart of Messier 83 have shown that its centre is a hive of vigorous star formation, held deep within a cloud of superheated gas, with temperatures of 7 million degrees Celsius. Messier 83 is also one of the most prolific producers of supernovae, that is, exploding stars: this is one of the two galaxies, which had 6 supernovae in the past 100 years. One of these, SN 1957D was observable for 30 years! The Wide Field Imager (WFI) is a specialised astronomical camera attached to the 2.2-metre Max-Planck Society/ESO telescope, sited at the La Silla observatory in Chile. Located nearly 2400 m above sea level, atop the mountains of the Atacama Desert, ESO's La Silla enjoys some of the clearest and darkest skies on the whole planet, making the site ideally suited for studying the farthest depths of the Universe. To make this image, the WFI stared at M83 for roughly 100 minutes through a series of specialist filters, allowing the faint detail of the galaxy to reveal itself. The brighter stars in the foreground are stars in our own galaxy, whilst behind M83 the darkness is peppered with the faint smudges of distant galaxies.

  3. Infrared Polarimetry of Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, T. J.

    2005-12-01

    Imaging polarimetry at near infrared wavelengths can probe the magnetic field geometry in external galaxies in regions of high extinction inaccessible to optical techniques. Polarization of starlight from deep into dustlanes, blowouts, and dust enshrouded nuclei can be measured. A total of twelve galaxies showing only interstellar polarization have been observed to date. Normal galaxies such as NGC 4565 show a magnetic field geometry lying in the plane of the disk and a polarization strength very similar to what is observed in the Milky Way. Ultraluminous galaxies and galaxies with starburst nuclei show a polar magnetic field geometry in the nucleus, causing a crossed polaroid effect and reduced polarization. Interestingly, galaxies with active disks, but otherwise normal, such as NGC 891 show the effects of blowouts in the polarization maps.

  4. GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Reichardt, C. L.; Stalder, B.; Ashby, M. L. N.; Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Montroy, T. E.; Aird, K. A.; Andersson, K.; Bazin, G.; Armstrong, R.; Bautz, M.; Bayliss, M.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; and others

    2013-02-15

    We present a catalog of galaxy cluster candidates, selected through their Sunyaev-Zel'dovich (SZ) effect signature in the first 720 deg{sup 2} of the South Pole Telescope (SPT) survey. This area was mapped with the SPT in the 2008 and 2009 austral winters to a depth of {approx}18 {mu}K{sub CMB}-arcmin at 150 GHz; 550 deg{sup 2} of it was also mapped to {approx}44 {mu}K{sub CMB}-arcmin at 95 GHz. Based on optical imaging of all 224 candidates and near-infrared imaging of the majority of candidates, we have found optical and/or infrared counterparts for 158, which we then classify as confirmed galaxy clusters. Of these 158 clusters, 135 were first identified as clusters in SPT data, including 117 new discoveries reported in this work. This catalog triples the number of confirmed galaxy clusters discovered through the SZ effect. We report photometrically derived (and in some cases spectroscopic) redshifts for confirmed clusters and redshift lower limits for the remaining candidates. The catalog extends to high redshift with a median redshift of z = 0.55 and maximum confirmed redshift of z = 1.37. Forty-five of the clusters have counterparts in the ROSAT bright or faint source catalogs from which we estimate X-ray fluxes. Based on simulations, we expect the catalog to be nearly 100% complete above M {sub 500} Almost-Equal-To 5 Multiplication-Sign 10{sup 14} M {sub Sun} h {sup -1} {sub 70} at z {approx}> 0.6. There are 121 candidates detected at signal-to-noise ratio greater than five, at which the catalog purity is measured to be 95%. From this high-purity subsample, we exclude the z < 0.3 clusters and use the remaining 100 candidates to improve cosmological constraints following the method presented by Benson et al. Adding the cluster data to CMB + BAO + H {sub 0} data leads to a preference for non-zero neutrino masses while only slightly reducing the upper limit on the sum of neutrino masses to {Sigma}m {sub {nu}} < 0.38 eV (95% CL). For a spatially flat w

  5. Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the First 720 Square Degrees of the South Pole Telescope Survey

    NASA Astrophysics Data System (ADS)

    Reichardt, C. L.; Stalder, B.; Bleem, L. E.; Montroy, T. E.; Aird, K. A.; Andersson, K.; Armstrong, R.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Benson, B. A.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Natoli, T.; Padin, S.; Plagge, T.; Pryke, C.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Spieler, H. G.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; Šuhada, R.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2013-02-01

    We present a catalog of galaxy cluster candidates, selected through their Sunyaev-Zel'dovich (SZ) effect signature in the first 720 deg2 of the South Pole Telescope (SPT) survey. This area was mapped with the SPT in the 2008 and 2009 austral winters to a depth of ~18 μKCMB-arcmin at 150 GHz 550 deg2 of it was also mapped to ~44 μKCMB-arcmin at 95 GHz. Based on optical imaging of all 224 candidates and near-infrared imaging of the majority of candidates, we have found optical and/or infrared counterparts for 158, which we then classify as confirmed galaxy clusters. Of these 158 clusters, 135 were first identified as clusters in SPT data, including 117 new discoveries reported in this work. This catalog triples the number of confirmed galaxy clusters discovered through the SZ effect. We report photometrically derived (and in some cases spectroscopic) redshifts for confirmed clusters and redshift lower limits for the remaining candidates. The catalog extends to high redshift with a median redshift of z = 0.55 and maximum confirmed redshift of z = 1.37. Forty-five of the clusters have counterparts in the ROSAT bright or faint source catalogs from which we estimate X-ray fluxes. Based on simulations, we expect the catalog to be nearly 100% complete above M 500 ≈ 5 × 1014 M ⊙ h -1 70 at z >~ 0.6. There are 121 candidates detected at signal-to-noise ratio greater than five, at which the catalog purity is measured to be 95%. From this high-purity subsample, we exclude the z < 0.3 clusters and use the remaining 100 candidates to improve cosmological constraints following the method presented by Benson et al. Adding the cluster data to CMB + BAO + H 0 data leads to a preference for non-zero neutrino masses while only slightly reducing the upper limit on the sum of neutrino masses to ∑m ν < 0.38 eV (95% CL). For a spatially flat wCDM cosmological model, the addition of this catalog to the CMB + BAO + H 0 + SNe results yields σ8 = 0.807 ± 0.027 and w = -1.010 ± 0

  6. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  7. Multidimensionally-constrained relativistic mean-field study of spontaneous fission: Coupling between shape and pairing degrees of freedom

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Nikšić, Tamara; Vretenar, Dario; Zhou, Shan-Gui

    2016-04-01

    Background: Studies of fission dynamics, based on nuclear energy density functionals, have shown that the coupling between shape and pairing degrees of freedom has a pronounced effect on the nonperturbative collective inertia and, therefore, on dynamic (least-action) spontaneous fission paths and half-lives. Purpose: The aim is to analyze the effects of particle-number fluctuation degrees of freedom on symmetric and asymmetric spontaneous fission (SF) dynamics, and to compare the findings with the results of recent studies based on the self-consistent Hartree-Fock-Bogoliubov (HFB) method. Methods: Collective potentials and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic-mean-field (MDC-RMF) model. Pairing correlations are treated in the BCS approximation using a separable pairing force of finite range. Pairing fluctuations are included as a collective variable using a constraint on particle-number dispersion. Fission paths are determined with the dynamic programming method by minimizing the action in multidimensional collective spaces. Results: The dynamics of spontaneous fission of 264Fm and 250Fm are explored. Fission paths, action integrals, and corresponding half-lives computed in the three-dimensional collective space of shape and pairing coordinates, using the relativistic functional DD-PC1 and a separable pairing force of finite range, are compared with results obtained without pairing fluctuations. Results for 264Fm are also discussed in relation with those recently obtained using the HFB model. Conclusions: The inclusion of pairing correlations in the space of collective coordinates favors axially symmetric shapes along the dynamic path of the fissioning system, amplifies pairing as the path traverses the fission barriers, significantly reduces the action integral, and shortens the

  8. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  9. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  10. SIZE BIAS AND DIFFERENTIAL LENSING OF STRONGLY LENSED, DUSTY GALAXIES IDENTIFIED IN WIDE-FIELD SURVEYS

    SciTech Connect

    Hezaveh, Yashar D.; Holder, Gilbert P.; Marrone, Daniel P.

    2012-12-10

    We address two selection effects that operate on samples of gravitationally lensed dusty galaxies identified in millimeter- and submillimeter-wavelength surveys. First, we point out the existence of a ''size bias'' in such samples: due to finite source effects, sources with higher observed fluxes are increasingly biased toward more compact objects. Second, we examine the effect of differential lensing in individual lens systems by modeling each source as a compact core embedded in an extended diffuse halo. Considering the ratio of magnifications in these two components, we find that at high overall magnifications, the compact component is amplified by a much larger factor than the diffuse component, but at intermediate magnifications ({approx}10) the probability of a larger magnification for the extended region is higher. Lens models determined from multi-frequency resolved imaging data are crucial to correct for this effect.

  11. VizieR Online Data Catalog: Massive galaxies in CANDELS-UDS field (Bruce+, 2012)

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; Cirasuolo, M.; McLure, R. J.; Targett, T. A.; Bell, E. F.; Croton, D. J.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; Lai, K.; Lotz, J. M.; McGrath, E. J.; Newman, J. A.; van der Wel, A.

    2013-08-01

    The main aim of this paper is to present a comprehensive and robust analysis of the morphological properties of a significant sample of the most massive galaxies in the redshift range 1Galaxy Formation and Evolution. Springer, Berlin, p. 82; Furusawa et al. 2008, Cat. J/ApJS/176/301); U-band imaging obtained with MegaCam on Canada-France-Hawaii Telescope; J-, H- and K-band United Kingdom Infrared Telescope (UKIRT) WFCAM imaging from Data Release 8 (DR8) of the UKIDSS UDS; and Spitzer 3.6-, 4.5-, 5.8- and 8.0-um IRAC and 24-um MIPS imaging from the SpUDS legacy programme (PI Dunlop). (1 data file).

  12. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    SciTech Connect

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A.; Kaviraj, S.; Crockett, R. M.; Silk, J.; O'Connell, R. W.; Hathi, N. P.; McCarthy, P. J.; Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E.; Yan, H.; Kimble, R. A.; Balick, B.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; and others

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 {approx}< z {approx}< 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10{sup 11} < M{sub *}[M{sub Sun }]<10{sup 12}. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1{sigma} standard deviations {approx_equal}1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent ({approx}<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  13. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    SciTech Connect

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C.; Biggs, A. D.; Ivison, R. J.; Brandt, W. N.; Chapman, S. C.; Coppin, K. E. K.; Dannerbauer, H.; Greve, T. R.; Karim, A.; Menten, Karl M.; Schinnerer, E.; Walter, F.; Wardlow, J. L.; and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  14. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    NASA Technical Reports Server (NTRS)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; Mainieri, V.; Silverman, J.D.; Tozzi, P.; Wolf, C.

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  15. A FLUX-LIMITED SAMPLE OF z {approx} 1 Ly{alpha} EMITTING GALAXIES IN THE CHANDRA DEEP FIELD SOUTH ,

    SciTech Connect

    Barger, A. J.; Wold, I. G. B.; Cowie, L. L.

    2012-04-20

    We describe a method for obtaining a flux-limited sample of Ly{alpha} emitters from Galaxy Evolution Explorer (GALEX) grism data. We show that the multiple GALEX grism images can be converted into a three-dimensional (two spatial axes and one wavelength axis) data cube. The wavelength slices may then be treated as narrowband images and searched for emission-line galaxies. For the GALEX NUV grism data, the method provides a Ly{alpha} flux-limited sample over the redshift range z = 0.67-1.16. We test the method on the Chandra Deep Field South field, where we find 28 Ly{alpha} emitters with faint continuum magnitudes (NUV > 22) that are not present in the GALEX pipeline sample. We measure the completeness by adding artificial emitters and measuring the fraction recovered. We find that we have an 80% completeness above a Ly{alpha} flux of 10{sup -15} erg cm{sup -2} s{sup -1}. We use the UV spectra and the available X-ray data and optical spectra to estimate the fraction of active galactic nuclei in the selection. We report the first detection of a giant Ly{alpha} blob at z < 1, though we find that these objects are much less common at z = 1 than at z = 3. Finally, we compute limits on the z {approx} 1 Ly{alpha} luminosity function and confirm that there is a dramatic evolution in the luminosity function over the redshift range z = 0-1.

  16. A spectropolarimetric atlas of Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Smith, J. E.; Young, S.; Robinson, A.; Corbett, E. A.; Giannuzzo, M. E.; Axon, D. J.; Hough, J. H.

    2002-09-01

    We present optical spectropolarimetry of the nuclei of 36 Seyfert 1 galaxies, obtained with the William Herschel and the Anglo-Australian Telescopes from 1996 to 1999. In 20 of these, the optical emission from the active nucleus is intrinsically polarized. We have measured a significant level of polarization in a further seven objects but these may be heavily contaminated by Galactic interstellar polarization. The intrinsically polarized Seyfert 1 galaxies exhibit a variety of characteristics, with the average polarization ranging from <0.5 to 5 per cent and with many showing variations in both the degree and position angle of polarization across the broad Hα emission line. We identify a small group of Seyfert 1 galaxies that exhibit polarization properties similar to those of Seyfert 2 galaxies in which polarized broad lines have been discovered. These objects represent direct observational evidence that a Seyfert 2-like far-field polar scattering region is also present in Seyfert 1 galaxies. Several other objects have features that can be explained in terms of equatorial scattering of line emission from a rotating disc. We propose that much of the diversity in the polarization properties of Seyfert galaxies can be understood in terms of a model involving both equatorial and polar scattering, the relative importance of the two geometries as sources of polarized light being determined principally by the inclination of the system axis to the line of sight.

  17. Evolution and Distribution of Magnetic Fields from Active Galactic Nuclei in Galaxy Clusters. II. The Effects of Cluster Size and Dynamical State

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Li, Hui; Collins, David C.; Li, Shengtai; Norman, Michael L.

    2011-10-01

    Theory and simulations suggest that magnetic fields from radio jets and lobes powered by their central super massive black holes can be an important source of magnetic fields in the galaxy clusters. This is Paper II in a series of studies where we present self-consistent high-resolution adaptive mesh refinement cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus. We studied 12 different galaxy clusters with virial masses ranging from 1 × 1014 to 2 × 1015 M sun. In this work, we examine the effects of the mass and merger history on the final magnetic properties. We find that the evolution of magnetic fields is qualitatively similar to those of previous studies. In most clusters, the injected magnetic fields can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process with hierarchical mergers, while the amplification history and the magnetic field distribution depend on the cluster formation and magnetism history. This can be very different for different clusters. The total magnetic energies in these clusters are between 4 × 1057 and 1061 erg, which is mainly decided by the cluster mass, scaling approximately with the square of the total mass. Dynamically older relaxed clusters usually have more magnetic fields in their ICM. The dynamically very young clusters may be magnetized weakly since there is not enough time for magnetic fields to be amplified.

  18. The XLF of LMXBs in the fields of early-type galaxies, their metal-rich, and metal-poor globular clusters

    NASA Astrophysics Data System (ADS)

    Peacock, Mark; Zepf, Steve E.

    2016-04-01

    The X-ray luminosity function (XLF) of extragalactic low mass X-ray binaries (LMXBs) can provide insights into their nature and origin. We present an analysis of seven early-type galaxies. These galaxies have deep Chandra observations, which detect X-ray sources down to 1037erg/s, and HST optical mosaics that enable the classification of these sources into field LMXBs, globular cluster (GC) LMXBs, and contaminating sources. At all luminosities, we find that the number of field LMXBs per stellar mass is similar in these galaxies. This sample therefore suggests that the GC specific frequency may not influence the field LMXB population. It also suggests that other parameters, such as the stellar IMF, are either similar across the galaxy sample or vary in a way that does not effect the LMXB population. The XLF of the field and GC LMXBs are significantly different (p-value of 3x10-6), with the latter having a flatter XLF. The XLFs of the metal-rich and metal-poor GC LMXBs are similar, although larger samples will be needed to provide sharper tests in the future.

  19. A force sensor with five degrees of freedom using optical intensity modulation for usage in a magnetic resonance field

    NASA Astrophysics Data System (ADS)

    Kim, Min-Gyu; Lee, Dong-Hyeok; Cho, Nahm-Gyoo

    2013-04-01

    In this paper, a precise small 5-DOF (degree of freedom) force sensor is proposed for use in a strong EMF (electromagnetic field) environment. Detecting modules using CFPs (carbon fiber plates) and transducing modules using the optical modulation principle are adopted in order not to be affected by the EMF. For miniaturization of the multi-DOF force sensor, a 2-DOF transducing module using a spherical mirror and a 3-DOF transducing module using a plane mirror were designed and integrated. The design parameters of highly sensitive transducing modules were investigated and determined experimentally. To combine with these transducing modules, a 2-DOF detecting module using CFP single leaf springs and a 3-DOF detecting module using a CFP tripod spring were also designed. Considering the easy calibration process and convenient design change, the elastic detecting modules were designed so that they deform independently according to each input force component. A calibration test confirmed that the detecting modules deform linearly and independently of the input force. The results of the evaluation tests showed that the range and resolution of forces were ±4 N and 0.94-7.1 mN and the range and resolution of moments were ±120 N mm and 0.023-0.034 N mm, respectively. The high sensitivity and the linearity of the measuring results were also verified.

  20. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  1. A GMBCG Galaxy Cluster Catalog of 55,424 Rich Clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; Gerdes, David; Johnston, David E.; Sheldon, Erin; /Brookhaven

    2011-08-22

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Dat