Science.gov

Sample records for delta scuti pulsators

  1. A new pulsation spectrum and asteroseismology of {delta} Scuti

    SciTech Connect

    Templeton, M.R.; McNamara, B.J.; Guzik, J.A.; Bradley, P.A.; Cox, A.N.; Middleditch, J.

    1997-10-01

    We present the results of a five-year Str{umlt o}mgren y photometric campaign on {delta} Scuti. Our data set consists of 6515 discrete differential magnitudes, and spans the period of 1983 June to 1988 September. We found the primary pulsation mode at 59.731129{plus_minus}0.000002 {mu}Hz, in close agreement with the frequency determination of Fitch (1976, IAU Colloquium, 29, 167), but we find our best-fit observed frequencies for other pulsation modes differ by 0.5{endash}2 cycles per year from Fitch{close_quote}s results. In the case of the second strongest pulsation mode, we found a frequency of 61.936104{plus_minus}0.000009 {mu}Hz{emdash}one cycle per year off of the commonly quoted frequency. All of the other modes not classified as harmonics or beating modes were identified in our data, as well as a new pulsation frequency at 96.21443{plus_minus}0.00005 {mu}Hz discovered in both Str{umlt o}mgren y and b observations. We measured the phase differences between our Str{umlt o}mgren y data and a short string of Str{umlt o}mgren b data taken during the 1987 multisite campaign, and find phase differences ranging from 0 to 0.33 radians, suggesting that there are modes of different spherical harmonic order present in {delta} Scuti. Finally, we evolved a set of M=1.8{endash}2.4 M{sub {circle_dot}} models with solar abundances (X=0.7,Z=0.02) and two (M=2.2 and M=2.4 M{sub {circle_dot}}) models with solar abundances scaled to (X=0.66,Z=0.06), using recent opacity and reaction rate data, and applied linear, nonadiabatic pulsation analysis to models in the shell hydrogen burning phase. The Z=0.02 model which best fit the observed spectral type of F2III, the {ital Hipparcos} absolute magnitude of M{sub V}=1.0, and the radius estimate of Cugier and Monier of R=4.1 R{sub {circle_dot}}, and which has a pure radial mode at 59.731 {mu}Hz has a mass of 2.1 M{sub {circle_dot}}, with T{sub eff}=6894 K, R=4.14 R{sub {circle_dot}}, and M{sub V}=1.0. (Abstract Truncated)

  2. Large separations or regular technical patterns? Could data sampling mimic the frequency range of pulsating Delta Scuti stars?

    NASA Astrophysics Data System (ADS)

    Paparo, Margit; Benko, Jozsef M.; Hareter, Markus; Guzik, Joyce A.

    2015-08-01

    Asteroseismology allows unique information on the inner structure of stars. The large separation between the consecutive radial orders and the small separation of the modes with different l values are well-known and useful parameters characterizing solar-type oscillations. The large separation was derived only for a few Delta Scuti stars which are pulsating in the non-asymptotic regime. Theoretical investigations do not predict a high level of regularity of the excited modes. We carried out a search for regularity in a sample of Delta Scuti stars observed by CoRoT (91 stars). Usually the Fourier Transform or the histogram of frequency differences were used. The echelle diagrams represent the regularity when it was found. As a preliminary step we isolated set(s) of frequencies with quasi-equal spacing. Surprisingly not only a single pattern but up to six patterns were found in most of the stars. The patterns are regularly shifted with respect to each other. The echelle diagrams helped to reduce the scatter of the spacing. The derived spacing supported the better interpretation of the FT diagrams. There is no doubt of the existence of regular patterns. The interpretation is questionable: do the Delta Scuti stars behave so regularly, or we are faced with a technical pattern that obscures the real frequency pattern of the low amplitude Delta Scuti pulsation?

  3. Delta Scuti stars: Theory

    SciTech Connect

    Guzik, J.A.

    1998-03-01

    The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one`s understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying {delta} Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for {delta} Scuti stars, using FG Vir, {delta} Scuti, and CD-24{degree} 7599 as examples.

  4. HYBRID {gamma} DORADUS-{delta} SCUTI PULSATORS: NEW INSIGHTS INTO THE PHYSICS OF THE OSCILLATIONS FROM KEPLER OBSERVATIONS

    SciTech Connect

    Grigahcene, A.; Monteiro, M. J. P. F. G.; Antoci, V.; Handler, G.; Houdek, G.; Balona, L.; Catanzaro, G.; Daszynska-Daszkiewicz, J.; Guzik, J. A.; Kurtz, D. W.; Marconi, M.; Ripepi, V.; Moya, A.; Suarez, J.-C.; Uytterhoeven, K.; Brown, T. M.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Jenkins, J. M.

    2010-04-20

    Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence {gamma} Doradus (Dor) and {delta} Scuti (Sct) stars with masses 1.2-2.5 M {sub sun} are particularly useful for these studies. The {gamma} Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The {delta} Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the {kappa} mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where 'hybrid' stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known {gamma} Dor and {delta} Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure {delta} Sct or {gamma} Dor pulsators, i.e., essentially all of the stars show frequencies in both the {delta} Sct and the {gamma} Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as {delta} Sct, {gamma} Dor, {delta} Sct/{gamma} Dor or {gamma} Dor/{delta} Sct hybrids.

  5. Kepler Eclipsing Binaries with Delta Scuti/Gamma Doradus Pulsating Components I: KIC 9851944

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.; García Hernández, Antonio

    2016-07-01

    KIC 9851944 is a short-period (P = 2.16 days) eclipsing binary in the Kepler field of view. By combining the analysis of Kepler photometry and phase-resolved spectra from Kitt Peak National Observatory and Lowell Observatory, we determine the atmospheric and physical parameters of both stars. The two components have very different radii (2.27 R ⊙, 3.19 R ⊙) but close masses (1.76 M ⊙, 1.79 M ⊙) and effective temperatures (7026, 6902 K), indicating different evolutionary stages. The hotter primary is still on the main sequence (MS), while the cooler and larger secondary star has evolved to the post-MS, burning hydrogen in a shell. A comparison with coeval evolutionary models shows that it requires solar metallicity and a higher mass ratio to fit the radii and temperatures of both stars simultaneously. Both components show δ Scuti-type pulsations, which we interpret as p-modes and p and g mixed modes. After a close examination of the evolution of δ Scuti pulsational frequencies, we make a comparison of the observed frequencies with those calculated from MESA/GYRE.

  6. RY Aquarius a Binary System with Pulsating delta-scuti Primary Component

    NASA Astrophysics Data System (ADS)

    Manzoori, Davood; Salar, Abbasvand

    2016-07-01

    We present simultaneous new BVI light curves along with radial velocity curve analysis of the RY Aqr system, using the PHysics Of Eclipsing BinariEs code. The analysis indicates that while the primary is completely inside its Roche critical surface, the secondary has filled out its Roche surface. In addition, the positions of the system components on M–R, H–R diagrams are specified, which show that the primary is a main-sequence or nearly main-sequence star while the secondary is an evolved subgiant. In addition, analysis of the period and luminosity variations of the system were carried out. Fourier frequency analysis of light variation indicates that the primary is a pulsating, δ-scuti variable star. Moreover, O–C curve analysis shows that the period of the system is secularly decreasing with a rate of dp/dt = 0.074 s yr‑1. This decrease in the orbital period variations was attributed to a mass and angular momentum loss from the system with a rate of 2.57× {10}-10{M}ȯ {{yr}}-1. Apart from the secular period decreases, the orbital period of the system is modulated by a cyclic period of 72.69 year, which was attributed to a third body orbiting around the barycenter of the system.

  7. Spectroscopic Survey Of Delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Kahraman Alicavus, Filiz; Niemczura, Ewa; Polinska, Magdalena; Helminiak, Krzysztof G.; Lampens, Patricia; Molenda-Zakowicz, Joanna; Ukita, Nobuharu; Kambe, Eiji

    2016-07-01

    We present the results of a spectroscopic study of pulsating stars of Delta Scuti type. The spectral types and luminosity classes, fundamental atmospheric parameters (the effective temperature, surface gravity, microturbulent velocity), detailed chemical composition and projected rotational velocities of a significant number of Delta Scuti-type stars were derived. The spectral classification was performed by comparing the spectra of our targets with the spectra of standard stars. The atmospheric parameters were determined by using different methods. The initial atmospheric parameters were derived from the analysis of photometric indices, the spectral energy distribution and the hydrogen lines, while the final atmospheric parameters were obtained from the analysis of iron lines. The spectrum synthesis method was used to determine chemical compositions of the investigated stars. As a result, we derived accurate atmospheric parameters, the projected rotational velocities and the abundance patterns of analysed sample. These results allow us to examine the position of Delta Scuti-type stars in the H-R diagram, and to investigate the effect of the rotational velocity on pulsation properties and a chemical difference between the Delta Scuti-type stars and the Gamma Doradus and A-F type hybrid stars.

  8. A nonradial pulsation model for the rapidly rotating Delta Scuti star Kappa(2) Bootis

    NASA Technical Reports Server (NTRS)

    Kennelly, E. J.; Walker, G. A. H.; Hubeny, I.

    1991-01-01

    A sectorial nonradial pulsation model is used to construct theoretical line profiles which mimic the variations for Kappa(2) Boo. Synthetic spectra generated with the appropriate Teff and log g are used as input. It is found that the data can be reproduced by the combination of a high-degree l is approximately equal to 12 mode with P(osc) aproximately equal to 0.071 d, and a low-degree mode, l is approximately equal to 0-2 with P(osc) approximately equal to 0.071-0.079 d. The projected rotational velocity (v sin i - 115 +/-5 km/s) was determined by fitting synthetic line profiles to the observed spectra. The velocity amplitude of the high-degree oscillations is estimated to be about 3.5 km/s. It is found that the ratio of the horizontal and radial pulsation amplitudes is small (about 0.02) and consistent with p-mode oscillations. Comparisons are made with models invoking starspots, and it is impossible to fit the observations of Kappa(2) Boo by a starspot model without assuming unrealistic values of radius or equatorial velocity.

  9. STATISTICAL PROPERTIES OF GALACTIC {delta} SCUTI STARS: REVISITED

    SciTech Connect

    Chang, S.-W.; Kim, D.-W.; Byun, Y.-I.; Protopapas, P. E-mail: kim@mpia-hd.mpg.de

    2013-05-15

    We present statistical characteristics of 1578 {delta} Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodriguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of {delta} Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodriguez's work. All the {delta} Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing {delta} Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  10. A photoelectric study of three southern Delta Scuti stars

    NASA Astrophysics Data System (ADS)

    Morris, S.; DuPuy, D. L.

    1980-06-01

    Differential photoelectric observations of three Delta Scuti stars AI Scl, WZ Scl, and XX Scl were obtained on ten nights during October 1978. Al Scl did not exhibit strictly periodic behavior, but showed a tendency to pulsate at 134 minutes. WZ Scl and XX Scl were both found to be multiperiodic, with period ratios of 0.6853 and 0.9522, respectively. As the period for radial fundamental and first overtone pulsation is 0.76, the observed period ratios are interpreted as caused by nonradial pulsation. A slightly modified Jurkevich period search method, used to obtain these results, is described.

  11. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    SciTech Connect

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-25

    The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  12. The δ Scuti Pulsation Periods in KIC 5197256

    NASA Astrophysics Data System (ADS)

    Turner, G.; Holaday, J.

    2015-06-01

    In this paper we present the pulsational spectrum for KIC 5197256. This object is an eclipsing binary system with a period of 6.96 days. We demonstrate that the light curve shows presence of δ Scuti pulsations with a dominant period of 0.1015 day. The object should therefore be included in the ever-growing class of eclipsing binary systems with at least one pulsating component.

  13. Amplitude variability of Tau Pegasi and the nature of singly-periodic Delta Scuti stars

    NASA Astrophysics Data System (ADS)

    Breger, M.

    1991-10-01

    Previously unavailable photometric data from the McDonald Observatory are presented and analyzed. A frequency and amplitude analysis of these data, combined with other available measurements, are provided. The pulsation modes are determined, and the results are integrated into the general picture of Delta-Scuti stars. Tau-Peg = HR 8880 shows a dominant pulsation frequency of 18.4052 cycles/d with an amplitude changing slowly from 0.005 mag (or less) to 0.012 mag over 13 years. This is accompanied by smooth changes in phase, suggesting small period changes. The variations in amplitude and phasing are similar to those recently discovered in other nonradially pulsating delta-Scuti stars. The mode identification and the observed amplitude variability show that Tau-Peg is a typical nonradially pulsating Delta-Scuti star with fast rotation. This star shows that for small amplitudes the detection of only a single frequency is not an indication of radial pulsation. This is in contrast to the results found for large-amplitude Delta-Scuti stars which are radial pulsators.

  14. An asteroseismological analysis of Delta Scuti

    NASA Astrophysics Data System (ADS)

    Templeton, M. R.; McNamara, B. J.

    1996-10-01

    One of us (BJM) observed Delta Scuti during the period of June 1983 to September 1988; observations in 1983-85 were conducted at the Tortugas Moutain observatory, New Mexico; in 1987 were conducted in a multisite campaign from New Mexico (by S. Barch), CTIO (by BJM), and SAAO (by K. Sekiguchi); and in 1988 were conducted at CTIO. We have 6515 Stromgren y differential magnitudes spanning a total of 1928.6 days with a sigma per point of approx. 7 mmag.

  15. Confirmation of the magnetic nature of the delta Scuti star HD 21190

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Scholler, M.

    2016-06-01

    HD 21190 is a known delta Scuti star showing Ap star characteristics and a variability period of 3.6h discovered by the Hipparcos mission. Our previous spectropolarimetric observations with FORS1 at the VLT showed the presence of a rather weak magnetic field of the order of a few tens of Gauss. New spectropolarimetric measurements with FORS2 at the VLT reveal that the magnetic field in this star is much stronger, about -250G, indicating that also Ap stars can pulsate in the delta Scuti range.

  16. Deriving the structure of pre-supernovae and delta Scuti stars using nonradial oscillations

    SciTech Connect

    Guzik, J.A.; Bradley, P.A.; Cox, A.N.; Swenson, F.J.; Deupree, R.G.; Soukup, M.S.; Templeton, M.R.; Despain, K.M.

    1998-11-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective is to learn more about the internal structure of two classes of variable stars, by using the observational data afforded by their pulsation properties. The authors updated the one-dimensional computer codes to calculate the evolution and pulsation frequencies of representative delta Scuti and LBV models. They compared the observed pulsation properties with model predictions in an iterative process to find a model (or models) with interior structures that matched the observational constraints for several delta Scuti stars. They carried out nonlinear hydrodynamic modeling of LBV envelopes and proposed a mechanism for their periodic outbursts. Finally, they began validation of a two-dimensional stellar evolution code that will be used to investigate the effects of rotation and hydrodynamic instabilities on the interior structure of these stars.

  17. HD 106426, a new multiperiodic delta Scuti variable

    NASA Astrophysics Data System (ADS)

    Honkova, K.; Jurysek, J.; Masek, M.; Paunzen, E.; Zejda, M.

    2014-06-01

    We present the time series analysis of CCD photometry from FRAM telescope at the Pierre Auger Observatory (PAO, Argentina) for HD 106426. In addition, we analysed the data from ASAS. HD 106426 is a new multiperiodic delta Scuti variable.

  18. HIGH-AMPLITUDE {delta}-SCUTIS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Garg, A.; Cook, K. H.; Nikolaev, S.; Huber, M. E.; Rest, A.; Becker, A. C.; Challis, P.; Clocchiatti, A.; Minniti, D.; Miknaitis, G.; Morelli, L.; Olsen, K.; Suntzeff, N. B.; Welch, D. L.; Wood-Vasey, W. M.

    2010-08-15

    We present 2323 high-amplitude {delta}-Scuti (HADS) candidates discovered in the Large Magellanic Cloud by the SuperMACHO survey (Rest et al.). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, we find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. We also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax.

  19. On the period variations of several low declination high amplitude delta Scuti variables

    NASA Astrophysics Data System (ADS)

    Boonyarak, Chayan; Fu, Jian-Ning; Khokhuntod, Pongsak; Jiang, Shi-Yang

    2011-05-01

    A 16-inch Schmidt-Cassegrain telescope on the campus of Naresuan University of Thailand and several similar-size telescopes in China equipped with CCD cameras were used to observe 14 high amplitude delta Scuti stars: GP And, CY Aqr, BS Aqr, YZ Boo, AD CMi, VZ Cnc, EH Lib, DY Her, V927 Her, KZ Hya, BE Lyn, V1162 Ori, DY Peg, and CW Ser, between the years 1999 and 2010. Data were also collected from scientific journals and sources on the Internet for these variable stars. Times of light maximum of these delta Scuti stars were then either determined from the observations or obtained from the literature to analyze the pulsation period variations. For the 14 delta Scuti stars we concluded that 7 stars (BS Aqr, CY Aqr, AD CMi, EH Lib, KZ Hya, BE Lyn and DY Peg) are binary or multiple systems. 10 delta Scuti stars are found with periods increasing with rates between 5.86×10-9 and 2.34×10-6 per year and the other 4 stars (BS Aqr, DY Her, BE Lyn and DY Peg) show periods decreasing with rates of about 10-9 to 10-8 per year.

  20. Photometric and Spectroscopic Study of the Delta Scuti Stars FH Cam, CU CVn and CC Lyn

    NASA Astrophysics Data System (ADS)

    Conidis, G. J.; Gazeas, K. D.; Capobianco, C. C.; Ogloza, W.

    2010-06-01

    Three short period (P ˜ 1 day) variable stars from the Hipparcos catalogue targets were observed after suspected misclassification as Beta Lyr eclipsing systems (Perryman et al. 1997), as no secondary component had been noticed in the inspection of their Broadening Functions (BFs) (Rucinski 2002). FH Cam is found to be a multiple star system with a member exhibiting Delta Scuti behaviour. The dominant pulsation frequency is found to be 7.3411 ± 0.0002 c/d, which corresponds to a pulsation mode of l ≤ 1. We confirmed the pulsations of CU CVn using photometric observations and found a pulsation frequency of 14.7626 ± 0.0250 c/d, which is in agreement with the period given in literature. CC Lyn is a non-eclipsing visual binary (CCDM J07359+4302AB), the brighter component (A) is found to be a multi-mode Delta Scuti pulsator, with pulsation frequencies of 5.6402 ± 0.0004 c/d and 7.3368 ± 0.0005 c/d.

  1. Observations and a new interpretation for the delta Scuti variable star VZ Cancri

    SciTech Connect

    Cox, A.N.; McNamara, B.J.; Ryan, W.

    1984-09-01

    Extensive numbers of new photoelectric data have been collected and analyzed to investigate the modal behavior of VZ Cnc. Its previously observed periods yield a period ratio of 0.80 implying pulsation in the first and second radial overtones. Of the seventeen delta Scuti stars listed by Fitch and Sziedl which have well-determined periods, it is the only star which apparently does not pulsate in the fundamental mode. This peculiarity is investigated from the standpoint of a change with time of the dominant pulsation mode and atmospheric helium settling. The former suggestion is found to be untenable. The latter is found to increase the theoretical ratio of the first overtone/fundamental periods to that observed. It is thus suggested that VZ Cnc pulsates in these lowest order modes and that its atmosphere has been largely depleted of helium. However, if VZ Cnc has a temperatur as large as 7500 K, its position in the instability strip places this star near the transition line between the first and second overtone pulsation modes, beyond the fundamental mode blue edge. In this case the fundamental mode cannot exist, and the 1H and 2H modes are properly identified.

  2. Searching for δ Scuti-type pulsation and characterising northern pre-main-sequence field stars

    NASA Astrophysics Data System (ADS)

    Díaz-Fraile, D.; Rodríguez, E.; Amado, P. J.

    2014-08-01

    Context. Pre-main-sequence (PMS) stars are objects evolving from the birthline to the zero-age main sequence (ZAMS). Given a mass range near the ZAMS, the temperatures and luminosities of PMS and main-sequence stars are very similar. Moreover, their evolutionary tracks intersect one another causing some ambiguity in the determination of their evolutionary status. In this context, the detection and study of pulsations in PMS stars is crucial for differentiating between both types of stars by obtaining information of their interiors via asteroseismic techniques. Aims: A photometric variability study of a sample of northern field stars, which previously classified as either PMS or Herbig Ae/Be objects, has been undertaken with the purpose of detecting δ Scuti-type pulsations. Determination of physical parameters for these stars has also been carried out to locate them on the Hertzsprung-Russell diagram and check the instability strip for this type of pulsators. Methods: Multichannel photomultiplier and CCD time series photometry in the uvby Strömgren and BVI Johnson bands were obtained during four consecutive years from 2007 to 2010. The light curves have been analysed, and a variability criterion has been established. Among the objects classified as variable stars, we have selected those which present periodicities above 4 d-1, which was established as the lowest limit for δ Scuti-type pulsations in this investigation. Finally, these variable stars have been placed in a colour-magnitude diagram using the physical parameters derived with the collected uvbyβ Strömgren-Crawford photometry. Results: Five PMS δ Scuti- and three probable β Cephei-type stars have been detected. Two additional PMS δ Scuti stars are also confirmed in this work. Moreover, three new δ Scuti- and two γ Doradus-type stars have been detected among the main-sequence objects used as comparison or check stars.

  3. Examination and Monitoring of delta Scuti Variables

    NASA Astrophysics Data System (ADS)

    Hintz, E. G.; Bush, T. C.; Walter, L. A.

    2002-12-01

    Using a variety of telescopes and a variety of observers we continue our program of examining and monitoring δ Scuti variables. The telescopes range from an 8-in up to a 1.8-meter. The observers include high school students, undergraduate and graduate students, and faculty. We will present information about the overall program and results for a number of stars including DQ Cephei, BO Lyncis, AN Lyncis, V407 Cephei, and V577 Ophiuchi. Many other stars have been observed as part of student projects. Therefore, other posters from our group include presentations on a number of individual stars (QS Geminorum, CQ Lyncis, and V1438 Aquilae) and a poster on our spectral observing campaign. We will also report on the installation of a 10-in telescope at Payson High School and its participation in our observing campaigns. We would like to acknowledge the following : a NSF REU grant PHY-9988852, an AAS Small Research Grant for equipment on the 10-in Payson High Telescope, an AAS Small Research Grant for purchase of two research filters, the Theodore Dunham Jr. Grants for Research in Astronomy, and use of the telescopes of the Dominion Astrophysical Observatory.

  4. Masses and ages of Delta Scuti stars in eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Ts. G.; Petrova, Ts. C.

    1993-05-01

    By using data mainly from Frolov et al. (1982) for four Delta Scuti stars in eclipsing binary systems, AB Cas, Y Cam, RS Cha, and AI Hya, their physical parameters, distances, and radial pulsation modes are determined. The evolutionary track systems of Iben (1967), Paczynski (1970), and Maeder and Meynet (1988) are interpolated in order to estimate evolutionary masses Me and ages t of these variables. Their pulsation masses MQ are estimated from the fitting formulae of Faulkner (1977) and Fitch (1981). Our estimates of evolutionary masses M(e) and pulsation masses M(Q) are close to the masses M determined by Frolov et al. from the star binarity. The only exception is AB Cas, for which there is no agreement between certain star parameters. Another, independent approach is also applied to the stars RS Cha and AI Hya: by using their photometric indices b - y and c(1) from the catalog of Lopez de Coca et al. (1990) and appropriate photometric calibrations, other sets of physical parameters, distances, modes, ages, and evolutionary and pulsation masses of both variables are obtained.

  5. Period and amplitude changes in the delta Scuti star V 1162 Orionis

    NASA Astrophysics Data System (ADS)

    Arentoft, T.; Sterken, C.

    2000-02-01

    We present yb time-series CCD photometry of the high-amplitude delta Scuti star V 1162 Ori. A period break and a significant decrease in amplitude (50 percent) has been reported for this star by {Hintz et al. (1998)}. New observations carried out over two observing seasons suggest that the period found by {Hintz et al. (1998)} was no longer valid in early 1998, and that the period again changed during March or April 1998. The latter period change was accompanied by an increase in amplitude of the order of 10 percent. The existing data can be explained by a frequently changing period or by a possible cyclic variation in the O-C diagram indicating sudden changes, a binary system or the presence of two very closely-spaced pulsation frequencies. Based on observations obtained at the European Southern Observatory at La Silla, Chile (applications ESO 62H-0110, 64H-0065 and 64L-0182)

  6. An Analysis of the High Amplitude delta Scuti Star V2455 Cygni

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.; Hintz, Maureen; Mannard, Marissa

    2016-06-01

    The high amplitude delta Scuti (HADS) V2455 Cyg was first noted as a variable star by Wils et al. (2003). They reported a period of 0.0942075 days, with a V amplitude of about 0.44. It has also been suggested that this might be an SX Phe type variable. Since the original discovery paper this star has only received a limited amount of attention. We have collected both spectroscopic and photometric data on this target for the last 10 years. We will present an analysis of the period of V2455 Cyg which suggests a very small companion star. We also examine the temperature and radial velocity over complete pulsation cycles.

  7. Chromospheric activity in Delta Scuti stars - The suspected variable Tau Cygni

    NASA Technical Reports Server (NTRS)

    Fracassini, M.; Pasinetti Fracassini, L. E.; Mariani, A.; Pastori, L.; Teays, T. J.

    1991-01-01

    High-resolution IUE spectra of the suspected variable Tau Cyg were obtained to search for a possible variability of the Mg II h, k double-peaked emission. The observations, spanning an interval of about 6.3 h, have shown flux excursions within or just near 15 percent, a value suggested as the detection limit of actual variations with IUE spectra. A variability, difficult to explain, could be present in the ratios Fk2v/Fk2r. The emission fluxes seem to be higher than those of the Delta Scuti variables Rho Pup and Beta Cas. This comparison could give some insights on the possible role of the convection on the pulsational and chromospheric activities of Tau Cyg. A positive correlation between the total emission fluxes and the rotational velocities of these stars was found.

  8. CzeV293 and CzeV581-Two new high-amplitude double-mode delta Scuti stars

    NASA Astrophysics Data System (ADS)

    Skarka, M.; Cagaš, P.

    2016-07-01

    We report on the discovery of two high-amplitude double-mode delta Scuti stars in constellations of Hercules and Auriga. The stars were observed photometrically in five and two seasons, respectively. Frequency analysis revealed that both stars show complex pulsation behaviour with two independent modes and several combination peaks. Placing the stars into the Petersen diagram allowed us to identify the pulsation modes as the fundamental and the first overtone. Both stars follow the general trend for F/1O pulsators in the short-period part of the Petersen diagram and turned out to be classical members of HADS group of variables. Using empirical formulae we roughly estimate visual absolute magnitude, intrinsic (B - V) 0 colour index and temperature of the target stars.

  9. UBVRIJH photometry of two new luminous δ Scuti stars and the discovery of δ Scuti pulsation in the most evolved Ap star known

    NASA Astrophysics Data System (ADS)

    Koen, C.; Kurtz, D. W.; Gray, R. O.; Kilkenny, D.; Handler, G.; Van Wyk, F.; Marang, F.; Winkler, H.

    2001-09-01

    Time-series photometry of the Hipparcos variable stars HD 199434 and 21190 is reported. Both stars are pulsators of the δ Scuti type. Reclassifications of the MK types of the stars, based on new spectrograms, are given. HD 21190 is found to be F2III SrEuSi:, making it the most evolved Ap star known. Its Strömgren photometric indices support the peculiar spectral type. It is also one of the most evolved δ Scuti stars known. Its combined Ap-δ Scuti nature makes it an important test of models of pulsation in peculiar stars recently developed by Turcotte et al., although it is more extreme than any model they examined. Physical parameters of both stars are estimated from Strömgren and Hβ photometry, and Hipparcos absolute magnitudes. We attempt mode identifications based on amplitude ratios and phase differences from our photometry. The dominant pulsation of HD 21190 may be an overtone radial mode. The model fits for HD 199434 are even less satisfactory, but favour an l=2 mode. Given the good quality and wavelength coverage of our data, the poor results from the application of the photometric theory of mode identification may call into question the use of that technique.

  10. δ Scuti-type pulsation in the hot component of the Algol-type binary system BG Peg

    NASA Astrophysics Data System (ADS)

    Şenyüz, T.; Soydugan, E.

    2014-02-01

    In this study, 23 Algol-type binary systems, which were selected as candidate binaries with pulsating components, were observed at the Çanakkale Onsekiz Mart University Observatory. One of these systems was BG Peg. Its hotter component shows δ Scuti-type light variations. Physical parameters of BG Peg were derived from modelling the V light curve using the Wilson-Devinney code. The frequency analysis shows that the pulsational component of the BG Peg system pulsates in two modes with periods of 0.039 and 0.047 d. Mode identification indicates that both modes are most likely non-radial l = 2 modes.

  11. ROTATIONALLY MODULATED g-MODES IN THE RAPIDLY ROTATING {delta} SCUTI STAR RASALHAGUE ({alpha} OPHIUCHI)

    SciTech Connect

    Monnier, J. D.; Che, X.; Townsend, R. H. D.; Zhao, M.; Kallinger, T.; Matthews, J.; Moffat, A. F. J.

    2010-12-10

    Despite a century of remarkable progress in understanding stellar interiors, we know surprisingly little about the inner workings of stars spinning near their critical limit. New interferometric imaging of these so-called rapid rotators combined with breakthroughs in asteroseismology promise to lift this veil and probe the strongly latitude-dependent photospheric characteristics and even reveal the internal angular momentum distribution of these luminous objects. Here, we report the first high-precision photometry on the low-amplitude {delta} Scuti variable star Rasalhague ({alpha} Oph, A5IV, 2.18 M{sub sun}, {omega}/{omega}{sub c}{approx}0.88) based on 30 continuous days of monitoring using the MOST satellite. We have identified 57 {+-} 1 distinct pulsation modes above a stochastic granulation spectrum with a cutoff of {approx}26 cycles day{sup -1}. Remarkably, we have also discovered that the fast rotation period of 14.5 hr modulates low-frequency modes (1-10 day periods) that we identify as a rich family of g-modes (|m| up to 7). The spacing of the g-modes is surprisingly linear considering Coriolis forces are expected to strongly distort the mode spectrum, suggesting we are seeing prograde 'equatorial Kelvin' waves (modes l = m). We emphasize the unique aspects of Rasalhague motivating future detailed asteroseismic modeling-a source with a precisely measured parallax distance, photospheric oblateness, latitude temperature structure, and whose low-mass companion provides an astrometric orbit for precise mass determinations.

  12. The Role of Turbulent Pressure as a Coherent Pulsational Driving Mechanism: The Case of the δ Scuti Star HD 187547

    NASA Astrophysics Data System (ADS)

    Antoci, V.; Cunha, M.; Houdek, G.; Kjeldsen, H.; Trampedach, R.; Handler, G.; Lüftinger, T.; Arentoft, T.; Murphy, S.

    2014-12-01

    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of "pure" stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.

  13. The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the δ Scuti star HD 187547

    SciTech Connect

    Antoci, V.; Houdek, G.; Kjeldsen, H.; Trampedach, R.; Arentoft, T.; Cunha, M.; Handler, G.; Lüftinger, T.; Murphy, S.

    2014-12-01

    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of 'pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.

  14. Pulsational frequencies of the eclipsing δ Scuti star HD 172189. Results of the STEPHI XIII campaign

    NASA Astrophysics Data System (ADS)

    Costa, J. E. S.; Michel, E.; Peña, J.; Creevey, O.; Li, Z. P.; Chevreton, M.; Belmonte, J. A.; Alvarez, M.; Fox Machado, L.; Parrao, L.; Pérez Hernández, F.; Fernández, A.; Fremy, J. R.; Pau, S.; Alonso, R.

    2007-06-01

    Context: The eclipsing δ Scuti star HD 172189 is a probable member of the open cluster IC 4756 and a promising candidate target for the CoRoT mission. Aims: The detection of pulsation modes is the first step in the asteroseismological study of the star. Further, the calculation of the orbital parameters of the binary system allows us to make a dynamical determination of the mass of the star, which works as an important constraint to test and calibrate the asteroseismological models. Methods: We performed a detailed frequency analysis of 210 hours of photometric data of HD 172189 obtained from the STEPHI XIII campaign. Results: We have identified six pulsation frequencies with a confidence level of 99% and a seventh with a 65% confidence level of 65%, in the range between 100-300 μHz. In addiction, three eclipses were observed during the campaign, allowing us to improve the determination of the orbital period of the system. Table 1 is only available in electronic form at http://www.aanda.org

  15. A search for multiple periods in three Delta Scuti stars

    NASA Astrophysics Data System (ADS)

    Reed, L. G.; Welch, Gary A.

    1988-05-01

    New photoelectric photometry and period searches are presented for three northern δ Scuti variables: LT Vulpeculae, V1208 Aquilae, and 63 Herculis. A modified Jurkevich period-search technique has been used to examine the new data and to re-examine published photometry for these stars. Multiperiodic variations are present in the light curves of all three stars.

  16. Turbulent convection and pulsation stability of stars - II. Theoretical instability strip for δ Scuti and γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Xiong, D. R.; Deng, L.; Zhang, C.; Wang, K.

    2016-04-01

    By using a non-local and time-dependent convection theory, we have calculated radial and low-degree non-radial oscillations for stellar evolutionary models with M = 1.4-3.0 M⊙. The results of our study predict theoretical instability strips for δ Scuti and γ Doradus stars, which overlap with each other. The strip of γ Doradus is slightly redder in colour than that of δ Scuti. We have paid great attention to the excitation and stabilization mechanisms for these two types of oscillations, and we conclude that radiative κ mechanism plays a major role in the excitation of warm δ Scuti and γ Doradus stars, while the coupling between convection and oscillations is responsible for excitation and stabilization in cool stars. Generally speaking, turbulent pressure is an excitation of oscillations, especially in cool δ Scuti and γ Doradus stars and all cool Cepheid- and Mira-like stars. Turbulent thermal convection, on the other hand, is a damping mechanism against oscillations that actually plays the major role in giving rise to the red edge of the instability strip. Our study shows that oscillations of δ Scuti and γ Doradus stars are both due to the combination of κ mechanism and the coupling between convection and oscillations, and they belong to the same class of variables at the low-luminosity part of the Cepheid instability strip. Within the δ Scuti-γ Doradus instability strip, most of the pulsating variables are very likely hybrids that are excited in both p and g modes.

  17. Rapid Evolution of GSC 03144-595, a New Triple-mode Radially Pulsating High-amplitude δ Scuti

    NASA Astrophysics Data System (ADS)

    Mow, Benjamin; Reinhart, Erik; Nhim, Samantha; Watkins, Richard

    2016-07-01

    We present the results of a multi-year study of the high-amplitude δ Scuti (HADS) star GSC 03144-595. The star was observed between June and September in 2011 and 2014 for 13 nights and 28 nights, respectively. Based on our results, we argue that GSC 03144-595 is a new triple-mode radially pulsating HADS, only the fifth discovered and only the second that has a fundamental frequency in the traditional δ Scuti regime. While the frequencies and amplitudes of the fundamental and first harmonic were found to be unchanged between 2011 and 2014, we found that the amplitude of the second harmonic increased by 44%, a form of evolution not previously seen. This finding suggests that the second harmonic may be transient, thus explaining the scarcity of triple-mode HADS stars.

  18. KIC 9533489: a genuine γ Doradus - δ Scuti Kepler hybrid pulsator with transit events

    NASA Astrophysics Data System (ADS)

    Bognár, Zs.; Lampens, P.; Frémat, Y.; Southworth, J.; Sódor, Á.; De Cat, P.; Isaacson, H. T.; Marcy, G. W.; Ciardi, D. R.; Gilliland, R. L.; Martín-Fernández, P.

    2015-09-01

    Context. Several hundred candidate hybrid pulsators of type A-F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to study the full interior of the genuine hybrids, in which both low radial order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most δ Scuti stars also show long-period light variations represents a real challenge for theory. Aims: We aim at determining the pulsation frequencies of KIC 9533489, to search for regular patterns and spacings among them, and to investigate the stability of the frequencies and the amplitudes. An additional goal is to study the serendipitously detected transit events: is KIC 9533489 the host star? What are the limitations on the physical parameters of the involved bodies? Methods: We performed a Fourier analysis of all the available Kepler light curves. We investigated the frequency and period spacings and determined the stellar physical parameters from spectroscopic observations. We also modelled the transit events. Results: The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 d-1. The light variations are dominated by the beating of two dominant frequencies located at around 4 d-1. The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v ≈ 70 km s-1, i> 70°) or a fast rotator (v ≈ 200 km s-1) with i ≈ 20°. The transit analysis disclosed that the transit events that occur with a ≈197 d period may be caused by a 1.6 RJup body orbiting a fainter star, which would be spatially

  19. Seismological modeling of the Delta Scuti star: CD-24 7599

    SciTech Connect

    Bradley, P.A.; Guzik, J.A.

    1996-11-01

    A major goal of asteroseismology is a better understanding of stellar evolution via ``snapshots`` of many stars of different masses in different evolutionary states. For stars of about 2M{sub {circle_dot}} near the sequence, b Scuti stars are the usual suspects. There is an ongoing renaissance in theoretical modeling of 6 Scuti stars brought on by improvements in constitutive physics and by a dramatic increase in the number of modes observed. FG Virginis and CD-24` 7599 are two of the best studied objects, and they have 19 and 13 known frequencies, respectively. . We create models using an updated and modified version of the Iben code described by Guzik & Cox that includes either of the two versions of the OPAL opacities . We use the star`s observed location on the H-R diagram as a starting point for our seismological modeling. Because there is no evidence for observed t = 3 modes, we only consider l = 0, 1, and 2 modes in our analysis. We take into account rotational splitting (about 5 - 10 {mu}Hz) in our frequency matching. Several observed modes must be rotationally split members of a given mode. CD-24` 7599 is less than halfway through core hydrogen burning, and the modes appear to be a set of consecutive 3rd through 5th overtones of {ital l} = 0 through 2 modes. With only 13 modes, we find satisfactory fits with models between 1.9 and 2.0 M{sub {circle_dot}} that fall within the observed luminosity and effective temperature range. By contrast, Guzik & Bradley suggest that FG Virginis is over halfway through core hydrogen burning and the best fitting models lie near 1.80 or 2.00 M{sub {circle_dot}}. We see persistent discrepancies in some low frequency modes, which suggests we may need a small amount of core overshoot or a slight change in metallicity to duplicate FG Virginis.

  20. IRAS observations of Delta Scuti variables - Implications for main-sequence mass loss and an IR period-luminosity relation

    SciTech Connect

    King, J.R. )

    1990-06-01

    The far-infrared detections of Delta Scuti variables in The Bright Star Catalog by the IRAS satellite are investigated; 52 percent of the sample was detected at 12 microns. The 12 micron luminosity is correlated with L(Bol) and ranges from about 3 x 10 to the 31st to about 6 x 10 to the 32nd erg/s. Comparable numbers of Delta Sct variables and A-F nonvariables show infrared excesses in at least one IRAS passband. Further considerations show that contributions to these excesses due to mass loss are minimal. This investigation suggests that the pulsating variables are not losing mass at higher rates than nonvariable A and F stars which themselves do not appear to be losing mass at a rate above an expected level. The existence of a Period-12 micron luminosity relation of small dispersion, quite surprising in light of the uncertainties in these data is reported. It is demonstrated that such relations also exist at the J, H, and K bands. The possibility of using such relations for distance determinations is discussed in light of good distance estimates to three clusters using the P-L relation. 20 refs.

  1. The remarkable multiple mode Delta Scuti star BDS 1269A

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Horan, S. J.

    1984-07-01

    Over 1600 differential photoelectric Stroemgren b measurements on BDS 1269A obtained during a 6 month period in 1982-1983 have been analyzed using periodiograms and convergent least squares. Seven frequencies are identified in the data set. This frequency set, when combined with other frequencies found in data obtained by Rucinski in 1976, suggests that the main pulsation mode of BDS 1269A is nonradial. The complete frequency representation also includes lower amplitude radial modes. The current analysis suggests that this star may have transferred power into alternative modes since 1976 and in this regard might be similar to another nonradial pulsator, 21 Mon.

  2. V 1162 Ori: A multiperiodic delta Scuti star with variable period and amplitude

    NASA Astrophysics Data System (ADS)

    Arentoft, T.; Sterken, C.; Handler, G.; Freyhammer, L. M.; Bruch, A.; Niarchos, P.; Gazeas, K.; Manimanis, V.; Van Cauteren, P.; Poretti, E.; Dawson, D. W.; Liu, Z. L.; Zhou, A. Y.; Du, B. T.; Shobbrook, R. R.; Garrido, R.; Fried, R.; Akan, M. C.; Ibanoglu, C.; Evren, S.; Tas, G.; Johnson, D.; Blake, C.; Kurtz, D. W.

    2001-08-01

    We present the results of multisite observations of the delta Scuti star V 1162 Ori. The observations were done in the period October 1999-May 2000, when 18 telescopes at 15 observatories were used to collect 253 light extrema during a total of 290 hours of time-series observations. The purpose of the observations was to investigate amplitude and period variability previously observed in this star, and to search for low-amplitude frequencies. We detect, apart from the main frequency and its two first harmonics, four additional frequencies in the light curves, all with low amplitudes (1-3 mmag). Combining the present data set with data obtained in 1998-99 at ESO confirms the new frequencies and reveals the probable presence of yet another pulsational frequency. All five low-amplitude frequencies are statistically significant in the data, but at least one of them (f5) suffers from uncertainty due to aliasing. Using colour photometry we find evidence for a radial main frequency (f1), while most or all low-amplitude frequencies are likely non-radial. We show that the main frequency of V 1162 Ori has variable amplitude and period/phase, the latter is also displayed in the O-C diagram from light extrema. The amplitude variability in our data is cyclic with a period of 282 d and a range of nearly 20 mmag, but earlier amplitude values quoted in the literature cannot be explained by this cyclic variation. O-C analysis including data from the literature show that the period of V 1162 Ori displays a linear period change as well as sudden or cyclic variations on a time scale similar to that of the amplitude variations. Based on observations obtained at the South African Astronomical Observatory (SAAO), Athens University and Kryonerion Observatories, European Southern Observatories (ESO: applications ESO 62H-0110, 64H-0065 and 64L-0182), Laboratório Nacional de Astrofísica (Brazil), Xinglong, Beersel Hills, Ege University, San Pedro Martir, Merate, Mt. Laguna, Siding Spring

  3. How to separate the low amplitude delta Scuti variation in CoRoT data unambigousely?

    NASA Astrophysics Data System (ADS)

    Benko, Jozsef M.; Paparo, Margit

    2015-08-01

    Rich regular frequency patterns were found in the Fourier spectra of low-amplitude Delta Scuti stars observed by CoRoT satellite. The CoRoT observations are, however, influenced by the disturbing effect of the SAA. The effect is marginal for high amplitude variable stars but it could be dangerous in the case of low amplitude variables, especially if the frequency range of the intrinsic variation overlaps the instrumental frequencies. Systematic tests were carried out both on synthetic and real data. Our aim was to determine a limit amplitude above which we were sure that the frequency pattern belonged to the stars.

  4. Amplitude Spectrum Variability in gamma Dor and delta Sct Pulsating Variable Stars Observed by the NASA Kepler Spacecraft

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Kosak, Katie; Bradley, Paul A.; Jackiewicz, Jason

    2015-08-01

    The NASA Kepler spacecraft data has revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high precision long time-series photometry makes it possible to study amplitude variations of the frequencies. We summarize recent literature on amplitude and frequency variations in nonradially pulsating variables. We apply several methods, including those we have developed, and the wavelet technique of the VStar software (http://www.aavso.org/vstar-overview), to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. We discuss the magnitude and timescale of the amplitude variations, and the presence or absence of correlations between amplitude variations for different frequencies of a given star. We discuss proposed causes of amplitude spectrum variability that will require further investigation.

  5. KIC 10080943: a binary star with two γ Doradus/δ Scuti hybrid pulsators. Analysis of the g modes

    NASA Astrophysics Data System (ADS)

    Keen, M. A.; Bedding, T. R.; Murphy, S. J.; Schmid, V. S.; Aerts, C.; Tkachenko, A.; Ouazzani, R.-M.; Kurtz, D. W.

    2015-12-01

    We use 4 yr of Kepler photometry to study the non-eclipsing spectroscopic binary KIC 10080943. We find both components to be γ Doradus/δ Scuti hybrids, which pulsate in both p and g modes. We present an analysis of the g modes, which is complicated by the fact that the two sets of ℓ = 1 modes partially overlap in the frequency spectrum. Nevertheless, it is possible to disentangle them by identifying rotationally split doublets from one component and triplets from the other. The identification is helped by the presence of additive combination frequencies in the spectrum that involve the doublets but not the triplets. The rotational splittings of the multiplets imply core rotation periods of about 11 and 7 d in the two stars. One of the stars also shows evidence of ℓ = 2 modes.

  6. Discovery of Multiple Pulsations in the New δ Scuti Star HD 92277: Asteroseismology from Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Zong, Weikai; Fu, Jian-Ning; Niu, Jia-Shu; Charpinet, S.; Vauclair, G.; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Longlong; Gong, Xuefei; Lawrence, Jon S.; Luong-Van, Daniel; Liu, Qiang; Pennypacker, Carl R.; Wang, Lingzhi; Wang, Lifan; Yuan, Xiangyan; York, Donald G.; Zhou, Xu; Zhu, Zhenxi; Zhu, Zonghong

    2015-02-01

    We report the discovery of low-amplitude oscillations in the star HD 92277 from long, continuous observations in the r and g bands using the CSTAR telescopes in Antarctica. A total of more than 1950 hours of high-quality light curves were used to categorize HD 92277 as a new member of the δ Scuti class. We have detected 21 (20 frequencies are independent and one is the linear combination) and 14 (13 frequencies are independent and one is the linear combination) pulsation frequencies in the r and g bands, respectively, indicating a multi-periodic pulsation behavior. The primary frequency f1 = 10.810 days-1 corresponds to a period of 0.0925 days and is an l = 1 mode. We estimate a B - V index of 0.39 and derive an effective temperature of 6800 K for HD 92277. We conclude that long, continuous and uninterrupted time-series photometry can be performed from Dome A, Antarctica, and that this is especially valuable for asteroseismology where multi-color observations (often not available from space-based telescopes) assist with mode identification.

  7. Discovery of multiple pulsations in the new δ Scuti star HD 92277: Asteroseismology from Dome A, Antarctica

    SciTech Connect

    Zong, Weikai; Fu, Jian-Ning; Niu, Jia-Shu; Zhu, Zonghong; Charpinet, S.; Vauclair, G.; Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Cui, Xiangqun; Gong, Xuefei; Feng, Longlong; Wang, Lifan; Yuan, Xiangyan; Zhu, Zhenxi; Liu, Qiang; Wang, Lingzhi; Zhou, Xu; Pennypacker, Carl R.; York, Donald G.

    2015-02-01

    We report the discovery of low-amplitude oscillations in the star HD 92277 from long, continuous observations in the r and g bands using the CSTAR telescopes in Antarctica. A total of more than 1950 hours of high-quality light curves were used to categorize HD 92277 as a new member of the δ Scuti class. We have detected 21 (20 frequencies are independent and one is the linear combination) and 14 (13 frequencies are independent and one is the linear combination) pulsation frequencies in the r and g bands, respectively, indicating a multi-periodic pulsation behavior. The primary frequency f{sub 1} = 10.810 days{sup −1} corresponds to a period of 0.0925 days and is an l = 1 mode. We estimate a B − V index of 0.39 and derive an effective temperature of 6800 K for HD 92277. We conclude that long, continuous and uninterrupted time-series photometry can be performed from Dome A, Antarctica, and that this is especially valuable for asteroseismology where multi-color observations (often not available from space-based telescopes) assist with mode identification.

  8. Intensive Observations of Cataclysmic, RR Lyr, and High Amplitude delta Scuti (HADS) Variable Stars

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.

    2012-06-01

    An intensive observing campaign is ongoing to study cataclysmic, RR Lyr (with and without Blazhko effect), and High Amplitude delta Scuti (HADS) variable stars. These observations are based on requests and in collaboration with different organisations (CBA, VSNET, GEOS) and individuals. Observations are taken from my private observatories in Belgium, Chile, and through shared use of an observatory belonging to the AAVSOnet in New Mexico. Examples of individual stars intensively followed-up on are: CD Ind and BW Scl, two cataclysmic variables; NU Aur, an RR Lyr star with strong Blazhko effect; and GSC0762-0110, a HADS star. Many publications in different journals including Astronomy and Astrophysics have already emerged from this research.

  9. THE TAIWAN-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. I. DETECTION OF LOW-AMPLITUDE {delta} SCUTI STARS

    SciTech Connect

    Kim, D.-W.; Protopapas, P.; Alcock, C.; Wright, N. J.; Bianco, F. B.; Lehner, M. J.; Byun, Y.-I.; Kyeong, J.; Lee, B.-C.; Axelrod, T.; Chen, W.-P.; Lin, H.-C.; Coehlo, N. K.; Rice, J. A.; Cook, K. H.; Marshall, S. L.; Dave, R.; King, S.-K.; Lee, T.; Porrata, R.

    2010-02-15

    We analyzed data accumulated during 2005 and 2006 by the Taiwan-American Occultation Survey (TAOS) in order to detect short-period variable stars (periods of {approx}<1 hr) such as {delta} Scuti. TAOS is designed for the detection of stellar occultation by small-size Kuiper Belt Objects and is operating four 50 cm telescopes at an effective cadence of 5 Hz. The four telescopes simultaneously monitor the same patch of the sky in order to reduce false positives. To detect short-period variables, we used the fast Fourier transform algorithm (FFT) in as much as the data points in TAOS light curves are evenly spaced. Using FFT, we found 41 short-period variables with amplitudes smaller than a few hundredths of a magnitude and periods of about an hour, which suggest that they are low-amplitude {delta} Scuti stars. The light curves of TAOS {delta} Scuti stars are accessible online at the Time Series Center Web site (http://timemachine.iic.harvard.edu)

  10. DRIVING G-MODE PULSATIONS IN GAMMA DORADUS VARIABLES

    SciTech Connect

    J. GUZIK; A. KAYE; ET AL

    2000-10-10

    The {gamma} Doradus stars are a newly-discovered class of gravity-mode pulsators which lie just at or beyond the red edge of the {delta} Scuti instability strip. We present the results of calculations which predict pulsation instability of high-order g-modes with periods between 0.4 and 3 days, as observed in these stars. The pulsations are driven by the modulation of radiative flux by convection at the base of a deep envelope convection zone. Pulsation instability is predicted only for models with temperatures at the convection zone base between {approximately}200,000 and {approximately}480,000 K. The estimated shear dissipation due to turbulent viscosity within the convection zone, or in an overshoot region below the convection zone, can be comparable to or even exceed the predicted driving, and is likely to reduce the number of unstable modes, or possibly to quench the instability. Additional refinements in the pulsation modeling are required to determine the outcome. A few Doradus stars have been observed that also pulsate in {delta} Scuti-type p-modes, and at least two others have been identified as chemically peculiar. Since our calculated driving region is relatively deep, Doradus pulsations are not necessarily incompatible with surface abundance peculiarities or with {delta} Scuti p-mode pulsations driven by the H and He-ionization {kappa} effect. Such stars will provide useful observational constraints on the proposed Doradus pulsation mechanism.

  11. Recently Determined Light Elements for the delta Scuti Star ZZ Microscopii

    NASA Astrophysics Data System (ADS)

    Axelsen, R. A.; Napier-Munn, T.

    2015-06-01

    The delta Scuti star ZZ Microscopii (HD 199757) was studied by photoelectric photometry (PEP) on three nights in 2008 and by DSLR photometry on three nights in 2014. PEP yielded 51 magnitude measurements in V, including 4 peaks of the light curve, and DSLR photometry yielded 622 measurements, including 14 peaks of the light curve. Fourier analysis of the DSLR photometric data found a principle frequency F1 of 14.8853 (0.0001) c/d, and a harmonic frequency 2F1 of 29.7706 (0.0007) c/d, similar to the results of others. Another frequency F2 of 22.2049 (0.0025) c/d, of much lower amplitude than F1, was identified. F2 is higher than the frequency (19.15 c/d) previously reported in the literature, and its accuracy is regarded as uncertain as the semi-amplitude of F2 is low. Regression analysis of an O-C diagram, plotted from 33 historical times of maximum from 1960 to 2003, 4 times of maximum from our PEP in 2008, and 14 times of maximum light from our DSLR photometry in 2014 indicated that a cubic regression provided the best fit. The fitted curve confirms conclusions of others that the period of ZZ Mic was increasing at a constant rate during the years 1960 to 2003, and indicates that the period has decreased during more recent years. The following cubic ephemeris was derived, with zero epoch defined as the first peak of the DSLR photometry light curve on 19 July 2014: Tmax (HJD) = 2456858.0131 (0.0002) - 7.644 (2.532) • 10-19 E3 - 2.646 (0.973) • 10-13 E2 + 0.06717917 (0.00000001) E.

  12. Recently Refined Periods for the High Amplitude delta Scuti Stars V1338 Centauri, V1430 Scorpii, and V1307 Scorpii

    NASA Astrophysics Data System (ADS)

    Axelsen, R. A.

    2015-12-01

    Digital Single Lens Reflex (DSLR) photometry of the high amplitude d Scuti stars V1338 Centauri, V1430 Scorpii, and V1307 Scorpii was taken during the southern autumn and winter of 2015. Fourier analysis revealed pulsation frequencies corresponding to periods very close to those previously reported with significant contributions from harmonics. Only in the case of V1430 Scorpii was another independent frequency detected. The oscillation periods were refined by calculating linear ephemerides based on previously published epochs for each star, and the epochs determined by the author. These periods are: V1338 Centauri, 0.13093808 d; V1430 Scorpii, 0.08377709 d; and V1307 Scorpii, 0.11703066 d.

  13. Statistical Properties of Galactic δ Scuti Stars: Revisited

    NASA Astrophysics Data System (ADS)

    Chang, S.-W.; Protopapas, P.; Kim, D.-W.; Byun, Y.-I.

    2013-05-01

    We present statistical characteristics of 1578 δ Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodríguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of δ Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodríguez's work. All the δ Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing δ Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  14. MOST Ultra-high Precision Photometry of delta Capricorni - the Nearest & Brightest Eclipsing Binary with a Pulsating Component: An Important Asteroseismic Laboratory for A-type Stars

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, S. G.; Prsa, A.; Wasatonic, R. P.; Fekel, F. C.; Williamson, M.; Matthews, J.; Kolenberg, K.; Breger, M.

    2011-05-01

    We report on over 3 weeks of continuous ultra-high precision photometry of the bright, nearby, detached (P= 1.02 day; A8m + dK7) eclipsing binary delta Cap. The observations were carried out with the Canadian Micro-satellite MOST during Aug/Sept. 2010. Extensive contemporaneous spectroscopy was secured with the 2-m TSU Automatic Spectroscopic Telescope (AST) and complementary BVR photometry was obtained with ground based telescopes. Delta Cap is an astrophysically important star because it is the nearest and brightest eclipsing binary with a bright pulsating component that can be used (with astereoseismic analyses) to test and calibrate stellar interior and pulsation models. When a pulsating star is a member of an eclipsing binary, the analyses of the it's light and radial velocity observations yield the precise determination of all fundamental orbital and physical properties for the component stars. Moreover the MOST observations during the primary eclipses are a powerful tool for mode identification as portions of the pulsating A-star are blocked from view. Also because delta Cap is nearby and has a reliable parallax (pi (Hipp) = 84.27+/- 0.19 mas), the component stars’ luminosities and temperatures are also directly determinable. In addition to its well behaved 1.02-d periodic light variations arising from the eclipses and tidal effects, the MOST light curves clearly show small ( 0.01-0.02 mag) complex light variations. We present the results of the analysis the eclipsing binary light and radial velocity curves using PHOEBE. Also presented are the initial asteroseismic analyses of the A8m component based on the MOST photometry and contemporaneous radial velocity observations. Preliminary models indicate this star is a hybrid gamma Dor-delta Scuti pulsator. We gratefully acknowledge the support from NASA/MOST Grant NNX10AI85G and NSF/RUI Grant AST-05-07542. We also wholeheartedly thank the MOST team for securing and reducing the photometry.

  15. Analysis of the Petersen Diagram of Double Mode High Amplitude delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Furgoni, R.

    2016-06-01

    I created the Petersen diagram relative to all the Double Mode High Amplitude ? Scuti stars listed in the AAVSO's International Variable Star Index (Watson et al. 2007-2015) up to date December 29, 2015. For the first time I noticed that the ratio between the two periods P1/P0 seems in evident linear relation with the duration of the period P0, a finding never explicitly described in literature regarding this topic.

  16. Observations and a new interpretation for the Delta Scuti variable star VZ CANCRI

    NASA Astrophysics Data System (ADS)

    Cox, A. N.; McNamara, B. J.; Ryan, W.

    1984-09-01

    The pulsation characteristics of VZ Cnc were examined, together with the possibility of He settling in the stellar envelope. Data were gathered with the 40 cm Tortugas telescope and photometry system and included comparison figures in UBV for HD 73938 and HD 74308. The observations were made in February-April 1983 and were subjected to Fourier transforms and least squares analysis. Light variations in VZ Cnc were attributed to coupling between two frequencies, a condition which produced higher amplitudes than either component alone. A stable period ratio of 0.80 was calculated, with the main pulsational energy concentrated in the first frequency, 5.6 cycles/day. The second frequency exhibited 7.0 cycles/day. The period ratio supports a He depletion process. A stellar temperature of 7500 K would eliminate the necessity of He settling as part of the model and confirm the presence of 1H and 2H, rather than fundamental, pulsation modes.

  17. Analysis of Pulsating Components in the Eclipsing Binary Systems LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii, and V638 Scorpii

    NASA Astrophysics Data System (ADS)

    Streamer, M.; Bohlsen, T.; Ogmen, Y.

    2016-06-01

    Eclipsing binary stars are especially valuable for studies of stellar evolution. If pulsating components are also present then the stellar interior can be studied using asteroseismology techniques. We present photometric data and the analysis of the delta Scuti pulsations that we have discovered in five eclipsing binary systems. The systems are: LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii and V638 Scorpii. The dominant pulsation frequencies range between 13 - 29 cycles per day with semi-amplitudes of 4 - 20 millimagnitudes.

  18. Delta Scuti stars in the Praesepe cluster observed by the MOST satellite

    NASA Astrophysics Data System (ADS)

    Breger, M.; Hareter, M.; Endl, M.; Kuschnig, R.; Weiss, W. W.; Matthews, J. M.; Guenther, D. B.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.

    2012-02-01

    The Praesepe cluster contains a number of δ Sct and γ Dor pulsators. Asteroseismology of cluster stars is simplified by the common distance, age and stellar abundances. Since asteroseismology requires a large number of known frequencies, the small pulsation amplitudes of these stars require space satellite campaigns. The present study utilizes photometric MOST satellite measurements in order to determine the pulsation frequencies of two evolved (EP Cnc, BT Cnc) and two main-sequence (BS Cnc, HD 73872) δ Sct stars in the Praesepe cluster. The frequency analysis of the 2008 and 2009 data detected up to 34 frequencies per star with most amplitudes in the submillimag range. In BS Cnc, two modes showed strong amplitude variability between 2008 and 2009. The frequencies ranged from 0.76 to 41.7 cd-1. After considering the different evolutionary states and mean stellar densities of these four stars, the differences and large ranges in frequency remain. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia with the assistance of the University of Vienna.

  19. Relationship between low and high frequencies in the \\delta Scuti star KIC 9764965

    NASA Astrophysics Data System (ADS)

    Rostopchina, A.; Breger, M.

    2014-10-01

    Two years of Kepler spacecraft data of the \\delta Sct/\\gamma Dor star KIC 9764965 revealed 67 statistically significant frequencies from 0.45 to 59.17 c d-1 (0.005 to 0.685 mHz). The 19 low frequencies do not show equidistant period spacing predicted for gravity modes of successive radial order. We note a favored frequency spacing of 2.053 c d-1 that appears in both the low-frequency (gravity mode) region and high-frequency (pressure mode) regions. The value of this frequency spacing also occurs as a dominant low frequency and in a high-frequency triplet. A peak at exactly twice the value of the 2.053 c d-1 mode is shown not to be a Fourier harmonic of the low-frequency peak due to a different amplitude variability. This behavior is also seen in other \\delta Sct stars. The test for resonant mode coupling between low and high frequencies could not be carried out due to the small amplitudes of the peaks, making it difficult to separate the parent and child modes.

  20. AN Lyn: a multiperiodic Delta Scuti star showing atypical light curves

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Gonzalez-Bedolla, S. F.; Rolland, A.; Costa, V.; Lopez-Gonzalez, M. J.; Lopez de Coca, P.

    1997-07-01

    We have collected simultaneous uvby photometry of the Delta Sct star AN Lyn during the years 1995 and 1996 at the observatories of San Pedro Mertir, Mexico and Sierra Nevada, Spain. Firstly, analysis of frequencies of our 1995's data set was carried out using the Discrete Fourier Transform method, as described in Lopez de Coca et al. (1984), to the filter v. The periodograms showed a principal peak at v1 ~ 10.1756 c/d, very close to that frequency which corresponds to the period P ~0.0982739 d derived from earlier works. After prewhitening for v1 we found a second peak at 20.3525 c/d that corresponds to 2*v1. When these two frequencies are subtracted from the light curves, the periodograms show some peaks that reveal that additional frequencies are remaining in the spectra at very low amplitude as compared with the amplitude of the main peak (less than 5%).

  1. The multiperiodicity of the Delta Scuti star BDS 1269A (VW Arietis) from the fifth campaign of STEPHI network in 1993

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, S.; Michel, E.; Hernandez, M. M.; Chevreton, M.; Auvergne, M.; Mangeney, A.; Belmonte, J. A.; Goupil, M. J.; Baglin, A.; Roca Cortes, T.; Vidal, I.

    1996-10-01

    BDS 1269 is a visual binary system with a Delta Scuti star as the primary (Mechler, 1974) and a normal early F main sequence secondary BDS 1269B (HD 15164). Careful observations concerning the brighter primary in this system BDS 1269A (HD 15165, VW Ari) have been undertaken since its first finding by Mechler in 1974. Besides, an unpublished 8 night observation carried out on a 60cm reflector with a Johnson V filter was also got by Y. Liu and M. Cao in November 1990 at Xinglong observatory. The observing log is presented in Table 1. We divided all these collected different observations according to their time into four data sets (data 1, data 2, data 3 and data 4). However, different periods have been rendered by some of the observers and even adopting quite the same data, discrepant results were reported.

  2. Search for pulsating stars in multiple stellar systems

    NASA Astrophysics Data System (ADS)

    Antonello, E.; Pastori, L.; Fracassini, M.; Pasinetti, L. E.

    Two lists of possible Delta Scuti stars are compiled, one for the wide visual binaries, the other for the spectroscopic binaries in the catalogue of Batten et al. (1978). For companions with normal spectral type A, F belonging to the instability strip, the expected periods and maximum amplitudes of pulsation are calculated and shown. A list of 21 spectroscopic binaries is presented containing the star identifications, apparent visual magnitudes, spectral type, possible period and maximum visual amplitude of pulsation, sepration of components, and remarks.

  3. Observations and Orbital Analysis of the High-Amplitude Delta Scuti Star SZLyncis: The Unusual Orbital Precession

    NASA Astrophysics Data System (ADS)

    Li, Lin-Jia; Qian, Sheng-Bang

    2013-12-01

    We determined forty-two new times of light maximum from our photometry observations and WASP project, and collected all times of light maximum observed between 1961 and 2013 in order to calculate the orbital elements of the SZ Lyncis system and the secular change of the pulsation period with the classical O - C method. We confirmed the decrease of the longitude of the periastron passage with a rate of (-1.˚15 ±0.˚25) yr-1 , and discussed the causative mechanism. The results show that the precession of the star's orbit might be due to a close binary system, which means that the companion of SZ Lyncis is actually a binary system. We used the Hipparcos Intermediate Astrometric Data to obtain the complete orbital elements of the SZ Lyncis system, and found that the inclination, i, and parallax, πt , are 39.˚5 ± 17.˚7 and 2.61 ± 0.98 mas (corresponds to 380 ± 140 pc), respectively. We reanalyzed the mean radial velocities of SZ Lyncis given by Bardin and Imbert (1984), and noticed a weak variation existing in the residuals from a single-Keplerian fit. We suggest that more detailed high-precision spectroscopic observations are definitely needed in the future to check this short periodic change.

  4. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN {delta} SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    SciTech Connect

    Breger, M.; Robertson, P.; Fossati, L.; Balona, L.; Kurtz, D. W.; Bohlender, D.; Lenz, P.; Mueller, I.; Lueftinger, Th.; Clarke, Bruce D.

    2012-11-01

    Two years of Kepler data of KIC 8054146 ({delta} Sct/{gamma} Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day{sup -1} (6.3 {mu}Hz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day{sup -1} (32-35 {mu}Hz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequencies in and beyond the {delta} Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator ({upsilon} sin i = 300 {+-} 20 km s{sup -1}) with an effective temperature of 7600 {+-} 200 K and a surface gravity log g of 3.9 {+-} 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.

  5. VizieR Online Data Catalog: Pulsation model data for delta Cep and eta Aql (Merand+, 2015)

    NASA Astrophysics Data System (ADS)

    Merand, A.; Kervella, P.; Breitfelder, J.; Gallenne, A.; Coude du Foresto, V.; ten Brummelaar, T. A.; McAlister, H. A.; Ridgway, S.; Sturmann, L.; Sturmann, J.; Turner, N. H.

    2015-09-01

    FITS files containing the stars' (delta Cep and eta Aql) data and model presented in the paper. Each fits file has 3 HDU: 1- primary HDU: contains no data apart from the header. The header has the parameters of the model (keywords 'HIERARCH PARAM') as well as some other quantities derived from the modeling (keywords 'HIERARCH MODEL'). These quantities are aimed at people who would like to reproduce or compare their results with us. 2- 'DATA' HDU: this contains the data used for the fit. Each line is a scalar measurement described as follow: col1='MJD' (E) modified Julian date of the observations col2='OBS' (A50) description of the data point: the string before ";" defines the type, after ";" is the source. after | are anciliary data: for diam, UDdiam: [wavelengthum, interfbaseline_m] for mag: photometric band for color: photometric band1 - photometric band2 col3='MEAS' (E) the actual measurements. units are km/s for Vpuls or Vrad (which includes the p-factor correction), and mas (milli-arcseconds) for diameters (diam of UDdiam). col4='ERR' (E) the uncertainty on the measurement. col5='MODEL' (E) corresponding value predicted by the model col6='PHASE' (E) pulsation phase computed from the model ranges from 0 to 1. col7='PERIOD' (E) pulsation period computed from the model in days 3- 'MODEL' HDU: a tabulation of the pulsation model, as a function of pulsation phase. col1='PHASE' (E) phase from 0 to 1. col2='Vpuls' (E) pulsation velocity, in km/s. col3='Vrad' (E) radial velocity, in km/s. It is Vpuls/p-factor + Vgamma. col4='diam' (E) Rosseland angular diameter, in milliarcseconds (mas). col5='Teff' (E) effective temperature, in Kelvin. col6='Lum' (E) Luminosity in solar luminosities. col7='logg' (E) surface gravity, in log_10(cm/s2). col8,9,10='diamK xxxm' (E) biased angular diameters measured by an interferometer at baselines xxx (in m), for xxx=[100, 200, 300]. In milliarcseconds col>=11= 'MAG ...' or 'COLOR ...' (E) reddenned magnitudes or colors in various bands

  6. Frequencies and mode identifications of the δ Scuti star EE Camelopardalis

    NASA Astrophysics Data System (ADS)

    Breger, M.; Lenz, P.; Pamyatnykh, A. A.; Schmid, V. S.; Beck, P. G.

    2015-03-01

    Aims: EE Cam belongs to a group of slightly evolved main-sequence A stars with intermediate rotational velocities. The pulsation frequencies and their mode identification of this star are of interest in order to compare these with those known for the high-amplitude δ Scuti stars (HADS) and the common fast-rotating low-amplitude δ Scuti pulsators. Methods: The variability of the δ Scuti star EE Cam was observed photometrically for more than 300 nights from 2006 to 2010. Results: Forty pulsation frequencies are identified, ranging from 3.4 to 13.3 cd-1 (40 to 154 μHz). The frequency distribution of the residuals suggests the presence of a large number of additional small-amplitude modes in the same frequency range. We compare the observed phase differences and amplitude ratios with those predicted by pulsation models. The dominant mode at 4.93 cd-1 is found to be a radial mode, while the mode at 5.21 cd-1 is identified as a nonradial ℓ = 1 mode. Furthermore, when we compare the frequency range of the detected modes with detailed stellar models of pulsational instability, the radial mode is found to be the fundamental mode. Conclusions: We have studied and presented the pulsation behavior of EE Cam. It demonstrates that a moderately rotating star can exhibit the behavior of the two groups of δ Scuti stars: the identification of the dominant mode as the radial fundamental is similar to that found in the slowly rotating HADS, and the presence of a very large number of low-amplitude nonradial modes resembles the property of the fast rotating low-amplitude δ Scuti stars.

  7. On the Role of Resonances in Nonradial Pulsators

    NASA Technical Reports Server (NTRS)

    Buchler, J. R.; Goupil, M. J.; Hansen, C. J.

    1997-01-01

    dwarfs and delta Scuti stars.

  8. The Music of the Stars : Spectroscopy of Pulsations in gamma Doradus Stars

    NASA Astrophysics Data System (ADS)

    Brunsden, Emily

    2013-05-01

    p>The mysteries of the interior structures of stars are being tackled with asteroseismology. The observable parameters of the surface pulsations of stars inform us of the interior characteristics of numerous classes of stars. The main-sequence gamma Doradus stars, just a little hotter than the Sun, offer the potential of determining stellar structure right down to the core. To determine the structural profile of a star, the observed frequencies and a full geometric description must be determined. This is only possible with long-term spectroscopic monitoring and careful analysis of the pulsation signature in spectral lines. This work seeks to identify the pulsational geometry of several gamma Doradus stars and to identify areas of improvement for current observation, analysis and modelling techniques. More than 4500 spectra were gathered on five stars for this purpose. For three stars a successful multi-frequency and mode identification solution was determined and significant progress has been made towards the understanding of a binary system involving a gamma Doradus star. A hybrid gamma Doradus/nbsp;delta Scuti pulsator was also intensely monitored and results from this work raise important questions about the classification of this type of star. Current analysis techniques were found to be fit-for-purpose for pure gamma Doradus stars, but stars with complexities such as hybrid pulsations and/or fast rotation require future development of the current models./p>

  9. Stellar Pulsations Excited by Planetary Tides in WASP-33

    NASA Astrophysics Data System (ADS)

    Cameron, Andrew; Guenther, E.; Matthews, J. M.; Amado, P. J.; McDonald, I.; Shkolnik, E.; Smith, A. M. S.; Telting, J.; Walker, G. A. H.; MOST Science Team

    2011-09-01

    The bright, rapidly-rotating A5 star HD 15082 (= WASP-33) has a transiting gas-giant planet in a 1.22-day retrograde orbit, only 5.5 stellar radii from the stellar photosphere (Collier Cameron et al 2010, MNRAS 407, 507). Time-resolved spectra of the system during several transits revealed a complex pattern of non-radial pulsations of the gamma Dor and/or delta Scuti type. The extreme proximity of the planet to the host star raises the possibility that some of these pulsation modes could be excited by planetary tides (Herrero et al 2011 A&A 526, L10). The system was observed continuously by the MOST satellite(*) from 2010 October 07.0 to October 31.0. The MOST data establish the frequency spectrum of the stellar pulsations, providing a direct test of theories of planetary tidal evolution via excitation of inertial waves in the host star. The ellipsoidal variation of the host star places limits on the mass of the planet. During the MOST run, a ground-based support campaign of time-resolved echelle spectroscopy yielded tomographic data sets suitable for mode identification and precise determination of the orientation of the planet's orbit. (*) MOST is a Canadian Space Agency mission, operated by Microsat Systems Canada Inc. (formerly the space division of Dynacon Inc.), the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with support from the University of Vienna.

  10. The Domain of δ Scuti Stars: First CoRoT IRa01 Results

    NASA Astrophysics Data System (ADS)

    Kaiser, Alexander; Weiss, Werner; Guenther, Eike; Balaguer, Lola; Maceroni, Carla; Ribas, Ignasi

    2009-09-01

    We present the first results of determing the δ Scuti population observed with CoRoT during the Initial Run (IRa01). From more than 10000 stars observed continuously in the exoplanet-channel during 58 days, 397 stars show pulsation in the δ Scuti domain. For 39 of the 397 stars low resolution classification spectra and Strömgren uvby photometry were available; thus fundamental parameters like effective temperature and surface gravity could be derived. Classical Fourier techniques and least squares multi-sine fits were applied to identify the pulsation frequencies. For additional 90 stars a pair of radial modes were found and by comparing with pulsation models it was possible to estimate the corresponding fundamental parameters.

  11. Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler

    SciTech Connect

    Guzik, Joyce Ann; Kosak, Mary Katherine; Bradley, Paul Andrew; Jackiewicz, Jason

    2015-08-17

    The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence of correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.

  12. Spectropolarimetric study of the cool RV Tauri star R Scuti

    NASA Astrophysics Data System (ADS)

    Tessore, B.; Lèbre, A.; Morin, J.

    2015-12-01

    With the spectropolarimeter Narval at TBL we have initiated in spring 2015 a 2-year campaign dedicated to a sample of cool and evolved stars including pulsating RV Tauri stars. We monitor net circular and linear polarisation in the spectral lines of R Scuti, the brightest of such variable targets. Our aim is to study the surface magnetic field and the linear polarisation associated with specific spectral lines. We confirm a definite detection of the surface magnetic field of R Sct, with an average longitudinal component {B_ℓ = 0.9 ± 0.5 G}. We also unveil our first results on linear polarisation.

  13. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    SciTech Connect

    Luo, Y. P.; Han, Z. W.

    2012-02-10

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that all these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  14. Confirming The Planetary Nature Of Kepler Transit Candidates Orbiting Pulsating Stars With Light Travel Time Measurements

    NASA Astrophysics Data System (ADS)

    Christiansen, Jessie; Rowe, J. F.; Mullally, F.; Kepler Science Team

    2011-01-01

    The first extrasolar planets were found orbiting pulsars, and were detected via the changes in the arrival time of the pulses caused by the gravitational effect of the planets on the pulsar. Planets orbiting pulsating stars, such as delta Scuti/gamma Doradus stars, will distort the arrival times of maximum light in the light curves of these stars in the same fashion. We investigate the possibility of detecting this phenomenon in Kepler light curves, and constrain the mass limits that could be set on transiting companions. This method would provide an independent test of the planetary nature of Kepler transiting candidates. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  15. Observational Aspects of Pulsating B and A Stars

    NASA Astrophysics Data System (ADS)

    Sterken, Christiaan; Kurtz, Donald W.

    2002-02-01

    In 1998 the Ministry of the Flemish Community (Department Science) allotted a research grant in the framework 'Bilateral scientific and technological cooperation' to a project entitled 'Multi-site coordinated observing of short-period variable stars' to a consortium of four astronomical institutes, viz. Vrije Universiteit Brussel (Observational Astronomy), Katholieke Universiteit Leuven (Astronomical Institute), University of Cape Town (Department of Astronomy) and South African Astronomical Observatory. The project consolidates two decades of scientific collaboration between the Flemish and South-African partners in the field of small-amplitude short-period variables (beta Cephei, delta Scuti and rapidly oscillating Ap stars) and long-period pulsating stars (gamma Dor stars). The allotted grant intended to achieve co-ordinated multi-site observing of several key objects selected among some of the most interesting pulsating variable stars observable from the southern hemisphere. The purpose of the workshop was to comply with the Government's requirement to organise one scientific conference in Flanders, evaluate the scientific outcome of the project including a discussion of logistic elements, and initiate a broader debate on the impact of government funding on the very specific discipline to which our scientific activities belong, viz. multi-site coordinated observations of stellar variability.

  16. The classification of frequencies in the γ Doradus/δ Scuti hybrid star HD 49434

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Uytterhoeven, K.; Wright, D. J.; De Cat, P.

    2015-03-01

    Hybrid stars of the γ Doradus and δ Scuti pulsation types have great potential for asteroseismic analysis to explore their interior structure. To achieve this, mode identifications of pulsational frequencies observed in the stars must be made, a task which is far from simple. In this work we begin the analysis by scrutinizing the frequencies found in the CoRoT photometric satellite measurements and ground-based high-resolution spectroscopy of the hybrid star HD 49434. The results show almost no consistency between the frequencies found using the two techniques and no characteristic period spacings or couplings were identified in either data set. The spectroscopic data additionally show no evidence for any long-term (5 yr) variation in the dominant frequency. The 31 spectroscopic frequencies identified have standard deviation profiles suggesting multiple modes sharing (l, m) in the δ Scuti frequency region and several skewed modes sharing the same (l, m) in the γ Doradus frequency region. In addition, there is a clear frequency in the γ Doradus frequency region that appears to be unrelated to the others. We conclude HD 49434 remains a δ Scuti/γ Doradus candidate hybrid star but more sophisticated models dealing with rotation are sought to obtain a clear picture of the pulsational behaviour of this star.

  17. BINARITY AND PULSATION IN ALGOL-TYPE BINARY SYSTEM SX DRACONIS

    SciTech Connect

    Soydugan, E.; Kacar, Y.

    2013-04-15

    Photometric observations of SX Dra were carried out to determine the properties of the components and pulsational characteristics of the more massive pulsational component. Physical parameters of the component stars were obtained by modeling B and V light curves using the Wilson-Devinney code. Results indicate that SX Dra is a semi-detached system with the secondary component filling its Roche lobe. The O-C data showed parabolic and sinusoidal variation. Cyclic variation in the O-C diagram could be the result of the possible magnetic activity of the secondary component instead of the third body. The secular increase in the orbital period of the system can be interpreted as being the result of mass transfer from the secondary component to the primary one at a rate of 2.1 Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1}. Results of a time-series analysis performed after removing binary effects indicated that the hot component shows {delta} Scuti light variations with pulsational periods of 63 and 73 minutes. Spherical harmonic degrees (l) were determined to be 3 for the first frequency and 1-2 for the second frequency.

  18. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  19. Constraints on pre-main-sequence evolution from stellar pulsations

    NASA Astrophysics Data System (ADS)

    Casey, M. P.; Zwintz, K.; Guenther, D. B.

    2014-02-01

    Pulsating pre-main-sequence (PMS) stars afford the earliest opportunity in the lifetime of a star to which the concepts of asteroseismology can be applied. PMS stars should be structurally simpler than their evolved counterparts, thus (hopefully!) making any asteroseismic analysis relatively easier. Unfortunately, this isn't necessarily the case. The majority of these stars (around 80) are δ Scuti pulsators, with a couple of γ Doradus, γ Doradus - δ Scuti hybrids, and slowly pulsating B stars thrown into the mix. The majority of these stars have only been discovered within the last ten years, with the community still uncovering the richness of phenomena associated with these stars, many of which defy traditional asteroseismic analysis. A systematic asteroseismic analysis of all of the δ Scuti PMS stars was performed in order to get a better handle on the properties of these stars as a group. Some strange results have been found, including one star pulsating up to the theoretical acoustic cut-off frequency of the star, and a number of stars in which the most basic asteroseismic analysis suggests problems with the stars' positions in the Hertzsprung-Russell diagram. From this we get an idea of the\\break constraints - or lack thereof - that these results can put on PMS stellar evolution.

  20. Why the peculiar δ Scuti star HD 187547 is a superstar

    NASA Astrophysics Data System (ADS)

    Antoci, V.; Cunha, M.; Houdek, G.

    2013-12-01

    The δ Scuti pulsators occupy a region in the Hertzsprung-Russell diagram where several physical processes occur: the subsurface convection layers change from being deep and vigorous to being shallow and ineffective to transport energy. This transition has a large impact not only on pulsational stability but also on stellar evolution, activity, transport of angular momentum, mixing processes, etc.. It is therefore of great interest to understand how exactly the stellar structure changes with increasing temperature and mass. Theoretical models (Houdek et al. 1999; Samadi et al. 2002) predicted that the convection in the outer layers of δ Scuti stars is still efficient enough to excite solar-like oscillations. The Kepler target, HD 187547 (a.k.a. Superstar), was the first δ Scuti star to suggest that solar-like oscillations are indeed present in this type of stars (Antoci et al. 2011). There were several reasons to conclude that HD 187547 is a δ Scuti/solar-like hybrid pulsator. (1) The peaks at high frequencies are modes of pulsations approximately equidistantly spaced, as expected for high radial order pressure modes; these peaks are not combination frequencies as it is sometimes observed in δ Scuti stars. (2) The opacity mechanism cannot excite a continuous frequency range as observed in HD 187547 (Pamyatnykh 2000). (3) The identification as an Am star consistent with the low v sini, makes it very unlikely to be a δ Scuti/roAp hybrid, because strong large-scale magnetic fields, a necessity for roAp pulsators, have never been detected in Am stars (Auriere et al. 2010). (4) Although a large number of Am stars are found in binary systems, we find no evidence in the observed spectra for a companion, i.e. no significant RV shift over 170 days can be detected and the absorption lines can perfectly be reproduced by assuming a slowly-rotating chemically peculiar Am star. This means that the peaks at high frequencies are unlikely to be from a companion, because such a

  1. DELTAE

    SciTech Connect

    Ward, W.C.; Swift, G.W. )

    1993-11-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  2. The high-amplitude δ Scuti variable CY Aqr is probably a triple system

    NASA Astrophysics Data System (ADS)

    Fang, Wei-Jing; Luo, Zhi-Quan; Zhang, Xiao-Bin; Deng, Li-Cai; Wang, Kun; Luo, Yang-Ping; Pan, Yang; Peng, Yin-Jiang

    2016-06-01

    Data representing 864 times of light maxima of the high-amplitude δ Scuti star CY Aqr were collected from the literature, based on which, long-term period changes of the variable star were investigated. A revised period and new ephemerides were given for the pulsating star. Remarkable cyclic variations were found in the O – C residuals which can be attributed to the light-time effects due to probable unseen components of the object. By using Kopal's method, the orbital parameters of the supposed component stars were derived. The solution suggests that CY Aqr is very probably in a triple system orbited eccentrically by two low-mass companions with periods of 54.2 and 47.3 yr. The lower limits on masses were estimated as 0.04 M ⊙ and 0.02 M ⊙, respectively, for the two hidden companions.

  3. Regular frequency patterns in the classical δ Scuti star HD 144277 observed by the MOST satellite

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Lenz, P.; Breger, M.; Pamyatnykh, A. A.; Zdravkov, T.; Kuschnig, R.; Matthews, J. M.; Guenther, D. B.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2011-09-01

    Context. We present high-precision time-series photometry of the classical δ Scuti star HD 144277 obtained with the MOST (Microvariability and Oscillations of STars) satellite in two consecutive years. The observed regular frequency patterns are investigated asteroseismologically. Aims: HD 144277 is a hot A-type star that is located on the blue border of the classical instability strip. While we mostly observe low radial order modes in classical δ Scuti stars, HD 144277 presents a different case. Its high observed frequencies, i.e., between 59.9 d-1 (693.9 μHz) and 71.1 d-1 (822.8 μHz), suggest higher radial orders. We examine the progression of the regular frequency spacings from the low radial order to the asymptotic frequency region. Methods: Frequency analysis was performed using Period04 and SigSpec. The results from the MOST observing runs in 2009 and 2010 were compared to each other. The resulting frequencies were submitted to asteroseismic analysis. Results: HD 144277 was discovered to be a δ Scuti star using the time-series photometry observed by the MOST satellite. Twelve independent pulsation frequencies lying in four distinct groups were identified. Two additional frequencies were found to be combination frequencies. The typical spacing of 3.6 d-1 corresponds to the spacing between subsequent radial and dipole modes, therefore the spacing between radial modes is twice this value, 7.2 d-1. Based on the assumption of slow rotation, we find evidence that the two radial modes are the sixth and seventh overtones, and the frequency with the highest amplitude can be identified as a dipole mode. Conclusions: The models required to fit the observed instability range need slightly less metallicity and a moderate enhancement of the helium abundance compared to the standard chemical composition. Our asteroseismic models suggest that HD 144277 is a δ Scuti star close to the ZAMS with a mass of 1.66 M⊙. Based on data from the MOST satellite, a Canadian Space

  4. The Interesting Light Curve and Pulsation Frequencies of KIC 9204718

    NASA Astrophysics Data System (ADS)

    Turner, G.; Holaday, J.

    2013-06-01

    In previous work by Uytterhoeven et al. (2011) the Kepler object KIC 9204718 (HD 176843) was identified as a binary system with a d Scuti-type component. Both long- and short-cadence data were obtained from the MAST archive and analyzed. In this paper we show the results of period analysis on one quarter of short-cadence data in which were obtained two pulsation periods, the dominant of which has a period of 0.026479 day and the secondary of 0.029068 day, respectively. We also present the interesting light curve of the object over several quarters of long-cadence data sets.

  5. Combination frequencies in high-amplitude δ Scuti stars

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2016-06-01

    Short-cadence observations of δ Scuti stars in the Kepler field are used to investigate the physical nature of high-amplitude δ Scuti stars (HADS). Although it is often mentioned that HADS are transition objects between classical Cepheids and δ Scuti stars, neither ground-based or space-based observations support this view. It is found that HADS occur randomly within the instability strip. The possibility that HADS may be defined by the presence of combination frequencies is discussed. There is a weak tendency for the number of combination frequencies to increase with increasing amplitude of the parent frequencies. However, even stars with very low amplitudes may have detectable combination frequencies. Very few parent modes have a period ratio appropriate to first-overtone and fundamental radial modes. It appears that a high amplitude, in itself, is not useful as a distinguishing feature of δ Scuti stars.

  6. Determining Hβ Color Indices for 23 δ Scuti Variable Stars

    NASA Astrophysics Data System (ADS)

    Bush, Tabitha C.; Hintz, E. G.; Shreeve, D. K.; Jorgenson, K.

    2010-01-01

    Color index is a fundamental characteristic in the study of δ Scuti variable stars. The then comprehensive catalog of δ Scutis compiled by Rodriguez et al. (Rodriguez, E. Lopez Gonzalez, M. J., & Lopez de Coca, P. 2000, A&AS, 144, 469) contains 636 δ Scuti stars and several characteristics of these stars, including Hβ color index. Of the 417 stars in this catalog brighter than 13th magnitude, about 20% of them are missing Hβ color index values. We present 23 of these previously unpublished values, calculated from a calibration relation using spectroscopic observations obtained at the Dominion Astrophysical Observatory of 167 δ Scuti stars north of -01 degrees declination and brighter than 13th magnitude.

  7. STEREO observations of HD90386 (RX Sex): a δ-Scuti or a hybrid star?

    NASA Astrophysics Data System (ADS)

    Ozuyar, D.; Stevens, I. R.; Whittaker, G.; Sangaralingam, V.

    2016-04-01

    HD90386 is a rarely studied bright A2V type δ Scuti star (V = 6.66 mag). It displays short-term light curve variations which are originated due to either a beating phenomenon or a non-periodic variation. In this paper, we presented high-precision photometric data of HD90386 taken by the STEREO satellite between 2007 and 2011 to shed light on its internal structure and evolution stage. From the frequency analysis of the four-year data, we detected that HD90386 had at least six different frequencies between 1 and 15 c d-1. The most dominant frequencies were found at around 10.25258 c d-1 (A ∼ 1.92 mmag) and 12.40076 c d-1 (A ∼ 0.61 mmag). Based on the ratio between these frequencies, the star was considered as an overtone pulsator. The variation in pulsation period over 35 years was calculated to be dP/Pdt = 5.39(2) x 10-3 yr-1. Other variabilities at around 1.0 c d-1 in the amplitude spectrum of HD90386 were also discussed. In order to explain these variabilities, possible rotational effects and γ Dor type variations were focused. Consequently, depending on the rotation velocity of HD90386, we speculated that these changes might be related to γ Dor type high-order g-modes shifted to the higher frequencies and that HD90386 might be a hybrid star.

  8. Kepler observations of A-F pre-main-sequence stars in Upper Scorpius: discovery of six new δ Scuti and one γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Ripepi, V.; Balona, L.; Catanzaro, G.; Marconi, M.; Palla, F.; Giarrusso, M.

    2015-12-01

    We present light curves and periodograms for 27 stars in the young Upper Scorpius association (age = 11 ± 1 Myr) obtained with the Kepler spacecraft. This association is only the second stellar grouping to host several pulsating pre-main-sequence (PMS) stars which have been observed from space. From an analysis of the periodograms, we identify six δ Scuti variables and one γ Doradus star. These are most likely PMS stars or else very close to the zero-age main sequence. Four of the δ Scuti variables were observed in short-cadence mode, which allows us to resolve the entire frequency spectrum. For these four stars, we are able to infer some qualitative information concerning their ages. For the remaining two δ Scuti stars, only long-cadence data are available, which means that some of the frequencies are likely to be aliases. One of the stars appears to be a rotational variable in a hierarchical triple system. This is a particularly important object, as it allows the possibility of an accurate mass determination when radial velocity observations become available. We also report on new high-resolution echelle spectra obtained for some of the stars of our sample.

  9. Survey for δ Sct components in eclipsing binaries and new correlations between pulsation frequency and fundamental stellar characteristics

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.; Soydugan, E.; Zasche, P.

    2012-05-01

    CCD observations of 68 eclipsing binary systems, candidates for containing δ Scuti components, were obtained. Their light curves are analysed using the PERIOD04 software for possible pulsational behaviour. For the systems QY Aql, CZ Aqr, TY Cap, WY Cet, UW Cyg, HL Dra, HZ Dra, AU Lac, CL Lyn and IO UMa, complete light curves were observed due to the detection of a pulsating component. All of them, except QY Aql and IO UMa, are analysed with modern astronomical softwares in order to determine their geometrical and pulsational characteristics. Spectroscopic observations of WY Cet and UW Cyg were used to estimate the spectral class of their primary components, while for HZ Dra radial velocities of its primary were measured. O - C diagram analysis was performed for the cases showing peculiar orbital period variations, namely CZ Aqr, TY Cap, WY Cet and UW Cyg, with the aim of obtaining a comprehensive picture of these systems. An updated catalogue of 74 close binaries including a δ Scuti companion is presented. Moreover, a connection between orbital and pulsation periods, as well as a correlation between evolutionary status and dominant pulsation frequency for these systems, is discussed.

  10. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE PAGESBeta

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  11. Searching for pulsations in Kepler eclipsing binary stars

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick; Guzik, Joyce A.

    2014-02-01

    Eclipsing binaries can in principle provide additional constraints to facilitate asteroseismology of one or more pulsating components. We have identified 94 possible eclipsing binary systems in a sample of over 1800 stars observed in long cadence as part of the Kepler Guest Observer Program to search for γ Doradus and δ Scuti star candidates. We show the results of a procedure to fold the light curve to identify the potential binary period, subtract a fit to the binary light curve, and perform a Fourier analysis on the residuals to search for pulsation frequencies that may arise in one or both of the stellar components. From this sample, we have found a large variety of light curve types; about a dozen stars show frequencies consistent with δ Sct or γ Dor pulsations, or light curve features possibly produced by stellar activity (rotating spots). For several stars, the folded candidate `binary' light curve resembles more closely that of an RR Lyr, Cepheid, or high-amplitude δ Sct star. We show highlights of our results and discuss the potential for asteroseismology of the most interesting objects.

  12. Rotationally Modulated g-modes in the Rapidly Rotating δ Scuti Star Rasalhague (α Ophiuchi)

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Townsend, R. H. D.; Che, X.; Zhao, M.; Kallinger, T.; Matthews, J.; Moffat, A. F. J.

    2010-12-01

    Despite a century of remarkable progress in understanding stellar interiors, we know surprisingly little about the inner workings of stars spinning near their critical limit. New interferometric imaging of these so-called rapid rotators combined with breakthroughs in asteroseismology promise to lift this veil and probe the strongly latitude-dependent photospheric characteristics and even reveal the internal angular momentum distribution of these luminous objects. Here, we report the first high-precision photometry on the low-amplitude δ Scuti variable star Rasalhague (α Oph, A5IV, 2.18 Msun, {ω}/{ω_c}˜ 0.88) based on 30 continuous days of monitoring using the MOST satellite. We have identified 57 ± 1 distinct pulsation modes above a stochastic granulation spectrum with a cutoff of ~26 cycles day-1. Remarkably, we have also discovered that the fast rotation period of 14.5 hr modulates low-frequency modes (1-10 day periods) that we identify as a rich family of g-modes (|m| up to 7). The spacing of the g-modes is surprisingly linear considering Coriolis forces are expected to strongly distort the mode spectrum, suggesting we are seeing prograde "equatorial Kelvin" waves (modes ell = m). We emphasize the unique aspects of Rasalhague motivating future detailed asteroseismic modeling—a source with a precisely measured parallax distance, photospheric oblateness, latitude temperature structure, and whose low-mass companion provides an astrometric orbit for precise mass determinations. Based on data from the MOST satellite, a Canadian Space Agency mission operated by Dynacon, Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with assistance from the University of Vienna, Austria.

  13. Pulsation analysis and its impact on primary transit modeling in WASP-33

    NASA Astrophysics Data System (ADS)

    von Essen, C.; Czesla, S.; Wolter, U.; Breger, M.; Herrero, E.; Mallonn, M.; Ribas, I.; Strassmeier, K. G.; Morales, J. C.

    2014-01-01

    Aims: To date, WASP-33 is the only δ Scuti star known to be orbited by a hot Jupiter. The pronounced stellar pulsations, showing periods comparable to the primary transit duration, interfere with the transit modeling. Therefore our main goal is to study the pulsation spectrum of the host star to redetermine the orbital parameters of the system by means of pulsation-cleaned primary transit light curves. Methods: Between August 2010 and October 2012 we obtained 457 h of photometry of WASP-33 using small and middle-class telescopes located mostly in Spain and in Germany. Our observations comprise the wavelength range between the blue and the red, and provide full phase coverage of the planetary orbit. After a careful detrend, we focus our pulsation studies in the high frequency regime, where the pulsations that mostly deform the primary transit exist. Results: The data allow us to identify, for the first time in the system, eight significant pulsation frequencies. The pulsations are likely associated with low-order p-modes. Furthermore, we find that pulsation phases evolve in time. We use our knowledge of the pulsations to clean the primary transit light curves and carry out an improved transit modeling. Surprisingly, taking into account the pulsations in the modeling has little influence on the derived orbital parameters. However, the uncertainties in the best-fit parameters decrease. Additionally, we find indications for a possible dependence between wavelength and transit depth, but only with marginal significance. A clear pulsation solution, in combination with an accurate orbital period, allows us to extend our studies and search for star-planet interactions (SPI). Although we find no conclusive evidence of SPI, we believe that the pulsation nature of the host star and the proximity between members make WASP-33 a promising system for further SPI studies. Tables 1 and 10 and Fig. 8 are available in electronic form at http://www.aanda.orgPhotometry is only

  14. Regular frequency patterns in the young δ Scuti star HD 261711 observed by the CoRoT and MOST satellites

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Fossati, L.; Guenther, D. B.; Ryabchikova, T.; Baglin, A.; Themessl, N.; Barnes, T. G.; Matthews, J. M.; Auvergne, M.; Bohlender, D.; Chaintreuil, S.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2013-04-01

    Context. The internal structure of pre-main-sequence (PMS) stars is poorly constrained at present. This could change significantly through high-quality asteroseismological observations of a sample of such stars. Aims: We concentrate on an asteroseismological study of HD 261711, a rather hot δ Scuti-type pulsating member of the young open cluster NGC 2264 located at the blue border of the instability region. HD 261711 was discovered to be a PMS δ Scuti star using the time series photometry obtained by the MOST satellite in 2006. Methods: High-precision, time-series photometry of HD 261711 was obtained by the MOST and CoRoT satellites in four separate new observing runs that are put into context with the star's fundamental atmospheric parameters obtained from spectroscopy. Frequency Analysis was performed using Period04. The spectral analysis was performed using equivalent widths and spectral synthesis. Results: With the new MOST data set from 2011/12 and the two CoRoT light curves from 2008 and 2011/12, the δ Scuti variability was confirmed and regular groups of frequencies were discovered. The two pulsation frequencies identified in the data from the first MOST observing run in 2006 are confirmed and 23 new δ Scuti-type frequencies were discovered using the CoRoT data. Weighted average frequencies for each group were determined and are related to l = 0 and l = 1 p-modes. Evidence for amplitude modulation of the frequencies in two groups is seen. The effective temperature (Teff) was derived to be 8600 ± 200 K, log g is 4.1 ± 0.2, and the projected rotational velocity (υsini) is 53 ± 1 km s-1. Using our Teff value and the radius of 1.8 ± 0.5 R⊙ derived from spectral energy distribution (SED) fitting, we get a luminosity log L/L⊙ of 1.20 ± 0.14 which agrees well to the seismologically determined values of 1.65 R⊙ and, hence, a log L/L⊙ of 1.13. The radial velocity of 14 ± 2 km s-1 we derived for HD 261711, confirms the star's membership to NGC 2264

  15. Characteristics of Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Mann, I. R.; Samara, M.; Michell, R.

    2013-12-01

    We have investigated the spatiotemporal characteristics of pulsating auroral patches observed with an all-sky imager located at Poker Flat, Alaska. Pulsating aurora often covers the entire sky with intermixed large and small-scale patches that vary in intensity or disappear and reappear on different time scales and timings. The broad definition of pulsating aurora covers patches and bands from tens to several tens of km which have a quasi-periodic temporal variation from 1 s to tens of seconds. In this paper we examine >15 patches from different events. We analyze all-sky movies (557.7 nm, 3.31 Hz) with a simple, yet robust, technique that allows us to determine the scale size dependent variability of the >15 individual patches. A spatial 2D Fourier Transform is used to separate the aurora into different horizontal scale sizes, and by correlating each patch for all image separations and available scale sizes smaller than the patch itself, we reveal what scale sizes are pulsating and their variability. The patches are found to be persistent, meaning that we can follow them for typically 5 minutes. The period of the pulsations is often remarkably variable and it seems that only certain scale sizes pulsate (typically the size of the patch). The patches drift with the background ExB plasma drift indicating that the magnetospheric source mechanism drifts with the field lines.

  16. Observation and modeling of compressional Pi 3 magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Matsuoka, Hitoshi; Takahashi, K.; Yumoto, K.; Anderson, B. J.; Sibeck, D. G.

    1995-01-01

    Compressional magnetic pulsations with irregular waveforms and periods longer than 150 s (here termed Pi 3) have been studied by using data from Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE/CCE) and GOES 5 and 6 in the dayside magnetosphere and compared with signatures on the ground at low latitudes by using data from Kakioka station (L = 1.25). On the ground, the pulsations appear in the horizontal component. A study of 17 such concurrent events during a 2-month period in 1986 reveals the following pulsation characteristics. (1) The peak-to-peak amplitudes in space (delta B(sub T)) and on the ground (delta H) are comparable and are in the range of 0.5-7 nT. (2) On the ground the pulsations can be seen at all local times, even at midnight, while at geostationary orbit they are observed only on the dayside with a clear amplitude maximum at noon. (3) The pulsations on the ground lag those observed by CCE near local noon, and the lag increases as the local time separation between CCE and the ground station increases. The time lag is 1-2 min longer when the ground station is on the nightside than when it is on the dayside. (4) The time lag between pulsations observed at geostationary orbit and near noon by CCE varies systematically with local time and is about 2 min per 6 hours of local time separation. These observations indicate that some nightside pulsations in the Pi 3 band have dayside origins. The position dependence of the pulsation amplitude can be explained well by changes in the magnetopause current, which are in turn presumably caused by changes in the solar wind dynamic pressure. The time lags observed in space are consistent with signal propagation in the MHD fast mode, but the variation in space-ground time lags with ground station local time must be attributed to another mechanism.

  17. MOST satellite photometry of stars in the M67 field: eclipsing binaries, blue stragglers and δ Scuti variables

    NASA Astrophysics Data System (ADS)

    Pribulla, Theodor; Rucinski, Slavek; Matthews, Jaymie M.; Kallinger, Thomas; Kuschnig, Rainer; Rowe, Jason F.; Guenther, David B.; Moffat, Anthony F. J.; Sasselov, Dimitar; Walker, Gordon A. H.; Weiss, Werner W.

    2008-11-01

    We present two series of MOST (Microvariability and Oscillations of STars) space-based photometry, covering nearly continuously 10 d in 2004 and 30 d in 2007, of selected variable stars in the upper main sequence of the old open cluster M67. New high-precision light curves were obtained for the blue straggler binary/triple systems AH Cnc, ES Cnc and EV Cnc. The precision and phase coverage of ES Cnc and EV Cnc is by far superior to any previous observations. The light curve of ES Cnc is modelled in detail, assuming two dark photospheric spots and Roche geometry. An analysis of the light curve of AH Cnc indicates a low mass ratio (q ~ 0.13) and a high inclination angle for this system. Two new long-period eclipsing binaries, GSC 814-323 and HD 75638 (non-members of M67) were discovered. We also present ground-based DDO spectroscopy of ES Cnc and of the newly found eclipsing binaries. Especially interesting is HD 75638, a member of a visual binary, which must itself be a triple or a higher multiplicity system. New light curves of two δ Scuti pulsators, EX Cnc and EW Cnc, have been analysed leading to detection of 26 and eight pulsation frequencies of high temporal stability. Based on photometric data from MOST, a Canadian Space Agency mission (jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna), and on spectroscopic data from the David Dunlap Observatory, University of Toronto. E-mail: pribulla@ta3.sk (TP); rucinski@astro.utoronto.ca (SR)

  18. Pulsations of rapidly rotating stars. I. The ACOR numerical code

    NASA Astrophysics Data System (ADS)

    Ouazzani, R.-M.; Dupret, M.-A.; Reese, D. R.

    2012-11-01

    Context. Very high precision seismic space missions such as CoRoT and Kepler provide the means of testing the modeling of transport processes in stellar interiors. For some stars, such as solar-like and red giant stars, a rotational splitting is measured. However, to fully exploit these splittings and constrain the rotation profile, one needs to be able to calculate them accurately. For some other stars, such as δ Scuti and Be stars, for instance, the observed pulsation spectra are modified by rotation to such an extent that a perturbative treatment of the effects of rotation is no longer valid. Aims: We present here a new two-dimensional non-perturbative code called ACOR (adiabatic code of oscillation including rotation) that allows us to compute adiabatic non-radial pulsations of rotating stars without making any assumptions on the sphericity of the star, the fluid properties (i.e., baroclinicity) or the rotation profile. Methods: The 2D non-perturbative calculations fully take into account the centrifugal distortion of the star and include the full influence of the Coriolis acceleration. The numerical method is based on a spectral approach for the angular part of the modes and a fourth-order finite differences approach for the radial part. Results: We test and evaluate the accuracy of the calculations by comparing them with those coming from the TOP (two-dimensional oscillation program) for the same polytropic models. We illustrate the effects of rapid rotation on stellar pulsations through the phenomenon of avoided crossings. Conclusions: As shown by the comparison with the TOP for simple models, the code is stable, and gives accurate results up to near-critical rotation rates.

  19. Rotational Velocity Determinations for 118 δ Scuti Variables

    NASA Astrophysics Data System (ADS)

    Bush, Tabitha C.; Hintz, E. G.

    2009-01-01

    We present a calibration method used for the determination of projected rotational velocities (vsin i) of 118 δ Scuti variables from FWHM measurements of metal lines near 4500 Å. The calibration relation used was derived from measurements of 29 stars. Of the 44 stars brighter than 8th magnitude and north of -1° declination which did not have values in the Rodríguez catalog (Rodríguez, E., López González, M. J., & López de Coca, P. 2000, A&AS, 144, 469), we present values for 38. In addition, we present new vsin i values for 10 stars south of -1° or fainter than 8th magnitude for a total of 48 vsin i values for stars with no previously published values. We acknowledge the Dominion Astrophysical Observatory for making available the 1.2-m and 1.8-m telescopes to aid in this research.

  20. Rotational Velocity Determinations for 118 δ Scuti Variables

    NASA Astrophysics Data System (ADS)

    Bush, Tabitha C.; Hintz, Eric G.

    2008-09-01

    A calibration method is presented for the determination of projected rotational velocities of 118 δ Scuti variables from FWHM measurements of metal lines near 4500 Å. The calibration relation used was derived from measurements of 29 stars. Of the 44 stars brighter than 8th magnitude and north of -1° declination which did not have values in the Rodríguez catalog (Rodríguez, E., López González, M. J., & López de Coca, P. 2000, A&AS, 144, 469) we present values for 38. In addition, we present new projected rotational velocity, vsin i, values for 10 stars south of -1° or fainter than 8th magnitude for a total of 48 vsin i values for stars with no previously published values.

  1. Interaction Between Convection and Pulsation

    NASA Astrophysics Data System (ADS)

    Houdek, Günter; Dupret, Marc-Antoine

    2015-12-01

    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.

  2. Refining the asteroseismic model for the young δ Scuti star HD 144277 using HARPS spectroscopy

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Ryabchikova, T.; Lenz, P.; Pamyatnykh, A. A.; Fossati, L.; Sitnova, T.; Breger, M.; Poretti, E.; Rainer, M.; Hareter, M.; Mantegazza, L.

    2014-07-01

    Context. HD 144277 was previously discovered by Microvariability and Oscillations of Stars (MOST) space photometry to be a young and hot δ Scuti star showing regular groups of pulsation frequencies. The first asteroseismic models required lower than solar metallicity to fit the observed frequency range based on a purely photometric analysis. Aims: The aim of the present paper is to determine, by means of high-resolution spectroscopy, fundamental stellar parameters required for the asteroseismic model of HD 144277, and subsequently, to refine it. Methods: High-resolution, high signal-to-noise spectroscopic data obtained with the HARPS spectrograph were used to determine the fundamental parameters and chemical abundances of HD 144277. These values were put into context alongside the results from asteroseismic models. Results: The effective temperature, Teff, of HD 144277 was determined as 8640 +300-100 K, log g is 4.14 ± 0.15 and the projected rotational velocity, υsini, is 62.0 ± 2.0 km s-1. As the υsini value is significantly larger than previously assumed, we refined the first asteroseimic model accordingly. The overall metallicity Z was determined to be 0.011 where the light elements He, C, O, Na, and S show solar chemical composition, but the heavier elements are significantly underabundant. In addition, the radius of HD 144277 was determined to be 1.55 ± 0.65 R⊙ from spectral energy distribution fitting, based on photometric data taken from the literature. Conclusions: From the spectroscopic observations, we could confirm our previous assumption from asteroseismic models that HD 144277 has less than solar metallicity. The fundamental parameters derived from asteroseismology, Teff, log g, L/L⊙ and R/R⊙ agree within one sigma to the values found from spectroscopic analysis. As the υsini value is significantly higher than assumed in the first analysis, near-degeneracies and rotational mode coupling were taken into account in the new models. These

  3. Pulsating aurora: Source region & morphology

    NASA Astrophysics Data System (ADS)

    Jaynes, Allison

    Pulsating aurora, a common phenomenon in the polar night sky, offers a unique opportunity to study the precipitating particle populations responsible for this subtle yet fascinating display of lights. The conjecture that the source of these electrons originates near the equator, made decades ago, has now been confirmed using in-situ measurements. In this thesis, we present these results that compare the frequencies of equatorial electron flux pulsations and pulsating aurora luminosity fluctuations at the ionospheric footprint. We use simultaneous satellite-based data from GOES 13 and ground-based data from the THEMIS allsky imager array to show that there is a direct correlation between luminosity fluctuations near the ground and particle pulsations in equatorial space; the source region of the pulsating aurora. Pulsating aurora almost exclusively occurs embedded within a region of diffuse aurora. By studying the two particle populations, one can contribute to the theory behind auroral pulsations. The interplay between the two auroral types, and the systems that control them, are not yet well known. We analyze ground optical observations of pulsating aurora events to attempt to characterize the relationship between the two types of auroral precipitation. Pulsating aurora is a significant component of energy transfer within the framework of magnetosphere-ionosphere coupling. Further study of the morphology, total energy deposition, and the pulsation mechanism of pulsating aurora is key to a better understanding of our earth-sun system.

  4. The CoRoT star ID 100866999: a hybrid γ Doradus-δ Scuti star in an eclipsing binary system

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mathias, P.

    2013-08-01

    Context. The presence of g- and p-modes allows testing stellar models from the core to the envelope. Moreover, binarity in an eclipsing system constrains the physical parameters of the pulsating star. Aims: CoRot ID 100866999 is a relatively large-amplitude hybrid γ Doradus-δ Scuti star with two clearly distinct frequency domains. The large number of detected frequencies allows a detailed study of the interaction between them. In addition, we can derive the fundamental parameters of both components from the study of the eclipsing light curve. Methods: After removing the eclipsing phases, we analyzed the data with the Period04 package up to a signal-to-noise ratio S/N = 4. The light curve was then prewhitened with these oscillation frequencies to derive the fundamental parameters of the two components. Results: The eclipsing light curve analysis results in a (1.8+1.1) M⊙ system, both components being main sequence stars. We detect 124 frequencies related to luminosity variations of the primary. They are present in two well-separated domains: 89 frequencies in the interval [0.30;3.64] d-1 and 35 in the interval [14.57; 33.96] d-1. There are 22 γ Doradus frequencies separated by a constant period interval ΔP = 0.03493 d. These frequencies correspond to a series of g-modes of degree ℓ = 1 with successive radial orders k. We identify 21 linear combinations between the first nine γ Doradus frequencies. The δ Scuti domain is dominated by a large-amplitude frequency F = 16.9803 d-1. The eight first γ Doradus frequencies fi are present with much lower amplitude in the δ Scuti domain as F ± fi. These interactions between g- and p-modes confirm the phenomenon we detected in another CoRoT star. The amplitude and the phase of the main frequency F shows a double-wave modulation along the orbital phase, giving rise to series of combination frequencies. Such combination frequencies are also detected, with lower amplitude, for the first γ Doradus modes. The Co

  5. Pulsations of rapidly rotating stars. II. Realistic modelling for intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Ouazzani, R.-M.; Roxburgh, I. W.; Dupret, M.-A.

    2015-07-01

    Context. Very high precision seismic space missions such as CoRoT and Kepler provide the means for testing the modelling of transport processes in stellar interiors. For some stars, such as δ Scuti, γ Doradus, and Be stars, the observed pulsation spectra are modified by rotation to such an extent that it prevents any fruitful interpretation. Aims: Our aim is to characterise acoustic pulsation spectra of realistic stellar models in order to be able to interpret asteroseismic data from such stars. Methods: The 2D oscillation code ACOR, which treats rotation in a non-perturbative manner, is used to study pulsation spectra of highly distorted evolved models of stars. Two-dimensional models of stars are obtained by a self-consistent method that distorts spherically averaged stellar models a posteriori, at any stage of evolution, and for any type of rotation law. Results: Four types of modes are calculated in a very dense frequency spectrum, among which are island modes. The regularity of the island modes spectrum is confirmed and yields a new set of quantum numbers, with which an échelle diagram can be built. Mixed gravito-acoustic modes are calculated in rapidly rotating models for the first time.

  6. Photometric studies of δ Scuti stars. I. IP Virginis

    USGS Publications Warehouse

    Joner, Michael D.; Hintz, Eric G.; Collier, Matthew W.

    1998-01-01

    We report 15 new times of maximum light for the δ Scuti star IP Virginis (formerly known as SA 106‐1024). An analysis of all times of maximum light indicates that IP Vir has been decreasing in period at a constant rate of − days day−1. Evidence is also presented that IP Vir is a double‐mode variable with a period ratio of . This period ratio predicts a [Fe/H] value of −0.3. From photometric (uvbyβ) observations, we find a foreground reddening of .008 mag and a metallicity of [Fe/H] = +0.05. It is shown that [Fe/H] = −0.3 is most likely the correct value. Intrinsic ‐ and c1‐values, plotted in a model atmosphere grid, indicate a mean effective temperature, K, and a mean surface gravity, . All of these physical parameters support Landolt's initial conclusion that IP Vir is an ordinary δ Sct star.

  7. OGLE and pulsating stars

    NASA Astrophysics Data System (ADS)

    Udalski, A.

    2016-05-01

    OGLE-IV is currently one of the largest sky variability surveys worldwide, focused on the densest stellar regions of the sky. The survey covers over 3000 square degrees and monitors regularly over a billion sources. The main targets include the inner Galactic bulge and the Magellanic System. Supplementary shallower Galaxy Variability Survey covers the extended Galactic bulge and 2/3 of the whole Galactic disk. The current status, prospects, and the latest results of the OGLE-IV survey focused on pulsating stars, in particular RR Lyrae variables, are presented.

  8. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    NASA Astrophysics Data System (ADS)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  9. VizieR Online Data Catalog: ROTSE delta Scuti stars (Blake+, 2003)

    NASA Astrophysics Data System (ADS)

    Blake, C.; Fox, D. W.; Park, H. S.; Williams, G. G.

    2003-03-01

    Observations of the target stars were carried out during May and June, 2002, with the Super Livermore Optical Transient Imaging System (Super-LOTIS) robotic telescope located at the Steward Observatory site on Kitt Peak, Arizona. (1 data file).

  10. CoD - 24 7599, a new Delta Scuti star discovered with the Whole Earth Telescope

    NASA Astrophysics Data System (ADS)

    Handler, G.

    1993-05-01

    During observing run XCOV7 of the WET (Whole Earth Telescope, R. E. Nather et al. 1990, ApJ 361, 309) network devoted to the recently discovered dwarf nova 1H0857-242 one of the recommended comparison stars, CoD -24o 7599, turned out to be variable. As a result CoD -24o 7599 was chosen as a second target object. After 11 days of high-speed photometry observations, 110.8 hours of Johnson B measurements had been obtained. Including some overlaps, a duty cycle of 40 % was achieved, resulting in the excellent spectral window shown in the upper panel of the figure.

  11. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  12. Pulsating incinerator hearth

    SciTech Connect

    Basic, J.N. Sr.

    1984-10-09

    A pulsating hearth for an incinerator wherein the hearth is suspended on a fixed frame for movement in a limited short arc to urge random size particles burning in a pile on the hearth in a predetermined path intermittently across the surface of the heart. Movement is imparted to the hearth in periodic pulses preferably by inflating sets of air bags mounted on the frame, which stroke the hearth to move it a short distance from an initial position and jar it against the frame, thus impelling the burning particles a short distance by inertia and concurrently stoking the burning pile upon each stroke, and then returning the hearth to its initial position. The hearth may also have a plurality of nozzles connected to a source of air for delivering gently flowing air to the burning pile on the hearth.

  13. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  14. Ground-satellite observation of Pc 4 pulsations by MAGDAS/CPMN and ETS-VIII geosynchronous orbit satellite

    NASA Astrophysics Data System (ADS)

    Ikeda, A.; Yumoto, K.; Koga, K.; Obara, T.; Baishev, D. G.; Shevtsov, B. M.; Uozumi, T.; Abe, S.; Shishime, A.

    2011-12-01

    Electromagnetic pulsations in ULF range have been studied extensively using ground and satellite observations. However, how Pc 4 pulsations (6.7-22.2 mHz) propagate from the magnetosphere to the ground is not fully understand. Especially the propagation to low latitudes is unclear. We examined data obtained by the ETS-VIII satellite at the geosynchronous orbit (G.M.Lat. -12 degree, G.G.Lon. 146.0 degree) (Koga et al., 2010). We also analyzed ground data of MAGDAS/CPMN (Yumoto and the MAGDAS Group, 2006). The ground data were obtained at high-latitude CHD station (G.M.Lat. 64.9 degree, G.M.Lon. 212.7 degree) and at low-latitude KUJ station (G.M.Lat. 26.1 degree, G.M.Lon. 203.0 degree). The magnetic longitudes of these ground stations are almost same as that of the ETS-VIII. Pc 4 events at ETS-VIII were selected by an automated routine using FFT method which was developed by Takahashi and Ukhorskiy (2007). These Pc 4 events were classified into 2 types. One type is a poloidal Pc 4, in which Hp (northward) component is dominant. Another type is a toroidal mode, in which Hn (eastward) component is dominant. About 10 % of the poloidal/toroidal Pc 4 pulsations, the peak frequency is identical with that of ground Pc 4 pulsations, and the coherence between pulsations observed aboard ETS-VII and on the ground stations is high at the peak frequencies. Thus, about 10 % of the poloidal/toroidal Pc 4 in the magnetosphere can be concluded to transmit to high-latitude ground stations as well as low-latitude stations. For such Pc 4 events, H (horizontal northward) and D (horizontal eastward) components at CHD showed higher amplitude (delta(H)/delta(Hn) = 6.8, delta(H)/delta(Hp) = 10.8, delta(D)/delta(Hn) = 6.8, delta(D)/delta(Hp) = 7.4) than that at the geosynchronous orbit. On the other hand, H and D components at KUJ was attenuated considerably (delta(H)/delta(Hn) = 0.66, delta(H)/delta(Hp) = 0.89, delta(D)/delta(Hn) = 0.35, delta(D)/delta(Hp) = 0.37).

  15. The Pulsating White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.

    2008-10-01

    We present a summary of what is currently known about the three distinct families of isolated pulsating white dwarfs. These are the GW Vir stars (He/C/O-atmosphere stars with Teff sime 120,000 K), the V777 Her stars (He-atmosphere, Teff sime 25,000 K), and the ZZ Ceti stars (H-atmosphere, Teff sime 12,000 K), all showing multiperiodic luminosity variations caused by low-order and low-degree g-mode instabilities. We also provide, in an Appendix, a very brief overview of the newly found evidence in favor of the existence of a fourth category of oscillating white dwarfs bearing strong similarities with these families of pulsators. We begin our survey with a short historical introduction, followed by a general discussion of pulsating white dwarfs as compact pulsators. We then discuss the class properties of these objects, including an updated census. We next focus on the instability domains for each family of pulsators in the log g - Teff diagram, and present their time-averaged properties in more detail. This is followed by a section on excitation physics, i.e., the causes of the pulsational instabilities, with emphasis on the common properties of the different types of pulsator. We then discuss the time-dependent properties of the pulsating white dwarfs featuring, among other things, a brief "picture tour" across the ZZ Ceti instability strip. We next review the methods used to infer or constrain the angular geometry of a pulsation mode in a white dwarf. These include multicolor photometry and time-resolved spectroscopy, the exploitation of the nonlinear features in the observed light curves, and rotational splitting. We also consider basic adiabatic asteroseismology starting with a discussion of the reaction of the period spectrum to variations of model parameters. We next review the various asteroseismological inferences that have so far been claimed for white dwarfs. We also discuss the potential of exploiting the rates of period change. We finally provide some

  16. High latitude pulsating aurorae revisited

    SciTech Connect

    Wu, Q.; Rosenberg, T.J. )

    1992-01-03

    Dayside auroral pulsations (10-40 s periods) have been studied for different levels of geomagnetic disturbance with N{sub 2}{sup +} 427.8 nm emission data obtained at South Pole station, Antarctica ({minus}74.2{degree} MLAT). The occurrence distribution exhibits a single peak at magnetic noon under geomagnetically quiet conditions (0 {le} Kp < 1). With increased Kp, the distribution shifts to earlier times, the peak occurring at 1000-1030 MLT for 1 {le} Kp < 4. At these higher Kp levels a secondary occurrence peak is evident in the afternoon sector between 1400 and 1600 MLT, occurring earlier as Kp increases. These results are compared with those obtained separately for pre-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Davis, northern and southern hemisphere sites at approximately the same magnetic latitude as South Pole. South Pole and Ny Alesund observe morning peaks at the same time and with a similar lack of Kp dependence; South Pole and Davis observe afternoon peaks with similar Kp dependence, though the peak occurs earlier at Davis. In contrast to the results from the earlier studies, the South Pole observations show larger pulsation amplitudes in the morning sector and significantly higher occurrence rates overall.

  17. [Bachelard and the mathematical pulsation].

    PubMed

    Guitart, René

    2015-01-01

    The working mathematician knows a specific gesture named « mathematical pulsation », a necessary creative moving in diagrams of thoughts and interpretations of mathematical writings. In this perspective the fact of being an object is definitely undecided, and related to the game of relations. The purpose of this paper today is to construct this pulsation, starting from the epistemology of Bachelard, concerning mathematics as well as mathematical physics. On the way, we recover links between ideas of Bachelard and more recent specific propositions by Gilles Ch-let, Charles Alunni, or René Guitart. Also are used authors like Jacques Lacan, Arthur Koestler, Alfred N. Whitehead, Charles S. Peirce. We conclude that the mathematical work consists with pulsative moving in the space of diagrams; we claim that this view is well compatible with the Bachelard's analysis of scientific knowledge: the intellectual or formal mathematical data preceeds the empirical objects, and in some sense these objects result from the pulsative gestures of the thinkers. So we finish with a categorical scheme of the pulsation. PMID:26223414

  18. Synchronization Model for Pulsating Variables

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Morikawa, M.

    2013-12-01

    A simple model is proposed, which describes the variety of stellar pulsations. In this model, a star is described as an integration of independent elements which interact with each other. This interaction, which may be gravitational or hydrodynamic, promotes the synchronization of elements to yield a coherent mean field pulsation provided some conditions are satisfied. In the case of opacity driven pulsations, the whole star is described as a coupling of many heat engines. In the case of stochastic oscillation, the whole star is described as a coupling of convection cells, interacting through their flow patterns. Convection cells are described by the Lorentz model. In both models, interactions of elements lead to various pulsations, from irregular to regular. The coupled Lorenz model also describes a light curve which shows a semi-regular variability and also shows a low-frequency enhancement proportional to 1/f in its power spectrum. This is in agreement with observations (Kiss et al. 2006). This new modeling method of ‘coupled elements’ may provide a powerful description for a variety of stellar pulsations.

  19. The Pulsating Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.

    2015-06-01

    Following the basic principles of a charge-separated pulsar magnetosphere, we consider the magnetosphere to be stationary in space, instead of corotating, and the electric field to be uploaded from the potential distribution on the pulsar surface, set up by the unipolar induction. Consequently, the plasma of the magnetosphere undergoes guiding center drifts of the gyromotion due to the forces transverse to the magnetic field. These forces are the electric force, magnetic gradient force, and field line curvature force. Since these plasma velocities are of drift nature, there is no need to introduce an emf along the field lines, which would contradict the {{E}\\parallel }={\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} =0 plasma condition. Furthermore, there is also no need to introduce the critical field line separating the electron and ion open field lines. We present a self-consistent description where the magnetosphere is described in terms of electric and magnetic fields and also in terms of plasma velocities. The fields and velocities are then connected through the space-charge densities self-consistently. We solve the pulsar equation analytically for the fields and construct the standard steady-state pulsar magnetosphere. By considering the unipolar induction inside the pulsar and the magnetosphere outside the pulsar as one coupled system, and under the condition that the unipolar pumping rate exceeds the Poynting flux in the open field lines, plasma pressure can build up in the magnetosphere, in particular, in the closed region. This could cause a periodic opening up of the closed region, leading to a pulsating magnetosphere, which could be an alternative to pulsar beacons. The closed region can also be opened periodically by the build up of toroidal magnetic field through a positive feedback cycle.

  20. Pulsating aurora: The importance of the ionosphere

    SciTech Connect

    Stenbaek-Nielsen, H.C.

    1980-05-01

    A number of different, but mainly optical, observations made in pulsating auroras are presented. These observations indicate that active ionospheric processes are likely to play an important role in causing and/or modifying pulsating aurora.

  1. Pulsational mode-typing in line profile variables. I - Four Beta Cephei stars

    NASA Astrophysics Data System (ADS)

    Campos, A. J.; Smith, M. A.

    1980-05-01

    The detailed variations of line profiles in the Beta Cephei-type variable stars Gamma Pegasi, Beta Cephei, Delta Ceti and Sigma Scorpii are modeled throughout their pulsation cycles in order to classify the dominant pulsation mode as radial or nonradial. High-dispersion Reticon observations of the variables were obtained for the Si III line at 4567 A, and line profiles broadened by radial or nonradial pulsations, rotation and radial-tangential macroturbulence were calculated based on a model atmosphere. It is found that only a radial pulsation mode can reproduce the radial velocity amplitude, changes in line asymmetry and uniform line width observed in all four stars. Results are in agreement with the color-to-light arguments of Stamford and Watson (1978), and suggest that radial pulsation plays the dominant role in the observed variations in most Beta Cephei stars. Evidence for shocks or moving shells is also found in visual line data for Sigma Scorpii and an ultraviolet line of Beta Cephei, together with evidence of smooth, secular period changes in Beta Cephei and Delta Ceti.

  2. Pulsational mode-typing in line profile variables. I - Four Beta Cephei stars

    NASA Technical Reports Server (NTRS)

    Campos, A. J.; Smith, M. A.

    1980-01-01

    The detailed variations of line profiles in the Beta Cephei-type variable stars Gamma Pegasi, Beta Cephei, Delta Ceti and Sigma Scorpii are modeled throughout their pulsation cycles in order to classify the dominant pulsation mode as radial or nonradial. High-dispersion Reticon observations of the variables were obtained for the Si III line at 4567 A, and line profiles broadened by radial or nonradial pulsations, rotation and radial-tangential macroturbulence were calculated based on a model atmosphere. It is found that only a radial pulsation mode can reproduce the radial velocity amplitude, changes in line asymmetry and uniform line width observed in all four stars. Results are in agreement with the color-to-light arguments of Stamford and Watson (1978), and suggest that radial pulsation plays the dominant role in the observed variations in most Beta Cephei stars. Evidence for shocks or moving shells is also found in visual line data for Sigma Scorpii and an ultraviolet line of Beta Cephei, together with evidence of smooth, secular period changes in Beta Cephei and Delta Ceti.

  3. Nile Delta

    Atmospheric Science Data Center

    2013-04-15

    article title:  The Nile River Delta     View Larger Image ... of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids ...

  4. VizieR Online Data Catalog: Frequency spacing of δ Scuti stars. II. (Paparo+, 2016)

    NASA Astrophysics Data System (ADS)

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-07-01

    The CoRoT satellite was launched in 2006. LRa01, the first long run in the direction of anti-center, started on 2007 October 15 and finished on 2008 March 3, resulting in a ΔT=131d time span. Both chromatic and monochromatic data were obtained on the EXO field with a regular sampling of 8 minutes, although for some stars an oversampling mode (32s) was applied. We systematically searched in the CoRoT data archive all light curves in the EXO field for δ Scuti and γ Doradus light curves (Hareter M., 2013, PhD thesis Univ. Vienna). (2 data files).

  5. KIC 10080943: An eccentric binary system containing two pressure- and gravity-mode hybrid pulsators

    NASA Astrophysics Data System (ADS)

    Schmid, V. S.; Tkachenko, A.; Aerts, C.; Degroote, P.; Bloemen, S.; Murphy, S. J.; Van Reeth, T.; Pápics, P. I.; Bedding, T. R.; Keen, M. A.; Prša, A.; Menu, J.; Debosscher, J.; Hrudková, M.; De Smedt, K.; Lombaert, R.; Németh, P.

    2015-12-01

    Context. γ Doradus and δ Scuti pulsators cover the transition region between low mass and massive main-sequence stars, and as such, are critical for testing stellar models. When they reside in binary systems, we can combine two independent methods to derive critical information, such as precise fundamental parameters to aid asteroseismic modelling. In the Kepler light curve of KIC 10080943, clear signatures of gravity- and pressure-mode pulsations have been found. Ground-based spectroscopy revealed this target to be a double-lined binary system. Aims: We present the analysis of four years of Kepler photometry and high-resolution spectroscopy to derive observational constraints with which to evaluate theoretical predictions of the stellar structure and evolution for intermediate-mass stars. Methods: We used the method of spectral disentangling to determine atmospheric parameters for both components and derive the orbital elements. With phoebe, we modelled the ellipsoidal variation and reflection signal of the binary in the light curve and used classical Fourier techniques to analyse the pulsation modes. Results: We show that the eccentric binary system KIC 10080943 contains two hybrid pulsators with masses M1 = 2.0 ± 0.1 M⊙ and M2 = 1.9 ± 0.1 M⊙, with radii R1 = 2.9 ± 0.1 R⊙ and R2 = 2.1 ± 0.2 R⊙. We detect rotational splitting in the g and p modes for both stars and use them to determine a first rough estimate of the core-to-surface rotation rates for the two components, which will be improved by future detailed seismic modelling. Based on the data gathered with NASA's Discovery mission, Kepler, and with the HERMES spectrograph, installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the

  6. Auroral pulsations from ionospheric winds

    SciTech Connect

    Nakada, M.P. )

    1989-11-01

    The possibility that auroral pulsations are due to oscillatory electrical circuits in the ionosphere that are driven by the negative resistance of jet stream winds is examined. For the condenser plates, the highly conducting surfaces above the edges of the jet stream are postulated. The dielectric constant of the plasma between the plates is quite large. The current that is driven perpendicular to and by the jet stream closes along the plates and through Pederson currents in the F region above the stream. This closed loop gives the inductance and resistance for the circuit. Periods of oscillation for this circuit appear to be in the range of Pc 1 to Pc 3. In accord with observations, this circuit appears to be able to limit the brightness of pulsations.

  7. Chaotic pulsations in stellar models

    SciTech Connect

    Buchler, J.R. )

    1990-12-01

    The irregular behavior of large-amplitude pulsating stars undergoing radial oscillations is examined theoretically, with a focus on hydrodynamic simulations of the W Virginis population II Cepheids (stars which show both regular and RV Tau characteristics). Sequences of models are constructed as one-parameter families (with luminosity, mass, and composition fixed and Teff as the control parameter) and analyzed to derive a systematic map of the bifurcation set; i.e., of the possible types of pulsations. The results are presented graphically, and it is shown that both cascades of period doubling (via destabilization of an overtone through a half-integer-type resonance) and tangent bifurcation are possible routes to chaos in these systems, depending on the stellar parameters. The general robustness of the chaotic behavior and the existence of a 'chaotic blue edge' in stellar-parameter space are demonstrated. 55 refs.

  8. Radial-velocity observations of pulsating stars with a new Poznan Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Dimitrow, W.

    2008-12-01

    We present results of radial velocity measurements of classical cepheids, δ Scuti and β Cephei stars. The spectra were obtained with Poznan Spectroscopic Telescope (PST). The telescope has been operating since August 2007. The PST is equipped with two 40cm diameter mirrors of Newtonian focus, connected by an optic fiber with an echelle spectrograph. The PSTs design aimed at the best cooperation with the spectrograph as well as limiting light looses. It allows us to measure radial velocity of stars as faint as 11.5 magnitudes. The peltier-liquid cooled CCD camera covers 64 echelle orders with spectral range from 4480 to 9250˚A. The dispersion of the obtained radial velocity measurements is on the level of 150 m/s. Echelle spectra reduction and RV measu- rements are performed with Image Reduction and Analysis Facility (IRAF). We have achived sufficient phase coverage for 28 And, γ Peg, Polaris and V440 Per. Further data acquirement for other pulsating stars is currently held.

  9. Pulsating Helium Atmosphere White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith; Montgomery, Michael H.; Bischoff-Kim, Agnes; Shipman, Harry; Nitta, Atsuko; Whole Earth Telescope Collaboration

    2015-08-01

    The overwhelming majority of all stars currently on the main sequence as well as those from earlier generations will or have ended their stellar lives as white dwarf stars. White dwarfs are rich forensic laboratories linking the history and future evolution of our Galaxy. Their structure and atmospheric composition provide evidence of how the progenitors lived, how they evolved, and how they died. This information reveals details of processes governing the behavior of contemporary main sequence stars. Combined with their distribution in luminosity/temperature, white dwarfs strongly constrain models of galactic and cosmological evolution.GD358 is among the brightest (mv =13.7) and best studied of the pulsating white dwarfs. This helium atmoshere pulsator (DBV) has an extensive photometric database spanning 30 years, including nine multisite Whole Earth Telescope campaigns. GD358 exhibits a range of behaviors, from drastic changes in excited pulsation modes to variable multiplet splittings. We use GD358 as a template for an examination of the DBV class, combining photometric results with recent COS spectroscopy. The results present new questions concerning DB formation and evolution.

  10. The morphology of displays of pulsating auroras.

    NASA Technical Reports Server (NTRS)

    Cresswell, G. R.

    1972-01-01

    An auroral substorm generates displays of pulsating auroras in ways which show a dependence upon both local time and latitude relative to the auroral oval. For several hours after midnight pulsating auroras can be observed in the wake of poleward expansions or within equatorward spreading diffuse envelopes of meridional extent of several hundred kilometers. As the dawn meridian is approached the displays of pulsating auroras tend increasingly to be comprised of distinct eastward drifting patches easily recorded by all-sky cameras.

  11. Mode density and frequency extraction in the δ Scuti star HD 50844

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2014-04-01

    We consider the high mode density reported in the δ Scuti star HD 50844 observed by CoRoT. Using simulations, we find that extracting frequencies down to a given false alarm probability by means of successive pre-whitening leads to a gross overestimate of the number of frequencies in a star. This is due to blending of the peaks in the periodogram due to the finite duration of the time series. Pre-whitening is equivalent to adding a frequency to the data which is carefully chosen to interfere destructively with a given frequency in the data. Since the frequency extracted from a blended peak is not quite correct, the interference is not destructive with the result that many additional fictitious frequencies are added to the data. In data with very high signal-to-noise ratio, such as the CoRoT data, these spurious frequencies are highly significant. Continuous pre-whitening thus causes a cascade of spurious frequencies which leads to a much larger estimate of the mode density than is actually the case. The results reported for HD 50844 are consistent with this effect. Direct comparison of the power in the raw periodogram in this star with that in δ Scuti stars observed by Kepler shows that HD 50844 has a typical mode density.

  12. Dayside Pi 2 pulsations at low altitudes

    SciTech Connect

    Sutcliffe, P.R. ); Yumoto, Kiyohumi )

    1989-08-01

    In this paper the authors investigate the occurrence of dayside Pi 2 geomagnetic pulsations at low and mid latitudes. The technique of data adaptive filtering is used to identify Pi 2's concealed by the presence of typical daytime Pc type pulsations. Convincing new evidence is presented demonstrating that Pi 2 pulsations occur simultaneously in both the nightside and dayside hemispheres at low latitudes. Dayside Pi 2's are occasionally identified at mid latitudes. These results have implications with regard to the source mechanism for low latitude Pi 2 pulsations and allude to a global cavity mode.

  13. Constant auroral forms during regular pulsations

    NASA Astrophysics Data System (ADS)

    Roldugin, V. K.; Roldugin, A. V.

    2016-01-01

    A case is described in which complex auroral forms varied slightly at Lovozero Observatory over the course of more than an hour in the morning hours during the auroral recovery phase. Pc3 and Pc5 auroral and geomagnetic pulsations were observed during the event. The phenomenon is compared with recurrent pulsating auroras, which are described in the literature.

  14. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Warnecke, Sascha; Hof, Bjoern; Avila, Marc

    2014-11-01

    We report an experimental investigation of the transition to turbulence in a pulsating pipe flow. This flow is a prototype of various pulsating flows in both nature and engineering, such as in the cardiovascular system where the onset of turbulence is often possibly related to various diseases (e.g., the formation of aneurysms). The experiments are carried out in a straight rigid pipe using water with a sinusoidal modulation of the flow rate. The governing parameters, Reynolds number, Womersley number α (dimensionless pulsating frequency) and the pulsating amplitude A, cover a wide range 3 < α < 23 and 0 < A < 1 . To characterize the transition to turbulence, we determine how the characteristic lifetime of turbulent spots (/puffs) are affected by the pulsation. While at high pulsation frequencies (α > 12) lifetimes of turbulent spots are entirely unaffected by the pulsation, at lower frequencies they are substantially affected. With decreasing frequency much larger Reynolds numbers are needed to obtain spots of the same characteristic lifetime. Hence at low frequency transition is delayed significantly. In addition the effect of the pulsation amplitude on the transition delay is quantified. Duo Xu would like to acknowledge the support from Humboldt Foundation.

  15. Pi2 pulsations in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lin, C. C.; Cahill, L. J., Jr.

    1975-01-01

    Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.

  16. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  17. Limestone calcination during pulsating combustion

    SciTech Connect

    James, R.E. III ); Richards, G.A. )

    1992-01-01

    METC is currently conducting research on enhanced calcination during pulsating combustion as part of the Heat Engines program. It has been shown elsewhere that rapid, high temperature calcination will result in a calcined product with relatively large surface area, as desired for sulfur capture. It is proposed that such a process may occur during pulsating combustion where the oscillating pressure/velocity field around a particle increases the heat/mass transfer to and from the particle. To test this hypothesis, calcination tests in progress at METC use a novel form of pulse combustion called thermal'' pulse combustion, operating at 60000 BTUH, 100 Hz, and 5--15 psig peak-to- peak amplitude. Two configurations are being studied during the testing: one configuration is injection of sorbent into a refractory lined drop tube being heated by the pulse combustor, and the other configuration is injection of the sorbent into the pulse combustor through its centerbody and along the tailpipe at various positions. To understand the observed behavior, a characterization study of the pulse combustor is being conducted. Different flow rates, equivalence ratios, and injection positions are being tested.

  18. A study of the pulsation driving mechanism in pulsating combustors

    NASA Astrophysics Data System (ADS)

    Goldman, Y.; Timnat, Y. M.

    Experiments performed in a facility consisting of a Schmidt-type pulsating combustor, in which high-speed photographs were taken and pressure, temperature and gas composition measured, showed that the air supply conditions at the inlet and the volume of the combustor strongly influence the oscillation frequency. From the measurements, the existence of two separate regions, one containing cold air and the other containing fuel-rich gas, was found, and a pressure-volume diagram was drawn, showing the effect of chemical energy release and heat supply during the compression stroke and differentiating it from the expansion. A model of the interaction between the cyclic combustion process and the acoustic oscillations of the gas volume within the chamber and the tail-pipe is presented. The conditions for chemical energy release that result in high-pressure amplitude are described.

  19. Persistent, widespread pulsating aurora: A case study

    NASA Astrophysics Data System (ADS)

    Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.; Jaynes, A. N.

    2013-06-01

    Observations of a pulsating aurora event occurring on 11 February 2008, using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) All-Sky Imager (ASI) array, indicate a spatially and temporally continuous event with a duration of greater than 15 h and covering a region with a maximum size of greater than 10 h magnetic local time. The optical pulsations are at times locally interrupted or drowned out by auroral substorm activity but are observed in the same location once the discrete aurora recedes. The pulsations following the auroral breakup appear to be brighter and have a larger patch size than before breakup. This suggests that, while the onset of pulsating aurora is not necessarily dependent upon a substorm precursor, the pulsations are affected and possibly enhanced by the substorm process. The long duration of this pulsating aurora event, lasting approximately 8 h without interruption as imaged from Gillam station, is significantly longer than the typical 2-3 h substorm recovery phase, suggesting that pulsating aurora is not strictly a recovery phase phenomenon. This paper is accompanied by a movie of the THEMIS ASI array data, from 0000 to 1715 UT, plotted in mosaic and superimposed onto a map of North America.

  20. Nonlinear Analysis of Pulsating White Dwarf Lightcurves

    NASA Astrophysics Data System (ADS)

    Provencal, J. L.; Montgomery, M. H.; Shipman, H.; WET TEam

    2015-06-01

    Convection remains one of the largest sources of theoretical uncertainty in our understanding of stellar physics. For example, Bergeron (1995) show that basic parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed convective parameterization. This is compelling, since we use our knowledge of these basic parameters to calibrate white dwarf cooling sequences, provide detailed estimates for the ages of individual white dwarfs, and determine the age of the Galactic disk. The Whole Earth Telescope (WET) is engaged in a long term project to empirically calibrate the physical properties of convection in pulsating white dwarfs by combining asteroseismology and analysis of nonlinear light curves. Nonsinusoidal distortions, in the form of narrow peaks and wider valleys, are observed in many pulsating white dwarf light curves. These are a reflection of the local depth of the convection zone, a value which varies during a pulsation cycle. Applying asteroseismology and convective light curve fitting to a wide sample of pulsating white dwarfs provides an empirical map of how the convective response time (the convection zone “depth”) varies as a function of effective temperature, and this can be compared with theoretical models, both MLT and hydrodynamic. This project has resulted in a large database of white dwarf lightcurves and pulsation frequencies. We present current results for DA and DB pulsators, and provide a few examples of interesting pulsation behavior seen along the way.

  1. Pulsations and outbursts of luminous blue variables

    SciTech Connect

    Cox, A.N.; Guzik, J.A.; Soukup, M.S.; Despain, K.M.

    1997-06-01

    We propose an outburst mechanism for the most luminous stars in our and other galaxies. These million solar luminosity stars, with masses (after earlier mass loss) of between 20 and maybe 70 solar masses, are pulsationally unstable for both radial and low-degree nonradial modes. Some of these modes are ``strange,`` meaning mostly that the pulsations are concentrated near the stellar surface and have very rapid growth rates in linear theory. The pulsation driving is by both the high iron line opacity (near 150,000 K) and the helium opacity (near 30,000 K) kappa effects. Periods range from 5 to 40 days. Depending on the composition, pulsations periodically produce luminosities above the Eddington limit for deep layers. The radiative luminosity creates an outward push that readily eases the very low gamma envelope to very large outburst radii. A key point is that a super-Eddington luminosity cannot be taken up by the sluggish convection rapidly enough to prevent an outward acceleration of much of the envelope. As the helium abundance in the envelope stellar material increases by ordinary wind mass loss and the luminous blue variable outbursts, the opacity in the deep pulsation driving layers decreases. This makes the current Eddington luminosity even higher so that pulsations can then no longer give radiative luminosities exceeding the limit. For the lower mass and luminosity luminous blue variables there is considerably less iron line opacity driving, and pulsations are almost all caused by the helium ionization kappa effect.

  2. Pulsations in close binaries: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Maceroni, C.; Lehmann, H.; Da Silva, R.; Montalbán, J.

    2015-09-01

    CoRoT and Kepler provided a precious by-product: a number of eclipsing binaries containing variable stars and, among these, non-radial pulsators. This providential occurrence allows combining independent information from two different phenomena whose synergy yields scientific results well beyond those from the single sources. In particular, the analysis of pulsations in eclipsing binary components throws light on the internal structure of the pulsating star, on the system evolution, and on the role of tidal forces in exciting the oscillations. The case study of the Kepler target KIC 3858884 is illustrative of the difficulties of analysis and of the achievements in this rapidly developing field.

  3. CHARACTERIZING PULSATING MIXING OF SLURRIES

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.

    2007-12-01

    This paper describes the physical properties for defining the operation of a pulse jet mixing system. Pulse jet mixing operates with no moving parts located in the vessel to be mixed. Pulse tubes submerged in the vessel provide a pulsating flow due to a controlled combination of applied pressure to expel the fluid from the pulse tube nozzle followed by suction to refill the pulse tube through the same nozzle. For mixing slurries nondimensional parameters to define mixing operation include slurry properties, geometric properties and operational parameters. Primary parameters include jet Reynolds number and Froude number; alternate parameters may include particle Galileo number, particle Reynolds number, settling velocity ratio, and hindered settling velocity ratio. Rating metrics for system performance include just suspended velocity, concentration distribution as a function of elevation, and blend time.

  4. The Taiwan-American Occultation Survey Project Stellar Variability. I. Detection of Low-Amplitude δ Scuti Stars

    NASA Astrophysics Data System (ADS)

    Kim, D.-W.; Protopapas, P.; Alcock, C.; Byun, Y.-I.; Kyeong, J.; Lee, B.-C.; Wright, N. J.; Axelrod, T.; Bianco, F. B.; Chen, W.-P.; Coehlo, N. K.; Cook, K. H.; Dave, R.; King, S.-K.; Lee, T.; Lehner, M. J.; Lin, H.-C.; Marshall, S. L.; Porrata, R.; Rice, J. A.; Schwamb, M. E.; Wang, J.-H.; Wang, S.-Y.; Wen, C.-Y.; Zhang, Z.-W.

    2010-02-01

    We analyzed data accumulated during 2005 and 2006 by the Taiwan-American Occultation Survey (TAOS) in order to detect short-period variable stars (periods of lsim1 hr) such as δ Scuti. TAOS is designed for the detection of stellar occultation by small-size Kuiper Belt Objects and is operating four 50 cm telescopes at an effective cadence of 5 Hz. The four telescopes simultaneously monitor the same patch of the sky in order to reduce false positives. To detect short-period variables, we used the fast Fourier transform algorithm (FFT) in as much as the data points in TAOS light curves are evenly spaced. Using FFT, we found 41 short-period variables with amplitudes smaller than a few hundredths of a magnitude and periods of about an hour, which suggest that they are low-amplitude δ Scuti stars. The light curves of TAOS δ Scuti stars are accessible online at the Time Series Center Web site (http://timemachine.iic.harvard.edu).

  5. Statistical study of dayside pulsating aurora

    NASA Astrophysics Data System (ADS)

    Kanmae, T.; Kadokura, A.; Ogawa, Y.; Ebihara, Y.; Motoba, T.; Gerrard, A. J.; Weatherwax, A. T.

    2015-12-01

    Pulsating aurora normally occurs after a substorm breakup in the midnight sector, often observed to persist through the morning sector and beyond. Indeed, it has also been observed on the dayside; however, the characteristics of the dayside pulsating aurora are poorly known. A handful of observational studies have been reported, but the results are somewhat disputable because most of the studies had non-uniform sampling of the dark dayside region. Furthermore, the previous studies used photometer data, with which the spatial characteristics of the pulsating aurora cannot be examined. To determine both temporal and spatial characteristics of the pulsating aurora, we have studied three years of all-sky image data obtained at the South Pole station. Because of its unique geographical location, the station has 24 hours of darkness during the austral winter from April to August, providing an ideal platform for studying dayside aurora. In a preliminary survey of the data, we have identified the pulsating auroras in 198 days out of 365 days of observations. The magnetic local time (MLT) distribution of the occurrence peaks between 9:00 and 11:00, but shows no or little dependence on the geomagnetic activity. In many events, pulsating patches initially appear as east-west aligned arc segments and later in the afternoon sector develop into large, diffuse patches, which occasionally fill a large part of the field of view. Using the long-term data, we will statistically examine both temporal (occurrence rate, duration and pulsation period) and spatial (sizes and shapes) characteristics of the dayside pulsating aurora.

  6. A motion picture presentation of magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  7. Two new extremely hot pulsating white dwarfs

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Grauer, A. D.; Green, R. F.; Liebert, J. W.

    1984-01-01

    High speed photometry of the extremely hot, nearly degenerate stars PG 1707 + 427 and PG 2131 + 066 reveals that they are low-amplitude pulsating variables. Power spectral analysis shows both to be multiperiodic, with dominant periods of 7.5 and 6.4-6.9 minutes, respectively. Together with the known pulsators PG 1159 - 035 and the central star of the planetary nebula Kohoutek 1-16, these objects define a new pulsational instability strip at the hot edge of the H-R diagram. The variations of these objects closely resemble those of the much cooler pulsating ZZ Ceti DA white dwarfs; both groups are probably nonradial g-mode pulsators. Evolutionary contraction of the PG 1159 - 035 variables may lead to period changes that would be detectable in as little as 1 year. The optical and IUE spectra of the PG 1159 - 035 variables are characterized by absorption lines of C IV and other CNO ions, indicating radiative levitation of species heavier than helium. He II is also present in the spectra, but the hydrogen Balmer lines are absent. Effective temperatures near 100,000 K are required, and the He II 4686 A profiles indicate log g greater than 6. These helium-rich pulsators form the hottest known subgroup of the DO white dwarfs.

  8. Radial pulsations in DB white dwarfs?

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1993-01-01

    Theoretical models of DB white dwarfs are unstable against radial pulsation at effective temperatures near 20,000-30,000 K. Many high-overtone modes are unstable, with periods ranging from 12 s down to the acoustic cutoff period of approximately 0.1 s. The blue edge for radial instability lies at slightly higher effective temperatures than for nonradial pulsations, with the temperature of the blue edge dependent on the assumed efficiency of convection. Models with increased convective efficiency have radial blue edges that are increasingly closer to the nonradial blue edge; in all models the instability persists into the nonradial instability strip. Radial pulsations therefore may exist in the hottest DB stars that lie below the DB gap; the greatest chance for detection would be observations in the ultraviolet. These models also explain why searches for radial pulsations in DA white dwarfs have failed: the efficient convection needed to explain the blue edge for nonradial DA pulsation means that the radial instability strip is 1000 K cooler than found in previous investigations. The multiperiodic nature of the expected pulsations can be used to advantage to identify very low amplitude modes using the uniform spacing of the modes in frequency. This frequency spacing is a direct indicator of the mass of the star.

  9. Observations, light curves analysis and pulsation behavior of the Algol-type eclipsing binary system XX Cep

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, B.; Pazhouhesh, R.; Yakut, K.

    2014-02-01

    We present the long term photometric variations of the classical Algol type binary XX Cep with a δ Scuti type pulsating component. Modeling of the system shows that the secondary component fills its Roche lobe. The derived physical and geometrical parameters of the system are M1=1.92M⊙, M2=0.36M⊙, R1=2.08R⊙, R2=2.39R⊙, L1=19.8L⊙, L2=2.1L⊙, a=9.8R⊙ and the distance of the system as 312(18) pc. We obtained five new times of minima. Analysis of the mid-eclipse times indicate a period decrease of dP/dt=-1.9(2)×10-8 days/yr that can be interpreted in terms of a mass transfer rate (dM/dt=-1.2(3)×10-9M⊙/yr) from the secondary to primary component. The O-C diagram formed from all available timings, and thus the orbital period of the system, can be partly represented as a beat effect between two cyclical variations with different periods (P1 = 48(1) yr, P2 = 81(4) yr). We used PHOEBE program for light curves analysis and after modeling, the eclipse and proximity effects were removed from the light curves to analyze intrinsic variations caused by components of the system. Frequency analysis was done by Period04 and the residuals represent the pulsation of a more massive component of the system XX Cep with a period of 0.031 days, confirming the results of Lee et al. (2007).

  10. Application of the Baade-Wesselink method to a pulsating cluster Herbig Ae star: H254 in IC348

    NASA Astrophysics Data System (ADS)

    Ripepi, V.; Molinaro, R.; Marconi, M.; Catanzaro, G.; Claudi, R.; Daszyńska-Daszkiewicz, J.; Palla, F.; Leccia, S.; Bernabei, S.

    2014-01-01

    In this paper we present new photometric and radial velocity data for the PMS δ Sct star H254, member of the young cluster IC 348. Photometric V, RC, IC light curves were obtained at the Loiano and Asiago telescopes. The radial velocity data were acquired by means of the SARG@Telescopio Nazionale Galileo spectrograph. High-resolution spectroscopy allowed us to derive precise stellar parameters and the chemical composition of the star, obtaining Teff = 6750 ± 150 K; log g = 14.1 ± 0.4 dex and [Fe/H] = -0.07 ± 0.12 dex. Photometric and spectroscopic data were used to estimate the total absorption in the V band AV = 2.06 ± 0.05 mag, in agreement with previous estimates. We adopted the technique of the difference in phase and amplitude between different photometric bands and radial velocities to verify that H254 is (definitely) pulsating in a radial mode. This occurrence allowed us to apply the CORS realization of the Baade-Wesselink method to obtain a value for the linear radius of H254 equal to 3.3 ± 0.7 R⊙. This result was used in conjunction with photometry and effective temperature to derive a distance estimate of 273 ± 23 pc for H254, and, in turn for IC 348, the host cluster. This value is in agreement within the errors with the results derived from several past determinations and the evaluation obtained through the Hipparcos parallaxes. Finally, we derived the luminosity of H254 and studied its position in the Hertzsprung-Russell diagram. From this analysis it results that this δ Scuti occupies a position close to the red edge of the instability strip, pulsates in the fundamental mode, has a mass of about 2.2 M⊙ and an age of 5 ± 1 Myr, older than previous estimates.

  11. High-resolution spectroscopy and mode identification in non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Wright, D. J.; Zima, W.; Cottrell, P. L.; De Cat, P.

    2008-12-01

    We have obtained high-resolution spectroscopic data of a sample of non-radially pulsating stars with the HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory in New Zealand. We have developed and used a new technique which cross- correlates stellar spectra with scaled delta function templates to obtain high signal-to-noise representative spectral line profiles for further analysis. Using these profiles, and employing the Fourier Parameter Fit method, we have been able to place constraints on the degree, ℓ, and azimuthal order, m, of the non-radial pulsation modes in one β Cephei star, V2052 Oph and two γ Doradus stars, QW Pup and HD 139095.

  12. New pulsating white dwarfs in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Nilsson, R.; Uthas, H.; Ytre-Eide, M.; Solheim, J.-E.; Warner, B.

    2006-07-01

    The number of discovered non-radially pulsating white dwarfs (WDs) in cataclysmic variables (CVs) is increasing rapidly by the aid of the Sloan Digital Sky Survey (SDSS). We performed photometric observations of two additional objects, SDSS J133941.11+484727.5 (SDSS 1339), independently discovered as a pulsator by Gänsicke et al., and SDSS J151413.72+454911.9, which we identified as a CV/ZZ Ceti hybrid. In this Letter we present the results of the remote observations of these targets performed with the Nordic Optical Telescope (NOT) during the Nordic-Baltic Research School at Molėtai Observatory, and follow-up observations executed by NOT in service mode. We also present three candidates we found to be non-pulsating. The results of our observations show that the main pulsation frequencies agree with those found in previous CV/ZZ Ceti hybrids, but specifically for SDSS 1339 the principal period differs slightly between individual observations and also from the recent independent observation by Gänsicke et al. Analysis of SDSS colour data for the small sample of pulsating and non-pulsating CV/ZZ Ceti hybrids found so far seems to indicate that the r - i colour could be a good marker for the instability strip of this class of pulsating WDs. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. E-mail: ricky@astro.lu.se

  13. A cool stellar companion to the δ Scuti variable star GW UMa

    NASA Astrophysics Data System (ADS)

    Wang, S.-M.; Qian, S.-B.; Li, L.-J.; Zhu, L.-Y.; Zhao, E.-G.; Zhou, X.

    2015-01-01

    GW UMa is a new high-amplitude δ Scuti variable star with a period of 0d.20319367. By using a few new determined times of light maximum together with those collected from the literature, the changes in Observed-Calculated (O-C) diagram were analyzed. It is discovered that the O-C curve of GW UMa shows a cyclic variation with a period of 13.2 years and a semi-amplitude of 0.0023 days. The periodic variation was analyzed for the light-travel time effect that may be due to the presence of a stellar companion. The mass of the stellar companion is determined to be M2 sin i=0.11(±0.01)M⊙ when a mass of 1.76 M⊙ for GW UMa is adopted. The two component stars in the binary system are orbiting each other at an orbital separation about 6.5(±0.8) AU. For orbital inclinations i⩾22.6°, the mass of the companion star would be M2<0.3M⊙ and it is a fully convective star. The detection suggests that hidden stellar companions to bright stars may be not unusual.

  14. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  15. Modeling of pulsating heat pipes.

    SciTech Connect

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  16. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The streamers of clouds draped over the Gulf of Mexico in this true-color MODIS image from February 27, 2002, suggest that a cold, dry wind was blowing southward over the United States and began to pick up moisture over the Gulf, causing these strips of clouds. That the clouds didn't pick up until some distance from the coastline allowed MODIS to get a perfect view of the dynamic Gulf Coast environment spanning (left to right) Texas, Louisiana, Mississippi, Alabama, and Florida's Western Panhandle. The Mississippi River runs roughly down the center of the image, and is joined in Louisiana by the Red River coming in from the northwest. Over the past 7000 years, the actual delta, where the main river channel empties into the Gulf, has wandered around what we now think of as the Louisiana coast. Considering all the sediment visible in this image, it's not hard to imagine that the river carries about 2.4 billion kilograms of sediment into the Gulf each year. Deposition of some of this sediment has been building up the current delta, called the Birdfoot Delta, for obvious reasons, for about 700 years. The coastal waters are alive with microscopic organisms called phytoplankton, which contain colorful pigments, including chlorophyll, for harvesting sunlight. Beyond the sediment plume off Louisiana, the waters are very dark, which could indicate that a large amount of chlorophyll is present, absorbing lots of sunlight and causing the water to appear dark. Farther south, the waters appear bright blue, which could be a signature of coccolithophores, which use highly reflective calcium carbonate to build scaly coverings for themselves. The brighter offshore waters could also be caused by a blue-green algae called Trichodesmium, an organism that can not only harness carbon dioxide for photosynthesis, but can also take nitrogen from the air and turn it into a form that can be used by living organisms. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Hof, Bjorn; Warnecke, Sascha; Xu, Duo

    2013-11-01

    We report an experimental study of the transition to turbulence in a pulsating pipe flow the most important example of pulsating flows is the cardiovascular system where the onset of fluctuations and turbulence can be a possible cause for various diseases such as the formation of aneurysms. The present study is limited to a straight rigid pipe, sinusoidal modulation of the flow rate and a Newtonian fluid. The dimensionless parameters (Womersley and Reynolds numbers) were chosen to include the parameter range encountered in larger arteries. We observe that at large frequencies the critical point for the onset of turbulence remains completely unaffected by pulsation for all amplitudes investigated (up to 40%). However for smaller frequencies (Womersley numbers below 10) the critical point considerably increases. Furthermore we investigate how the transition scenario is affected for a fixed frequency and increasing amplitudes (approaching oscillatory flow).

  18. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    DOE PAGESBeta

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-05-11

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d–1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d–1) by twice the value of the estimated rotational splitting frequency (0.269 d–1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d–1) are in better agreement with the sum of a possible 1.710 d–1 large separation and two or one times, respectively, the value of the rotational frequency.« less

  19. Unexpected Series of Regular Frequency Spacing of δ Scuti Stars in the Non-asymptotic Regime. I. The Methodology

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.

    2016-05-01

    A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges) were found in the 5–21 d‑1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d‑1) by twice the value of the estimated rotational splitting frequency (0.269 d‑1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d‑1) are in better agreement with the sum of a possible 1.710 d‑1 large separation and two or one times, respectively, the value of the rotational frequency.

  20. Benefit of pulsation in soft corals

    PubMed Central

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-01-01

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral–water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral’s photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral’s resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis–respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes. PMID:23610420

  1. Gas compressor with side branch absorber for pulsation control

    SciTech Connect

    Harris, Ralph E.; Scrivner, Christine M.; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  2. SuperDARN observations of pulsating aurora

    NASA Astrophysics Data System (ADS)

    Clausen, L. B. N.; Yeoman, T. K.; Hosokawa, K.; Yukimatu, A. S.; Sato, N.; Milan, S. E.; Lester, M.

    2009-04-01

    On 25 September 2006 the all-sky camera located in Tjornes, Iceland observed pulsating aurora. During the event, the SuperDARN radar at Pykkvibaer was running in a high time, high spatial resolution mode and observed oscillating Doppler velocities. The pulsating velocities were observed in two separate patches of backscatter at different range gates, with different velocities. Backscattered power and spectral width as well as elevation angle data suggest that the power associated with each patch travelled along different ray paths. We discuss possible ray paths as well as the mechanisms that could have led to the difference in Doppler velocity observed for each patch.

  3. Ionospheric variation during pulsating aurora

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Ogawa, Y.

    2015-07-01

    We have statistically analyzed data from the European Incoherent Scatter (EISCAT) UHF/VHF radars in Tromsø (69.60°N, 19.20°E), Norway, to reveal how the occurrence of pulsating auroras (PsAs) modifies the electron density profile in the ionosphere. By checking five winter seasons' (2007-2012) observations of all-sky aurora cameras of the National Institute of Polar Research in Tromsø, we have extracted 21 cases of PsA. During these PsA events, either the UHF or VHF radar of EISCAT was operative and the electron density profiles were obtained along the field-aligned or vertical direction near the zenith. From these electron density measurements, we calculated hmE (E region peak height) and NmE (E region peak density), which are proxies for the energy and flux of the precipitating PsA electrons, respectively. Then, we examined how these two parameters changed during the evolution of 21 PsA events in a statistical fashion. The results can be summarized as follows: (1) hmE is lower (the energy of precipitation electrons is higher) during the periods of PsA than that in the surrounding interval; (2) when NmE is higher (flux of PsA electrons is larger), hmE tends to be lower (precipitation is harder); (3) hmE is lower and NmE is larger in the later magnetic local time; and (4) when the AE index during the preceding substorm is larger, hmE is lower and NmE is larger. These tendencies are discussed in terms of the characteristics of particles and plasma waves in the source of PsA in the magnetosphere. In addition to the statistics of the EISCAT data, we carried out several detailed case studies, in which the altitude profiles of the electron density were derived by separating the On and Off phases of PsA. This allows us to estimate the true altitude profiles of the PsA ionization, which can be used for estimating the characteristic energy of the PsA electrons and better understanding the wave-particle interaction process in the magnetosphere.

  4. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Mississippi River delta teems with sediment deposited by the river as it flows into the Gulf of Mexico in this true-color image captured by MODIS on October 15, 2001. The sediment, which is marked by brown swirls in the Gulf, provides nutrients for the bloom of phytoplankton visible as blue-green swirls off the coastline. In the high-resolution image the city of Memphis can be seen in the southwest corner of Tennessee, which is just to left of center at the top of the image. The brown coloration that encompasses Memphis and either side of the river, as flows north to south along the left side of the image, is the river's flood plain. Also visible, in the upper-right hand corner of the image is the southern end of the Appalachian Mountains.

  5. Evaluation of Pump Pulsation in Respirable Size-Selective Sampling: Part I. Pulsation Measurements

    PubMed Central

    Lee, Eun Gyung; Lee, Larry; Möhlmann, Carsten; Flemmer, Michael M.; Kashon, Michael; Harper, Martin

    2015-01-01

    Pulsations generated by personal sampling pumps modulate the airflow through the sampling trains, thereby varying sampling efficiencies, and possibly invalidating collection or monitoring. The purpose of this study was to characterize pulsations generated by personal sampling pumps relative to a nominal flow rate at the inlet of different respirable cyclones. Experiments were conducted using a factorial combination of 13 widely used sampling pumps (11 medium and 2 high volumetric flow rate pumps having a diaphragm mechanism) and 7 cyclones [10-mm nylon also known as Dorr-Oliver (DO), Higgins-Dewell (HD), GS-1, GS-3, Aluminum, GK2.69, and FSP-10]. A hot- wire anemometer probe cemented to the inlet of each cyclone type was used to obtain pulsation readings. The three medium flow rate pump models showing the highest, a midrange, and the lowest pulsations and two high flow rate pump models for each cyclone type were tested with dust-loaded filters (0.05, 0.21, and 1.25 mg) to determine the effects of filter loading on pulsations. The effects of different tubing materials and lengths on pulsations were also investigated. The fundamental frequency range was 22–110 Hz and the magnitude of pulsation as a proportion of the mean flow rate ranged from 4.4 to 73.1%. Most pump/cyclone combinations generated pulse magnitudes >10% (48 out of 59 combinations), while pulse shapes varied considerably. Pulsation magnitudes were not considerably different for the clean and dust-loaded filters for the DO, HD, and Aluminum cyclones, but no consistent pattern was observed for the other cyclone types. Tubing material had less effect on pulsations than tubing length; when the tubing length was 183 cm, pronounced damping was observed for a pump with high pulsation (>60%) for all tested tubing materials except for the Tygon Inert tubing. The findings in this study prompted a further study to determine the possibility of shifts in cyclone sampling efficiency due to sampling pump pulsations

  6. HD 51844: An Am δ Scuti in a binary showing periastron brightening

    NASA Astrophysics Data System (ADS)

    Hareter, M.; Paparó, M.; Weiss, W.; García Hernández, A.; Borkovits, T.; Lampens, P.; Rainer, M.; De Cat, P.; Marcos-Arenal, P.; Vos, J.; Poretti, E.; Baglin, A.; Michel, E.; Baudin, F.; Catala, C.

    2014-07-01

    Context. Pulsating stars in binary systems are ideal laboratories to test stellar evolution and pulsation theory, since a direct, model-independent determination of component masses is possible. The high-precision CoRoT photometry allows a detailed view of the frequency content of pulsating stars, enabling detection of patterns in their distribution. The object HD 51844 is such a case showing periastron brightening instead of eclipses. Aims: We present a comprehensive study of the HD 51844 system, where we derive physical parameters of both components, the pulsation content and frequency patterns. Additionally, we obtain the orbital elements, including masses, and the chemical composition of the stars. Methods: Time series analysis using standard tools was employed to extract the pulsation frequencies. Photospheric abundances of 21 chemical elements were derived by means of spectrum synthesis. We derived orbital elements both by fitting the observed radial velocities and the light curves, and we did asteroseismic modelling as well. Results: We found that HD 51844 is a double lined spectroscopic binary. The determined abundances are consistent with δ Delphini classification. We determined the orbital period (33.498 ± 0.002 d), the eccentricity (0.484 ± 0.020), the mass ratio (0.988 ± 0.02), and the masses to 2.0 ± 0.2 M⊙ for both components. Only one component showed pulsation. Two p modes (f22 and f36) and one g mode (forb) may be tidally excited. Among the 115 frequencies, we detected triplets due to the frequency modulation, frequency differences connected to the orbital period, and unexpected resonances (3:2, 3:5, and 3:4), which is a new discovery for a δ Sct star. The observed frequency differences among the dominant modes suggest a large separation of 2.0-2.2 d-1, which are consistent with models of mean density of 0.063 g cm-3, and with the binary solution and TAMS evolutionary phase for the pulsating component. The binary evolution is in an

  7. The Mass-Loss Wind of the Massive Over-contact Binary RY Scuti

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Smith, N.

    2002-12-01

    We present the results of panchromatic imaging studies of the circumstellar nebula around the massive over-contact binary system RY Scuti. HST/STIS and ground-based spectra combined with VLA radio, HST visual, and Keck infrared (IR) images reveal a young, expanding equatorial torus that may have been ejected as recently as 120 years ago (Gehrz et al 1995, ApJ, 439, 417; Smith et al. 1999, AJ, 118, 960; Gehrz et al. 2001, ApJ, 559, 395; Smith, Gehrz, and Goss 2001, AJ, 122, 2700). The IR morphology of the nebula is consistent with the interpretation that we are viewing a limb-brightened equatorial torus nearly edge-on and that the outer regions of the torus are dominated by optically thin, thermal IR emission from silicate dust. Radio continuum emission comes from the inner edge of the torus. This radiaton is due to thermal bremsstrahlung from hot gas ionized by UV radiation from the luminous OB stars that comprise the binary system. Emission from H-alpha, [Ne II] 12.8 microns, and [S III] 9532 Angstroms is co-spatial with the radio emission and interior to the thermal IR dust emission. The expansion age of the nebula is derived by combining multi-epoch H-aplha and radio continuum images, and expansion velocities seen in STIS spectra show a structure consistent with an expanding clumpy ring. We propose a model that accounts for the observational characteristics of the nebula and speculate about the evolutionary state of the system. This work has been supported by NASA and the Graduate School of the University of Minnesota.

  8. VOLUME COMPENSATING MEANS FOR PULSATING PUMPS

    DOEpatents

    Weaver, D.L.W.; MacCormack, R.S. Jr.

    1959-12-01

    A double diaphragm, two-liquid pulsating pump for remote control use, having as an improvement an apparatus for maintaining constant the volume of the liquid such as kerosene between the two diaphragms is described. Phase difficulties encountered in the operation of such pumps when the volume of the liquid is altered by changes in temperature are avoided.

  9. Pulsations in total columnar electron content

    NASA Technical Reports Server (NTRS)

    Okuzawa, T.; Davies, K.

    1981-01-01

    Radio signals from the ATS 6 beacon received at Boulder reveal small-amplitude, quasi-sinusoidal fluctuations with periods in the range of 10 to 50 s. Visual comparisons of these data (116 events for October 1974 to April 1975) shows a good correspondence with simultaneous geomagnetic pulsations at Boulder in two thirds of the cases for which Boulder magnetograms were available, but they do not necessarily correspond with magnetic pulsations on ATS 6. Spectral analyses, by the method of maximum entropy, were made on sample records. The principal results are the following: (1) The occurrence of the pulsations is higher on magnetically disturbed days. (2) The maximum likelihood of occurrence is around 2100 UT (1400 LT). (3) The dominant spectrum peaks of the radio fluctuations and geomagnetic field on the ground generally coincide. Cases are found also in which temporal characteristics of the spectra are similar. These results indicate a close association of the radio fluctuations with the Pc 3-4 type pulsations of the geomagnetic field on the ground. It is suggested that the radio fluctuations originate mainly in the F region of the ionosphere, while some of them could be due to plasmapause effects.

  10. Blackworms, Blood Vessel Pulsations and Drug Effects.

    ERIC Educational Resources Information Center

    Lesiuk, Nalena M.; Drewes, Charles D.

    1999-01-01

    Introduces the freshwater oligochaete worm, lumbriculus variegatus (common name: blackworms), an organism that is well suited for classroom study because of its closed circulatory system. Describes a set of simple, fast, noninvasive, and inexpensive methods for observing pulsations of the worm's dorsal blood vessels under baseline conditions, and…

  11. X-ray Pulsation Searches with NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven

    2016-04-01

    The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope with capabilities optimized for the study of the structure, dynamics, and energetics of neutron stars through high-precision timing of rotation- and accretion-powered pulsars in the 0.2-12 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision photon time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission as an attached payload on the International Space Station around the end of 2016. I will describe the science planning for the pulsation search science working group, which is charged with searching for pulsations and studying flux modulation properties of pulsars and other neutron stars. A primary goal of our observations is to detect pulsations from new millisecond pulsars that will contribute to NICER’s studies of the neutron star equation of state through pulse profile modeling. Beyond that, our working group will search for pulsations in a range of source categories, including LMXBs, new X-ray transients that might be accreting millisecond pulsars, X-ray counterparts to unassociated Fermi LAT sources, gamma-ray binaries, isolated neutron stars, and ultra-luminous X-ray sources. I will survey our science plans and give an overview of our planned observations during NICER’s prime mission.

  12. On the standing wave mode of giant pulsations

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Sato, N.; Warnecke, J.; Luehr, H.; Spence, H. E.; Tonegawa, Y.

    1992-01-01

    In order to determine the standing wave mode of giant pulsations, a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE was made. One giant pulsation was associated with a compressional wave, while no giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator. It is concluded that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure, which places a strong constraint on the generation mechanism of giant pulsations.

  13. A search for new variable stars in NGC 6231

    NASA Astrophysics Data System (ADS)

    Arentoft, T.; Sterken, C.; Knudsen, M. R.; Freyhammer, L. M.; Duerbeck, H. W.; Pompei, E.; Delahodde, C. E.; Clasen, J. W.

    2001-12-01

    NGC 6231 is a well-studied young open cluster hosting several variable stars. In the field six beta Cephei stars, several eclipsing binaries and one delta Scuti star are known (as well as a foreground delta Scuti star). In an ongoing effort to map and study the variability in NGC 6231, we present new results based on CCD time-series data optimised for the bright beta Cephei stars as well as data optimised for much fainter stars. We detect 17 new variable stars in the cluster, including three delta Scuti stars, three gamma Doradus candidates, three Slowly Pulsating B star candidates and one, or possibly two, new beta Cephei stars. Based on observations obtained at the Danish 1.54-m and Dutch 0.9-m telescopes at ESO (ESO applications: 60D-0148, 61D-0128 and 62H-0110).

  14. Delta III—an evolutionary delta growth

    NASA Astrophysics Data System (ADS)

    Arvesen, R. J.; Simpson, J. S.

    1996-03-01

    In order to remain competitive in the future and expand the McDonnell Douglas Aerospace market share, MDA has developed an expendable launch system strategy that devices cost-effective launch systems from the Delta II with a growth vehicle configuration called Delta III. The Delta III evolves from the Delta II launch system through development of a larger payload fairing (4-meter diameter), new cryogenically propelled upper stage, new first stage fuel tank, and larger strap-on solid rocket motors. We are developing the Delta III using Integrated Product Development Teams that capitalize on the experience base that has led us to a world record breaking mission success of 49 consecutive Delta II missions. The Delta III first-launch capability is currently planned for the spring of 1998 in support of our first spacecraft customer, Hughes Space and Communications International.

  15. Spatial characteristics of low-latitude Pc3-4 geomagnetic pulsations

    SciTech Connect

    Ziesolleck, C.W.S.; Fraser, B.J.; Menk, F.W.; McNabb, P.W. )

    1993-01-01

    In order to identify the generation mechanisms of low-latitude Pc-4 geomagnetic pulsations, data were obtained from a meridional chain of induction magnetometers spanning L values from 1.4 to 2.7 ([minus]30[degrees] to [minus]52[degrees] geomagnetic latitude). The spatial structure of Pc-4 signal parameters was examined by means of spectral, polarization and interstation phase analysis. The paper describes three typical individual events whose spectral, polarization and phase characteristics indicate the existence of field line resonances at low latitudes within the plasmasphere. The spatial phase structure shows a local minimum and indicates phase motion toward the resonance region. Resonance region widths of [Delta]L = 0.2 to [Delta]L = 0.8, corresponding to north-south ionospheric scale lengths of 250 and 1500 km or more, respectively, are seen. The coupling of field line resonances to global compressional modes is considered to be a likely generation mechanism of these pulsations. 49 refs., 12 figs., 1 tab.

  16. Evaluation of hydro-mechanical pulsation for rocket injector research

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew B.

    The Propulsion Research Center at the University of Alabama in Huntsville has designed and built a hydro-mechanical pulsator to simulate the pressure fluctuations created by high frequency combustion instability. The pressure response characteristics were evaluated in an atmospheric test rig using filtered de-ionized water as the working fluid. The outlet of the pulsator was connected to a swirl injector post to provide downstream flow resistance. Previous low pressure and mass flow experimental data revealed a complex relationship between the control parameters and the pulsation response. For each test, the average mass flow rates of the waste water, water lost through the seals, and injector mass flow rates are measured. A dynamic pressure transducer at the pulsator exit measures and records the pressure waveform. Pulsation magnitude, reliability, repeatability, pulsation effects, and detailed variable control are examined. The data shows the pulsator is capable of generating 30% pulsation at 1575 Hz input. The repeatability of the pulsator is questionable because the standard deviations exceeded 40% of the average. The detailed data obtained during this research provides is sufficient to develop a pulsator tuning procedure for future applications.

  17. V496 Scuti: an Fe II nova with dust shell accompanied by CO emission

    NASA Astrophysics Data System (ADS)

    Raj, Ashish; Ashok, N. M.; Banerjee, D. P. K.; Munari, U.; Valisa, P.; Dallaporta, S.

    2012-10-01

    We present near-infrared (near-IR) and optical observations of the nova Scuti 2009 (V496 Sct) covering various phases - pre-maximum, early decline and nebular - during the first 10 months of its discovery followed by limited observations in the early part of 2011 April. The spectra follow the evolution of the nova when the lines had strong P Cygni profiles to a phase dominated by prominent emission lines. The notable feature of the near-IR spectra in the early decline phase is the rare presence of first overtone bands of carbon monoxide in emission. Later about 150 days after the peak brightness, the IR spectra show clear dust formation in the expanding ejecta. Dust formation in V496 Sct is consistent with the presence of lines of elements with low ionization potentials like Na and Mg in the early spectra and the detection of CO bands in emission. The light curve shows a slow rise to the maximum and a slow decline indicating a prolonged mass loss. This is corroborated by the strengthening of P Cygni profiles during the first 30 days. In the spectra taken close to the optical maximum brightness, the broad and single absorption components seen at the time of discovery are replaced by two sharper components. During the early decline phase, two sharp dips that show increasing outflow velocities are seen in the P Cygni absorption components of Fe II and H I lines. The spectra in 2010 March showed the onset of the nebular phase. Several emission lines display saddle-like profiles during the nebular phase. In the nebular stage, the observed fluxes of [O III] and Hβ lines are used to estimate the electron number densities and the mass of the ejecta. The optical spectra show that the nova is evolved in the PfeAo spectral sequence. The physical conditions in the ejecta are estimated. The absolute magnitude and the distance to the nova are estimated to be MV = -7.0 ± 0.2 and d = 2.9 ± 0.3 kpc, respectively.

  18. Pulsating White Dwarf Star GD99

    NASA Astrophysics Data System (ADS)

    Chynoweth, K. M.; Thompson, S.; Mullally, F.; Yeates, C.

    2004-12-01

    We present 15 hours of time-series photometry of the variable white dwarf star GD99. These data were obtained at the McDonald Observatory 2.1m Otto Struve Telescope in January 2003, using the Argos CCD photometer. We achieved a noise level as low as 0.07 %, as measured from the power spectrum of our first night. Our observations confirm that GD99 is a unique pulsating white dwarf whose modes show characteristics of both the hot and cold type of DA variable stars. Additionally, GD99 has a large number of modes, making it a good candidate for asteroseismological study. Our preliminary results indicate that this star merits further study to decipher its abundant set of unusual modes. With such a rich period structure, longer continuous data sets will be required to fully resolve the pulsation spectrum.

  19. Pulsation and mass loss in Mira variables

    NASA Technical Reports Server (NTRS)

    Wood, P. R.

    1980-01-01

    The behavior of pulsation in the outer layers of a typical Mira variable was studied in the adiabatic and isothermal limits. A shock wave propagates outward once per period and the radial velocity obtained from observations of hydrogen emission lines is identified with the velocity of gas in the post shock region. In the adiabatic case, mass loss in the form of a steady stellar wind was produced. In the isothermal case, no continuous mass loss was produced but occasional ejection of shells occur. Pulsation introduced into a star undergoing steady mass loss as a result of radiation pressure acting on grains caused the mass loss rate to increase by a factor of approximately 40, while the terminal velocity of the flow was almost unaltered.

  20. The eight-schwabe-cycle pulsation

    NASA Astrophysics Data System (ADS)

    Richard, Jean-Guillaume

    2004-09-01

    The shape of the Sun’s secular activity cycle is found to be a saw-tooth curve. The additional Schwabe cycle 4‧ (1793 1799) suggested by Usoskin, Mursula, and Kovaltsov (2001a) is taken into account in the telescopic sunspot record (1610 2001). Instead of a symmetrical Gleissberg cycle, a saw-tooth of exactly eight Schwabe sunspot maxima (‘Pulsation’) is found. On average, the last sunspot maximum of an eight-Schwabe-cycle saw-tooth pulsation has been about three times as high as its first maximum. The Maunder Minimum remains an exception to this pattern. The Pulsation is defined as a secular-scale envelope of Schwabe-cycle maxima, whereas the Gleissberg cycle is a result of long-term smoothing of the sunspot series.

  1. SuperWASP discovery and SALT confirmation of a semi-detached eclipsing binary that contains a δ Scuti star

    NASA Astrophysics Data System (ADS)

    Norton, A. J.; Lohr, M. E.; Smalley, B.; Wheatley, P. J.; West, R. G.

    2016-03-01

    Aims: We searched the SuperWASP archive for objects that display multiply periodic photometric variations. Methods: Specifically we sought evidence for eclipsing binary stars that display a further non-harmonically related signal in their power spectra. Results: The object 1SWASP J050634.16-353648.4 has been identified as a relatively bright (V ~ 11.5) semi-detached eclipsing binary with a 5.104 d orbital period that displays coherent pulsations with a semi-amplitude of 65 mmag at a frequency of 13.45 d-1. Follow-up radial velocity spectroscopy with the Southern African Large Telescope confirmed the binary nature of the system. Using the phoebe code to model the radial velocity curve with the SuperWASP photometry enabled parameters of both stellar components to be determined. This yielded a primary (pulsating) star with a mass of 1.73 ± 0.11 M⊙ and a radius of 2.41 ± 0.06 R⊙, as well as a Roche-lobe filling secondary star with a mass of 0.41 ± 0.03 M⊙ and a radius of 4.21 ± 0.11 R⊙. Conclusions: 1SWASP J050634.16-353648.4 is therefore a bright δ Sct pulsator in a semi-detached eclipsing binary with one of the largest pulsation amplitudes of any such system known. The pulsation constant indicates that the mode is likely a first overtone radial pulsation.

  2. A new driving mechanism for stellar pulsations

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean

    1987-03-01

    A new driving mechanism termed "convective blocking", a variation of the normal κ- and γ-mechanisms in Cepheids, is demonstrated using two models of hydrogen white dwarf stars. This mechanism is shown to be physically reasonable in the limit of frozen convection (implying the time scale for convective readjustment is long compared to a pulsation period). Some qualitative effects are given for when the two time scales are not as disparate.

  3. Pulsating aurorae: Evidence for flux limiting

    SciTech Connect

    Davidson, G.T.; Sears, R.D.

    1980-03-01

    Theoretical models based upon the concept of self-modulated VLF wave-electron interactions have been proposed to explain pulsating aurorae. These models incorporate the idea of a trapping limit, above which strong diffusion into the loss cone rapidly removes any excess electrons. At flux values near the trapping limit, perturbations of the trapped electron distribution can result in cyclic wave growth and electron precipitation. The trapping limit is thus related to the energy deposited and the characteristic energy of electrons precipitated in pulsating aurorae. Photometric measurements of the total energy deposit and of the mean energy parameter made at Chatanika, Alaska (invariant geomagnetic latitude, 65 /sup 0/) indicate that the well-developed pulsations are caused mainly by a modulation of the mean energy parameter. Thus, a nearly constant ''limiting'' value for the precipitating flux is measured F=7 x 10/sup 8/ el/cm/sup 2/ sec from which a trapped flux limit of Japprox. =3 x 10/sup 9/ el/cm/sup 2/ sec can be inferred.

  4. DISCOVERY OF AN ULTRAMASSIVE PULSATING WHITE DWARF

    SciTech Connect

    Hermes, J. J.; Castanheira, Barbara G.; Winget, D. E.; Montgomery, M. H.; Harrold, Samuel T.; Kepler, S. O.; Gianninas, A.; Brown, Warren R.

    2013-07-01

    We announce the discovery of the most massive pulsating hydrogen-atmosphere white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12, 030 {+-} 210 K WD with a log g =9.08 {+-} 0.06, which corresponds to a mass of 1.20 {+-} 0.03 M{sub Sun }. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core composition of GD 518 provides a unique opportunity to investigate intermediate-mass stellar evolution, and can possibly place an upper limit to the mass of a carbon-oxygen-core WD, which in turn constrains Type Ia supernovae progenitor systems.

  5. Simultaneous observation of monochromatic and variable period geomagnetic pulsations

    SciTech Connect

    McDiarmid, D.R.; Nielsen, E. )

    1987-05-01

    On February 4, 1983, following a storm sudden commencement, a monochromatic and a variable period pulsation were simultaneously observed by the Scandinavian Twin Auroral Radar Experiment (STARE) and Sweden and Britain Radar Experiment (SABRE) radar systems. Both pulsations differed from previously analyzed examples of their class. The phase of the monochromatic pulsation increased linearly with latitude rather than decreased. Its amplitude remained relatively constant over the latitude interval of linear phase change. The variable period pulsation experienced a change of orientation of its essentially linear polarization diagram in association with a discontinuity of its period. The variable period pulsation was thus manifest in both the toroidal and poloidal components. The results are discussed in terms of recent developments in theoretical pulsation modeling.

  6. Radial pulsation stability as a function of hydrogen abundance

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Saio, Hideyuki

    2015-08-01

    Following the discovery of pulsation in an extremely low-mass pre-white dwarf by Maxted et al. (2011, 2013), Jeffery & Saio (2013) showed that pulsations in such stars would be excited in high radial overtones provided that the driving zone was sufficiently depleted in hydrogen. Following previous work which shows that pulsations are more easily excited in stars where the damping effects of hydrogen are somehow reduced (Jeffery & Saio 2006), we have completed a survey of radial pulsation stability across a substantially larger parameter space. The object is to identify new regions of the HR diagram where stars should be unstable to radial pulsations, or where closely related p-modes might be excited. These would enable targeted surveys for new classes of pulsating variable. This poster reports the survey results and the identification of new instability regions.

  7. Detection and characterization of geomagnetic pulsations using HF ionospheric heating

    SciTech Connect

    Lee, H.S.; Ferraro, A.J.; Olson, J.V. Alaska Univ., Fairbanks )

    1990-12-01

    This paper describes the geomagnetic pulsations observed in the high-latitude ionosphere during an experiment dealing with the ionospheric generation of ELF/VLF EM waves in June and October 1987. There was clear evidence of geomagnetic pulsations intermixed with the ELF/VLF signals in both the magnitude and phase data. A simple simulation model is introduced to facilitate the interpretation of the data, and a procedure for characterizing the pulsation is described. 5 refs.

  8. Helium abundance effects on RR Lyrae pulsation properties

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Coppola, G.; Bono, G.; Braga, V.; Pietrinferni, A.

    2016-05-01

    A new set of nonlinear convective pulsation models of RR Lyrae stars has been computed varying both the metallicity and the helium content. To constrain the helium dependence of pulsation observables we adopted, for each metal content, at least three different helium abundances. We provide for the first time a homogeneous evolutionary and pulsation framework covering the entire range of cluster and field variables. The implications for the use of RR Lyrae as stellar population tracers and distance indicators are briefly discussed.

  9. On the pulsation and evolutionary properties of helium burning radially pulsating variables

    NASA Astrophysics Data System (ADS)

    Bono, G.; Pietrinferni, A.; Marconi, M.; Braga, V. F.; Fiorentino, G.; Stetson, P. B.; Buonanno, R.; Castellani, M.; Dall'Ora, M.; Fabrizio, M.; Ferraro, I.; Giuffrida, G.; Iannicola, G.; Marengo, M.; Magurno, D.; Martinez-Vazquez, C. E.; Matsunaga, N.; Monelli, M.; Neeley, J.; Rastello, S.; Salaris, M.; Short, L.; Stellingwerf, R. F.

    2016-05-01

    We discuss pulsation and evolutionary properties of low- (RR Lyrae, Type II Cepheids) and intermediate-mass (Anomalous Cepheids) radial variables. We focus our attention on the topology of the instability strip and the distribution of the quoted variables in the Hertzsprung-Russell diagram. We discuss their evolutionary status and the dependence on the metallicity. Moreover, we address the diagnostics (period derivative, difference in luminosity, stellar mass) that can provide solid constraints on their progenitors and on the role that binarity and environment have in shaping their current pulsation characteristics. Finally, we briefly outline their use as standard candles.

  10. Periodic stellar pulsations - Stability analysis and amplitude equations

    NASA Astrophysics Data System (ADS)

    Buchler, J. R.; Moskalik, Pawel; Kovacs, Geza

    1991-10-01

    The stability properties of nonlinear periodic stellar pulsations are studied within the amplitude equation formalism. Both nonresonant and resonant pulsations are considered. A comparison to a sequence of classical Cepheid models shows that the formalism provides a good qualitative and quantitative description of the behavior of the Floquet coefficients and that it also captures the most important features of the Floquet eigenvectors. It thus helps shed new light on the behavior (bifurcations) of pulsating stars. In addition, the predictive powers of the analytical approach allow a systematic search for models with specific pulsational properties.

  11. Magnetic pulsations at the quasi-parallel shock

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Gosling, J. T.; Bame, S. J.; Russell, C. T.

    1990-01-01

    The plasma and field properties of large-amplitude magnetic field pulsatins upstream from the quasi-parallel region of the earth's bow shock are examined in high time resolution using data from ISEE 1 and 2. The relative timing of the magnetic field profiles observed at the two spacecraft shows that some of the pulsations are convecting antisunward across the spacecraft while others are brief out/in motions of bow shock across the spacecraft. Pulsations with both timing signatures are the site of slowing and heating of the solar wind plasma. The ions tend to be only weakly heated in the convecting pulsations, while within the out/in pulsations the ion heating can be quite substantial but variable. This variation occurs not only from pulsation to pulsation but also from point to point within a given pulsation. In general, the hottest distributions within the out/in pulsations tend to occur in regions of lower density and field strength. Magnetic pulsations bear a number of similarities to previously identified hot diamagnetic cavity events as well as to more durable crossings of the quasi-parallel shock itself. These various phenomena may be different manifestations of the same basic physical processes, in particular the coupling of coherently reflected ions to the solar wind beam.

  12. Large-Scale Aspects and Temporal Evolution of Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.

    2010-01-01

    Pulsating aurora is a common phenomenon generally believed to occur mainly in the aftermath of a, substorm, where dim long-period pulsating patches appear. The study determines the temporal and spatial evolution of pulsating events using two THEN IIIS ASI stations, at Gillam (66.18 mlat, 332.78 mlon, magnetic midnight at 0634 UT) and Fort Smith, (67.38 mlat, 306.64 mlon, magnetic midnight at, 0806 UT) along roughly the same invariant latitude. Parameters have been calculated from a database of 74 pulsating aurora events from 119 days of good optical data within the period from September 2007 through March 2008 as identified with the Gillam camera. It is shown that the source region of pulsating aurora drifts or expands eastward, away from magnetic midnight, for pre-midnight onsets and that the spatial evolution is more complicated for post midnight onsets, which has implications for the source mechanism. The most probable duration of a pulsating aurora event is roughly 1.5 hours while the distribution of possible event durations includes many long (several hours) events. This may suggest that pulsating aurora is not strictly a substorm recovery phase phenomenon but rather a persistent, long-lived phenomenon that may be temporarily disrupted by auroral substorms. Observations from the Gillam station show that in fact, pulsating aurora is quite common with the occurrence rate increasing to around 60% for morning hours, with 6910 of pulsating aurora onsets occurring after substorm breakup.

  13. delta-Hexachlorocyclohexane (delta-HCH)

    Integrated Risk Information System (IRIS)

    delta - Hexachlorocyclohexane ( delta - HCH ) ; CASRN 319 - 86 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Ass

  14. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  15. Identification of pulsational modes in rotating slowly pulsating B-type stars

    NASA Astrophysics Data System (ADS)

    Szewczuk, W.; Daszyńska-Daszkiewicz, J.

    2015-06-01

    Knowledge of the geometry of pulsational modes is a prerequisite for seismic modelling of stars. In the case of slowly pulsating B-type (SPB) pulsators, the simple zero-rotation approach so far used for mode identification is usually not valid because pulsational frequencies are often of the order of the rotational frequency. Moreover, this approach allows us to determine only the spherical harmonic degree, ℓ, while the azimuthal order, m, is beyond its reach. On the other hand, because of the density of oscillation spectra of SPB stars, knowledge of m is indispensable if one wants to assign the radial order, n, to the observed frequency peaks. Including the effects of rotation via the traditional approximation, we perform identification of the mode angular numbers (ℓ, m) for 31 SPB stars with available multicolour time series photometry. Simultaneously, constraints on the rotational velocity, Vrot, and the inclination angle, i, are determined assuming uniform rotation and a constant value of Vrot sin i. Dependence of the results on the adopted model is tested using HD 21071 as an example. Despite some model uncertainties and limitations of the method, our studies show the correct approach to identifying the low-frequency oscillation modes.

  16. Unexpected Series of Regular Frequency Spacing of δ Scuti Stars in the Non-asymptotic Regime. II. Sample–Echelle Diagrams and Rotation

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-01

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Using several possible assumptions for the origin of the spacings, we derived the large separation ({{Δ }}ν ) that are distributed along the mean density versus large separations relation derived from stellar models.

  17. Construction of Database for Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Chen, B. Q.; Yang, M.; Jiang, B. W.

    2011-07-01

    A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.

  18. Design of a Hydrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Yumeng; Deng, Haoren; Pfotenhauer, John; Gan, Zhihua

    In order to enhance the application of a cryocooler that provides cooling capacity at the cold head location, and effectively spread that cooling over an extended region, one requires an efficient heat transfer method. The pulsating heat pipe affords a highly effective heat transfer component that has been extensively researched at room temperature, but is recently being investigated for cryogenic applications. This paper describes the design. The experimental setup is designed to characterize the thermal performance of the PHP as a function of the applied heat, number of turns, filling ratio, inclination angle, and length of adiabatic section.

  19. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  20. Excitation and Saturation of White Dwarf Pulsations

    NASA Astrophysics Data System (ADS)

    Wu, Yanqin

    1998-06-01

    Variable hydrogen white dwarfs (DAV) pulsate in a number of low-order gravity-modes with periods from 100 s to 1200 s and amplitudes no larger than a few percent. We answer two questions in this thesis: the driving for these pulsations, and the saturation of their amplitudes. The surface convection zone in these stars, which adjusts its entropy level instantaneously during the pulsation, can drive the observed modes. This mechanism (called 'convective driving') was discovered by Brickhill but has been largely neglected so far. We find that modes with periods shorter than the thermal adjustment time of the convection zone can become overstable, but those with very short periods are hardly visible at the surface. As the star cools and the convection zone deepens, longer period modes can be excited. The driving rates increase sharply with period. We relate these to the time-scale of mode variability. We include complications arising from nonadiabaticity in the radiative interior and turbulent damping at the convective-radiative boundary. The former limits the driving and damping rates for strongly nonadiabatic modes, and relates the phase and amplitude of surface horizontal velocity in a gravity-mode to those of its flux variation. The turbulent damping results from the horizontal velocity shear below the convection zone, inside which there is little velocity shear and negligible damping. This suppresses the amplitudes of long period modes to below detection. The width of the theoretical DAV instability strip is about 1000 K. The growth of an overstable mode can be saturated by parametric instability, where energy transfers resonantly into two damped modes of roughly half its frequency. This occurs above a critical amplitude which depends on the 3-mode coupling coefficient and the nonadiabatic damping rates. The critical amplitudes all fall below a few percent, with longer period modes having larger surface amplitudes. Combined with the amplitude limits due to

  1. Multidimensional modelling of classical pulsating stars

    NASA Astrophysics Data System (ADS)

    Muthsam, H. J.; Kupka, F.

    2016-05-01

    After an overview of general aspects of modelling the pulsation- convection interaction we present reasons why such simulations (in multidimensions) are needed but, at the same time, pose a considerable challenge. We then discuss, for several topics, what insights multidimensional simulations have either already provided or can be expected to yield in the future. We finally discuss properties of our ANTARES code. Many of these features can be expected to be characteristic of other codes which may possibly be applied to these physical questions in the foreseeable future.

  2. Pulsating laminar fully developed channel and pipe flows.

    PubMed

    Haddad, Kais; Ertunç, Ozgür; Mishra, Manoranjan; Delgado, Antonio

    2010-01-01

    Analytical investigations are carried out on pulsating laminar incompressible fully developed channel and pipe flows. An analytical solution of the velocity profile for arbitrary time-periodic pulsations is derived by approximating the pulsating flow variables by a Fourier series. The explicit interdependence between pulsations of velocity, mass-flow rate, pressure gradient, and wall shear stress are shown by using the proper dimensionless parameters that govern the flow. Utilizing the analytical results, the scaling laws for dimensionless pulsation amplitudes of the velocity, mass-flow rate, pressure gradient, and wall shear stress are analyzed as functions of the dimensionless pulsation frequency. Special attention has been given to the scaling laws describing the flow reversal phenomenon occurring in pulsating flows, such as the condition for flow reversal, the dependency of the reversal duration, and the amplitude. It is shown that two reversal locations away from the wall can occur in pulsating flows in pipes and channels and the reversed amount of mass per period reaches a maximum at a certain dimensionless frequency for a given amplitude of mass-flow rate fluctuations. These analyses are numerically conducted for pipe and channel flows over a large frequency range in a comparative manner. PMID:20365456

  3. Heat transfer characteristics of pulsated turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Said, S. A. M.; Al-Farayedhi, A. A.; Al-Dini, S. A.; Asghar, A.; Gbadebo, S. A.

    Heat Transfer characteristics of pulsated turbulent pipe flow under different conditions of pulsation frequency, amplitude and Reynolds number were experimentally investigated. The pipe wall was kept at uniform heat flux. Reynolds number was varied from 5000 to 29 000 while frequency of pulsation ranged from 1 to 8 Hz. The results show an enhancement in the local Nusselt number at the entrance region. The rate of enhancement decreased as Re increased. Reduction of heat transfer coefficient was observed at higher frequencies and the effect of pulsation is found to be significant at high Reynolds number. It can be concluded that the effect of pulsation on the mean Nusselt numbers is insignificant at low values of Reynolds number.

  4. Recurrent pulsations in Saturn's high latitude magnetosphere

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Carbary, J. F.; Bunce, E. J.; Radioti, A.; Badman, S. V.; Pryor, W. R.; Hospodarsky, G. B.; Kurth, W. S.

    2016-01-01

    Over the course of about 6 h on Day 129, 2008, the UV imaging spectrograph (UVIS) on the Cassini spacecraft observed a repeated intensification and broadening of the high latitude auroral oval into the polar cap. This feature repeated at least 5 times with about a 1 h period, as it rotated in the direction of corotation, somewhat below the planetary rotation rate, such that it moved from noon to post-dusk, and from roughly 77° to 82° northern latitudes during the observing interval. The recurring UV observation was accompanied by pronounced ∼1 h pulsations in auroral hiss power, magnetic perturbations consistent with small-scale field aligned currents, and energetic ion conics and electrons beaming upward parallel to the local magnetic field at the spacecraft location. The magnetic field and particle events are in phase with the auroral hiss pulsation. This event, taken in the context of the more thoroughly documented auroral hiss and particle signatures (seen on many high latitude Cassini orbits), sheds light on the possible driving mechanisms, the most likely of which are magnetopause reconnection and/or Kelvin Helmholtz waves.

  5. Computational model of miniature pulsating heat pipes.

    SciTech Connect

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  6. The ionospheric signature of Pi 2 pulsations observed by STARE

    SciTech Connect

    Sutcliffe, P.R. ); Nielsen, E. )

    1992-07-01

    This study extends the work of Sutcliffe and Nielsen (1990) in which a classical Pi 2 pulsation was first isolated in Scandinavian Twin Auroral Radar Experiment (STARE) data. A high-pass-filtering technique is used to remove the background electric field in the STARE data and so reveal the spatial and temporal ionospheric signatures of the Pi 2 pulsation electric fields. A number of events are identified and examples presented in which pulsation electric fields up to 50 mV/m are observed. Magnetic field oscillations computed from the filtered STARE data using the Biot-Savart law correlate well with pulsation magnetometer data. A 180 {degree} phase difference is observed between high- and low-altitude X component pulsations. The ionospheric signature of a Pi 2 is located slightly poleward of the core of the auroral breakup region where the southward, westward, and northward directed background electric fields coverage; the strongest pulsation fields occur in the region of equatorward directed electric fields. The ionospheric electric field patterns of the Pi 2 pulsations determined from the STARE data correlate well with those modeled for a transverse Alfven wave incident on an east-west aligned high-conductivity strip in the ionosphere.

  7. On the standing wave mode of giant pulsations

    SciTech Connect

    Takahashi, K. ); Sato, N. ); Warnecke, J.; Luehr, H. ); Spence, H.E. ); Tonegawa, Y. )

    1992-07-01

    Both odd-mode and even-mode standing were structures have been proposed for giant pulsations. Unless a conclusion is drawn on the field-aligned mode structure, little progress can be made in understanding the excitation mechanism of giant pulsations. In order to determine the standing wave mode, the authors have made a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE. They selected time intervals when CCE was close to the magnetic equator and also magnetically close to Syowa and stations in Iceland, and when either transverse or compressional Pc 4 waves were observed at CCE. Magnetograms from the ground stations were then examined to determine if there was a giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator (Hillebrand et at., 1982). In agreement with Hillebrand et al., they conclude that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure. This conclusion places a strong constraint on the generation mechanism of giant pulsations.

  8. Pulsations in the free oscillations of the Earth

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.

    2015-05-01

    The records from wideband IRIS stations after a strong earthquake are analyzed. A few days after the earthquake, pulsations with a period of 128 min arise and last for about a week. They appear as a periodical variation in the amplitude of the free radial oscillation of the Earth 0S0 having a period of 20.46 min. The period of the pulsations is more than double the period of the lowest-frequency free spheroidal oscillations of the Earth (53.9 min). The pulsations are most pronounced at the mid-latitudinal and equatorial stations and less distinct near the poles. The pulsations are phase synchronous at the nearby stations and antiphase at the stations located in the western and eastern hemispheres. The pulsation amplitude does not depend on the phase of the Earth's tide. The shape and period of the pulsations are fitted by the model of beatings appearing in the Van der Pol oscillator with periodic forcing. The pulsations are hypothesized to result from asynchronous interaction between the free oscillations of the Earth.

  9. RY Scuti: Infrared and radio observations of the mass-loss wind of a massive binary star system

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Hayward, T. L.; Houck, J. R.; Miles, J. W.; Hjellming, R. M.; Jones, T. J.; Woodward, Charles E.; Prentice, Ricarda; Forrest, W. J.; Libonate, S.

    1995-01-01

    We report infrared (IR) imaging, IR photometry, IR spectroscopy, optical/IR photopolarimetry, and Very Large Array (VLA) radio observations of the peculiar binary star RY Scuti. These observations provide an unprecedented view of the detailed spatial structure of the equatorial mass-loss wind of a massive, luminous, 'overcontact' binary system. The binary star (0.43 AU separation) is surrounded by a flattened equatorial disk with an outer radius of approximately = 3 x 10(exp 16) cm (2000 AU) that emits strongly in the IR and radio. The inside of the disk is ionized and emits free-free radiation from hydrogen and 12.8 micrometers forbidden-line emission from (Ne II); the outside of the disk emits thermal radiation from silicate dust. Radio continuum emission is also produced in a compact H II region surrounding the binary. The dust may have a polycyclic aromatic hydrocarbon (PAH) component. We use a rudimentary geometric model in which the thermal IR and radio emission from the disk are assumed to arise in a pair of concentric toroidal rings to estimate the physical properties of the disk. The mean radius of the ionized gas toroid is approximately = 1.3 x 10(exp 16) cm (870 AU), and the mean radius of the dust toroid is approximately = 2.2 x 10(exp 16) cm (1470 AU). RY Scuti has a small intrinsic polarization, with the electric vector perpendicular to the equatorial disk, that is probably caused by electron scattering from hot gas close to the central binary. We conclude that neon in the nebula is overabundant with respect to hydrogen and helium by a factor of between 1.6 and 10. Our IR/radio image data suggest that the circumstellar disk is part of an extensive radiation driven mass-loss outflow that is strongly confined to the equatorial plane of the binary system. The sharp spatial separation of the outer dust torous from the inner ionized gas torus confirms earlier suggestions that dust formation in the circumstellar ejecta of very hot stars must occur in

  10. The attractor dimension of solar decimetric radio pulsations

    NASA Technical Reports Server (NTRS)

    Kurths, J.; Benz, A. O.; Aschwanden, M. J.

    1991-01-01

    The temporal characteristics of decimetric pulsations and related radio emissions during solar flares are analyzed using statistical methods recently developed for nonlinear dynamic systems. The results of the analysis is consistent with earlier reports on low-dimensional attractors of such events and yield a quantitative description of their temporal characteristics and hidden order. The estimated dimensions of typical decimetric pulsations are generally in the range of 3.0 + or - 0.5. Quasi-periodic oscillations and sudden reductions may have dimensions as low as 2. Pulsations of decimetric type IV continua have typically a dimension of about 4.

  11. Heat transfer coefficients for drying in pulsating flows

    SciTech Connect

    Fraenkel, S.L.

    1998-05-01

    Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.

  12. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  13. Ambiguity of mapping the relative phase of blood pulsations

    PubMed Central

    Teplov, Victor; Nippolainen, Ervin; Makarenko, Alexander A.; Giniatullin, Rashid; Kamshilin, Alexei A.

    2014-01-01

    Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation. PMID:25401026

  14. Interplanetary navigation using pulsating radio sources

    NASA Technical Reports Server (NTRS)

    Downs, G. S.

    1974-01-01

    Radio beacons with distinguishing signatures exist in nature as pulsating radio sources (pulsars). These objects radiate well determined pulse trains over hundreds of megahertz of bandwidth at radio frequencies. Since they are at known positions, they can also be used as navigation beacons in interplanetary space. Pulsar signals are weak and dispersive when viewed from earth. If an omnidirectional antenna is connected to a wideband receiver (200 MHz bandwidth centered at 200 MHz) in which dispersion effects are removed, nominal spacecraft position errors of 1500 km can be obtained after 24 h of signal integration. An antenna gain of 10 db would produce errors as low as 150 km. Since the spacecraft position is determined from the measurement of the phase of a periodic signal, ambiguities occur in the position measurement. Simultaneous use of current spacecraft navigation schemes eliminates these ambiguities.

  15. Total-pressure averaging in pulsating flows.

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a nonsteady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered with the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles.

  16. THE PULSATION MODE OF THE CEPHEID POLARIS

    SciTech Connect

    Turner, D. G.; Kovtyukh, V. V.; Usenko, I. A.; Gorlova, N. I.

    2013-01-01

    A previously derived photometric parallax of 10.10 {+-} 0.20 mas, d = 99 {+-} 2 pc, is confirmed for Polaris by a spectroscopic parallax derived using line ratios in high dispersion spectra for the Cepheid. The resulting estimates for the mean luminosity of (M{sub V} ) = -3.07 {+-} 0.01 s.e., average effective temperature of (T{sub eff}) = 6025 {+-} 1 K s.e., and intrinsic color of ((B) - (V)){sub 0} = +0.56 {+-} 0.01 s.e., which match values obtained previously from the photometric parallax for a space reddening of E{sub B-V} = 0.02 {+-} 0.01, are consistent with fundamental mode pulsation for Polaris and a first crossing of the instability strip, as also argued by its rapid rate of period increase. The systematically smaller Hipparcos parallax for Polaris appears discrepant by comparison.

  17. Optical noninvasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2005-04-01

    Time-resolved detection and analysis of skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. Single- and multiple-channel PPG concepts are discussed. Simultaneous data flow from several locations on the human body allows us to study heartbeat pulse-wave propagation in real time and to evaluate vascular resistance. Portable single-, dual-, and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The prototype devices have been clinically studied, and their potential for monitoring heart arrhythmias, drug-efficiency tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions has been confirmed.

  18. Total pressure averaging in pulsating flows

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a non-steady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered within the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure, and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles. The experiments were performed at a pressure level of 1 bar, for Mach number up to near 1, and frequencies up to 3 kHz.

  19. Theoretical Period Changes in Yellow Giant Pulsators

    SciTech Connect

    Cox, A.N.

    1998-03-01

    Period changes in RR Lyrae variables and Cepheids, known for more than 60 years, can possibly be explained by small changes in a helium composition gradient below the hydrogen and helium convection zones. The particular cases for the globular cluster M15 double-mode RR Lyrae variable V53 and the Cepheid Polaris are studied. For the last 80 years, the fundamental mode period of V53 has been decreasing while the overtone mode period in this same star has been increasing. The rather steady overtone mode period increase for Polaris stopped very recently, and the period now seems constant. Diffusive settling of helium in these kinds of stars has been known to be slight because of the two convection zones and the long diffusion timescale below them. But a small amount of helium settling, even before the star begins to pulsate, and then a dredge-up of just a little helium by an occasional overshooting can change surface layer structures and periods. This dredge-up can have a timescale as short as the convection turnover time, i.e., a few days. A slight helium dredge-up episode may now have temporarily stopped the decaying pulsations and period increase of Polaris. Such an episode cannot explain the double-mode V53 case, but possibly the helium composition gradient is deepened enough by matter accretion in only 80 years to explain its observed opposite period changes. Another mechanism that might be important for period changes is tidal mixing of the small composition gradients caused by occasional close encounters of stars in clusters. Significant stellar rotation would keep the surface layer composition homogeneous and not allow the anomalous period changes discussed here. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  20. Discovery of binarity, spectroscopic frequency analysis, and mode identification of the δ Scuti star 4 CVn

    NASA Astrophysics Data System (ADS)

    Schmid, V. S.; Themeßl, N.; Breger, M.; Degroote, P.; Aerts, C.; Beck, P. G.; Tkachenko, A.; Van Reeth, T.; Bloemen, S.; Debosscher, J.; Castanheira, B. G.; McArthur, B. E.; Pápics, P. I.; Fritz, V.; Falcon, R. E.

    2014-10-01

    More than 40 years of ground-based photometric observations of the δ Sct star 4 CVn has revealed 18 independent oscillation frequencies, including radial as well as non-radial p-modes of low spherical degree ℓ ≤ 2. From 2008 to 2011, more than 2000 spectra were obtained at the 2.1 m Otto-Struve telescope at the McDonald Observatory. We present the analysis of the line-profile variations, based on the Fourier-parameter fit method, detected in the absorption lines of 4 CVn, which carry clear signatures of the pulsations. From a non-sinusoidal, periodic variation of the radial velocities, we discover that 4 CVn is an eccentric binary system with an orbital period Porb = 124.44 ± 0.03 d and an eccentricity e = 0.311 ± 0.003. We detect 20 oscillation frequencies, 9 of which previously unseen in photometric data; attempt mode identification for the two dominant modes, f1 = 7.3764 d-1 and f2 = 5.8496 d-1; and determine the prograde or retrograde nature of 7 of the modes. The projected rotational velocity of the star, veqsini ≃ 106.7 km s-1, translates to a rotation rate of veq/vcrit ≥ 33%. This relatively high rotation rate hampers unique mode identification, since higher order effects of rotation are not included in the current methodology. We conclude that, in order to achieve unambiguous mode identification for 4 CVn, a complete description of rotation and the use of blended lines have to be included in mode-identification techniques. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.The software package FAMIAS, developed in the framework of the FP6 European Coordination Action HELAS (http://www.helas-eu.org/), has been used in this research.Appendices are available in electronic form at http://www.aanda.org

  1. Near-infrared spectroscopic and photometric evolution of nova V476 Scuti - a nova that formed optically thin dust

    NASA Astrophysics Data System (ADS)

    Das, R. K.; Banerjee, D. P. K.; Ashok, N. M.; Mondal, Soumen

    2013-09-01

    We present results of near-infrared (near-IR) JHK (1.07 - 2.5 μm) spectroscopic and photometric observations of Nova V476 Scuti (V476 Sct) which was discovered in outburst in 2005 September. The near-IR observations of the nova presents the evolution of the post-maxima spectra and near-IR light curve. The spectra of V476 Sct, observed on 9 different epochs, show prominent lines due to HI, OI, CI and NI. Based on the IR spectral signatures we independently identify it as a Fe II type of nova, consistent with the same classification obtained from optical spectra. A detailed identification of the observed spectral lines is presented. The near-IR JHK light curve extending for a period of about 59 days after outburst clearly shows the formation of a optically thin dust shell, a phenomenon which is not commonly observed in novae. By fitting black body curves to the spectral energy distributions (SEDs) the temperatures of the dust shell on different epochs have been estimated. Dust formation in V476 Sct is consistent with the presence of lines of elements with low-ionization potential like Na and Mg in the early spectra which had earlier been suggested by us to be potential indicators of dust formation at a later phase in a nova's development.

  2. Canards in a rheodynamic model of cardiac pressure pulsations

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Chen, Xian-Feng

    2007-09-01

    This paper reports on the canard phenomenon occurring in a rheodynamic model of cardiac pressure pulsations. By singular perturbation techniques the corresponding parameter value at which canards exist is obtained. The physiological significance of canards in this model is given.

  3. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    NASA Technical Reports Server (NTRS)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  4. Photometric study of the pulsating, eclipsing binary OO DRA

    SciTech Connect

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  5. Pulsations of B stars: A review of observations and theories

    SciTech Connect

    Cox, A.N.

    1986-01-01

    The observational and theoretical status are discussed for several classes of variable B stars. The older classes now seem to be better understood in terms of those stars that probably have at least one radial mode and those that have only nonradial modes. The former are the ..beta.. Cephei variables, and the latter are the slowly rotating 53 Persei and the rapidly rotating zeta Ophiuchi variables. It seems that in this last class there are also some Be stars that show nonradial pulsations from the variations of the line shapes and their light. Among the nonradial pulsators, we must also include the supergiants which show pulsations with very short lifetimes. A review of the present observational and theoretical problems is given. The most persistent problem of the cause for the pulsations is briefly discussed, and many proposed mechanisms plus some new thoughts are presented. 57 refs., 4 figs.

  6. Report of geomagnetic pulsation indices for space weather applications

    USGS Publications Warehouse

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  7. Studying geomagnetic pulsation characteristics with the local approximation method

    NASA Astrophysics Data System (ADS)

    Getmanov, V. G.; Dabagyan, R. A.; Sidorov, R. V.

    2016-03-01

    A local approximation method based on piecewise sinusoidal models has been proposed in order to study the frequency and amplitude characteristics of geomagnetic pulsations registered at a network of magnetic observatories. It has been established that synchronous variations in the geomagnetic pulsation frequency in the specified frequency band can be studied with the use of calculations performed according to this method. The method was used to analyze the spectral-time structure of Pc3 geomagnetic pulsations registered at the network of equatorial observatories. Local approximation variants have been formed for single-channel and multichannel cases of estimating the geomagnetic pulsation frequency and amplitude, which made it possible to decrease estimation errors via filtering with moving weighted averaging.

  8. Ionospheric ion heating by ULF Pc 5 magnetic pulsations

    SciTech Connect

    Lathuillere, C.; Glangeaud, F.; Zhao, Z.Y.

    1986-02-01

    Frictional heating of the ions resulting from dc ionospheric electric fields is experimentally and theoretically well known. We extend these results to ion heating due to ULF magnetic pulsations of periods as low as 3 min. Ion temperature fluctuations as measured by the European incoherent scatter facility are very well correlated to magnetic Pc 5 pulsations. We present a method which estimates these ion temperature enhancements from ion velocity measurements.

  9. Pen Branch delta expansion

    SciTech Connect

    Nelson, E.A.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.; Jensen, J.R.; Hodgson, M.E.

    1984-02-01

    Since 1954, cooling water discharges from K Reactor ({anti X} = 370 cfs {at} 59 C) to Pen Branch have altered vegetation and deposited sediment in the Savannah River Swamp forming the Pen Branch delta. Currently, the delta covers over 300 acres and continues to expand at a rate of about 16 acres/yr. Examination of delta expansion can provide important information on environmental impacts to wetlands exposed to elevated temperature and flow conditions. To assess the current status and predict future expansion of the Pen Branch delta, historic aerial photographs were analyzed using both basic photo interpretation and computer techniques to provide the following information: (1) past and current expansion rates; (2) location and changes of impacted areas; (3) total acreage presently affected. Delta acreage changes were then compared to historic reactor discharge temperature and flow data to see if expansion rate variations could be related to reactor operations.

  10. Structure of black aurora associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Fritz, Bruce A.; Lessard, Marc L.; Blandin, Matthew J.; Fernandes, Philip A.

    2015-11-01

    Morphological behavior of black aurora as it relates to pulsating aurora is investigated by examining a collection of ground-based observations from January 2007 in support of the Rocket Observations of Pulsating Aurora rocket campaign. Images were sampled from video recorded by a Xybion intensified camera (30 fps) at Poker Flat Research Range, AK. The primary observations of black aurora recorded during the substorm recovery phase were between separate patches of pulsating aurora as well as pulsating aurora separated from diffuse aurora. In these observations the black aurora forms an apparent firm boundary between the auroral forms in a new behavior that is in contrast with previously reported observations. Also presented for the first time are black curls in conjunction with pulsating aurora. Curl structures that indicate shear plasma flows in the ionosphere may be used as a proxy for converging/diverging electric fields in and above the ionosphere. This new subset of black auroral behavior may provide visual evidence of black aurora as an ionospheric feedback mechanism as related to pulsating aurora.

  11. An Update on the Quirks of Pulsating, Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.; Hermes, J. J.; Toloza, Odette

    2015-06-01

    At the 18th European White Dwarf Workshop, we reported results for several dwarf novae containing pulsating white dwarfs that had undergone an outburst in 2006-2007. HST and optical data on the white dwarfs in GW Lib, EQ Lyn and V455 And all showed different behaviors in the years following their outbursts. We continued to follow these objects for the last 2 years, providing timescales of 6-7 years past outburst. All three reached their optical quiescent values within 4 years but pulsational stability has not returned. EQ Lyn showed its pre-outburst pulsation period after 3 years, but it continues to show photometric variability that alternates between pulsation and disk superhump periods while remaining at quiescence. V455 And has almost reached its pre-outburst pulsation period, while GW Lib still remains heated and with a different pulsation spectrum than at quiescence. These results indicate that asteroseismology provides a unique picture of the effects of outburst heating on the white dwarf.

  12. Optical emissions and ionization profiles during an intense pulsating aurora

    SciTech Connect

    Sears, R.D.; Vondrak, R.R.

    1981-08-01

    Coordinated spectrophotometric and incoherent scatter radar measurements were made of an intense early-morning pulsating aurora at Chatanika, Alaska. Both instruments were operated simultaneously with temporal resolution of 1 s and were boresighted at geomagnetic zenith. The goals of the collaborative experimental were to determine the total energy flux E/sub t/ and the characteristic energy parameter ..cap alpha.. of the precipitating electrons on a time scale smaller than the pulsation duration and to investigate the response of the ionospheric electron density on a comparable time scale. The relationship between total energy flux and the characteristic energy parameter suggests that during these observations the pulsations were caused by a modulation of ..cap alpha.. rather than by a modulation of the total precipitating particle flux. The values of E/sub t/ and ..cap alpha.. derived from photometric data were used to model the electron density versus altitude in the ionosphere for comparison with the incoherent scatter radar measurements. Measured altitude profiles of ionization did not change significantly on the time scale of the pulsations. The E region maximum electron density typically was 7 x 10/sup 5/ at an altitude of 99 km. Variations in ionospheric conductivity were less than 15% on the pulsation time scale. These results suggest that a magnetospheric modulation mechanism is required to explain diffuse pulsating auroras.

  13. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  14. On the temporal fluctuations of pulsating auroral luminosity

    SciTech Connect

    Yamamoto, Tatsundo )

    1988-02-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations.

  15. PULSATION FREQUENCIES AND MODES OF GIANT EXOPLANETS

    SciTech Connect

    Le Bihan, Bastien; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2013-02-10

    We calculate the eigenfrequencies and eigenfunctions of the acoustic oscillations of giant exoplanets and explore the dependence of the characteristic frequency {nu}{sub 0} and the eigenfrequencies on several parameters: the planet mass, the planet radius, the core mass, and the heavy element mass fraction in the envelope. We provide the eigenvalues for degree l up to 8 and radial order n up to 12. For the selected values of l and n, we find that the pulsation eigenfrequencies depend strongly on the planet mass and radius, especially at high frequency. We quantify this dependence through the calculation of the characteristic frequency {nu}{sub 0} which gives us an estimate of the scale of the eigenvalue spectrum at high frequency. For the mass range 0.5 M{sub J} {<=} M{sub P} {<=} 15 M{sub J} , and fixing the planet radius to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (M{sub P} /M{sub J} ){sup 0.48}{mu}Hz, where M{sub P} is the planet mass and M{sub J} is Jupiter's mass. For the radius range from 0.9 to 2.0 R{sub J} , and fixing the planet's mass to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (R{sub P} /R{sub J} ){sup -2.09}{mu}Hz, where R{sub P} is the planet radius and R{sub J} is Jupiter's radius. We explore the influence of the presence of a dense core on the pulsation frequencies and on the characteristic frequency of giant exoplanets. We find that the presence of heavy elements in the envelope affects the eigenvalue distribution in ways similar to the presence of a dense core. Additionally, we apply our formalism to Jupiter and Saturn and find results consistent with both the observational data of Gaulme et al. and previous theoretical work.

  16. Delta hepatitis in Malaysia.

    PubMed

    Sinniah, M; Dimitrakakis, M; Tan, D S

    1986-06-01

    Sera from one hundred and fifty nine Malaysian individuals were screened for the prevalence of delta markers. These included 15 HBsAg positive homosexuals, 16 acute hepatitis B cases, 9 chronic hepatitis B patients, 13 healthy HBsAg carriers and 106 intravenous (i.v.) drug abusers, of whom 27 were positive for HBsAg only and the rest were anti-HBc IgG positive but HBsAg negative. The prevalence of delta markers in the homosexuals was found to be 6.7%, in the HBsAg positive drug abusers 17.8%, in acute hepatitis B cases 12.5%. No evidence of delta infection was detected in healthy HBsAg carriers, chronic hepatitis B cases and HBsAg negative i.v. drug abusers. With reference to i.v. drug abusers, the prevalence of delta markers was higher in Malays (23%) than in Chinese (7%) although the latter had a higher HBsAg carrier rate. Although the HBsAg carrier rate in the homosexuals was high, their delta prevalence rate was low as compared to drug abusers. In Malaysia, as in other non-endemic regions, hepatitis delta virus transmission appeared to occur mainly via the parenteral and sexual routes. This is the first time in Malaysia that a reservoir of delta infection has been demonstrated in certain groups of the population at high risk for hepatitis B. PMID:3787309

  17. Nonradial and radial period changes in the δ Scuti star 4 CVn. I. 700+ nights of photometry

    NASA Astrophysics Data System (ADS)

    Breger, M.

    2016-08-01

    Context. The nature of period and amplitude changes in nonradial pulsators is presently unknown. Aims: It is therefore important to examine the correlations between these changes in stars with a large number of simultaneously excited pulsation modes. However, the small amplitudes require extensive high-precision photometry covering many years. Methods: We present 702 nights of high-precision photometry of the evolved δ Sct variable 4 CVn obtained from 2005-2012 with a dedicated telescope. Results: We detected 64 frequencies, of which 38 can be identified as combinations and harmonics. The relative amplitudes of the combination frequencies are similar to those found in 44 Tau and show no evidence for resonant mode coupling. Significant period and amplitude changes are detected for the dominant modes. The known prograde and retrograde modes show period changes with opposite signs, while the radial mode exhibits only small, cyclical period changes. For each mode, the period changes are constant over the eight years and range from (1 /P)dP/ dt = -16 × 10-6 to 13 × 10-6. On the other hand, the amplitude variations show no systematic behavior between different pulsation modes. Conclusions: The behavior of the prograde, axisymmetric, and retrograde modes indicate a constant decrease in the rotational splitting over the eight years.

  18. Pulsations of an Evolved Self-consistently Distorted Star

    NASA Astrophysics Data System (ADS)

    Ouazzani, R.-M.; Dupret, M.-A.; Roxburgh, I. W.; Goupil, M.-J.

    2012-09-01

    A new two-dimensional (2D) non-perturbative method to compute accurate oscillation modes of rapidly rotating stars is presented. The 2D calculations fully take into account the centrifugal distortion of the star while the non-perturbative method includes the full influence of the Coriolis acceleration, and are used to compute oscillation modes of rapid rotators — high-order p-modes in δ Scuti stars, as well as low-order p- and g-modes in β Cephei stars. We compare the oscillation spectra obtained for centrifugally distorted polytropes with those of Reese et al. (2006), and give the first results for a realistic 2D model of a rapidly rotating 2 M⊙ evolved star computed with the method developed by Roxburgh (2006).

  19. The Delta Clipper dream

    NASA Astrophysics Data System (ADS)

    Furniss, Tim

    1992-04-01

    A conceptual development status evaluation is presented for the SDIO's projected VTOL SSTOV, dubbed the 'Delta Clipper', which is envisioned as an alternative to the slowly developing NASP and the next-generation National Launch System. Delta Clipper program managers believe that the lightweight materials and structures entailed by the requisite empty/gross-weight ratio for an SSTOV are now available, precluding the airbreathing propulsion of such alternatives as HOTOL. The Delta Clipper could operate with a crew of two, or entirely unmanned. The 8-12 LH2/LOX engines employed are derived from the RL-10 engines of the Centaur launcher.

  20. Modeling river delta formation.

    PubMed

    Seybold, Hansjörg; Andrade, José S; Herrmann, Hans J

    2007-10-23

    A model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River. PMID:17940031

  1. Nile River Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  2. Nile Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Nile Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population of 57 million. The capital city of Cairo is at the apex of the delta in the middle of the scene. Across the river from Cairo can be seen the three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  3. Modeling river delta formation

    PubMed Central

    Seybold, Hansjörg; Andrade, José S.; Herrmann, Hans J.

    2007-01-01

    A model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River. PMID:17940031

  4. The Evolved Pulsating CEMP Star HD 112869

    NASA Astrophysics Data System (ADS)

    Začs, Laimons; Sperauskas, Julius; Grankina, Aija; Deveikis, Viktoras; Kaminskyi, Bogdan; Pavlenko, Yakiv; Musaev, Faig A.

    2015-04-01

    Radial velocity measurements, BVRC photometry, and high-resolution spectroscopy in the wavelength region from blue to near-infrared are employed in order to clarify the evolutionary status of the carbon-enhanced metal-poor star HD 112869 with a unique ratio of carbon isotopes in the atmosphere. An LTE abundance analysis was carried out using the method of spectral synthesis and new self-consistent 1D atmospheric models. The radial velocity monitoring confirmed semiregular variations with a peak-to-peak amplitude of about 10 km {{s}-1} and a dominating period of about 115 days. The light, color, and radial velocity variations are typical of the evolved pulsating stars. The atmosphere of HD 112869 appears to be less metal-poor than reported before, [Fe/H] = -2.3 ± 0.2 dex. Carbon-to-oxygen and carbon isotope ratios are found to be extremely high, C/O ≃ 12.6 and12C/13C ≳ 1500, respectively. The s-process elements yttrium and barium are not enhanced, but neodymium appears to be overabundant. The magnesium abundance seems to be lower than the average found for CEMP stars, [Mg/Fe] < +0.4 dex. HD 112869 could be a single low-mass halo star in the stage of asymptotic giant branch evolution.

  5. Fine droplet generation using tunable electrohydrodynamic pulsation

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Ba, Zhengyu; Xiong, Zhenhua

    2015-07-01

    High-efficiency generation of fine droplets is significant for many microfluidic chips and sensor applications. To produce fine droplets, nozzles with small diameters are needed, which results in a high cost for nozzles and low efficiency of droplet generation. In this paper, a tunable electrohydrodynamic pulsation method which can generate fine droplets with high frequency and controllable size is presented using low conductivity liquids. The effects of flow rates and voltage parameters with respect to deposition frequency and droplet size are investigated. The influence of these parameters on Taylor cone formation time are also discussed and simple scaling laws are proposed to reveal and guide the droplet generation process. Experimental results show that single cycle deposition frequency decreases with increasing voltage frequency, but is only slightly influenced by the flow rates. The droplet size also decreases with voltage frequency, while large flow rates can make this decline gradual allowing better control. Moreover, the Taylor cone formation time may greatly affect the stability of the deposition frequency when the voltage frequency is larger than 30 Hz. Due to the short cycle time of high voltage frequencies, the hydrodynamic behavior in the emission process may be considerably affected by the increase of volume, which is also related to the flow rates. Tunable micropatterns consisting of fine droplets can be achieved by using this method in combination with motion stages.

  6. HD 50844: a new look at δ Scuti stars from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Michel, E.; Garrido, R.; Lefèvre, L.; Mantegazza, L.; Rainer, M.; Rodríguez, E.; Uytterhoeven, K.; Amado, P. J.; Martín-Ruiz, S.; Moya, A.; Niemczura, E.; Suárez, J. C.; Zima, W.; Baglin, A.; Auvergne, M.; Baudin, F.; Catala, C.; Samadi, R.; Alvarez, M.; Mathias, P.; Paparò, M.; Pápics, P.; Plachy, E.

    2009-10-01

    Context: Aims: This work presents the results obtained by CoRoT on HD 50844, the only δ Sct star observed in the CoRoT initial run (57.6 d). The aim of these CoRoT observations was to investigate and characterize for the first time the pulsational behaviour of a δ Sct star, when observed at a level of precision and with a much better duty cycle than from the ground. Methods: The 140 016 datapoints were analysed using independent approaches (SigSpec software and different iterative sine-wave fittings) and several checks performed (splitting of the timeseries in different subsets, investigation of the residual light curves and spectra). A level of 10-5 mag was reached in the amplitude spectra of the CoRoT timeseries. The space monitoring was complemented by ground-based high-resolution spectroscopy, which allowed the mode identification of 30 terms. Results: The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. All the cross-checks confirmed this new result. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to ℓ=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. Probably due to this unfavourable evolutionary status, no clear regular distribution is observed in the frequency set. The predominant term (f_1=6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. Conclusions: The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria

  7. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  8. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  9. Man made deltas

    PubMed Central

    Maselli, Vittorio; Trincardi, Fabio

    2013-01-01

    The review of geochronological and historical data documents that the largest southern European deltas formed almost synchronously during two short intervals of enhanced anthropic pressure on landscapes, respectively during the Roman Empire and the Little Ice Age. These growth phases, that occurred under contrasting climatic regimes, were both followed by generalized delta retreat, driven by two markedly different reasons: after the Romans, the fall of the population and new afforestation let soil erosion in river catchments return to natural background levels; since the industrial revolution, instead, flow regulation through river dams overkill a still increasing sediment production in catchment basins. In this second case, furthermore, the effect of a reduced sediment flux to the coasts is amplified by the sinking of modern deltas, due to land subsidence and sea level rise, that hampers delta outbuilding and increases the vulnerability of coastal zone to marine erosion and flooding. PMID:23722597

  10. Man made deltas.

    PubMed

    Maselli, Vittorio; Trincardi, Fabio

    2013-01-01

    The review of geochronological and historical data documents that the largest southern European deltas formed almost synchronously during two short intervals of enhanced anthropic pressure on landscapes, respectively during the Roman Empire and the Little Ice Age. These growth phases, that occurred under contrasting climatic regimes, were both followed by generalized delta retreat, driven by two markedly different reasons: after the Romans, the fall of the population and new afforestation let soil erosion in river catchments return to natural background levels; since the industrial revolution, instead, flow regulation through river dams overkill a still increasing sediment production in catchment basins. In this second case, furthermore, the effect of a reduced sediment flux to the coasts is amplified by the sinking of modern deltas, due to land subsidence and sea level rise, that hampers delta outbuilding and increases the vulnerability of coastal zone to marine erosion and flooding. PMID:23722597