Science.gov

Sample records for delineating landslide hazard

  1. Approaches for delineating landslide hazard areas using receiver operating characteristic in an advanced calibrating precision soil erosion model

    NASA Astrophysics Data System (ADS)

    Ghazvinei, P. T.; Zandi, J.; Ariffin, J.; Hashim, R. B.; Motamedi, S.; Aghamohammadi, N.; Moghaddam, D. A.

    2015-10-01

    Soil erosion is undesirable natural event that causes land degradation and desertification. Identify the erosion-prone areas is a major component of preventive measures. Recent landslide damages at different regions lead us to develop a model of the erosion susceptibility map using empirical method (RUSLE). A landslide-location map was established by interpreting satellite image. Field observation data was used to validate the intensity of soil erosion. Further, a correlation analysis was conducted to investigate the "Receiver Operating Characteristic" and frequency ratio. Results showed a satisfactory correlation between the prepared RUSLE-based soil erosion map and actual landslide distribution. The proposed model can effectively predict the landslide events in soil-erosion area. Such a reliable predictive model is an effective management facility for the regional landslide forecasting system.

  2. Landslide Hazards - A National Threat

    USGS Publications Warehouse

    U.S. Geological Survey

    2005-01-01

    Landslides occur and can cause damage in all 50 States. Severe storms, earthquakes, volcanic activity, coastal wave attack, and wildfires can cause widespread slope instability. Landslide danger may be high even as emergency personnel are providing rescue and recovery services. To address landslide hazards, several questions must be considered: Where and when will landslides occur? How big will the landslides be? How fast and how far will they move? What areas will the landslides affect or damage? How frequently do landslides occur in a given area? Answers to these questions are needed to make accurate landslide hazard maps and forecasts of landslide occurrence, and to provide information on how to avoid or mitigate landslide impacts. The U.S. Geological Survey develops methods to answer these questions to help protect U.S. communities from the dangers of landslides.

  3. Landslide Hazard in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George; Tsereteli, Emil; Gaprindashvili, Merab

    2014-05-01

    In the last decades of the XX century, protect the population from geological hazards, to maintain land and safe operation of the engineering facilities has become the most important social - economic, demographic, political and environmental problems for the whole world. Georgia, with its scales of origination of the natural-catastrophic processes (landslide, mudflow, rockfall, erosion and etc.), their re-occurrence and with the negative results inflicted by these processes to the population, agricultural lands and engineering objects, is one of the most complex mountainous region. The extremely sensitive conditions were conditioned by: 1. Activation of highly intense earthquakes; 2. Activation of the negative meteorological events provoking the disaster processes on the background of global climatic changes and their abnormally frequent occurrence (mostly increased atmospheric precipitations, temperature and humidity); 3. Large-scale Human impact on the environment. Following the problem urgency, a number of departmental and research institutions have made their operations more intense in the given direction within the limits of their competence. First of all, the activity of the Department of Geology of Georgia (which is at present included in the National Environmental Agency of the Ministry of Environment and Natural Resources Protection), which mapped, identified and cataloged the hazardous processes on the territory of the country and identified the spatial limits and developmental regularities of these processes for tens of years. The increased risk of Geological catastrophes in Georgia first of all is caused by insufficient information between society and responsible persons toward this event. The existed situation needs the base assessment of natural disasters level, the identification of events, to determine their caused reasons, to develop special maps in GIS system, and continuous functioning of geo monitoring researches for develop safety early

  4. Landslide Hazard in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, G.; Tsereteli, E.; Gaprindashvili, M.

    2013-12-01

    In the last decades of the XX century, protect the population from geological hazards, to maintain land and safe operation of the engineering facilities has become the most important social - economic, demographic, political and environmental problems for the whole world. Georgia, with its scales of origination of the natural-catastrophic processes (landslide, mudflow, rockfall, erosion and etc.), their re-occurrence and with the negative results inflicted by these processes to the population, agricultural lands and engineering objects, is one of the most complex mountainous region. The extremely sensitive conditions were conditioned by: 1. Activation of highly intense earthquakes; 2. Activation of the negative meteorological events provoking the disaster processes on the background of global climatic changes and their abnormally frequent occurrence (mostly increased atmospheric precipitations, temperature and humidity); 3. Large-scale Human impact on the environment. Following the problem urgency, a number of departmental and research institutions have made their operations more intense in the given direction within the limits of their competence. First of all, the activity of the Department of Geology of Georgia (which is at present included in the National Environmental Agency of the Ministry of Environment and Natural Resources Protection), which mapped, identified and cataloged the hazardous processes on the territory of the country and identified the spatial limits and developmental regularities of these processes for tens of years. The increased risk of Geological catastrophes in Georgia first of all is caused by insufficient information between society and responsible persons toward this event. The existed situation needs the base assessment of natural disasters level, the identification of events, to determine their caused reasons, to develop special maps in GIS system, and continuous functioning of geo monitoring researches for develop safety early

  5. Geoethical Issues in Landslides Hazard Zonation

    NASA Astrophysics Data System (ADS)

    Parkash Gupta, Surya

    2016-04-01

    Landslide hazard zonation is a common geoscientific practice for assessing potential from slope instability problems. Several different approaches and techniques have been applied by various researchers to classify hilly terrains into different degrees or probabilities of landslide hazards. But the study of landslide hazard zonation practices in India reveals that most of these approaches use same factors and approaches for landslide processes. However, the causative and controlling factors for different types of landslides have been found to be different depending on the material (rock, debris or soil) involved in the movement as well as the failure process (fall, topple, slide (rotational, wedge, planar), flow and spread. Each of these landslide process is governed by different factors but during the landslide hazard or susceptibility zonation by many of the geoscientists, same set of factors have been used. Such approaches not only enhance the errors in landslide hazard assessment but also increase the uncertainties in terms of landslide processes. These kind of landslide hazard or susceptibility zonation maps can not be used reliably by the planners, administrators, development agencies, communities and other stakeholders. The approach is likely to affect the credibility of geoscientists among the society. Hence, it is proposed that landslide process specific zonation maps should be generated to classify the hilly terrains into different degrees of hazards. It will also help in establishing responsible factor for each landslide process more accurately and estimating potential landslide hazards with greater reliability.

  6. Landslide hazard mitigation in North America

    USGS Publications Warehouse

    Wieczorek, G.F.; Leahy, P.P.

    2008-01-01

    Active landslides throughout the states and territories of the United States result in extensive property loss and 25-50 deaths per year. The U.S. Geological Survey (USGS) has a long history of detailed examination of landslides since the work of Howe (1909) in the San Juan Mountains of Colorado. In the last four decades, landslide inventory maps and landslide hazard maps have depicted landslides of different ages, identified fresh landslide scarps, and indicated the direction of landslide movement for different regions of the states of Colorado, California, and Pennsylvania. Probability-based methods improve landslide hazards assessments. Rainstorms, earthquakes, wildfires, and volcanic eruptions can trigger landslides. Improvements in remote sensing of rainfall make it possible to issue landslide advisories and warnings for vulnerable areas. From 1986 to 1995, the USGS issued hazard warnings based on rainfall in the San Francisco Bay area. USGS workers also identified rainfall thresholds triggering landslides in Puerto Rico, Hawaii, Washington, and the Blue Ridge Mountains of central Virginia. Detailed onsite monitoring of landslides near highways in California and Colorado aided transportation officials. The USGS developed a comprehensive, multi-sector, and multi-agency strategy to mitigate landslide hazards nationwide. This study formed the foundation of the National Landslide Hazards Mitigation Strategy. The USGS, in partnership with the U.S. National Weather Service and the State of California, began to develop a real-time warning system for landslides from wildfires in Southern California as a pilot study in 2005.

  7. Shallow Landslides Hazards in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Bellugi, D. G.; Perron, J. T.; O'Gorman, P. A.; Milledge, D.

    2015-12-01

    Rainfall-triggered shallow landslides pose hazards to communities, infrastructure, and ecosystems. The magnitude and frequency of extreme precipitation are expected to change under climate warming, but their effects on landslide abundance, size, and spatial distribution are poorly understood. Fractional changes in extreme precipitation can be considerably greater than those in mean precipitation as storm intensity is not constrained by the atmospheric energy budget. Changes in orographic precipitation may also alter the spatial pattern of extreme precipitation. We assess relative changes in extreme precipitation for varying return periods and event durations predicted by regional climate models (RCM) in the USA over the periods 1971-2000 to 2041-2070. We delineate areas where orographic precipitation contributes to changes in extreme precipitation by analyzing topography and local winds associated with these extremes. To verify that RCMs reflect theoretical predictions, we quantify precipitation changes on the lee and windward slopes. We assess impacts of extreme precipitation change on landslide characteristics by applying a search algorithm that predicts landslide abundance, location, and size to a study site in the Oregon Coast Range (OCR) with a 10-year landslide observational record. We test a range of precipitation scenarios, forest management practices, and antecedent moisture conditions. To explore effects of orographic precipitation, we rescale observed precipitation for representative lee and windward locations and find that fractional changes in mean winter precipitation are ~3 times larger on leeward slopes. The fractional changes in intensity are much greater for extreme precipitation than mean precipitation, and they increase with return period. In the Pacific Northwest, leeward increases are ~10% for 2-year events and ~20% for 30-year events. At our study site, a 20% increase in precipitation or antecedent moisture corresponds to a 30-40% increase in

  8. Submarine landslides: processes, triggers and hazard prediction.

    PubMed

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible. PMID:16844646

  9. Disseminating Landslide Hazard Information for California Local Government

    NASA Astrophysics Data System (ADS)

    Wills, C. J.

    2010-12-01

    Since 1969, the California Geological Survey has produced numerous maps showing landslide features and delineating potential slope-stability problem areas. These maps have been provided to local governments to encourage consideration of landslide hazards in planning and development decisions. Maps produced from 1986 through 1995 under the Landslide Hazard Mapping Act were advisory only, and their use by local government was never consistent. By contrast, maps of Zones of Required Investigation for seismically induced landslides produced under the Seismic Hazard Zoning Act since 1997 come with detailed guidelines and legal requirements. A legislative act that required landslide hazards be mapped and hazard maps disseminated to local government proved ineffective in landslide hazard mitigation. A later act with requirements that the hazard zone maps be used by local government proved more effective. Planning scenarios have proven to be an effective way of transmitting scientific information about natural hazards to emergency response professionals. Numerous earthquake planning scenarios have been prepared and used as the basis for emergency response exercises. An advantage of scenarios that include loss estimates is that the effects can be put in units of measure that everyone understands, principally deaths and dollars. HAZUS software available from FEMA allows calculation of losses for earthquake scenarios, but similar methods for landslides have not been developed. As part of the USGS Multi-Hazard Demonstration Project, we have estimated the landslide losses for a major west-coast winter storm scenario by developing a system based loosely on HAZUS. Data on landslide damage in past storms has been sparse and inconsistent, but a few data sets are available. The most detailed and complete available data on landslide damage was gathered by the City of Los Angeles following the 1978 storms. We extrapolate from that data to the entire state by first generalizing a

  10. Delineation of potential deep seated landslides in a watershed using environmental index

    NASA Astrophysics Data System (ADS)

    Lai, Siao Ying; Lin, Chao Yuan; Lin, Cheng Yu

    2016-04-01

    The extreme rainfall induced deep seated landslides cause more attentions recently. Extreme rainfall can accelerate soil moisture content and surface runoff in slopeland which usually results in severe headward erosion and slope failures in an upstream watershed. It's a crucial issue for disaster prevention to extract the sites of potential deep seated landslide dynamically. Landslide risk and scale in a watershed were well discussed in this study. Risk of landslide occurrence in a watershed can be calculated from the multiplication of hazard and vulnerability for a certain event. A synthesis indicator derived from the indices of inverted extreme rainfall, road development and inverted normalized difference vegetation index can be effectively used as vulnerability for a watershed before the event. Landslide scale estimated from the indices of soil depth, headward erosion, river concave and dip slope could be applied to locate the hotspots of deep seated landslide in a watershed. The events of Typhoon Morakot in 2009 and Soudelor in 2015 were also selected in this study to verify the delineation accuracy of the model for the references of related authorities.

  11. Directions of the US Geological Survey Landslide Hazards Reduction Program

    USGS Publications Warehouse

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  12. Landslide and Land Subsidence Hazards to Pipelines

    USGS Publications Warehouse

    Baum, Rex L.; Galloway, Devin L.; Harp, Edwin L.

    2008-01-01

    Landslides and land subsidence pose serious hazards to pipelines throughout the world. Many existing pipeline corridors and more and more new pipelines cross terrain that is affected by either landslides, land subsidence, or both. Consequently the pipeline industry recognizes a need for increased awareness of methods for identifying and evaluating landslide and subsidence hazard for pipeline corridors. This report was prepared in cooperation with the U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration, and Pipeline Research Council International through a cooperative research and development agreement (CRADA) with DGH Consulting, Inc., to address the need for up-to-date information about current methods to identify and assess these hazards. Chapters in this report (1) describe methods for evaluating landslide hazard on a regional basis, (2) describe the various types of land subsidence hazard in the United States and available methods for identifying and quantifying subsidence, and (3) summarize current methods for investigating individual landslides. In addition to the descriptions, this report provides information about the relative costs, limitations and reliability of various methods.

  13. Landslide Hazards After the 2005 Kashmir Earthquake

    NASA Astrophysics Data System (ADS)

    Bulmer, Mark; Farquhar, Tony; Roshan, Masud; Akhtar, Sadar Saeed; Wahla, Sajjad Karamat

    2007-01-01

    The 8 October 2005 Kashmir earthquake killed 87,300 people and disrupted the lives of several million more. By current estimates, 30,000 still live in camps sited more in accordance with short term expedience than with freedom from risk of natural hazards. In December 2006, the international aid community expressed fears that 50,000 people in Northwest Frontier Province may leave their mountain homes this winter as landslides and avalanches block access roads. As the focus of humanitarian assistance shifts toward restoration of Kashmir's infrastructure, it is important that the persistent hazard of landslides within the earthquake affected region be understood and recognized.

  14. Landslide Hazards in the Seattle, Washington, Area

    USGS Publications Warehouse

    Baum, Rex; Harp, Ed; Highland, Lynn

    2007-01-01

    The Seattle, Washington, area is known for its livability and its magnificent natural setting. The city and nearby communities are surrounded by an abundance of rivers and lakes and by the bays of Puget Sound. Two majestic mountain ranges, the Olympics and the Cascades, rim the region. These dramatic natural features are products of dynamic forces-landslides, earthquakes, tsunamis, glaciers, volcanoes, and floods. The same processes that formed this beautiful landscape pose hazards to the ever-growing population of the region. Landslides long have been a major cause of damage and destruction to people and property in the Seattle area.

  15. Precipitation and soil accumulation history modifies future landslide hazard

    NASA Astrophysics Data System (ADS)

    Parker, R.; Hales, T. C.; Mudd, S. M.; Grieve, S. W. D.

    2015-12-01

    Landslides are a major global geohazard that are predicted to increase as anthropogenic climate change drives an increase in landslide-triggering storms. Humid mountains may be particularly important, as rainfall-induced shallow landsliding causes a significant proportion of global landslide fatalities. While precipitation is a significant driving force, future landslide susceptibility also depends on millennial-scale landslide history that limits the distribution of potential landslide material. However, the influence of landslide history on current and future landslide hazard is poorly understood. We address this problem by first quantifying the distribution of shallow landslide potential across 1347 km2 of the southern Appalachian Mountains using an unprecedented empirical dataset of hillslope soil depths and strength parameters. By accounting for landslide history, estimates of future landslide potential are lowered significantly. Slope stability modelling demonstrates that under current conditions, only 38% of potential landslide sites across the landscape could fail, regardless of the size of the storm. Of susceptible slopes, most can only fail during the largest possible precipitation events. This is because once a landslide occurs it takes thousands of years to accumulate enough soil to make a site unstable during precipitation. In contrast, the return period of large storms is tens to hundreds of years. This result challenges whether increases in precipitation predicted by climate models will lead to measureable increases in landslide frequency. Next, we examine how the distribution of potential landslide material changes through time as storm-induced landslides periodically remove material, using a coupled hillslope stability and soil accumulation model applied to the Appalachian landscape. Our results reveal the spatial pattern of temporal variability in landslide potential, which represents a neglected source of uncertainty when assessing regional

  16. Remote sensing and landslide hazard assessment

    NASA Technical Reports Server (NTRS)

    Mckean, J.; Buechel, S.; Gaydos, L.

    1991-01-01

    Remotely acquired multispectral data are used to improve landslide hazard assessments at all scales of investigation. A vegetation map produced from automated interpretation of TM data is used in a GIS context to explore the effect of vegetation type on debris flow occurrence in preparation for inclusion in debris flow hazard modeling. Spectral vegetation indices map spatial patterns of grass senescence which are found to be correlated with soil thickness variations on hillslopes. Grassland senescence is delayed over deeper, wetter soils that are likely debris flow source areas. Prediction of actual soil depths using vegetation indices may be possible up to some limiting depth greater than the grass rooting zone. On forested earthflows, the slow slide movement disrupts the overhead timber canopy, exposes understory vegetation and soils, and alters site spectral characteristics. Both spectral and textural measures from broad band multispectral data are successful at detecting an earthflow within an undisturbed old-growth forest.

  17. Assessing Degree of Susceptibility to Landslide Hazard

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Cordoba, G. A.; Delgado, H.; Stefanescu, R.

    2013-05-01

    The modeling of hazardous mass flows, both dry and water saturated, is currently an area of active research and several stable models have now emerged that have differing degrees of physical and mathematical fidelity. Models based on the early work of Savage and Hutter (1989) assume that very large dense granular flows could be modeled as incompressible continua governed by a Coulomb failure criterion. Based on this concept, Patra et al. (2005) developed a code for dry avalanches, which proposes a thin layer mathematical model similar to shallow-water equations. This concept was implemented in the widely-used TITAN2D program, which integrates the shock-capturing Godunov solution methodology for the equation system. We propose a method to assess the susceptibility of specific locations susceptible to landslides following heavy tephra fall using the TIATN2D code. Successful application requires that the range of several uncertainties must be framed in the selection of model input data: 1) initial conditions, like volume and location of origin of the landslide, 2) bed and internal friction parameters and 3) digital elevation model (DEM) uncertainties. Among the possible ways of coping with these uncertainties, we chose to use Latin Hypercube Sampling (LHS). This statistical technique reduces a computationally intractable problem to such an extent that is it possible to apply it, even with current personal computers. LHS requires that there is only one sample in each row and each column of the sampling matrix, where each row (multi-dimensional) corresponds to each uncertainty. LHS requires less than 10% of the sample runs needed by Monte Carlo approaches to achieve a stable solution. In our application LHS output provides model sampling for 4 input parameters: initial random volumes, UTM location (x and y), and bed friction. We developed a simple Octave script to link the output of LHS with TITAN2D. In this way, TITAN2D can run several times with successively different

  18. Local slope, hillslope length and upslope unstable area as 1st order controls on co-seismic landslide hazard.

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Densmore, A. L.; Petley, D. N.; Bellugi, D. G.; Li, G.

    2015-12-01

    Many communities in mountainous areas have limited access to and/or understanding of co-seismic landslide hazard maps. Furthermore these maps rarely provide the information that a community seeks: Where is safest? How big could the landslide be? Geomorphic intuition suggests that: 1) on the ridges one is less likely to be hit by a landslide than elsewhere in the landscape; 2) hazard increases with the amount of upslope unstable area; 3) longer slopes contain more candidate landslides and are also capable of producing larger landslides thus they constitute a more severe hazard. These observations could help communities in siting infrastructure or making earthquake plans but have not, to our knowledge, been tested against past landslide inventories. Co-seismic landslide models make no attempt to predict landslide size and focus on initiation, ignoring the runout which is critical in the slope length control on hazard. Here we test our intuitive hypotheses using an inventory of co-seismic landslides from the 2008 Wenchuan earthquake. The inventory is mapped from high-resolution remote imagery using an automated algorithm and manual delineation and does not distinguish between source and runout zones. Discretizing the study area into 30 m cells we define landslide hazard as the probability that a cell is within a mapped landslide polygon (p(ls)). We find that p(ls) increases rapidly with increasing slope and upslope area. Locations with low local slope (<10˚) or upslope area (<900 m2/m) have p(ls) less than one third of the areal average. The joint p(ls) conditional on local slope and upslope area identifies long steep slopes as particularly hazardous and ridges (where slope and upslope area are both low) as particularly low hazard. Examining the slope lengths associated with each landslide in the inventory we find that hillslope length sets an upper limit on landslide size but that its influence on the detailed size distribution is more difficult to untangle. Finally

  19. A preliminary attempt to determine the landslide hazard in Italy

    NASA Astrophysics Data System (ADS)

    Parise, Mario

    2013-04-01

    Determining landslide hazard at the national scale remains a difficult task. However, such a complex task needs to be accomplished to mitigate the landslide consequences, including loss of lives and economic and environmental damages. For administrative purposes, the Italian territory (303,000 km sq.) is subdivided in 20 regions that cover a large variety of natural environments, most of which are subject to landslide hazards. To determine landslide hazard in such a complex and diversified territory, the many natural and anthropogenic variables, and their variations, must be considered. In Italy, the Italian national Civil Protection Department (DPC), an office of the Prime Minister, is in charge of managing natural and human-made hazards, and the associated risk. For landslide (and flood) hazards, the DPC has subdivided the Italian territory into 134 "alert zones" (AZ), decided based on administrative and hydrological criteria. Here, we describe the results of a preliminary effort made by our research group - in the framework of a larger effort to forecast landslide hazard and risk in Italy - to describe landslide hazard in each AZ. For the purpose, we summarized in a specifically designed form the geographical, morphological, geological and landslide information available for each AZ. The form also contains general information on past landslide events and on the vulnerability to landslides of the AZ. We obtained the morphological information from the SRTM DEM with a grid resolution of 90 m × 90 m, and the geological and lithological information from the Geological Map of Italy, at the 1:500,000 scale, published by the Italian Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). We used the morphological (terrain elevation and terrain gradient) and the lithological information to subdivide the Italian territory in three main morphological domains (plains, hills and mountains), and we computed the proportion of the three domains in each AZ. We

  20. Landslide Hazard Mapping in Rwanda Using Logistic Regression

    NASA Astrophysics Data System (ADS)

    Piller, A.; Anderson, E.; Ballard, H.

    2015-12-01

    Landslides in the United States cause more than $1 billion in damages and 50 deaths per year (USGS 2014). Globally, figures are much more grave, yet monitoring, mapping and forecasting of these hazards are less than adequate. Seventy-five percent of the population of Rwanda earns a living from farming, mostly subsistence. Loss of farmland, housing, or life, to landslides is a very real hazard. Landslides in Rwanda have an impact at the economic, social, and environmental level. In a developing nation that faces challenges in tracking, cataloging, and predicting the numerous landslides that occur each year, satellite imagery and spatial analysis allow for remote study. We have focused on the development of a landslide inventory and a statistical methodology for assessing landslide hazards. Using logistic regression on approximately 30 test variables (i.e. slope, soil type, land cover, etc.) and a sample of over 200 landslides, we determine which variables are statistically most relevant to landslide occurrence in Rwanda. A preliminary predictive hazard map for Rwanda has been produced, using the variables selected from the logistic regression analysis.

  1. Slope stability susceptibility evaluation parameter (SSEP) rating scheme - An approach for landslide hazard zonation

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Tarun Kumar; Ibrahim, Jemal; Ayalew, Dereje

    2014-11-01

    In this paper a new slope susceptibility evaluation parameter (SSEP) rating scheme is presented which is developed as an expert evaluation approach for landslide hazard zonation. The SSEP rating scheme is developed by considering intrinsic and external triggering parameters that are responsible for slope instability. The intrinsic parameters which are considered are; slope geometry, slope material (rock or soil type), structural discontinuities, landuse and landcover and groundwater. Besides, external triggering parameters such as, seismicity, rainfall and manmade activities are also considered. For SSEP empirical technique numerical ratings are assigned to each of the intrinsic and triggering parameters on the basis of logical judgments acquired from experience of studies of intrinsic and external triggering factors and their relative impact in inducing instability to the slope. Further, the distribution of maximum SSEP ratings is based on their relative order of importance in contributing instability to the slope. Finally, summation of all ratings for intrinsic and triggering parameter based on actual observation will provide the expected degree of landslide in a given land unit. This information may be utilized to develop a landslide hazard zonation map. The SSEP technique was applied in the area around Wurgessa Kebelle of North Wollo Zonal Administration, Amhara National Regional State in northern Ethiopia, some 490 km from Addis Ababa. The results obtained indicates that 8.33% of the area fall under Moderately hazard and 83.33% fall within High hazard whereas 8.34% of the area fall under Very high hazard. Further, in order to validate the LHZ map prepared during the study, active landslide activities and potential instability areas, delineated through inventory mapping was overlain on it. All active landslide activities and potential instability areas fall within very high and high hazard zone. Thus, the satisfactory agreement confirms the rationality of

  2. Probabilistic, Seismically-Induced Landslide Hazard Mapping of Western Oregon

    NASA Astrophysics Data System (ADS)

    Olsen, M. J.; Sharifi Mood, M.; Gillins, D. T.; Mahalingam, R.

    2015-12-01

    Earthquake-induced landslides can generate significant damage within urban communities by damaging structures, obstructing lifeline connection routes and utilities, generating various environmental impacts, and possibly resulting in loss of life. Reliable hazard and risk maps are important to assist agencies in efficiently allocating and managing limited resources to prepare for such events. This research presents a new methodology in order to communicate site-specific landslide hazard assessments in a large-scale, regional map. Implementation of the proposed methodology results in seismic-induced landslide hazard maps that depict the probabilities of exceeding landslide displacement thresholds (e.g. 0.1, 0.3, 1.0 and 10 meters). These maps integrate a variety of data sources including: recent landslide inventories, LIDAR and photogrammetric topographic data, geology map, mapped NEHRP site classifications based on available shear wave velocity data in each geologic unit, and USGS probabilistic seismic hazard curves. Soil strength estimates were obtained by evaluating slopes present along landslide scarps and deposits for major geologic units. Code was then developed to integrate these layers to perform a rigid, sliding block analysis to determine the amount and associated probabilities of displacement based on each bin of peak ground acceleration in the seismic hazard curve at each pixel. The methodology was applied to western Oregon, which contains weak, weathered, and often wet soils at steep slopes. Such conditions have a high landslide hazard even without seismic events. A series of landslide hazard maps highlighting the probabilities of exceeding the aforementioned thresholds were generated for the study area. These output maps were then utilized in a performance based design framework enabling them to be analyzed in conjunction with other hazards for fully probabilistic-based hazard evaluation and risk assessment. a) School of Civil and Construction

  3. Regional coseismic landslide hazard assessment without historical landslide inventories: A new approach

    NASA Astrophysics Data System (ADS)

    Kritikos, Theodosios; Robinson, Tom R.; Davies, Tim R. H.

    2015-04-01

    Currently, regional coseismic landslide hazard analyses require comprehensive historical landslide inventories as well as detailed geotechnical data. Consequently, such analyses have not been possible where these data are not available. A new approach is proposed herein to assess coseismic landslide hazard at regional scale for specific earthquake scenarios in areas without historical landslide inventories. The proposed model employs fuzzy logic and geographic information systems to establish relationships between causative factors and coseismic slope failures in regions with well-documented and substantially complete coseismic landslide inventories. These relationships are then utilized to estimate the relative probability of landslide occurrence in regions with neither historical landslide inventories nor detailed geotechnical data. Statistical analyses of inventories from the 1994 Northridge and 2008 Wenchuan earthquakes reveal that shaking intensity, topography, and distance from active faults and streams are the main controls on the spatial distribution of coseismic landslides. Average fuzzy memberships for each factor are developed and aggregated to model the relative coseismic landslide hazard for both earthquakes. The predictive capabilities of the models are assessed and show good-to-excellent model performance for both events. These memberships are then applied to the 1999 Chi-Chi earthquake, using only a digital elevation model, active fault map, and isoseismal data, replicating prediction of a future event in a region lacking historic inventories and/or geotechnical data. This similarly results in excellent model performance, demonstrating the model's predictive potential and confirming it can be meaningfully applied in regions where previous methods could not. For such regions, this method may enable a greater ability to analyze coseismic landslide hazard from specific earthquake scenarios, allowing for mitigation measures and emergency response plans

  4. Developing a Seismic Landslide Hazard Map for Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Chyi-Tyi

    2013-04-01

    Following Lee et al. (2008), the statistical approach is applied to the seismic landslide hazard analysis for whole Taiwan and all the works are done by using new data sets. These new data include a new and carefully mapped Chi-Chi earhquake-incuced landslide inventory, a 5mx5m DEM, and a new version of 1 to 50,000 scale geologic map for whole Taiwan. Landslide causative factors used in the susceptibility analysis include slope gradient, slope aspect, terrain roughness, slope roughness, total curvature, total slope height, and lithology. A corrected Arias intensity which considered topographic amplification is used as a triggering factor. Firstly, a susceptibility model is built by using the 1999 Chi-Chi shallow landslides as a training data set and mulitivariate logistic regression as an analytical tool. This model is validated by using the 1998 Jueili earhtquake-induced landslide data. Then, a probability of failure curve is established by comparing the Chi-Chi landslide data and the susceptibility values, and the spatial probability of landslide occurrence may be drawn. The temporal probability may be accounted by the triggering factor - hazard level of Arias intensity, which may be got through a regular probabilistic seismic hazard analysis. Finally, the susceptibility model and the probability of failure curve are applied to whole Taiwan by using a topographic corrected 475-year Arias intensity as triggering factor, so that a seismic shallow landslide probability map for 475-year earthquake is completed.

  5. Landslide hazard assessment in city under construction Innopolis (Russia)

    NASA Astrophysics Data System (ADS)

    Latypov, A.; Zharkova, N.; Nuriyev, I.

    2016-03-01

    The paper reflects the main results of exploring the landslide hazard threating Innopolis city, precisely field and laboratory studies, assessment of the slope stability. A regional short-term landslide hazard forecast was performed using a digital model of geological medium and the method of engineering-geological analogy: an engineering-geological zoning was conducted; data from standard areas, the critical values of surface slopes were calculated for the identified types of soils and different types of humidity; the obtained data were extrapolated, verified and corrected. On the basis of the forecast, development of a landslide monitoring network is proved.

  6. Landslide mobility and hazards: implications of the 2014 Oso disaster

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.; George, D. L.; Allstadt, K.; Reid, M. E.; Collins, B. D.; Vallance, J. W.; Schilling, S. P.; Godt, J. W.; Cannon, C. M.; Magirl, C. S.; Baum, R. L.; Coe, J. A.; Schulz, W. H.; Bower, J. B.

    2015-02-01

    Landslides reflect landscape instability that evolves over meteorological and geological timescales, and they also pose threats to people, property, and the environment. The severity of these threats depends largely on landslide speed and travel distance, which are collectively described as landslide "mobility". To investigate causes and effects of mobility, we focus on a disastrous landslide that occurred on 22 March 2014 near Oso, Washington, USA, following a long period of abnormally wet weather. The landslide's impacts were severe because its mobility exceeded that of prior historical landslides at the site, and also exceeded that of comparable landslides elsewhere. The ˜ 8 ×106 m3 landslide originated on a gently sloping (<20°) riverside bluff only 180 m high, yet it traveled across the entire ˜1 km breadth of the adjacent floodplain and spread laterally a similar distance. Seismological evidence indicates that high-speed, flowing motion of the landslide began after about 50 s of preliminary slope movement, and observational evidence supports the hypothesis that the high mobility of the landslide resulted from liquefaction of water-saturated sediment at its base. Numerical simulation of the event using a newly developed model indicates that liquefaction and high mobility can be attributed to compression- and/or shear-induced sediment contraction that was strongly dependent on initial conditions. An alternative numerical simulation indicates that the landslide would have been far less mobile if its initial porosity and water content had been only slightly lower. Sensitive dependence of landslide mobility on initial conditions has broad implications for assessment of landslide hazards.

  7. Landslide mobility and hazards: implications of the 2014 Oso disaster

    USGS Publications Warehouse

    Iverson, Richard M.; George, David L.; Allstadt, Kate E.; Reid, Mark E.; Collins, Brian D.; Vallance, James W.; Schilling, Steve P.; Godt, Jonathan W.; Cannon, Charles; Magirl, Christopher S.; Baum, Rex L.; Coe, Jeffrey A.; Schulz, William; Bower, J. Brent

    2015-01-01

    Landslides reflect landscape instability that evolves over meteorological and geological timescales, and they also pose threats to people, property, and the environment. The severity of these threats depends largely on landslide speed and travel distance, which are collectively described as landslide “mobility”. To investigate causes and effects of mobility, we focus on a disastrous landslide that occurred on 22 March 2014 near Oso, Washington, USA, following a long period of abnormally wet weather. The landslide's impacts were severe because its mobility exceeded that of prior historical landslides at the site, and also exceeded that of comparable landslides elsewhere. The ∼8×106 m3 landslide originated on a gently sloping (<20°) riverside bluff only 180 m high, yet it traveled across the entire ∼1 km breadth of the adjacent floodplain and spread laterally a similar distance. Seismological evidence indicates that high-speed, flowing motion of the landslide began after about 50 s of preliminary slope movement, and observational evidence supports the hypothesis that the high mobility of the landslide resulted from liquefaction of water-saturated sediment at its base. Numerical simulation of the event using a newly developed model indicates that liquefaction and high mobility can be attributed to compression- and/or shear-induced sediment contraction that was strongly dependent on initial conditions. An alternative numerical simulation indicates that the landslide would have been far less mobile if its initial porosity and water content had been only slightly lower. Sensitive dependence of landslide mobility on initial conditions has broad implications for assessment of landslide hazards.

  8. Landslide hazards and systems analysis: A Central European perspective

    NASA Astrophysics Data System (ADS)

    Klose, Martin; Damm, Bodo; Kreuzer, Thomas

    2016-04-01

    Part of the problem with assessing landslide hazards is to understand the variable settings in which they occur. There is growing consensus that hazard assessments require integrated approaches that take account of the coupled human-environment system. Here we provide a synthesis of societal exposure and vulnerability to landslide hazards, review innovative approaches to hazard identification, and lay a focus on hazard assessment, while presenting the results of historical case studies and a landslide time series for Germany. The findings add to a growing body of literature that recognizes societal exposure and vulnerability as a complex system of hazard interactions that evolves over time as a function of social change and development. We therefore propose to expand hazard assessments by the framework and concepts of systems analysis (e.g., Liu et al., 2007) Results so far have been promising in ways that illustrate the importance of feedbacks, thresholds, surprises, and time lags in the evolution of landslide hazard and risk. In densely populated areas of Central Europe, landslides often occur in urbanized landscapes or on engineered slopes that had been transformed or created intentionally by human activity, sometimes even centuries ago. The example of Germany enables to correlate the causes and effects of recent landslides with the historical transition of urbanization to urban sprawl, ongoing demographic change, and some chronic problems of industrialized countries today, including ageing infrastructures or rising government debts. In large parts of rural Germany, the combination of ageing infrastructures, population loss, and increasing budget deficits starts to erode historical resilience gains, which brings especially small communities to a tipping point in their efforts to risk reduction. While struggling with budget deficits and demographic change, these communities are required to maintain ageing infrastructures that are particularly vulnerable to

  9. The role of method of production and resolution of the DEM on slope-units delineation for landslide susceptibility assessment - Ubaye Valley, French Alps case study

    NASA Astrophysics Data System (ADS)

    Schlögel, Romy; Marchesini, Ivan; Alvioli, Massimiliano; Reichenbach, Paola; Rossi, Mauro; Malet, Jean-Philippe

    2016-04-01

    Landslide susceptibility assessment forms the basis of any hazard mapping, which is one of the essential parts of quantitative risk mapping. For the same study area, different susceptibility maps can be achieved depending on the type of susceptibility mapping methods, mapping unit, and scale. In the Ubaye Valley (South French Alps), we investigate the effect of resolution and method of production of the DEM to delineate slope units for landslide susceptibility mapping method. Slope units delineation has been processed using multiple combinations of circular variance and minimum area size values, which are the input parameters for a new software for terrain partitioning. We rely on this method taking into account homogeneity of aspect direction inside each unit and inhomogeneity between different units. We computed slope units delineation for 5, 10 and 25 meters resolution DEM, and investigate statistical distributions of morphometric variables within the different polygons. Then, for each different slope units partitioning, we calibrated a landslide susceptibility model, considering landslide bodies and scarps as a dependent variable (binary response). This work aims to analyse the role of DEM resolution on slope-units delineation for landslide susceptibility assessment. Area Under the Curve of the Receiver Operating Characteristic is investigated for the susceptibility model calculations. In addition, we analysed further the performance of the Logistic Regression Model by looking at the percentage of significant variable in the statistical analyses. Results show that smaller slope units have a better chance of containing a smaller number of thematic and morphometric variables, allowing for an easier classification. Reliability of the models according to the DEM resolution considered as well as scarp area and landslides bodies presence/absence as dependent variable are discussed.

  10. Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador

    NASA Astrophysics Data System (ADS)

    Anderson, E. R.; Griffin, R.; Irwin, D.

    2013-12-01

    Heavy rains and steep, volcanic slopes in El Salvador cause numerous landslides every year, posing a persistent threat to the population, economy and environment. Although potential debris inundation hazard zones have been delineated using digital elevation models (DEMs), some disparities exist between the simulated zones and actual affected areas. Moreover, these hazard zones have only been identified for volcanic lahars and not the shallow landslides that occur nearly every year. This is despite the availability of tools to delineate a variety of landslide types (e.g., the USGS-developed LAHARZ software). Limitations in DEM spatial resolution, age of the data, and hydrological preprocessing techniques can contribute to inaccurate hazard zone definitions. This study investigates the impacts of using different elevation models and pit filling techniques in the final debris hazard zone delineations, in an effort to determine which combination of methods most closely agrees with observed landslide events. In particular, a national DEM digitized from topographic sheets from the 1970s and 1980s provide an elevation product at a 10 meter resolution. Both natural and anthropogenic modifications of the terrain limit the accuracy of current landslide hazard assessments derived from this source. Global products from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM) offer more recent data but at the cost of spatial resolution. New data derived from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) in 2013 provides the opportunity to update hazard zones at a higher spatial resolution (approximately 6 meters). Hydrological filling of sinks or pits for current hazard zone simulation has previously been achieved through ArcInfo spatial analyst. Such hydrological processing typically only fills pits and can lead to drastic modifications of original elevation values

  11. Catchment Scale Landslide Hazard Assessment In The Siwaliks Of Nepal

    NASA Astrophysics Data System (ADS)

    Dahal, R. K.; Paudel, P. P.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2010-12-01

    Siwaliks hill slope of the Himalaya developed on young and relatively unconsolidated soft rock terrain and it comprises many vertical slopes and rugged terrain. Siwaliks region is low elevation area of the Nepal Himalaya having average elevation of 500 m and average annual rainfall of 2000 to 2500 mm. River valleys of Siwaliks are extensively used for cultivation and are abode to settlement. The population and livelihood activities are highly vulnerable to flood, debris torrent and debris flow from hill slopes. The factors such as human intervention, groundwater condition, geology, river under cuttings and deforestation on slopes are facilitating landslides. The Siwaliks (Churia) Range is made up of geologically very young, soft and unconsolidated sedimentary rocks such as mudstones, shale, sandstones, siltstones and conglomerates. The Upper Siwaliks contains thick beds of conglomerates and they are loose and fragile. Similarly, Lower Siwaliks and Middle Siwaliks have problem from alternating beds of mudstones and sandstone. In such alternating bands, mudstone can flow when saturated with water, which results overhanging sandstone beds. Such overhang jointed sandstone beds easily are disintegrated into blocks. Two typical watersheds viz. Charnath and Jalad of eastern Nepal were selected for the landslide hazard mapping. The Jalad and Charnath are two major river systems originating from the Siwalik and are high disastrous rivers. These catchments also consists the typical features of the eastern Siwalik landscape. Jalad and Charnath watersheds in Siwalik are very fragile and have significant problems of geology and geomorphology related slope failure. In this study, weights-of-evidence modelling with respect to bivariate statistical methods and logistic regression model with respect to multivariate statistical method were used for landslide hazard mapping in Siwaliks. Both modelling was applied by considering 10 intrinsic and 1 extrinsic factors. Mainly DEM

  12. New techniques for landslide hazard assessments: opportunities, methodology, and uncertainty

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D. B.; Peters-Lidard, C. D.; Adler, R. F.; Hong, Y.

    2009-12-01

    An emerging global rainfall-triggered landslide hazard algorithm employs an empirical framework to identify potentially susceptible areas to rainfall-triggered landslides in near real-time. This methodology couples a satellite-derived estimate of cumulative rainfall with a static surface susceptibility map to highlight regions of anticipated landslide activity. While this algorithm represents an important first step in developing a larger-scale landslide prediction framework, there are many uncertainties and assumptions surrounding such a methodology that decreases the functionality and utility of this system. This research seeks to improve upon this initial concept by exploring the potential opportunities and methodological structure needed to advance larger-scale landslide hazard forecasting and make it more of an operational reality. Sensitivity analysis of the surface and rainfall parameters in the preliminary algorithm indicates that surface data resolution and the interdependency of variables must be more appropriately quantified at local and regional scales. Additionally, integrating available surface parameters must be approached in a more theoretical, physically-based manner to better represent the physical processes underlying slope instability and landslide initiation. Several rainfall infiltration and hydrological flow models have been developed to model slope instability at small spatial scales. This research investigates the potential of upscaling a more quantitative hydrological model to larger spatial scales, utilizing satellite and surface data inputs that are obtainable over different geographic regions. Due to the significant role that data and methodological uncertainties play in the effectiveness of landslide hazard assessment outputs, the methodology and data inputs are considered within an ensemble uncertainty framework in order to better resolve the contribution and limitations of model inputs and more effectively communicate the model skill.

  13. Landslide hazard prediction in the North-Eastern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Disperati, L.; Guastaldi, E.; Rindinella, A.

    2003-04-01

    In order to assess the landslide hazard nearby the Pergola city (in the Northern-Eastern Apennines, Italy) a ground survey at a scale of 1:10,000 was performed for an extent of about 370 km^2 (Carmignani, 2001), and a GIS of landslides was built. Following statistical analysis allows to assess the correlation among landslide occurrences and causal factors related to the detachment zone (lithology, engineering geology, elevation, slope, aspect, bedding as related with slope face -RBS- and land use). Consequently, considering the morphological, lithological and anthropic characters of current slides, it was agreed to locate possible future landslides in those area actually stable but characterised by similar conditions. Because of that, a geostatistical analysis was performed. Comparing for every landslide the occurence of either single or combined causal factor, the analysis was carried out in grid format. The spatial analysis of the GIS data layers allowed building the unique condition regions (Chung et al., 1995) and creating statistical data on causal factors in relation of landslides. Afterwards, for every region the susceptibility to development of new occurrences (favourability mapping) was calculated by utilising the certainty factor (CF; Chung &Fabbri, 1993). For landslides where crown was identified, the main scarp was considered as occurrence; a buffer around the highest point of landslide was built for all the others (Disperati et al., 2002). Such procedure was applied both for slides (175 occurrences) and flows (464 occurrences). Furthermore, by the application of the procedure to causal factors and their combination, additional information regarding susceptibility to development of new occurrences was calculated. The selection of the most suitable factors combination can be done through the results accuracy assessment in relation of time and/or space (Chung, 1999), by utilising two different hazard information layers, respectively computed from a

  14. Analysis of Landslide Hazard Impact Using the Landslide Database for Germany

    NASA Astrophysics Data System (ADS)

    Klose, M.; Damm, B.

    2014-12-01

    The Federal Republic of Germany has long been among the few European countries that lack a national landslide database. Systematic collection and inventory of landslide data still shows a comprehensive research history in Germany, but only one focused on development of databases with local or regional coverage. This has changed in recent years with the launch of a database initiative aimed at closing the data gap existing at national level. The present contribution reports on this project that is based on a landslide database which evolved over the last 15 years to a database covering large parts of Germany. A strategy of systematic retrieval, extraction, and fusion of landslide data is at the heart of the methodology, providing the basis for a database with a broad potential of application. The database offers a data pool of more than 4,200 landslide data sets with over 13,000 single data files and dates back to 12th century. All types of landslides are covered by the database, which stores not only core attributes, but also various complementary data, including data on landslide causes, impacts, and mitigation. The current database migration to PostgreSQL/PostGIS is focused on unlocking the full scientific potential of the database, while enabling data sharing and knowledge transfer via a web GIS platform. In this contribution, the goals and the research strategy of the database project are highlighted at first, with a summary of best practices in database development providing perspective. Next, the focus is on key aspects of the methodology, which is followed by the results of different case studies in the German Central Uplands. The case study results exemplify database application in analysis of vulnerability to landslides, impact statistics, and hazard or cost modeling.

  15. Assessing Landslide Characteristics and Developing a Landslide Potential Hazard Map in Rwanda and Uganda Using NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Sinclair, L.; Conner, P.; le Roux, J.; Finley, T.

    2015-12-01

    The International Emergency Disasters Database indicates that a total of 482 people have been killed and another 27,530 have been affected by landslides in Rwanda and Uganda, although the actual numbers are thought to be much higher. Data for individual countries are poorly tracked, but hotspots for devastating landslides occur throughout Rwanda and Uganda due to the local topography and soil type, intense rainfall events, and deforestation. In spite of this, there has been little research in this region that utilizes satellite imagery to estimate areas susceptible to landslides. This project utilized Landsat 8 Operational Land Imager (OLI) data and Google Earth to identify landslides that occurred within the study area. These landslides were then added to SERVIR's Global Landslide Catalog (GLC). Next, Landsat 8 OLI, the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), and Shuttle Radar Topography Mission Version 2 (SRTM V2) data were used to create a Landslide Susceptibility Map. This was combined with population data from the Socioeconomic Data and Applications Center (SEDAC) to create a Landslide Hazard map. A preliminary assessment of the relative performance of GPM and TRMM in identifying landslide conditions was also performed. The additions to the GLC, the Landslide Susceptibility Map, the Landslide Hazard Map, and the preliminary assessment of satellite rainfall performance will be used by SERVIR and the Regional Centre for Mapping of Resources for Development (RCMRD) for disaster risk management, land use planning, and determining landslide conditions and moisture thresholds.

  16. Landslide Hazard Probability Derived from Inherent and Dynamic Determinants

    NASA Astrophysics Data System (ADS)

    Strauch, Ronda; Istanbulluoglu, Erkan

    2016-04-01

    Landslide hazard research has typically been conducted independently from hydroclimate research. We unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach combines an empirical inherent landslide probability with a numerical dynamic probability, generated by combining routed recharge from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model run in a Monte Carlo simulation. Landslide hazard mapping is advanced by adjusting the dynamic model of stability with an empirically-based scalar representing the inherent stability of the landscape, creating a probabilistic quantitative measure of geohazard prediction at a 30-m resolution. Climatology, soil, and topography control the dynamic nature of hillslope stability and the empirical information further improves the discriminating ability of the integrated model. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex, a rugged terrain with nearly 2,700 m (9,000 ft) of vertical relief, covering 2757 sq km (1064 sq mi) in northern Washington State, U.S.A.

  17. Seismic Landslide Hazard for the City of Berkeley, California

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.

    2001-01-01

    This map describes the possible hazard from earthquake-induced landslides for the city of Berkeley, CA. The hazard depicted by this map was modeled for a scenario corresponding to an M=7.1 earthquake on the Hayward, CA fault. This scenario magnitude is associated with complete rupture of the northern and southern segments of the Hayward fault, an event that has an estimated return period of about 500 years. The modeled hazard also corresponds to completely saturated ground-water conditions resulting from an extreme storm event or series of storm events. This combination of earthquake and ground-water scenarios represents a particularly severe state of hazard for earthquake-induced landslides. For dry ground-water conditions, overall hazard will be less, while relative patterns of hazard are likely to change. Purpose: The map is intended as a tool for regional planning. Any site-specific planning or analysis should be undertaken with the assistance of a qualified geotechnical engineer. This hazard map should not be used as a substitute to the State of California Seismic Hazard Zones map for the same area. (See California Department of Conservation, Division of Mines and Geology, 1999). As previously noted for maps of this type by Wieczorek and others (1985), this map should not be used as a basis to determine the absolute risk from seismically triggered landslides at any locality, as the sole justification for zoning or rezoning any parcel, for detailed design of any lifeline, for site-specific hazard-reduction planning, or for setting or modifying insurance rates.

  18. Landslides! Engaging students in natural hazards and STEM principles through the exploration of landslide analog models

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Lechner, H. N.; Brill, K. A.; Lerner, G.; Ramos, E.

    2014-12-01

    Graduate students at Michigan Technological University developed the "Landslides!" activity to engage middle & high school students participating in summer engineering programs in a hands-on exploration of geologic engineering and STEM (Science, Technology, Engineering and Math) principles. The inquiry-based lesson plan is aligned to Next Generation Science Standards and is appropriate for 6th-12th grade classrooms. During the activity students focus on the factors contributing to landslide development and engineering practices used to mitigate hazards of slope stability hazards. Students begin by comparing different soil types and by developing predictions of how sediment type may contribute to differences in slope stability. Working in groups, students then build tabletop hill-slope models from the various materials in order to engage in evidence-based reasoning and test their predictions by adding groundwater until each group's modeled slope fails. Lastly students elaborate on their understanding of landslides by designing 'engineering solutions' to mitigate the hazards observed in each model. Post-evaluations from students demonstrate that they enjoyed the hands-on nature of the activity and the application of engineering principles to mitigate a modeled natural hazard.

  19. Comparison of landslide hazard and risk assessment practices in Europe

    NASA Astrophysics Data System (ADS)

    Corominas, J.; Mavrouli, O.

    2012-04-01

    An overview is made of the landslide hazard and risk assessment practices that are officially promoted or applied in Europe by administration offices, geological surveys, and decision makers (recommendations, regulations and codes). The reported countries are: Andorra, Austria, France, Italy (selected river basins), Romania, Spain (Catalonia), Switzerland and United Kingdom. The objective here was to compare the different practices for hazard and risk evaluation with respect to the official policies, the methodologies used (qualitative and quantitative), the provided outputs and their contents, and the terminology and map symbols used. The main observations made are illustrated with examples and the possibility of harmonization of the policies and the application of common practices to bridge the existing gaps is discussed. Some of the conclusions reached include the following: zoning maps are legally binding for public administrators and land owners only in some cases and generally when referring to site-specific or local scales rather than regional or national ones; so far, information is mainly provided on landslide susceptibility and hazard and risk assessment is performed only in a few countries; there is a variation in the use of scales between countries; the classification criteria for landslide types and mechanisms present large diversity even within the same country (in some cases no landslide mechanisms are specified while in others there is an exhaustive list); the techniques to obtain input data for the landslide inventory and susceptibility maps vary from basic to sophisticated, resulting in various levels of data quality and quantity; the procedures followed for hazard and risk assessment include analytical procedures supported by computer simulation, weighted-indicators, expert judgment and field survey-based, or a combination of all; there is an important variation between hazard and risk matrices with respect to the used parameters, the thresholds

  20. Quantify landslide exposure in areas with limited hazard information

    NASA Astrophysics Data System (ADS)

    Pellicani, R.; Spilotro, G.; Van Westen, C. J.

    2012-04-01

    In Daunia region, located in the North-western part of Apulia (Southern Italy), landslides are the main source of damage to properties in the urban centers of the area, involving especially transportation system and the foundation stability of buildings. In the last 50 years, the growing demand for physical development of these unstable minor hillside and mountain centers has produced a very rapid expansion of built-up areas, often with poor planning of urban and territorial infrastructures, and invasion of the agricultural soil. Because of the expansion of the built-up towards not safe areas, human activities such as deforestation or excavation of slopes for road cuts and building sites, etc., have become important triggers for landslide occurrence. In the study area, the probability of occurrence of landslides is very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. Because the main limitations concern the availability of temporal data on landslides and triggering events (frequency), run-out distance and landslide magnitude, it was not possible to produce a reliable landslide hazard map and, consequently, a risk map. Given these limitations in data availability and details, a qualitative exposure map has been produced and combined with a landslide susceptibility map, both generated using a spatial multi-criteria evaluation (SMCE) procedure in a GIS system, for obtaining the qualitative landslide risk map. The qualitative analysis has been provided the spatial distribution of the exposure level in the study area; this information could be used in a preliminary stage of regional planning. In order to have a better definition of the risk level in the Daunia territory, the quantification of the economic losses at municipal level was carried out. For transforming these information on economic consequences into landslide risk quantification, it was necessary to assume the temporal

  1. Artificial Neural Networks Applied To Landslide Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Casagli, N.; Catani, F.; Ermini, L.

    Landslide hazard mapping is often performed through the identification and analysis of hillslope instability factors. GIS techniques are widely applied for the manage- ment of hillslope factors as thematic data rated by the attribution of scores based on the assumed role played by each factor controlling the development of a sliding pro- cess. Other more refined methods, based on the principle that the present and the past are keys to the future, have been also developed, thus allowing to perform less sub- jective analyses, in which landslide susceptibility is assessed by statistical relation- ships between the past landslides and the hillslope instability factors. The objective of this research is to define a method able to foresee landslide susceptibility through the application of Artificial Neural Networks (ANN). The Riomaggiore catchment, a sub-watershed of the Reno River basin located in the Northern Apennine at half way between Florence and Bologna, was chosen as the test site. The utilized ANN (AiNet 1.25) was trained by vector-based GIS data corresponding to five hillslope factors: a) geology, b) slope, c), curvature, d) land cover e) contributing area. The intersection between the hillslope factors, all ranked in nominal scales, singled out 3263 homoge- neous domains (Unique Condition Unit) containing unique combinations of hillslope factors. The final model was formed by vectors in which the hillslope factors, once organized as Boolean variables, are represented by 20 binary numbers. The compari- son between the most recent inventory of the landslides in the Riomaggiore catchment and the hazardous areas, as predicted by the ANN, showed very satisfactory results and allowed us to validate the methodology.

  2. Delineating the size of the Cliff Shelf Landslide in Badlands National Park, South Dakota

    NASA Astrophysics Data System (ADS)

    Genco, A. J.

    2013-12-01

    900 ft/s, respectively. Therefore, these velocities (referred to hereafter as 'stiffness contact') are interpreted to represent a stiffness contact where displacement is likely to occur, and a possible depth to the slide plane. Two locations along the seismic refraction and MASW profiles were identified where there is an abrupt decrease in the depth to the stiffness contact, interpreted to represent the location of the slide plane. Additional seismic refraction and MASW surveys were collected away from the highway (where instruments could not be installed) to delineate the shape and size of the slide plane in the subsurface, specifically the northern and western extents. By determining the extents of the slide plane, an estimation of the size of the landslide was made by engineers and incorporated to designing mitigation solutions. Also, by successfully applying multiple geophysical techniques the interpreted depth and extents of the slide plane allowed design engineers to determine the total size of the landslide. The interpretations of the slide plane extents, vertically and horizontally, correlate well with the limited standard geotechnical data currently being used to monitor landslide movement.

  3. A method for producing digital probabilistic seismic landslide hazard maps

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Michael, J.A.

    2000-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include: (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24 000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10 m grid spacing using ARC/INFO GIS software on a UNIX computer. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure. ?? 2000 Elsevier Science B.V. All rights reserved.

  4. The Framework on Multi-Scale Landslide Hazard Evaluation in China

    NASA Astrophysics Data System (ADS)

    Li, W. Y.; Liu, C.; Gao, J.

    2016-06-01

    Nowadays, Landslide has been one of the most frequent and seriously widespread natural hazards all over the world. How landslides can be monitored and predicted is an urgent research topic of the international landslide research community. Particularly, there is a lack of high quality and updated landslide risk maps and guidelines that can be employed to better mitigate and prevent landslide disasters in many emerging regions, including China. This paper considers national and regional scale, and introduces the framework on combining the empirical and physical models for landslide evaluation. Firstly, landslide susceptibility in national scale is mapped based on empirical model, and indicates the hot-spot areas. Secondly, the physically based model can indicate the process of slope instability in the hot-spot areas. The result proves that the framework is a systematic method on landslide hazard monitoring and early warning.

  5. Effects of climate change on landslide hazard in Europe (Invited)

    NASA Astrophysics Data System (ADS)

    Nadim, F.; Solheim, A.

    2009-12-01

    Landslides represent a major threat to human life, property and constructed facilities, infrastructure and natural environment in most mountainous and hilly regions of the world. As a consequence of climatic changes and potential global warming, an increase of landslide activity is expected in some parts of the world in the future. This will be due to increased extreme rainfall events, changes of hydrological cycles, meteorological events followed by sea storms causing coastal erosion and melting of snow and of frozen soils in the high mountains. During the past century, Europe experienced many fatalities and significant economic losses due to landslides. Since in many parts of Europe landslides are the most serious natural hazard, several recent European research projects are looking into the effects of climate change on the risk associated with landslides. Examples are the recently initiated SafeLand project, which looks into this problem across the continent, and GeoExtreme, which focused on Norway. The ongoing project SafeLand (www.safeland-fp7.eu) is a large, integrating project financed by the European Commission. It involves close to 30 organizations from 13 countries in Europe, and it looks into the effects of global change (mainly changes in demography and climate change) on the pattern of landslide risk in Europe. The SafeLand objectives are to (1) provide policy-makers, public administrators, researchers, scientists, educators and other stakeholders with improved harmonized framework and methodology for the assessment and quantification of landslide risk in Europe's regions; (2) evaluate the changes in risk pattern caused by climate change, human activity and policy changes; and (3) provide guidelines for choosing the most appropriate risk management strategies, including risk mitigation and prevention measures. To assess the changes in the landslide risk pattern in Norway over the next 50 years, the four-year integrated research project GeoExtreme (www

  6. Earthquake induced landslide hazard field observatory in the Avcilar peninsula

    NASA Astrophysics Data System (ADS)

    Bigarre, Pascal; Coccia, Stella; Theoleyre, Fiona; Ergintav, Semih; Özel, Oguz; Yalçinkaya, Esref; Lenti, Luca; Martino, Salvatore; Gamba, Paolo; Zucca, Francesco; Moro, Marco

    2015-04-01

    SAR temporal series has been undertaken, providing global but accurate Identification and characterization of gravitational phenomena covering the aera. Evaluation of the resolution and identification of landslide hazard-related features using space multispectral/hyperspectral image data has been realized. Profit has been gained from a vast drilling and geological - geotechnical survey program undertaken by the Istanbul Metropolitan Area, to get important data to complete the geological model of the landslide as well as one deep borehole to set up permanent instrumentation on a quite large slow landslide, fully encircled by a dense building environment. The selected landslide was instrumented in 2014 with a real-time observational system including GPS, rainfall, piezometer and seismic monitoring. Objective of this permanent monitoring system is three folds: first to detect and quantify interaction between seismic motion, rainfall and mass movement, building a database opened to the scientific community in the future, second to help to calibrate dynamic numerical geomechanical simulations intending to study the sensitivity to seismic loading, and last but not least. Last but not least important geophysical field work has been conducted to assess seismic site effects already noticed during the 1999 earthquake .Data, metadata and main results are from now progressively compiled and formatted for appropriate integration in the cloud monitoring infrastructure for data sharing.

  7. The landslide hazard in the San Francisco Bay region

    USGS Publications Warehouse

    Brabb, E.E.

    1977-01-01

    Development in hilly or mountainous terrain has resulted in much landslide damage. Areas susceptible to landsliding can be recognized. Practices for minimizing landslides are presented. ?? 1977 D. Reidel Publishing Company.

  8. Landslide-Generated Tsunami Model for Quick Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Franz, M.; Rudaz, B.; Locat, J.; Jaboyedoff, M.; Podladchikov, Y.

    2015-12-01

    Alpine regions are likely to be areas at risk regarding to landslide-induced tsunamis, because of the proximity between lakes and potential instabilities and due to the concentration of the population in valleys and on the lakes shores. In particular, dam lakes are often surrounded by steep slopes and frequently affect the stability of the banks. In order to assess comprehensively this phenomenon together with the induced risks, we have developed a 2.5D numerical model which aims to simulate the propagation of the landslide, the generation and the propagation of the wave and eventually the spread on the shores or the associated downstream flow. To perform this task, the process is done in three steps. Firstly, the geometry of the sliding mass is constructed using the Sloping Local Base Level (SLBL) concept. Secondly, the propagation of this volume is performed using a model based on viscous flow equations. Finally, the wave generation and its propagation are simulated using the shallow water equations stabilized by the Lax-Friedrichs scheme. The transition between wet and dry bed is performed by the combination of the two latter sets of equations. The proper behavior of our model is demonstrated by; (1) numerical tests from Toro (2001), and (2) by comparison with a real event where the horizontal run-up distance is known (Nicolet landslide, Quebec, Canada). The model is of particular interest due to its ability to perform quickly the 2.5D geometric model of the landslide, the tsunami simulation and, consequently, the hazard assessment.

  9. Uncertainty on shallow landslide hazard assessment: from field data to hazard mapping

    NASA Astrophysics Data System (ADS)

    Trefolini, Emanuele; Tolo, Silvia; Patelli, Eduardo; Broggi, Matteo; Disperati, Leonardo; Le Tuan, Hai

    2015-04-01

    Shallow landsliding that involve Hillslope Deposits (HD), the surficial soil that cover the bedrock, is an important process of erosion, transport and deposition of sediment along hillslopes. Despite Shallow landslides generally mobilize relatively small volume of material, they represent the most hazardous factor in mountain regions due to their high velocity and the common absence of warning signs. Moreover, increasing urbanization and likely climate change make shallow landslides a source of widespread risk, therefore the interest of scientific community about this process grown in the last three decades. One of the main aims of research projects involved on this topic, is to perform robust shallow landslides hazard assessment for wide areas (regional assessment), in order to support sustainable spatial planning. Currently, three main methodologies may be implemented to assess regional shallow landslides hazard: expert evaluation, probabilistic (or data mining) methods and physical models based methods. The aim of this work is evaluate the uncertainty of shallow landslides hazard assessment based on physical models taking into account spatial variables such as: geotechnical and hydrogeologic parameters as well as hillslope morphometry. To achieve this goal a wide dataset of geotechnical properties (shear strength, permeability, depth and unit weight) of HD was gathered by integrating field survey, in situ and laboratory tests. This spatial database was collected from a study area of about 350 km2 including different bedrock lithotypes and geomorphological features. The uncertainty associated to each step of the hazard assessment process (e.g. field data collection, regionalization of site specific information and numerical modelling of hillslope stability) was carefully characterized. The most appropriate probability density function (PDF) was chosen for each numerical variable and we assessed the uncertainty propagation on HD strength parameters obtained by

  10. Near real-time landslide hazard assessment using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Stanley, T.; Cappelaere, P. G.; Simmons, J. M. D.

    2015-12-01

    Remote sensing data offers the unique perspective to provide situational awareness of hydrometeorological hazards over large areas in a way that is impossible to achieve with in situ data. Recent work has shown that rainfall-triggered landslides, while typically local hazards that occupy small spatial areas, can be approximated over regional scales in near real-time. By leveraging data from the Global Precipitation Measurement (GPM) mission, topographic data from the Shuttle Radar Topography Mission (SRTM) and other remote and in situ sources, we can represent the conditions for landslide triggering over broad regions. The landslide hazard assessment for situational awareness (LHASA) model integrates satellite precipitation data, a modeled and satellite-based soil moisture product and susceptibility information to improve the characterization of areas that may experience landslide activity at regional and global scales. The goal of LHASA is to better inform decision-making and disaster response agencies on landslide hazards at the regional and global scale. This system outputs straightforward landslide hazard assessment products available in near real-time that can be used to identify landslide-prone areas and the general timing of landslide initiation. This presentation summarizes the results of this modeling framework, discusses the utility of remote sensing products for landslide hazard characterization, and outlines the path forward for this modeling approach.

  11. Landslide Hazard Zonation and Risk Assessment of Ramganga Basin in Garhwal Himalaya

    NASA Astrophysics Data System (ADS)

    Wasini Pandey, Bindhy; Roy, Nikhil

    2016-04-01

    The Himalaya being unique in its physiographic, tectonic and climatic characteristics coupled with many natural and man-made factors is inherently prone to landslides. These landslides lead to mass loss of property and lives every year in Himalayas. Hence, Landslide Hazard Zonation is important to take quick and safe mitigation measures and make strategic planning for future development. The present study tries to explore the causes of landslides in Ramganga Basin in Garhwal Himalaya, which has an established history and inherent susceptibility to massive landslides has been chosen for landslide hazard zonation and risk assessment. The satellite imageries of LANDSAT, IRS P6, ASTER along with Survey of India (SOI) topographical sheets formed the basis for deriving baseline information on various parameters like slope, aspect, relative relief, drainage density, geology/lithology and land use/land cover. The weighted parametric method will be used to determine the degree of susceptibility to landslides. Finally, a risk map will be prepared from the landslide probability values, which will be classified into no risk, very low to moderate, high, and very high to severe landslide hazard risk zones. Keywords: Landslides, Hazard Zonation, Risk Assessment

  12. State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk

    NASA Astrophysics Data System (ADS)

    Van Den Eeckhaut, Miet; Hervás, Javier

    2012-02-01

    A landslide inventory is the most important information source for quantitative zoning of landslide susceptibility, hazard and risk. It should give insight into the location, date, type, size, activity and causal factors of landslides as well as resultant damage. In Europe, many countries have created or are creating national and/or regional landslide databases (LDBs). Yet little is known on their contents, completeness, format, structure, language use and accessibility, and hence on their ability to perform national or transnational landslide zoning. Therefore, this study presents a detailed analysis of existing national LDBs in the EU member states, EU official candidate and potential candidate countries, and EFTA countries, and their possible use for landslide zoning. These national LDBs were compared with a subset of 22 regional databases. Twenty-two out of 37 contacted European countries currently have national LDBs, and six other countries have only regional LDBs. In total, the national LDBs contain 633,696 landslides, of which 485,004 are located in Italy, while Austria, the Czech Republic, France, Norway, Poland, Slovakia, and the UK also have > 10,000 landslides in their LDBs. National LDBs are generally created in the official language of each country and 58% of them contain other natural hazards (e.g. floods and sinkholes). About 68% of the LDBs contain less than 50% of all landslides in each country, but a positive observation is that 60% of the LDBs are updated at least once a year or after a major event. Most landslide locations are collected with traditional methods such as field surveys, aerial photo interpretation and analysis of historical records. Currently, integration of landslide information from different national LDBs is hampered because of differences in language and classification systems for landslide type and activity. Other problems are that currently only half of the national LDBs have a direct link between spatial and alphanumeric

  13. How useful is landslide hazard information? Lessons learned in the San Francisco Bay region

    USGS Publications Warehouse

    Howell, David G.; Brabb, Earl E.; Ramsey, David W.

    2000-01-01

    Landslides, worldwide and in the United States, are arguably the most costly natural hazard. Substantial landslide information is available, but much of it remains underutilized, as a disconnect exists among geologists, decision makers, and the public. The lack of a national landslide insurance policy exacerbates this situation and promotes litigation as the principal recourse for recouping landslide-damage losses. The U.S. Geological Survey's landslide investigation in the San Francisco Bay region of California provides a context for making suggestions on how Earth science information could be used more effectively.

  14. How useful is landslide hazard information? Lessons learned in the San Francisco Bay region

    USGS Publications Warehouse

    Howell, D.G.; Brabb, E.E.; Ramsey, D.W.

    1999-01-01

    Landslides, worldwide and in the United States, are arguably the most costly natural hazard. Substantial landslide information is available, but much of it remains underutilized, as a disconnect exists among geologists, decision makers, and the public. The lack of a national landslide insurance policy exacerbates this situation and promotes litigation as the principal recourse for recouping landslide-damage losses. The U.S. Geological Survey's landslide investigation in the San Francisco Bay region of California provides a context for making suggestions on how Earth science information could be used more effectively.

  15. A study on the use of planarity for quick identification of potential landslide hazard

    NASA Astrophysics Data System (ADS)

    Baek, M. H.; Kim, T. H.

    2015-05-01

    In this study we focused on identifying a geomorphological feature that controls the location of landslides. The representation of the feature is based on a high-resolution digital elevation model derived from the airborne laser altimetry (LiDAR) and evaluated by the statistical analysis of axial orientation data. The main principle of this analysis is generating eigenvalues from axial orientation data and comparing them. The planarity, a ratio of eigenvalues, would tell the degree of irregularity on the ground surface based on their ratios. Results are compared to the recent landslide case in Korea in order to evaluate the feasibility of the proposed methodology in identifying the potential landslide hazard. The preliminary landslide hazard assessment based on the planarity analysis discriminates features between stable and unstable domain in the study area well, especially in the landslide initiation zones. Results also show it is beneficial to build the landslide hazard inventory mapping, especially where no information on historical records of landslides exists. By combining other physical procedures such as geotechnical monitoring, the landslide hazard assessment using geomorphological features promises a better understanding of landslides and their mechanisms and provides an enhanced methodology to evaluate their hazards and appropriate actions.

  16. Proposal for a probabilistic local level landslide hazard assessment model: The case of Suluktu, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Vidar Vangelsten, Bjørn; Fornes, Petter; Cepeda, Jose Mauricio; Ekseth, Kristine Helene; Eidsvig, Unni; Ormukov, Cholponbek

    2015-04-01

    Landslides are a significant threat to human life and the built environment in many parts of Central Asia. To improve understanding of the magnitude of the threat and propose appropriate risk mitigation measures, landslide hazard mapping is needed both at regional and local level. Many different approaches for landslide hazard mapping exist depending on the scale and purpose of the analysis and what input data are available. This paper presents a probabilistic local scale landslide hazard mapping methodology for rainfall triggered landslides, adapted to the relatively dry climate found in South-Western Kyrgyzstan. The GIS based approach makes use of data on topography, geology, land use and soil characteristics to assess landslide susceptibility. Together with a selected rainfall scenario, these data are inserted into a triggering model based on an infinite slope formulation considering pore pressure and suction effects for unsaturated soils. A statistical model based on local landslide data has been developed to estimate landslide run-out. The model links the spatial extension of the landslide to land use and geological features. The model is tested and validated for the town of Suluktu in the Ferghana Valley in South-West Kyrgyzstan. Landslide hazard is estimated for the urban area and the surrounding hillsides. The case makes use of a range of data from different sources, both remote sensing data and in-situ data. Public global data sources are mixed with case specific data obtained from field work. The different data and models have various degrees of uncertainty. To account for this, the hazard model has been inserted into a Monte Carlo simulation framework to produce a probabilistic landslide hazard map identifying areas with high landslide exposure. The research leading to these results has received funding from the European Commission's Seventh Framework Programme [FP7/2007-2013], under grant agreement n° 312972 "Framework to integrate Space-based and in

  17. Landslide Hazard Assessment and Mapping in the Guil Catchment (Queyras, Southern French Alps): From Landslide Inventory to Susceptibility Modelling

    NASA Astrophysics Data System (ADS)

    Roulleau, Louise; Bétard, François; Carlier, Benoît; Lissak, Candide; Fort, Monique

    2016-04-01

    Landslides are common natural hazards in the Southern French Alps, where they may affect human lives and cause severe damages to infrastructures. As a part of the SAMCO research project dedicated to risk evaluation in mountain areas, this study focuses on the Guil river catchment (317 km2), Queyras, to assess landslide hazard poorly studied until now. In that area, landslides are mainly occasional, low amplitude phenomena, with limited direct impacts when compared to other hazards such as floods or snow avalanches. However, when interacting with floods during extreme rainfall events, landslides may have indirect consequences of greater importance because of strong hillslope-channel connectivity along the Guil River and its tributaries (i.e. positive feedbacks). This specific morphodynamic functioning reinforces the need to have a better understanding of landslide hazards and their spatial distribution at the catchment scale to prevent local population from disasters with multi-hazard origin. The aim of this study is to produce a landslide susceptibility mapping at 1:50 000 scale as a first step towards global estimation of landslide hazard and risk. The three main methodologies used for assessing landslide susceptibility are qualitative (i.e. expert opinion), deterministic (i.e. physics-based models) and statistical methods (i.e. probabilistic models). Due to the rapid development of geographical information systems (GIS) during the last two decades, statistical methods are today widely used because they offer a greater objectivity and reproducibility at large scales. Among them, multivariate analyses are considered as the most robust techniques, especially the logistic regression method commonly used in landslide susceptibility mapping. However, this method like others is strongly dependent on the accuracy of the input data to avoid significant errors in the final results. In particular, a complete and accurate landslide inventory is required before the modelling

  18. A feasibility study on the influence of the geomorphological feature in identifying the potential landslide hazard

    NASA Astrophysics Data System (ADS)

    Baek, M. H.; Kim, T. H.

    2014-11-01

    In this study we focused on identifying geomorphological features that control the location of landslides. The representation of these features is based on a high resolution DEM (Digital Elevation Model) derived from airborne laser altimetry (LiDAR) and evaluated by statistical analysis of axial orientation data. The main principle of this analysis is generating eigenvalues from axial orientation data and comparing them. The Planarity, a ratio of eigenvalues, would tell the degree of roughness on ground surface based on their ratios. Results are compared to the recent landslide case in Korea in order to evaluate the feasibility of the proposed methodology in identifying the potential landslide hazard. The preliminary landslide assessment based on the Planarity analysis well discriminates features between stable and unstable domain in the study area especially in the landslide initiation zones. Results also show it is beneficial to build the preliminary landslide hazard especially inventory mapping where none of information on historical records of landslides is existed. By combining other physical procedures such as geotechnical monitoring, the landslide hazard assessment using geomorphological features will promise a better understanding of landslides and their mechanisms, and provide an enhanced methodology to evaluate their hazards and appropriate actions.

  19. PREPARING A DETAILED LANDSLIDE-INVENTORY MAP FOR HAZARD EVALUATION AND REDUCTION.

    USGS Publications Warehouse

    Wieczorek, Gerald F.

    1983-01-01

    A method of preparing a detailed landslide-inventory map has been developed which provides the engineering geologist with the basic information for evaluating and reducing landslide hazards or risk on a regional or community level. For each landslide, the map depicts state of activity, certainty of identification, dominant type of slope movement, primary direction of movement, estimated thickness of material involved in landsliding, and date(s) of known activity. This information is developed from interpreting aerial photographs and examining landslide features in the field. Although preparing detailed landslide-inventory maps involves considerably more time and effort than landslide reconnaissance mapping, these maps are directly useable by planners and decisionmakers as a basis for requiring site-specific investigations prior to development or adopting land-use regulations. Refs.

  20. Application of remotely sensed data for landslide hazard assessment and forecasting

    NASA Astrophysics Data System (ADS)

    Bach Kirschbaum, D.; Stanley, T.; Simmons, J. M. D.; Cappelaere, P. G.

    2014-12-01

    Over the past five years, rainfall-triggered landslides have caused over 16,000 fatalities in 65 countries and have resulted in higher annual property losses than any other natural disaster. Yet while hurricanes and earthquakes have global monitoring systems in place to alert disaster response agencies, governments and regional humanitarian groups of potential disasters and related impacts, no such real-time monitoring system exists for rainfall-triggered landslides. This work introduces a new regionally-based system to evaluate landslide hazards in near-real-time through the application of remotely sensed and in situ data. Build upon existing modeling efforts, the landslide hazard assessment and nowcasting system couples satellite precipitation data, a modeled and satellite-based soil moisture product and susceptibility information to improve the characterization of areas that may experience landslide activity. The goal of this system is to better inform decision-making and disaster response agencies on landslide hazards at the regional scale. This system outputs a straightforward, easily-interpreted set of landslide hazard assessment products available in near real-time for the Mesoamerica region that can be used to both identify landslide-prone areas and forecast the potential location and timing of landslide initiation in the future. This research presents the prototype regional model tested over Central America and the Caribbean region using satellite-based information including Tropical Rainfall Measurement Mission (TRMM) near real-time rainfall, modeled soil moisture, topography, soils, road networks and distance to fault zones. These variables are integrated within a simple algorithm framework and model outputs provide a probabilistic representation of potential landslide activity over the region. This presentation summarizes the preliminary results of this modeling framework, discusses the utility of these products for landslide hazard characterization

  1. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards

    NASA Astrophysics Data System (ADS)

    Tralli, David M.; Blom, Ronald G.; Zlotnicki, Victor; Donnellan, Andrea; Evans, Diane L.

    hazards due to flood and landslide events. Satellite data are addressing diverse observational requirements that are imposed by the need for surface, subsurface and hydrologic characterization, including the delineation of flood and landslide zones for risk assessments. Short- and long-term sea-level change and the impact of ocean-atmosphere processes on the coastal land environment, through flooding, erosion and storm surge for example, define further requirements for hazard monitoring and mitigation planning. The continued development and application of a broad spectrum of satellite remote sensing systems and attendant data management infrastructure will contribute needed baseline and time series data, as part of an integrated global observation strategy that includes airborne and in situ measurements of the solid Earth. Multi-hazard modeling capabilities, in turn, will result in more accurate forecasting and visualizations for improving the decision support tools and systems used by the international disaster management community.

  2. Application of high-resolution stereo satellite images to detailed landslide hazard assessment

    NASA Astrophysics Data System (ADS)

    Nichol, Janet E.; Shaker, Ahmed; Wong, Man-Sing

    2006-06-01

    This study investigates and demonstrates the state of the art in remote sensing techniques for detailed landslide hazard assessment applicable to large areas. Since the most common methods of landslide hazard assessment using simple inventories and weighted overlays are heavily dependent on three-dimensional terrain visualization and analysis, stereo satellite images from the IKONOS Very High Resolution (VHR) sensor are used for this study. The DEMs created from IKONOS stereo images appear to be much more accurate and sensitive to micro-scale terrain features than a DEM created from digital contour data with a 2 m contour interval. Pan-sharpened stereo IKONOS images permit interpretation of recent landslides as small as 2-3 m in width as well as relict landslides older than 50 years. A cost-benefit analysis comparing stereo air photo interpretation with stereo satellite image interpretation suggests that stereo satellite imagery is usually more cost-effective for detailed landslide hazard assessment over large areas.

  3. Landslides in Nicaragua - Mapping, Inventory, Hazard Assessment, Vulnerability Reduction, and Forecasting Attempts

    NASA Astrophysics Data System (ADS)

    Dévoli, G.; Strauch, W.; Álvarez, A.; Muñoz, A.; Kjekstad, O.

    2009-04-01

    A successful landslide hazard and risk assessment requires awareness and good understanding of the potential landslide problems within the geographic area involved. However, this requirement is not always met in developing countries where population, scientific community, and the government may not be aware of the landslide threat. The landslide hazard assessment is often neglected or is based on sparse and not well documented technical information. In Nicaragua (Central America), the basic conditions for landslide hazard and risk assessment were first created after the catastrophic landslides triggered by Hurricane Mitch in October 1998. A single landslide took the life of thousands of people at Casita volcano forcing entire communities to be evacuated or relocated and, furthermore, thousands of smaller landslides caused loss of fertile soils and pasture lands, and made serious damages to the infrastructure. Since those events occurred, the public awareness has increased and the country relies now on new local and national governmental laws and policies, on a number of landslide investigations, and on educational and training programs. Dozens of geologists have been capacitated to investigate landslide prone areas, The Instituto Nicaragüense de Estudios Territoriales (INETER), governmental geo-scientific institution, has assumed the responsibility to help land-use planners and public officials to reduce geological hazard losses. They are committed to work cooperatively with national, international, and local agencies, universities and the private sector to provide scientific information and improve public safety through forecasting and warnings. However, in order to provide successful long-term landslide hazard assessment, the institutions must face challenges related to the scarcity and varied quality of available landslide information; collection and access to dispersed data and documents; organization of landslide information in a form that can be easy to

  4. Landslide hazard mapping with selected dominant factors: A study case of Penang Island, Malaysia

    SciTech Connect

    Tay, Lea Tien; Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Lateh, Habibah

    2015-05-15

    Landslide is one of the destructive natural geohazards in Malaysia. In addition to rainfall as triggering factos for landslide in Malaysia, topographical and geological factors play important role in the landslide susceptibility analysis. Conventional topographic factors such as elevation, slope angle, slope aspect, plan curvature and profile curvature have been considered as landslide causative factors in many research works. However, other topographic factors such as diagonal length, surface area, surface roughness and rugosity have not been considered, especially for the research work in landslide hazard analysis in Malaysia. This paper presents landslide hazard mapping using Frequency Ratio (FR) and the study area is Penang Island of Malaysia. Frequency ratio approach is a variant of probabilistic method that is based on the observed relationships between the distribution of landslides and each landslide-causative factor. Landslide hazard map of Penang Island is produced by considering twenty-two (22) landslide causative factors. Among these twenty-two (22) factors, fourteen (14) factors are topographic factors. They are elevation, slope gradient, slope aspect, plan curvature, profile curvature, general curvature, tangential curvature, longitudinal curvature, cross section curvature, total curvature, diagonal length, surface area, surface roughness and rugosity. These topographic factors are extracted from the digital elevation model of Penang Island. The other eight (8) non-topographic factors considered are land cover, vegetation cover, distance from road, distance from stream, distance from fault line, geology, soil texture and rainfall precipitation. After considering all twenty-two factors for landslide hazard mapping, the analysis is repeated with fourteen dominant factors which are selected from the twenty-two factors. Landslide hazard map was segregated into four categories of risks, i.e. Highly hazardous area, Hazardous area, Moderately hazardous area

  5. Landslide hazard mapping with selected dominant factors: A study case of Penang Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Tay, Lea Tien; Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Lateh, Habibah

    2015-05-01

    Landslide is one of the destructive natural geohazards in Malaysia. In addition to rainfall as triggering factos for landslide in Malaysia, topographical and geological factors play important role in the landslide susceptibility analysis. Conventional topographic factors such as elevation, slope angle, slope aspect, plan curvature and profile curvature have been considered as landslide causative factors in many research works. However, other topographic factors such as diagonal length, surface area, surface roughness and rugosity have not been considered, especially for the research work in landslide hazard analysis in Malaysia. This paper presents landslide hazard mapping using Frequency Ratio (FR) and the study area is Penang Island of Malaysia. Frequency ratio approach is a variant of probabilistic method that is based on the observed relationships between the distribution of landslides and each landslide-causative factor. Landslide hazard map of Penang Island is produced by considering twenty-two (22) landslide causative factors. Among these twenty-two (22) factors, fourteen (14) factors are topographic factors. They are elevation, slope gradient, slope aspect, plan curvature, profile curvature, general curvature, tangential curvature, longitudinal curvature, cross section curvature, total curvature, diagonal length, surface area, surface roughness and rugosity. These topographic factors are extracted from the digital elevation model of Penang Island. The other eight (8) non-topographic factors considered are land cover, vegetation cover, distance from road, distance from stream, distance from fault line, geology, soil texture and rainfall precipitation. After considering all twenty-two factors for landslide hazard mapping, the analysis is repeated with fourteen dominant factors which are selected from the twenty-two factors. Landslide hazard map was segregated into four categories of risks, i.e. Highly hazardous area, Hazardous area, Moderately hazardous area

  6. Geophysics of Volcanic Landslide Hazards: The Inside Story

    NASA Astrophysics Data System (ADS)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.

    2013-05-01

    Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (<200 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The HEM data can be used to identify water-saturated fresh volcanic rocks from the surface to the detection limit (~100-200 m) in discreet zones on the summits of Mount Rainier and Mt Adams, in shattered fresh dome rocks under the crater of Mount St. Helens and in the entire summit region at Mount Baker. A 50-100 m thick water saturated layer is imaged within or beneath parts of glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in

  7. Eastern Australia's submarine landslides: implications for tsunami hazard between Jervis Bay and Fraser Island

    NASA Astrophysics Data System (ADS)

    Clarke, S. L.; Hubble, T.; Airey, D. W.; Ward, S. N.

    2015-12-01

    A hazard assessment of submarine landslide generated tsunami for the east Australian continental slope is presented between Jervis Bay and Fraser Island. Submarine landslides are present in water depths of ~400 to 3500 m along the entire length of continental margin, but are increasingly prevalent northward of Coffs Harbour without clustering at any particular water depth. Two hundred and fifty individual submarine landslide scars greater than one kilometre in width are identified. Of these, thirty-six are calculated to produce a tsunami flow depth equal to or greater than 5 m at the coastline for an assumed landslide downslope velocity of 20 ms-1. Some landslides are both thick (>100 m) and wide (>5 km) and these have the greatest potential to generate the largest coastal flow depths (>10 m). Water depth of the landslides centre of mass strongly influences the onshore height of the tsunami's surge with the larger events generated in shallower water depths between ~500 -1500 m. Maximum flow depth at the coastline is larger for thicker (50-250+ m) canyon landslides which occur on steeper slopes (>4°), compared to thinner (<50 m) plateau landslides which generally produce smaller tsunami. Maximum inundation distances and run-up heights of 1.6 km and 22 m respectively are calculated for landslide velocities of 20 ms-1. These values vary significantly depending on local coastal topography. There is no evidence for a submarine landslide large enough and young enough to have generated a Holocene megatsunami for the east coast of Australia.

  8. Multi-factor Constrained Information Analysis Method for Landslide Hazard Risk

    NASA Astrophysics Data System (ADS)

    Tao, Kunwang; Wang, Liang; Qian, Xinlin

    2015-04-01

    Landslide hazard cause enormous damage to human life, property, and the environment. The most effective way to mitigate the effects of landslides is to evaluate the risk of the landslides, and take measures to avoid the loss in advance. Various factors should be considered for the landslides' risk assessment, so the assessment has great complexity and uncertainty. According to landslides, the multiple factors constrained method for landslides risk assessment was proposed at the same time, which with three step to carried it out, first using the GIS technology to divide the analysis grid as the base analysis unit, second, according to the available information, slope, lithology, faults, landuse, etc. as the multiple evaluation factors, finally, based on years of landslides in the observed data, the risk assessment analysis of landslides were realized with of multiple factors constrained assessment model, which the weight value of every factor was determined by the information model. The region of Gongliu was selected as the experimental area which located in Xinjiang Ili River basin and the altitude of 600 to 4000 meters, with the special terrain characteristics of long at the east to west, narrow at north to south. The unique topography characters is the abundant rainfall which causing frequent landslides. By selecting 500m * 500m as an analysis grid which covering the whole study area, based on the multiple factors constrained method for the landslides risk assessment, a comprehensive assessment of the landslides risk in this region were computed out, and the landslide hazard classification map was realized at the end. From the experimental results of the statistical perspective, the proportion of landslide hazard point is 94.04% at a little high risk and high risk areas. And the proportion of 4.64% at the low risk zone, 1.32% at the most low risk zone. The results showed a high probability of landslides at high level of the assess region, which showed that

  9. Evaluation of the Potential of NASA Multi-satellite Precipitation Analysis in Global Landslide Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Landslides are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage every year. In the U.S. alone landslides occur in every state, causing an estimated $2 billion in damage and 25- 50 deaths each year. Annual average loss of life from landslide hazards in Japan is 170. The situation is much worse in developing countries and remote mountainous regions due to lack of financial resources and inadequate disaster management ability. Recently, a landslide buried an entire village on the Philippines Island of Leyte on Feb 17,2006, with at least 1800 reported deaths and only 3 houses left standing of the original 300. Intense storms with high-intensity , long-duration rainfall have great potential to trigger rapidly moving landslides, resulting in casualties and property damage across the world. In recent years, through the availability of remotely sensed datasets, it has become possible to conduct global-scale landslide hazard assessment. This paper evaluates the potential of the real-time NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA) system to advance our understanding of and predictive ability for rainfall-triggered landslides. Early results show that the landslide occurrences are closely associated with the spatial patterns and temporal distribution of rainfall characteristics. Particularly, the number of landslide occurrences and the relative importance of rainfall in triggering landslides rely on the influence of rainfall attributes [e.g. rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms). TMPA precipitation data are available in both real-time and post-real-time versions, which are useful to assess the location and timing of rainfall-triggered landslide hazards by monitoring landslide-prone areas while receiving heavy rainfall. For the purpose of identifying rainfall-triggered landslides, an empirical global rainfall intensity

  10. A New Approach to Characterizing Landslide Hazards with Global Crowd Sourcing

    NASA Astrophysics Data System (ADS)

    Bach Kirschbaum, D.; Cappelaere, P. G.; Stanley, T.; Hall, B.; Franchek, M.

    2014-12-01

    Landslide disasters cause thousands of fatalities each year and cumulatively produce more economic damage than most other natural disasters. However, the number and distribution of landslides remain poorly quantified due to their small size and the absence of local, regional or global observing or reporting mechanisms. As a result, there are very few global databases that describe landslide hazards. Characterizing the socioeconomic impacts of landslide hazards worldwide presents an even more challenging task due to the various reporting biases or information gaps in existing regional and global sources. An online system has been developed to improve reporting of landslide hazards at the global scale that leverages crowd sourcing capabilities. Through this portal, users are able to input landslide information in a series of specified fields, including the date, location, impacts, trigger, and setting of the event. They are also able to link to photos so that other users can improve the characterization of the landslide event based on additional information or expert opinion. This hazard portal and editor provides a foundation to involve citizens in reporting, visualizing and sharing landslide events while improving a global landslide database and introducing them to other geospatial data in the process. A global landslide catalog of over 6,000 events developed at NASA Goddard Space Flight Center currently anchors this system. This research presents this new crowd-based system and outlines the technology used in developing this system. Preliminary findings of societal metrics, limitations on this type of interactive crowd sourcing portal, and lessons learned from the initial launch of this system will also be presented.

  11. Simple indicator kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site

    SciTech Connect

    Juang, K.W.; Lee, D.Y.

    1998-09-01

    The probability of incorrectly delineating hazardous areas in a contaminated site is very important for decision-makers because it indicates the magnitude of confidence that decision-makers have in determining areas in need of remediation. In this study, simple indicator kriging (SIK) was used to estimate the probability of incorrectly delineating hazardous areas in a heavy metal-contaminated site, which is located at Taoyuan, Taiwan, and is about 10 ha in area. In the procedure, the values 0 and 1 were assigned to be the stationary means of the indicator codes in the SIK model to represent two hypotheses, hazardous and safe, respectively. The spatial distribution of the conditional probability of heavy metal concentrations lower than a threshold, given each hypothesis, was estimated using SIK. Then, the probabilities of false positives ({alpha}) (i.e., the probability of declaring a location hazardous when it is not) and false negatives ({beta}) (i.e., the probability of declaring a location safe when it is not) in delineating hazardous areas for the heavy metal-contaminated site could be obtained. The spatial distribution of the probabilities of false positives and false negatives could help in delineating hazardous areas based on a tolerable probability level of incorrect delineation. In addition, delineation complicated by the cost of remediation, hazards in the environment, and hazards to human health could be made based on the minimum values of {alpha} and {beta}. The results suggest that the proposed SIK procedure is useful for decision-makers who need to delineate hazardous areas in a heavy metal-contaminated site.

  12. Development of models to inform a national Daily Landslide Hazard Assessment for Great Britain

    NASA Astrophysics Data System (ADS)

    Dijkstra, Tom A.; Reeves, Helen J.; Dashwood, Claire; Pennington, Catherine; Freeborough, Katy; Mackay, Jonathan D.; Uhlemann, Sebastian S.; Chambers, Jonathan E.; Wilkinson, Paul B.

    2015-04-01

    The British Geological Survey (BGS) provides landside hazard information as part of its strategic role. This includes, among others, the issuing of a national Daily Landslide Hazard Assessment (DLHA) one of the hazards assessments issued by the Natural Hazard Partnership. A range of tools are currently under development to further develop reliability and enhance the granularity of these assessments. The BGS has three datasets that support and underpin this research; the National Landslide Database (NLD), the DiGMap mass movement layer and GeoSure. The NLD holds more than 16,500 records of landslides across Great Britain (GB) stored in an Oracle database that is accessible through an ESRI ® ArcGIS interface. DiGMap comprises a digital map layer with outlines of all landslides recorded by field geologists. GeoSure is a BGS product that assesses the potential for ground movement across GB in six layers, one of which is landslide potential. The GeoSure landslide potential layer incorporates information on conditioning factors, such as local geology, geotechnical parameters and topography. These are combined within a GIS to derive a map showing where a landslide may occur under favourable conditions (e.g. persistent wet conditions due to adverse weather). Different types of terrain will be affected by different modes of landsliding and a series of hierarchical landslide domains have been established capturing the spatial consistency of slope deformation response. Each landslide domain represents an area of similar physiographic and geological characteristics which has shaped the style of landsliding (recognising relic, active and potentially active processes). In turn, this enables development of regional thresholds that are relevant to characteristic landslides in these domains. The wet period from summer 2012 into early spring 2013 resulted in a surge of recorded landslides, particularly in SW England and S Wales. Approximations of regional effective precipitation

  13. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA

    USGS Publications Warehouse

    Ohlmacher, G.C.; Davis, J.C.

    2003-01-01

    Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect. ?? 2003 Elsevier Science B.V. All rights reserved.

  14. GIS Applied to Landslide Hazard Mapping and Evaluation in North-East Wales

    NASA Astrophysics Data System (ADS)

    Miller, S. A.; Degg, M.

    2009-04-01

    Slope instability is a significant environmental hazard in North-East Wales, responsible for important damage to roads and built-up areas. During the late 1980s and the 1990s, systematic landslide mapping and hazard modelling was completed for a number of landslide prone areas within Great Britain, but no such study has to date been carried out for North Wales. This research reports on the creation of a digital landslide inventory for North-East Wales and the use of a Geographical Information System (GIS) to create the first landslide susceptibility models for the area. The research has resulted in the most comprehensive landslide inventory of North-East Wales completed to date. This was accomplished through a combination of aerial photograph interpretation, field mapping and data collection from secondary sources (e.g. consultancy reports, newspapers), yielding a database that records 430 landslides for the area. This represents a 76% (186 landslides) increase on the number of landslides recorded for the area in the UK national landslides database. The landslides in North-East Wales are almost entirely situated inland, with less than 1% on the coast. Approximately 84% of the landslides occur within drift geology and 16% in solid geology. For the slides of known type, 46% are translational slides, 47% rotational slides, 3% flows, 3% falls and 1% complex failures. The type and distribution of landsliding in the area shows notable differences to that found in areas of similar bedrock geology elsewhere in the UK (e.g. Derbyshire and South Wales). Analysis shows that the main landslide controlling parameters in North-East Wales are: lithology, drift material, slope angle, proximity to known faults (structural weaknesses) and proximity to fluvial channels (undercutting). These factors were weighted statistically based on their estimated contribution to slope instability, and combined to create the landslide susceptibility models using a statistical (multiple logistic

  15. The landslide inventory as the basis of susceptibility and hazard assessment

    NASA Astrophysics Data System (ADS)

    Copons, Ramon; Linares, Rogelio; Cirés, Jordi; Tallada, Anna

    2010-05-01

    Landslide inventory involves the location, classification, volume, activity and others characteristics of the landslides in an area (Fell et al, 2008). Landslide inventory can includes also the location of lithologies prone to instability, structural conditions and silent witnesses (affected vegetation, damaged buildings, etc). This high quality information about landslides requires the use of images acquired from remote sensing and the field observation. Landslide inventory is the basis for susceptibility, hazard and risk assessment (Fell et al., 2008) because supplies information contrasted on the field. Unfortunately, landslide inventory has limitations so it usually is not totally complete or landslides boundaries mapped are influenced by the techniques used, resources and the ability of the field geologist. These usual errors included in the landslide inventory are difficult to estimate but are crucial to know since can create greater errors on results of susceptibility, hazard and risk assessed by further approaches including heuristic, empirical and deterministic ones. In many cases it is not possible to make an inventory including all the landslides occurred in the past because morphology of older landslides could be extremely eroded, or they are partially or totally covered by younger vents. Moreover, several external factors (like extreme forestation, urbanization or erosion) do not allow their identification or difficult their delimitation. Our work focuses on: (i) the establishment of a procedure for gathering data to complete a landslide inventory, and (ii) the determination of the error included in the landslide inventory whichever the field geologist. These issues are useful for administrations for: (i) undertaking landslide inventories across the country by several geologists, and (ii) managing hazard knowing limitations of the hazard zoning obtained from the landslide inventory. For accomplishing our purposes we have selected an area located about

  16. Application of Remotely Sensed Data for Real-time Landslide Hazard Assessment over Mesoamerica (Invited)

    NASA Astrophysics Data System (ADS)

    Bach Kirschbaum, D.; Yatheendradas, S.; Cepeda, J. M.

    2013-12-01

    Over the past five years, rainfall-triggered landslides have caused over 16,000 fatalities in 65 countries and have resulted in higher annual property losses than any other natural disaster. Yet while hurricanes and earthquakes have global monitoring systems in place to alert disaster response agencies, governments and regional humanitarian groups of potential disasters and related impacts, no such real-time monitoring system exists for rainfall-triggered landslides. This research seeks to advance the use and application of remotely sensed data and build upon existing modeling efforts to create a robust landslide hazard assessment system with the goal of better informing decision-making and disaster response agencies on landslide hazards at the regional scale. This system outputs a straightforward, easily-interpreted set of landslide hazard assessment products available in near real-time for the Mesoamerica region that can be used to both identify landslide-prone areas and forecast the potential location and timing of landslide initiation in the future. This research presents the prototype regional model tested over seven countries in Central America using satellite-based information including Tropical Rainfall Measurement Mission (TRMM) near real-time rainfall, topography data, modeled soil moisture, and geologic information. These variables are integrated within a simple algorithm framework and model outputs provide a probabilistic representation of potential landslide activity over the region. This presentation summarizes the preliminary results of this modeling framework, discusses the utility of these products for landslide hazard characterization, and outlines the path forward for this modeling approach.

  17. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    USGS Publications Warehouse

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  18. Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics

    NASA Astrophysics Data System (ADS)

    Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian

    2016-04-01

    Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides

  19. Field-based assessment of landslide hazards resulting from the 2015 Gorkha, Nepal earthquake sequence

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Jibson, R.

    2015-12-01

    The M7.8 2015 Gorkha, Nepal earthquake sequence caused thousands of fatalities, destroyed entire villages, and displaced millions of residents. The earthquake sequence also triggered thousands of landslides in the steep Himalayan topography of Nepal and China; these landslides were responsible for hundreds of fatalities and blocked vital roads, trails, and rivers. With the support of USAID's Office of Foreign Disaster Assistance, the U.S. Geological Survey responded to this crisis by providing landslide-hazard expertise to Nepalese agencies and affected villages. Assessments of landslide hazards following earthquakes are essential to identify vulnerable populations and infrastructure, and inform government agencies working on rebuilding and mitigation efforts. However, assessing landslide hazards over an entire earthquake-affected region (in Nepal, estimated to be ~30,000 km2), and in exceedingly steep, inaccessible topography presents a number of logistical challenges. We focused the scope of our assessment by conducting helicopter- and ground-based landslide assessments in 12 priority areas in central Nepal identified a priori from satellite photo interpretation performed in conjunction with an international consortium of remote sensing experts. Our reconnaissance covered 3,200 km of helicopter flight path, extending over an approximate area of 8,000 km2. During our field work, we made 17 site-specific assessments and provided landslide hazard information to both villages and in-country agencies. Upon returning from the field, we compiled our observations and further identified and assessed 74 river-blocking landslide dams, 12% of which formed impoundments larger than 1,000 m2 in surface area. These assessments, along with more than 11 hours of helicopter-based video, and an overview of hazards expected during the 2015 summer monsoon have been publically released (http://dx.doi.org/10.3133/ofr20151142) for use by in-country and international agencies.

  20. Case history and hazard analysis of two lake-damming landslides in the Himalayas

    NASA Astrophysics Data System (ADS)

    Weidinger, Johannes T.

    1998-04-01

    In investigating the hazard and case history of natural dams in the Himalayas, two sites of landslides and their former dammed lakes in the hinterland were visited between May 1994 and October 1995 and analysed from the geomorphological, geotechnical, geohydrological, tectonic, sedimentary and climatic points of view. One of the examples studied, the landslide in the valley of Birahi Ganga (Northern India), is one of the most impressive examples of recent hazards in alpinotype high mountain regions. This study was complemented by a study of the Ghatta Khola landslide (Western Nepal). In both cases, lithotectonic and climatic conditions led to the destabilisation and failure of carbonate bedrock. The occurrence of lakes, dammed over long periods behind the barriers, is of great importance, because after the sometimes fatal landslide event itself, one is confronted and has to cope with a secondary natural hazard, the possibility of a major flood due to the failure of the dam. That is why the preparatory causal factors of the origin of the two lakes (by damming up the river due to the landslide) and their stepwise disappearance (by secondary landslides within the barrier and sedimentation into the basin) were additionally focused upon. It is shown that due to very special circumstances (availability of sediments, heavy rainfall) in the Himalayas there is a progressive decrease in the potential hazard to the landscape and to human beings lower down the main valleys over a period of only a few decades.

  1. Communicating landslide hazard and risk through global catalogs and a forecasting framework

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D. B.; Adler, D.; Adler, R. F.

    2010-12-01

    Landslides are one of the most pervasive hazards in the world, resulting in more fatalities and economic damage than is generally recognized. Intense and prolonged rainfall is the most frequent trigger of mass movement events, which have caused over 11,500 fatalities within 70 countries since 2007. Within the United States alone, heavy thunderstorms, landfalling tropical cyclones, and orographically enhanced storm systems have triggered more than 400 destructive landslides over the past four years, which have resulted in significant economic damage from destroyed houses and blocked roads and 6 fatalities. Since 2007, we have systematically cataloged rainfall-triggered landslides (including mudslides, debris flows, etc.) from media reports, online disaster databases, and other credible sources. The catalog, which currently has over 2,400 entries, includes information on the date, location, impacts and rainfall trigger of the event. This database has been valuable for identifying patterns in landslide occurrence and reporting at the global level. Results from the database indicate that the Asian monsoon is the most significant driver of landslide reports, with a consistent peak in the number of reports and fatalities during the northern hemisphere summer in countries such as Nepal, India, China, Philippines, and Indonesia. Tropical cyclones in the Atlantic, Pacific and Indian Ocean basins can also trigger widespread landsliding when they make landfall. The motivation for compiling this global database of events was driven by the development of a prototype satellite-based landslide hazard forecasting algorithm, which uses satellite-based estimates of rainfall and surface cover to assess potential landslide triggering conditions at the global scale in near real-time (http://trmm.gsfc.nasa.gov/publications_dir/potential_landslide.html). Evaluation of the forecasting system using the global landslide catalog indicates that forecasting errors, including both under and

  2. Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Pampell-Manis, A.; Horrillo, J.; Shigihara, Y.; Parambath, L.

    2016-01-01

    The devastating consequences of recent tsunamis affecting Indonesia and Japan have prompted a scientific response to better assess unexpected tsunami hazards. Although much uncertainty exists regarding the recurrence of large-scale tsunami events in the Gulf of Mexico (GoM), geological evidence indicates that a tsunami is possible and would most likely come from a submarine landslide triggered by an earthquake. This study customizes for the GoM a first-order probabilistic landslide tsunami hazard assessment. Monte Carlo Simulation (MCS) is employed to determine landslide configurations based on distributions obtained from observational submarine mass failure (SMF) data. Our MCS approach incorporates a Cholesky decomposition method for correlated landslide size parameters to capture correlations seen in the data as well as uncertainty inherent in these events. Slope stability analyses are performed using landslide and sediment properties and regional seismic loading to determine landslide configurations which fail and produce a tsunami. The probability of each tsunamigenic failure is calculated based on the joint probability of slope failure and probability of the triggering earthquake. We are thus able to estimate sizes and return periods for probabilistic maximum credible landslide scenarios. We find that the Cholesky decomposition approach generates landslide parameter distributions that retain the trends seen in observational data, improving the statistical validity and relevancy of the MCS technique in the context of landslide tsunami hazard assessment. Estimated return periods suggest that probabilistic maximum credible SMF events in the north and northwest GoM have a recurrence of 5000-8000 years, in agreement with age dates of observed deposits.

  3. Mapping landslide processes in the North Tanganyika - Lake Kivu rift zones: towards a regional hazard assessment

    NASA Astrophysics Data System (ADS)

    Dewitte, Olivier; Monsieurs, Elise; Jacobs, Liesbet; Basimike, Joseph; Delvaux, Damien; Draida, Salah; Hamenyimana, Jean-Baptiste; Havenith, Hans-Balder; Kubwimana, Désiré; Maki Mateso, Jean-Claude; Michellier, Caroline; Nahimana, Louis; Ndayisenga, Aloys; Ngenzebuhoro, Pierre-Claver; Nkurunziza, Pascal; Nshokano, Jean-Robert; Sindayihebura, Bernard; Philippe, Trefois; Turimumahoro, Denis; Kervyn, François

    2015-04-01

    The mountainous environments of the North Tanganyika - Lake Kivu rift zones are part of the West branch of the East African Rift. In this area, natural triggering and environmental factors such as heavy rainfalls, earthquake occurrences and steep topographies favour the concentration of mass movement processes. In addition anthropogenic factors such as rapid land use changes and urban expansion increase the sensibility to slope instability. Until very recently few landslide data was available for the area. Now, through the initiation of several research projects and the setting-up of a methodology for data collection adapted to this data-poor environment, it becomes possible to draw a first regional picture of the landslide hazard. Landslides include a wide range of ground movements such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in the region in terms of recurring impact on the populations, causing fatalities every year. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithological and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. Here we present the current knowledge of the various slope processes present in these equatorial environments. A particular attention is given to urban areas such as Bukavu and Bujumbura where landslide threat is particularly acute. Results and research perspectives on landslide inventorying, monitoring, and susceptibility and hazard assessment are presented.

  4. A dynamic landslide hazard assessment system for Central America and Hispaniola

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D. B.; Stanley, T.; Simmons, J.

    2015-10-01

    Landslides pose a serious threat to life and property in Central America and the Caribbean Islands. In order to allow regionally coordinated situational awareness and disaster response, an online decision support system was created. At its core is a new flexible framework for evaluating potential landslide activity in near real time: Landslide Hazard Assessment for Situational Awareness. This framework was implemented in Central America and the Caribbean by integrating a regional susceptibility map and satellite-based rainfall estimates into a binary decision tree, considering both daily and antecedent rainfall. Using a regionally distributed, percentile-based threshold approach, the model outputs a pixel-by-pixel nowcast in near real time at a resolution of 30 arcsec to identify areas of moderate and high landslide hazard. The daily and antecedent rainfall thresholds in the model are calibrated using a subset of the Global Landslide Catalog in Central America available for 2007-2013. The model was then evaluated with data for 2014. Results suggest reasonable model skill over Central America and poorer performance over Hispaniola due primarily to the limited availability of calibration and validation data. The landslide model framework presented here demonstrates the capability to utilize globally available satellite products for regional landslide hazard assessment. It also provides a flexible framework to interchange the individual model components and adjust or calibrate thresholds based on access to new data and calibration sources. The availability of free satellite-based near real-time rainfall data allows the creation of similar models for any study area with a spatiotemporal record of landslide events. This method may also incorporate other hydrological or atmospheric variables such as numerical weather forecasts or satellite-based soil moisture estimates within this decision tree approach for improved hazard analysis.

  5. A dynamic landslide hazard assessment system for Central America and Hispaniola

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D. B.; Stanley, T.; Simmons, J.

    2015-04-01

    Landslides pose a serious threat to life and property in Central America and the Caribbean Islands. In order to allow regionally coordinated situational awareness and disaster response, an online decision support system was created. At its core is a new flexible framework for evaluating potential landslide activity in near real-time: Landslide Hazard Assessment for Situational Awareness. This framework was implemented in Central America and the Caribbean by integrating a regional susceptibility map and satellite-based rainfall estimates into a binary decision tree, considering both daily and antecedent rainfall. Using a regionally distributed, percentile-based threshold approach, the model outputs a pixel-by-pixel nowcast in near real-time at a resolution of 30 arcsec to identify areas of moderate and high landslide hazard. The daily and antecedent rainfall thresholds in the model are calibrated using a subset of the Global Landslide Catalog in Central America available for 2007-2013. The model was then evaluated with data for 2014. Results suggest reasonable model skill over Central America and poorer performance over Hispaniola, due primarily to the limited availability of calibration and validation data. The landslide model framework presented here demonstrates the capability to utilize globally available satellite products for regional landslide hazard assessment. It also provides a flexible framework to interchange the indiviual model components and adjust or calibrate thresholds based on access to new data and calibration sources. The availability of free, satellite-based near real-time rainfall data allows the creation of similar models for any study area with a spatiotemporal record of landslide events. This method may also incorporate other hydrological or atmospheric variables such as numerical weather forecasts or satellite-based soil moisture estimates within this decision tree approach for improved hazard analysis.

  6. Towards Cross-Border Landslide Hazard and Risk Assessment in Central Asia

    NASA Astrophysics Data System (ADS)

    Saponaro, A.; Pilz, M.; Wieland, M.; Pittore, M.; Bindi, D.; Parolai, S.

    2014-12-01

    The countries of Central Asia are known to be among the most exposed in the world to landslide hazard and risk. In the past, several devastating slope failures have caused intense economic and human losses across the entire region. The large variability of local geological materials, difficulties in forecasting heavy precipitation locally, and problems in quantifying the level of ground shaking, call for harmonized procedures to better quantify landslide hazard. Moreover, due to uncontrolled urban expansion in mountainous areas, a growth in vulnerability of exposed population as well as overall risk has to be expected. In order to mitigate landslide risk, novel and strategic approaches are required mainly for enhanced understanding of causal factors, for reducing exposure to hazards, and for controlling land-use practices in a harmonized transnational way. We have already presented a regional landslide susceptibility assessment for Kyrgyzstan. First results allow for the identification of most potential landslide areas all over the country, with sufficient degree of accuracy. Based on this, we hereby propose a procedure for obtaining cross-border risk map of earthquake-induced landslides among central Asian countries, by employing statistical tools and updated input information in such remote and data-scarce regions. The method is initially applied to Kyrgyzstan where the majority of input parameters is available, and subsequently extended to Tajikistan and Uzbekistan. At first, the influence of diverse potential parameters (topography, geology, tectonic lineaments) as well as seismic triggering to landslide activation is evaluated. Elements at risk are then analyzed in relation to landslide hazard, and their vulnerability is hence established. A sensitivity analysis is carried out, and results are validated to an independent dataset.

  7. Assessment of Hazards Associated with the Bluegill Landslide, South-Central Idaho

    USGS Publications Warehouse

    Ellis, William L.; Schuster, Robert L.; Schulz, William H.

    2004-01-01

    The Bluegill landslide, located in south-central Idaho, is part of a larger landslide complex that forms an area the Salmon Falls Creek drainage named Sinking Canyon Recent movement of the Bluegill landslide, apparently beginning sometime in late 1998 or early 1999, has caused a 4.5 ha area of the canyon rim to drop as much as 8 m and move horizontally several meters into the canyon. Upward movement of the toe of the landslide in the bottom of canyon has created a dam that impounds a lake approximately 2 km in length. The landslide is on public administered by the U.S. Bureau of Land Management (BLM). As part of ongoing efforts to address possible public safety concerns, the BLM requested that the U.S. Geological Survey (USGS) conduct a preliminary hazard assessment of the landslide, examine possible mitigation options, and identify alternatives for further study and monitoring of the landslide. This report presents the findings of that assessment based on a field reconnaissance of the landslide on September 24, 2003, a review of data and information provided by BLM and researchers from Idaho State University, and information collected from other sources.

  8. Landslide hazard assessment : LIFE+IMAGINE project methodology and Liguria region use case

    NASA Astrophysics Data System (ADS)

    Spizzichino, Daniele; Campo, Valentina; Congi, Maria Pia; Cipolloni, Carlo; Delmonaco, Giuseppe; Guerrieri, Luca; Iadanza, Carla; Leoni, Gabriele; Trigila, Alessandro

    2015-04-01

    Scope of the work is to present a methodology developed for analysis of potential impacts in areas prone to landslide hazard in the framework of the EC project LIFE+IMAGINE. The project aims to implement a web services-based infrastructure addressed to environmental analysis, that integrates, in its own architecture, specifications and results from INSPIRE, SEIS and GMES. Existing web services has been customized to provide functionalities for supporting environmental integrated management. The implemented infrastructure has been applied to landslide risk scenarios, developed in selected pilot areas, aiming at: i) application of standard procedures to implement a landslide risk analysis; ii) definition of a procedure for assessment of potential environmental impacts, based on a set of indicators to estimate the different exposed elements with their specific vulnerability in the pilot area. The landslide pilot and related scenario are focused at providing a simplified Landslide Risk Assessment (LRA) through: 1) a landslide inventory derived from available historical and recent databases and maps; 2) landslide susceptibility and hazard maps; 3) assessment of exposure and vulnerability on selected typologies of elements at risk; 4) implementation of a landslide risk scenario for different sets of exposed elements 5) development of a use case; 6) definition of guidelines, best practices and production of thematic maps. The LRA has been implemented in Liguria region, Italy, in two different catchment areas located in the Cinque Terre National Park, characterized by a high landslide susceptibility and low resilience. The landslide risk impact analysis has been calibrated taking into account the socio-economic damage caused by landslides triggered by the October 2011 meteorological event. During this event, over 600 landslides were triggered in the selected pilot area. Most of landslides affected the diffuse system of anthropogenic terraces and caused the direct

  9. Hazard mapping related to structurally controlled landslides in Southern Leyte, Philippines

    NASA Astrophysics Data System (ADS)

    Luzon, Paul Kenneth; Montalbo, Kristina; Galang, Jam; Sabado, Jasmine May; Escape, Carmille Marie; Felix, Raquel; Mahar Francisco Lagmay, Alfredo

    2016-04-01

    The 2006 Guinsaugon landslide in Saint Bernard, Southern Leyte, is one of the largest known landslides in the Philippines in recent history. It consists of a 15-20 million m3 rockslide-debris avalanche from an approximately 675 m high mountain weakened by continuous movement of the Philippine Fault. The catastrophic Guinsaugon landslide killed 1221 people and displaced 19 000 residents over its 4.5 km path. To investigate the present-day morphology of the scar and potential failure that may occur, analysis of a 5 m resolution InSAR-derived digital elevation model was conducted using Coltop3D and Matterocking software, leading to the generation of a landslide hazard map for the province of Southern Leyte in central Philippines. The dip and dip direction of discontinuity sets that contribute to gravitational failure in mountainous areas of the province were identified and measured using a lower Schmidt-Lambert color scheme. After measurement of the morpho-structural orientations, potential sites of failure were analyzed. Conefall was then utilized to compute the extent of rock mass runout. Results of the analysis show instability in the scarp area of the 2006 Guinsaugon landslide and in adjacent slopes because of the presence of steep discontinuities that range from 45 to 60°. Apart from the 2006 Guinsaugon landslide site, runout models simulated farther rock mass extent in its adjacent slopes, revealing a high potential for fatal landslides to happen in the municipality of Saint Bernard. Concerned agencies may use maps produced in the same manner as this study to identify possible sites where structurally controlled landslides can occur. In a country like the Philippines, where fractures and faults are common, this type of simulated hazard maps would be useful for disaster prevention and facilitate disaster risk reduction efforts for landslide-susceptible areas.

  10. Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment

    NASA Astrophysics Data System (ADS)

    Corsini, Alessandro; Pasuto, A.; Soldati, M.; Zannoni, A.

    2005-03-01

    The Corvara landslide is an active slow moving rotational earth slide - earth flow, located uphill of the village of Corvara in Badia, one of the main tourist centres in the Alta Badia valley in the Dolomites (Province of Bolzano, Italy). Present-day movements of the Corvara landslide cause National Road 244 and other infrastructures to be damaged on a yearly basis. The movements also give rise to more serious risk scenarios for some buildings located in front the toe of the landslide. For these reasons, the landslide has been under observation since 1997 with various field devices that enable slope movements to be monitored for hazard assessment purposes. Differential GPS measurements on a network of 47 benchmarks has shown that horizontal movements at the surface of the landslide have ranged from a few centimetres to more than 1 m between September 2001 and September 2002. Over the same period, vertical movements ranged from a few centimetres to about 10 cm, with the maximum displacement rate being recorded in the track zone and in the uppermost part of the accumulation lobe of the landslide. Borehole systems, such as inclinometers and TDR cables, have recorded similar rates of movement, with the depths of the major active shear surfaces ranging from 48 m to about 10 m. From these data, it is estimated that the active component of the landslide has a volume of about 50 million m 3. In this paper the monitoring data collected so far are presented and discussed in detail to prove that the hazard for the Corvara landslide, considered as the product of yearly probability of occurrence and magnitude of the phenomenon, can be regarded has as medium or high if the velocity or alternatively the volume involved is considered. Finally, it is also concluded that the monitoring results obtained provide a sound basis on which to develop and validate numerical models, manage hazard and support the identification of viable passive and active mitigation measures.

  11. Landslide!

    ERIC Educational Resources Information Center

    Hall-Wallace, Michelle; Mitchell, Carl

    1996-01-01

    Presents a unit that focuses on landslides and integrates earth science, physics, chemistry, and math. Includes activities to investigate porosity, permeability, cohesion, saturation, and gravity. (JRH)

  12. Rapid field-based landslide hazard assessment in response to post-earthquake emergency

    NASA Astrophysics Data System (ADS)

    Frattini, Paolo; Gambini, Stefano; Cancelliere, Giorgio

    2016-04-01

    On April 25, 2015 a Mw 7.8 earthquake occurred 80 km to the northwest of Kathmandu (Nepal). The largest aftershock, occurred on May 12, 2015, was the Mw 7.3 Nepal earthquake (SE of Zham, China), 80 km to the east of Kathmandu. . The earthquakes killed ~9000 people and severely damaged a 10,000 sqkm region in Nepal and neighboring countries. Several thousands of landslides have been triggered during the event, causing widespread damages to mountain villages and the evacuation of thousands of people. Rasuwa was one of the most damaged districts. This contribution describes landslide hazard analysis of the Saramthali, Yarsa and Bhorle VDCs (122 km2, Rasuwa district). Hazard is expressed in terms of qualitative classes (low, medium, high), through a simple matrix approach that combines frequency classes and magnitude classes. The hazard analysis is based primarily on the experience gained during a field survey conducted in September 2014. During the survey, local knowledge has been systematically exploited through interviews with local people that have experienced the earthquake and the coseismic landslides. People helped us to recognize fractures and active deformations, and allowed to reconstruct a correct chronicle of landslide events, in order to assign the landslide events to the first shock, the second shock, or the post-earthquake 2015 monsoon. The field experience was complemented with a standard analysis of the relationship between potential controlling factors and the distribution of landslides reported in Kargel et al (2016). This analysis allowed recognizing the most important controlling factor. This information was integrated with the field observations to verify the mapped units and to complete the mapping in area not accessible for field activity. Finally, the work was completed with the analysis and the use of a detailed landslide inventory produced by the University of Milano Bicocca that covers most of the area affected by coseismic landslides in

  13. Advances in Landslide Hazard Forecasting: Evaluation of Global and Regional Modeling Approach

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia B.; Adler, Robert; Hone, Yang; Kumar, Sujay; Peters-Lidard, Christa; Lerner-Lam, Arthur

    2010-01-01

    A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that exhibit a high potential for landslide activity by combining a calculation of landslide susceptibility with satellite-derived rainfall estimates. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale landslide forecasting efforts, it requires several modifications before it can be fully realized as an operational tool. The evaluation finds that the landslide forecasting may be more feasible at a regional scale. This study draws upon a prior work's recommendations to develop a new approach for considering landslide susceptibility and forecasting at the regional scale. This case study uses a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America: Guatemala, Honduras, EI Salvador and Nicaragua. A regional susceptibility map is calculated from satellite and surface datasets using a statistical methodology. The susceptibility map is tested with a regional rainfall intensity-duration triggering relationship and results are compared to global algorithm framework for the Hurricane Mitch event. The statistical results suggest that this regional investigation provides one plausible way to approach some of the data and resolution issues identified in the global assessment, providing more realistic landslide forecasts for this case study. Evaluation of landslide hazards for this extreme event helps to identify several potential improvements of the algorithm framework, but also highlights several remaining challenges for the algorithm assessment, transferability and performance accuracy. Evaluation challenges include representation errors from comparing susceptibility maps of different spatial resolutions, biases in event-based landslide inventory data, and limited nonlandslide event data for more comprehensive evaluation. Additional factors that may improve

  14. Hazard Mapping of Structurally Controlled Landslide in Southern Leyte, Philippines Using High Resolution Digital Elevation Model

    NASA Astrophysics Data System (ADS)

    Luzon, Paul Kenneth; Rochelle Montalbo, Kristina; Mahar Francisco Lagmay, Alfredo

    2014-05-01

    The 2006 Guinsaugon landslide in St. Bernard, Southern Leyte is the largest known mass movement of soil in the Philippines. It consisted of a 15 million m3 rockslide-debris avalanche from an approximately 700 m high escarpment produced by continuous movement of the Philippine fault at approximately 2.5 cm/year. The landslide was preceded by continuous heavy rainfall totaling 571.2 mm from February 8 to 12, 2006. The catastrophic landslide killed more than 1,000 people and displaced 19,000 residents over its 6,400 km path. To investigate the present-day morphology of the scar and potential failure that may occur, an analysis of a high-resolution digital elevation model (10 m resolution Synthetic Aperture Radar images in 2013) was conducted, leading to the generation of a structurally controlled landslide hazard map of the area. Discontinuity sets that could contribute to any failure mechanism were identified using Coltop 3D software which uses a unique lower Schmidt-Lambert color scheme for any given dip and dip direction. Thus, finding main morpho-structural orientations became easier. Matterocking, a software designed for structural analysis, was used to generate possible planes that could slide due to the identified discontinuity sets. Conefall was then utilized to compute the extent to which the rock mass will run out. The results showed potential instabilities in the scarp area of the 2006 Guinsaguon landslide and in adjacent slopes because of the presence of steep discontinuities that range from 45-60°. Apart from the 2006 Guinsaugon potential landslides, conefall simulation generated farther rock mass extent in adjacent slopes. In conclusion, there is a high probability of landslides in the municipality of St. Bernard Leyte, where the 2006 Guinsaugon Landslide occurred. Concerned agencies may use maps produced from this study for disaster preparedness and to facilitate long-term recovery planning for hazardous areas.

  15. Application of a Data Mining Model and It's Cross Application for Landslide Hazard Analysis: a Case Study in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet; Lee, Saro; Shattri, Mansor

    This paper deals with landslide hazard analysis and cross-application using Geographic Information System (GIS) and remote sensing data for Cameron Highland, Penang Island and Selangor in Malaysia. The aim of this study was to cross-apply and verify a spatial probabilistic model for landslide hazard analysis. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for the landslide hazard analysis. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. These factors were analyzed using an artificial neural network model to generate the landslide hazard map. Each factor's weight was determined by the back-propagation training method. Then the landslide hazard indices were calculated using the trained back-propagation weights, and finally the landslide hazard map was generated using GIS tools. Landslide hazard maps were drawn for these three areas using artificial neural network model derived not only from the data for that area but also using the weight for each parameters, one of the statistical model, calculated from each of the other two areas (nine maps in all) as a cross-check of the validity of the method. For verification, the results of the analyses were compared, in each study area, with actual landslide locations. The verification results showed sufficient agreement between the presumptive hazard map and the existing data on landslide areas.

  16. Climate services for adapting landslide hazard prevention measures in the Vrancea Seismic Region

    NASA Astrophysics Data System (ADS)

    Micu, Dana; Balteanu, Dan; Jurchescu, Marta; Sima, Mihaela; Micu, Mihai

    2014-05-01

    The Vrancea Seismic Region is covering an area of about 8 000 km2 in the Romanian Curvature Carpathians and Subcarpathians and it is considered one of Europe's most intensely multi-hazard-affected areas. Due to its geomorphic traits (heterogeneous morphostructural units of flysch mountains and molasse hills and depressions), the area is strongly impacted by extreme hydro-meteorological events which are potentially enhancing the numerous damages inflicted to a dense network of human settlements. An a priori knowledge of future climate change is a useful climate service for local authorities to develop regional adapting strategies and adequate prevention/preparedness frameworks. This paper aims at integrating the results of the high-resolution climate projections over the 21st century (within the FP7 ECLISE project) into the regional landslide hazard assessment. The requirements of users (Civil Protection, Land management, local authorities) for this area refer to reliable and high-resolution spatial data on landslide and flood hazard for short and medium-term risk management strategies. An insight into the future behavior of climate variability in the Vrancea Seismic Region, based on future climate projections of three regional models, under three RCPs (2.6, 4.5, 8.6), suggests a clear warming, both annually and seasonally and a rather limited annual precipitation decrease, but with a strong change of seasonality. A landslide inventory of 2485 cases (shallow and medium seated earth, debris and rock slides and earth and debris flows) was obtained based on large scale geomorphological mapping and aerial photos support (GeoEye, DigitalGlobe; provided by GoogleEarth and BingMaps). The landslides are uniformly distributed across the area, being considered representative for the entire morphostructural environment. Landslide susceptibility map was obtained using multivariate statistical analysis (logistic regression), while a relative landslide hazard index was computed

  17. Validating national landslide susceptibility and hazard maps for Caribbean island countries: the case of Dominica and tropical storm Erika.

    NASA Astrophysics Data System (ADS)

    van Westen, Cees; Jetten, Victor; Alkema, Dinand

    2016-04-01

    The aim of this study was to generate national-scale landslide susceptibility and hazard maps for four Caribbean islands, as part of the World Bank project CHARIM (Caribbean Handbook on Disaster Geoinformation Management, www.charim.net). This paper focuses on the results for the island country of Dominica, located in the Eastern part of the Caribbean, in-between Guadalupe and Martinique. The available data turned out to be insufficient to generate reliable results. We therefore generated a new database of disaster events for Dominica using all available data, making use of many different sources. We compiled landslide inventories for five recent rainfall events from the maintenance records of the Ministry of Public Works, and generated a completely new landslide inventory using multi-temporal visual image interpretation, and generated an extensive landslide database for Dominica. We analyzed the triggering conditions for landslides as far as was possible given the available data, and generated rainfall magnitude-frequency relations. We applied a method for landslide susceptibility assessment which combined bi-variate statistical analysis, that provided indications on the importance of the possible contributing factors, with an expert-based iterative weighing approach using Spatial Multi-Criteria Evaluation. The method is transparent, as the stakeholders (e.g. the engineers and planners from the four countries) and other consultants can consult the criteria trees and evaluate the standardization and weights, and make adjustments. The landslide susceptibility map was converted into a landslide hazard map using landslide density and frequencies for so called major, moderate and minor triggering events. The landslide hazard map was produced in May 2015. A major rainfall event occurred on Dominica following the passage of tropical storm Erika on 26 to 28 August 2015. An event-based landslide inventory for this event was produced by UNOSAT using very high resolution

  18. A multi-annual landslide inventory for the assessment of shallow landslide susceptibility - Two test cases in Vorarlberg, Austria

    NASA Astrophysics Data System (ADS)

    Zieher, Thomas; Perzl, Frank; Rössel, Monika; Rutzinger, Martin; Meißl, Gertraud; Markart, Gerhard; Geitner, Clemens

    2016-04-01

    Geomorphological landslide inventories provide crucial input data for any study on the assessment of landslide susceptibility, hazard or risk. Several approaches for assessing landslide susceptibility have been proposed to identify areas particularly vulnerable to this natural hazard. What they have in common is the need for data of observed landslides. Therefore the first step of any study on landslide susceptibility is usually the compilation of a geomorphological landslide inventory using a geographical information system. Recent research has proved the feasibility of orthophoto interpretation for the preparation of an inventory aimed at the delineation of landslides with the use of distinctive signs in the imagery data. In this study a multi-annual landslide inventory focusing on shallow landslides (i.e. translational soil slides of 0-2 m in depth) was compiled for two study areas in Vorarlberg (Austria) from the interpretation of nine orthophoto series. In addition, derivatives of two generations of airborne laser scanning data aided the mapping procedure. Landslide scar areas were delineated on the basis of a high-resolution differential digital terrain model. The derivation of landslide volumes, depths and depth-to-length ratios are discussed. Results show that most mapped landslides meet the definition of a shallow landslide. The inventory therefore provides the data basis for the assessment of shallow landslide susceptibility and allows for the application of various modelling techniques.

  19. Application of indicators derived by remote sensing for mapping of landslide hazard and vulnerability

    NASA Astrophysics Data System (ADS)

    Eidsvig, Unni; Vidar Vangelsten, Bjørn; Geiss, Christian; Klotz, Martin; Ekseth, Kristine; Taubenböck, Hannes

    2014-05-01

    The choice and the development of methods for risk assessment of landslides depends on several factors. Important factors are the type of landslide and the elements at risk, the choice of spatial and temporal scale, the purpose of the analysis and the needs of the end-users. In addition, data availability is a major constraint, which greatly affects the type of methods and models that can be developed. Remote sensing is a promising tool for an economical and up-to-date data collection, which also could be applied to monitor the dynamic development of risk. The spatial and temporal distribution of the risk for landslides can be assessed by monitoring hazard indicators (e.g. slope height and slope angle), exposure indicators (e.g. number of houses and the total population) and vulnerability indicators (e.g. population density, settlement structures or indicators related to structural vulnerability). Several of the indicators applicable for landslide risk and vulnerability can be obtained by remote sensing techniques. However, for better results, indicators from remote sensing should be combined with other type of data. In this work, a review on the application of indicators for landslide risk assessment in explicit models as well as an assessment of end user needs was conducted in order to determine the most relevant indicators for landslide hazard and vulnerability. Lists of recommended indicators, mainly derivable from remote sensing, have been developed. These indicators are supposed to be used in risk assessment, e.g. by combining hazard, vulnerability and exposure indicators to produce risk indices. Moreover schemes for ranking, weighting and aggregation of the indicators into hazard- and vulnerability indices are provided. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7-SPACE-2012-1] under Grant agreement No 312972 Framework to integrate Space-based and in-situ sENSing for dynamic v

  20. Combining criteria for delineating lahar- and flash-flood-prone hazard and risk zones for the city of Arequipa, Peru

    NASA Astrophysics Data System (ADS)

    Thouret, J.-C.; Enjolras, G.; Martelli, K.; Santoni, O.; Luque, J. A.; Nagata, M.; Arguedas, A.; Macedo, L.

    2013-02-01

    Arequipa, the second largest city in Peru, is exposed to many natural hazards, most notably earthquakes, volcanic eruptions, landslides, lahars (volcanic debris flows), and flash floods. Of these, lahars and flash floods, triggered by occasional torrential rainfall, pose the most frequently occurring hazards that can affect the city and its environs, in particular the areas containing low-income neighbourhoods. This paper presents and discusses criteria for delineating areas prone to flash flood and lahar hazards, which are localized along the usually dry (except for the rainy season) ravines and channels of the Río Chili and its tributaries that dissect the city. Our risk-evaluation study is based mostly on field surveys and mapping, but we also took into account quality and structural integrity of buildings, available socio-economic data, and information gained from interviews with risk-managers officials. In our evaluation of the vulnerability of various parts of the city, in addition to geological and physical parameters, we also took into account selected socio-economic parameters, such as the educational and poverty level of the population, unemployment figures, and population density. In addition, we utilized a criterion of the "isolation factor", based on distances to access emergency resources (hospitals, shelters or safety areas, and water) in each city block. By combining the hazard, vulnerability and exposure criteria, we produced detailed risk-zone maps at the city-block scale, covering the whole city of Arequipa and adjacent suburbs. Not surprisingly, these maps show that the areas at high risk coincide with blocks or districts with populations at low socio-economic levels. Inhabitants at greatest risk are the poor recent immigrants from rural areas who live in unauthorized settlements in the outskirts of the city in the upper parts of the valleys. Such settlements are highly exposed to natural hazards and have little access to vital resources. Our

  1. Development of community hazard map for landslide risk reduction at the village level in Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karnawati, D.

    2010-12-01

    Socio-economical loss due to landslides in Indonesia continuously increases, despite the availability of the existing landslide hazard map with the various scales. It is apparent that the existing landslide hazard map is too technical and difficult to be understood by local community living in the landslide prone are. Therefore, a simple hazard map for community-based landslide risk reduction at the village level is proposed by introducing a social engineering approach with respect to the social and geological conditions at the local sites. The mapping is conducted by observing and recording the indicators of slope movements and/ or the key parameters causing such movements such as the slope inclination, fragility of rock/ soil forming the slope, slope saturation and slope landuse conditions, in order to visually illustrate the levels of hazard and risk. Slope deformations which indicate the symptoms of slope movements can also be recorded through the appearance of cracks with typical ”horse-shoe-shape” at the slope surface, or at the structures and infrastructures; the land subsidence or the displacement of any feature at the slope surface; the bulging or deformation at the slope surface or retaining wall; the appearance of seepage or spring (the water discharge from slope surface which is mixed with the sediments or slurry) at the toe or foot slope; and the inclination of any vertical features (piles, trees, etc.) at the slope surface. Due to the simplicity of such method, the hazard mapping can be conducted by the community (which may also facilitated by an adviser), and accordingly they can distinguish the levels of landslide hazard into three different levels with several criteria such as the active slope (where the symptoms of movement can be recorded clearly and these symptoms are quite persistence), non active (no symptom of movement), and moderately active (illustrating the transition conditions from active to non active). Indeed, this method of

  2. Landslide Mobility and Hazards: A Geophysical Overview of the Oso Disaster

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.; George, D. L.; Allstadt, K.; Godt, J.; Reid, M. E.; Vallance, J. W.; Schilling, S. P.; Cannon, C.; Magirl, C. S.; Collins, B. D.; Baum, R. L.; Coe, J. A.; Schulz, W. H.; Bower, J. B.

    2014-12-01

    much like that observed at Oso, and in a case with n = 0.36, it predicts much slower landsliding that ceases after only about 100 m of motion. This behavioral bifurcation has fundamental physical importance as well as large ramifications for assessment of landslide hazards.

  3. Hazard assessment of landslide and debris flow in the Rjeina river valley, Croatia

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiang; Watanabe, Naoki; Marui, Hideaki

    2013-04-01

    The Rječina River extends approximately 18.7km long and flows into the Adriatic Sea at the center of Rijeka City, Croatia. Landslide, debris flow and rockfall are main geohazards in the middle part of the Rječina river basin. The zone between the Valići reservoir dam and the Pasac Bridge is particularly the most unstable and hazardous area in the river basin. The Grohovo landslide in the middle part of the river basin is located on the valley's slope facing southwest and situated at just downstream of the Valići dam. This landslide is the largest active landslide along the Adriatic Sea coast in Croatia. Assuming that serious heavy rainfall or earthquake occurs, it is most likely to occur two types of geohazard event. One scenario is that the debris deposited on the Grohovo landslide will move down to the channel of the Rječina River and dam up the river course. Another scenario is that the slope deposits on the landslide will be mixed with water and subsequently turn into a debris flow reaching to Rijeka City. We simulate both two cases of the formation of landslide-dam and the occurrence of debris-flow by two integrated models using GIS to represent the dynamic process across 3D terrains. In the case of the formation of landslide-dam, it is assumed that slope deposits will move downhill after failing along a shear zone. GIS-based revised Hovland's 3D limit equilibrium model is used to simulate the movement and stoppage of the slope deposits to form landslide-dam. The 3D factor of safety will be calculated step by step during the sliding process simulation. Stoppage is defined by the factor of safety much greater than one and the velocity equal to zero. The simulation result shows that the height of the landslide-dam will be nine meters. In case of debris flow, the mixture of slope deposits and water will be differentiated from landslide by fluid-like deformation of the mobilized material. GIS-based depth-averaged 2D numerical model is used to predict the

  4. Landslide-Generated Tsunami Hazards in Fiordland, New Zealand and Norway

    NASA Astrophysics Data System (ADS)

    Dykstra, J. L.

    2009-05-01

    Sub-aerial or submarine landslides can generate large displacement waves, sometimes with devastating consequences. Catastrophic rockslides fall into the fiords of western Norway about every 100 years: during the last century, 174 people have been killed by landslide-generated tsunami, including the 1934 Tafjord rockslide which generated a 62 m high wave, killing 41 people. Hazard evaluation for the Norwegian fiords is based on high-resolution sonar imagery of landslide deposits, seismic reflection data, and event chronology developed from radiocarbon and surface exposure dating. The ongoing hazard is managed by identifying and monitoring potential failure areas, calculating slide paths and estimating slide properties at the points of impact. High-risk locations are monitored intensively, and include the Aknes slide area on Geirangerjord which could generate a tsunami of up to 30 m in height, and the Akernes landslide above Storfjorden. The current system of hazard evaluation and mitigation in western Norway is effective because large landslides are normally preceded by smaller rockfalls and by accelerating motion of the rock bodies. By contrast, large landslides in the very similar but highly seismic terrain of Fiordland, southwestern New Zealand are most likely earthquake-initiated, and therefore precursory minor rockfalls are unlikely. Coseismic landslides are common in New Zealand; seismic shaking serves as the primary trigger for failures that are preconditioned by progressive degradation of rock mass strength since deglaciation. The seismicity of Fiordland is dominated by the plate-boundary Alpine Fault, which runs immediately offshore of the popular tourist destination of Milford Sound; it has ruptured at least four times in the past 1000 years (the last time around 1717 A.D.) producing earthquakes of about magnitude 8. The probability of an earthquake of similar magnitude occurring along the Alpine Fault within the next 50 years is estimated at 65% plus

  5. Landslide hazard mapping using a GIS and a fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Muthu, Kavitha; Petrou, Maria

    2004-10-01

    The aim of this work is to use information from various sources, including remote sensing images from which land use change may be identified, in order to produce landslide hazard maps. We designed a fuzzy neural network which allows us to incorporate all the levels of uncertainty in the informations used in order to draw conclusions about the severity of the landslide hazard. The scale of operation of such a system is at the regional level rather than the local microlevel where ground local measurements may be performed and detailed geotechnical mathematical models may be applied to calculate soil stresses. It is not possible to apply such accurate detailed models for large scale hazard assessment. The proposed system is expected to be less accurate but more widely applicable than what is currently used in geotechnics.

  6. Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence

    USGS Publications Warehouse

    Collins, Brian D.; Jibson, Randall W.

    2015-01-01

    This report provides a detailed account of assessments performed in May and June 2015 and focuses on valley-blocking landslides because they have the potential to pose considerable hazard to many villages in Nepal. First, we provide a seismological background of Nepal and then detail the methods used for both external and in-country data collection and interpretation. Our results consist of an overview of landsliding extent, a characterization of all valley-blocking landslides identified during our work, and a description of video resources that provide high resolution coverage of approximately 1,000 kilometers (km) of river valleys and surrounding terrain affected by the Gorkha earthquake sequence. This is followed by a description of site-specific landslide-hazard assessments conducted while in Nepal and includes detailed descriptions of five noteworthy case studies. Finally, we assess the expectation for additional landslide hazards during the 2015 summer monsoon season.

  7. Study in landslide hazard zonation based on factor weighting-rating in Wan County, Three Gorges Reservoir area

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Wang, Jian; Chi, Changyan

    2008-11-01

    Multi-source earth observation data is highly desirable in current landslide hazard prediction modeling, as well as Landslide Hazard Zonation(LHZ) is a very important content of landslide hazard prediction modeling. In this paper, take Wan County for instance, we investigate the potentials of derivation from multi-source data sets to study landslide hazard zonation based on the ordinal scale relative weighting-rating technique. LHZ is then performed with chosen factor layers including: buffer map of thrusts, lithology, slope angle and relative relief calculated from DEM, NDVI, buffer map of drainage and lineaments extracted from the digital satellite imagery(TM). Then Landslide Hazard Index (LHI) value is calculated and landslide hazard zonation is decided by slicing LHI histogram. The statistics results demonstrate that high stable slope zone, stable slope zone, quasi-stable slope zone, relatively unstable slope zone, unstable slope zone and defended slope zone account for 2.20%, 14.02%, 39.88%, 28.27%, 12.17% and 3.47% respectively. Then, GPS deformation control points on the landslide bodies are used to verify the validity of the LHZ technique.

  8. Contribution of physical modelling to climate-driven landslide hazard mapping: an alpine test site

    NASA Astrophysics Data System (ADS)

    Vandromme, R.; Desramaut, N.; Baills, A.; Hohmann, A.; Grandjean, G.; Sedan, O.; Mallet, J. P.

    2012-04-01

    The aim of this work is to develop a methodology for integrating climate change scenarios into quantitative hazard assessment and especially their precipitation component. The effects of climate change will be different depending on both the location of the site and the type of landslide considered. Indeed, mass movements can be triggered by different factors. This paper describes a methodology to address this issue and shows an application on an alpine test site. Mechanical approaches represent a solution for quantitative landslide susceptibility and hazard modeling. However, as the quantity and the quality of data are generally very heterogeneous at a regional scale, it is necessary to take into account the uncertainty in the analysis. In this perspective, a new hazard modeling method is developed and integrated in a program named ALICE. This program integrates mechanical stability analysis through a GIS software taking into account data uncertainty. This method proposes a quantitative classification of landslide hazard and offers a useful tool to gain time and efficiency in hazard mapping. However, an expertise approach is still necessary to finalize the maps. Indeed it is the only way to take into account some influent factors in slope stability such as heterogeneity of the geological formations or effects of anthropic interventions. To go further, the alpine test site (Barcelonnette area, France) is being used to integrate climate change scenarios into ALICE program, and especially their precipitation component with the help of a hydrological model (GARDENIA) and the regional climate model REMO (Jacob, 2001). From a DEM, land-cover map, geology, geotechnical data and so forth the program classifies hazard zones depending on geotechnics and different hydrological contexts varying in time. This communication, realized within the framework of Safeland project, is supported by the European Commission under the 7th Framework Programme for Research and Technological

  9. Landslide!

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-486, 17 September 2003

    This August 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows part of a deposit created by a landslide off the wall of a crater near 12.3oN, 21.3oW. The crater wall is not shown; it is several kilometers to the left of this picture. The debris that slid from the crater wall came from the left/upper left (northwest) and moved toward the lower right (southeast). The crater floor onto which the debris was deposited has more small meteor craters on it than does the landslide material; this indicates that there was a considerable interval between the time when the crater floor formed, and when the landslide occurred. This picture covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  10. GIS-based 3D spatial-temporal assessment of landslide hazard

    NASA Astrophysics Data System (ADS)

    Xie, M.; Qiu, C.; Liu, X.

    2009-04-01

    A desirable landslide hazard assessment should give answers to three key questions: the magnitude, the location, and the occurrence time of failure(s). It is thus necessary to evaluate the effects of both the static variables (such as geological and geotechnical properties that contribute to landslide susceptibility) and the dynamic variables (such as rainfall and earthquake that tend to trigger landslides in an area of given susceptibility) on slope stability at the same time. With the fast development in earth observation science and geotechnology, there are more and more techniques available for acquiring data of both static and dynamic variables, and for carrying out a more reliable analysis to explain the triggering mechanism of landslide. Taking advantage of these techniques can result in an efficient and advanced spatial-temporal assessment of landslide hazard. It means that all the necessary data, including geological and geomorphological data and real-time monitoring data on rainfall or earthquake, should be acquired and integrated into a database, and being quickly analyzed at any time by an advanced method which developed by, for example, coupling geotechnical and hydrological models, to evaluate what will happen in certain situations. To achieve this task, a uniform platform is also needed to integrate various types of data and models into a standardized form for efficient treatment and easy implementation. Based on the above consideration, a GIS-based three-dimensional spatial-temporal assessment methodology is proposed. In this methodology, a GIS raster-based framework is delivered to achieve 3D slope stability analysis; a Monte Carlo technique is used to locate the potential slip surfaces by means of minimizing the 3D safety factor through an iterative procedure, based on a simulation of ellipsoid for the 3D shape of slip surfaces; a GIS-based model is developed by coupling a dynamic rainfall-infiltration model with a GIS-based 3D model to quantify

  11. Integration of remote sensing techniques for the evaluation of the landslide hazard

    NASA Astrophysics Data System (ADS)

    Calò, F.; Singhroy, V.; Parise, M.; Ramondini, M.

    2009-12-01

    Slope movements are worldwide recognized as the most damaging natural hazard, even though sometimes their effects are erroneously attributed to other hazards such as earthquakes, floods, tsunamis, etc.: they affect wide areas, producing severe economic damage, as well as direct and indirect losses, in function of both landslide velocity and exposure of the main elements at risk. Evaluation of the landslide hazard is therefore of extreme importance, in order to address the future development of built-up areas toward territories not affected by slope movements. Remote sensing techniques, that is the observation and analysis of the earth landscape from a distance, have being used since many decades at this aim. In the last 20 years, the use of satellite images considerably increased the role of remote sensing techniques, opening the ground to many new, technologically-advanced, applications. In this paper we present the results obtained by integrating different remote sensing techniques for the evaluation of the hazard related to slow-moving, intermittent landslides in the Southern Apennines of Italy. The work has been carried out by means of multi-temporal analysis of aerial photographs, that allowed to assess the spatial and temporal evolution of slope movements in a 50-years time span. Landslide inventory maps, produced for each pair of available aerial photos, have been compared to obtain landslide activity maps, that represent a shortcut for assessing the evolution of slope movements, since they focus on the effects of slope instabilities rather than on the causative conditions and processes. In these maps, the landslide activity trends are based on the variations in areal frequency of mass movements in time; thus, the estimates of these variations need not reflect the exact absolute values of landsliding. The stereoscopic observation and interpretation of vertical aerial photographs have been then integrated by analysis of satellite images (years 1992

  12. Development of Smart Grid for Community and Cyber based Landslide Hazard Monitoring and Early Warning System

    NASA Astrophysics Data System (ADS)

    Karnawati, D.; Wilopo, W.; Fathani, T. F.; Fukuoka, H.; Andayani, B.

    2012-12-01

    A Smart Grid is a cyber-based tool to facilitate a network of sensors for monitoring and communicating the landslide hazard and providing the early warning. The sensor is designed as an electronic sensor installed in the existing monitoring and early warning instruments, and also as the human sensors which comprise selected committed-people at the local community, such as the local surveyor, local observer, member of the local task force for disaster risk reduction, and any person at the local community who has been registered to dedicate their commitments for sending reports related to the landslide symptoms observed at their living environment. This tool is designed to be capable to receive up to thousands of reports/information at the same time through the electronic sensors, text message (mobile phone), the on-line participatory web as well as various social media such as Twitter and Face book. The information that should be recorded/ reported by the sensors is related to the parameters of landslide symptoms, for example the progress of cracks occurrence, ground subsidence or ground deformation. Within 10 minutes, this tool will be able to automatically elaborate and analyse the reported symptoms to predict the landslide hazard and risk levels. The predicted level of hazard/ risk can be sent back to the network of electronic and human sensors as the early warning information. The key parameters indicating the symptoms of landslide hazard were recorded/ monitored by the electrical and the human sensors. Those parameters were identified based on the investigation on geological and geotechnical conditions, supported with the laboratory analysis. The cause and triggering mechanism of landslide in the study area was also analysed in order to define the critical condition to launch the early warning. However, not only the technical but also social system were developed to raise community awareness and commitments to serve the mission as the human sensors, which will

  13. Comparison of Structurally Controlled Landslide Hazard Simulation to the Co-seismic Landslides Caused by the M 7.2 2013 Bohol Earthquake.

    NASA Astrophysics Data System (ADS)

    Galang, J. A. M. B.; Eco, R. C.; Lagmay, A. M. A.

    2014-12-01

    The M_w 7.2 October 15, 2013 Bohol earthquake is one of the more destructive earthquake to hit the Philippines in the 21st century. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". The earthquake resulted in 209 fatalities and over 57 million USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparations for this type of landslides rely heavily on the identification of fracture-related slope instability. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations of discontinuity sets were mapped using remote sensing techniques with the aid of a Digital Terrain Model (DTM) obtained in 2012. The DTM used is an IFSAR derived image with a 5-meter pixel resolution and approximately 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. Separately, a manually derived landslide inventory has been performed using post-earthquake satellite images and LIDAR. The results were compared to the landslide inventory which identified at least 873 landslides. Out of the 873 landslides identified through the inventory, 786 or 90% intersect the simulated structural-controlled landslide hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow

  14. Monitoring Of Landslide Hazard In Selected Areas Of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Lazecky, Milan; Balaha, Pavel; Khasankhanova, Gulchekhra; Minchenko, Venscelas

    2013-12-01

    Republic of Uzbekistan is situated in the heart of Central Asia. Dangerous phenomena such as drought, flooding, mud flows, landslides and others, that are becoming frequent in conditions of climate changes, increase instability of an agricultural production, and threaten rural livelihoods. In connection with weather and climate natural disasters, these phenomena become reasons of declining food production, water contamination, and economical damages. Within the Project granted by NATO: Science for Peace and Security programme, modern advanced remote sensing technologies will be applied to perform large scale monitoring of (early) slope deformations, including Satellite SAR Interferometry (InSAR) techniques, Ground Laser Scanning for in-situ refinement of detected movements or Multibeam Echosounding for monitoring slope deformation advancement into water objects. First results involving InSAR processing of selected sites in Uzbekistan are presented within this contribution.

  15. Application of the improved fuzzy analytic hierarchy process for landslide hazard assessment based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Li, Baishou; Gao, Yujiu

    2015-12-01

    The landslide is a geological disaster that caused the second disruptions and losses next to the earthquake, and people around the world suffered a serious threat to their lives and property damage as a result of landslide disaster every year. So carrying on the study of the landslide hazard will create important theoretical meaning and practical value for proposing targeted prevention and treatment measures. Landslides occur more frequently in Guangxi where serious landslide disasters run riot because of its unique karst topography environment and abundant rainfall. The Wanxiu District of Wuzhou, Guangxi was selected as the study area, the landslide hazard zonation evaluation was studied on the basis of RS and GIS technology. The factors that influence landslide occurrence, such as elevation, slope inclination, slope aspect, curvature and distance to streams were derived from the DEM; land use was extracted from the Google Earth image; lithology was digitalized from the geologic map; rainfall information was from the literature. An improved analytic hierarchy process was presented to determine the index weight in this study. The method weakens the uncertainty in the process of comparing the importance of each factor, it need not to do the consistency check, which can also reduce the iteration times enormously, and improve operating speed. Combined with fuzzy comprehensive evaluation method, the landslide hazard mapping of the study area was made according to the maximum membership degree principle. The resulting map can be used to provide some reference values for risk management, land-use planning and urbanization.

  16. An establishment on the hazard mitigation system of large scale landslides for Zengwen reservoir watershed management in Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Jung; Lee, Ming-Hsi; Chen, Yie-Ruey; Huang, Meng-Hsuan; Yu, Chia-Ching

    2016-04-01

    Extremely heavy rainfall with accumulated rainfall amount more than 2900mm within continuous 3 day event occurred at southern Taiwan has been recognized as a serious natural hazard caused by Morakot typhoon in august, 2009. Very destructive large scale landslides and debris flows were induced by this heavy rainfall event. According to the satellite image processing and monitoring project was conducted by Soil & Water Conservation Bureau after Morakot typhoon. More than 10904 sites of landslide with total sliding area of 18113 ha were significantly found by this project. Also, the field investigation on all landslide areas were executed by this research on the basis of disaster type, scale and location related to the topographic condition, colluvium soil characteristics, bedrock formation and geological structure after Morakot hazard. The mechanism, characteristics and behavior of this large scale landslide combined with debris flow disasters are analyzed and Investigated to rule out the interaction of factors concerned above and identify the disaster extent of rainfall induced landslide during the period of this study. In order to reduce the disaster risk of large scale landslide and debris flow, the adaption strategy of hazard mitigation system should be set up as soon as possible and taken into consideration of slope land conservation, landslide control countermeasure planning, disaster database establishment, environment impact analysis and disaster risk assessment respectively. As a result, this 3-year research has been focused on the field investigation by using GPS/GIS/RS integration, mechanism and behavior study regarding to the rainfall induced landslide occurrence, disaster database and hazard mitigation system establishment. In fact, this project has become an important issue which was seriously concerned by the government and people live in Taiwan. Hopefully, all results come from this research can be used as a guidance for the disaster prevention and

  17. Landslide Hazards in Glacial Lake Clays - Tully Valley, New York

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Negussey, Dawit; Kappel, William M.

    1998-01-01

    At approximately midday on April 27, 1993, a large landslide occurred along the foot of Bare Mountain in LaFayette, Onondaga County, New York, about 12 miles south of Syracuse (figs. 1, 2). The slide moved rapidly east toward the middle of the Tully Valley and impacted approximately 50 acres of land, destroyed three homes, and resulted in the evacuation of four other homes. Debris from the slide, consisting mostly of remolded clay, covered Tully Farms Road with up to 15 feet of earth for a length of some 1,200 feet. Springs that developed near the top of the slide discharged either freshwater or brackish water, which contained concentrations of dissolved evaporites (salt and gypsum) and other minerals. The total volume of earth moved by the slide is estimated to be about 1.3 million cubic yards. According to the New York State Geological Survey, this slide is the largest to have occurred in the State in more than 75 years. Most residents were away from their homes at the time of the slide, and so there were no fatalities or serious injuries caused by the slide.

  18. Natural Hazards at the Other Extreme: AN Apparently Seasonal Hazard at Taihape Landslide, New Zealand

    NASA Astrophysics Data System (ADS)

    McSaveney, M. J.; Massey, C.

    2010-12-01

    Taihape landslide is a slow-moving, deep-seated translational rock slide on weakly consolidated marine sedimentary rocks in west-central North Island, New Zealand. It includes about a third of the rural town of Taihape. Only a portion of the ancient landslide appears to be active. About $20 M of insured property and substantial infrastructure is potentially at risk from landslide damage there. To find out more about the landslide movement drivers, its surface movement and internal deformation have been closely monitored. Surface movement is monitored using 35 fixed prisms that are followed using a robotic total station. Rainfall, pore pressures, transient ground acceleration, and subsurface displacements are also monitored. The precision and temporal resolution of the monitoring clearly resolves the triggers of movement as well as the resulting complex movement patterns. The landslide motion is best described as post-failure, episodic creep, with steady, slow creep at rates <10 mm/yr punctuated by periods of rest and faster creep at rates of 1 to 3 mm/day sustained over weeks. At current maximum rates of movement it is annoyingly destructive of property, but it is not apparently a threat to life. The longer historical and geomorphological records are fully concordant with the current rates, suggesting that they may have been sustained over many tens of thousands of years. Over much of the landslide, measured prism movement is dominated by a recurring signal in which some prisms appear to speed up and slow down on a seasonal cycle, while others even appear to move upslope at certain times of the year. Although individual prisms are seasonally cyclic, they are not all in phase. The seasonal signal is in both horizontal and vertical components of motion, and survey control points oscillate about fixed sites. The signal correlates weakly with rainfall and pore pressure. We interpret it as surface deformation associated with seasonal shrinkage and swelling of the local

  19. Evolution trends in vulnerability of R/C buildings exposed to earthquake induced landslide hazard

    NASA Astrophysics Data System (ADS)

    Fotopoulou, S.; Pitilakis, K.

    2012-04-01

    The assessment of landslide risk depends on the evaluation of landslide hazard and the vulnerability of exposed structures which both change with time. The real, dynamic vulnerability modeling of structures due to landslides may be significantly affected by aging considerations, anthropogenic actions, cumulative damage from past landslide events and retrofitting measures. The present work aims at the development of an efficient analytical methodology to assess the evolution of building vulnerability with time exposed to earthquake -induced landslide hazard. In particular, the aging of typical RC buildings is considered by including probabilistic models of corrosion deterioration of the RC elements within the vulnerability modeling framework. Two potential adverse corrosion scenarios are examined: chloride and carbonation induced corrosion of the steel reinforcement. An application of the proposed methodology to reference low-rise RC buildings exposed to the combined effect of seismically induced landslide differential displacements and reinforcement corrosion is provided. Both buildings with stiff and flexible foundation system standing near the crest of a potentially precarious soil slope are examined. Non linear static time history analyses of the buildings are performed using a fibre-based finite element code. In this analysis type, the applied loads (displacements) at the foundation level vary in the pseudo-time domain, according to a load pattern prescribed as the differential permanent landslide displacement (versus time) curves triggered by the earthquake. The distribution for the corrosion initiation time is assessed through Monte Carlo simulation using appropriate probabilistic models for the carbonation and the chloride induced corrosion. Then, the loss of area of steel over time due to corrosion of the RC elements is modeled as a reduction in longitudinal reinforcing bar cross-sectional area in the fibre section model. Time dependent structural limit

  20. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L.

    2008-01-01

    Application of transient deterministic shallow landslide models over broad regions for hazard and susceptibility assessments requires information on rainfall, topography and the distribution and properties of hillside materials. We survey techniques for generating the spatial and temporal input data for such models and present an example using a transient deterministic model that combines an analytic solution to assess the pore-pressure response to rainfall infiltration with an infinite-slope stability calculation. Pore-pressures and factors of safety are computed on a cell-by-cell basis and can be displayed or manipulated in a grid-based GIS. Input data are high-resolution (1.8??m) topographic information derived from LiDAR data and simple descriptions of initial pore-pressure distribution and boundary conditions for a study area north of Seattle, Washington. Rainfall information is taken from a previously defined empirical rainfall intensity-duration threshold and material strength and hydraulic properties were measured both in the field and laboratory. Results are tested by comparison with a shallow landslide inventory. Comparison of results with those from static infinite-slope stability analyses assuming fixed water-table heights shows that the spatial prediction of shallow landslide susceptibility is improved using the transient analyses; moreover, results can be depicted in terms of the rainfall intensity and duration known to trigger shallow landslides in the study area.

  1. Assessing landslide susceptibility, hazards and sediment yield in the Río El Estado watershed, Pico de Orizaba volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Legorreta Paulin, G.; Bursik, M. I.; Lugo Hubp, J.; Aceves Quesada, J. F.

    2014-12-01

    This work provides an overview of the on-going research project (Grant SEP-CONACYT # 167495) from the Institute of Geography at the National Autonomous University of Mexico (UNAM) that seeks to conduct a multi-temporal landslide inventory, analyze the distribution of landslides, and characterize landforms that are prone to slope instability by using Geographic Information Systems (GIS). The study area is the Río El Estado watershed that covers 5.2 km2 and lies on the southwestern flank of Pico de Orizaba volcano.The watershed was studied by using aerial photographs, fieldwork, and adaptation of the Landslide Hazard Zonation Protocol of the Washington State Department of Natural Resources, USA. 107 gravitational slope failures of six types were recognized: shallow landslides, debris-avalanches, deep-seated landslides, debris flows, earthflows, and rock falls. This analysis divided the watershed into 12 mass-wasting landforms on which gravitational processes occur: inner gorges, headwalls, active scarps of deep-seated landslides, meanders, plains, rockfalls, non-rule-identified inner gorges, non-rule-identified headwalls, non-rule-identified converging hillslopes and three types of hillslopes classified by their gradient: low, moderate, and high. For each landform the landslide area rate and the landslide frequency rate were calculated as well as the overall hazard rating. The slope-stability hazard rating has a range that goes from low to very high. The overall hazard rating for this watershed was very high. The shallow slide type landslide was selected and area and volume of individual landslides were retrieved from the watershed landslide inventory geo-database, to establish an empirical relationship between area and volume that takes the form of a power law. The relationship was used to estimate the total volume of landslides in the study area. The findings are important to understand the long-term evolution of the southwestern flank stream system of Pico de

  2. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    NASA Astrophysics Data System (ADS)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  3. Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios

    NASA Astrophysics Data System (ADS)

    Avolio, MV; Di Gregorio, Salvatore; Mantovani, Franco; Pasuto, Alessandro; Rongo, Rocco; Silvano, Sandro; Spataro, William

    Cellular Automata are a powerful tool for modelling natural and artificial systems, which can be described in terms of local interactions of their constituent parts. Some types of landslides, such as debris/mud flows, match these requirements. The 1992 Tessina landslide has characteristics (slow mud flows) which make it appropriate for modelling by means of Cellular Automata, except for the initial phase of detachment, which is caused by a rotational movement that has no effect on the mud flow path. This paper presents the Cellular Automata approach for modelling slow mud/debris flows, the results of simulation of the 1992 Tessina landslide and future hazard scenarios based on the volumes of masses that could be mobilised in the future. They were obtained by adapting the Cellular Automata Model called SCIDDICA, which has been validated for very fast landslides. SCIDDICA was applied by modifying the general model to the peculiarities of the Tessina landslide. The simulations obtained by this initial model were satisfactory for forecasting the surface covered by mud. Calibration of the model, which was obtained from simulation of the 1992 event, was used for forecasting flow expansion during possible future reactivation. For this purpose two simulations concerning the collapse of about 1 million m 3 of material were tested. In one of these, the presence of a containment wall built in 1992 for the protection of the Tarcogna hamlet was inserted. The results obtained identified the conditions of high risk affecting the villages of Funes and Lamosano and show that this Cellular Automata approach can have a wide range of applications for different types of mud/debris flows.

  4. AschFlow - A dynamic landslide run-out model for medium scale hazard analysis.

    NASA Astrophysics Data System (ADS)

    Luna, Byron Quan; Blahut, Jan; van Asch, Theo; van Westen, Cees; Kappes, Melanie

    2015-04-01

    Landslides and debris flow hazard assessments require a scale-dependent analysis in order to mitigate damage and other negative consequences at the respective scales of occurrence. Medium or large scale landslide run-out modelling for many possible landslide initiation areas has been a cumbersome task in the past. This arises from the difficulty to precisely define the location and volume of the released mass and from the inability of the run-out models to compute the displacement with a large amount of individual initiation areas (computational exhaustive). Most of the existing physically based run-out models have complications in handling such situations and therefore empirical methods have been used as a practical mean to predict landslides mobility at a medium scale (1:10,000 to 1:50,000). In this context, a simple medium scale numerical model for rapid mass movements in urban and mountainous areas was developed. The deterministic nature of the approach makes it possible to calculate the velocity, height and increase in mass by erosion, resulting in the estimation of various forms of impacts exerted by debris flows at the medium scale The established and implemented model ("AschFlow") is a 2-D one-phase continuum model that simulates, the entrainment, spreading and deposition process of a landslide or debris flow at a medium scale. The flow is thus treated as a single phase material, whose behavior is controlled by rheology (e.g. Voellmy or Bingham). The developed regional model "AschFlow" was applied and evaluated in well documented areas with known past debris flow events.

  5. Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03582 Landslide

    This landslide occurred in Coprates Chasma.

    Image information: VIS instrument. Latitude 12.6S, Longitude 296.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02160 Landslide

    This large landslide is located within Ganges Chasma.

    Image information: VIS instrument. Latitude -7.6N, Longitude 315.8E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Land-use changes as uncertainties in landslide hazard assessment. An application in Vrancea Seismic Region

    NASA Astrophysics Data System (ADS)

    Popovici, A.; Kucsicsa, Gh.; Balteanu, D.; Sandric, I.; Micu, M.

    2012-04-01

    Vrancea Seismic Region, covering a surface of 8 000 km2 in the Romanian Curvature Carpathians, represents one of Europe's most intensely affected by slope and channel processes area. Due to its geographical framework (a diverse relief, of mountains, hills and depressions) and socio-political situation (several changes of property due to historical circumstances), it shows also an increased predisposition for land-use changes. The purpose of this paper is to highlight the uncertainties that land-use (considered an independent variable within a landslide susceptibility assessment) changes may trigger within the assessment of landslide hazard, potentially amplifying the uncertainties already induced by climate change. Besides historical maps and CORINE-derived land use distributions, statistical data were used to run two modeling applications (CLUE-S model and Idrisi Taiga Land Change Modeler, who predicts new land-use covers using Markov Chain or Multiple Layer Perception). Based on certain driving forces, like bio-physical drivers (elevation, slope, geology, soil, climatic conditions etc.) but also on socio-economic drivers (population density, distance to towns, distance to roads, people employed in different economical sectors, livestock density, land-property type, farms type, etc.) predicted land-use changes pattern is studied through statistical analysis (logistic regression) backed-up by continuous expert-opinion analysis. The results, represented by land-use simulated maps (2010-2050), once validated (using land-use maps derived from 2007 to 2011 Landsat images, according to CORINE methodology), will give important information on both the suitable methodology for such simulation and on the landslide hazard assessment, a vital stage in the elaboration of landslide risk management strategies.

  8. Landslide hazard scenario assessment at a large spatio-temporal scale: the case of a municipality in the Getic Subcarpathians, Romania

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta; Dragota, Carmen; Borcan, Mihaela

    2014-05-01

    Performing a landslide hazard assessment requires both a spatial and a temporal-probabilistic modelling of landslide occurrence. Nevertheless, most landslide 'hazard' maps only present the zoning of susceptibility (i.e. spatial probability) without including information on the temporal component of the hazard. One of the difficulties in estimating temporal probabilities of landslides lies in identifying frequency-magnitude relationships for landslide occurrences since historical landslide records are usually incomplete. However, even in scarce data conditions, the possibility remains to address recent occurences of landslides that can be related to particular triggering events (e.g. earthquake, rainfall). The present paper proposes to produce a landslide hazard scenario, claiming that by analysing more particular frequency-magnitude relationships and developing hazard scenarios, the assessment of a general landslide hazard map could be more easily envisaged in future. The study is part of a top-down approach, which, in a previous phase, has completed a regional scale (1:100,000) semi-quantitative susceptibility assessment of a wider administrative unit in southern Romania (the Vâlcea county), constantly under the threat of landslides. Based on the landslide hotspots provided by this synoptic map, the case of a municipality in the Subcarpathian hills was selected for perfoming a much more detailed hazard scenario assessment, i.e. at a large scale (1:10,000 spatial scale and daily temporal scale). A first stage of the present study aims at zoning the terrain in terms of spatial probabilities of landslide occurrence by statistically analysing the relation between inventoried landslides and several predisposing factors. Considering the large scale of analysis, a special focus was given to predicting areas probable to generate landslides and thus only the mapped depletion zones were entered into the analysis. Moreover, in order to correctly reflect causal relations, a

  9. Hazard analysis in active landslide areas in the State of Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Wilde, Martina; Morales Barrera, Wendy V.; Rodriguez Elizarrarás, Sergio R.; Solleiro Rebolledo, Elizabeth; Sedov, Sergey; Terhorst, Birgit

    2016-04-01

    The year 2013 was characterized by strong storms and hurricanes like the Hurricanes Barbara and Ingrid and the tropical storms Barry and Fernand, which occurred between June and November affecting especially the coastal regions of Mexico. First of all, the State of Veracruz experienced a series of intense rainfalls and as consequences of these events over 780 landslides were registered. More than 45000 people suffered from evacuations. Located on the coast of the Gulf of Mexico, Veracruz has a wide range of altitude differences. The area with the highest elevations reaches from 5675 m.a.s.l. (Pico de Orizaba, the highest mountain of Mexico) to approximately 3000 m.a.s.l. and is characterized by steep slopes and V-shaped valleys. The mountains are part of the Sierra Madre Oriental and the Trans-Mexican Volcanic Belt. Plateaus and rounded hills are typical for the intermediate zones (3000 - 500 m.a.s.l.). The lowest zone (from 500 m.a.s.l. to sea level) is defined by moderate slopes, large rivers and coastal plain areas. The geology shows a variety and complexity of sedimentary and volcanic rocks. The sedimentary formations comprise claystones, siltstones, sandstones and calcareous rocks. Plateaus of basalts and andesites and deposits of ignimbrites are representative for this area. Even though Veracruz is a region highly endangered by landslides, currently there are no susceptibility maps or any other relevant information with high spatial resolution. Because of the lack of high definite information about the landslide hazards in this area, detailed investigations about the conditions (geology, geomorphology, thresholds, etc.) are indispensable. A doctoral grant from the German Academic Exchange Service (DAAD) allowed to carry out investigations in areas affected by large landslides in the year 2013. The selected study sites comprise damaged infrastructures and settlements. With a multi-methodological and interdisciplinary approach different processes and types of

  10. Using geotypes for landslide hazard assessment and mapping: a coupled field and GIS-based method

    NASA Astrophysics Data System (ADS)

    Bilgot, S.; Parriaux, A.

    2009-04-01

    Switzerland is exceptionally subjected to landslides; indeed, about 10% of its area is considered as unstable. Making this observation, its Department of the Environment (BAFU) introduces in 1997 a method to realize landslide hazard maps. It is routinely used but, like most of the methods applied in Europe to map unstable areas, it is mainly based on the signs of previous or current phenomena (geomorphologic mapping, archive consultation, etc.) even though instabilities can appear where there is nothing to show that they existed earlier. Furthermore, the transcription from the geomorphologic map to the hazard map can vary according to the geologist or the geographer who realizes it: this method is affected by a certain lack of transparency. The aim of this project is to introduce the bedrock of a new method for landslide hazard mapping; based on instability predisposition assessment, it involves the designation of main factors for landslide susceptibility, their integration in a GIS to calculate a landslide predisposition index and the implementation of new methods to evaluate these factors; to be competitive, these processes have to be both cheap and quick. To identify the most important parameters to consider for assessing slope stability, we chose a large panel of topographic, geomechanic and hydraulic parameters and tested their importance by calculating safety factors on theoretical landslides using Geostudio 2007®; thus, we could determine that slope, cohesion, hydraulic conductivity and saturation play an important role in soil stability. After showing that cohesion and hydraulic conductivity of loose materials are strongly linked to their granulometry and plasticity index, we implemented two new field tests, one based on teledetection and one coupled sedimentometric and blue methylen test to evaluate these parameters. From these data, we could deduce approximated values of maximum cohesion and saturated hydraulic conductivity. The hydraulic conductivity of

  11. Landslide and flood hazard assessment in urban areas of Levoča region (Eastern Slovakia)

    NASA Astrophysics Data System (ADS)

    Magulova, Barbora; Caporali, Enrica; Bednarik, Martin

    2010-05-01

    The case study presents the use of statistical methods and analysis tools, for hazard assessment of "urbanization units", implemented in a Geographic Information Systems (GIS) environment. As a case study, the Levoča region (Slovakia) is selected. The region, with a total area of about 351 km2, is widely affected by landslides and floods. The problem, for small urbanization areas, is nowadays particularly significant from the socio-economic point of view. It is considered, presently, also an increasing problem, mainly because of climate change and more frequent extreme rainfall events. The geo-hazards are evaluated using a multivariate analysis. The landslide hazard assessment is based on the comparison and subsequent statistical elaboration of territorial dependence among different input factors influencing the instability of the slopes. Particularly, five factors influencing slope stability are evaluated, i.e. lithology, slope aspect, slope angle, hypsographic level and present land use. As a result a new landslide susceptibility map is compiled and different zones of stable, dormant and non-stable areas are defined. For flood hazard map a detailed digital elevation model is created. A compose index of flood hazard is derived from topography, land cover and pedology related data. To estimate flood discharge, time series of stream flow and precipitation measurements are used. The assessment results are prognostic maps of landslide hazard and flood hazard, which presents the optimal base for urbanization planning.

  12. Bayesian analysis of uncertainty in predisposing and triggering factors for landslides hazard assessment

    NASA Astrophysics Data System (ADS)

    Sandric, I.; Petropoulos, Y.; Chitu, Z.; Mihai, B.

    2012-04-01

    The landslide hazard analysis models takes into consideration both predisposing and triggering factors combined into a Bayesian temporal network with uncertainty propagation. The model uses as predisposing factors the first and second derivatives from DEM, the effective precipitations, runoff, lithology and land use. The latter is expressed not as land use classes, as for example CORINE, but as leaf area index. The LAI offers the advantage of modelling not just the changes from different time periods expressed in years, but also the seasonal changes in land use throughout a year. The LAI index was derived from Landsat time series images, starting from 1984 and up to 2011. All the images available for the Panatau administrative unit in Buzau County, Romania, have been downloaded from http://earthexplorer.usgs.gov, including the images with cloud cover. The model is run in a monthly time step and for each time step all the parameters values, a-priory, conditional and posterior probability are obtained and stored in a log file. The validation process uses landslides that have occurred during the period up to the active time step and checks the records of the probabilities and parameters values for those times steps with the values of the active time step. Each time a landslide has been positive identified new a-priory probabilities are recorded for each parameter. A complete log for the entire model is saved and used for statistical analysis and a NETCDF file is created

  13. Digital elevation models in the marine domain: investigating the offshore tsunami hazard from submarine landslides

    NASA Astrophysics Data System (ADS)

    Tappin, David R.

    2015-04-01

    the resolution necessary to identify the hazard from landslides, particularly along convergent margins where this hazard is the greatest. Multibeam mapping of the deep seabed requires low frequency sound sources that, because of their corresponding low resolution, cannot produce the detail required to identify the finest scale features. In addition, outside of most countries, there are not the repeat surveys that allow seabed changes to be identified. Perhaps only japan has this data. In the near future as research budgets shrink and ship time becomes ever expensive new strategies will have to be used to make best use of the vessels available. Remote AUV technology is almost certainly the answer, and should be increasingly utilised to map the seabed while the mother ship is better used to carry out other duties, such as sampling or seismic data acquisition. This will have the advantage in the deep ocean of acquiring higher resolution data from high frequency multibeams. This talk presents on a number of projects that show the evolution of the use of MBES in mapping submarine landslides since the PNG tsunami. Data from PNG is presented, together with data from Japan, Hawaii and the NE Atlantic. New multibeam acquisition methodologies are also discussed.

  14. Characteristics of deep-seated catastrophic landslide in a valley, movement process, and determination of deposition hazard area

    NASA Astrophysics Data System (ADS)

    Lo, Chia-Ming; Weng, Meng-Chia

    2013-04-01

    During extreme rainfall, deep-seated catastrophic landslide is a frequent mishap in main stream and tributaries of Taiwan. Reviewing the histories of Taiwan landslide events, as a large and deep-seated rock/soil mass of simultaneous movements in a valley, it might cause serious disasters. Reviewing the present literatures, there are morphological indications that the potential deep-seated catastrophic landslide can be track and find. Especially, the slate slope is influenced by weathering and gravitation for a long time, it become weak and it may cause the sliding slope creep and folding rock that will become the sliding surface of deep-seated catastrophic landslide. But analysis deep-seated catastrophic landslides for disaster preparedness and response planning are sometimes inadequate due to the complexity of such slopes. Whereas, this study mainly focus on deep-seated catastrophic landslide in valley. The study area has chosen Xiandushan Mountain, the 115.9 k of Suhua highway, and Zhuoshui River which to discuss the characteristics of deep-seated catastrophic landslide in a valley, movement process, and deposition hazard area. Base on the past events of deep-seated catastrophic landslide, the geological investigation, morphological analysis, and remote sensing technology will helpful to induce the geological characteristics and the morphological evolution. Besides, the deep-seated catastrophic landslide events will simplify to set up the physical modeling, its interpret the variation conditions to influence the characteristics, movement process, and deposition hazard area for deep-seated catastrophic landslide. The results of physical modeling were compared with those produced by numerical analysis (Application of discrete element method by PFC3D program) so that the correctness of the numerical simulation could be justified. Subsequently, calibrated numerical methods adopted in the small-scale model were used to simulate the full-scale model. The simulation

  15. A new approach to evaluating landslide hazard in the mountain glacial environment - mass and hypsometry

    NASA Astrophysics Data System (ADS)

    Reid, Madison L.; Evans, Stephen G.

    2016-04-01

    The magnitude and frequency of glacial hazards is central to the discussion of the effect of climate change in the mountain glacial environment and has persisted as a research question since the 1990s. We propose a new approach to evaluating mass flow (including landslides) hazard in the glacier environment conditioned by temporal and elevation changes in glacier-ice loss. Using digital topographic data sets and InSAR techniques we investigate the hypsometry of ice loss in a well-defined glacial environment in the southwest Coast Mountains of SW British Columbia (the Mount Meager Volcanic Complex - MMVC). The volume and elevation of major mass movements that have taken place in the MMVC since the 1930s is established and compared to the volume and hypsometry of glacial ice loss in the same time period. In the analysis, the volumes of ice loss and landslides are converted to units of mass. The elevation of a sequence of large-scale mass movements do not suggest a close correlation with the elevation or temporal sequence of greatest ice loss. Instead, the temporal relationship between the mass of ice loss and mass lost from slopes in landslides (including ice, rock, and debris) is suggestive of a steady state. The same approach is then applied to the Cordillera Blanca (Peruvian Andes) where we show that the greatest mass moved from the glacier system by glacier-related mass flows since the 1930s, corresponded generally to the period of greatest ice loss suggesting a decay-based response to recent glacier ice loss. As in the MMVC, the elevation of mass flow events is not correlated with the estimated hypsometry of glacial ice loss; in both regions the largest landslide in the period investigated occurred from a high mountain peak defining a topographic divide and where ice loss was minimal. It thus appears that mountain glacial environments exhibit different landslide responses to glacier ice loss that may be conditioned by the rate of ice loss and strongly influenced

  16. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy

    NASA Astrophysics Data System (ADS)

    Guzzetti, Fausto; Carrara, Alberto; Cardinali, Mauro; Reichenbach, Paola

    1999-12-01

    In recent years, growing population and expansion of settlements and life-lines over hazardous areas have largely increased the impact of natural disasters both in industrialized and developing countries. Third world countries have difficulty meeting the high costs of controlling natural hazards through major engineering works and rational land-use planning. Industrialized societies are increasingly reluctant to invest money in structural measures that can reduce natural risks. Hence, the new issue is to implement warning systems and land utilization regulations aimed at minimizing the loss of lives and property without investing in long-term, costly projects of ground stabilization. Government and research institutions worldwide have long attempted to assess landslide hazard and risks and to portray its spatial distribution in maps. Several different methods for assessing landslide hazard were proposed or implemented. The reliability of these maps and the criteria behind these hazard evaluations are ill-formalized or poorly documented. Geomorphological information remains largely descriptive and subjective. It is, hence, somewhat unsuitable to engineers, policy-makers or developers when planning land resources and mitigating the effects of geological hazards. In the Umbria and Marche Regions of Central Italy, attempts at testing the proficiency and limitations of multivariate statistical techniques and of different methodologies for dividing the territory into suitable areas for landslide hazard assessment have been completed, or are in progress, at various scales. These experiments showed that, despite the operational and conceptual limitations, landslide hazard assessment may indeed constitute a suitable, cost-effective aid to land-use planning. Within this framework, engineering geomorphology may play a renewed role in assessing areas at high landslide hazard, and helping mitigate the associated risk.

  17. Assessment of Landslide-Tsunami Hazard for the Gulf of Mexico Using a Probabilistic Approach

    NASA Astrophysics Data System (ADS)

    Pampell, A.; Horrillo, J. J.; Parambath, L.; Shigihara, Y.

    2014-12-01

    The devastating consequences of recent tsunami events in Indonesia (2004) and Japan (2011) have prompted a scientific response in assessing tsunami hazard even in regions where an apparent low risk or/and lack of complete historical tsunami record exists. Although a great uncertainty exists regarding the recurrence rate of large-scale tsunami events in the Gulf of Mexico (GOM) due to sparsity of data, geological and historical evidences indicate that the most likely tsunami hazard could come from a submarine landslide triggered by a moderate earthquake. Under these circumstances, the assessment of the tsunami hazard in the region could be better accomplished by means of a probabilistic approach to identify tsunami sources. This study aims to customize for the GOM a probabilistic hazard assessment based on recurrence rates of tsunamigenic submarine mass failures (SMFs). The Monte Carlo Simulation (MCS) technique is employed utilizing matrix correlations for landslide parameters to incorporate the uncertainty related to location/water-depth and landslide dimension based on lognormal/normal distributions obtained from observed data. Along fixed transects over the continental slope of the GOM, slide angle of failure, sediment properties and seismic peak horizontal accelerations (PHA) are determined by publicly available data. These parameter values are used to perform slope stability analyses in randomly generated translational SMFs obtained from the MCS technique. Once the SMF is identified as tsunamigenic for a given PHA recurrence rate, a preliminary tsunami amplitude can be estimated using empirical formulations. Thus, the annual probability of a tsunamigenic SMF is determined by the joint probability of failure with the annual PHA. By using the probabilistic approach, we identified tsunami sources with recurrence rates from few thousands to 10,000 years which produce extreme wave amplitudes for each transect. The most likely extreme tsunamigenic SMF events for a

  18. Landslides

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The slumping of materials in the walls of this impact crater illustrate the continued erosion of the martian surface. Small fans of debris as well as larger landslides are observed throughout the THEMIS image.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 40.9, Longitude 120.5 East (239.5 West). 19 meter/pixel resolution.

  19. Application of a time probabilistic approach to seismic landslide hazard estimates in Iran

    NASA Astrophysics Data System (ADS)

    Rajabi, A. M.; Del Gaudio, V.; Capolongo, D.; Khamehchiyan, M.; Mahdavifar, M. R.

    2009-04-01

    Iran is a country located in a tectonic active belt and is prone to earthquake and related phenomena. In the recent years, several earthquakes caused many fatalities and damages to facilities, e.g. the Manjil (1990), Avaj (2002), Bam (2003) and Firuzabad-e-Kojur (2004) earthquakes. These earthquakes generated many landslides. For instance, catastrophic landslides triggered by the Manjil Earthquake (Ms = 7.7) in 1990 buried the village of Fatalak, killed more than 130 peoples and cut many important road and other lifelines, resulting in major economic disruption. In general, earthquakes in Iran have been concentrated in two major zones with different seismicity characteristics: one is the region of Alborz and Central Iran and the other is the Zagros Orogenic Belt. Understanding where seismically induced landslides are most likely to occur is crucial in reducing property damage and loss of life in future earthquakes. For this purpose a time probabilistic approach for earthquake-induced landslide hazard at regional scale, proposed by Del Gaudio et al. (2003), has been applied to the whole Iranian territory to provide the basis of hazard estimates. This method consists in evaluating the recurrence of seismically induced slope failure conditions inferred from the Newmark's model. First, by adopting Arias Intensity to quantify seismic shaking and using different Arias attenuation relations for Alborz - Central Iran and Zagros regions, well-established methods of seismic hazard assessment, based on the Cornell (1968) method, were employed to obtain the occurrence probabilities for different levels of seismic shaking in a time interval of interest (50 year). Then, following Jibson (1998), empirical formulae specifically developed for Alborz - Central Iran and Zagros, were used to represent, according to the Newmark's model, the relation linking Newmark's displacement Dn to Arias intensity Ia and to slope critical acceleration ac. These formulae were employed to evaluate

  20. An economic and geographic appraisal of a spatial natural hazard risk: a study of landslide mitigation rules

    USGS Publications Warehouse

    Bernknopf, R.L.; Brookshire, D.S.; Campbell, R.H.; Shapiro, C.D.

    1988-01-01

    Efficient mitigation of natural hazards requires a spatial representation of the risk, based upon the geographic distribution of physical parameters and man-related development activities. Through such a representation, the spatial probability of landslides based upon physical science concepts is estimated for Cincinnati, Ohio. Mitigation programs designed to reduce loss from landslide natural hazards are then evaluated. An optimum mitigation rule is suggested that is spatially selective and is determined by objective measurements of hillside slope and properties of the underlying soil. -Authors

  1. Combining SLBL routine with landslide-generated tsunami model for a quick hazard assessment tool

    NASA Astrophysics Data System (ADS)

    Franz, Martin; Rudaz, Benjamin; Jaboyedoff, Michel; Podladchikov, Yury

    2016-04-01

    Regions with steep topography are potentially subject to landslide-induced tsunami, because of the proximity between lakes, rivers, sea shores and potential instabilities. The concentration of the population and infrastructures on the water body shores and downstream valleys could lead to catastrophic consequences. In order to assess comprehensively this phenomenon together with the induced risks, we have developed a tool which allows the construction of the landslide geometry, and which is able to simulate its propagation, the generation and the propagation of the wave and eventually the spread on the shores or the associated downstream flow. The tool is developed in the Matlab© environment, with a graphical user interface (GUI) to select the parameters in a user-friendly manner. The whole process is done in three steps implying different methods. Firstly, the geometry of the sliding mass is constructed using the Sloping Local Base Level (SLBL) concept. Secondly, the propagation of this volume is performed using a model based on viscous flow equations. Finally, the wave generation and its propagation are simulated using the shallow water equations stabilized by the Lax-Friedrichs scheme. The transition between wet and dry bed is performed by the combination of the two latter sets of equations. The intensity map is based on the criterion of flooding in Switzerland provided by the OFEG and results from the multiplication of the velocity and the depth obtained during the simulation. The tool can be used for hazard assessment in the case of well-known landslides, where the SLBL routine can be constrained and checked for realistic construction of the geometrical model. In less-known cases, various failure plane geometries can be automatically built between given range and thus a multi-scenario approach is used. In any case, less-known parameters such as the landslide velocity, its run-out distance, etc. can also be set to vary within given ranges, leading to multi

  2. Earthquake induced landslide hazard: a multidisciplinary field observatory in the Marmara SUPERSITE

    NASA Astrophysics Data System (ADS)

    Bigarré, Pascal

    2014-05-01

    Earthquake-triggered landslides have an increasing disastrous impact in seismic regions due to the fast growing urbanization and infrastructures. Just considering disasters from the last fifteen years, among which the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2011 Tohoku earthquake, these events generated tens of thousands of coseismic landslides. Those resulted in amazing death toll and considerable damages, affecting the regional landscape including its hydrological main features. Despite a strong impetus in research during past decades, knowledge on those geohazards is still fragmentary, while databases of high quality observational data are lacking. These phenomena call for further collaborative researches aiming eventually to enhance preparedness and crisis management. As one of the three SUPERSITE concept FP7 projects dealing with long term high level monitoring of major natural hazards at the European level, the MARSITE project gathers research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region, one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. Besides the seismic threat, landslides in Turkey and in this region constitute an important source of loss. The 1999 Earthquake caused extensive landslides while tsunami effects were observed during the post-event surveys in several places along the coasts of the Izmit bay. The 6th Work Package of MARSITE project gathers 9 research groups to study earthquake-induced landslides focusing on two sub-regional areas of high interest. First, the Cekmece-Avcilar peninsula, located westwards of Istanbul, is a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. Second, the off-shore entrance of the Izmit Gulf, close to the termination of the surface rupture of the 1999 earthquake

  3. Towards a National Hazard Map of Landslides: Juan de Grijalva, Chiapas, and Mitlatongo, Oaxaca, two catastrophic landslides on southeastern of Mexico

    NASA Astrophysics Data System (ADS)

    Dominguez-M, L.; Castañeda, A.; Ramirez, A.; González, A. E.

    2013-05-01

    One of the most catastrophic events, with economical losses and deaths, in Mexico and Latin America, is the landslide event. The Juan de Grijalva landslide, which blocked one of the largest rivers in the Chiapas state of Mexico, on November 4, 2007, is considered one of the greatest that have occurred in the world in the last 100 years (Dominguez, 2008) and it could be the one with the largest economic impact in the history of Mexico. This landslide occurred four days after a period of very heavy rains that caused, in the peak of the emergency, flooding in almost 62% of the area of the state of Tabasco (CENAPRED, 2009) and is also one of the most serious disasters that were faced by the Mexican government in the past 10 years. The Juan de Grijalva landslide mobilized the entire government apparatus and required an investment of just over 0.1 billions of US Dollars (CENAPRED, 2009) for the rehabilitation of the river runway and additional works in order to prevent further damages if another landslide occurs in the vicinity. A similar case of interest for Mexican researchers and specialists in earth sciences is the big landslide occurred in the communities of Santa Cruz Mitlatongo, municipality of Magdalena Jaltepec, and Santiago Mitlatongo, municipality of Nochixtlan, both in the state of Oaxaca (Dominguez, 2011). This landslide has dimensions of just over 2,500 m long and 900 m wide, and it remains active from September 2011. Since then, the landslide has moved just over 230 m in length and has destroyed about 850 houses. Given the geological and geotechnical characteristics of these landslides and the economic and social impact caused, the National Center for Disaster Prevention (CENAPRED) has initiated a research project in order to learn the main factors (constraints and triggers) that influenced both landslides. In relation with the National Hazard Landslide Map, developed by CENAPRED, these events are an important task of the National Inventory of Landslides

  4. Debris Flow Vulnerability Assessment in Urban Area Associated with Landslide Hazard Map : Application to Busan, Korea

    NASA Astrophysics Data System (ADS)

    Okjeong, Lee; Yoonkyung, Park; Mookwang, Sung; Sangdan, Kim

    2016-04-01

    In this presentation, an urban debris flow disaster vulnerability assessment methodology is suggested with major focus on urban social and economic aspect. The proposed methodology is developed based on the landslide hazard maps that Korean Forest Service has utilized to identify landslide source areas. Frist, debris flows are propagated to urban areas from such source areas by Flow-R model, and then urban vulnerability is evaluated by two categories; physical and socio-economic aspect. The physical vulnerability is associated to buildings that can be broken down by a landslide event directly. This study considers two popular building structure types, reinforced concrete frame and non-reinforced concretes frame, to evaluate the physically-based vulnerability. The socio-economic vulnerability is measured as a function of the resistant levels of the exposed people, the intensity and magnitude of indirect or intangible losses, and preparedness level of the local government. An indicator-based model is established to evaluate the life and indirect loss under urban debris flow disasters as well as the resilience ability against disasters. To illuminate the validity of the suggested methodology, physical and socio-economic vulnerability levels are investigated for Daejeon, Korea using the proposed approach. The results reveal that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions. Key words: Debris flow disasters, Physical vulnerability, Socio-economic Vulnerability, Urban Acknowledgement This research was supported by a grant(13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement(KAIA).

  5. Evaluation of tsunami hazard associated to the Assi submarine landslide along the Ionian Calabrian margin, Italy

    NASA Astrophysics Data System (ADS)

    Zaniboni, F.; Tinti, S.; Pagnoni, G.; Ceramicola, S.; Planinsek, P.; Marson, I.

    2012-04-01

    Continental margins are frequently prone to submarine sliding, which constitutes a severe hazard when the slides occur close to the coast and move in shallow water, since they might generate destructive waves. In the Mediterranean Sea, especially, the potential sources of landslide-induced tsunamis are often located critically close to coastal communities, and the knowledge of how the event may evolve together with awareness of the associated risk are key factors for civil protection issues. A series of recent geophysical surveys carried out by OGS in the framework of The MAGIC (Marine Geohazards along the Italian Coasts) project, brought relevant contribution to the imaging and functioning of submarine landslides. Along the tectonically active Ionian Calabrian Margin (ICM) a multiple failure event has been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina: headwall scars, mobilized sediments along the scour, stacked deposits at and near the seabed, at the foot of the slope have been identified. The data allowed to estimate the volume of mobilized material and to reconstruct the failure dynamics. One of the most susceptible areas along the ICM is located in the southern part, around the coastal village of Riace Marina in the province of Reggio Calabria. The coastal area adjacent to Riace Marina is not a very urbanized settlement, however becomes intensely crowded in the tourist season. The evidence of the occurrence of such an extensive failure event so close to the coast, motivated us to assess the potential tsunamigenic hazard associated to the Assi submarine landslide event in this area. A number of scenarios were considered starting from a more conservative scenario (i.e. a sequence of successive failures) to the most critical case (i.e. a unique big event mobilizing all the sediments at once). In this work we present the results concerning the worst-case scenario, that is we assume that a single big landslide event occurred

  6. Landslides hazard mapping integrating remote sensing and geo-morphological data in the Sorrentina Peninsula coastal areas

    NASA Astrophysics Data System (ADS)

    spinetti, claudia; bisson, marina; tolomei, cristiano; colini, laura; galvani, alessandro; moro, marco; saroli, michele; sepe, vincenzo

    2016-04-01

    The densely inhabited Campania region (Southern Italy) is affected by numerous and dangerous landslides. In particular, the coastal area of Sorrentina Peninsula is one of the zones most subjected to two types of landslides: volcanoclastic debris flows and rock fall. The first type occurs during intensive or persistent precipitations and on significant hillslopes where carbonatic bedrock is covered by pyroclastic deposits related to the Somma-Vesuvius and Phlegrean Fields explosive activity. The second type could be triggered by seismic events and occurs in areas where outcropping bedrock with steep slopes (e.g. the cliffs) is subjected to coastal erosion generating cliff instability. In order to improve the landslides hazard zonation in the Sorrentina Peninsula coastal area, we show a multidisciplinary approach to identify the areas more prone to generate such types of landslide. Our approach involves the analyses of ERS (temporal span between 1992-2000), Envisat (2003-2010), and COSMO-SkyMed (2013-2015) SAR data elaborated applying multi-temporal InSAR techniques to obtain the ground displacement maps and the relative displacement time series, integrated by means of GPS data. These maps were used to identify the instability areas and subsequently investigated by field survey, airborne photogeological interpretation and morphometric elaborations derived from airborne Lidar information. In addition, the land cover mapping was obtained using satellite high-medium resolution data. The analysis was performed in a GIS environment allowing to identify the main parameters that influence the slope instability and to obtain the landslide hazard map. finally, the comparison with the landslides historical database provides the different landslides susceptibility degrees classes.

  7. Landslide tsunami hazard in New South Wales, Australia: novel observations from 3D modelling

    NASA Astrophysics Data System (ADS)

    Power, Hannah; Clarke, Samantha; Hubble, Tom

    2015-04-01

    This paper examines the potential of tsunami inundation generated from two case study sites of submarine mass failures on the New South Wales coast of Australia. Two submarine mass failure events are investigated: the Bulli Slide and the Shovel Slide. Both slides are located approximately 65 km southeast of Sydney and 60 km east of the township of Wollongong. The Bulli Slide (~20 km3) and the Shovel Slide (7.97 km3) correspond to the two largest identified erosional surface submarine landslides scars of the NSW continental margin (Glenn et al. 2008; Clarke 2014) and represent examples of large to very large submarine landslide scars. The Shovel Slide is a moderately thick (80-165 m), moderately wide to wide (4.4 km) slide, and is located in 880 m water depth; and the Bulli Slide is an extremely thick (200-425 m), very wide (8.9 km) slide, and is located in 1500 m water depth. Previous work on the east Australian margin (Clarke et al., 2014) and elsewhere (Harbitz et al., 2013) suggests that submarine landslides similar to the Bulli Slide or the Shovel Slide are volumetrically large enough and occur at shallow enough water depths (400-2500 m) to generate substantial tsunamis that could cause widespread damage on the east Australian coast and threaten coastal communities (Burbidge et al. 2008; Clarke 2014; Talukder and Volker 2014). Currently, the tsunamogenic potential of these two slides has only been investigated using 2D modelling (Clarke 2014) and to date it has been difficult to establish the onshore tsunami surge characteristics for the submarine landslides with certainty. To address this knowledge gap, the forecast inundation as a result of these two mass failure events was investigated using a three-dimensional model (ANUGA) that predicts water flow resulting from natural hazard events such as tsunami (Nielsen et al., 2005). The ANUGA model solves the two-dimensional shallow water wave equations and accurately models the process of wetting and drying thus

  8. Hunza Landslide and Monsoon Flooding in Pakistan Call for International Attention to Transboundary Natural Hazards

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Fink, W.; Furfaro, R.; Leonard, G. J.; Patterson, M.; Glims, Gaphaz

    2010-12-01

    Two major disasters in Pakistan and innumerable lesser disasters throughout the Himalaya-Karakoram region in 2010 highlight geologic events and extreme weather (perhaps climate change) in affecting the well being of whole nations and commerce and relations between nations. Two chief events in Pakistan include the Jan. 4 rockslide into the Hunza River and the subsequent formation of a natural dam lake (Lake Gojal); and the monsoon precipitation-fed flooding across the Indus Basin. The first event severed Pakistan’s major land link with China. The second event devastated Pakistan’s national land-based transportation infrastructure and agriculture and displaced millions of people. In a country plagued by monsoon-driven floods, the lack of catastrophic breakout of Lake Gojal is welcome. Satellite-based monitoring shows the spillway to be eroding more rapidly (but not alarmingly) under August’s monsoon peak flow. Similar events have occurred before in the region and will occur again. These mega-events in Pakistan should be an alert for all of South Asia, as climate change increases or shifts the hazard environment, encroaching development and urbanization increases the vulnerabilities, and as improved capacity for trans-national commerce breaks down the Himalayan barrier and both promotes new opportunities and possible conflicts. 2010's natural mega-calamities in Pakistan and widespread landsliding and flooding elsewhere in South Asia underscores the subcontinent’s need for a thorough field-, remote sensing-, and modeling-based assessment of the disaster potential related to landslides, glacier surges, extreme monsoon precipitation events, natural glacier and landslide dam lake outbursts, and unseasonal snow melting. The Himalayan-Karakoram region is remarkable for its heterogeneous responses to climate change. For instance, some areas are undergoing rapid glacier recession and stagnation; others are undergoing glacier growth. We take the instance of the

  9. High Resolution Satellite Multi-Temporal Interferometry for Landslide and Subsidence Hazard Assessment: An Overview

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Bovenga, F.; Nitti, D. O.; Nutricato, R.; Chiaradia, M.

    2014-12-01

    The new and planned satellite missions can not only provide global capacity for research-oriented and practical applications such as mapping, characterizing and monitoring of areas affected by slope and subsidence hazards, but also offer a possibility to push the research frontier and prompt innovative detailed-scale studies on ground movement dynamics and processes. Among a number of emerging space-based remote sensing techniques, synthetic aperture radar (SAR), multi-temporal interferometry (MTI) seems the most promising for important innovation in landslide and subsidence hazards assessment and monitoring. MTI is appealing to those concerned with terrain instability hazards because it can provide very precise information on slow displacements of the ground surface over vast areas with limited vegetation cover. Although MTI techniques are considered to have already reached the operational level, it is apparent that in both research and practice we are at present only beginning to benefit from the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g. COSMO-SkyMed, TerraSAR-X). In this overview we illustrate the great potential of high resolution MTI and explain what this technique can deliver in terms of detection and monitoring of slope and subsidence hazards. This is done by considering different areas characterized by a wide range of geomorphic, climatic and vegetation conditions, and presenting selected case study examples of local to regional scale MTI applications from Europe, China and Haiti. We envision that the current approach to assessment of hazard can be transformed by capitalizing more on the presently underexploited advantage of the MTI technique, i.e. the capability to provide regularly spatially-dense quantitative information for large areas currently unaffected by instabilities, but where the terrain geomorphology and geology may indicate potential for future ground failures.

  10. GIS-based landslide hazard evaluation at the regional scale: some critical points in the permanent displacement approach for seismically-induced landslide maps

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna; Parise, Mario

    2013-04-01

    Landslide susceptibility and hazard are commonly developed by means of GIS (Geographic Information Systems) tools. Many products such as DTM (Digital Terrain Models), and geological, morphological and lithological layers (often, to be downloaded for free and integrated within GIS) are nowadays available on the web and ready to be used for urban planning purposes. The multiple sources of public information enable the local authorities to use these products for predicting hazards within urban territories by limited investments on technological infrastructures. On the contrary, the necessary expertise required for conducting pertinent hazard analyses is high, and rarely available at the level of the local authorities. In this respect, taking into account the production of seismically-induced landslide hazard maps at regional scale drawn by GIS tool, these can be performed according to the permanent displacement approach derived by Newmark's sliding block method (Newmark, 1965). Some simplified assumptions are considered for occurrence of a seismic mass movement, listed as follows: (1) the Mohr-Coulomb criterion is used for the plastic displacement of the rigid block; (2) only downward movements are accounted for; (3) a translative sliding mechanism is assumed. Under such conditions, several expressions have been proposed for predicting permanent displacements of slopes during seismic events (Ambresys and Menu, 1988; Luzi and Pergalani 2000; Romeo 2000; Jibson 2007, among the others). These formulations have been provided by researchers for different ranges of seismic magnitudes, and for indexes describing the seismic action, such as peak ground acceleration, peak ground velocity, Arias Intensity, and damage potential. With respect to the resistant properties of the rock units, the critical acceleration is the relevant strength variable in every expressions; it is a function of local slope, groundwater level, unit weight shear resistance of the surficial sediments, and

  11. Simple applicable methods for assessing natural hazards caused by landslides and erosion processes in torrent catchments

    NASA Astrophysics Data System (ADS)

    Tilch, N.; Melzner, S.; Janda, C.; Koçiu, A.

    2009-04-01

    The present study for the "Bucklige Welt- Wechselland" area, a mountainous region of about 1300 km² in the eastern part of Austria, was conducted under the authority of the Austrian Service for Torrent and Avalanche Control (WLV). The ultimate ambition of this study was directed towards the improvement of regional expertise by developing susceptibility maps at catchment scale, which display the disposition towards the occurrence of the mentioned processes and their bed-load-potentials. These results about hazard potential should form the basis for further planning decisions (more detailed investigations, hazard zoning) of governmental authorities responsible for the study region. Past events within the study area have shown, that besides floods, also landslides and fluvial erosion have a significant hazardous potential through their contribution to enormous bed loads and debris flows. As the interaction of dispositional and triggering factors are expected to be very complex, this regional study was carried out within a close interdisciplinary collaboration of three project partners, focusing on the main project modules "Hydrology and Climatic Impacts" (Vienna University of Technology), "Land Use and Pedology" (The Research and Training Centre for Forests, Natural Hazards and Landscape in Innsbruck) and "Geology and Geomorphology" (Geological Survey of Austria). The work was conducted using generally available data (DEM, Geology, Land Use) and field data to a minor extent. The quality and scale of these available data sources restricted the development of methods to simple approaches, which could easily be applied in the future within other areas by regional experts. The developed methodology and outcomes of the module "geology and geomorphology" are introduced on the basis of the derived susceptibility maps showing "dominant processes" and "relative bed- load- potentials".

  12. Subaqueous landslides at the distal basin of Lago Nahuel Huapi (Argentina): Towards a tsunami hazard evaluation in Northern Patagonian lakes

    NASA Astrophysics Data System (ADS)

    Beigt, Débora; Villarosa, Gustavo; Gómez, Eduardo A.; Manzoni, Carolina

    2016-09-01

    The May 22nd, 1960 Valdivia earthquake, Chile (Mw 9.5) triggered a series of subaqueous mass-wasting processes (debris flows and slides) in Lago Nahuel Huapi (Argentina), generating a tsunami-like wave that hit the coasts of San Carlos de Bariloche. Aiming to provide a first preliminary insight into tsunami hazards for the lakeshore communities, in this paper we identify and characterize the subaqueous landslides at the populated distal basin of the lake. Swath bathymetric and seismic profiling surveys were carried out and high-resolution digital elevation models were derived from these data to perform a landslide inventory map. A series of morphometrical parameters (including the landslide area, the volume of displaced materials and the run-out distance, among others) were estimated upon selected events. The results indicated that landslide activity at the distal basin of Lago Nahuel Huapi has been concentrated in the vicinity of Bariloche (massive landslide triggered by the 1960 earthquake) and within steep delta fronts where the slope failures typically initiate at shallow waters (9-11 m depth). The sliding mass frequently travels basinward along a great distance (≥ 1000 m). At the delta fronts, the volume of material removed by landslides can reach ~ 40 × 104 m3, leaving scar areas of up to 13 m thick. The periodic occurrence of rotational-translational mass movements initiating at the upper edge of the delta fronts, with vertical displacements of the mobilized materials reaching ~ 200 m, probably represents a potential tsunami hazard for the nearby populated coasts.

  13. Application of PALSAR-2 Remote Sensing Data for Landslide Hazard Mapping in Kelantan River Basin, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Yearly, several landslides ensued during heavy monsoons rainfall in Kelantan river basin, peninsular Malaysia, which are obviously connected to geological structures and topographical features of the region. In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geological structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulated drainage pattern and metamorphic and Quaternary units. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping.

  14. Landslide triggering-thickness susceptibility, a simple proxy for landslide hazard? A test in the Mili catchment (North-Eastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Lombardo, Luigi; Fubelli, Giandomenico; Amato, Gabriele; Bonasera, Mauro; Mai, Martin

    2016-04-01

    in order to produce an example for a landslide triggering-thickness susceptibility which differently from more common approaches, may performs as a better proxy for more complex landslide hazard assessments.

  15. Hazard analysis of landslides triggered by Typhoon Chata'an on July 2, 2002, in Chuuk State, Federated States of Micronesia

    USGS Publications Warehouse

    Harp, Edwin L.; Reid, Mark E.; Michael, John A.

    2004-01-01

    More than 250 landslides were triggered across the eastern volcanic islands of Chuuk State in the Federated States of Micronesia by torrential rainfall from tropical storm Chata?an on July 2, 2002. Landslides triggered during nearly 20 inches of rainfall in less than 24 hours caused 43 fatalities and the destruction or damage of 231 structures, including homes, schools, community centers, and medical dispensaries. Landslides also buried roads, crops, and water supplies. The landslides ranged in volume from a few cubic meters to more than 1 million cubic meters. Most of the failures began as slumps and transformed into debris flows, some of which traveled several hundred meters across coastal flatlands into populated areas. A landslide-inventory map produced after the storm shows that the island of Tonoas had the largest area affected by landslides, although the islands of Weno, Fefan, Etten, Uman, Siis, Udot, Eot, and Fanapanges also had significant landslides. Based on observations since the storm, we estimate the continuing hazard from landslides triggered by Chata?an to be relatively low. However, tropical storms and typhoons similar to Chata?an frequently develop in Micronesia and are likely to affect the islands of Chuuk in the future. To assess the landslide hazard from future tropical storms, we produced a hazard map that identifies landslide-source areas of high, moderate, and low hazard. This map can be used to identify relatively safe areas for relocating structures or establishing areas where people could gather for shelter in relative safety during future typhoons or tropical storms similar to Chata?an.

  16. Landslide hazard analysis for pipelines: The case of the Simonette river crossing

    SciTech Connect

    Grivas, D.A.; Schultz, B.C.; O`Neil, G.; Rizkalla, M.; McGuffey, V.C.

    1995-12-31

    The overall objective of this study is to develop a probabilistic methodology to analyze landslide hazards and their effects on the safety of buried pipelines. The methodology incorporates a range of models that can accommodate differences in the ground movement modes and the amount and type of information available at various site locations. Two movement modes are considered, namely (a) instantaneous (catastrophic) slides, and (b) gradual ground movement which may result in cumulative displacements over the pipeline design life (30--40 years) that are in excess of allowable values. Probabilistic analysis is applied in each case to address the uncertainties associated with important factors that control slope stability. Availability of information ranges from relatively well studied, instrumented installations to cases where data is limited to what can be derived from topographic and geologic maps. The methodology distinguishes between procedures applied where there is little information and those that can be used when relatively extensive data is available. important aspects of the methodology are illustrated in a case study involving a pipeline located in Northern Alberta, Canada, in the Simonette river valley.

  17. A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area

    USGS Publications Warehouse

    Jibson, Randall W.; Harp, Edwin L.; Michael, John A.

    1998-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24,000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10-m grid spacing in the ARC/INFO GIS platform. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.

  18. Integration of landslide hazard maps into probabilistic risk assessment in context of global changes: an alpine test site

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Desramaut, Nicolas; Baills, Audrey; Fontaine, Mélanie; Hohmann, Audrey; Grandjean, Gilles; Sedan, Olivier; Puissant, Anne; Malet, Jean-Philippe

    2013-04-01

    The aim of this work is to develop a methodology to integrate global changes scenarios into quantitative risk assessment. This paper describes a methodology to take into account effects of changing climate on landslides activity and impacts of social changes on exposure to provide a complete evaluation of risk for given scenarios. This approach is applied for demonstration purpose on a southern alpine test site. Mechanical approaches represent a solution to quantify landslide susceptibility and to model hazard on unprecedented conditions, as it is likely to occur. However, as the quantity and the quality of data are generally very heterogeneous at a regional scale, it is necessary to take into account their uncertainty in the analysis. In this perspective, a new hazard modeling method has been developed and integrated in a GIS-based software called ALICE®. To go further, climate change scenarios have been computed for the alpine test site (Barcelonnette area, France) using the REMO-COSMO-LM. From the precipitation time series, a daily index of the soil water content has been computed thanks to a reservoir-based model (GARDENIA®). Hence, the program classifies hazard zones depending on the several spatial data (lithological, DEM, etc…) and different hydrological contexts varying in time. The probabilistically initiated landslides are then propagated thank to a semi-empirical model (BORA) to provide real hazard maps. Different scenarios of land-use have been developed using an automate cellular model to cover the probable range of development of potential elements at risks in the future. These exposure maps are then combined with the aforementioned hazard maps to obtain risk maps for the different periods and the different land-use development scenarios. Potential evolutions of landslide risks are then evaluated, with a general increase in the 7 communes. This methodology also allows the analysis of the contributions of both considered global changes (climate and

  19. Susceptibility mapping and estimation of rainfall threshold using space based input for assessment of landslide hazard in Guwahati city in North East India

    NASA Astrophysics Data System (ADS)

    Bhusan, K.; Kundu, S. S.; Goswami, K.; Sudhakar, S.

    2014-11-01

    Slopes are the most common landforms in North Eastern Region (NER) of India and because of its relatively immature topography, active tectonics, and intense rainfall activities; the region is susceptible to landslide incidences. The scenario is further aggravated due to unscientific human activities leading to destabilization of slopes. Guwahati, the capital city of Assam also experiences similar hazardous situation especially during monsoon season thus demanding a systematic study towards landslide risk reduction. A systematic assessment of landslide hazard requires understanding of two components, "where" and "when" that landslides may occur. Presently no such system exists for Guwahati city due to lack of landslide inventory data, high resolution thematic maps, DEM, sparse rain gauge network, etc. The present study elucidates the potential of space-based inputs in addressing the problem in absence of field-based observing networks. First, Landslide susceptibility map in 1 : 10,000 scale was derived by integrating geospatial datasets interpreted from high resolution satellite data. Secondly, the rainfall threshold for dynamic triggering of landslide was estimated using rainfall estimates from Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis. The 3B41RT data for 1 hourly rainfall estimates were used to make Intensity-Duration plot. Critical rainfall was estimated for every incidence by analysing cumulative rainfall leading to a landslide for total of 19 incidences and an empirical rainfall intensity-duration threshold for triggering shallow debris slides was developed (Intensity = 5.9 Duration-0.479).

  20. Susceptibility Assessment and Rainfall Thresholding: Application to Landslide Hazard Management in Jamaica.

    NASA Astrophysics Data System (ADS)

    Miller, S.; Harris, N.

    2009-04-01

    The parish of St Thomas in Jamaica has one of the highest densities of landslides on the island, landslides that continue to have negative impact on lives, the local economy, and the built and natural environment. The occurrence of these landslides is a result of a combination of steep slopes, faulting, heavy rainfall and highly weathered geology (volcanics, sandstones, limestones and sandstone/shale series) that occur within this area. The problem of slope instability in the parish is a recurring one particularly during the hurricane season (June- November) when they are triggered by heavy rainfall associated with hurricanes. Two methods, rainfall thresholding and landslide susceptibility assessment, that may be used in the management of slope instability in landslide prone areas of the parish, were explored in this research. Both methods have yielded good results which in combination may be used as management tool to better determine when and where landslides are likely to occur and in the process mitigate the effects of landslides in the area. Keywords: Landslide; susceptibility; GIS; logistic regression; Jamaica; rainfall thresholding.

  1. Assessing internal biophysical vulnerability to landslide hazards - a nested catchment approach: Xiangxi Watershed / Three Gorges Reservoir

    NASA Astrophysics Data System (ADS)

    Wiegand, Matthias; Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz

    2010-05-01

    The Three Gorges dam construction was completed in 2006. Besides the international media, also the responsible authorities and various scholarly communities pay close attention to potential and actual environmental impacts related to the impoundment and development activities. The geo-environment within the Three Gorges region is highly conducive to landslides. Consequently, a scientific monitoring and risk mitigation system was established and is still under development. Risk analysis with regard to gravity driven mass movements is highly complex and strongly site specific - several aspects hamper a universal methodology applicable for landslide risk and site assessment. The interdisciplinary Sino-German Yangtze-Project Research co-operation aims, among others, to support the sustainable cultivation of the newly developed ecosystems within the Yangtze catchments. Land use change and increasing population growth are causing severe pressure on the scarce land resources. Landslides are acknowledged as important threat, hence vulnerability of certain landscape components have to be identified, quantified and monitored. A nested quantitative approach for vulnerability analysis is developed. The applied risk and vulnerability model understands risk as the product of hazard and vulnerability. Whereas vulnerability is characterized by: mass movement intensity and susceptibility of the respective element at risk. The watershed of Xiangxi river serves as study area. In general, catchment approaches intent and proved to be a functional geographical unit for successful integrated resources management. Several limitations with regard to data accessibility, availability and accuracy have to be considered due to restrictions of feasible scales. Comprehensive large-scale site investigations are confined to training areas for model calibration and validation. Remote sensing potentials are utilised for land use/ land cover change analysis and localization of selected elements

  2. Local Tsunami Hazard In The Marquesas Islands (french Polynesia) : Numerical Modeling of The 1999 Fatu Hiva Landslide and Tsunami

    NASA Astrophysics Data System (ADS)

    Hébert, H.; Schindelé, F.; Heinrich, P.; Piatanesi, A.; Okal, E. A.

    In French Polynesia, the Marquesas Islands are particularly prone to amplification of tsunamis generated at the Pacific Rim, due to relatively mild submarine slopes and to large open bays not protected by any coral reef. These islands are also threatened by local tsunamis, as shown by the recent 1999 event on Fatu Hiva. On September 13, 1999, Omoa Bay was struck by 2 to 5 m high water waves: several buildings, among them the school, were flooded and destroyed but no lives were lost. Observations gath- ered during a post-event survey revealed the recent collapse into the sea of a 300x300 m, at least 20-m thick, cliff located 5 km southeast of Omoa. This cliff failure most certainly triggered the tsunami waves since the cliff was reported intact 45 min earlier. We simulate the tsunami generation due to a subaerial landslide, using a finite- difference model assimilating the landslide to a flow of granular material. Numerical modeling shows that a 0.0024-km3 landslide located in the presumed source area ac- counts well for the tsunami waves reported in Omoa Bay. We show that the striking amplification observed in Omoa Bay is related to the trapping of waves due to the shallow submarine shelf surrounding the island. These results stress the local tsunami hazard that should be taken into account in the natural hazard assessment and mitiga- tion of the area, where historical cliff collapses can be observed and should happen again.

  3. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests.

    PubMed

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-08-01

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth. PMID:26258785

  4. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests

    PubMed Central

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-01-01

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth. PMID:26258785

  5. Geospatial Approach on Landslide Hazard Zonation Mapping Using Multicriteria Decision Analysis: A Study on Coonoor and Ooty, Part of Kallar Watershed, The Nilgiris, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Rahamana, S. Abdul; Aruchamy, S.; Jegankumar, R.

    2014-12-01

    Landslides are one of the critical natural phenomena that frequently lead to serious problems in hilly area, resulting to loss of human life and property, as well as causing severe damage to natural resources. The local geology with high degree of slope coupled with high intensity of rainfall along with unplanned human activities of the study area causes many landslides in this region. The present study area is more attracted by tourist throughout the year, so this area must be considered for preventive measures. Geospatial based Multicriteria decision analysis (MCDA) technique is increasingly used for landslide vulnerability and hazard zonation mapping. It enables the integration of different data layers with different levels of uncertainty. In this present study, it is used analytic hierarchy process (AHP) method to prepare landslide hazard zones of the Coonoor and Ooty, part of Kallar watershed, The Nilgiris, Tamil Nadu. The study was carried out using remote sensing data, field surveys and geographic information system (GIS) tools. The ten factors that influence landslide occurrence, such as elevation, slope aspect, slope angle, drainage density, lineament density, soil, precipitation, land use/land cover (LULC), distance from road and NDVI were considered. These factors layers were extracted from the various related spatial data's. These factors were evaluated, and then, the individual factor weight and class weight were assigned to each of the related factors. The Landslide Hazard Zone Index (LHZI) was calculated using Multicriteria decision analysis (MCDA) the technique based on the assigned weight and the rating is given by the Analytical Hierarchy Process (AHP) method. The final cumulative map of the study area was categorized into four hazard zones and classified as zone I to IV. There are 3.56% of the area comes under the hazard zone IV fallowed by 48.19% of the area comes under zone III, 43.63 % of the area in zone II and 4.61% of the area comes hazard

  6. Use of High Resolution LiDAR imagery for landslide identification and hazard assessment, State Highway 6, Haast Pass, New Zealand

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Zimmer, Valerie; Bell, David

    2015-04-01

    This study has assessed landslide hazards associated with steep and densely vegetated bedrock slopes adjacent to State Highway 6 through the Southern Alps of New Zealand. The Haast Pass serves as one of only three routes across the Southern Alps, and is a lifeline to the southern West Coast of the South Island with a 1,000km detour required through the nearest alternative pass. Over the last 50 years the highway has been subjected to numerous landslide events that have resulted in lengthy road closures, and the death of two tourists in September 2013. To date no study has been undertaken to identify and evaluate the landslide hazards for the entire Haast Pass, with previous work focusing on post-failure monitoring or investigation of individual landslides. This study identified the distribution and extent of regolith deposits on the schist slopes, and the location and sizes of dormant and active landslides potentially impacting the highway. Until the advent of LiDAR technology it had not been possible to achieve such an evaluation because dense vegetation and very steep topography prevented traditional methods of investigation (mapping; trenching; drilling; geophysics) from being used over a large part of the area. LiDAR technology has provided the tools with which to evaluate large areas of the slopes above the highway quickly and with great accuracy. A very high resolution LiDAR survey was undertaken with a flight line overlap of 70%, resulting in six points per square metre in the raw point cloud and a post-processing point spacing of half a metre. The point cloud was transformed into a digital terrain model, and the surface interpreted using texture and morphology to identify slope materials and landslides. Analysis of the LiDAR DTM revealed that the slopes above the highway consist of variable thicknesses of regolith sourced from landsliding events, as well as large areas of bare bedrock that have not been subjected to landslides and that pose minimal hazard

  7. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    USGS Publications Warehouse

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  8. Mining Input Data for Multivariate Probabilistic Modeling of Rainfall-Induced Landslide Hazard in the Lake ATITLÁN Watershed in Guatemala

    NASA Astrophysics Data System (ADS)

    Cobin, P. F.; Oommen, T.; Gierke, J. S.

    2013-12-01

    The Lake Atitlán watershed is home to approximately 200,000 people and is located in the western highlands of Guatemala. Steep slopes, highly susceptible to landslides during the rainy season, characterize the region. Typically these landslides occur during high-intensity precipitation events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. Different datasets of landslide and non-landslide points across the watershed were used to compare model success at a small scale and regional scale. This study used data from multiple attributes: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The open source software Weka was used for the data mining. Several attribute selection methods were applied to the data to predetermine the potential landslide causative influence. Different multivariate algorithms were then evaluated for their ability to predict landslide occurrence. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The attribute combinations of the most successful models were compared to the attribute evaluator results. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points for the regions selected in the watershed. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.

  9. Re-evaluation of Tsunami Hazard in Marmara Sea Generated from the Combined Earthquake and Landslide Sources Focusing on Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Latcharote, P.; Suppasri, A.; Imamura, F.; Aytore, B.; Yalciner, A. C.

    2015-12-01

    This study aimed to re-evaluate tsunami hazard in Marmara Sea from earthquake and submarine landslide focusing on the coastal area of Istanbul. For the fault-generated tsunami, the seismic rupture can be propagated along the North Anatolian Fault (NAF) which have evidenced historical tsunami in Marmara Sea. Based on previous research studies, future scenarios are expected to generate tsunami as well as submarine landslide could be triggered by seismic motion which consider fault-generated tsunami and landslide-generated tsunami individually. However, this study want to simulate tsunami propagation generated from the combining earthquake-landslide sources. Therefore, the evaluation of tsunami hazard was discussed in both of the individual case and the combining case of earthquake and submarine landslide through numerical modelling of tsunami wave with mesh size 90 m of bathymetry data. A two-layer numerical model was employed to simulate the landslide-generated tsunami by modeling the interaction between tsunami and submarine landslide with different volume of initial slide. First, tsunami propagation was generated from earthquake sources of Rupture E in the eastern basin and Rupture W in the western basin of Marmara Sea with fault slip 5 m. For Rupture E and Rupture W, maximum tsunami height at shore shoreline could reach 3.4 m and 2.8 m respectively along the coastal area of Istanbul. For combining Rupture E and Rupture W, maximum tsunami height could reach 3.8 m which was a little higher than that of Rupture E. Then, tsunami propagation was generated from landslide sources in the southern neighborhood of Istanbul near Rupture E. For landslide volume of 0.15 m3, 0.6 m3, and 1.5 m3, maximum tsunami height at shore shoreline could reach 3.7 m, 6.9 m and 8.7 m respectively along the coastal area of Istanbul. It was shown that maximum tsunami height from landslide sources was higher than that from earthquake sources depending on the volume of initial slide

  10. Hazards analysis and prediction from remote sensing and GIS using spatial data mining and knowledge discovery: a case study for landslide hazard zonation

    NASA Astrophysics Data System (ADS)

    Hsu, Pai-Hui; Su, Wen-Ray; Chang, Chy-Chang

    2011-11-01

    Due to the particular geographical location and geological condition, Taiwan suffers from many natural hazards which often cause series property damages and life losses. To reduce the damages and casualty, an effective real-time system for hazard prediction and mitigation is necessary. In this study, a case study for Landslide Hazard Zonation (LHZ) is tested in accordance with Spatial Data Mining and Knowledge Discovery (SDMKD) from database. Many different kinds of geospatial data, such as the terrain elevation, land cover types, the distance to roads and rivers, geology maps, NDVI, and monitoring rainfall data etc., are collected into the database for SDMKD. In order to guarantee the data quality, the spatial data cleaning is essential to remove the noises, errors, outliers, and inconsistency hiding in the input spatial data sets. In this paper, the Kriging interpolation is used to calibrate the QPESUMS rainfall data to the rainfall observations from rain gauge stations to remove the data inconsistency. After the data cleaning, the artificial neural networks (ANNs) is applied to generate the LHZ map throughout the test area. The experiment results show that the accuracy of LHZ is about 92.3% with the ANNs analysis, and the landslides induced by heavy-rainfall can be mapped efficiently from remotely sensed images and geospatial data using SDMKD technologies.

  11. Logistic Regression for Seismically Induced Landslide Predictions: Using Uniform Hazard and Geophysical Layers as Predictor Variables

    NASA Astrophysics Data System (ADS)

    Nowicki, M. A.; Hearne, M.; Thompson, E.; Wald, D. J.

    2012-12-01

    Seismically induced landslides present a costly and often fatal threats in many mountainous regions. Substantial effort has been invested to understand where seismically induced landslides may occur in the future. Both slope-stability methods and, more recently, statistical approaches to the problem are described throughout the literature. Though some regional efforts have succeeded, no uniformly agreed-upon method is available for predicting the likelihood and spatial extent of seismically induced landslides. For use in the U. S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, we would like to routinely make such estimates, in near-real time, around the globe. Here we use the recently produced USGS ShakeMap Atlas of historic earthquakes to develop an empirical landslide probability model. We focus on recent events, yet include any digitally-mapped landslide inventories for which well-constrained ShakeMaps are also available. We combine these uniform estimates of the input shaking (e.g., peak acceleration and velocity) with broadly available susceptibility proxies, such as topographic slope and surface geology. The resulting database is used to build a predictive model of the probability of landslide occurrence with logistic regression. The landslide database includes observations from the Northridge, California (1994); Wenchuan, China (2008); ChiChi, Taiwan (1999); and Chuetsu, Japan (2004) earthquakes; we also provide ShakeMaps for moderate-sized events without landslide for proper model testing and training. The performance of the regression model is assessed with both statistical goodness-of-fit metrics and a qualitative review of whether or not the model is able to capture the spatial extent of landslides for each event. Part of our goal is to determine which variables can be employed based on globally-available data or proxies, and whether or not modeling results from one region are transferrable to

  12. An overview of a GIS method for mapping landslides and assessing landslide hazards at Río El Estado watershed, on the SW flank of Pico de Orizaba Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Legorreta Paulin, G.; Bursik, M. I.; Contreras, T.; Polenz, M.; Ramírez Herrera, M.; Paredes Mejía, L.; Arana Salinas, L.

    2012-12-01

    This poster provides an overview of the on-going research project (Grant SEP-CONACYT no 167495) from the Institute of Geography at the National Autonomous University of Mexico (UNAM) that seeks to conduct a multi-temporal landslide inventory, produce a landslide susceptibility map, and estimate sediment production by using Geographic Information Systems (GIS). The Río El Estado watershed on the southwestern flank of Pico de Orizaba volcano, the highest mountain in Mexico, is selected as a study area. The catchment covers 5.2 km2 with elevations ranging from 2676.79 to 4248.2 m a.s.l. and hillslopes between 0° and 56°. The stream system of Río El Estado catchment erodes Tertiary and Quaternary lavas, pyroclastic flows, and fall deposits. The geologic and geomorphologic factors in combination with high seasonal precipitation, high degree of weathering, and steep slopes predispose the study area to landslides. The methodology encompasses three main stages of analysis to assess landslide hazards: Stage 1 builds a historic landslide inventory. In the study area, an inventory of more than 170 landslides is created from multi-temporal aerial-photo-interpretation and local field surveys to assess landslide distribution. All landslides were digitized into a geographic information system (GIS), and a spatial geo-database of landslides was constructed from standardized GIS datasets. Stage 2 Calculates the susceptibility for the watershed. During this stage, Multiple Logistic Regression and SINMAP) will be evaluated to select the one that provides scientific accuracy, technical accessibility, and applicability. Stage 3 Estimate the potential total material delivered to the main stream drainage channel by all landslides in the catchment. Detailed geometric measurements of individual landslides visited during the field work will be carried out to obtain the landslide area and volume. These measurements revealed an empirical relationship between area and volume that took the

  13. Compounding Hazards Facing Nepalese Villages due to Glacial Lake Thulagi, Extreme Monsoons, and Landslides

    NASA Astrophysics Data System (ADS)

    Leonard, Gregory; Kargel, Jeffrey; Regmi, Dhananjay

    2014-05-01

    Thulagi Tsho is listed by ICIMOD as among the most hazardous glacial lakes in Nepal. The listing is warranted by the physiography and downstream vulnerabilities. Tal Village—along a major trekking route—and a hydroelectric dam and reservoir are notably at risk due to the potential for a glacier lake outburst flood (GLOF), an extreme summer monsoon, extreme spring snowmelt, landslides, and rockfalls. Tal is downstream from Thulagi Lake just a couple meters above river level, and ordinary monsoons already cause an approach toward flood conditions, according to residents. A high flood stage due to an extreme monsoon or unusually rapid springtime melting of a thick winter snowpack could be catastrophic. Two significant mass movements occurred recently in Tal, one having buried some structures in the village in June 2012. In a favorable note, satellite image analysis shows that Thulagi Lake has slowed its elongation in the last couple years. Furthermore, any tsunami or other flood surge would have to traverse and erode a wide end moraine in order to generate a GLOF. On the other hand, remote sensing and field observations show that wasting of Thulagi Glacier has debuttressed the northern lateral moraine, which is slipping toward the growing lake and the thinning/retreating glacier. The landslip itself is not necessarily a bad thing: it is causing a loss of gravitational potential energy of the lateral moraine, and if that process continues gradually, it will result in diminished instability. However, the debuttressing and moraine slip signifies that the moraines are unstable. Will a rapid mass movement dump into the lake? Triggers could include seismicity, extreme rainfall, or a small landslip. The risk of a serious GLOF exceeds that of Imja Lake due to Thulagi Lake's large hydrographic head and the shape of its downstream end, which could funnel and amplify a potential tsunami generated by a large mass movement into the lake. A moraine collapse into the lake would

  14. Delineating and Defining the Boundaries of an Active Landslide in the Rainforest of Puerto Rico Using a Combination of Airborne and Terrestrial LIDAR Data

    NASA Astrophysics Data System (ADS)

    Wang, G.; Joyce, J.; Phillips, D. A.; Shrestha, R. L.; Carter, W. E.

    2013-05-01

    Light detection and ranging (LIDAR) is a remote sensing technique that uses light, often using pulses from a laser to measure the distance to a target. Both terrestrial and airborne based LIDAR techniques have been frequently used to map landslides. Airborne LIDAR has the advantage of identifying large scarps of landslides covered by tree canopies and is widely applied in identifying historical and current active landslides hidden in forested areas. However, because landslides naturally have relatively small vertical surface deformation in the foot area, it is practically difficult to identify the margins of landslide foot area with the limited spatial resolution (few decimeters) of airborne LIDAR. Alternatively, ground-based LIDAR can achieve resolution of several centimeters and also has the advantages of being portable, repeatable, and less costly. Thus ground based LIDAR can be used to identify small deformations in landslide foot areas by differencing repeated Terrestrial Laser Scanning (TLS) surveys. This study demonstrates a method of identifying the superficial boundaries as well as the bottom boundary (sliding plane) of an active landslide in National Rainforest Park, Puerto Rico, USA, using the combination of ground based and airborne LIDAR data. The method of combining terrestrial and airborne LIDAR data can be used to study landslides in other regions. This study indicates that intensity and density of laser point clouds are remarkably useful in identifying superficial boundaries of landslides.

  15. Hazard assessment of the Tidal Inlet landslide and potential subsequent tsunami, Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Wieczorek, G.F.; Geist, E.L.; Motyka, R.J.; Jakob, M.

    2007-01-01

    An unstable rock slump, estimated at 5 to 10????????10 6 m3, lies perched above the northern shore of Tidal Inlet in Glacier Bay National Park, Alaska. This landslide mass has the potential to rapidly move into Tidal Inlet and generate large, long-period-impulse tsunami waves. Field and photographic examination revealed that the landslide moved between 1892 and 1919 after the retreat of the Little Ice Age glaciers from Tidal Inlet in 1890. Global positioning system measurements over a 2-year period show that the perched mass is presently moving at 3-4 cm annually indicating the landslide remains unstable. Numerical simulations of landslide-generated waves suggest that in the western arm of Glacier Bay, wave amplitudes would be greatest near the mouth of Tidal Inlet and slightly decrease with water depth according to Green's law. As a function of time, wave amplitude would be greatest within approximately 40 min of the landslide entering water, with significant wave activity continuing for potentially several hours. ?? 2007 Springer-Verlag.

  16. Shallow Landslide Assessment using SINMAP in Laguna, Philippines

    NASA Astrophysics Data System (ADS)

    Bonus, A. A. B.; Rabonza, M. L.; Alemania, M. K. B.; Alejandrino, I. K.; Ybanez, R. L.; Lagmay, A. M. A.

    2014-12-01

    Due to the tectonic environment and tropical climate in the Philippines, both rain-induced and seismic-induced landslides are common in the country. Numerous hazard mapping activities are regularly conducted by both academic and government institutions using various tools and software. One such software is Stability Index Mapping (SINMAP), a terrain stability mapping tool applied to shallow translational landslide phenomena controlled by shallow groundwater flow convergence. SINMAP modelling combines a slope stability model with a steady-state hydrology model to delineate areas prone to shallow landslides. DOST- Project NOAH, one of the hazard-mapping initiatives of the government, aims to map all landslide hazard in the Philippines using both computer models as well as validating ground data. Laguna, located in the island of Luzon, is one such area where mapping and modelling is conducted. SINMAP modelling of the Laguna area was run with a 5-meter Interferomteric Synthetic Aperture Radar (IFSAR) derived digital terrain model (DTM). Topographic, soil-strength and physical hydrologic parameters, which include cohesion, angle of friction, bulk density and hydraulic conductivity, were assigned to each pixel of a given DTM grid to compute for the corresponding factor of safety. The landslide hazard map generated using SINMAP shows 2% of the total land area is highly susceptible in Santa Mara, Famy, Siniloan, Pangil, Pakil and Los Baἦos Laguna and 10% is moderately susceptible in the eastern parts of Laguna. The data derived from the model is consistent with both ground validation surveys as well as landslide inventories derived from high resolution satellite imagery from 2003 to 2013. With these combined computer and on-the-ground data, it is useful in identifying no-build zone areas and in monitoring activities of the local government units and other agencies concerned. This provides a reasonable delineation of hazard zones for shallow landslide susceptible areas of

  17. The numerical-statistical approach for hazard prediction of landslides and its application in Ukraine

    NASA Astrophysics Data System (ADS)

    Trofimchuk, O.; Kaliukh, Iu.

    2012-04-01

    More than 90% of the territory of Ukraine has complex ground conditions. Unpredictable changes of natural geological and man-made factors governing ground conditions, may lead to dangerous deformation processes resulting in accidents and disasters. Among them, landslides are the first by the amount of the inflicted damage in Ukraine and the second only to earthquakes in the world. Totally about 23 000 landslides were identified in the territory of Ukraine. The standard deterministic procedure of assessment of the slope stability, especially with the lack of reference engineering geological data, results in obtaining estimated values of stability coefficients differing from the real ones in many cases. Application of a probabilistic approach will allow to take into account the changeable properties of soils and to determine danger and risk of landslide dislocations. The matter of choice of landslide protection measures is directly connected with a risk: expensively but reliably or cheaper but with a great probability of accidents. The risk determines the consequences either economic, social or others, of a potential landslide dislocation on the slope both during construction of a retaining structure on it and in the process of its further maintenance. The quintessence of risk determination consists in the following: study and extrapolation of the past events for each specific occurrence. Expected conclusions and probable damages as a result of a calculated and accepted risk can be determined only with a certain level of uncertainty. Considering this fact improvement of the accuracy of numerical and analytical estimates when calculating the risk magnitude makes it possible to reduce the uncertainty. Calculations of the Chernivtsi shear landslides (Ukraine) were made with an application of Plaxis software and due account of a risk of its displacement was performed for the typical distribution diagram of the landslide-prone slope. The calculations showed that seismic

  18. Integrated multi-parameters Probabilistic Seismic Landslide Hazard Analysis (PSLHA): the case study of Ischia island, Italy

    NASA Astrophysics Data System (ADS)

    Caccavale, Mauro; Matano, Fabio; Sacchi, Marco; Mazzola, Salvatore; Somma, Renato; Troise, Claudia; De Natale, Giuseppe

    2014-05-01

    The Ischia island is a large, complex, partly submerged, active volcanic field located about 20 km east to the Campi Flegrei, a major active volcano-tectonic area near Naples. The island is morphologically characterized in its central part by the resurgent block of Mt. Epomeo, controlled by NW-SE and NE-SW trending fault systems, by mountain stream basin with high relief energy and by a heterogeneous coastline with alternation of beach and tuff/lava cliffs in a continuous reshape due to the weather and sea erosion. The volcano-tectonic process is a main factor for slope stability, as it produces seismic activity and generated steep slopes in volcanic deposits (lava, tuff, pumice and ash layers) characterized by variable strength. In the Campi Flegrei and surrounding areas the possible occurrence of a moderate/large seismic event represents a serious threat for the inhabitants, for the infrastructures as well as for the environment. The most relevant seismic sources for Ischia are represented by the Campi Flegrei caldera and a 5 km long fault located below the island north coast. However those sources are difficult to constrain. The first one due to the on-shore and off-shore extension not yet completely defined. The second characterized only by few large historical events is difficult to parameterize in the framework of probabilistic hazard approach. The high population density, the presence of many infrastructures and the more relevant archaeological sites associated with the natural and artistic values, makes this area a strategic natural laboratory to develop new methodologies. Moreover Ischia represents the only sector, in the Campi Flegrei area, with documented historical landslides originated by earthquake, allowing for the possibility of testing the adequacy and stability of the method. In the framework of the Italian project MON.I.C.A (infrastructural coastlines monitoring) an innovative and dedicated probabilistic methodology has been applied to identify

  19. Landslides: Geomorphology and Sea Cliff Hazard Potential, Santa Barbara - Isla Vista, California J.F. Klath and E.A. Keller

    NASA Astrophysics Data System (ADS)

    Klath, J. F.; Keller, E. A.

    2015-12-01

    Coastal areas are often characterized by high population densities in an ever changing, dynamic environment. The world's coasts are often dominated by steeply sloping sea cliffs, the morphology of which reflects rock type, wave erosion, and surface erosion, as well as human activities such changing vegetation, urban runoff, and construction of coastal defenses. The Santa Barbara and Goleta area, with over 17 km of sea cliffs and beaches, extends from Santa Barbara Point west to the hamlet of Isla Vista. A deeper understanding of the local geology and the physical processes generating slope failure and, thus, landward cliff retreat is important for general public safety, as well as future development and planning. Our research objective includes assessment of landslide hazard potential through investigation of previous landslides and how these events relate to various physical variables and characteristics within the surrounding bedrock. How does landslide frequency, volume, and type relate to varying local bedrock and structure? Two geologic formations dominate the sea cliffs of the Santa Barbara area: Monterey shale (upper, middle, and lower) and Monterey Sisquoc shale. Geology varies from hard cemented shale and diatomaceous, low specific gravity shale to compaction shale. Variations in landslide characteristics are linked closely to the geology of a specific site that affects how easily rock units are weathered and eroded by wave erosion, naturally occurring oil and water seeps, burnt shale events, and landslide type and frequency on steeply dipped bedding planes/daylighting beds. Naturally occurring features linked to human processes often weaken bedrock and, thus, increase the likelihood of landslides. We categorize landslide frequency, type, and triggers; location of beach access, drainage pipes, and water; and oil and tar seeps in order to develop suggestions to minimize landslide potential. Lastly, using previously published erosion cliff retreat rates and

  20. Analysis of landslide hazard area in Ludian earthquake based on Random Forests

    NASA Astrophysics Data System (ADS)

    Xie, J.-C.; Liu, R.; Li, H.-W.; Lai, Z.-L.

    2015-04-01

    With the development of machine learning theory, more and more algorithms are evaluated for seismic landslides. After the Ludian earthquake, the research team combine with the special geological structure in Ludian area and the seismic filed exploration results, selecting SLOPE(PODU); River distance(HL); Fault distance(DC); Seismic Intensity(LD) and Digital Elevation Model(DEM), the normalized difference vegetation index(NDVI) which based on remote sensing images as evaluation factors. But the relationships among these factors are fuzzy, there also exists heavy noise and high-dimensional, we introduce the random forest algorithm to tolerate these difficulties and get the evaluation result of Ludian landslide areas, in order to verify the accuracy of the result, using the ROC graphs for the result evaluation standard, AUC covers an area of 0.918, meanwhile, the random forest's generalization error rate decreases with the increase of the classification tree to the ideal 0.08 by using Out Of Bag(OOB) Estimation. Studying the final landslides inversion results, paper comes to a statistical conclusion that near 80% of the whole landslides and dilapidations are in areas with high susceptibility and moderate susceptibility, showing the forecast results are reasonable and adopted.

  1. Debris flow hazard assessment by integrated modeling of landslide triggering and propagation: application to the Messina Province, Italy

    NASA Astrophysics Data System (ADS)

    Stancanelli, L. M.; Peres, D. J.; Cavallaro, L.; Cancelliere, A.; Foti, E.

    2014-12-01

    During the last decades an increase of debris flow catastrophic events has been recorded along the Italian territory, mainly due to the increment of settlements and human activities in mountain areas. Considering the large extent of debris flow prone areas, non structural protection strategies should be preferably implemented because of economic constrains associated with structural mitigation measures. In such a framework hazard assessment methodologies play a key role representing useful tools for the development of emergency management policies. The aim of the present study is to apply an integrated debris flow hazard assessment methodology, where rainfall probabilistic analysis and physically-based landslide triggering and propagation models are combined. In particular, the probabilistic rainfall analysis provides the forcing scenarios of different return periods, which are then used as input to a model based on combination of the USGS TRIGRS and the FLO-2D codes. The TRIGRS model (Baum et al., 2008; 2010), developed for analyzing shallow landslide triggering is based on an analytical solution of linearized forms of the Richards' infiltration equation and an infinite-slope stability calculation to estimate the timing and locations of slope failures, while the FLO-2D (O'Brien 1986) is a two-dimensional finite difference model that simulates debris flow propagation following a mono-phase approach, based on empirical quadratic rheological relation developed by O'Brien and Julien (1985). Various aspects of the combination of the models are analyzed, giving a particular focus on the possible variations of triggered amounts compatible with a given return period. The methodology is applied to the case study area of the Messina Province in Italy, which has been recently struck by severe events, as the one of the 1st October 2009 which hit the Giampilieri Village causing 37 fatalities. Results are analyzed to assess the potential hazard that may affect the densely

  2. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross

  3. Using high resolution satellite multi-temporal interferometry for landslide hazard detection in tropical environments: the case of Haiti

    NASA Astrophysics Data System (ADS)

    Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon

    2015-04-01

    Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a

  4. Landslide hazard mapping in the Göta river valley to limit

    NASA Astrophysics Data System (ADS)

    Tremblay, M.; Svahn, V.; Lind, B.; Lundström, K.; Cederbom, C. E.

    2012-04-01

    Landslide scars are frequent along the river bank of the Göta river in southwest Sweden, and several landslides in quick-clay have resulted in casualties and severe damages on buildings and infrastructure during the last century. Moreover, higher average precipitation and increased occurrence of extreme rainfall events are some expected climate changes in Sweden during the coming 70-100 years. The Swedish Geotechnical Institute (SGI) was therefore commissioned by the Swedish Government to perform an inventory of the landslide potential in the Göta river valley, taking predicted climate changes into consideration. The project was running over three years (2009-2011) and the final report is presented in March 2012. To prevent extensive floodings and damages of cities and infrastructure around Lake Vänern, it is necessary to allow controlled overflow from Lake Vänern through the Göta river. An overflow in the river, in turn, leads to increased risk for erosion and landslides along the river valley. The inventory has included detailed field and laboratory investigations of the geological and hydrological conditions, methodology development, erosion modeling, effects of climate changes on porewater and groundwater conditions as well as an estimation of consequences and probabilities for failure in the present-day and future climate. In the final report risk estimates for the complete study area are presented along with rough cost estimates for first-order preventing measures. This presentation aims to give an overview of the outcome of the inventory, the experience and new knowledge acquired during the project as well as the need of research and development work in different technical areas in order to improve risk mapping of natural slopes.

  5. Source identification and hazardous risk delineation of heavy metal contamination in Yanqi basin, northwest China.

    PubMed

    Mamat, Zulpiya; Yimit, Hamid; Ji, Rou Zi A; Eziz, Mamattursun

    2014-09-15

    A total of 469 surface soil samples were collected from the Yanqi basin in northwest China and evaluated for levels of ten heavy metals. Multivariate statistical analyses were used to study sources of and map the spatial distribution of heavy metals, as well as determine the relationship between land use types and soil source materials. It was found that: (1) the average amounts of ten heavy metals in the Yanqi basin were all below the national soil environmental quality standards of China (GB15618-1998), but the average amount of Cd, Hg, Mn, Ni, Pb, and Zn all exceeded the heavy metal background levels of soil in Xinjiang, China and exhibited accumulation. The ten heavy metals analyzed in this study can be categorized into four principal components as follows: Principal component 1 was Co, Cr, Mn, Ni, and Zn, and principal component 3 was As and Cu. Both of these originated from a natural geological background. Principal component 2 consisted of Cd and Pb and originated from industrial, agricultural and transportation influences. Principal component 4 consisted of Hg and was due to industrial influences. Our study found that Pb and Zn were a large part in the principal components 1 and 3 and were influenced by a combination of geologic background and human activity. (2) Heavy metals Cd and Hg were at high levels in construction land and farmland, while Co, Cr, Cu, Mn, and Ni were significantly higher in lacustrine deposits than in sandy shale from weathered material, coarse crystalline rock weathered material, and diluvial material. The land use types correlated significantly with the accumulation of Cd and Hg, and the soil parent material was the major factor for the accumulation of As, Co, Cr, Cu, Mn, and Ni. (3) The single element, element integration and the corresponding principal component presented similar spatial patterns of hazardous risk. Following comprehensive assessment of all elements, the high risk regions were found to be located in densely

  6. Using patterns of debris flow erosion and deposition in the Icelandic Westfjords to delineate hazard zones.

    NASA Astrophysics Data System (ADS)

    Conway, S. J.; Decaulne, A.; Balme, M. R.; Murray, J. B.; Towner, M. C.

    2009-04-01

    Debris flows pose a significant risk to infrastructure and people; hence the aim of this study is to better understand the behaviour of debris flows by studying examples from above the town of Ísafjörður in north-western Iceland. Debris flow is a recognised hazard in the region [1], but above Ísafjörður occurs with particularly high regularity [2] and can involve large volumes of debris. We have used airborne laser altimeter (LiDAR) and differential GPS data to produce isopach maps of flows that occurred in 1999, 2007 and 2008 above Ísafjörður and in adjacent valleys. Compared to observations from the literature, e.g. [3-5], these flows start depositing at unusually high slope gradients (up to 45°). However the larger flows are also unusually mobile compared to typical hill-slope debris flows [4], but they are not as mobile as channelized flows [6]. This means that for a given volume their run-out distance is much greater than expected and hence more likely to reach the town. The volumes for the flows were calculated in two ways: firstly we were able to take the difference between the surfaces before (LiDAR) and after (dGPS) three small flows that occurred in 2008. Secondly, for flows prior to our 2008 LiDAR survey, we interpolated the pre-flow surface based on surrounding topography and measured differences from our post-flow surveys. The second method therefore has a tendency to over-estimate the flow volumes. The scheme for dGPS surveying involved obtaining numerous cross sections and taking long profiles along the channel and adjacent levees. Based on the volumes that we have calculated using these more accurate methods, we have increased the value of volume estimates for recorded historic debris flows reported by [2] and have revised the local denudation rate to 45 mm per 100 yr. Using the isopach maps and associated field observations we have found a relationship between slope and deposition volume, where the runout and pattern of deposition is a

  7. Applying Distributed, Coupled Hydrological Slope-Stability Models for Landslide Hazard Assessments

    NASA Astrophysics Data System (ADS)

    Godt, J. W.; Baum, R. L.; Lu, N.; Savage, W. Z.; McKenna, J. P.

    2006-12-01

    Application of distributed, coupled hydrological slope-stability models requires knowledge of hydraulic and material-strength properties at the scale of landslide processes. We describe results from a suite of laboratory and field tests that were used to define the soil-water characteristics of landslide-prone colluvium on the steep coastal bluffs in the Seattle, Washington area and then use these results in a coupled model. Many commonly used tests to determine soil-water characteristics are performed for the drying process. Because most soils display a pronounced hysteresis in the relation between moisture content and matric suction, results from such tests may not accurately describe the soil-water characteristics for the wetting process during rainfall infiltration. Open-tube capillary-rise and constant-flow permeameter tests on bluff colluvium were performed in the laboratory to determine the soil-water characteristic curves (SWCC) and unsaturated hydraulic conductivity functions (HCF) for the wetting process. Field-tests using a borehole permeameter were used to determine the saturated hydraulic conductivity of colluvial materials. Measurements of pore-water response to rainfall were used in an inverse numerical modeling procedure to determine the in-situ hydraulic parameters of hillside colluvium at the scale of the instrument installation. Comparison of laboratory and field results show that although both techniques generally produce SWCCs and HCFs with similar shapes, differences in bulk density among field and lab tests yield differences in saturated moisture content and saturated hydrologic conductivity. We use these material properties in an application of a new version of a distributed transient slope stability model (TRIGRS) that accounts for the effects of the unsaturated zone on the infiltration process. Applied over a LiDAR-based digital landscape of part of the Seattle area for an hourly rainfall history known to trigger shallow landslides, the

  8. Evaluation of Landslide Hazard Using Models For Dynamic Deformation of The Earth Crust

    NASA Astrophysics Data System (ADS)

    Ovcharenko, A.; Sokolov, V.; Loh, C.-H.; Wen, K.-L.

    The 4D-model (x, y, z, t - geographic coordinates, depth, time) for dynamic defor- mation of the Earth crust is applied for analysis of various catastrophic geodynamic phenomena, for example, the landslides that do not relate with earthquakes. The model of is constructed on the basis the geophysical data: Global Positioning System (GPS) network, Persistent Sea Water Level (PSWL) monitoring and seismic catalogues. It is possible to utilize also other indirect geophysical data that reflect the dynamic process of the Earth crust deformation. The process and results of the modeling are described for the case of Tsao-Ling (Taiwan) area, where a set of catastrophic landslides oc- curred during last 150 years. The development of elastic deformational displacement of the Earth crust is analyzed for this time period. It has been found, that generally the landslides occurred during the period of anomalous behavior of deformation (com- pression/tension changes, high gradient of deformation, etc.). It is also necessary to consider jointly direction of deformational displacement and peculiarities of surface relief (characteristics of mountain slopes). Thus, it is possible to conclude that the slow deformational processes may play a significant role in development of danger- ous geodynamic phenomena on mountain slopes. The method of revealing and analy- sis of potentially dangerous areas may include the follow steps. A - the detailed digital model of surface is used for selection of steep slope areas. B - the 4D-model is applied for the areas and schemes of characteristics of deformational displacement (gradient or vectors of horizontal displacement) are calculated for intervals of one-two years. C - the schemes of surface relief and modeled parameters are used jointly for analysis of dangerous periods.

  9. The contribute of DInSAR techniques to landslide hazard evaluation in mountain and hilly regions: a case study from Agno Valley (North-Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    De Agostini, A.; Floris, M.; Pasquali, P.; Barbieri, M.; Cantone, A.; Riccardi, P.; Stevan, G.; Genevois, R.

    2012-04-01

    In the last twenty years, Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques have been widely used to investigate geological processes, such as subsidence, earthquakes and landslides, through the evaluation of earth surface displacements caused by these processes. In the study of mass movements, contribution of interferometry can be limited due to the acquisition geometry of RADAR images and the rough morphology of mountain and hilly regions which represent typical landslide-prone areas. In this study, the advanced DInSAR techniques (i.e. Small Baseline Subset and Persistent Scatterers techniques), available in SARscape software, are used. These methods involve the use of multiple acquisitions stacks (large SAR temporal series) allowing improvements and refinements in landslide identification, characterization and hazard evaluation at the basin scale. Potential and limits of above mentioned techniques are outlined and discussed. The study area is the Agno Valley, located in the North-Eastern sector of Italian Alps and included in the Vicenza Province (Veneto Region, Italy). This area and the entire Vicenza Province were hit by an exceptional rainfall event on November 2010 that triggered more than 500 slope instabilities. The main aim of the work is to verify if spatial information available before the rainfall event, including ERS and ENVISAT RADAR data from 1992 to 2010, were able to predict the landslides occurred in the study area, in order to implement an effectiveness forecasting model. In the first step of the work a susceptibility analysis is carried out using landslide dataset from the IFFI project (Inventario Fenomeni Franosi in Italia, Landslide Italian Inventory) and related predisposing factors, which consist of morphometric (elevation, slope, aspect and curvature) and non-morphometric (land use, distance of roads and distance of river) factors available from the Veneto Region spatial database. Then, to test the prediction, the

  10. Indirect economic impact of landslide hazards by disruption to national road transportation networks; Scotland, United Kingdom.

    NASA Astrophysics Data System (ADS)

    Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil

    2016-04-01

    The failure of engineered or natural slopes which support or are adjacent to transportation systems often inflicts costly direct physical damage and indirect system disruption. The consequences and severity of indirect impacts vary according to which links, nodes or network facilities are physically disrupted. Moreover, it is often the case that multiple slope failure disruptions are triggered simultaneously following prolonged or intense precipitation events due to a degree of local homogeneity of slope characteristics and materials. This study investigates the application of national commuter statistics and network agent simulation to evaluate indirect impacts of landslide events disrupting the Scottish trunk road transportation network (UK). Previous studies often employ shortest pathway analysis whereas agent simulation has received relatively little attention. British Geological Survey GeoSure landslide susceptibility data is used to select 35 susceptible trunk road segments by means of neighbouring total area at risk. For each of the candidate 35 segments the network and zonal variation in travel time is calculated for a single day of disruption, economic impact is approximated using established governmental and industry transport planning and appraisal values. The results highlight that a number of trunk road segments incur indirect economic losses in the order of tens of thousands of pounds for each day of closure. Calculated losses at the A83 Rest and Be Thankful are 50% greater than previous estimates at £75 thousand per day of closure. Also highlighted are events in which economic impact is relatively minor, yet concentrating on particular communities that can become substantially isolated as a consequence of a single event. The findings of this study are of interest and support wider investigations exploring cost considerations for decision makers and mitigation strategies, in addition to identifying network topological and demand indicators conducive

  11. Do landslides follow landslides?

    NASA Astrophysics Data System (ADS)

    Samia, Jalal; Temme, Arnaud; Bregt, Arnold; Wallinga, Jakob; Guzzetti, Fausto; Ardizzone, Francesca; Rossi, Mauro

    2016-04-01

    Landslide susceptibility maps are typically obtained by quantifying relations between landslides and conditioning attributes. Here, we take a fundamentally different starting point: path dependency and self-organization, i.e. the effect of landslides on landslides. We test two hypotheses: first, that landslides do preferentially follow landslides, and second, that follow-up landslides are different from those that do not follow other slides. Results indicate that there is indeed a considerable amount of overlap among landslides that affect the overall affected area by landsliding. This is more than expected: the number of overlaps among landslides is more than would occur of slides were randomly placed in the study area. Overlaps of slides with previous slides occur frequently within a period of about ten years after a previous slide, yet decrease considerably over time. Also the second hypothesis is confirmed: follow-up landslides indeed have different properties in terms of power law and shape than those that are not associated. Particularly, follow-up landslides are larger and more elongated than non-follow up landslides. Moreover, after fitting an inverse gamma function to the magnitude-frequency distributions of follow-up and non-follow-up slides, it was found that the alpha parameter that controls the prevalence of very extreme events, is much larger for follow-up slides than for non-follow-up slides. Also the rollover value is substantially larger for follow-up landslides than non-follow up landslides . The prevalence of follow-up slides in the first approximately ten years after a previous slides, and the fact that follow-up slides are different from other slides, should have implications for susceptibility studies. Apparently, susceptibility (conventionally a purely spatial concept) changes with the time since previous landslides happened. We explore possible mechanisms for this that may allow us to include these temporal changes in landslide

  12. Analysis of rainfall-triggered landslide hazards through the dynamic integration of remotely sensed, modeled and in situ environmental factors in El Salvador

    NASA Astrophysics Data System (ADS)

    Anderson, Eric Ross

    Landslides pose a persistent threat to El Salvador's population, economy and environment. Government officials share responsibility in managing this hazard by alerting populations when and where landslides may occur as well as developing and enforcing proper land use and zoning practices. This thesis addresses gaps in current knowledge between identifying precisely when and where slope failures may initiate and outlining the extent of the potential debris inundation areas. Improvements on hazard maps are achieved by considering a series of environmental variables to determine causal factors through spatial and temporal analysis techniques in Geographic Information Systems and remote sensing. The output is a more dynamic tool that links high resolution geomorphic and hydrological factors to daily precipitation. Directly incorporable into existing decision support systems, this allows for better disaster management and is transferable to other developing countries.

  13. Landslide Hazard Mapping Using Ground-based Interferometric Radar in the Fjords of South-Central Alaska

    NASA Astrophysics Data System (ADS)

    Balazs, M. S.; Meyer, F. J.; Bollian, T.; Wolken, G. J.; Prakash, A.

    2013-12-01

    The cities of Seward and Whittier, Alaska are situated at the base of steep walls within two fjords located on the Kenai Peninsula. Historic events have shown that the combination of terrain, geology, and vegetation are factors which can lead to significant events of erosion in the surrounding slopes during periods of heavy rainfall. While other remote sensing techniques have been shown to be useful for accessing landslide hazards, local surface processes may be better understood to create more accurate hazard maps and predictive models by using data gained from interferometric radar. To gain perspective into where, and at which speed, slopes are deforming, we utilize the GPRI-2 terrestrial interferometric radar system which transmits signals in the Ku band. The GPRI-2 portable radar unit has several advantages to space-borne radar, including relative freedom of site selection and regions to target, ability to determine temporal baselines, and repeat acquisitions which can be collected with a zero spatial-baseline. There are however, problems which need to be addressed when using such a system in the fjord environments, and in particular for monitoring slope deformation in these areas. Foremost, the noise that is attributed to the atmosphere is of great concern as it is sometimes required to position the radar several kilometers away from the target, across open water. We offer our results of correcting for this interference and report the results. Secondly, we address the issue of repeat acquisitions over long periods of time, which is needed to detect movements in the slope, and report on the decorrelation of the signal in the various land cover types in the study areas. Finally, we offer suggestions of the usefulness of such a system to detect slope deformation in similar environments.

  14. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  15. Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes

    USGS Publications Warehouse

    ten Brink, U.S.; Lee, H.J.; Geist, E.L.; Twichell, D.

    2009-01-01

    Submarine landslides along the continental slope of the U.S. Atlantic margin are potential sources for tsunamis along the U.S. East coast. The magnitude of potential tsunamis depends on the volume and location of the landslides, and tsunami frequency depends on their recurrence interval. However, the size and recurrence interval of submarine landslides along the U.S. Atlantic margin is poorly known. Well-studied landslide-generated tsunamis in other parts of the world have been shown to be associated with earthquakes. Because the size distribution and recurrence interval of earthquakes is generally better known than those for submarine landslides, we propose here to estimate the size and recurrence interval of submarine landslides from the size and recurrence interval of earthquakes in the near vicinity of the said landslides. To do so, we calculate maximum expected landslide size for a given earthquake magnitude, use recurrence interval of earthquakes to estimate recurrence interval of landslide, and assume a threshold landslide size that can generate a destructive tsunami. The maximum expected landslide size for a given earthquake magnitude is calculated in 3 ways: by slope stability analysis for catastrophic slope failure on the Atlantic continental margin, by using land-based compilation of maximum observed distance from earthquake to liquefaction, and by using land-based compilation of maximum observed area of earthquake-induced landslides. We find that the calculated distances and failure areas from the slope stability analysis is similar or slightly smaller than the maximum triggering distances and failure areas in subaerial observations. The results from all three methods compare well with the slope failure observations of the Mw = 7.2, 1929 Grand Banks earthquake, the only historical tsunamigenic earthquake along the North American Atlantic margin. The results further suggest that a Mw = 7.5 earthquake (the largest expected earthquake in the eastern U

  16. Quantification of Road Network Vulnerability and Traffic Impacts to Regional Landslide Hazards.

    NASA Astrophysics Data System (ADS)

    Postance, Benjamin; Hillier, John; Dixon, Neil; Dijkstra, Tom

    2015-04-01

    Slope instability represents a prevalent hazard to transport networks. In the UK regional road networks are frequently disrupted by multiple slope failures triggered during intense precipitation events; primarily due to a degree of regional homogeneity of slope materials, geomorphology and weather conditions. It is of interest to examine how different locations and combinations of slope failure impact road networks, particularly in the context of projected climate change and a 40% increase in UK road demand by 2040. In this study an extensive number (>50 000) of multiple failure event scenarios are simulated within a dynamic micro simulation to assess traffic impacts during peak flow (7 - 10 AM). Possible failure locations are selected within the county of Gloucestershire (3150 km2) using historic failure sites and British Geological Survey GeoSure data. Initial investigations employ a multiple linear regression analyses to consider the severity of traffic impacts, as measured by time, in respect of spatial and topographical network characteristics including connectivity, density and capacity in proximity to failure sites; the network distance between disruptions in multiple failure scenarios is used to consider the effects of spatial clustering. The UK Department of Transport road travel demand and UKCP09 weather projection data to 2080 provide a suitable basis for traffic simulations and probabilistic slope stability assessments. Future work will thus focus on the development of a catastrophe risk model to simulate traffic impacts under various narratives of future travel demand and slope instability under climatic change. The results of this investigation shall contribute to the understanding of road network vulnerabilities and traffic impacts from climate driven slope hazards.

  17. Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia.

    PubMed

    Inanloo, Bahareh; Tansel, Berrin

    2015-06-01

    The aim of this research was to investigate accidental releases of ammonia followed by an en-route incident in an attempt to further predict the consequences of hazardous cargo accidents. The air dispersion model Areal Locations of Hazardous Atmospheres (ALOHA) was employed to track the probable outcomes of a hazardous material release of a tanker truck under different explosion scenarios. The significance of identification of the flammable zones was taken into consideration; in case the flammable vapor causes an explosion. The impacted areas and the severity of the probable destructions were evaluated for an explosion by considering the overpressure waves. ALOHA in conjunction with ArcGIS was used to delineate the flammable and overpressure impact zones for different scenarios. Based on the results, flammable fumes were formed in oval shapes having a chief axis along the wind direction at the time of release. The expansions of the impact areas under the overpressure value which can lead to property damage for 2 and 20 tons releases, under very stable and unstable atmospheric conditions were estimated to be around 1708, 1206; 3742, 3527 feet, respectively, toward the wind direction. A sensitivity analysis was done to assess the significance of wind speed on the impact zones. The insight provided by this study can be utilized by decision makers in transportation of hazardous materials as a guide for possible rerouting, rescheduling, or limiting the quantity of hazardous cargo to reduce the possible impacts after hazardous cargo accidents during transport. PMID:25781067

  18. Using Advanced Remote Sensing Data Fusion Techniques for Studying Earth Surface Processes and Hazards: A Landslide Detection Case Study

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2014-12-01

    A major problem in earth surface process and hazards research is we have little to no knowledge of precisely where and when the next significant event may occur. This makes it nearly impossible to set up adequate instrumentation and observation ahead of time. Furthermore, it is not practical to overcome this challenge by instrumenting and observing everywhere all the time. We can't be everywhere and see everything. Remote sensing helps us to fill that gap with missions such as Landsat and WorldView2 offering regular global coverage. However, remote sensing systems for global monitoring have several inherent compromises. Tradeoffs must be made between data storage, processing capacity, spatial resolution, spectral resolution, and temporal resolution. Additionally, instruments and systems must be designed in advance and from a generalized standpoint to serve as many purposes as possible, often at the expense of high performance in specific tasks. Because of these practical constraints, when using remote sensing data to study earth surface processes it is critical to maximize signal content or information obtained from all available data. Several approaches, including multi-temporal data fusion, multi-sensor data fusion, and fusion with derivative products such as band ratios or vegetation indices can help expand how much information can be extracted from remote sensing acquisitions. Fused dataset results contain more coherent information than the sum of their individual constituents. Examples using Landsat and WorldView2 data in this study show this added information makes it possible to map earth surface processes and events, such as the 2011 Cinque Terre landslides, in a more automated and repeatable fashion over larger areas than is possible with manual imagery analysis techniques and with greater chance of successful detection.

  19. Comparison of various remote sensing classification methods for landslide detection using ArcGIS

    NASA Astrophysics Data System (ADS)

    Escape, Carmille Marie; Kristia Alemania, Maneka; Luzon, Paul Kenneth; Felix, Raquel; Salvosa, Sheena; Aquino, Dakila; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2014-05-01

    A comprehensive landslide inventory is vital in landslide hazard analysis. It provides statistical and spatial distributions at a given time which can be used as parameter for susceptibility and classification modelling. It is usually derived from historical data, field surveys, and manual interpretation of aerial and satellite images. However, historical data is not always available and complete, intensive field surveys are impractical for large-scale studies, and manual analysis of aerial and spectral images can be tedious and time-consuming. With the advancement of spectral remote sensing systems, different automated procedures for image classification have been developed. To test the effectiveness of various automated image classification methods, we compared several procedures utilizing spectral images taken after the Mw 7.2 Bohol (Philippines) earthquake on October 15, 2013 instead of a comprehensive landslide inventory. These procedures included: 1.) an unsupervised ISODATA clustering classification, 2.) a supervised maximum likelihood classification using raw spectral bands, 3.) another supervised classification using the Normalized Difference Vegetation Index (NDVI), and 4.) a manual reclassification of NDVI values using specific ranges. We used the fourth method to highlight the difference between using its unbiased mathematical data with supervised classification training sites that has an added human factor. We then compared each image classification with the manual inventory done to determine its accuracy. The unsupervised classification had the lowest accuracy and reliability in distinguishing the landslides. The supervised classification using raw spectral bands, though it showed clear regions of landslides, only distinguished 75% of the landslides manually inventoried. Both methods that involved NDVI were more useful for landslide identification but had different advantages. The supervised classification with NDVI was more useful in pinpointing

  20. Hazard assessment for a submarine landslide generated local-source tsunami from Kaikoura Canyon

    NASA Astrophysics Data System (ADS)

    DuBois, J.

    2012-04-01

    five sites from South Bay to Oara, corroborates this. At four of the sites a similar greywacke pebble bearing layer was found which was not present at test sites to the North and South of the peninsula (Kiwa Rd Campsites and Claverly respectively). These deposits contain diatoms indicating marine provenance. Surveys of Kaikoura peninsula households and businesses showed low levels of preparedness for a local source event. In regards to local-source tsunamis the district council has indicated that they "are unpredictable [and] it is impractical to include rules to mitigate their effects. Instead, the Council is committed to a Civil Defence network which provides an educative role and which sets in place a process for dealing with the results of any tsunami" (Kaikoura District Plan, 2010). Plans and an education strategy need to be formulated and implemented. They need to address considerations such as the fact that about 60% of those surveyed expect some sort of siren warning and the limitations inherent in such a warning system along with signage and public tsunami hazard maps and evacuation zones.

  1. Enhancing national Daily Landslide Hazard Assessments through inter-agency collaboration; lessons learned from storm Desmond (UK)/Synne (Norway), Dec 2015.

    NASA Astrophysics Data System (ADS)

    Boje, Søren; Devoli, Graziella; Sund, Monica; Freeborough, Katy; Dijkstra, Tom; Reeves, Helen; Banks, Vanessa

    2016-04-01

    The Norwegian Water Resources and Energy Directorate (NVE) and the British Geological Survey (BGS) compile daily landslide hazard assessments (DLHA) in their respective countries. NVE DLHA has been operational since 2013 and provides national daily assessments based on quantitative thresholds related to daily hydro-meteorological forecasts coupled with qualitative expert analysis of these forecasts. The BGS DLHA has been operational since 2012 and this is predominantly based on expert evaluation of antecedent hydro-meteorological conditions and triggering rainfall across Great Britain (GB). In both cases, the hydro-meteorological evaluation is coupled with observations derived from proprietary datasets on landslide events and landslide potential in order to specify, and limit, the spatial extent of the potentially impacted area. However, the DLHA are strongly driven by hydro-meteorological forecasts. In December 2015, a large extra-tropical cyclone developed over the Atlantic and delivered record-breaking precipitation over parts of the UK and Norway. The meteorological services started naming these events to enhance public uptake and awareness and the storms were named as Desmond (the 4th large storm in 2015/16 in the UK) and Synne (the 5th storm in 2015 in Norway). Desmond arrived in earnest on the 5th of December and brought intense precipitation and strong winds over a 48-hour period. In Cumbria (NW-England) record precipitation was measured (341.4 mm in 24-hour at Honister Pass which is more than twice the monthly average), with 48-hour accumulations exceeding 400 mm. Synne arrived shortly after in Norway and was also characterised by excessive rainfall of 140 mm in 24-hour, 236 mm in 48-hour and 299 mm in 72-hour at Maudal, SW-Norway. Both organisations managed to issue appropriate advance warnings, operating individually. In Norway, warnings were issued some 2 days in advance with a yellow level communicated on Friday 4th and an orange warning the 5th and 6

  2. Integrated multi-parameters Probabilistic Seismic Landslide Hazard Analysis (PSLHA): an innovative approach in the active volcano-tectonic area of Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Caccavale, M.; Matano, F.; Sacchi, M.; Somma, R.; Troise, C.; De Natale, G.

    2013-12-01

    The western coastal sector of Campania region (southern Italy) is characterised by the presence of the active volcano-tectonic area of Campi Flegrei. This area represents a very particular and interesting case-study for a probabilistic seismic hazard analysis (PSHA). The principal seismic source, related with the caldera, is not clearly constrained in the on-shore and off-shore areas. The well-known and monitored phenomenon of bradyseism affecting a large portion of case-study area is not modelled in the standard PSHA approach. From the environmental point of view the presence of very high exposed values in terms of population, buildings, infrastructures and palaces of high archaeological, natural and artistic value, makes this area a strategic natural laboratory to develop new methodologies. Moreover the geomorphological and geo-volcanological features lead to a heterogeneous coastline, made up by both beach and tuff cliffs, rapidly evolving for erosion and landslide (i.e. mainly rock fall and rock slide) phenomena that represent an additional hazard aspect. In the Campi Flegrei the possible occurrence of a moderate/large seismic event represents a serious threat for the inhabitants, for the infrastructures as well as for the environment. In the framework of Italian MON.I.C.A project (sinfrastructural coastlines monitoring) an innovative and dedicated probabilistic methodology has been applied to identify the areas with higher tendency of landslide occurrence due to the seismic effect. Resident population reported the occurrence of some small rock falls along tuff quarry slopes during the main shocks of the 1982-84 bradyseismic events. The PSHA methodology, introduced by Cornell (1968), combines the contributions to the hazard from all potential sources of earthquakes and the average activity rates associated to each seismogenic zone considered. The result of the PSHA is represented by the spatial distribution of a ground-motion (GM) parameter A, such as Peak

  3. From structural investigation towards multi-parameter early warning systems: geophysical contributions to hazard mitigation at the landslide of Gschliefgraben (Gmunden, Upper Austria)

    NASA Astrophysics Data System (ADS)

    Supper, Robert; Baron, Ivo; Jochum, Birgit; Ita, Anna; Winkler, Edmund; Motschka, Klaus; Moser, Günter

    2010-05-01

    In December 2007 the large landslide system inside the Gschliefgraben valley (located at the east edge of the Traun lake, Upper Austria), known over centuries for its repeated activity, was reactivated. Although a hazard zone map was already set up in 1974, giving rise to a complete prohibition on building, some hundreds of people are living on the alluvial fan close to the lake. Consequently, in frame of the first emergency measures, 55 building had to be evacuated. Within the first phase of mitigation, measures were focused on property and infrastructure protection. Around 220 wells and one deep channel were implemented to drain the sliding mass. Additionally a big quantity of sliding material was removed close to the inhabited areas. Differential GPS and water level measurements were performed to evaluate the effectiveness of the measures, which led to a significant slowdown of the movement. Soon after the suspension of the evacuation several investigations, including drilling, borehole logging and complex geophysical measurements were performed to investigate the structure of the landslide area in order to evaluate maximum hazard scenarios as a basis for planning further measures. Based on these results, measuring techniques for an adapted, future early warning system are currently being tested. This emergency system should enable local stakeholders to take appropriate and timely measures in case of a future event thus lessening the impact of a future disaster significantly. Within this tree-step-plan the application of geophysical methodologies was an integral part of the research and could considerably contribute to the success. Several innovative approaches were implemented which will be described in more detail within the talk. Airborne multi-sensor geophysical surveying is one of new and progressive approaches which can remarkably contribute to effectively analyse triggering processes of large landslides and to better predict their hazard. It was tested in

  4. Development of a Dynamic Landslide Inventory Information System for Southern Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Golovko, Daria; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2013-04-01

    Southern Kyrgyzstan is part of the tectonically active mountain ranges of the Tien Shan. The study area is located at the Eastern rim of the Fergana Basin representing a densely populated region where large landslides regularly endanger human lives and infrastructure. Therefore, GIS-based landslide susceptibility and hazard analysis is of great importance requiring detailed assessment of past landslide activity at regional scale. In Kyrgyzstan, information on past landslide activity is less available than in other more developed and researched regions of the world. Although landslide investigations were conducted since the 1950s, they have been drastically reduced since Kyrgyzstan's independence from the former Soviet Union in 1991 accompanied by loss of existing information. During the last years, information on landslides has been made publicly available mostly in form of derivatives, such as landslide hazard maps. All of these investigations have been limited to inhabited areas with known landslide danger. The presented research has the goal to develop a GIS-based approach for establishing a dynamic landslide inventory information system which allows efficient integration of the existing heterogeneous landslide data. They consist of reports prepared by Kyrgyz authorities as a result of field campaigns supported by visual interpretation of aerial photographs. These reports vary greatly in their spatial and temporal reliability as well as the format of the contained landslide data. This information has been complemented by multi-temporal satellite remote sensing data analysis carried out by the GFZ Potsdam aiming at interactive mapping of slopes affected by long-term complex landslide processes as well as developing an automated approach for landslide identification for the last 25 years. The used satellite remote sensing data provide a spatially continuous information base, partially with high temporal resolution, and thus enable creation of a dynamic landslide

  5. Landslide susceptibility mapping in Mawat area, Kurdistan Region, NE Iraq: a comparison of different statistical models

    NASA Astrophysics Data System (ADS)

    Othman, A. A.; Gloaguen, R.; Andreani, L.; Rahnama, M.

    2015-03-01

    During the last decades, expansion of settlements into areas prone to landslides in Iraq has increased the importance of accurate hazard assessment. Susceptibility mapping provides information about hazardous locations and thus helps to potentially prevent infrastructure damage due to mass wasting. The aim of this study is to evaluate and compare frequency ratio (FR), weight of evidence (WOE), logistic regression (LR) and probit regression (PR) approaches in combination with new geomorphological indices to determine the landslide susceptibility index (LSI). We tested these four methods in Mawat area, Kurdistan Region, NE Iraq, where landslides occur frequently. For this purpose, we evaluated 16 geomorphological, geological and environmental predicting factors mainly derived from the advanced spaceborne thermal emission and reflection radiometer (ASTER) satellite. The available reference inventory includes 351 landslides representing a cumulative surface of 3.127 km2. This reference inventory was mapped from QuickBird data by manual delineation and partly verified by field survey. The areas under curve (AUC) of the receiver operating characteristic (ROC), and relative landslide density (R index) show that all models perform similarly and that focus should be put on the careful selection of proxies. The results indicate that the lithology and the slope aspects play major roles for landslide occurrences. Furthermore, this paper demonstrates that using hypsometric integral as a prediction factor instead of slope curvature gives better results and increases the accuracy of the LSI.

  6. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  7. Application of a process-based shallow landslide hazard model over a broad area in Central Italy

    USGS Publications Warehouse

    Gioia, Eleonora; Speranza, Gabriella; Ferretti, Maurizio; Godt, Jonathan W.; Baum, Rex L.; Marincioni, Fausto

    2015-01-01

    Process-based models are widely used for rainfall-induced shallow landslide forecasting. Previous studies have successfully applied the U.S. Geological Survey’s Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) model (Baum et al. 2002) to compute infiltration-driven changes in the hillslopes’ factor of safety on small scales (i.e., tens of square kilometers). Soil data input for such models are difficult to obtain across larger regions. This work describes a novel methodology for the application of TRIGRS over broad areas with relatively uniform hydrogeological properties. The study area is a 550-km2 region in Central Italy covered by post-orogenic Quaternary sediments. Due to the lack of field data, we assigned mechanical and hydrological property values through a statistical analysis based on literature review of soils matching the local lithologies. We calibrated the model using rainfall data from 25 historical rainfall events that triggered landslides. We compared the variation of pressure head and factor of safety with the landslide occurrence to identify the best fitting input conditions. Using calibrated inputs and a soil depth model, we ran TRIGRS for the study area. Receiver operating characteristic (ROC) analysis, comparing the model’s output with a shallow landslide inventory, shows that TRIGRS effectively simulated the instability conditions in the post-orogenic complex during historical rainfall scenarios. The implication of this work is that rainfall-induced landslides over large regions may be predicted by a deterministic model, even where data on geotechnical and hydraulic properties as well as temporal changes in topography or subsurface conditions are not available.

  8. Landslides of Palestinian Region

    NASA Astrophysics Data System (ADS)

    Alwahsh, H.

    2013-12-01

    Natural disasters are extreme sudden events caused by environmental and natural actors that take away the lives of many thousands of people each year and damage large amount of properties. They strike anywhere on earth, often without any warning. A risk maps of natural disaster are very useful to identify the places that might be adversely affected in the event of natural disaster. The earthquakes are one of natural disaster that have the greatest hazards and will cause loss of life and properties due to damaging the structures of building, dams, bridges. In addition, it will affect local geology and soil conditions. The site effects play an important role in earthquake risk because of its amplification or damping simulation. Another parameter in developing risk map is landslide, which is also one of the most important topics in site effect hazards. Palestine region has been suffering landslide hazards because of the topographical and geological conditions of this region. Most Palestine consists of mountainous area, which has great steep slopes and the type of soil is mainly grayish to yellowish silty clay (Marl Soil). Due to the above mentioned factors many landslides have been occurred from Negev south to the northern borders of Palestine. An example of huge and destruction landslide in a Palestine authority is the landslide in the White Mountain area in the city of Nablus, which occurred in 1997. The geotechnical and geophysical investigation as well as slope stability analysis should be considered in making landslide maps that are necessary to develop risk levels of the natural disaster. Landslides occurred in slopes that are created naturally or by human beings. Failure of soil mass occurs, and hence landslide of soil mass happen due to sliding of soil mass along a plane or curved surface. In general, the slopes become unstable when the shear stresses (driving force) generated in the soil mass exceed the available shearing resistance on the rupture surface

  9. Deep seated gravitational slope deformations and large landslides: implications on landslide hazard of urban areas and coastal erosion phenomena of Mount Poro headland

    NASA Astrophysics Data System (ADS)

    Guerricchio, A.; Simeone, V.

    2012-04-01

    Deep seated gravitational slope deformations (DSGSD) characterize the north west and south side of Mount Poro headland, mid Calabria, south Italy, as reported by Guerrichio (2000). This work investigates the DSGSD of Mount Poro headland, in particular the gravitational collapses, occurring between the coast and the western flank of the headland up to an elevation of about 500-600 m AMSL. These collapses seem to be inconsistent with the local lithotypes, made by the substratum of granitic complex of Polia-Copanello. In particular, Ietto and Calcaterra (1988) identified DSGSDs in the area of Zaccanopoli. They assumed these phenomena on the edge between post-uplift gravitative tectonics and deep seated gravitational deformations that were referred to morphologies sub-parallel to the banks of two important local rivers. The local geology comprises severely fractured and sometimes cataclastic granitic rocks. These show deep sub-vertical fracture, bow-shaped and oriented along the direction NNE-SSW in the upstream areas, at an elevation between 500 and 600 m AMSL. For those areas on the right side of the headland, fractures are oriented along NE-SW, N-S and NW-SE, while on the left side of the headland fractures are oriented W-E and NW-SE. In the upstream areas, there are frequent depressed and stretched stripes of land, which are crossed by fractures, which affect granitic masses for a difference of elevation ranging between few tens of meters and one hundred meters. Similar differences of elevation can also be observed either inside the DSGSDs, and the large landslides, like that located immediately upstream Dropia town, where for instance a one hundred meters concave scarp shows. Inside the DSGSDs and inside the topping Pleistocenic deposits, there are frequent twofold terraces, which can be hardly dated. In fact, no fossils are present, and then it is possible to assume their age just on a geomorphologic base. The entire area involved by the DSGSD is few tens of

  10. A rainfall-based warning model for shallow landslides

    NASA Astrophysics Data System (ADS)

    Zeng, Yi-Chao; Wang, Ji-Shang; Jan, Chyan-Deng; Yin, Hsiao-Yuan; Lo, Wen-Chun

    2016-04-01

    According to the statistical data of past rainfall events, the climate has changed in recent decades. Rainfall patterns have presented a more concentrated, high-intensity and long-duration trend in Taiwan. The most representative event is Typhoon Morakot which induced a total of 67 enormous landslides by the extreme amount of rain during August 7 to 10 in 2009 and resulted in the heaviest casualties in southern Taiwan. In addition, the nature of vulnerability such as steep mountains and rushing rivers, fragile geology and loose surface soil results in more severe sediment-relative disasters, in which shallow landslides are widespread hazards in mountainous regions. This research aims to develop and evaluate a model for predicting shallow landslides triggered by rainfall in mountainous area. Considering the feasibility of large-scale application and practical operation, the statistical techniques is adopted to form the landslide model based on abundant historical rainfall data and landslide events. The 16 landslide inventory maps and 15 variation results by comparing satellite images taken before and after the rainfall event were interpreted and delineated since 2004 to 2011. Logit model is utilized for interpreting the relationship between rainfall characteristics and landslide events delineated from satellite. Based on the analysis results of logistic regression, the rainfall factors that are highly related to shallow landslide occurrence are selected which are 3 hours rainfall intensity I3 (mm/hr) and the effective cumulative precipitation Rt (mm) including accumulated rainfall at time t and antecedent rainfall. A landslide rainfall triggering index (LRTI) proposed for assessing the occurrence potential of shallow landslides is defined as the product of I3 and Rt. A form of probability of shallow landslide triggered threshold is proposed to offer a measure of the likelihood of landslide occurrence. Two major critical lines which represent the lower and upper

  11. Landslide risk mapping and modeling in China

    NASA Astrophysics Data System (ADS)

    Li, W.; Hong, Y.

    2015-12-01

    Under circumstances of global climate change, tectonic stress and human effect, landslides are among the most frequent and severely widespread natural hazards on Earth, as demonstrated in the World Atlas of Natural Hazards (McGuire et al., 2004). Every year, landslide activities cause serious economic loss as well as casualties (Róbert et al., 2005). How landslides can be monitored and predicted is an urgent research topic of the international landslide research community. Particularly, there is a lack of high quality and updated landslide risk maps and guidelines that can be employed to better mitigate and prevent landslide disasters in many emerging regions, including China (Hong, 2007). Since the 1950s, landslide events have been recorded in the statistical yearbooks, newspapers, and monographs in China. As disasters have been increasingly concerned by the government and the public, information about landslide events is becoming available from online news reports (Liu et al., 2012).This study presents multi-scale landslide risk mapping and modeling in China. At the national scale, based on historical data and practical experiences, we carry out landslide susceptibility and risk mapping by adopting a statistical approach and pattern recognition methods to construct empirical models. Over the identified landslide hot-spot areas, we further evaluate the slope-stability for each individual site (Sidle and Hirotaka, 2006), with the ultimate goal to set up a space-time multi-scale coupling system of Landslide risk mapping and modeling for landslide hazard monitoring and early warning.

  12. Monitoring large-scale landslides and their induced hazard with COSMO-SkyMed Intermittent SBAS (ISBAS): a case study in north-western Sicily, Italy.

    NASA Astrophysics Data System (ADS)

    Novellino, Alessandro; Cigna, Francesca; Jordan, Colm; Sowter, Andrew; Calcaterra, Domenico

    2014-05-01

    Landslides detection and mapping are fundamental requirements for every hazard and risk evaluation. Due to their inevitable shortcomings, geomorphological field surveys and airphoto interpretation do not document all the gravitational events. Indeed some unstable slopes are inaccessible to field surveyors, while some landslides are too slow to be detected with the naked eye or interpretation of aerial photographs. In this work, we integrate geomorphological surveys with ground motion data derived by employing COSMO-SkyMed satellite imagery and the Intermittent Small BAseline Subset (ISBAS; Sowter et al., 2013), a new Advanced Differential Interferometry Synthetic Aperture Radar (ADInSAR) technique which has been developed recently at the Nottingham University in the UK. The main advantage of ISBAS with respect to other InSAR and SBAS techniques, is the possibility to detect good radar reflectors even in non-urbanized terrain, where ground targets usually look intermittently coherent, meaning they have high coherence only in some interferograms but not in others. ISBAS has proven capable of increasing results over natural, woodland and agricultural terrains and, as a result, it makes it possible to improve the detection of landslide boundaries and the assessment of the state of activity where other InSAR approaches fail. We used COSMO-SkyMed StripMap data covering the period between November 2008 and October 2011, with 3m ground range resolution, 40° look angle and minimum revisiting time of 8 days. The data consist of 38 ascending images (track 133, frame 380) with ground track angle at scene centre of 169.5° from the north-south direction. These have been obtained thanks to an agreement between the Italian Ministry for the Environment, Land and Sea and the University of Naples 'Federico II'. We tested ISBAS in north-western Sicily (southern Italy), over a 1,530 km2 area where 1,473 landslides have been identified based on optical imagery and field surveys by the

  13. Contour Connection Method for automated identification and classification of landslide deposits

    NASA Astrophysics Data System (ADS)

    Leshchinsky, Ben A.; Olsen, Michael J.; Tanyu, Burak F.

    2015-01-01

    Landslides are a common hazard worldwide that result in major economic, environmental and social impacts. Despite their devastating effects, inventorying existing landslides, often the regions at highest risk of reoccurrence, is challenging, time-consuming, and expensive. Current landslide mapping techniques include field inventorying, photogrammetric approaches, and use of bare-earth (BE) lidar digital terrain models (DTMs) to highlight regions of instability. However, many techniques do not have sufficient resolution, detail, and accuracy for mapping across landscape scale with the exception of using BE DTMs, which can reveal the landscape beneath vegetation and other obstructions, highlighting landslide features, including scarps, deposits, fans and more. Current approaches to landslide inventorying with lidar to create BE DTMs include manual digitizing, statistical or machine learning approaches, and use of alternate sensors (e.g., hyperspectral imaging) with lidar. This paper outlines a novel algorithm to automatically and consistently detect landslide deposits on a landscape scale. The proposed method is named as the Contour Connection Method (CCM) and is primarily based on bare earth lidar data requiring minimal user input such as the landslide scarp and deposit gradients. The CCM algorithm functions by applying contours and nodes to a map, and using vectors connecting the nodes to evaluate gradient and associated landslide features based on the user defined input criteria. Furthermore, in addition to the detection capabilities, CCM also provides an opportunity to be potentially used to classify different landscape features. This is possible because each landslide feature has a distinct set of metadata - specifically, density of connection vectors on each contour - that provides a unique signature for each landslide. In this paper, demonstrations of using CCM are presented by applying the algorithm to the region surrounding the Oso landslide in Washington

  14. ADVICE: a new approach for near-real-time monitoring of surface displacements in landslide hazard scenarios.

    PubMed

    Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio

    2013-01-01

    We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc. PMID:23807688

  15. ADVICE: A New Approach for Near-Real-Time Monitoring of Surface Displacements in Landslide Hazard Scenarios

    PubMed Central

    Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio

    2013-01-01

    We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc. PMID:23807688

  16. The Tagus River delta (off Lisbon, Portugal) as a repository of landslides. Implications on trigger mechanisms, tsunami hazard and neotectonics

    NASA Astrophysics Data System (ADS)

    Terrinha, Pedro; Duarte, Henrique; Noiva, João; Ribeiro, Carlos; Brito, Pedro; Baptista, Maria Ana; Miranda, Miguel; Omira, Rachid; Magalhães, Vitor; Roque, Cristina

    2015-04-01

    The seismic stratigraphy of the Tagus estuary ebb-tidal delta of Lisbon (Portugal) is investigated with the purpose of searching for evidences of possible sedimentary or erosive features associated with landslides or mass wasting deposits (MTD) events. A special attention was given to events that could have been triggered by large earthquakes that are known to have struck the West of Portugal and Spain in historical and pre-historical times. These earthquakes destroyed Lisbon at least twice in the last 500 years, being the 1755 Lisbon earthquake of estimated magnitude >8.5. To investigate these geological features the seismic reflection dataset used in this work consists of Chirp (Lisboa98 dataset), Sparker single channel (PACEMAKER 2011 dataset) and multichannel seismic (MCS) data (TAGUSDELTA 2013 dataset). Cross-lines of MCS data were acquired crossing the core sampling sites done in previous works. Calibration of the seismic lines width the core data led to infer that the Tagus ebb delta started its formation around 17ky BP and it consists of two main stratigraphic units, the younger of which initiated its formation at approximately 13ky BP. The lower deltaic unit contains several MTDs and/or landslides that could not be mapped with the present dataset. In the upper unit we report the existence of a landslide with 10km of length, 4.5km of width and 20m of maximum thickness that accounted for the collapse of half of the Tagus river delta front. The internal structure of the landslide varies laterally. The main different aspects are, as follows, i) the landslide can be dismembered along slope due to stretching parallel associated to differential movement along slope, ii) it can show internal discontinuities that represent mechanical detachments that separate imbricate wedges and iii) distal deposited bodies completely detached from the main landslide body. The age of the landslide is discussed; an estimated age of >8ky BP is proposed by stratigraphic correlation

  17. Italian landslide early warning system

    NASA Astrophysics Data System (ADS)

    Rossi, M.

    2009-04-01

    In Italy, intense or prolonged rainfall is the primary trigger of landslides, and rainfall-induced slope failures occur every year, claiming lives, causing economic disruption, and producing different environmental problems. The national Italian Department of Civil Protection (DPC) is responsible for the protection of individuals, communities and their properties, against natural hazards, including landslides, and for rescuing people if a catastrophic event should occur. The main tasks of the DPC are the issuing of meteorological, hydrological, and landslide warnings and the determination of landslide hazards and risk at different geographical scales. In 2007, the DPC asked IRPI, a research institute of the Italian National Research Council, to design and implement a prototype system for the quasi-real-time forecast of rainfall induced landslides in Italy. The system - under development - is based on two main components: (i) a set of national, regional and local rainfall thresholds for the possible initiation of landslides, and (ii) a synoptic (small scale) assessment of landslide hazards and the associated risk in Italy. The system attempt to predict rainfall induced landslides using existing and new rainfall thresholds. The new rainfall thresholds, chiefly of the intensity-duration (ID) and normalized-ID types, will be defined analyzing a catalogue of rainfall events that have or have not resulted in landslides. The thresholds will be established using objective statistical techniques. The assessment of landslide hazards and risk will be performed using statistical models based on small scale thematic information and catalogues of historical landslides and historical landslides with human consequences in Italy, in the period from 1900 to 2005. The catalogues were compiled through a thorough literature and archive search. The two individual system components will be then combined to form a national landslide warning system. A preliminary version of a software tool

  18. Updated size distribution of submarine landslides along the U.S. Atlantic margin

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Chaytor, J. D.; Andrews, B. D.; Brothers, D. S.; Geist, E. L.

    2012-12-01

    The volume of failed material in submarine landslides is one of the primary factors controlling tsunami amplitude, hence the cumulative volume distribution of submarine landslides on the U.S. Atlantic continental slope and rise provides information important for the evaluation of tsunami hazard potential for U.S. the East Coast. Landslide size distributions also help constrain the initiation mechanisms of submarine landslides in siliciclastic and carbonate environments [1,2], and thus improve our understanding of the pre-conditioning and propagation of landslides. Previous compilations of landslide distributions along the Atlantic continental margin used regional side-scan sonar data, seismic reflection profiles and multibeam bathymetry data that lacked coverage of large portions of the upper continental slope [3, 4]. We updated this regional database by compiling and merging multibeam echosounder data from 36 surveys conducted by various federal agencies and academia between Georges Banks and Cape Hatteras from 1990-2012. The result is a continuous 594,000 km2 digital bathymetric surface with a spatial resolution of 100 m spanning water depths between 55-6150 m. The new grid allows better identification and delineation of the areas and heights of the headwall scarps, and more precise volume estimates of the evacuated slide regions. Acoustic backscatter derived from the multibeam data and an updated compilation of sub-bottom seismic profiles and core logs improve the identification of the extent of mass transport deposits. The updated analysis includes uncertainties in the determination of the landslide areas. The cumulative area and volume distributions of the landslides excavations, their area/volume ratio, the water depth of the head wall, and the fraction of slope and rise areas covered by headwall scarps and landslide deposits, are quantified and discussed. Combining landslide size distribution with the overall rate of occurrence of landslides derived from age

  19. Shallow Landslide Susceptibility Mapping for Selected Areas in the Philippines Severely affected by Super Typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Felix, Raquel; Rabonza, Maricar; Ortiz, Iris Jill; Alejandrino, Ian Kaye; Aquino, Dakila; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2014-05-01

    Super Typhoon Haiyan, considered as one of the most powerful storms recorded in 2013, devastated the central Philippines region on 8 November 2013. In its wake, Haiyan left 6,190 fatalities, 28,626 injured and 1,785 missing, as well as damage amounting to more than USD 823 million. To mitigate damage from similar events in the future, it is imperative to characterize hazards associated with tropical cyclones such as those brought by Haiyan, with detailed studies of storm surges, landslides and floods. Although strong winds and powerful storm surges up 15-17 feet were the primary causes of damage, landslides studies are also vital in the rehabilitation of typhoon damaged areas. Cities and municipalities of Leyte (7,246.7 sq. km) and Samar (13,121 sq. km) provinces, the heaviest cities area during the onslaught of Haiyan, require detailed and up-to-date hazard maps for their rebuilding and disaster mitigation programs. In order to delineate areas susceptible to rainfall induced shallow landslides, Stability INdex MAPping (SINMAP) software was used over a 6-meter Synthetic Aperture Radar (SAR)-derived DEM grid. Soil calibration parameters from previous studies were used as parameter input to generate a worst-case scenario hazard map of the two provinces. Topographic, hydrologic and soil parameters (cohesion, angle of friction, bulk density and hydraulic conductivity) were used for each pixel of a given digital elevation model (DEM) grid to compute for the corresponding factor of safety. The landslide maps generated using SINMAP are found to be consistent with the landslide inventory derived from high-resolution satellite imagery 2003-2013. The landslide susceptibility classification found in the landslide hazard maps are useful to identify no-build zones, areas that can be built upon but with slope intervention and monitoring as well as places that are safe from shallow landslides. These maps complement the debris flow and structurally-controlled landslide hazard maps

  20. Earthquake Induced Landslides in the Old City of Zefat, N Israel; History, Current Hazard and the Influence of 2000 Years of Human Habitation

    NASA Astrophysics Data System (ADS)

    Katz, O.; Crouvi, O.

    2004-12-01

    The old quarter in the city of Zefat (Northern Israel) has a long history of repeated damage from earthquakes, probably due to earthquake-induced landslides (EILS). In this study we examine field and historical evidence for static and dynamic slope instability in Zefat and evaluate the current EILS hazard in light of its long (ca. 2000 years) human habitation that profoundly changed the natural geotechnical conditions. The city of Zefat is located on the slope of an elevated region bordering the seismogenic Dead Sea transform. The bedrocks are mainly marls, chalks and limestones of Santonian to Eocene times, but most of the city is built on more than 10 meters of anthropogenic talus/strata of two types: (1) talus-like: inclined (>30° ) layers of pebbles and pottery embedded in unconsolidated earth fill and (2) ruins filled and covered by earth. Meter-scale slumps and mudflows are common in this material during the rainy season. We evaluate the EILS hazard with GIS based Newmark analysis using as base layers D.T.M with 625m-sq grid cell size and a geotechnical map. Each exposed geotechnical unit was assigned mechanical properties (cohesion, angle of internal friction, density) reflecting its lithology and slope stability properties. For calibration of the assigned mechanical model, we first analyzed the M=6, October 1759 and M=7, January 1837 earthquakes, both with distance to fault rapture zone (R) of about 15km. Sites of slope failure in these earthquakes were mapped using field evidence and historical chronicles of damaged synagogues. The M=5 earthquake of August 1984 (R=50km) with no EILS was also analyzed. Calibration was satisfied when calculated slope failure was comparable to the mapped historical reports and field observations of slope instability. To evaluate the current hazard, 20 theoretical earthquakes in the magnitude range of 4-7 and epicentral distances of 10-120km were analyzed, using the calibration described above. We found that M=7, M=6 and M=5

  1. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  2. Assessment of landslide hazards resulting from the February 13, 2001, El Salvador earthquake; a report to the government of El Salvador and the U. S. Agency for International Development

    USGS Publications Warehouse

    Baum, Rex L.; Crone, Anthony J.; Escobar, Demetreo; Harp, Edwin L.; Major, Jon J.; Martinez, Mauricio; Pullinger, Carlos; Smith, Mark E.

    2001-01-01

    On February 13, 2001, a magnitude 6.5 earthquake occurred about 40 km eastsoutheast of the capital city of San Salvador in central El Salvador and triggered thousands of landslides in the area east of Lago de Ilopango. The landslides are concentrated in a 2,500-km2 area and are particularly abundant in areas underlain by thick deposits of poorly consolidated, late Pleistocene and Holocene Tierra Blanca rhyolitic tephras that were erupted from Ilopango caldera. Drainages in the tephra deposits are deeply incised, and steep valley walls failed during the strong shaking. Many drainages are clogged with landslide debris that locally buries the adjacent valley floor. The fine grain-size of the tephra facilitates its easy mobilization by rainfall runoff. The potential for remobilizing the landslide debris as debris flows and in floods is significant as this sediment is transported through the drainage systems during the upcoming rainy season. In addition to thousands of shallow failures, two very large landslides occurred that blocked the Rio El Desague and the Rio Jiboa. The Rio El Desague landslide has an estimated volume of 1.5 million m3, and the Rio Jiboa landslide has an estimated volume of 12 million m3. Field studies indicate that catastrophic draining of the Rio El Desague landslide-dammed lake would pose a minimal flooding hazard, whereas catastrophic draining of the Rio Jiboa lake would pose a serious hazard and warrants immediate action. Construction of a spillway across part of the dam could moderate the impact of catastrophic lake draining and the associated flood. Two major slope failures on the northern side of Volcan San Vicente occurred in the upper reaches of Quebrada Del Muerto and the Quebrada El Blanco. The landslide debris in the Quebrada Del Muerto consists dominantly of blocks of well-lithified andesite, whereas the debris in the Quebrada El Blanco consists of poorly consolidated pyroclastic sediment. The large blocks of lithified rock in

  3. Slovenian national landslide database as a basis for statistical assessment of landslide phenomena in Slovenia

    NASA Astrophysics Data System (ADS)

    Komac, Marko; Hribernik, Katarina

    2015-11-01

    Landslide databases on a national scale are an important tool for good spatial planning and for planning prevention measures or remediation activities. We have developed a modern national landslide database that enabled better landslide occurrence understanding, and will in the future help to assess landslide hazard, risk, potential damage, and enable more efficient landslide mitigation. In the paper landslide database construction steps and their properties are described. Following the collection of the landslide data from various sources and their input into the database the consistency of the database was assessed. Based on the data collected we have assessed basic statistical landslide properties, such as their overall spatial distribution, size and volume and the relation between them, landslide distribution in relation to engineering-geological units and different land-use, and past landslide mitigation activities. Analysis of landslide distribution also indicated areas in Slovenia where no landslide mapping was performed in the past, yet it should be, due to the high landslide susceptibility of these areas. Consequentially future national activities in relation to landslide problems should be governed primarily based on the findings of the database analyses to achieve the highest efficiency.

  4. Exploiting COSMO-Skymed Data and Multi-Temporal Interferometry for Early Detection of Landslide Hazard: A Case of Slope Failure and Train Derailment Near Marina Di Andora, Italy.

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Chiaradia, M.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Milillo, G.; Guerriero, L.

    2014-12-01

    The improving temporal and spatial resolutions of new generation space-borne X-Band SAR sensors such as COSMO-SkyMed (CSK) constellation, and therefore their better monitoring capabilities, will guarantee increasing and more efficient use of multi-temporal interferometry (MTI) in landslide investigations. Thanks to their finer spatial resolution with respect to C-band data, X-band InSAR applications are very promising also for monitoring smaller landslides and single engineering structures sited on potentially unstable slopes. This work is focused on the detection of precursory signals of an impending slope failure from MTI time series of ground deformations obtained by exploiting 3 m resolution CSK data. We show the case of retrospectively captured pre-failure strains related to the landslide which occurred on January 2014 close to the town of Marina di Andora. The landslide caused the derailment of a train and the interruption of the railway line connecting north-western Italy to France. A dataset of 56 images acquired in STRIPMAP HIMAGE mode by CSK constellation from October 2008 to May 2014 was processed through SPINUA algorithm to derive the ground surface deformation map and the time series of displacement rates for each coherent radar target. We show that a cluster of moving targets coincides with the structures (buildings and terraces) affected by the 2014 landslide. The analysis of the MTI time series further shows that the targets had been moving since 2009, and thus could have provided a forewarning signal about ongoing slope or engineering structure instability. Although temporal landslide prediction remains difficult even via in situ monitoring, the presented case study indicates that MTI relying on high resolution radars such as CSK can provide very useful information for slope hazard mapping and possibly for early warning. Acknowledgments DIF provided contribution to data analysis within the framework of CAR-SLIDE project funded by MIUR (PON01_00536).

  5. Improving Landslide Inventories by Limiting Land Classification to Drainage Areas of Debris Flow-Dominated Channels

    NASA Astrophysics Data System (ADS)

    Lyons, N. J.; Mitasova, H.; Wegmann, K. W.

    2011-12-01

    Landslide inventories, frequently created by aerial photograph interpretation (API), are often used in the production of hillslope hazard maps to characterize past landslides or to evaluate a hazard model. In the former application of inventories, potential landslides in hazard maps are delineated as areas that have similar morphometrics as past landslides at locations of modeled hillslope instability. Therefore, the accuracy of the inventory has a strong influence upon hazard extent. In the latter application, the partial inventories that sometimes result from API, due to the subjectivity of interpretation and revegetation of landslides, likely results in incorrect evaluations. A more complete, less subjective technique is needed to not only better characterize past landslides and improve evaluation of hazard models, but also to assess the extent of areas prone to significant mass wasting in mountainous regions due to the evolution of landscapes. Inventory accuracy continues to improve with new technology and automated techniques, though rarely is the form of a channel's topography incorporated into the inventory process despite the growing evidence of a topographic signature of debris flows. This signature demarcates the transition between the dominant channel erosional process: fluvial or debris flow. These process transitions are often observed at scaling breaks in log-log plots of a channel's drainage area versus slope (DS plot). The scaling breaks, above which the effects of fluvial power laws upon channel topography are not observed and below which debris flow scars are not found, may signify the lowest point in the watershed where debris flows occur. We present an inventory technique that limits a land classification algorithm to areas that are upstream from this scaling break determined from DS plots of five streams in the Great Smoky Mountains National Park (GSMNP) region of the southern Appalachians. Topographic data for the DS plots and the

  6. Continental level landslide susceptibility assessment in the context of the European Union's Soil Thematic Strategy

    NASA Astrophysics Data System (ADS)

    Günther, A.; Van Den Eeckhaut, M.; Reichenbach, P.; Hervás, J.; Malet, J.; Guzzetti, F.

    2011-12-01

    In the context of the European Union's Soil Thematic Strategy, and the formulation of a draft of a European framework directive devoted to the sustainable protection of soil, landslides are recognized as one of the eight soil threats requiring harmonized spatial hazard assessments over the EU territory. The general framework for the harmonized assessment of soil threats (namely erosion, organic matter decline, salinisation, compaction, landslides, contamination, sealing and loss of biodiversity) consists of a nested geographical approach based on "Tiers", where a semi-quantitative, low-resolution (1:1 million) evaluation ("Tier 1") using already available pan-European datasets should enable the delineation of priority areas requiring more detailed quantitative inventory-based assessments with additional data ("Tier 2"). In this contribution, we present the elaboration of a continental level "Tier 1" generic landslide susceptibility model based on a heuristic, spatial multi-criteria evaluation (SMCE) approach exploiting the most important conditioning factors for landslides being slope gradient, lithology and land cover. Additionally, extensive landslide locations available at regional and national levels were collected, harmonized and standardized over the EU territory to obtain a signal for input parameter specification and model calibration, evaluation and classification. Since the analyzed area is highly complex in terms of climatic, physiographic and seismotectonic conditions controlling landslide occurrences, a terrain differentiation based on climatic and geomorphologic criteria is proposed to delineate distinct zones to which specific predictor class weights have been allocated through the SMCE approach for susceptibility evaluation. The heuristic indexing scheme is cross-validated with multivariate statistical evaluations in representative areas for which detailed inventory information is available. The resulting pan-European susceptibility estimate

  7. Coprates Chasma Landslide

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Coprates Chasma comprises the central portion of the Valles Marineris canyon system complex. This image of the southern wall of Coprates Chasma contains a landslide deposit with dunes over portions of slide. Landslides have very characteristic morphologies on Earth, which they also display on Mars. These morphologies include a distinctive escarpment at the uppermost part of the landslide--called a head scarp (seen at the bottom of this image), a down-dropped block of material below that escarpment that dropped almost vertically, and a deposit of debris that moved away from the escarpment at high speed. In this example, the wall rock displayed in the upper part of the cliff contains spurs and chutes created by differing amounts of erosion. The actual landslide deposit is delineated by its fan-shape and lobate margins. The dunes subsequently marched upon the landslide deposit.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a

  8. Landslide susceptibility assessment based on different rainfall-triggered landslide events

    NASA Astrophysics Data System (ADS)

    Oliveira, Sergio C.; Zêzere, José L.; Garcia, Ricardo A. C.

    2015-04-01

    the landslide-event inventory not used to assess landslide susceptibility. Results and discussion are further supported by Receiver Operator Characteristic curves and the corresponding Area Under the Curve. This work was supported by the FCT - Portuguese Foundation for Science and Technology and is within the framework of the Project Pan-European and nation-wide landslide susceptibility assessment, European and Mediterranean Major Hazards Agreement (EUR-OPA). The first author was funded by a postdoctoral grant (SFRH/BPD/85827/2012) from the Portuguese Foundation for Science and Technology (FCT).

  9. ECONOMIC LOSSES AND FATALITIES DUE TO LANDSLIDES.

    USGS Publications Warehouse

    Schuster, Robert L.; Fleming, Robert W.

    1986-01-01

    Annual losses in the United States, Japan, Italy, and India have been estimated at 1 billion or more each. During the period 1971-74, nearly 600 people per year were killed by landslides worldwide; about 90 percent of these deaths occurred in the Circum-Pacific region. From 1967-82, 150 people per year died in Japan as a result of slope failures. In the United States, the number of landslide-related fatalities per year exceeds 25. Japan leads other nations in development of comprehensive programs to reduce economic losses and fatalities due to landslides. The United States recently has proposed a national landslide hazard reduction program.

  10. Tien Shan Geohazards Database: Landslide susceptibility analysis

    NASA Astrophysics Data System (ADS)

    Havenith, H. B.; Torgoev, A.; Schlögel, R.; Braun, A.; Torgoev, I.; Ischuk, A.

    2015-11-01

    the observed low sub-regional landslide activity; for some cases, we consider that some influencing factors must not have been well taken into consideration, for others we show that we simply had missed landslide detections. At the scale of the mountain range, the computed landslide susceptibility maps fit the observed landslide distributions relatively well, but these maps only represent the spatial component of landslide hazards. Temporal aspects are not considered by this analysis.

  11. Distribution probability of large-scale landslides in central Nepal

    NASA Astrophysics Data System (ADS)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  12. Mapping and analysis of Martian landslides

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni B.; Frattini, Paolo; Valbuzzi, Elena; Russo, Valeria

    2013-04-01

    This work is part of a larger effort aimed to a more quantitative description of landslide phenomena on Mars and the understanding of rock mass properties and landslide mobility with respect to their Earth equivalents. Recently, large satellite imagery datasets have become available and they have been mosaicked in different suitable tools making mapping an easier job than before. Furthermore, the availability of other georeferenced database makes possible and easily feasible some spatially distributed analyses. We prepared a new landslide inventory to acquire information about: landslide size distribution and areal density, controls of geometrical condition along Martian slopes, landslide typology and mechanism, relationship with impact craters distribution, runout, volume estimates, characteristic features. We adopted Google Earth, Google, Inc. as a mapping tool using both visible and CTX images. Landslides have been mapped according to standard geomorphological criteria, by two landslide experts delineating both the landslide scar and accumulation limits, associating each scarp to a deposit. Multiple accumulations have been differentiated where possible to obtain a more sound dataset. We prevalently mapped landslides located along the Martian valleys and Chasma flanks with only minor attention to classical block and slump instabilities typical of crater rim failures. This because we were mainly interested in long runout landslides or complex failures which could allow to define some rock mass characteristics along these slopes, and to study landslide mobility with respect to Earth equivalent phenomena. So long runout landslides have been mapped also when recognized within crater rims. Topographic characteristics have been extracted by means of the available MOLA dataset. The inventory presently consists of 1232 landslides covering a total area of about 180,000 km2. Landslide size ranges from 0.15 km2 to a maximum of 12,000 km2. We examined area

  13. Integration of landslide susceptibility products in the environmental plans

    NASA Astrophysics Data System (ADS)

    Fiorucci, Federica; Reichenbach, Paola; Rossi, Mauro; Cardinali, Mauro; Guzzetti, Fausto

    2015-04-01

    Landslides are one of the most destructive natural hazard that causes damages to urban area worldwide. The knowledge of where a landslide could occur is essential for the strategic management of the territory and for a good urban planning . In this contest landslide susceptibility zoning (LSZ) is crucial to provide information on the degree to which an area can be affected by future slope movements. Despite landslide susceptibility maps have been prepared extensively during the last decades, there are few examples of application is in the environmental plans (EP). In this work we present a proposal for the integration of the landslide inventory map with the following landslide susceptibility products: (i) landslide susceptibility zonation , (ii) the associated error map and (iii) the susceptibility uncertainty map. Moreover we proposed to incorporate detailed morphological studies for the evaluation of landslide risk associated to local parceling plan. The integration of all this information is crucial for the management of landslide risk in urban expansions forecasts. Municipality, province and regional administration are often not able to support the costs of landslide risk evaluation for extensive areas but should concentrate their financial resources to specific hazardous and unsafe situations defined by the result of the integration of landslide susceptibility products. Zonation and detail morphological analysis should be performed taking into account the existing laws and regulations, and could become a starting point to discuss new regulations for the landslide risk management.

  14. Statistical Seismic Landslide Analysis: an Update

    NASA Astrophysics Data System (ADS)

    Lee, Chyi-Tyi

    2015-04-01

    Landslides are secondary or induced features, whose recurrence is controlled by the repetition of triggering events, such as earthquakes or heavy rainfall. This makes seismic landslide hazard analysis more complicated than ordinary seismic hazard analysis, and it requires multi-stage analysis. First, susceptibility analysis is utilized to divide a region into successive classes. Then, it is necessary to construct a relationship between the probability of landslide failure and earthquake intensity for each susceptibility class for a region, or to find the probability of failure surface using the susceptibility value and earthquake intensity as independent variables at the study region. Then, hazard analysis for the exceedance probability of earthquake intensity is performed. Finally, an analysis of the spatial probability of landslide failure under a certain return-period earthquake is drawn. This study uses data for Chi-Chi earthquake induced landslides as the training data set to perform the susceptibility analysis and probability of failure surface analysis. A regular probabilistic seismic hazard analysis is also conducted to map different return-period Arias intensities. Finally a seismic landslide hazard map for the whole of Taiwan is provided.

  15. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey).

    PubMed

    Karsli, F; Atasoy, M; Yalcin, A; Reis, S; Demir, O; Gokceoglu, C

    2009-09-01

    Various natural hazards such as landslides, avalanches, floods and debris flows can result in enormous property damages and human casualties in Eastern Black Sea region of Turkey. Mountainous topographic character and high frequency of heavy rain are the main factors for landslide occurrence in Ardesen, Rize. For this reason, the main target of the present study is to evaluate the landslide hazards using a sequence of historical aerial photographs in Ardesen (Rize), Turkey, by Photogrammetry and Geographical Information System (GIS). Landslide locations in the study area were identified by interpretation of aerial photographs dated in 1973 and 2002, and by field surveys. In the study, the selected factors conditioning landslides are lithology, slope gradient, slope aspect, vegetation cover, land class, climate, rainfall and proximity to roads. These factors were considered as effective on the occurrence of landslides. The areas under landslide threat were analyzed and mapped considering the landslide conditioning factors. Some of the conditioning factors were investigated and estimated by employing visual interpretation of aerial photos and topographic data. The results showed that the slope, lithology, terrain roughness, proximity to roads, and the cover type played important roles on landslide occurrence. The results also showed that degree of landslides was affected by the number of houses constructed in the region. As a consequence, the method employed in the study provides important benefits for landslide hazard mitigation efforts, because a combination of both photogrammetric techniques and GIS is presented. PMID:18780152

  16. Connectivity of earthquake-triggered landslides with the fluvial network: Implications for landslide sediment transport after the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Li, Gen; West, A. Joshua; Densmore, Alexander L.; Hammond, Douglas E.; Jin, Zhangdong; Zhang, Fei; Wang, Jin; Hilton, Robert G.

    2016-04-01

    Evaluating the influence of earthquakes on erosion, landscape evolution, and sediment-related hazards requires understanding fluvial transport of material liberated in earthquake-triggered landslides. The location of landslides relative to river channels is expected to play an important role in postearthquake sediment dynamics. In this study, we assess the position of landslides triggered by the Mw 7.9 Wenchuan earthquake, aiming to understand the relationship between landslides and the fluvial network of the steep Longmen Shan mountain range. Combining a landslide inventory map and geomorphic analysis, we quantify landslide-channel connectivity in terms of the number of landslides, landslide area, and landslide volume estimated from scaling relationships. We observe a strong spatial variability in landslide-channel connectivity, with volumetric connectivity (ξ) ranging from ~20% to ~90% for different catchments. This variability is linked to topographic effects that set local channel densities, seismic effects (including seismogenic faulting) that regulate landslide size, and substrate effects that may influence both channelization and landslide size. Altogether, we estimate that the volume of landslides connected to channels comprises 43 + 9/-7% of the total coseismic landslide volume. Following the Wenchuan earthquake, fine-grained (<~0.25 mm) suspended sediment yield across the Longmen Shan catchments is positively correlated to catchment-wide landslide density, but this correlation is statistically indistinguishable whether or not connectivity is considered. The weaker-than-expected influence of connectivity on suspended sediment yield may be related to mobilization of fine-grained landslide material that resides in hillslope domains, i.e., not directly connected to river channels. In contrast, transport of the coarser fraction (which makes up >90% of the total landslide volume) may be more significantly affected by landslide locations.

  17. Ganges Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03681 Ganges Landslide

    Two large landslides dominate this image of part of Ganges Chasma. The eroded surface of an old landslide covers the north half of the image, while a more recent landslide occurs to the south.

    Image information: VIS instrument. Latitude -6.7N, Longitude 310.4E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Accuracy assessment of landslide prediction models

    NASA Astrophysics Data System (ADS)

    Othman, A. N.; Mohd, W. M. N. W.; Noraini, S.

    2014-02-01

    The increasing population and expansion of settlements over hilly areas has greatly increased the impact of natural disasters such as landslide. Therefore, it is important to developed models which could accurately predict landslide hazard zones. Over the years, various techniques and models have been developed to predict landslide hazard zones. The aim of this paper is to access the accuracy of landslide prediction models developed by the authors. The methodology involved the selection of study area, data acquisition, data processing and model development and also data analysis. The development of these models are based on nine different landslide inducing parameters i.e. slope, land use, lithology, soil properties, geomorphology, flow accumulation, aspect, proximity to river and proximity to road. Rank sum, rating, pairwise comparison and AHP techniques are used to determine the weights for each of the parameters used. Four (4) different models which consider different parameter combinations are developed by the authors. Results obtained are compared to landslide history and accuracies for Model 1, Model 2, Model 3 and Model 4 are 66.7, 66.7%, 60% and 22.9% respectively. From the results, rank sum, rating and pairwise comparison can be useful techniques to predict landslide hazard zones.

  19. Landslide databases for applied landslide impact research: the example of the landslide database for the Federal Republic of Germany

    NASA Astrophysics Data System (ADS)

    Damm, Bodo; Klose, Martin

    2014-05-01

    This contribution presents an initiative to develop a national landslide database for the Federal Republic of Germany. It highlights structure and contents of the landslide database and outlines its major data sources and the strategy of information retrieval. Furthermore, the contribution exemplifies the database potentials in applied landslide impact research, including statistics of landslide damage, repair, and mitigation. The landslide database offers due to systematic regional data compilation a differentiated data pool of more than 5,000 data sets and over 13,000 single data files. It dates back to 1137 AD and covers landslide sites throughout Germany. In seven main data blocks, the landslide database stores besides information on landslide types, dimensions, and processes, additional data on soil and bedrock properties, geomorphometry, and climatic or other major triggering events. A peculiarity of this landslide database is its storage of data sets on land use effects, damage impacts, hazard mitigation, and landslide costs. Compilation of landslide data is based on a two-tier strategy of data collection. The first step of information retrieval includes systematic web content mining and exploration of online archives of emergency agencies, fire and police departments, and news organizations. Using web and RSS feeds and soon also a focused web crawler, this enables effective nationwide data collection for recent landslides. On the basis of this information, in-depth data mining is performed to deepen and diversify the data pool in key landslide areas. This enables to gather detailed landslide information from, amongst others, agency records, geotechnical reports, climate statistics, maps, and satellite imagery. Landslide data is extracted from these information sources using a mix of methods, including statistical techniques, imagery analysis, and qualitative text interpretation. The landslide database is currently migrated to a spatial database system

  20. A comprehensive database of Martian landslides

    NASA Astrophysics Data System (ADS)

    Battista Crosta, Giovanni; Vittorio De Blasio, Fabio; Frattini, Paolo; Valbuzzi, Elena

    2016-04-01

    During a long-term project, we have identified and classified a large number (> 3000) of Martian landslides especially but not exclusively from Valles Marineris. This database provides a more complete basis for a statistical study of landslides on Mars and its relationship with geographical and environmental conditions. Landslides have been mapped according to standard geomorphological criteria, delineating both the landslide scar and accumulation limits, associating each scarp to a deposit, and using the program ArcGis for generation of a complete digital dataset. Multiple accumulations from the same source area or from different sources have been differentiated, where possible, to obtain a more complete dataset and to allow more refined analyses. Each landslide has been classified according to a set of criteria including: type, degree of confinement, possible trigger, elevation with respect to datum, geomorphological features, degree of multiplicity, and so on. The runout, fall height, and volume have been measured for each deposit. In fact, the database is revealing a series of trends that may assist at understanding landform processes on Mars and its past climatic conditions. One of the most interesting aspects of our dataset is the presence of a population of landslides whose particularly long mobility deviates from average behavior. While some landslides have travelled unimpeded on a usually flat area, others have travelled against obstacles or mounds. Therefore, landslides are also studied in relation to i) morphologies created by the landslide itself, ii) presence of mounds, barriers or elevations than have affected the movement of the landslide mass. In some extreme cases, the landslide was capable of travelling for several tens of km along the whole valley and upon reaching the opposite side it travelled upslope for several hundreds of meters, which is indication of high travelling speed. In other cases, the high speed is revealed by dynamic deformations

  1. Extreme Precipitation and High-Impact Landslides

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing

  2. A logical framework for ranking landslide inventory maps

    NASA Astrophysics Data System (ADS)

    Santangelo, Michele; Fiorucci, Federica; Bucci, Francesco; Cardinali, Mauro; Ardizzone, Francesca; Marchesini, Ivan; Cesare Mondini, Alessandro; Reichenbach, Paola; Rossi, Mauro; Guzzetti, Fausto

    2014-05-01

    Landslides inventory maps are essential for quantitative landslide hazard and risk assessments, and for geomorphological and ecological studies. Landslide maps, including geomorphological, event based, multi-temporal, and seasonal inventory maps, are most commonly prepared through the visual interpretation of (i) monoscopic and stereoscopic aerial photographs, (ii) satellite images, (iii) LiDAR derived images, aided by more or less extensive field surveys. Landslide inventory maps are the basic information for a number of different scientific, technical and civil protection purposes, such as: (i) quantitative geomorphic analyses, (ii) erosion studies, (iii) deriving landslide statistics, (iv) urban development planning (v) landslide susceptibility, hazard and risk evaluation, and (vi) landslide monitoring systems. Despite several decades of activity in landslide inventory making, still no worldwide-accepted standards, best practices and protocols exist for the ranking and the production of landslide inventory maps. Standards for the preparation (and/or ranking) of landslide inventories should indicate the minimum amount of information for a landslide inventory map, given the scale, the type of images, the instrumentation available, and the available ancillary data. We recently attempted at a systematic description and evaluation of a total of 22 geomorphological inventories, 6 multi-temporal inventories, 10 event inventories, and 3 seasonal inventories, in the scale range between 1:10,000 and 1:500,000, prepared for areas in different geological and geomorphological settings. All of the analysed inventories were carried out by using image interpretation techniques, or field surveys. Firstly, a detailed characterisation was performed for each landslide inventory, mainly collecting metadata related (i) to the amount of information used for preparing the landslide inventory (i.e. images used, instrumentation, ancillary data, digitalisation method, legend, validation

  3. ALISSA: Abridged Landslide Inventory of Spain for synoptic Susceptibility Assessment

    NASA Astrophysics Data System (ADS)

    Hervás, Javier

    2014-05-01

    natively collected in kml format, while these and additional landslide attributes extracted from literature are finally stored in an ArcGIS database. In order to not "over-inventory" landslides in some densely mapped areas, some basic registration rules are applied, including neglecting very small landslides as well as small landslides affecting road cuts, and keeping a minimum distance of approximately 100 m between mappable landslide centroids, thus not over-registering rockfalls or partly reactivated large landslides. Although the main purpose of the inventory was to collect fairly distributed landslide locations in Spain for synoptic landslide susceptibility mapping, ALISSA systematically includes also bibliographic references and information on lithology. Including harmonised, major landslide typology is often not possible because of lack of information on landslide type or the unclear classification used in a number of documents and maps. Other landslide properties such as volume or size, date of occurrence or reactivation, activity and damage caused are at the moment occasionally included as they are not relevant to the model used to produce ELSUS 1000 v1. It should be noted that the bibliographical references associated to the inventoried landslides will enable in many instances to collect additional information for engineering works and hazard and risk assessment. ALISSA currently holds over 1400 landslides, including most large landslides and landslides causing major damage in mainland Spain and the Balearic Islands. Although it can be considered to fairly portray landslide distribution in Spain, especially large slides and flows, the inventory is quite far from including all the landslides occurred in the country, bearing also in mind the somehow restrictive landslide registration rules applied for the main purpose of the inventory. In particular, rockfalls and debris flows appear poorly covered. In addition, there are some landslide-prone areas where landslides

  4. Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Holbling, Daniel

    2015-05-01

    This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.

  5. Databases and GIS for landslide research in Europe

    NASA Astrophysics Data System (ADS)

    Dikau, Richard; Cavallin, Angelo; Jäger, Stefan

    1996-04-01

    Within the project "The Temporal occurrence and forecasting of landslides in the European Community" a review of the use of databases and GIS for landslide research has been accomplished. It shows a high potential of these techniques in storing spatial and temporal landslide data (landslide inventories) and in applying different modelling approaches to landslide hazard assessments at various scales. There are three major strategies in European landslide research using GIS and database technologies. At medium and broad scales different combinations of landslide data with factor maps (e.g. slope angle, lithology and geomorphological units) lead to static susceptibility and hazard assessments, which allow probability evaluations for future landslide occurrences. At local scales process models to simulate trajectories of paths for slope processes and deterministic slope stability models are in use. In landslide frequency analysis, temporal database information are correlated with recent and historical triggering factors (e.g. precipitation and precipitation indices) to calculate temporal probabilities for landslide forecasting. However, despite encouraging progress in applying computer technologies in European landslide research, the potential of these tools is still largely untested. Furthermore, it is clear that sophisticated technology cannot replace field work, interdisciplinary research strategies, and critical testing of the reliability of the model results.

  6. Tithonium Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    12 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a large landslide deposit on the floor of western Tithonium Chasma.

    Location near: 4.3oS, 87.9oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  7. Ophir Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    4 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small landslide off a steep slope in southwestern Ophir Chasma.

    Location near: 4.6oS, 72.8oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  8. Tharsis Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in the VIS image occurs in the Tharsis region of Mars, just north of Hebes Chasma. The volcanic flows forming the lower surface in the image have a platy texture. The landslide is younger than the volcanic flow, as the landslide sits on top of the flow surface.

    Image information: VIS instrument. Latitude 5, Longitude 282.4 East (77.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Landslide inventory development in a data sparse region: spatial and temporal characteristics of landslides in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Robbins, J. C.; Petterson, M. G.

    2015-08-01

    In Papua New Guinea (PNG) earthquakes and rainfall events form the dominant trigger mechanisms capable of generating many landslides. Large volume and high density landsliding can result in significant socio-economic impacts, which are felt particularly strongly in the largely subsistence-orientated communities which reside in the most susceptible areas of the country. As PNG has undergone rapid development and increased external investment from mining and other companies, population and settled areas have increased, hence the potential for damage from landslides has also increased. Information on the spatial and temporal distribution of landslides, at a regional-scale, is critical for developing landslide hazard maps and for planning, sustainable development and decision making. This study describes the methods used to produce the first, country-wide landslide inventory for PNG and analyses of landslide events which occurred between 1970 and 2013. The findings illustrate that there is a strong climatic control on landslide-triggering events and that the majority (~ 61 %) of landslides in the PNG landslide inventory are initiated by rainfall related triggers. There is also large year to year variability in the annual occurrence of landslide events and this is related to the phase of El Niño Southern Oscillation (ENSO) and mesoscale rainfall variability. Landslide-triggering events occur during the north-westerly monsoon season during all phases of ENSO, but less landslide-triggering events are observed during drier season months (May to October) during El Niño phases, than either La Niña or ENSO neutral periods. This analysis has identified landslide hazard hotspots and relationships between landslide occurrence and rainfall climatology and this information can prove to be very valuable in the assessment of trends and future behaviour, which can be useful for policy makers and planners.

  10. Climate change has limited impact on soil-mantled landsliding

    NASA Astrophysics Data System (ADS)

    Parker, Robert; Hales, Tristram; Mudd, Simon; Grieve, Stuart

    2015-04-01

    Projected increases in future storminess, associated with anthropogenically-driven climate change, are expected to produce an increase in landslide frequency and hazards. This prediction relies on an implicit and poorly tested assumption, that landslide frequency is limited by the effectiveness of landslide triggers (pore-pressure events determined by the intensity and duration of storms). Using an unprecedented field dataset of hillslope soil depths and ages (attained through radiocarbon dating) from the Southern Appalachian Mountains (USA), we show that this assumption is not valid in this landscape. Instead, landslide frequency is limited by rates of soil production and transport processes, which prepare sites for future landsliding. By simulating the evolution of Appalachian hillslopes, we demonstrate that unless climate change can drive an increase in soil production and transport rates, an increase in future storminess will have little effect on long-term landslide frequency, while individual storms will trigger fewer and smaller landslides.