Science.gov

Sample records for delta-opioid receptor endocytosis

  1. Delta-opioid receptor endocytosis in spinal cord after dermenkephalin activation

    PubMed Central

    Gastard, Myriam

    2000-01-01

    Background The delta(?)-opioid receptors belong to the G protein-coupled receptors and in vitro studies have shown that ?-opioid receptors undergo an internalization process in response to agonist stimulation. The immediate consequence is the disappearance of receptors from the plasma membrane. This adaptation process reveals the cell's capacity to desensitize after a strong agonist stimulus. This process, if it occurs in vivo, could contribute to the tolerance phenomenon observed after opiate treatment. To study the mechanisms underlying regulation of the ?-opioid receptors in vivo, the effects of an application of the drug dermenkephalin, a potent and selective agonist of the ?-opioid receptor, were analysed in the rat spinal cord. Results Using immunocytochemistry and electron microscopy, we observed in control rats that membrane labelling was strictly localized at the interface between two neurites. Fifteen minutes after dermenkephalin stimulation, the plasma membrane labelling was associated with invaginated areas. Thirty minutes after stimulation, labelled vesicles were found in the cytoplasm confirming the internalization process. Conclusions The present findings support the view that ?-opioid receptors are internalized in response to prolonged exposure to dermenkephalin in vivo and confirm the presynaptic localization of ?-opioid receptors in the dorsal horn of the rat spinal cord. PMID:11151092

  2. Pharmacological traits of delta opioid receptors: pitfalls or opportunities?

    PubMed Central

    van Rijn, Richard M.; DeFriel, Julia N.; Whistler, Jennifer L.

    2013-01-01

    Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders, and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR selective drugs are in clinical trials, but no DOR selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. This review will discuss the existing literature focusing on four aspects: 1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands 2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. 3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. 4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. These combined features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands. PMID:23649885

  3. Structure of the [delta]-opioid receptor bound to naltrindole

    SciTech Connect

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Weis, William I.; Kobilka, Brian K.

    2012-07-11

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.

  4. Delta opioid receptors in brain function and diseases

    PubMed Central

    Chung, Paul Chu Sin; Kieffer, Brigitte L.

    2013-01-01

    Evidence that the delta opioid receptor (DOR) is an attractive target for the treatment of brain disorders has strengthened in recent years. This receptor is broadly expressed in the brain, binds endogenous opioid peptides, and shows as functional profile highly distinct from those of mu and kappa opioid receptors. Our knowledge of DOR function has enormously progressed from in vivo studies using pharmacological tools and genetic approaches. The important role of this receptor in reducing chronic pain has been extensively overviewed; therefore this review focuses on facets of delta receptor activity relevant to psychiatric and other neurological disorders. Beneficial effects of DOR agonists are now well established in the context of emotional responses and mood disorders. DOR activation also regulates drug reward, inhibitory controls and learning processes, but whether delta compounds may represent useful drugs in the treatment of drug abuse remains open. Epileptogenic and locomotor-stimulating effects of delta agonists appear drug-dependent, and the possibility of biased agonism at DOR for these effects is worthwhile further investigations to increase benefit/risk ratio of delta therapies. Neuroprotective effects of DOR activity represent a forthcoming research area. Future developments in DOR research will benefit from in-depth investigations of DOR function at cellular and circuit levels. PMID:23764370

  5. Highly selective photoaffinity labeling of mu and delta opioid receptors.

    PubMed Central

    Garbay-Jaureguiberry, C; Robichon, A; Daugé, V; Rossignol, P; Roques, B P

    1984-01-01

    We report the synthesis and photolabeling properties of two highly selective ligands for mu and delta opioid-binding sites: Tyr-D-Ala-Gly-MePhe (pN3)-Gly-ol (AZ-DAMGE) and Tyr-D-Thr-Gly-Phe (pN3)-Leu-Thr (AZ-DTLET). An irreversible inhibition of the electrically induced contractions of mouse vas deferens is caused by irradiation (at 254 nm) of the muscle strip in the presence of AZ-DTLET (1 nM). This phenomenon is antagonized only at large concentrations (10 microM) of naloxone, in accordance with the well-known lower selectivity of naloxone for delta sites. Competition experiments with [3H]DAMGE and [3H]DTLET on crude rat brain membranes showed that the azido photoprobes display a similar (AZ-DAMGE) and even a better (AZ-DTLET) selectivity than their respective parent compounds DAMGE and DTLET. Up to 25 nM, AZ-DTLET irreversibly and selectively photolabels the delta sites of crude rat brain homogenates. Due to its lower affinity AZ-DAMGE provides similar selective photolabeling of the mu sites but at higher concentrations (approximately equal to 0.3 microM). When [3H]DAMGE and [3H]DTLET were used as ligands for mu and delta binding subtypes, respectively, no important change in binding capacity and affinity of one receptor type was observed after photolabeling of the other. Images PMID:6096852

  6. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  7. Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling

    PubMed Central

    Archer-Lahlou, Elodie; Audet, Nicolas; Amraei, Mohammad Gholi; Huard, Karine; Paquin-Gobeil, Mélanie; Pineyro, Graciela

    2009-01-01

    Abstract An important limitation in the clinical use of opiates is progressive loss of analgesic efficacy over time. Development of analgesic tolerance is tightly linked to receptor desensitization. In the case of delta opioid receptors (DOR), desensitization is especially swift because receptors are rapidly internalized and are poorly recycled to the membrane. In the present study, we investigated whether Src activity contributed to this sorting pattern and to functional desensitization of DORs. A first series of experiments demonstrated that agonist binding activates Src and destabilizes a constitutive complex formed by the spontaneous association of DORs with the kinase. Src contribution to DOR desensitization was then established by showing that pre-treatment with Src inhibitor PP2 (20 μM; 1 hr) or transfection of a dominant negative Src mutant preserved DOR signalling following sustained exposure to an agonist. This protection was afforded without interfering with endocytosis, but suboptimal internalization interfered with PP2 ability to preserve DOR signalling, suggesting a post-endocytic site of action for the kinase. This assumption was confirmed by demonstrating that Src inhibition by PP2 or its silencing by siRNA increased membrane recovery of internalized DORs and was further corroborated by showing that inhibition of recycling by monensin or dominant negative Rab11 (Rab11S25N) abolished the ability of Src blockers to prevent desensitization. Finally, Src inhibitors accelerated recovery of DOR-Gαl3 coupling after desensitization. Taken together, these results indicate that Src dynamically regulates DOR recycling and by doing so contributes to desensitization of these receptors. PMID:18363847

  8. Distribution of delta opioid receptor expressing neurons in the mouse hippocampus

    PubMed Central

    Eric, ERBS; Lauren, FAGET; Gregory, SCHERRER; Pascal, KESSLER; Didier, HENTSCH; Jean-Luc, VONESCH; Audrey, MATIFAS; Brigitte L., KIEFFER; Dominique, MASSOTTE

    2012-01-01

    Delta opioid receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. We examined the distribution of delta receptor-expressing cells in the hippocampus using fluorescent knock-in mice that express a functional delta receptor fused at its carboxyterminus with the green fluorescent protein in place of the native receptor. Colocalization with markers for different neuronal populations was performed by immunohistochemical detection. Fine mapping in the dorsal hippocampus confirmed that delta opioid receptors are mainly present in GABAergic neurons. Indeed, they are mostly expressed in parvalbumin-immunopositive neurons both in the Ammon’s horn and dentate gyrus. These receptors, therefore, most likely participate to the dynamic regulation of hippocampal activity. PMID:22750239

  9. Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn.

    PubMed

    Bardoni, Rita; Tawfik, Vivianne L; Wang, Dong; François, Amaury; Solorzano, Carlos; Shuster, Scott A; Choudhury, Papiya; Betelli, Chiara; Cassidy, Colleen; Smith, Kristen; de Nooij, Joriene C; Mennicken, Françoise; O'Donnell, Dajan; Kieffer, Brigitte L; Woodbury, C Jeffrey; Basbaum, Allan I; MacDermott, Amy B; Scherrer, Grégory

    2014-03-19

    Cutaneous mechanosensory neurons detect mechanical stimuli that generate touch and pain sensation. Although opioids are generally associated only with the control of pain, here we report that the opioid system in fact broadly regulates cutaneous mechanosensation, including touch. This function is predominantly subserved by the delta opioid receptor (DOR), which is expressed by myelinated mechanoreceptors that form Meissner corpuscles, Merkel cell-neurite complexes, and circumferential hair follicle endings. These afferents also include a small population of CGRP-expressing myelinated nociceptors that we now identify as the somatosensory neurons that coexpress mu and delta opioid receptors. We further demonstrate that DOR activation at the central terminals of myelinated mechanoreceptors depresses synaptic input to the spinal dorsal horn, via the inhibition of voltage-gated calcium channels. Collectively our results uncover a molecular mechanism by which opioids modulate cutaneous mechanosensation and provide a rationale for targeting DOR to alleviate injury-induced mechanical hypersensitivity. PMID:24583022

  10. Delta Opioid Receptors Presynaptically Regulate Cutaneous Mechanosensory Neuron Input to the Spinal Cord Dorsal Horn

    PubMed Central

    Bardoni, Rita; Tawfik, Vivianne L.; Wang, Dong; François, Amaury; Solorzano, Carlos; Shuster, Scott A.; Choudhury, Papiya; Betelli, Chiara; Cassidy, Colleen; Smith, Kristen; de Nooij, Joriene C.; Mennicken, Françoise; O’Donnell, Dajan; Kieffer, Brigitte L.; Woodbury, C. Jeffrey; Basbaum, Allan I.; MacDermott, Amy B.; Scherrer, Grégory

    2014-01-01

    SUMMARY Cutaneous mechanosensory neurons detect mechanical stimuli that generate touch and pain sensation. Although opioids are generally associated only with the control of pain, here we report that the opioid system in fact broadly regulates cutaneous mechanosensation, including touch. This function is predominantly subserved by the delta opioid receptor (DOR), which is expressed by myelinated mechanoreceptors that form Meissner corpuscles, Merkel cell-neurite complexes, and circumferential hair follicle endings. These afferents also include a small population of CGRP-expressing myelinated nociceptors that we now identify as the somatosensory neurons that coexpress mu and delta opioid receptors. We further demonstrate that DOR activation at the central terminals of myelinated mechanoreceptors depresses synaptic input to the spinal dorsal horn, via the inhibition of voltage-gated calcium channels. Collectively our results uncover a molecular mechanism by which opioids modulate cutaneous mechanosensation and provide a rationale for targeting DOR to alleviate injury-induced mechanical hypersensitivity. PMID:24583022

  11. THE ROLE OF DELTA OPIOID RECEPTORS IN THE ANXIOLYTIC ACTIONS OF BENZODIAZEPINES

    PubMed Central

    Primeaux, Stefany D.; Wilson, Steven P.; McDonald, Alexander J.; Mascagni, Franco; Wilson, Marlene A.

    2007-01-01

    The anxiolytic effects of benzodiazepines appear to involve opioid processes in the amygdala. In previous experiments, overexpression of enkephalin in the amygdala enhanced the anxiolytic actions of the benzodiazepine agonist diazepam in the elevated plus maze. The effects of systemically administered diazepam are also blocked by injections of naltrexone into the central nucleus of the amygdala. The current studies investigated the role of delta opioid receptors in the anxiety-related effects of diazepam. Three days following bilateral stereotaxic injections of viral vectors containing cDNA encoding proenkephalin or ?-galactosidase (control vector), the delta opioid receptor antagonist naltrindole (10 mg/kg, s.c.) attenuated the enhanced anxiolytic effects of 1–2 mg/kg diazepam in rats overexpressing preproenkephalin in the amygdala. Despite this effect, naltrindole failed to attenuate the anxiolytic action of higher diazepam doses (3 mg/kg) in animals with normal amygdalar enkephalin expression. Similarly, the mu opioid receptor antagonist, ?-funaltrexamine (20mg/kg, sc), had no effect on the anxiolytic effect of diazepam alone. These data support a role for delta opioid receptors in the opioid-enhanced anxiolytic effects of diazepam. PMID:17109943

  12. Dimerization with Cannabinoid Receptors Allosterically Modulates Delta Opioid Receptor Activity during Neuropathic Pain

    PubMed Central

    Stockton, Steven D.; Miller, Lydia K.; Devi, Lakshmi A.

    2012-01-01

    The diversity of receptor signaling is increased by receptor heteromerization leading to dynamic regulation of receptor function. While a number of studies have demonstrated that family A G-protein-coupled receptors are capable of forming heteromers in vitro, the role of these heteromers in normal physiology and disease has been poorly explored. In this study, direct interactions between CB1 cannabinoid and delta opioid receptors in the brain were examined. Additionally, regulation of heteromer levels and signaling in a rodent model of neuropathic pain was explored. First we examined changes in the expression, function and interaction of these receptors in the cerebral cortex of rats with a peripheral nerve lesion that resulted in neuropathic pain. We found that, following the peripheral nerve lesion, the expression of both cannabinoid type 1 receptor (CB1R) and the delta opioid receptor (DOR) are increased in select brain regions. Concomitantly, an increase in CB1R activity and decrease in DOR activity was observed. We hypothesize that this decrease in DOR activity could be due to heteromeric interactions between these two receptors. Using a CB1R-DOR heteromer-specific antibody, we found increased levels of CB1R-DOR heteromer protein in the cortex of neuropathic animals. We subsequently examined the functionality of these heteromers by testing whether low, non-signaling doses of CB1R ligands influenced DOR signaling in the cortex. We found that, in cortical membranes from animals that experienced neuropathic pain, non-signaling doses of CB1R ligands significantly enhanced DOR activity. Moreover, this activity is selectively blocked by a heteromer-specific antibody. Together, these results demonstrate an important role for CB1R-DOR heteromers in altered cortical function of DOR during neuropathic pain. Moreover, they suggest the possibility that a novel heteromer-directed therapeutic strategy for enhancing DOR activity, could potentially be employed to reduce anxiety associated with chronic pain. PMID:23272051

  13. Enkephalin Disinhibits Mu Opioid Receptor-Rich Striatal Patches via Delta Opioid Receptors.

    PubMed

    Banghart, Matthew Ryan; Neufeld, Shay Quentin; Wong, Nicole Christine; Sabatini, Bernardo Luis

    2015-12-16

    Opioid neuropeptides and their receptors are evolutionarily conserved neuromodulatory systems that profoundly influence behavior. In dorsal striatum, which expresses the endogenous opioid enkephalin, patches (or striosomes) are limbic-associated subcompartments enriched in mu opioid receptors. The functional implications of opioid signaling in dorsal striatum and the circuit elements in patches regulated by enkephalin are unclear. Here, we examined how patch output is modulated by enkephalin and identified the underlying circuit mechanisms. We found that patches are relatively devoid of parvalbumin-expressing interneurons and exist as self-contained inhibitory microcircuits. Enkephalin suppresses inhibition onto striatal projection neurons selectively in patches, thereby disinhibiting their firing in response to cortical input. The majority of this neuromodulation is mediated by delta, not mu-opioid, receptors, acting specifically on intra-striatal collateral axons of striatopallidal neurons. These results suggest that enkephalin gates limbic information flow in dorsal striatum, acting via a patch-specific function for delta opioid receptors. PMID:26671460

  14. Molecular Perspectives for mu/delta Opioid Receptor Heteromers as Distinct, Functional Receptors

    PubMed Central

    Ong, Edmund W.; Cahill, Catherine M.

    2014-01-01

    Opioid receptors are the sites of action for morphine and the other opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Understandings of the nature, behavior, and role of these opioid receptor heteromers are developing. Owing to their constituent monomers’ involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. There is now considerable evidence demonstrating M/DOR to be an extant and physiologically relevant receptor species. Participating in the cellular environment as a distinct receptor type, M/DOR availability is complexly regulated and M/DOR exhibits unique pharmacology from that of other opioid receptors (ORs), including its constituents. M/DOR appears to have a range of actions that vary in a ligand- (or ligands-) dependent manner. These actions can meaningfully affect the clinical effects of opioid drugs: strategies targeting M/DOR may be therapeutically useful. This review presents and discusses developments in these understandings with a focus on the molecular nature and activity of M/DOR in the context of therapeutic potentials. PMID:24709907

  15. Pentapeptides displaying mu opioid receptor agonist and delta opioid receptor partial agonist/antagonist properties

    PubMed Central

    Purington, Lauren C.; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I.

    2009-01-01

    Chronic use of mu-opioid agonists has been shown to cause neurochemical adaptations resulting in tolerance and dependence. While the analgesic effects of these drugs are mediated by mu-opioid receptors (MOR), several studies have shown that antagonism or knockdown of delta-opioid receptors (DOR) can lessen or prevent development of tolerance and dependence. Based on computational modeling of putative active and inactive conformations of MOR and DOR, we have synthesized a series of pentapeptides with the goal of developing a MOR agonist/DOR antagonist peptide with similar affinity at both receptors as a tool to probe functional opioid receptor interaction(s). The eight resulting naphthylalanine-substituted cyclic pentapeptides displayed variable mixed-efficacy profiles. The most promising peptide (9; Tyr-c(S-CH2-S)[D-Cys-Phe-2-Nal-Cys]NH2) displayed a MOR agonist and DOR partial agonist/antagonist profile and bound with equipotent affinity (Ki ~ 0.5 nM) to both receptors, but also showed kappa opioid receptor (KOR) agonist activity. PMID:19788201

  16. Immunohistochemical observations of methionine-enkephalin and delta opioid receptor in the digestive system of Octopus ocellatus.

    PubMed

    Sha, Ailong; Sun, Hushan; Wang, Yiyan

    2013-02-01

    The study was designed to determine whether methionine-enkephalin (met-Enk) or delta opioid receptor was present in the digestive system of Octopus ocellatus. The results showed that they were both in the bulbus oris, esophagus, crop, stomach, gastric cecum, intestine, posterior salivary glands of O. ocellatus, one of them, met-Enk in the rectum, anterior salivary glands, digestive gland. And the distributions were extensive in the digestive system. Strong or general met-Enk immunoreactivity was observed in the inner epithelial cells of the bulbus oris, esophagus, stomach, gastric cecum, intestine, anterior salivary glands and the adventitia of the intestine and rectum, and so was the delta opioid receptor immunoreactivity in the inner epithelial cells of the bulbus oris, esophagus, and crop, however, they were weak in other parts. Combining with delta opioid receptor, met-Enk may be involved in the regulations of food intake, absorption, movement of gastrointestinal smooth muscle and secretion of digestive gland. The different densities of met-Enk and delta opioid receptor may be related to the different functions in the digestive system of O. ocellatus. PMID:22795872

  17. Impaired Hippocampus-Dependent and Facilitated Striatum-Dependent Behaviors in Mice Lacking the Delta Opioid Receptor

    PubMed Central

    Le Merrer, Julie; Rezai, Xavier; Scherrer, Grégory; Becker, Jérôme A J; Kieffer, Brigitte L

    2013-01-01

    Pharmacological data suggest that delta opioid receptors modulate learning and memory processes. In the present study, we investigated whether inactivation of the delta opioid receptor modifies hippocampus (HPC)- and striatum-dependent behaviors. We first assessed HPC-dependent learning in mice lacking the receptor (Oprd1−/− mice) or wild-type (WT) mice treated with the delta opioid antagonist naltrindole using novel object recognition, and a dual-solution cross-maze task. Second, we subjected mutant animals to memory tests addressing striatum-dependent learning using a single-solution response cross-maze task and a motor skill-learning task. Genetic and pharmacological inactivation of delta opioid receptors reduced performance in HPC-dependent object place recognition. Place learning was also altered in Oprd1−/− animals, whereas striatum-dependent response and procedural learning were facilitated. Third, we investigated the expression levels for a large set of genes involved in neurotransmission in both HPC and striatum of Oprd1−/− mice. Gene expression was modified for several key genes that may contribute to alter hippocampal and striatal functions, and bias striatal output towards striatonigral activity. To test this hypothesis, we finally examined locomotor effects of dopamine receptor agonists. We found that Oprd1−/− and naltrindole-treated WT mice were more sensitive to the stimulant locomotor effect of SKF-81297 (D1/D5), supporting the hypothesis of facilitated striatonigral output. These data suggest, for the first time, that delta receptor activity tonically inhibits striatal function, and demonstrate that delta opioid receptors modulate learning and memory performance by regulating the HPC/striatum balance. PMID:23303070

  18. Delta-opioid receptor blockade in the ventral pallidum increases perceived palatability and consumption of saccharin solution in rats.

    PubMed

    Inui, Tadashi; Shimura, Tsuyoshi

    2014-08-01

    The ventral pallidum (VP) is involved in ingestive behaviour. It receives dense GABAergic projections from the nucleus accumbens. GABAergic terminals in the VP co-express enkephalin, an endogenous ligand of delta-opioid receptors. The role of the delta-opioid receptors in the VP in the context of ingestive behaviour remains unclear, in contrast to the well-understood involvement of the mu-opioid receptors. We used the single-bottle test to examine the effects of VP microinjections of the delta-opioid receptor antagonist naltrindole on consumption of a saccharin solution. Naltrindole injections significantly increased the intake of saccharin, but not water, during a 2-h test session. We also investigated perceived palatability of saccharin using a taste reactivity test. The drug treatments increased ingestive responses to intraorally infused saccharin. Further experimentation explored the role of VP delta-opioid receptors in behavioural responses to saccharin that were previously paired with malaise upon the retrieval of conditioned taste aversion (CTA). Naltrindole-injected rats exhibited longer latency for the first occurrence of aversive responses than vehicle-injected control rats. However, there was no between-group difference in total aversive responses. These results suggest that naltrindole injections into the VP induce an enhancement of perceived palatability of a normally preferred saccharin solution, and thereby facilitate consumption of the solution. On the other hand, delayed aversive responses to the conditioned aversive saccharin suggest that the delta-opioid receptors in the VP mediate the initiation of aversive taste reactivity responses to the conditioned stimulus upon CTA retrieval. PMID:24739358

  19. Potent cyclic enkephalin analogues for delta opioid receptors in the rat brain

    SciTech Connect

    Lui, G.; Kao, J.; Hruby, V.; Morelli, M.; Gulya, K.; Yamamura, H.I.

    1986-03-01

    (/sup 3/H) (D-Pen/sup 2/,D-Pen/sup 5/) enkephalin ((/sup 3/H)DPDPE) and (/sup 3/H) (D-Pen/sup 2/, L-Pen/sup 5/) enkephalin ((/sup 3/H)DPLPE) characterization studies showed high affinity binding of these radioligands to rat brain membranes with dissociation constants of 1.8 and 1.0 nM, respectively, while a similar number of receptor density was found with both radiolabeled ligands (77 fmoles/mg protein). Unlabeled DPDPE inhibited both radioligands with high affinity (IC50 = 7 nM0 while morphine (IC50 = 80 nM), DAGO (IC50 = 250 nM) and PLO17 (no inhibition at 1000 nM) were less effective in inhibiting the binding, thus, illustrating the selective action of these radiolabeled ligands at the delta opioid receptor. A series of conformationally restricted D-penicillamine containing cyclic enkephalin analogues were synthesized using standard solid phase methods and their ability to inhibit (/sup 3/H)DPDPE and (/sup 3/H)DPLPE were examined in rat brain radioreceptor assays. Substitutions in the DPDPE molecule were made in phe/sup 4/. These substitutions were pNO/sub 2/-phe/sup 4/, beta-methyl-phe/sup 4/, pNO/sub 2/-beta-methyl-phe/sub 4/, pNO/sub 2/-beta-methyl-phe/sup 4/ (three isomeric forms: A,B,D). The IC50 values for the above enkephalin analogues were 3.7, 16, 7, 7, 200 nM, respectively. Thus, these potent analogues of DPDPE should be useful in determining the structure activity relationships of the delta opioid receptor in rat brain.

  20. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus.

    PubMed

    Erbs, E; Faget, L; Ceredig, R A; Matifas, A; Vonesch, J-L; Kieffer, B L; Massotte, D

    2016-01-28

    Delta opioid (DOP) receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. To better appreciate the impact of repeated drug exposure on their modulatory activity, we used fluorescent knock-in mice that express a functional delta receptor fused at its carboxy-terminus with the green fluorescent protein in place of the native receptor. We then tested the impact of chronic morphine treatment on the density and distribution of delta receptor-expressing cells in the hippocampus. A decrease in delta receptor-positive cell density was observed in the CA1, CA3 and dentate gyrus without alteration of the distribution across the different GABAergic populations that mainly express delta receptors. This effect partly persisted after four weeks of morphine abstinence. In addition, we observed increased DOP receptor expression at the cell surface compared to saline-treated animals. In the hippocampus, chronic morphine administration thus induces DOP receptor cellular redistribution and durably decreases delta receptor-expressing cell density. Such modifications are likely to alter hippocampal physiology, and to contribute to long-term cognitive deficits. PMID:26480813

  1. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    PubMed

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  2. In vivo visualization of delta opioid receptors upon physiological activation uncovers a distinct internalization profile

    PubMed Central

    FAGET, Lauren; ERBS, Eric; LE MERRER, Julie; SCHERRER, Gregory; MATIFAS, Audrey; BENTURQUIA, Nadia; NOBLE, Florence; DECOSSAS, Marion; KOCH, Marc; KESSLER, Pascal; VONESCH, Jean-Luc; SCHWAB, Yannick; KIEFFER, Brigitte L.; MASSOTTE, Dominique

    2012-01-01

    G protein-coupled receptors (GPCRs) mediate numerous physiological functions and represent prime therapeutic targets. Receptor trafficking upon agonist stimulation is critical for GPCR function, but examining this process in vivo remains a true challenge. Using knock-in mice expressing functional fluorescent delta opioid receptors under the control of the endogenous promoter, we visualized in vivo internalization of this native GPCR upon physiological stimulation. We developed a paradigm in which animals were made dependent to morphine in a drug-paired context. When re-exposed to this context in a drug-free state, mice showed context-dependent withdrawal signs and activation of the hippocampus. Receptor internalization was transiently detected in a subset of CA1 neurons, uncovering regionally restricted opioid peptide release. Importantly, a pool of surface receptors always remained, which contrasts with the in vivo profile previously established for exogenous drug-induced internalization. Therefore, a distinct response is observed at the receptor level upon a physiological or pharmacological stimulation. Altogether, direct in vivo GPCR visualization enables mapping receptor stimulation promoted by a behavioral challenge, and represents a powerful approach to study endogenous GPCR physiology. PMID:22623675

  3. Nerve Growth Factor-Regulated Emergence of Functional Delta-Opioid Receptors

    PubMed Central

    Bie, Bihua; Zhang, Zhi; Cai, You-Qing; Zhu, Wei; Zhang, Yong; Dai, Jaile; Lowenstein, Charles J.; Weinman, Edward J.; Pan, Zhizhong Z.

    2010-01-01

    Sorting of intracellular G protein-coupled receptors (GPCRs) either to lysosomes for degradation or to plasma membrane for surface insertion and functional expression is a key process regulating signaling strength of GPCRs across the plasma membrane in adult mammalian cells. However, little is known about the molecular mechanisms governing the dynamic process of receptor sorting to the plasma membrane for functional expression under normal and pathological conditions. In this study, we demonstrate that delta-opioid receptor (DOPr), a GPCR constitutively targeted to intracellular compartments, is driven to the surface membrane of central synaptic terminals and becomes functional by the neurotrophin nerve growth factor (NGF) in native brainstem neurons. The NGF-triggered DOPr translocation is predominantly mediated by the signaling pathway involving the tyrosine receptor kinase A, Ca++-mobilizing phospholipase C and Ca++/calmodulin-dependent protein kinase II. Importantly, it requires interactions with the cytoplasmic sorting protein Na+/H+ exchange regulatory factor-1 (NHERF-1) and N-Ethyl-maleimide-sensitive factor-regulated exocytosis. In addition, this NGF-mediated mechanism is likely responsible for the emergence of functional DOPr induced by chronic opioids. Thus, NGF may function as a key molecular switch that redirects the sorting of intracellularly targeted DOPr to plasma membrane, resulting in new functional DOPr on central synapses under chronic opioid conditions. PMID:20410114

  4. Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption.

    PubMed

    Margolis, Elyssa B; Fields, Howard L; Hjelmstad, Gregory O; Mitchell, Jennifer M

    2008-11-26

    Alcoholism is a complex and debilitating syndrome affecting approximately 140 million people worldwide. However, not everyone who consumes ethanol develops abuse, raising the possibility that some individuals have a protective mechanism that inhibits elevated alcohol consumption. We tested the hypothesis that the delta-opioid receptor (DOR) plays such a protective role. Here we show that DOR activity in the ventral tegmental area (VTA) robustly decreases ethanol consumption in rats and that these effects depend on baseline ethanol consumption. Intra-VTA microinjection of the DOR agonist DPDPE decreases drinking, particularly in low-drinking animals. Furthermore, VTA microinjection of the DOR selective antagonist TIPP-Psi increases drinking in low, but not high, drinkers and this increase is blocked by comicroinjection of the GABA(A) antagonist bicuculline. Using electrophysiological techniques we found that in VTA brain slices from drinking rats DPDPE presynaptically inhibits GABA(A) receptor mediated IPSCs in low drinkers, but not in high drinkers or naive animals, most likely through activation of DORs on GABA terminals. This DOR-mediated inhibition of IPSCs also correlates inversely with behavioral correlates of anxiety measured in the elevated plus maze. In contrast, presynaptic inhibition of VTA GABA(A) IPSCs by the mu-opioid receptor agonist DAMGO is significantly reduced in both high- and low-drinking rats (<30%) compared with age-matched nondrinking controls (>70%). Together, our findings demonstrate the protective nature of VTA DORs and identify an important new target for therapeutic intervention for alcoholism. PMID:19036960

  5. Primary afferent neurons express functional delta opioid receptors in inflamed skin.

    PubMed

    Brederson, Jill-Desiree; Honda, Christopher N

    2015-07-21

    Peripherally-restricted opiate compounds attenuate hyperalgesia in experimental models of inflammatory pain, but have little discernable effect on nociceptive behavior in normal animals. This suggests that activation of opioid receptors on peripheral sensory axons contributes to decreased afferent activity after injury. Previously, we reported that direct application of morphine to cutaneous receptive fields decreased mechanical and heat-evoked responses in a population of C-fiber nociceptors in inflamed skin. Consistent with reported behavioral studies, direct application of morphine had no effect on fiber activity in control skin. The aim of the present study was to determine whether mechanical responsiveness of nociceptors innervating inflamed skin was attenuated by direct activation of delta opioid receptors (DORs) on peripheral terminals. An ex vivo preparation of rat plantar skin and tibial nerve was used to examine effects of a selective DOR agonist, deltorphin II, on responsiveness of single fibers innervating inflamed skin. Electrical recordings were made eighteen hours after injection of complete Freund's adjuvant into the hindpaw. Deltorphin II produced an inhibition of the mechanical responsiveness of single fibers innervating inflamed skin; an effect blocked by the DOR-selective antagonist, naltrindole. The population of units responsive to deltorphin II was identified as consisting of C fiber mechanical nociceptors. PMID:25911583

  6. Making structural sense of dimerization interfaces of delta opioid receptor homodimers.

    PubMed

    Johnston, Jennifer M; Aburi, Mahalaxmi; Provasi, Davide; Bortolato, Andrea; Urizar, Eneko; Lambert, Nevin A; Javitch, Jonathan A; Filizola, Marta

    2011-03-15

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed "4" dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed "4/5" dimer) in an explicit lipid-water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer. PMID:21261298

  7. Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers†

    PubMed Central

    2011-01-01

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed “4” dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed “4/5” dimer) in an explicit lipid−water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer. PMID:21261298

  8. A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons

    PubMed Central

    Chung, Paul Chu Sin; Keyworth, Helen L.; Martin-Garcia, Elena; Charbogne, Pauline; Darcq, Emmanuel; Bailey, Alexis; Filliol, Dominique; Matifas, Audrey; Ouagazzal, Abdel-Mouttalib; Gaveriaux-Ruff, Claire; Befort, Katia; Maldonado, Rafael; Kitchen, Ian; Kieffer, Brigitte L.

    2014-01-01

    Background The delta opioid receptor (DOR) is broadly expressed throughout the nervous system and regulates chronic pain, emotional responses, motivation and memory. Neural circuits underlying DOR activities have been poorly explored by genetic approaches. Here we used conditional mouse mutagenesis to elucidate receptor function in GABAergic neurons of the forebrain. Methods We characterized DOR distribution in the brain of Dlx5/6-CreXOprd1fl/fl (Dlx-DOR) mice, and tested main central DOR functions through behavioral testing. Results DORs proteins were strongly deleted in olfactory bulb and striatum, and remained intact in cortex and basolateral amygdala. Olfactory perception, circadian activity and despair-like behaviors were unchanged. In contrast, locomotor stimulant effects of SNC80 (DOR agonist) and SKF81297 (D1 agonist) were abolished and increased, respectively. Furthermore, Dlx-DOR mice showed lower levels of anxiety in the elevated plus-maze, opposing the known high anxiety in constitutive DOR knockout animals. Also Dlx-DOR mice reached the food more rapidly in a novelty suppressed feeding (NSF) task, despite their lower motivation for food reward observed in an operant paradigm. Finally, c-fos staining after NSF was strongly reduced in amygdala, concordant with the low anxiety phenotype of Dlx-DOR mice. Conclusion Here we demonstrate that DORs expressed in the forebrain mediate the described locomotor effect of SNC80 and inhibit D1-stimulated hyperactivity. Our data also reveal an unanticipated anxiogenic role for this particular DOR subpopulation, with a potential novel adaptive role. DORs therefore exert dual anxiolytic/anxiogenic roles in emotional responses, which may both have implications in the area of anxiety disorders. PMID:25444168

  9. Role of aromatic transmembrane residues of the delta-opioid receptor in ligand recognition.

    PubMed

    Befort, K; Tabbara, L; Kling, D; Maigret, B; Kieffer, B L

    1996-04-26

    In the present study we examine the role of transmembrane aromatic residues of the delta-opioid receptor in ligand recognition. Three-dimensional computer modeling of the receptor allowed to identify an aromatic pocket within the helices bundle which spans transmembrane domains (Tms) III to VII and consists of tyrosine, phenylalanine, and tryptophan residues. Their contribution to opioid binding was assessed by single amino acid replacement: Y129F and Y129A (Tm III), W173A (Tm IV), F218A and F222A (Tm V), W274A (Tm VI), and Y308F (Tm VII). Scatchard analysis shows that mutant receptors, transfected into COS cells, are expressed at levels comparable with that of the wild-type receptor. Binding properties of a set of representative opioids were examined. Mutations at position 129 most dramatically affected the binding of all tested ligands (up to 430-fold decrease of deltorphin II binding at Y129A), with distinct implication of the hydroxyl group and the aromatic ring, depending on the ligand under study. Affinity of most ligands was also reduced at Y308F mutant (up to 10-fold). Tryptophan residues seemed implicated in the recognition of specific ligand classes, with reduced binding for endogenous peptides at W173A mutant (up to 40-fold) and for nonselective alkaloids at W274A mutant (up to 65-fold). Phenylalanine residues in Tm V appeared poorly involved in opioid binding as compared with other aromatic amino acids examined. Generally, the binding of highly selective delta ligands (TIPPpsi, naltrindole, and BW373U86) was weakly modified by these mutations. Noticeably, TIPPpsi binding was enhanced at W274A receptor by 5-fold. Conclusions from our study are: (i) aromatic amino acid residues identified by the model contribute to ligand recognition, with a preponderant role of Y129; (ii) these residues, which are conserved across opioid receptor subtypes, may be part of a general opioid binding domain; (iii) each ligand-receptor interaction is unique, as demonstrated by the specific binding pattern observed for each tested opioid compound. PMID:8626577

  10. Long-term sensitization to the activation of cerebral delta-opioid receptors by the deltorphin Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 in rats exposed to morphine.

    PubMed Central

    Melchiorri, P; Maritati, M; Negri, L; Erspamer, V

    1992-01-01

    In experiments to evaluate responses to the activation of cerebral delta-opioid receptors, repeated daily injection of the selective delta-opioid agonist Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 ([D-Ala2]deltorphin II) into rat brain resulted in the development of tolerance, whereas repeated daily injection or continuous infusion of morphine resulted in sensitization to the behavioral activating effects of the delta-opioid agonist. Although the rats did not modify their spontaneous locomotor activity after morphine withdrawal, they became markedly hyperresponsive to the locomotor and stereotypy-producing effects of a challenge dose of the delta-opioid agonist. Sensitization to activation of delta-opioid receptors persisted for at least 60 days after discontinuing morphine treatment. These results show that the development of tolerance and long-term sensitization to opioids involves delta-opioid as well as mu-opioid receptors. PMID:1315033

  11. Synthesis and Characterization of a Dual Kappa-Delta Opioid Receptor Agonist Analgesic Blocking Cocaine Reward Behavior.

    PubMed

    Váradi, András; Marrone, Gina F; Eans, Shainnel O; Ganno, Michelle L; Subrath, Joan J; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2015-11-18

    3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6?-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction. PMID:26325040

  12. A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: replication in elderly and young populations.

    PubMed

    Roussotte, Florence F; Jahanshad, Neda; Hibar, Derrek P; Sowell, Elizabeth R; Kohannim, Omid; Barysheva, Marina; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Martin, Nicholas G; Wright, Margaret J; Toga, Arthur W; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2014-04-01

    Delta opioid receptors are implicated in a variety of psychiatric and neurological disorders. These receptors play a key role in the reinforcing properties of drugs of abuse, and polymorphisms in OPRD1 (the gene encoding delta opioid receptors) are associated with drug addiction. Delta opioid receptors are also involved in protecting neurons against hypoxic and ischemic stress. Here, we first examined a large sample of 738 elderly participants with neuroimaging and genetic data from the Alzheimer's Disease Neuroimaging Initiative. We hypothesized that common variants in OPRD1 would be associated with differences in brain structure, particularly in regions relevant to addictive and neurodegenerative disorders. One very common variant (rs678849) predicted differences in regional brain volumes. We replicated the association of this single-nucleotide polymorphism with regional tissue volumes in a large sample of young participants in the Queensland Twin Imaging study. Although the same allele was associated with reduced volumes in both cohorts, the brain regions affected differed between the two samples. In healthy elderly, exploratory analyses suggested that the genotype associated with reduced brain volumes in both cohorts may also predict cerebrospinal fluid levels of neurodegenerative biomarkers, but this requires confirmation. If opiate receptor genetic variants are related to individual differences in brain structure, genotyping of these variants may be helpful when designing clinical trials targeting delta opioid receptors to treat neurological disorders. PMID:23427138

  13. Bioactive conformations of two seminal delta opioid receptor penta-peptides inferred from free-energy profiles.

    PubMed

    Scarabelli, Guido; Provasi, Davide; Negri, Ana; Filizola, Marta

    2014-01-01

    Delta-opioid (DOP) receptors are members of the G protein-coupled receptor (GPCR) sub-family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu-opioid (MOP), kappa-opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr-D-Ala-Gly-Phe-D-Leu) and DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta-peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over-simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond-scale molecular dynamics and bias-exchange metadynamics simulations. Free-energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. PMID:23564013

  14. Bioactive Conformations of Two Seminal Delta Opioid Receptor Penta-peptides Inferred from Free-Energy Profiles

    PubMed Central

    Scarabelli, Guido; Provasi, Davide; Negri, Ana; Filizola, Marta

    2013-01-01

    Delta-opioid (DOP) receptors are members of the G protein-coupled receptor (GPCR) sub-family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu-opioid (MOP), kappa-opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr-D-Ala-GlyPhe-D-Leu) and DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta-peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over-simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond-scale molecular dynamics and bias-exchange metadynamics simulations. Free-energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. PMID:23564013

  15. Identification of the critical domains of the delta-opioid receptor involved in G protein coupling using site-specific synthetic peptides.

    PubMed

    Merkouris, M; Dragatsis, I; Megaritis, G; Konidakis, G; Zioudrou, C; Milligan, G; Georgoussi, Z

    1996-10-01

    A large body of evidence implicates the second and third intracellular loops and the carboxyl-terminal portion of many G protein-coupled receptors as sites responsible for the interaction to G proteins. We synthesized a number of peptides from selected sites of the murine delta-opioid receptor and measured their ability to modify ligand-stimulated G protein activation and 3H agonist binding to the receptor. In membranes from Rat-1 fibroblasts transfected to express the murine delta-opioid receptor stably (clone D2 cells), the delta-opioid agonist [D-Ser2-Leu5-Thr6]enkephalin (DSLET) stimulated high affinity GTPase activity, which was inhibited by peptides that are derived from the proximal (i3.1) and the distal portions (i3.3) of the third intracellular loop with IC50 values of 15 +/- 5 and 50 +/- 4 microM, respectively. Peptides i3.1 and i3.3 inhibited DSLET-stimulated [35S]guanosine 5'-O-thiotriphosphate binding in the same membranes. However, a peptide designated i4, which was derived from a juxtamembranous region of the carboxyl-terminal tail of the delta-opioid receptor, failed to alter agonist-mediated high affinity GTPase activity or agonist-driven [35S]guanosine 5'-O-thiotriphosphate binding. Specific binding of [3H]DSLET to membrane preparations from clone D2 was reduced by peptides i3.1 and i4. Combinations of these peptides abolished detectable [3H]DSLET binding in the same membranes. Peptides i3.1 and i3.3 also destabilized the high affinity state of the receptor as assessed in 3H agonist binding on membranes from neuroblastoma X glioma (NG108-15) hybrid cells, which express the delta-opioid receptor endogenously; furthermore, delta-opioid receptor-stimulated GTPase activity in the same membranes was inhibited by peptides i3.1 and i3.3 but i4 was inactive. In contrast, peptides derived from the second intracellular loop (i2.1 and i2.2), an intermediate portion of the third intracellular loop (i3.2), and the extreme amino-terminal region of the receptor were without effect in these assays. These observations indicate that although peptides i3.1, i3.3, and i4 act via different mechanisms, they provide evidence that at least two sites of the third intracellular loop and part of the carboxyl-terminal tail of the delta-opioid receptor are important in the interaction between this receptor and cellular G proteins. Collectively, these results provide novel information about regions of the delta-opioid receptor that are involved in G protein coupling and high affinity agonist binding. PMID:8863845

  16. Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation.

    PubMed

    Panneerselvam, Mathivadhani; Tsutsumi, Yasuo M; Bonds, Jacqueline A; Horikawa, Yousuke T; Saldana, Michelle; Dalton, Nancy D; Head, Brian P; Patel, Piyush M; Roth, David M; Patel, Hemal H

    2010-11-01

    Epicatechin, a flavonoid, is a well-known antioxidant linked to a variety of protective effects in both humans and animals. In particular, its role in protection against cardiovascular disease has been demonstrated by epidemiologic studies. Low-dose epicatechin, which does not have significant antioxidant activity, is also protective; however, the mechanism by which low-dose epicatechin induces this effect is unknown. Our laboratory tested the hypothesis that low-dose epicatechin mediates cardiac protection via opioid receptor activation. C57BL/6 mice were randomly assigned to 1 of 10 groups: control, epicatechin, naloxone (nonselective opioid receptor antagonist), epicatechin + naloxone, naltrindole (δ-specific opioid receptor antagonist), epicatechin + naltrindole, norbinaltorphimine (nor-BNI, κ-specific opioid receptor antagonist), epicatechin + nor-BNI, 5-hydroxydecanoic acid [5-HD, ATP-sensitive potassium channel antagonist], and epicatechin + 5-HD. Epicatechin (1 mg/kg) or other inhibitors (5 mg/kg) were administered by oral gavage or intraperitoneal injection, respectively, daily for 10 days. Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion, and infarct size was determined via planimetry. Whole heart homogenates were assayed for downstream opioid receptor signaling targets. Infarct size was significantly reduced in epicatechin- and epicatechin + nor-BNI-treated mice compared with control mice. This protection was blocked by naloxone, naltrindole, and 5-HD. Epicatechin and epicatechin + nor-BNI increased the phosphorylation of Src, Akt, and IκBα, while simultaneously decreasing the expression of c-Jun NH(2)-terminal kinase and caspase-activated DNase. All signaling effects are consistent with opioid receptor stimulation and subsequent cardiac protection. Naloxone, naltrindole, and 5-HD attenuated these effects. In conclusion, epicatechin acts via opioid receptors and more specifically through the δ-opioid receptor to produce cardiac protection from ischemia-reperfusion injury. PMID:20833967

  17. Contribution of mu and delta opioid receptors to the pharmacological profile of kappa opioid receptor subtypes

    PubMed Central

    Brissett, D.I.; Whistler, J.L.; van Rijn, R.M.

    2014-01-01

    Molecular cloning has identified three opioid receptors: mu (MOR), delta (DOR) and kappa (KOR). Yet, cloning of these receptor types has offered little clarification to the diverse pharmacological profiles seen within the growing number of novel opioid ligands, which has led to the proposal of multiple subtypes. In the present study, utilizing in vitro and in vivo methods including the use of opioid receptor knockout mice, we find that certain antinociceptive effects of the KOR-1 and KOR-2 subtype-selective ligands (+)-(5α,7α,8β)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzene-acetamide (U69, 593) and 4-[(3,4-Dichlorophenyl)acetyl]-3-(1-pyrrolidinylmethyl)-1-piperazine-carboxylic acid methyl ester fumarate (GR89, 696), respectively, are potentiated by antagonism of MOR and DOR receptors. We believe that our findings can be best explained by the existence of KOR-DOR and KOR-MOR heteromers. We only find evidence for the existence of these heteromers in neurons mediating mechanical nociception, but not thermal nociception. These findings have important clinical ramifications as they reveal new drug targets that may provide avenues for more effective pain therapies. PMID:22337177

  18. The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus.

    PubMed

    Burstein, Suzanne R; Williams, Tanya J; Lane, Diane A; Knudsen, Margarete G; Pickel, Virginia M; McEwen, Bruce S; Waters, Elizabeth M; Milner, Teresa A

    2013-06-26

    In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1h following an injection of the opioid agonist morphine (20mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females. PMID:23583481

  19. The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus?

    PubMed Central

    Burstein, Suzanne R.; Williams, Tanya J.; Lane, Diane A.; Knudsen, Margarete G.; Pickel, Virginia M.; McEwen, Bruce S.; Waters, Elizabeth M.; Milner, Teresa A.

    2013-01-01

    In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1 h following an injection of the opioid agonist morphine (20 mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30 min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females. PMID:23583481

  20. Effect of delta-opioid antagonists on the functional coupling between opioid receptors and G-proteins in rat brain membranes.

    PubMed

    Georgoussi, Z; Zioudrou, C

    1993-06-22

    It is currently accepted that occupancy of opioid receptors by agonists, but not antagonists, promotes the association of the receptors to guanine nucleotide binding proteins (G-proteins) and stimulates a high affinity GTPase as part of the mechanism that links the receptor-ligand complex to adenylate cyclase inhibition. In this work we report that in rat brain membranes selective delta-opioid antagonists, the peptides N,N-Diallyl-Tyr-D-Leu-Gly-Tyr-Leu-OH (Diallyl-G) and N-N-Diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI174,864), inhibit the low Km GTPase activity in a concentration dependent way. On the other hand the delta-opioid agonists D-Ala2-D-Leu5-enkephalin (DADLE) and D-Ser2-Leu5-Thr6-enkephalin stimulate dose-dependently the low Km GTPase activity in rat brain membranes. This stimulation was blocked in the presence of Diallyl-G, and reciprocally the inhibition induced by Diallyl-G was reversed by DADLE. The inhibitory effect of Diallyl-G as well as the stimulation induced by DADLE were abolished when membranes were exposed to low concentrations of N-ethylmaleimide or by ADP ribosylation with pertussis toxin which interferes with the ability of the receptor to couple to G-proteins. These observations indicate that the inhibitory effect of Diallyl-G on GTPase requires a functional G-protein and suggest that certain delta-opioid antagonists exhibit negative intrinsic activity and may have the ability to inhibit the receptor-mediated activation of G-proteins. PMID:8392341

  1. Blockade of central delta-opioid receptors inhibits salt appetite in sodium-depleted rats.

    PubMed

    Nascimento, A I R; Ferreira, H S; Cerqueira, D R; Fregoneze, J B

    2014-05-01

    Various studies have investigated the role of central opioid peptides in feeding behavior; however, only a few have addressed the participation of opioids in the control of salt appetite. The present study investigated the effect of intracerebroventricular injections of the ?-opioid antagonist, naltrindole (5, 10 and 20 nmol/rat) and the agonist, deltorphin II (2.5, 5, 10 and 20 nmol/rat) on salt intake. Two protocols for inducing salt intake were used: sodium-depletion and the central injection of angiotensin II. In addition, the effect of a central ?-opioid receptor blockade on locomotor activity, on palatable solution intake (0.1% saccharin) and on blood pressure was also studied. The blockade of central ?-opioid receptors inhibits salt intake in sodium-depleted rats, while the pharmacological stimulation of these receptors increases salt intake in sodium-replete animals. Furthermore, the blockade of central ?-opioid receptors inhibits salt intake induced by central angiotensinergic stimulation. These data suggest that during sodium-depletion activation of the ?-opioid receptors regulates salt appetite to correct the sodium imbalance and it is possible that an interaction between opioidergic and angiotensinergic brain system participates in this control. Under normonatremic conditions, ?-opioid receptors may be necessary to modulate sodium intake, a response that could be mediated by angiotensin II. The decrease in salt intake following central ?-opioid receptors blockade does not appear to be due to a general inhibition of locomotor activity, changes in palatability or in blood pressure. PMID:24602802

  2. Ultrastructural study of delta-opioid receptors in the dorsal horn of the rat spinal cord using monoclonal anti-idiotypic antibodies.

    PubMed

    Zerari, F; Zouaoui, D; Gastard, M; Apartis, E; Fischer, J; Herbrecht, F; Cupo, A; Cucumel, K; Conrath, M

    1994-08-01

    The ultrastructural localization of delta-opioid receptors was studied using monoclonal anti-idiotypic antibody prepared with an anti-D-Ala2-D-Leu5-enkephalin. Immunocytochemical techniques were used on vibratome sections from rats perfused with paraformaldehyde. A high density of immunoreactivity was observed in the dorsal horn of the spinal cord, particularly the two superficial layers, the dorsolateral funiculus and the area surrounding the central canal. The labelling was absent when the antibody was preincubated with the immunogen. Competition between the anti-idiotypic antibody and different ligands, delta or mu, was controlled by preincubation of tissue sections with the ligand in the presence of peptidase inhibitors for 3-4 h before addition of the anti-idiotypic antibody. Enkephalin, dermenkephalin and naltrindole induced disappearance of the labelling at 10(-9) M while dermorphin or dermorphin Lys7 were ineffective at the same concentration. Lamina II of the dorsal horn was studied by electron microscopy. The immunolabelling was mainly localized on cell membranes at appositions between the two neurons. About one third were localized between an axon terminal and a dendrite, the same proportion of labellings were between two axon terminals. Labelling was occasionally observed at appositions between a glomerular terminal and a dendrite or a terminal or at axoglial appositions. Axosomatic localizations were rare. The presynaptic localization of the labelling is in favor of a presynaptic mechanism of action for delta-opioids in the spinal cord, providing that these receptors are functional. delta-Opioid peptides probably act non-synaptically since receptors were never localized on synaptic differentiations. PMID:7848572

  3. Lessons from free energy simulations of delta-opioid receptor homodimers involving the fourth transmembrane helix.

    PubMed

    Provasi, Davide; Johnston, Jennifer M; Filizola, Marta

    2010-08-10

    Several G protein-coupled receptors (GPCRs), including opioid receptors deltaOR, muOR, and kappaOR, have been reported to form stable dimers or oligomers in lipid bilayers and cell membranes. This notion has been recently challenged by imaging data supporting a transient nature of GPCR association. Here we use umbrella sampling reconstructed free energies of deltaOR homodimers involving the fourth transmembrane helix to predict their association constant. The results of these simulations, combined with estimates of diffusion-limited association rates, suggest a short lifetime for deltaOR homodimers in the membrane, in agreement with recent trends. PMID:20617813

  4. The relevance of intact enkephalin molecule in predominantly delta opioid receptor mediated superoxide anion release.

    PubMed

    Haberstock, H; Marotti, T

    1995-12-01

    The effect of intact enkephalin (MENK) molecule or its metabolite Tyr-Gly-Gly (TGG) as well as the effect of synthetic agonist for opioid receptor subtypes (DADLE and DAGO) on superoxide anion release from human neutrophils has been investigated. In lower MENK concentrations, where MENK alone had no effect on O2- release, inhibition of enkephalinase by thiorphan significantly increased O2- production, while in higher concentrations, where MENK alone was effective, inhibition of enkephalinase had no effect. Aminopeptidase inhibition by bestatin did not influence O2- release from MENK treated PMNs. While MENK predominantly stimulated, TGG suppressed O2- release. Opioid antagonist naloxone (10(-5) M) abrogated the effect of MENK on O2- release. DADLE (delta receptor agonist) increased O2- release in 10(-11) M concentration, while DAGO (mu receptor agonist) had no effect in any concentration examined. Enkephalinase inhibition increased O2- production from DADLE but not from DAGO treated PMNs. It seems, therefore, that free radical production is mainly associated with the delta subtype of the opioid receptor. Also, our observations support the hypothesis that enkephalinase might be the enzyme selectively responsible for regulating effects of enkephalins. PMID:8837964

  5. Morphine stimulates cell migration of oral epithelial cells by delta-opioid receptor activation.

    PubMed

    Charbaji, Nada; Schäfer-Korting, Monika; Küchler, Sarah

    2012-01-01

    Oral mucositis is one of the most common side effects of chemoradiation regimens and manifestation can be dose-limiting for the therapy, can impair the patient's nutritional condition and quality of life due to severe pain. The therapeutic options are limited; often only an alleviation of the symptoms such as pain reduction by using systemic opioids is possible. Stimulating opioid receptors on peripheral neurons and dermal tissue, potent analgesic effects are induced e.g. in skin grafted patients. Advantageous effects on the cell migration and, thus, on the wound healing process are described, too. In this study, we investigated whether opioid receptors are also expressed on oral epithelial cells and if morphine can modulate their cell migration behavior. The expression of the opioid receptors MOR, DOR and KOR on primary human oral epithelial cells was verified. Furthermore, a significantly accelerated cell migration was observed following incubation with morphine. The effect even slightly exceeded the cell migration stimulating effect of TGF-ß: After 14 h of morphine treatment about 86% of the wound area was closed, whereas TGF-ß application resulted in a closed wound area of 80%. With respect to morphine stimulated cell migration we demonstrate that DOR plays a key role and we show the involvement of the MAPK members Erk 1/2 and p38 using Western blot analysis.Further studies in more complex systems in vitro and in vivo are required. Nevertheless, these findings might open up a new therapeutic option for the treatment of oral mucositis. PMID:22900034

  6. Molecular characterization of eluxadoline as a potential ligand targeting mu-delta opioid receptor heteromers

    PubMed Central

    Fujita, Wakako; Gomes, Ivone; Dove, Leonard S.; Prohaska, David; McIntyre, Gail; Devi, Lakshmi A.

    2016-01-01

    Eluxadoline, an orally active mixed μ opioid receptor (μOR) agonist δ opioid receptor (δOR) antagonist developed for the treatment of diarrhea-predominant irritable bowel syndrome, normalizes gastrointestinal (GI) transit and defecation under conditions of novel environment stress or post-inflammatory altered GI function. Furthermore, compared to loperamide, which is used to treat non-specific diarrhea, the effects of eluxadoline on GI transit occur over a wider dosage range. However, the mechanisms of action of eluxadoline are unclear. In this study, we compared the ability of eluxadoline and loperamide to activate G-protein- and β-arrestin-mediated signaling at μOR homomers or μOR-δOR heteromers in heterologous cells. We also examined the ability of both compounds to reduce castor oil induced diarrhea in wild type (WT) and mice lacking δOR. We find that eluxadoline is more potent than loperamide in eliciting G-protein activity and β-arrestin recruitment in μOR expressing cells. However, in cells expressing μOR-δOR heteromers, the potency of eluxadoline is higher, but its maximal effect is lower than that of loperamide. Moreover, in these cells the signaling mediated by eluxadoline but not loperamide is reduced by μOR-δOR heteromer-selective antibodies. We find that in castor oil-induced diarrhea eluxadoline is more efficacious compared to loperamide in WT mice, and δOR appears to play a role in this process. Taken together these results indicate that eluxadoline behaves as a potent μOR agonist in the absence of δOR, while in the presence of δOR eluxadoline’s effects are mediated through the μOR-δOR heteromer. PMID:25261794

  7. Cellular localization and adaptive changes of the cardiac delta opioid receptor system in an experimental model of heart failure in rats.

    PubMed

    Treskatsch, Sascha; Feldheiser, Aarne; Shaqura, Mohammed; Dehe, Lukas; Habazettl, Helmut; Röpke, Torsten K; Shakibaei, Mehdi; Schäfer, Michael; Spies, Claudia D; Mousa, Shaaban A

    2016-02-01

    The role of the cardiac opioid system in congestive heart failure (CHF) is not fully understood. Therefore, this project investigated the cellular localization of delta opioid receptors (DOR) in left ventricle (LV) myocardium and adaptive changes in DOR and its endogenous ligand, the precursor peptide proenkephalin (PENK), during CHF. Following IRB approval, DOR localization was determined by radioligand binding using [H(3)]Naltrindole and by double immunofluorescence confocal analysis in the LV of male Wistar rats. Additionally, 28 days following an infrarenal aortocaval fistula (ACF) the extent of CHF and adaptions in left ventricular DOR and PENK expression were examined by hemodynamic measurements, RT-PCR, and Western blot. DOR specific membrane binding sites were identified in LV myocardium. DOR were colocalized with L-type Ca(2+)-channels (Cav1.2) as well as with intracellular ryanodine receptors (RyR) of the sarcoplasmatic reticulum. Following ACF severe congestive heart failure developed in all rats and was accompanied by up-regulation of DOR and PENK on mRNA as well as receptor proteins representing consecutive adaptations. These findings might suggest that the cardiac delta opioid system possesses the ability to play a regulatory role in the cardiomyocyte calcium homeostasis, especially in response to heart failure. PMID:25552382

  8. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: Quantitative autoradiography, species differences and comparison with kappa receptors

    SciTech Connect

    Sharif, N.A.; Hughes, J. )

    1989-05-01

    The opioid peptides, (3H)DAGO and (3H)DPDPE, bound to rat and guinea pig brain homogenates with a high, nanomolar affinity and to a high density of mu and delta receptors, respectively. (3H)DAGO binding to mu receptors was competitively inhibited by unlabelled opioids with the following rank order of potency: DAGO greater than morphine greater than DADLE greater than naloxone greater than etorphine much greater than U50488 much greater than DPDPE. In contrast, (3H)DPDPE binding to delta receptors was inhibited by compounds with the following rank order of potency: DPDPE greater than DADLE greater than etorphine greater than dynorphin(1-8) greater than naloxone much greater than U50488 much greater than DAGO. These profiles were consistent with specific labelling of the mu and delta opioid receptors, respectively. In vitro autoradiographic techniques coupled with computer-assisted image analyses revealed a discrete but differential anatomical localization of mu and delta receptors in the rat and guinea pig brain. In general, mu and delta receptor density in the rat exceeded that in the guinea pig brain and differed markedly from that of kappa receptors in these species. However, while mu receptors were distributed throughout the brain with hotspots in the fore-, mid- and hindbrain of the two rodents, the delta sites were relatively diffusely distributed, and were mainly concentrated in the forebrain with particularly high levels within the olfactory bulb (OB), n. accumbens and striatum. Notable regions of high density of mu receptors in the rat and guinea pig brain were the accessory olfactory bulb, striatal patches and streaks, amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and s. nigra.

  9. Effects of the Delta Opioid Receptor Agonist SNC80 on Pain-Related Depression of Intracranial Self-Stimulation (ICSS) in Rats

    PubMed Central

    Negus, S. Stevens; Rosenberg, Marisa B.; Altarifi, Ahmad A.; O’Connell, Robert H.; Folk, John E.; Rice, Kenner C.

    2011-01-01

    The delta opioid receptor agonist SNC80 produces both antinociceptive and antidepressant effects in rodents. This profile suggests that SNC80 may also reverse prodepressant effects of pain. Accordingly, this study compared SNC80 effects in complementary assays of pain-stimulated and pain-depressed behavior in rats. Intraperitoneal injection of dilute acid served as an acute noxious visceral stimulus in rats to stimulate abdominal stretching (a pain-stimulated behavior) or depress intracranial self-stimulation of the medial forebrain bundle (ICSS; a pain-depressed behavior). When administered once per week to minimize acute tolerance, SNC80 (1-10 mg/kg IP) decreased acid-stimulated stretching but had little effect on acid-induced depression of ICSS. More frequent SNC80 administration produced tolerance to SNC80 effects on acid-stimulated stretching, but unmasked antinociception in the assay of acid-depressed ICSS. SNC80 did not facilitate ICSS in the absence of pain, and effects of SNC80 were not duplicated by ARM390, a delta agonist congener of SNC80 that does not internalize delta receptors. These findings support continued consideration of delta agonists as candidate analgesics to treat prodepressant effects of pain and illustrate the potential for diametrically opposite effects of drug treatments on preclinical measures of pain-stimulated and pain-depressed behavior. Perspective The delta opioid agonist SNC80 blocked pain-related depression of intracranial self-stimulation in rats, suggesting that delta agonists may be useful to treat prodepressant effects of pain. Repeated SNC80 produced tolerance to SNC80 antinociception in a conventional assay of pain-stimulated behavior but unmasked SNC80 antinociception in an assay of pain-depressed behavior. PMID:22424913

  10. Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing delta-opioid receptors and heterotrimeric G proteins.

    PubMed

    Audet, Nicolas; Galés, Céline; Archer-Lahlou, Elodie; Vallières, Marc; Schiller, Peter W; Bouvier, Michel; Pineyro, Graciela

    2008-05-30

    Heptahelical receptors communicate extracellular information to the cytosolic compartment by binding an extensive variety of ligands. They do so through conformational changes that propagate to intracellular signaling partners as the receptor switches from a resting to an active conformation. This active state has been classically considered unique and responsible for regulation of all signaling pathways controlled by a receptor. However, recent functional studies have challenged this notion and called for a paradigm where receptors would exist in more than one signaling conformation. This study used bioluminescence resonance energy transfer assays in combination with ligands of different functional profiles to provide in vivo physical evidence of conformational diversity of delta-opioid receptors (DORs). DORs and alpha(i1)beta(1)gamma(2) G protein subunits were tagged with Luc or green fluorescent protein to produce bioluminescence resonance energy transfer pairs that allowed monitoring DOR-G protein interactions from different vantage points. Results showed that DORs and heterotrimeric G proteins formed a constitutive complex that underwent structural reorganization upon ligand binding. Conformational rearrangements could not be explained by a two-state model, supporting the idea that DORs adopt ligand-specific conformations. In addition, conformational diversity encoded by the receptor was conveyed to the interaction among heterotrimeric subunits. The existence of multiple active receptor states has implications for the way we conceive specificity of signal transduction. PMID:18381293

  11. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    SciTech Connect

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  12. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (?) opioid agonists, as conformationally constrained homologues of the reference ? agonist (+)-4-[(?R)-?((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of ? opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed ? agonism behaviour and remarkable affinity to ? receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved ? affinity and selectivity relative to SNC80. PMID:26252963

  13. Disruption of Cdk5-associated phosphorylation of residue threonine-161 of the delta-opioid receptor: impaired receptor function and attenuated morphine antinociceptive tolerance.

    PubMed

    Xie, Wei-Yan; He, Yi; Yang, Yan-Rui; Li, Ya-Fang; Kang, Kai; Xing, Bao-Ming; Wang, Yun

    2009-03-18

    Morphine is the most commonly used and most effective analgesic in the clinic. However, its use is limited by the tolerance. Evidence indicates that the delta-opioid receptor (DOR) is essential for morphine antinociceptive tolerance; however, their underlying mechanisms are poorly understood. Here, we show that cyclin-dependent kinase 5 (Cdk5), activated in morphine antinociceptive tolerance, directly phosphorylates DOR at Thr-161 in DRG neurons. Cdk5 was found to phosphorylate Thr-161 in the second loop of DOR, but not the corresponding residue in the mu-opioid receptor (MOR). Phosphorylation at Thr-161 is required for normal cell surface expression of DOR, and the formation of DOR-MOR heterodimers. Our studies indicated that inhibition of Cdk5 activity or overexpression of a DOR mutant lacking the Cdk5 phosphorylation site displayed relatively low cell surface expression and relatively low abilities to form heterodimers of DOR and MOR; intrathecal delivery of a construct expressing the T161A mutant of DOR attenuated morphine antinociceptive tolerance in rats, suggesting that Thr-161 phosphorylation of DOR contributed to Cdk5-mediated morphine antinociceptive tolerance. Furthermore, an engineered Tat fusion-interfering peptide corresponding to the second intracellular loop of DOR (Tat-DOR-2L), reduced the cell surface expression of DOR, disrupted the formation of DOR-MOR heterodimers, and significantly attenuated the development of morphine antinociceptive tolerance after intrathecal injection. The present study indicates that Cdk5-mediated phosphorylation of DOR at Thr-161 plays a crucial role in the development of morphine tolerance and suggests the possibility of targeting DOR phosphorylation at Thr-161 to attenuate morphine antinociceptive tolerance during pain management. PMID:19295160

  14. Interaction between Mu and Delta Opioid Receptor Agonists in an Assay of Capsaicin-Induced Thermal Allodynia in Rhesus Monkeys

    PubMed Central

    Negus, S. Stevens; Morrissey, Ember M.; Folk, John E.; Rice, Kenner C.

    2012-01-01

    Delta opioid agonists enhance antinociceptive effects of mu-opioid agonists in many preclinical assays of acute nociception, but delta/mu interactions in preclinical models of inflammation-associated pain have not been examined. This study examined interactions between the delta agonist SNC80 [(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and the mu agonist analgesics methadone, morphine, and nalbuphine in an assay of capsaicin-induced thermal allodynia in rhesus monkeys. Thermal allodynia was produced by topical application of capsaicin to the tail. Antiallodynic effects of methadone, morphine, and nalbuphine were evaluated alone or in combination with fixed proportions of SNC80 identical to proportions previously shown to enhance acute thermal antinociceptive effects of these mu agonists in rhesus monkeys (0.9 : 1 SNC80/methadone; 0.29 : 1 SNC80/morphine; 3.6 : 1 SNC80/nalbuphine). Methadone, morphine, and nalbuphine each produced dose-dependent antiallodynia. SNC80 produced partial antiallodynia up to the highest dose tested (5.6 mg/kg). SNC80 produced a modest, enantioselective, and naltrindole-reversible enhancement of methadone-induced antiallodynia. However, SNC80 did not enhance morphine antiallodynia and only weakly enhanced nalbuphine antiallodynia. Overall, SNC80 produced modest or no enhancement of the antiallodynic effects of the three mu agonists evaluated. These results suggest that delta agonist-induced enhancement of mu agonist antiallodynia may be weaker and less reliable than previously demonstrated enhancement of mu agonist acute thermal nociception. PMID:22666579

  15. Synergistic activity between the delta-opioid agonist SNC80 and amphetamine occurs via a glutamatergic NMDA-receptor dependent mechanism

    PubMed Central

    Bosse, Kelly E.; Jutkiewicz, Emily M.; Schultz, Kristin N.; Mabrouk, Omar S.; Kennedy, Robert T.; Gnegy, Margaret E.; Traynor, John R.

    2014-01-01

    Glutamate is known to cause the release of dopamine through a Ca2+-sensitive mechanism that involves activation of NMDA ionotropic glutamate receptors. In the current study, we tested the hypothesis that the delta opioid agonist SNC80 acts indirectly, via the glutamatergic system, to enhance both amphetamine-stimulated dopamine efflux from striatal preparations and amphetamine-stimulated locomotor activity. SNC80 increased extracellular glutamate content, which was accompanied by a concurrent decrease in GABA levels. Inhibition of NMDA signaling with the selective antagonist MK801 blocked the enhancement of both amphetamine-induced dopamine efflux and hyperlocomotion observed with SNC80 pretreatment. Addition of exogenous glutamate also potentiated amphetamine-stimulated dopamine efflux in a Mg2+- and MK801-sensitive manner. After removal of Mg2+ to relieve the ion conductance inhibition of NMDA receptors, SNC80 both elicited dopamine release alone and produced a greater enhancement of amphetamine-evoked dopamine efflux. The action of SNC80 to enhance amphetamine-evoked dopamine efflux was mimicked by the GABAB antagonist 2-hydroxysaclofen. These cumulative findings suggest SNC80 modulates amphetamine-stimulated dopamine efflux through an intra-striatal mechanism involving inhibition of GABA transmission leading to the local release of glutamate followed by subsequent activation of NMDA receptors. PMID:24035916

  16. CO-EXPRESSION OF ALPHA-2A-ADRENERGIC AND DELTA-OPIOID RECEPTORS IN SUBSTANCE P TERMINALS IN RAT DORSAL HORN

    PubMed Central

    Riedl, Maureen S.; Schnell, Stephen A.; Overland, Aaron C.; Chabot-Doré, Anne-Julie; Taylor, Anna M.; Ribeiro-Da-Silva, Alfredo; Elde, Robert P.; Wilcox, George L.; Stone, Laura S.

    2009-01-01

    Agonists acting at α2-adrenergic and opioid receptors (α2ARs and ORs, respectively) inhibit pain transmission in the spinal cord. When co-administered, agonists activating these receptors interact in a synergistic manner. Although the existence of α2AR/OR synergy has been well characterized, its mechanism remains poorly understood. The formation of hetero-oligomers has been proposed as a molecular basis for interactions between neuronal G-protein-coupled receptors. The relevance of hetero-oligomer formation to spinal analgesic synergy requires demonstration of the expression of both receptors within the same neuron as well as the localization of both receptors in the same neuronal compartment. We used immunohistochemistry to investigate the spatial relationship between α2ARs and ORs in the rat spinal cord to determine if co-expression could be demonstrated between these receptors. We observed extensive co-localization between α2A-adrenergic and delta-opioid receptors (DOP) on substance P (SP)-immunoreactive (ir) varicosities in the superficial dorsal horn of the spinal cord and in peripheral nerve terminals in the skin. α2AAR- and DOP-ir elements were co-localized in subcellular structures of 0.5 μm or less in diameter in isolated nerve terminals. Furthermore, co-incubation of isolated synaptosomes with α2AR and DOP agonists resulted in a greater-than-additive increase in the inhibition of K+-stimulated neuropeptide release. These findings suggest that co-expression of the synergistic receptor pair α2AAR-DOP on primary afferent nociceptive fibers may represent an anatomical substrate for analgesic synergy, perhaps due to protein-protein interactions such as hetero-oligomerization. PMID:19180644

  17. Preparation and Evaluation at the Delta Opioid Receptor of a Series of Linear Leu-Enkephalin Analogues Obtained by Systematic Replacement of the Amides

    PubMed Central

    2013-01-01

    Leu-enkephalin analogues, in which the amide bonds were sequentially and systematically replaced either by ester or N-methyl amide bonds, were prepared using classical organic chemistry as well as solid phase peptide synthesis (SPPS). The peptidomimetics were characterized using competition binding, ERK1/2 phosphorylation, receptor internalization, and contractility assays to evaluate their pharmacological profile over the delta opioid receptor (DOPr). The lipophilicity (LogD7.4) and plasma stability of the active analogues were also measured. Our results revealed that the last amide bond can be successfully replaced by either an ester or an N-methyl amide bond without significantly decreasing the biological activity of the corresponding analogues when compared to Leu-enkephalin. The peptidomimetics with an N-methyl amide function between residues Phe and Leu were found to be more lipophilic and more stable than Leu-enkephalin. Findings from the present study further revealed that the hydrogen-bond donor properties of the fourth amide of Leu-enkephalin are not important for its biological activity on DOPr. Our results show that the systematic replacement of amide bonds by isosteric functions represents an efficient way to design and synthesize novel peptide analogues with enhanced stability. Our findings further suggest that such a strategy can also be useful to study the biological roles of amide bonds. PMID:23650868

  18. Neonatal monosodium glutamate treatment abolishes both delta opioid receptor-induced and alpha-2 adrenoceptor-mediated gastroprotection in the lower brainstem in rats.

    PubMed

    Rónai, A Z; Gyires, K; Barna, I; Müllner, K; Palkovits, M

    2001-01-01

    Neonatal monosodium glutamate treatment reduced immunoreactive beta-endorphin content in the mediobasal hypothalamus by 50% in adult, male Wistar rats as compared to hypertonic saline-treated littermates; there was also a moderate (approx. 25%) reduction in the rostral part of the nucleus of the solitary tract. In sham-treated adults the intracisternally injected alpha-2 adenoceptor stimulant clonidine (0.47 nmol/rat) and the delta opioid receptor type agonist (D-Ala(2), D-Leu(5))-enkephalin (0.8 nmol/rat) reduced acidified ethanol-induced mucosal lesions in the stomach by 84.1 and 77.5%, respectively, whereas the same doses were completely ineffective in rats treated neonatally by monosodium glutamate. The data taken together with the results of previous studies with the same substances in rats with retroarcuate knife cuts suggest that neuronal damage in the nucleus of the solitary tract region rather than in the arcuate nucleus is responsible for the changes seen in the pharmacological responsiveness. PMID:11595440

  19. Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent mu/delta-opioid receptor antagonist, regulates obese-related factors in mice.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Myers, Page H; Blankenship, Terry; Wilson, Ralph; Balboni, Gianfranco; Salvadori, Severo; Lazarus, Lawrence H

    2009-08-15

    Orally active dual mu-/delta-opioid receptor antagonist, H-Dmt-Tic-Lys-NH-CH(2)-Ph (MZ-2) was applied to study body weight gain, fat content, bone mineral density, serum insulin, cholesterol and glucose levels in female ob/ob (B6.V-Lep/J homozygous) and lean wild mice with or without voluntary exercise on wheels for three weeks, and during a two week post-treatment period under the same conditions. MZ-2 (10mg/kg/day, p.o.) exhibited the following actions: (1) reduced body weight gain in sedentary obese mice that persisted beyond the treatment period without effect on lean mice; (2) stimulated voluntary running on exercise wheels of both groups of mice; (3) decreased fat content, enhanced bone mineral density (BMD), and decreased serum insulin and glucose levels in obese mice; and (4) MZ-2 (30 microM) increased BMD in human osteoblast cells (MG-63) comparable to naltrexone, while morphine inhibited mineral nodule formation. Thus, MZ-2 has potential application in the clinical management of obesity, insulin and glucose levels, and the amelioration of osteoporosis. PMID:19576206

  20. Cocaine withdrawal-induced anxiety in females: impact of circulating estrogen and potential use of delta-opioid receptor agonists for treatment.

    PubMed

    Ambrose-Lanci, Lisa M; Sterling, R C; Van Bockstaele, Elisabeth J

    2010-03-01

    Sex differences in cocaine addiction warrants further research focused on examining the growing population of female cocaine addicts. As demonstrated in both clinical and preclinical research, females are more susceptible to drug relapse with anxiety being a contributing factor. In support of this, a recent clinical study from our laboratory highlights the importance of menstrual cycle phase and anxiety at treatment admission for cocaine addiction on treatment retention. In support of these trends in the clinical population, the purpose of the present study was to design an animal model to directly test the role of circulating hormone levels during cocaine withdrawal. To directly measure the influence of estrogen on anxiety-like behavior during early stages of withdrawal, both ovariectomized and intact female rodent models were employed. The elevated-plus maze and elevated-zero maze were used to assess anxiety-like behavior. Recent evidence in male rodents highlights a potential role for the delta opioid-receptor (DOR) system in the modulation of cocaine withdrawal-induced anxiety. In addition to the evaluation of hormonal effects, a potential anxiolytic specific for DOR was tested for its efficacy in females withdrawn from cocaine. Our results support the use of DOR agonists as a potential anxiolytic in females and highlight the importance of estrogen and other circulating hormones during all phases of cocaine addiction. PMID:19830839

  1. Delta-Opioid Receptor (δOR) Targeted Near-Infrared Fluorescent Agent for Imaging of Lung Cancer: Synthesis and Evaluation In Vitro and In Vivo.

    PubMed

    Cohen, Allison S; Patek, Renata; Enkemann, Steven A; Johnson, Joseph O; Chen, Tingan; Toloza, Eric; Vagner, Josef; Morse, David L

    2016-02-17

    In the United States, lung cancer is the leading cause of cancer death and ranks second in the number of new cases annually among all types of cancers. Better methods or tools for diagnosing and treating this disease are needed to improve patient outcomes. The delta-opioid receptor (δOR) is reported to be overexpressed in lung cancers and not expressed in normal lung. Thus, we decided to develop a lung cancer-specific imaging agent targeting this receptor. We have previously developed a δOR-targeted fluorescent imaging agent based on a synthetic peptide antagonist (Dmt-Tic) conjugated to a Cy5 fluorescent dye. In this work, we describe the synthesis of Dmt-Tic conjugated to a longer wavelength near-infrared fluorescent (NIRF) dye, Li-cor IR800CW. Binding affinity of Dmt-Tic-IR800 for the δOR was studied using lanthanide time-resolved fluorescence (LTRF) competitive binding assays in cells engineered to overexpress the δOR. In addition, we identified lung cancer cell lines with high and low endogenous expression of the δOR. We confirmed protein expression in these cell lines using confocal fluorescence microscopy imaging and used this technique to estimate the cell-surface receptor number in the endogenously expressing lung cancer cell lines. The selectivity of Dmt-Tic-IR800 for imaging of the δOR in vivo was shown using both engineered cell lines and endogenously expressing lung cancer cells in subcutaneous xenograft models in mice. In conclusion, the δOR-specific fluorescent probe developed in this study displays excellent potential for imaging of lung cancer. PMID:26488422

  2. Activation of peripheral kappa/delta opioid receptors mediates 15-deoxy-(Delta12,14)-prostaglandin J2 induced-antinociception in rat temporomandibular joint.

    PubMed

    Pena-dos-Santos, D R; Severino, F P; Pereira, S A L; Rodrigues, D B R; Cunha, F Q; Vieira, S M; Napimoga, M H; Clemente-Napimoga, J T

    2009-11-10

    This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(+)(ATP)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(+)(ATP) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan's Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular l-arginine/NO/cGMP/K(+)(ATP) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. PMID:19647045

  3. Plasticity of ?2-adrenergic spinal antinociception following nerve injury: selective, bidirectional interaction with the delta opioid receptor.

    PubMed

    Aira, Zigor; Barrenetxea, Teresa; Buesa, Itsaso; Azkue, Jon Jatsu

    2015-01-12

    Interactions of opioid receptors with other receptor families can be made use of to improve analgesia and reduce adverse effects of opioid analgesics. We investigated interactions of the ?2-adrenergic receptor (?2AR) with opioid receptors of the mu (MOR) and delta (DOR) types in the spinal dorsal horn in an animal model of neuropathic pain induced by spinal nerve ligation. Nine days after nerve injury, immunoreactivity for the ?2AR subtype A (?2AAR) was increased both in tissue homogenates and at pre- and post-synaptic sites in transverse sections. The efficacy of spinally administered ?2AAR agonist guanfacine at reducing C-fiber-evoked field potentials was increased in nerve-ligated rats. This reducing effect was impaired by simultaneous administration of DOR antagonist naltrindole, but not MOR antagonist CTOP, suggesting that concurrent DOR activation was required for ?2AAR-mediated inhibition. While DOR agonist deltorphin II and MOR agonist DAMGO both effectively depressed C-fiber-evoked spinal field potentials, DOR- but not MOR-mediated depression was enhanced by subclinical guanfacine. In conscious, nerve-ligated rats, chronically administered deltorphin II produced stable thermal and mechanical antinociception over the 9 following days after nerve injury without apparent signs of habituation. Such an effect was dramatically enhanced by co-administration of a low dose of guanfacine, which reversed thermal and mechanical thresholds to levels near those prior to injury. The results suggest that spinal, ?2AAR-mediated antinociception is increased after nerve injury and based on DOR co-activation. We demonstrate in vivo that ?2AAR/DOR interaction can be exploited to provide effective behavioral antinociception during neuropathic pain. PMID:25446445

  4. The role of nitric oxide in the local antiallodynic and antihyperalgesic effects and expression of delta-opioid and cannabinoid-2 receptors during neuropathic pain in mice.

    PubMed

    Hervera, Arnau; Negrete, Roger; Leánez, Sergi; Martín-Campos, Jesús; Pol, Olga

    2010-09-01

    Both delta-opioid receptor (DOPr) and cannabinoid-2 receptor (CB2R) agonists attenuate neuropathic pain, but the precise mechanism implicated in these effects is not completely elucidated. We investigated whether nitric oxide synthesized by neuronal (NOS1) or inducible (NOS2) nitric-oxide synthases could modulate DOPr and/or CB2R antiallodynic and antihyperalgesic effects through the peripheral nitric oxide-cGMP-protein kinase G (PKG) pathway activation and affect their expression during neuropathic pain. In wild-type (WT) mice at 21 days after chronic constriction of sciatic nerve, we evaluated the effects of [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE); (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH-015); and a NOS1 [N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidine tris(trifluoroacetate) salt; NANT], NOS2 [l-N(6)-(1-iminoethyl)-lysine; l-NIL], l-guanylate cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ], or PKG [(Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate; Rp-8-pCPT-cGMPs] inhibitor administered alone or combined. Expression of DOPr and CB2R mRNA in the spinal cord and dorsal root ganglia of naive and nerve-injured WT, NOS1-knockout (KO), and NOS2-KO mice, also was assessed. The subplantar administration of NANT, l-NIL, ODQ, or Rp-8-pCPT-cGMPs dose-dependently inhibited neuropathic pain and enhanced the local effects of DPDPE or JWH-015. Moreover, although the basal levels of DOPr and CB2R mRNA were similar between WT and NOS-KO animals, nerve injury only decreased (DOPr) or increased (CB2R) their expression in the dorsal root ganglia of WT and NOS2-KO mice, and not in NOS1-KO mice. Results suggest that inactivation of the nitric oxide-cGMP-PKG peripheral pathway triggered by NOS1 and NOS2 enhanced the peripheral actions of DOPr and CB2R agonists and that nitric oxide synthesized by NOS1 is implicated in the peripheral regulation of DOPr and CB2R gene transcription during neuropathic pain. PMID:20498253

  5. ( sup 3 H)(D-PEN sup 2 , D-PEN sup 5 ) enkephalin binding to delta opioid receptors on intact neuroblastoma-glioma (NG 108-15) hybrid cells

    SciTech Connect

    Knapp, R.J.; Yamamura, H.I. )

    1990-01-01

    ({sup 3}H)(D-Pen{sup 2}, D-Pen{sup 5})enkephalin binding to intact NG 108-15 cells has been measured under physiological conditions of temperature and medium. The dissociation constant, receptor density, and Hill slope values measured under these conditions are consistent with values obtained by others using membranes prepared from these cells. Kinetic analysis of the radioligand binding to these cells show biphasic association and monophasic dissociation processes suggesting the presence of different receptor affinity states for the agonist. The data show that the binding affinity of ({sup 3}H)(D-Pen{sup 2}, D-Pen{sup 5})enkephalin under physiological conditions is not substantially different to that measured in 50 mM Tris buffer using cell membrane fractions. Unlike DPDPE, the {mu} opioid agonists morphine, normorphine, PL-17, and DAMGO, have much lower affinity for the {delta} receptor measured under these conditions than is observed by studies using 50 mM Tris buffer. The results described here suggest that this assay may serve as a useful model of {delta} opioid receptor binding in vivo.

  6. Role of delta opioid efficacy as a determinant of mu/delta opioid interactions in rhesus monkeys

    PubMed Central

    Negus, S. Stevens; Bear, Ashley E.; Folk, John E.; Rice, Kenner C.

    2009-01-01

    Delta opioid agonists can selectively enhance the antinociceptive effects of mu opioid agonists without enhancing some other, potentially undesirable mu agonist effects. However, the degree of delta receptor efficacy required to produce this profile of interactions is unknown. To address this issue, the present study examined interactions produced by the mu agonist fentanyl and the intermediate-efficacy delta opioid MSF61 in rhesus monkeys. For comparison, interactions were also examined between fentanyl and the relatively high-efficacy delta agonist SNC243A and the delta antagonist naltrindole, which has neglible efficacy at delta receptors. Two different behavioral procedures were used: (a) a warm-water tail-withdrawal assay of thermal nociception, and (b) an assay of schedule-controlled responding for food reinforcement. Drug interactions within each procedure were evaluated using dose-addition analysis to compare experimental results with expected additivity. Drug interactions across procedures were evaluated using dose-ratio analysis to assess relative potencies to produce antinociception vs. response-rate suppression. As expected, dose-addition analysis found that fentanyl/SNC243A interactions were superadditive in the assay of antinociception but additive in the assay of schedule-controlled responding. Conversely, fentanyl/MSF61 interactions were generally additive in both procedures, and fentanyl/naltrindole interactions were additive or subadditive in both procedures. Dose-ratio analysis found that fentanyl alone produced antinociception and rate suppression with similar potencies. Some fentanyl/SNC243A mixtures produced antinociception with up to 4-fold greater potency than rate-suppression. However, fentanyl/MSF61 and fentanyl/naltrindole mixtures produced antinociception with lower potency than rate suppression. These results suggest that relatively high delta receptor efficacy is required for mu/delta antinociceptive synergy. PMID:19027735

  7. Receptor-mediated Endocytosis in the Caenorhabditis elegans Oocyte

    PubMed Central

    Grant, Barth; Hirsh, David

    1999-01-01

    The Caenorhabditis elegans oocyte is a highly amenable system for forward and reverse genetic analysis of receptor-mediated endocytosis. We describe the use of transgenic strains expressing a vitellogenin::green fluorescent protein (YP170::GFP) fusion to monitor yolk endocytosis by the C. elegans oocyte in vivo. This YP170::GFP reporter was used to assay the functions of C. elegans predicted proteins homologous to vertebrate endocytosis factors using RNA-mediated interference. We show that the basic components and pathways of endocytic trafficking are conserved between C. elegans and vertebrates, and that this system can be used to test the endocytic functions of any new gene. We also used the YP170::GFP assay to identify rme (receptor-mediated endocytosis) mutants. We describe a new member of the low-density lipoprotein receptor superfamily, RME-2, identified in our screens for endocytosis defective mutants. We show that RME-2 is the C. elegans yolk receptor. PMID:10588660

  8. Mechanics of receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Huajian; Shi, Wendong; Freund, Lambert B.

    2005-07-01

    Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time. This model can also be extended to include the effect of clathrin coat. The results seem to show broad agreement with experimental observations. Author contributions: H.G. and L.B.F. designed research; H.G., W.S., and L.B.F. performed research; and H.G., W.S., and L.B.F. wrote the paper.Abbreviations: CNT, carbon nanotube; SWNT, single-walled nanotube.

  9. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  10. Syndapins integrate N-WASP in receptor-mediated endocytosis

    PubMed Central

    Kessels, Michael M.; Qualmann, Britta

    2002-01-01

    Syndapins are potential links between the cortical actin cytoskeleton and endocytosis because this family of dynamin-associated proteins can also interact with the Arp2/3 complex activator N-WASP. Here we provide evidence for involvement of N-WASP interactions in receptor-mediated endocytosis. We reveal that the observed dominant-negative effects of N-WASP are dependent exclusively on the proline-rich domain, the binding interface of syndapins. Our results therefore suggest that syndapins integrate N-WASP functions in endocytosis. Both proteins co-localize in neuronal cells. Consistent with a crucial role for syndapins in endocytic uptake, co-overexpression of syndapins rescued the endocytosis block caused by N-WASP. An in vivo reconstitution of the syndapin–N-WASP interaction at cellular membranes triggered local actin polymerization. Depletion of endogenous N-WASP by sequestering it to mitochondria or by introducing anti-N-WASP antibodies impaired endocytosis. Our data suggest that syndapins may act as important coordinators of N-WASP and dynamin functions during the different steps of receptor-mediated endocytosis and that local actin polymerization induced by syndapin–N-WASP interactions may be a mechanism supporting clathrin-coated vesicle detachment and movement away from the plasma membrane. PMID:12426380

  11. Comparison with naloxone of two dynorphin A analogues with K- and delta-opioid antagonist activity.

    PubMed

    Capasso, A

    2009-01-01

    Recently, we have demonstrated that substitution of 1,2,3,4 tetrahyidroisoquinoline-3- carboxylic acid (Tic) in place of Gly2 in dynorphin A-(1-13)-NH2 (DYN) analogue (A) decreased the affinity to the kappa, delta, and micro receptors, and kappa selectivity. The doubly substituted analogue [2',6'-dimethyl-L-tyrosine (Dmt1)-Tic2]DYN (B) exhibited high delta-affinity (Ki=0.39 nM) while micro- and kappa-affinities were only an order of magnitude less (4-5 nM). Bioactivity of [Tic2]DYN peptide (A) on guinea-pig ileum and rabbit jejunum revealed potent delta- and kappa-antagonism thus indicating that the conversion from a kappa-agonist to antagonist occurred with the inclusion of Tic into DYN analogues, similar to the appearance of antagonist properties with delta-opioid agonists containing a Tic2 residue. The present study was undertaken to compare the k- and delta-opioid antagonistic activity of two [Tic2] DYN peptides (A and B) with naloxone a well known non selective opioid receptor antagonist. This comparison was performed by using the model of opioid withdrawal in vitro. Following a 4 min in vitro exposure to U50-488 H (10(-8) M), a selective k opioid receptor agonist, the guinea-pig isolated ileum exhibited a strong contracture after the addition of naloxone (10(-5) M). Also, following a 4 min in vitro exposure to deltorphin II (10(-8) M), a selective delta opioid receptor agonist, the rabbit jejunum exhibited a strong contracture after the addition of naloxone (10(-5) M). Results are expressed as percent of Ach contractions. In our study, we showed that in guinea pig ileum the peptide A (k opioid receptor antagonist) was able to induce a strong contracture at a concentration of 10(-9) M when injected 4 min after U50-488H (10(-8) M). Also, in rabbit jejunum the peptide B (delta-opioid receptor antagonist) was able to induce a strong contracture at a concentration of 10(-10) M when injected 4 min after deltorphin II (10(-8) M). The results of our experiments indicate that both peptide A (k receptor opiod antagonist) and peptide B (alpha receptor opioid antagonist) showed an antagonistic activity higher than naloxone. PMID:19149644

  12. Receptor Tyrosine Kinase endocytosis in endothelium: biology and signaling

    PubMed Central

    Zhang, Xi; Simons, Michael

    2014-01-01

    Receptor tyrosine kinases (RTKs) are involved in regulation of key process in roles in endothelial biology including proliferation, migration and angiogenesis. It is now generally accepted that RTK signaling occurs intracellularly as well as on the plasma membrane although many important details remain to be worked out. Endocytosis and subsequent intracellular trafficking spatiotemporally regulate RTK signaling while “signaling endosomes” provide a platform for the compartmentalization of signaling events. This review summarizes recent advances in our understanding of endothelial RTK endocytosis and signaling using vascular endothelial growth factor receptor-2 as a paradigm. PMID:24925972

  13. Crosslinking-Induced Endocytosis of Acetylcholine Receptors by Quantum Dots

    PubMed Central

    Geng, Lin; Peng, H. Benjamin

    2014-01-01

    In a majority of patients with myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies target postsynaptic AChR clusters and thus compromise the membrane integrity of neuromuscular junctions (NMJs) and lead to muscle weakness. Antibody-induced endocytosis of AChRs in the postsynaptic membrane represents the initial step in the pathogenesis of MG; however, the molecular mechanisms underlying AChR endocytosis remain largely unknown. Here, we developed an approach to mimic the pathogenic antibodies for inducing the crosslinking and internalization of AChRs from the postsynaptic membrane. Using biotin-?-bungarotoxin and quantum dot (QD)-streptavidin, cell-surface and internalized AChRs could be readily distinguished by comparing the size, fluorescence intensity, trajectory, and subcellular localization of the QD signals. QD-induced AChR endocytosis was mediated by clathrin-dependent and caveolin-independent mechanisms, and the trafficking of internalized AChRs in the early endosomes required the integrity of microtubule structures. Furthermore, activation of the agrin/MuSK (muscle-specific kinase) signaling pathway strongly suppressed QD-induced internalization of AChRs. Lastly, QD-induced AChR crosslinking potentiated the dispersal of aneural AChR clusters upon synaptic induction. Taken together, our results identify a novel approach to study the mechanisms of AChR trafficking upon receptor crosslinking and endocytosis, and demonstrate that agrin-MuSK signaling pathways protect against crosslinking-induced endocytosis of AChRs. PMID:24587270

  14. Crosslinking-induced endocytosis of acetylcholine receptors by quantum dots.

    PubMed

    Lee, Chi Wai; Zhang, Hailong; Geng, Lin; Peng, H Benjamin

    2014-01-01

    In a majority of patients with myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies target postsynaptic AChR clusters and thus compromise the membrane integrity of neuromuscular junctions (NMJs) and lead to muscle weakness. Antibody-induced endocytosis of AChRs in the postsynaptic membrane represents the initial step in the pathogenesis of MG; however, the molecular mechanisms underlying AChR endocytosis remain largely unknown. Here, we developed an approach to mimic the pathogenic antibodies for inducing the crosslinking and internalization of AChRs from the postsynaptic membrane. Using biotin-?-bungarotoxin and quantum dot (QD)-streptavidin, cell-surface and internalized AChRs could be readily distinguished by comparing the size, fluorescence intensity, trajectory, and subcellular localization of the QD signals. QD-induced AChR endocytosis was mediated by clathrin-dependent and caveolin-independent mechanisms, and the trafficking of internalized AChRs in the early endosomes required the integrity of microtubule structures. Furthermore, activation of the agrin/MuSK (muscle-specific kinase) signaling pathway strongly suppressed QD-induced internalization of AChRs. Lastly, QD-induced AChR crosslinking potentiated the dispersal of aneural AChR clusters upon synaptic induction. Taken together, our results identify a novel approach to study the mechanisms of AChR trafficking upon receptor crosslinking and endocytosis, and demonstrate that agrin-MuSK signaling pathways protect against crosslinking-induced endocytosis of AChRs. PMID:24587270

  15. Effects of endocytosis on receptor-mediated signaling.

    PubMed

    Irannejad, Roshanak; Tsvetanova, Nikoleta G; Lobingier, Braden T; von Zastrow, Mark

    2015-08-01

    Cellular mechanisms of membrane traffic and signal transduction are deeply interconnected. The present review discusses how membrane trafficking in the endocytic pathway impacts receptor-mediated signaling. Examples of recent progress are highlighted, focusing on the endocytosis-signaling nexus in mammals. PMID:26057614

  16. Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists.

    PubMed

    Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M

    2014-08-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse. PMID:24973818

  17. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis. PMID:26711579

  18. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    PubMed Central

    Xiao, Guangqing

    2013-01-01

    Transport of macromolecules across the blood-brain-barrier (BBB) requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn) in regulating the efflux of Immunoglobulin G (IgG) from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed. PMID:23840214

  19. Stimulation of mu and delta opioid receptors induces hyperalgesia while stimulation of kappa receptors induces antinociception in the hot plate test in the naked mole-rat (Heterocephalus glaber).

    PubMed

    Towett, Philemon Kipkemoi; Kanui, Titus Ikusya; Juma, Francis D

    2006-12-11

    The antinociceptive effects of highly selective mu (DAMGO), delta (DPDPE) and kappa (U-50488 and U-69593) opioid agonists were evaluated following intraperitoneal (i.p.) administration in the naked mole-rat. A hot plate test set at 60 degrees C was used as a nociceptive test and the latency to the stamping of the right hind paw (response latency) was used as the end-point. DAMGO (5-10 mg/kg) and DPDPE (2.5-5 mg/kg) caused a naloxone-reversible significant decrease in the mean response latency. Subcutaneous injection of naloxonazine (20 mg/kg) 24h prior to the administration of DAMGO (5 mg/kg) also blocked the reduction in the response latency observed when DAMGO was injected alone. On the contrary, U-50488 (2.5-5 mg/kg) or U-69593 (0.08 or 0.1 mg/kg) caused a naloxone-reversible significant increase in the mean response latency. These results showed that activation of mu or delta receptors caused hyperalgesia, whereas activation of kappa receptors caused antinociception in the hot plate test in naked mole-rat. This suggests that mu and delta receptors modulate thermal pain in a different way than kappa receptors in the naked mole-rat. It is not possible at the moment to point out how they modulate thermal pain as little is known about the neuropharmacology of the naked mole-rat. PMID:17113929

  20. Delta opioid peptides derived from plant proteins.

    PubMed

    Yoshikawa, M; Takahashi, M; Yang, S

    2003-01-01

    Opioid peptides showing selectivity for delta receptor have been isolated from enzymatic digests of plant proteins. Five peptides were derived from wheat gluten, and named gluten exorphins A5, A4, B5, B4 and C. Two opioid peptides were also released from spinach ribulose-bisphosphate-carboxylase/oxygenase (Rubisco), and named rubiscolins-5 and -6. Among them, gluten exorphin 5A (Gly-Tyr-Tyr-Pro-Thr) and rubiscolin 6 (Tyr-Pro-Leu-Asp-Leu-Phe) improved learning performance in step-through type passive avoidance test after post-training oral administration in mice at doses of 300 mg/kg and 100 mg/kg, respectively, which are smaller than those required for antinociceptive activity. PMID:12769740

  1. Effects of ethanol on hepatic protein trafficking: impairment of receptor-mediated endocytosis.

    PubMed

    Tuma, D J; Casey, C A; Sorrell, M F

    1990-01-01

    Ethanol administration disorders protein trafficking in the liver. The protein secretory and plasma membrane assembly pathways have been shown to be impaired in the liver of ethanol-treated animals; however, traffic along the receptor-mediated endocytosis pathway appears to be especially susceptible to alterations by ethanol. Using asialoglycoproteins as model ligands for studying receptor-mediated endocytosis, we have identified at least three steps of this multi-step pathway that are affected by ethanol treatment. These altered steps are recycling of the receptor, internalization of the receptor-ligand complex and dissociation of the ligand from its receptor in endosomes. Ethanol-induced derangements of endocytosis are more severe in the perivenule region, where alcoholic liver injury starts and predominates, than in the periportal region of the liver. In addition, recent studies have shown that the endocytosis of other ligands, including epidermal growth factor and insulin, are also altered by ethanol treatment. Mechanisms which have been proposed to explain faulty endocytosis include: acetaldehyde adducts to tubulin resulting in impaired microtubule function, improper acidification of endosomes and defective receptor clustering in coated pits. Since receptor-mediated endocytosis by the liver represents an important process by which levels of various hormones, growth factors and other ligands are regulated, and since endocytosis may also be an integral process by which the biological effects of various ligands are elicited, changes in this important process could disrupt numerous metabolic and homeostatic events in the liver and total organism. PMID:2165408

  2. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation

    PubMed Central

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X.; Zamponi, Gerald W.; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  3. Role of protein kinase C in desensitization of spinal delta-opioid-mediated antinociception in the mouse.

    PubMed Central

    Narita, M.; Mizoguchi, H.; Kampine, J. P.; Tseng, L. F.

    1996-01-01

    1. Receptor phosphorylation and down-regulation by protein kinases may be a key event initiating desensitization. The present studies were designed to investigate the effect of a potent protein kinase C (PKC) activator, phorbol 12,13-dibutyrate (PDBu), on antinociception induced by intrathecal (i.t.) administration of a selective delta-opioid receptor agonist [D-Ala2] deltorphin II in the male ICR mouse and on the specific binding of [3H]-[D-Ser2, Leu5]enkephalin-Thr6 (DSLET), a delta-opioid receptor ligand, in the crude synaptic membrane of the spinal cord. 2. Intrathecal (i.t.) pretreatment with PDBu at low doses, which injected alone did not affect the basal tail-flick latency, dose-dependently attenuated the antinociception induced by i.t. administration of [D-Ala2]deltorphin II. The attenuation of i.t.-administered [D-Ala2] deltorphin II-induced antinociception by PDBu was reversed in a dose-dependent manner by i.t. concomitant pretreatment with a specific PKC inhibitor, calphostin C. 3. In the binding experiment, incubation of the crude synaptic membrane of the spinal cord for 2 h at 25 degrees C with PDBu (0.03 to 10 microM) caused a dose-dependent inhibition of the [3H]-DSLET binding. Scatchard analysis of [3H]-DSLET binding revealed that PDBu at 10 microM displayed a 30.7% reduction in the number of [3H]-DSLET binding sites with no significant change in affinity, compared with the non-treatment control, indicating that the activation of membrane-bound PKC by PDBu causes a decrease in the number of specific delta-opioid agonist binding sites. 4. An i.t. injection of [D-Ala2]deltorphin II produced an acute antinociceptive tolerance to the antinociceptive effect of a subsequent i.t. challenge of [D-Ala2]deltorphin II. Concomitant pretreatment with calphostin C markedly prevented the development of acute tolerance to the i.t.-administered [D-Ala2]deltorphin II-induced antinociception. On the other hand, a highly selective protein kinase A (PKA) inhibitor, KT5720, did not have any effect on the development of acute tolerance to [D-Ala2]deltorphin II antinociception. 5. These findings suggest that a loss of specific delta-agonist binding by the activation of PKC by PDBu is involved in the PDBu-induced antinociceptive unresponsiveness to delta-opioid receptor agonist in the mouse spinal cord. Based on the acute tolerance studies, we propose that PKC, but not PKA, plays an important role in the process of homologous desensitization of the spinal delta-opioid receptor-mediated antinociception. PMID:8842450

  4. Size and shape effects on receptor-mediated endocytosis of nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xinlei

    2012-01-01

    We present a thermodynamic approach to elucidate the effects of the size and shape of nanoparticles (NPs) on endocytosis. It is found that endocytosis needs to surmount a thermodynamic energy barrier and has a minimum radius of NPs for endocytosis. Through referring to the concept of "diffusion length of receptors," we obtain a simple and analytical expression for the optimal size of NPs. Furthermore, a phase diagram has been constructed, which can clarify the interrelated effects of the radius and the aspect ratio of NPs. We can identify from the phase the relation between the geometry of NP and its endocytosis rate. The theoretical results are in good agreement with the experimental observations and reveal physical mechanisms involved in the effects of the size and shape of NPs on endocytosis, which implies that these studies may provide useful guidance to the conscious design of NPs for diagnostic agents and drug delivery applications.

  5. Specific delta-opioid antagonists exert an agonist-independent inhibitory effect, similar to the agonist, on the release of GnRH in vitro.

    PubMed

    Dragatsis, I; Zioudrou, C; Gerozissis, K

    1995-08-01

    1. In in vitro studies with adult male rats we have recently shown that the delta-opioid agonist DTLET inhibits the release of the Gonadotropin-Releasing Hormone (GnRH) from hypothalamic fragments containing the arcuate nucleus and the median eminence. This effect is receptor mediated and eicosanoid dependent (Gerozissis et al., 1993). 2. In the present study we report that the delta-opioid antagonists with negative intrinsic activity, Diallyl-G and ICI 174864, applied under the same experimental conditions (30 min static incubations at 37 degrees C, in a potassium rich milieu), in the absence of the agonist DTLET, also exert a similar to the agonist inhibitory effect on the release of GnRH. 3. The dose-dependent inhibitory effect of Diallyl-G on GnRH release is reversed by increasing concentrations of DTLET. The mu and delta opioid antagonist, naloxone is without effect in the absence of DTLET. However, naloxone acts as an antagonist on the Diallyl-G-induced inhibition of GnRH release. 4. Diallyl-G also inhibits the release of prostaglandin E2 (PGE2). In the presence of indomethacin or nordihydroguaiaretic acid, Diallyl-G is ineffective to further inhibit the release of GnRH. These latter observations taken together with the results of eicosanoid estimation suggest that PGE2 but not leukotrienes participate in the agonist-independent effects of Diallyl-G on GnRH release. 5. Therefore these results support the hypothesis that delta-opioid antagonists with negative intrinsic activity exert agonist-independent biological responses similar to those of the agonists. PMID:8565043

  6. Endocytosis as a Biological Response in Receptor Pharmacology: Evaluation by Fluorescence Microscopy

    PubMed Central

    Varela, María J.; de la Rocha, Arlet M. Acanda; Fernandez-Troyano, Juan C.; Barreiro, R. Belén; Lopez-Gimenez, Juan F.

    2015-01-01

    The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method –the Q-Endosomes algorithm– that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution. PMID:25849355

  7. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy.

    PubMed

    Campa, Víctor M; Capilla, Almudena; Varela, María J; de la Rocha, Arlet M Acanda; Fernandez-Troyano, Juan C; Barreiro, R Belén; Lopez-Gimenez, Juan F

    2015-01-01

    The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution. PMID:25849355

  8. Dual single-scission event analysis of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered ?2-adrenergic receptor (?2AR) or Mu-opioid receptor (MOR) endocytosis

    PubMed Central

    Lampe, Marko; Pierre, Fabienne; Al-Sabah, Suleiman; Krasel, Cornelius; Merrifield, Christien J.

    2014-01-01

    The dynamic relationship between constitutive and ligand-triggered clathrin-mediated endocytosis is only poorly characterized, and it remains controversial whether clathrin-coated pits specialize to internalize particular receptor cargo. Here we analyzed the ligand-triggered endocytosis of the model G-protein–coupled receptors (GPCRs) ?2-adrenergic receptor (?2AR) and Mu-opioid receptor (MOR) at the level of individual endocytic events using a total internal reflection fluorescence microscopy (TIRFM)–based assay. Similar to the constitutive endocytosis of transferrin receptor (TfR), ligand- triggered endocytosis of ?2AR occurs via quantized scission events hosted by clathrin spots and plaques of variable size and persistence. To address whether clathrin-coated structures (CCSs) specialize to internalize particular GPCRs, we adapted the TIRFM imaging assay to simultaneously quantify the internalization of TfR and the ligand- triggered endocytosis of the ?2AR or MOR. Agonist-triggered ?2AR or MOR endocytosis extended the maturation time of CCSs, as shown previously, but did not affect the rate of constitutive TfR endocytosis or loading of TfR into individual endocytic vesicles. Both the ?2AR and the MOR receptors entered cells in the same vesicles as TfR, and the overall evidence for CCS specialization was weak. These data support a simple model in which different cargoes internalize through common CCSs. PMID:25079691

  9. The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis.

    PubMed

    Aranda, Juan F; Canfrán-Duque, Alberto; Goedeke, Leigh; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-09-01

    Small non-coding RNAs (microRNAs) are important regulators of gene expression that modulate many physiological processes; however, their role in regulating intracellular transport remains largely unknown. Intriguingly, we found that the dynamin (DNM) genes, a GTPase family of proteins responsible for endocytosis in eukaryotic cells, encode the conserved miR-199a and miR-199b family of miRNAs within their intronic sequences. Here, we demonstrate that miR-199a and miR-199b regulate endocytic transport by controlling the expression of important mediators of endocytosis such as clathrin heavy chain (CLTC), Rab5A, low-density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1). Importantly, miR-199a-5p and miR-199b-5p overexpression markedly inhibits CLTC, Rab5A, LDLR and Cav-1 expression, thus preventing receptor-mediated endocytosis in human cell lines (Huh7 and HeLa). Of note, miR-199a-5p inhibition increases target gene expression and receptor-mediated endocytosis. Taken together, our work identifies a new mechanism by which microRNAs regulate intracellular trafficking. In particular, we demonstrate that the DNM, miR-199a-5p and miR-199b-5p genes act as a bifunctional locus that regulates endocytosis, thus adding an unexpected layer of complexity in the regulation of intracellular trafficking. PMID:26163491

  10. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    SciTech Connect

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis.

  11. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    ERIC Educational Resources Information Center

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  12. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    ERIC Educational Resources Information Center

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  13. A Role for Myocilin in Receptor-Mediated Endocytosis

    PubMed Central

    McKay, Brian S.; Congrove, Nicole R.; Johnson, Adiv A.; Dismuke, W. Michael; Bowen, Trent J.; Stamer, W. Daniel

    2013-01-01

    Myocilin is a broadly expressed protein that when mutated uniquely causes glaucoma. While no function has been ascribed to explain focal disease, some properties of myocilin are known. Myocilin is a cytoplasmic protein that also localizes to vesicles specifically as part of a large membrane-associated complex with properties similar to the SNARE machinery that function in vesicle fusion. Its role in vesicle dynamics has not been detailed, however myocilin intersects with the endocytic compartment at the level of the multivesicular body. Since internalized GPCRs are sorted in the multivesicular body, we investigated whether myocilin functions in ligand-dependent GPR143 endocytosis. Using recombinant systems we found that the kinetics of myocilin recruitment to biotinylated membrane proteins was similar to that of arrestin-3. We also co-localized myocilin with GPR143 and Arrestin-2 by confocal microscopy. However, wild-type myocilin differed significantly in its association kinetics and co-localization with internalized proteins from mutant myocilin (P370L or T377M). Moreover, we found that myocilin bound to the cytoplasmic tail of GPR143, an interaction mediated by its amino terminal helix-turn-helix domain. Hydrodynamic analyses show that the myocilin-GPR143 protein complex is >158 kD and stable in 500 mM KCl, but not 0.1% SDS. Collectively, data indicate that myocilin is recruited to the membrane compartment, interacting with GPCR proteins during ligand-mediated endocytosis and that GPCR signaling underlies pathology in myocilin glaucoma. PMID:24367514

  14. Electroencephalographic and convulsant effects of the delta opioid agonist SNC80 in rhesus monkeys

    PubMed Central

    Danielsson, Ingela; Gasior, Maciej; Stevenson, Glenn W.; Folk, John E.; Rice, Kenner C.; Negus, S. Stevens

    2007-01-01

    Non-peptidic delta opioid receptor agonists are being evaluated for a wide range of clinical applications; however, the clinical utility of piperazinyl benzamide delta agonists such as SNC80 may be limited by convulsant activity. The purpose of the present study was to evaluate the electroencephalographic and convulsant activity produced by a high dose of 10 mg/kg SNC80 IM in rhesus monkeys. EEG and behavioral activity were examined in four adult male rhesus monkeys after IM administration of SNC80. Monkeys were seated in a standard primate restraint chair, and EEG activity was recorded using an array of 16 needle electrodes implanted subcutaneously in the scalp in a bipolar (scalp-to scalp) montage in a longitudinal direction, with bilateral frontal, central, temporal, and occipital leads. Behavior was recorded using video monitoring equipment. Initially, all monkeys were tested with 10 mg/kg SNC80, which is a relatively high dose 3–10 fold greater than doses necessary to produce a variety of other behavioral effects. Behavioral convulsions and EEG seizures were observed in one of the four monkeys. In this monkey, neither behavioral convulsions nor EEG seizures were observed when a lower dose of 3.2 mg/kg was administered nine weeks later or when the same dose of 10 mg/kg SNC80 was administered one year later. These results suggest that IM administration of SNC80 is less potent in producing convulsant effects than in producing other, potentially useful behavioral effects (e.g. antinociception) in rhesus monkeys. PMID:17112570

  15. Essential role of endocytosis for interleukin-4-receptor-mediated JAK/STAT signalling.

    PubMed

    Kurgonaite, Kristina; Gandhi, Hetvi; Kurth, Thomas; Pautot, Sophie; Schwille, Petra; Weidemann, Thomas; Bökel, Christian

    2015-10-15

    Many important signalling cascades operate through specialized signalling endosomes, but a corresponding mechanism has as yet not been described for hematopoietic cytokine receptors. Based on live-cell affinity measurements, we recently proposed that ligand-induced interleukin-4 receptor (IL-4R) complex formation and thus JAK/STAT pathway activation requires a local subcellular increase in receptor density. Here, we show that this concentration step is provided by the internalization of IL-4R subunits through a constitutive, Rac1-, Pak- and actin-mediated endocytosis route that causes IL-4R subunits to become enriched by about two orders of magnitude within a population of cortical endosomes. Consistently, ligand-induced receptor dimers are preferentially detected within these endosomes. IL-4 signalling can be blocked by pharmacological inhibitors targeting the actin polymerization machinery driving receptor internalization, placing endocytosis unambigously upstream of receptor activation. Taken together, these observations demonstrate a role for endocytosis that is mechanistically distinct from the scaffolding function of signalling endosomes in other pathways. PMID:26306492

  16. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyan; Zhang, Sulin

    2010-01-01

    We elucidate, from thermodynamic arguments, the governing factors of receptor-mediated endocytosis of nanoparticles (NPs). We show that the endocytic energetics specifies a minimal particle size and a minimal ligand density below which endocytosis is not possible. Due to the entropic penalty involved in ligand-receptor binding, endocytosis may occur with a large fraction of ligands unbound with receptors. Our analyses suggest that the endocytic time depends interrelatedly on the particle size and ligand density. There exists an optimal condition at which the endocytic time minimizes. These findings may provide valuable guidance to the rational designs of NP-based biomarkers and anticancer bioagents.

  17. Age-Related Changes in Scavenger Receptor–Mediated Endocytosis in Rat Liver Sinusoidal Endothelial Cells

    PubMed Central

    Simon-Santamaria, Jaione; Malovic, Ivana; Warren, Alessandra; Oteiza, Ana; Le Couteur, David; Smedsrød, Bård; McCourt, Peter

    2010-01-01

    Liver sinusoidal endothelial cells (LSECs) play an essential role in systemic waste clearance by effective endocytosis of blood-borne waste macromolecules. We aimed to study LSECs’ scavenger function during aging, and whether age-related morphological changes (eg, defenestration) affect this function, in F344/BN F1 rats. Endocytosis of the scavenger receptor ligand formaldehyde-treated serum albumin was significantly reduced in LSECs from old rats. Ligand degradation, LSEC protein expression of the major scavenger receptors for formaldehyde-treated serum albumin endocytosis, stabilin-1 and stabilin-2, and their staining patterns along liver sinusoids, was similar at young and old age, suggesting that other parts of the endocytic machinery are affected by aging. Formaldehyde-treated serum albumin uptake per cell, and cell porosity evaluated by electron microscopy, was not correlated, indicating that LSEC defenestration is not linked to impaired endocytosis. We report a significantly reduced LSEC endocytic capacity at old age, which may be especially important in situations with increased circulatory waste loads. PMID:20576648

  18. Receptor Endocytosis and Dendrite Reshaping in Spinal Neurons After Somatosensory Stimulation

    NASA Astrophysics Data System (ADS)

    Mantyh, Patrick W.; Demaster, Eric; Malhotra, Amit; Ghilardi, Joseph R.; Rogers, Scott D.; Mantyh, Christopher R.; Liu, Hantao; Basbaum, Allan I.; Vigna, Steven R.; Maggio, John E.; Simone, Donald A.

    1995-06-01

    In vivo somatosensory stimuli evoked the release of substance P from primary afferent neurons that terminate in the spinal cord and stimulated endocytosis of substance P receptors in rat spinal cord neurons. The distal dendrites that showed substance P receptor internalization underwent morphological reorganization, changing from a tubular structure to one characterized by swollen varicosities connected by thin segments. This internalization and dendritic structural reorganization provided a specific image of neurons activated by substance P. Thus receptor internalization can drive reversible structural changes in central nervous system neurons in vivo. Both of these processes may be involved in neuronal plasticity.

  19. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs.

    PubMed

    Pandey, Kailash N

    2015-01-01

    The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed. PMID:26151885

  20. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs

    PubMed Central

    Pandey, Kailash N.

    2015-01-01

    The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed. PMID:26151885

  1. The delta-opioid signal transduction on the gonadotropin-releasing hormone release is eicosanoid dependent.

    PubMed

    Gerozissis, K; Dragatsis, I; Zioudrou, C

    1993-10-29

    In static incubations, the K+ induced release of gonadotropin-releasing hormone (GnRH) and of prostaglandin (PG) E2, was 2-3 times higher in the isolated median eminence (ME) compared to the hypothalamic area containing the arcuate nucleus (ARN) plus the ME. The delta-opioid agonist DTLET, induced a parallel, dose-dependent reduction of GnRH and PGE2 release in the ARN plus ME. Both effects of DTLET were blocked by the delta-opioid antagonist Diallyl-G. In the isolated ME, DTLET reduced the secretion of PGE2 but enhanced the release of GnRH. In this area Diallyl-G had no effect on the PGE2 release but blocked the GnRH secretion. When the PGE2 production was blocked by indomethacin in the ARN plus ME preparation, DTLET increased the release of GnRH and induced the production of leukotrienes (LTs). On the other hand, DTLET decreased the release of both GnRH and PGE2 in the presence of nordihydroguaiaretic acid (NDGA), an inhibitor of the production of LTs. The above results suggest that: (a) the delta-opioid agonist DTLET modulates GnRH release differentially in the hypothalamic areas examined; and (b) the arachidonic acid metabolites are involved in the mode of action of DTLET on the release of GnRH in the ARN plus ME hypothalamic fragment. PMID:8281433

  2. Dual role for ubiquitin in plant steroid hormone receptor endocytosis

    PubMed Central

    Martins, Sara; Dohmann, Esther M. N.; Dompierre, Jim; Fischer, Wolfgang; Pojer, Florence; Jaillais, Yvon; Satiat-Jeunemaître, Béatrice; Chory, Joanne; Geldner, Niko; Vert, Grégory

    2015-01-01

    Brassinosteroids (BRs) are plant steroid hormones that control many aspects of plant growth and development. BRs are perceived at the cell-surface by the plasma membrane-localized receptor complex composed of the receptor kinase BRI1 and its co-receptor BAK1. Here we show that BRI1 is post-translationally modified by K63 polyubiquitin chains in vivo. Artificially ubiquitinated BRI1 is recognized at the trans-Golgi Network/Early Endosomes (TGN/EE) and rapidly routed for vacuolar degradation. Mass spectrometry analyses identified residue K866 as an in vivo ubiquitination target in BRI1 involved in the negative regulation of BRI1. Model prediction revealed several redundant ubiquitination sites required for the endosomal sorting and vacuolar targeting of BRI1. Using total internal reflection fluorescence microscopy (TIRF), we also uncovered a role for BRI1 ubiquitination in promoting internalization from the cell-surface. Finally, we demonstrate that the control of BRI1 protein dynamics by ubiquitination is a fundamental control mechanism for BR responses in plants. Altogether, our results identify K63-linked polyubiquitin chain formation as a dual targeting signal for BRI1 internalization and sorting along the endocytic pathway, and highlight its role in hormonally controlled plant development. PMID:25608221

  3. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine.

    PubMed

    Xie, M; Zhang, H; Xu, Y; Liu, T; Chen, S; Wang, J; Zhang, T

    2013-01-01

    Immunohistochemistry and an immunofluorescence technique was used to detect folate receptor expression in tissue samples and cell lines of head and neck squamous carcinoma, including 20 tissue samples of nasopharyngeal carcinoma, 16 tissue samples of laryngeal carcinoma, and HNE-1, HNE-2, CNE-1, CNE-2, SUNE-1, 5-8F, and Hep-2 cell lines. Iron staining, electron microscopy, and magnetic resonance imaging were used to observe endocytosis of folate-conjugated cisplatin-loaded magnetic nanoparticles (CDDP-FA-ASA-MNP) in cultured cells and transplanted tumors. As shown by immunohistochemistry, 83.3% (30/36) of the head and neck squamous carcinomas expressed the folate receptor versus none in the control group (0/24). Only the HNE-1 and Hep-2 cell lines expressed the folate receptor, and the other five cell lines did not. Endocytosis of CDDP-FA-ASA-MNP was seen in HNE-1 and Hep-2 cells by iron staining and electron microscopy. A similar result was seen in transplanted tumors in nude mice. Magnetic resonance imaging showed low signal intensity of HNE-1 cells and HNE-1 transplanted tumors on T2-weighted images after uptake of CDDP-FA-ASA-MNP, and this was not seen in CNE-2 transplanted tumors. In conclusion, head and neck squamous carcinoma cell strongly expressed the folate receptor, while normal tissue did not. The folate receptor can mediate endocytosis of folate-conjugated anticancer nanomedicines, and lays the foundation for molecular targeted treatment of cancer. PMID:23874095

  4. Endocytosis of a functionally enhanced GFP-tagged transferrin receptor in CHO cells.

    PubMed

    He, Qi; Sun, Xiaoxu; Chu, Chong; Jiang, Qing; Zhu, Huifen; He, Yong; Yue, Tingting; Wang, Ruibo; Lei, Ping; Shen, Guanxin

    2015-01-01

    The endocytosis of transferrin receptor (TfR) has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP)-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81 ± 3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs. PMID:25803700

  5. Behavioral Pharmacology of the Mu/Delta Opioid Glycopeptide MMP2200 in Rhesus Monkeys

    PubMed Central

    Carmo, Gail Pereira Do; Polt, Robin; Bilsky, Edward J.; Rice, Kenner C.; Negus, S. Stevens

    2008-01-01

    MMP2200 is a novel glycopeptide opioid agonist with similar affinities for mu and delta receptors. Glycosylation promoted brain penetration and production of centrally mediated behavioral effects in mice; however, it is unknown if the magnitude of enhanced brain penetration is sufficient to permit central mediation of drug effects and production of synergistic mu/delta antinociceptive interactions after systemic administration in primates. To address this issue, the present study compared the effects of MMP2200 and the mu agonist morphine in four behavioral procedures in rhesus monkeys. In an assay of thermal nociception, morphine (1.0–5.6 mg/kg) produced dose-dependent antinociception, whereas MMP2200 (10–56 mg/kg) was ineffective. In an assay of capsaicin-induced thermal allodynia, both morphine (0.01–1.0 mg/kg) and MMP2200 (0.032–3.2 mg/kg) produced dose-dependent antiallodynic effects. MMP2200-induced antiallodynia was blocked by the moderately mu-selective antagonist naltrexone (0.01 mg/kg), the delta-selective antagonist naltrindole (1.0 mg/kg), and the peripherally selective opioid antagonist quaternary naltrexone (0.32 mg/kg). In an assay of schedule-controlled behavior, both morphine (0.01–1.0mg/kg) and MMP2200 (10–56 mg/kg) decreased response rates. Morphine effects were antagonized by naltrexone (0.001–0.01 mg/kg); however, the effects of MMP2200 were not antagonized by either naltrexone (0.01 mg/kg) or naltrindole (1.0 mg/kg). In an assay of drug self-administration, morphine (0.0032–0.32 mg/kg/inj) produced reinforcing effects, whereas MMP2200 (0.032–0.32 mg/kg/inj) did not. These results suggest that systemically administered MMP2200 acted as a peripheral, mu/delta opioid agonist with limited distribution to the CNS in rhesus monkeys. These results also suggest the existence of species differences in the pharmacokinetics and brain penetration of glycopeptides. PMID:18511649

  6. Regulation of signaling interactions and receptor endocytosis in growing blood vessels

    PubMed Central

    Pitulescu, Mara E; Adams, Ralf H

    2014-01-01

    Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFR? and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature. PMID:25482636

  7. Murine interferon-US receptor-mediated endocytosis and nuclear membrane binding

    SciTech Connect

    Kushnaryov, V.M.; MacDonald, H.S.; Sedmak, J.J.; Grossberg, S.E.

    1985-05-01

    Radioiodinated mouse interferon-US ( SVI-MuIFN-US ) bound with high affinity to plasma membrane of L929 murine fibroblasts. The binding was saturable and inhibited by a 100-fold excess of unlabeled MuIFN-US but not by excess mouse INF-el (MuIFN-el). MuIFN-US bound at 4C was very rapidly internalized upon warming of the cells to 37C (t/sub 1/2/ = 1.5 min). Indirect immunoferritin labeling indicated that MuIFN-US was initially located in coated pits and subsequently internalized by receptor-mediated endocytosis. Isolated LZSZ cell nuclei bound SVI-MuIFN-US with a 7-foot higher affinity and higher receptor density than that for the plasma membrane. Binding of the nuclear membrane was inhibited by a 100-fold excess of unlabeled MuIFN-US but not by excess MuIFN-el. Trypsin treatment of nuclei decreased INF binding by 80%, suggesting that the putative nuclear receptors are protein. Specific binding of MuIFN-US to nuclei was also shown by fluorescence and electron microscopy. The authors propose that the very rapid internalization of MuIFN-US by receptor-mediated endocytosis is important in the cellular processing of IFN and that its high-affinity binding to the nuclear membrane suggests the nucleus as an intracellular site of IFN action.

  8. The effect of vanadate on receptor-mediated endocytosis of asialoorosomucoid in rat liver parenchymal cells

    SciTech Connect

    Kindberg, G.M.; Gudmundsen, O.; Berg, T. )

    1990-06-05

    Vanadate is a phosphate analogue that inhibits enzymes involved in phosphate release and transfer reactions. Since such reactions may play important roles in endocytosis, we studied the effects of vanadate on various steps in receptor-mediated endocytosis of asialoorosomucoid labeled with 125I-tyramine-cellobiose (125I-TC-AOM). The labeled degradation products formed from 125I-TC-AOM are trapped in the lysosomes and may therefore serve as lysosomal markers in subcellular fractionation studies. Vanadate reduced the amount of active surface asialoglycoprotein receptors approximately 70%, but had no effect on the rate of internalization and retroendocytosis of ligand. The amount of surface asialoglycoprotein receptors can be reduced by lowering the incubation temperature gradually from 37 to 15 degrees C; vanadate affected only the temperature--sensitive receptors. Vanadate inhibited degradation of 125I-TC-AOM 70-80%. Degradation was much more sensitive to vanadate than binding; half-maximal effects were seen at approximately 1 mM vanadate for binding and approximately 0.1 mM vanadate for degradation. By subcellular fractionation in sucrose and Nycodenz gradients, it was shown that vanadate completely prevented the transfer of 125I-TC-AOM from endosomes to lysosomes. Therefore, the inhibition of degradation by vanadate was indirect; in the presence of vanadate, ligand did not gain access to the lysosomes. The limited degradation in the presence of vanadate took place in a prelysosomal compartment. Vanadate did not affect cell viability and ATP content.

  9. Macrophage Receptor with Collagenous Structure (MARCO) Is Processed by either Macropinocytosis or Endocytosis-Autophagy Pathway

    PubMed Central

    Hirano, Seishiro; Kanno, Sanae

    2015-01-01

    The Macrophage Receptor with COllagenous structure (MARCO) protein is a plasma membrane receptor for un-opsonized or environmental particles on phagocytic cells. Here, we show that MARCO was internalized either by ruffling of plasma membrane followed by macropinocytosis or by endocytosis followed by fusion with autophagosome in CHO-K1 cells stably transfected with GFP-MARCO. The macropinocytic process generated large vesicles when the plasma membrane subsided. The endocytosis/autophagosome (amphisome) generated small fluorescent puncta which were visible in the presence of glutamine, chloroquine, bafilomycin, ammonia, and other amines. The small puncta, but not the large vesicles, co-localized with LC3B and lysosomes. The LC3-II/LC3-I ratio increased in the presence of glutamine, ammonia, and chloroquine in various cells. The small puncta trafficked between the peri-nuclear region and the distal ends of cells back and forth at rates of up to 2–3 μm/sec; tubulin, but not actin, regulated the trafficking of the small puncta. Besides phagocytosis MARCO, an adhesive plasma membrane receptor, may play a role in incorporation of various extracellular materials into the cell via both macropinocytic and endocytic pathways. PMID:26545255

  10. Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors

    PubMed Central

    Tseng, Wei Chou; Jenkins, Paul M.; Tanaka, Masashi; Mooney, Richard; Bennett, Vann

    2015-01-01

    GABAA-receptor-based interneuron circuitry is essential for higher order function of the human nervous system and is implicated in schizophrenia, depression, anxiety disorders, and autism. Here we demonstrate that giant ankyrin-G (480-kDa ankyrin-G) promotes stability of somatodendritic GABAergic synapses in vitro and in vivo. Moreover, giant ankyrin-G forms developmentally regulated and cell-type-specific micron-scale domains within extrasynaptic somatodendritic plasma membranes of pyramidal neurons. We further find that giant ankyrin-G promotes GABAergic synapse stability through opposing endocytosis of GABAA receptors, and requires a newly described interaction with GABARAP, a GABAA receptor-associated protein. We thus present a new mechanism for stabilization of GABAergic interneuron synapses and micron-scale organization of extrasynaptic membrane that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and abnormal neurodevelopment. PMID:25552561

  11. Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors.

    PubMed

    Tseng, Wei Chou; Jenkins, Paul M; Tanaka, Masashi; Mooney, Richard; Bennett, Vann

    2015-01-27

    GABAA-receptor-based interneuron circuitry is essential for higher order function of the human nervous system and is implicated in schizophrenia, depression, anxiety disorders, and autism. Here we demonstrate that giant ankyrin-G (480-kDa ankyrin-G) promotes stability of somatodendritic GABAergic synapses in vitro and in vivo. Moreover, giant ankyrin-G forms developmentally regulated and cell-type-specific micron-scale domains within extrasynaptic somatodendritic plasma membranes of pyramidal neurons. We further find that giant ankyrin-G promotes GABAergic synapse stability through opposing endocytosis of GABAA receptors, and requires a newly described interaction with GABARAP, a GABAA receptor-associated protein. We thus present a new mechanism for stabilization of GABAergic interneuron synapses and micron-scale organization of extrasynaptic membrane that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and abnormal neurodevelopment. PMID:25552561

  12. Endocytosis of lutropin by Leydig cells through a pathway distinct from the high-affinity receptor.

    PubMed

    Bozon, V; Pajot-Augy, E; Vignon, X; Salesse, R

    1998-08-25

    In porcine Leydig cells in primary culture, 95% of the internalization of [125I]porcine lutropin ([125I]pLH, which bears sulfated GalNAc) could not be ascribed to the high-affinity LH receptor (LHR). In contrast, >40% of [125I]human choriogonadotropin (hCG, with sialylated sugar chains) uptake was performed by the LHR itself. When the LHR was down-regulated by excess unlabeled hormone, the LHR-independent incorporation of [125I]pLH could be inhibited in a dose-dependent fashion by sulfated polysaccharides such as fucoidan or chondroitin-(4 or 6)-sulfate, but not by other polyanionic compounds, nor by sulfated chondroitin disaccharides. Endocytosis occurred through a clathrin-dependent pathway and was inhibited by low temperature, endocytosis inhibitors, increased ionic strength, or by EDTA and dithiothreitol. Taken together, these results suggest that a Leydig cell membrane protein (possibly a lectin, or a glycosaminoglycan receptor) could perform specific LH clearance in the testis via recognition of its sulfated sugars. PMID:9806348

  13. Understanding magnetic nanoparticle osteoblast receptor-mediated endocytosis using experiments and modeling

    NASA Astrophysics Data System (ADS)

    Tran, Nhiem; Webster, Thomas J.

    2013-05-01

    Iron oxide nanoparticles are promising candidates for controlling drug delivery through an external magnetic force to treat a wide range of diseases, including osteoporosis. Previous studies have demonstrated that in the presence of hydroxyapatite coated magnetite (Fe3O4) nanoparticles, osteoblast (or bone forming cell) proliferation and long-term functions (such as calcium deposition) were significantly enhanced. Hydroxyapatite is the major inorganic component of bone. As a further attempt to understand why, in the current study, the uptake of such nanoparticles into osteoblasts was experimentally investigated and mathematically modeled. Magnetite nanoparticles were synthesized using a co-precipitation method and were coated with hydroxyapatite. A cellular uptake experiment at low temperatures indicated that receptor-mediated endocytosis contributed to the internalization of the magnetic nanoparticles into osteoblasts. A model was further developed to explain the uptake of magnetic nanoparticles into osteoblasts using receptor-mediated endocytosis. This model may explain the internalization of hydroxyapatite into osteoblasts to elevate intracellular calcium levels necessary to promote osteoblast functions to treat a wide range of orthopedic problems, including osteoporosis.

  14. Administration of pyrene lipids by receptor-mediated endocytosis and their degradation in skin fibroblasts

    SciTech Connect

    Agmon, V.; Dinur, T.; Cherbu, S.; Dagan, A.; Gatt, S. )

    1991-10-01

    Sphingomyelin and seven glycosphingolipids were labeled with the fluorescent probe pyrene and administered into cultured fibroblasts by receptor-mediated endocytosis. For this purpose pyrene sphingomyelin or mixtures of pyrene glycolipid and unlabeled sphingomyelin were dispersed as small, unilamellar liposomes. Apolipoprotein E was then added and the receptor for this ligand on the cell surface was utilized for uptake of the liposomes and their transport to the lysosomes, where the respective pyrene lipids were degraded. Following incubation with each of the respective pyrene lipids, only the administered compound and the pyrene ceramide were present; intermediate hydrolysis products were not detected. This indicated that, in skin fibroblasts, the lysosomal ceramidase was limiting and controlled the rate of total degradation of the pyrene sphingolipids.

  15. Functional roles of short sequence motifs in the endocytosis of membrane receptors

    PubMed Central

    Pandey, Kailash N.

    2009-01-01

    Internalization and trafficking of cell-surface membrane receptors and proteins into subcellular compartments is mediated by specific short-sequence signal motifs, which are usually located within the cytoplasmic domains of these receptor and protein molecules. The signals usually consist of short linear amino acid sequences, which are recognized by adaptor coat proteins along the endocytic and sorting pathways. The complex arrays of signals and recognition proteins ensure the dynamic movement, accurate trafficking, and designated distribution of transmembrane receptors and ligands into intracellular compartments, particularly to the endosomal-lysosomal system. This review summarizes the new information and concepts, integrating them with the current and established views of endocytosis, intracellular trafficking, and sorting of membrane receptors and proteins. Particular emphasis has been given to the functional roles of short-sequence signal motifs responsible for the itinerary and destination of membrane receptors and proteins moving into the subcellular compartments. The specific characteristics and functions of short-sequence motifs, including various tyrosine-based, dileucine-type, and other short-sequence signals in the trafficking and sorting of membrane receptors and membrane proteins are presented and discussed. PMID:19482617

  16. Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa.

    PubMed

    Nayak, Ramesh C; Keshava, Shiva; Esmon, Charles T; Pendurthi, Usha R; Rao, L Vijaya Mohan

    2013-01-01

    Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa. PMID:23555015

  17. The Novel Caspase-3 Substrate Gap43 is Involved in AMPA Receptor Endocytosis and Long-Term Depression*

    PubMed Central

    Han, Meng-Hsuan; Jiao, Song; Jia, Jie-Min; Chen, Yong; Chen, Cai Yun; Gucek, Marjan; Markey, Sanford P.; Li, Zheng

    2013-01-01

    The cysteine protease caspase-3, best known as an executioner of cell death in apoptosis, also plays a non-apoptotic role in N-methyl-d-aspartate receptor-dependent long-term depression of synaptic transmission (NMDAR-LTD) and ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor endocytosis in neurons. The mechanism by which caspase-3 regulates LTD and AMPA receptor endocytosis, however, remains unclear. Here, we addressed this question by using an enzymatic N-terminal peptide enrichment method and mass spectrometry to identify caspase-3 substrates in neurons. Of the many candidates revealed by this proteomic study, we have confirmed BASP1, Dbn1, and Gap43 as true caspase-3 substrates. Moreover, in hippocampal neurons, Gap43 mutants deficient in caspase-3 cleavage inhibit AMPA receptor endocytosis and LTD. We further demonstrated that Gap43, a protein well-known for its functions in axons, is also localized at postsynaptic sites. Our study has identified Gap43 as a key caspase-3 substrate involved in LTD and AMPA receptor endocytosis, uncovered a novel postsynaptic function for Gap43 and provided new insights into how long-term synaptic depression is induced. PMID:24023391

  18. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting

    SciTech Connect

    Jaramillo, Maria L. . E-mail: maria.jaramillo@nrc.ca; Leon, Zully; Grothe, Suzanne; Paul-Roc, Beatrice; Abulrob, Abedelnasser; O'Connor McCourt, Maureen

    2006-09-10

    The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of {sup 125}I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized {sup 125}I-225 mAb is recycled to the surface much more efficiently than internalized {sup 125}I-EGF. Also, we found that internalization of {sup 125}I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidenced by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.

  19. Regulation of Epidermal Growth Factor Receptor Signaling by Endocytosis and Intracellular Trafficking

    SciTech Connect

    Burke, Patrick; Schooler, Kevin; Wiley, H S.

    2001-06-01

    Ligand activation of the epidermal growth factor receptor (EGFR) leads to its rapid internalization and eventual delivery to lysosomes. This process is thought to be a mechanism to attenuate signaling, but signals could potentially be generated following endocytosis. To directly evaluate EGFR signaling during receptor trafficking, we developed a technique to rapidly and selectively isolate internalized EGFR and associated molecules using reversibly-biotinylated anti-EGFR antibodies. In addition, we developed antibodies specific to tyrosine-phosphorylated EGFR. Using a combination of fluorescence imaging and affinity precipitation approaches, we evaluated the state of EGFR activation and substrate association during trafficking in epithelial cells. We found that following internalization, EGFR remained active in the early endosomes. However, receptors were inactivated prior to degradation, apparently due to ligand removal from endosomes. Adapter molecules, such as Shc, were associated with EGFR both at the cell surface and within endosomes. Some molecules, such as Grb2, were primarily found associated with surface EGFR, while others, such as Eps8, were only found with intracellular receptors. During the inactivation phase, c-Cbl became EGFR-associated, consistent with its postulated role in receptor attenuation. We conclude that the association of the EGFR with different proteins is compartment-specific . In addition, ligand loss is the proximal cause of EGFR inactivation. Thus, regulated trafficking could potentially influence the pattern as well as the duration of signal transduction.

  20. Effects of chronic ethanol administration on receptor mediated endocytosis of asialoorosomucoid (ASOR) in isolated rat hepatocytes

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J.

    1986-05-01

    The authors have previously shown that acute and chronic ethanol administration decreases hepatic glycoprotein secretion and membrane biogenesis. The present study was undertaken to determine the effects of chronic ethanol feeding on receptor-mediated endocytosis using the endocytosis of ASOR as a model system. Rats were fed either rat chow ad lib or pair-fed with Lieber-DeCarli diet (ethanol or isocaloric glucose as 36% of total calories) for 5 to 7 weeks. Binding of /sup 125/I ASOR to isolated hepatocytes was studied at 0-4/sup 0/C. Internalization (cell-associated acid precipitable radioactivity) and degradation (acid soluble radioactivity) were determined at 37/sup 0/C for periods up to 240 min. Results were expressed as pmoles ASOR bound, degraded or internalized/10/sup 6/ cells. In ethanol-fed rats the number of pmoles ASOR bound/10/sup 6/ cells was decreased by 40-50% (p< 0.01) as compared to pair-fed and chow-fed animals. Rates of degradation and internalization of the ligand were also 50-70% lower (p< 0.01) in chronic ethanol-treated animals. No significant differences were observed for either binding or internalization of ASOR between chow-fed and pair-fed animals. These results indicate that chronic ethanol feeding decreases internalization and degradation of ASOR in rat hepatocytes.

  1. Polypeptide hormone receptor phosphorylation: is there a role in receptor-mediated endocytosis of human growth hormone

    SciTech Connect

    Asakawa, K.; Grunberger, G.; McElduff, A.; Gorden, P.

    1985-08-01

    To determine whether receptor phosphorylation is a critical step in the internalization of polypeptide hormones and their receptors, the authors have studied a model system wherein insulin stimulates phosphorylation of its receptor and is also internalized. Using insulin as a positive control, they found that it stimulated a partially purified plasma membrane preparation of IM-9 lymphocytes to autophosphorylate its receptor and to catalyze the phosphorylation of a tyrosine-containing substrate. The human GH (hGH) receptor of the IM-9 lymphocytes, when coupled to ( SVI)iodo-hGH, migrated as a 140,000-dalton protein on polyacrylamide gel electrophoresis. This protein, in contrast to the insulin receptor, was not phosphorylated by the addition of hGH, nor did hGH stimulate this preparation to phosphorylate the tyrosine-containing substrate poly-(GluNa,Tyr)4:1, casein, or histone f2b under a variety of conditions. The authors conclude that receptor phosphorylation is not a critical intermediate in the receptor-mediated endocytosis of hGH and probably other polypeptide hormones and growth factors.

  2. Site-specific ubiquitination exposes a linear motif to promote interferon-? receptor endocytosis

    PubMed Central

    Kumar, K.G. Suresh; Barriere, Hervé; Carbone, Christopher J.; Liu, Jianghuai; Swaminathan, Gayathri; Xu, Ping; Li, Ying; Baker, Darren P.; Peng, Junmin; Lukacs, Gergely L.; Fuchs, Serge Y.

    2007-01-01

    Ligand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)–clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-?/? receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains. The SCF?Trcp (Skp1–Cullin1–F-box complex) E3 ubiquitin ligase that mediates IFNAR1 ubiquitination and degradation in cells can conjugate both types of chains in vitro. Although either polyubiquitin linkage suffices for postinternalization sorting, both types of chains are necessary but not sufficient for robust IFNAR1 turnover and internalization. These processes also depend on the proximity of ubiquitin-acceptor lysines to a linear endocytic motif and on its integrity. Furthermore, ubiquitination of IFNAR1 promotes its interaction with the AP2 adaptin complex that is required for the robust internalization of IFNAR1, implicating cooperation between site-specific ubiquitination and the linear endocytic motif in regulating this process. PMID:18056411

  3. A simple method to evaluate the optimal size of nanoparticles for endocytosis based on kinetic diffusion of receptors

    NASA Astrophysics Data System (ADS)

    Li, Xinlei; Xing, Da

    2010-10-01

    We have presented an analytic thermodynamic model to elucidate the mechanism of receptor-mediated endocytosis of nanoparticles (NPs) and provided a simple method to evaluate the optimal size of NPs by minimizing the kinetic diffusion time of the free receptors around the bound region toward the contact surface with NPs. It is found that the average density of receptors and chemical energy release upon the binding of a ligand-receptor pair determine the optimal size of NPs if the bending modulus of membranes and the cross-sectional area of the receptor are constants. The optimal radius of NPs can be calculated based on our model.

  4. Ligand-Mediated Endocytosis and Trafficking of the Insulin-Like Growth Factor Receptor I and Insulin Receptor Modulate Receptor Function

    PubMed Central

    Morcavallo, Alaide; Stefanello, Manuela; Iozzo, Renato V.; Belfiore, Antonino; Morrione, Andrea

    2014-01-01

    The insulin-like growth factor system and its two major receptors, the IGF receptor I (IGF-IR) and IR, plays a central role in a variety of physiological cellular processes including growth, differentiation, motility, and glucose homeostasis. The IGF-IR is also essential for tumorigenesis through its capacity to protect cancer cells from apoptosis. The IR is expressed in two isoforms: the IR isoform A (IR-A) and isoform B (IR-B). While the role of the IR-B in the regulation of metabolic effects has been known for several years, more recent evidence suggests that the IR, and in particular the IR-A, may be involved in the pathogenesis of cancer. Ligand-mediated endocytosis of tyrosine-kinases receptors plays a critical role in modulating the duration and intensity of receptors action but while the signaling pathways induced by the IGF-IR and IR are quite characterized, very little is still known about the mechanisms and proteins that regulate ligand-induced IGF-IR and IR endocytosis and trafficking. In addition, how these processes affect receptor downstream signaling has not been fully characterized. Here, we discuss the current understanding of the mechanisms and proteins regulating IGF-IR and IR endocytosis and sorting and their implications in modulating ligand-induced biological responses. PMID:25566192

  5. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    SciTech Connect

    Watanabe, H.; Grubb, J.H.; Sly, W.S. )

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.

  6. Systemic blockade of the hyaluronan receptor for endocytosis prevents lymph node metastasis of prostate cancer.

    PubMed

    Simpson, Melanie A; Weigel, Janet A; Weigel, Paul H

    2012-09-01

    Tumor progression and metastasis are promoted by the remodeling of organized tissue architecture and engagement of molecular interactions that support tumor cell passage through endothelial barriers. Prostate tumor cells that secrete and turn over excessive quantities of pericellular hyaluronan (HA) exhibit accelerated growth kinetics and spontaneous lymph node metastasis in mice. The HA receptor for endocytosis (HARE) is an endocytic clearance receptor for HA in the liver that is also highly expressed in sinusoidal endothelium of lymph nodes and bone marrow, which are frequent sites of prostate cancer metastasis. In our study, we tested the hypothesis that HARE can act as an endothelial receptor for metastatic tumor cells with pericellular HA. In an orthotopic mouse model of prostate cancer, we delivered a monoclonal antibody against HARE that specifically blocks HA binding and internalization. This treatment fully blocked the formation of metastatic tumors in lymph nodes. No effects on primary tumor growth were observed and the antibody did not induce toxic outcomes in any other tissue. Our results implicate HARE for the first time in potentiation of tumor metastasis and suggest a novel mechanism by which tumor cell-associated HA could promote tissue-specific dissemination. "Published 2012 Wiley Periodicals, Inc. This article is a US Government work, and, as such, is in the public domain in the United States of America." PMID:22234863

  7. Endocytosis and ligand dissociation and degradation mediated by the hepatic galactosyl receptor occur via two different pathways

    SciTech Connect

    Weigel, P.H.; Clarke, B.L.; Oka, J.A.

    1986-05-01

    Isolated rat hepatocytes express two distinct populations of surface Galactosyl receptor activity, measured by the binding of /sup 125/I-asialo-orosomucoid (ASOR), which they designate State 1 and State 2. Freshly isolated cells express only state 1 receptors. Cells equilibrated at 37/sup 0/C also express State 2 receptors, which represent 50-80% of the total surface activity. In the absence of ligand, State 2 receptor activity is reversibly decreased by metabolic energy poisons, low temperature and microtubule drugs, whereas State 1 receptor activity is unaffected. Endocytosis of /sup 125/I-ASOR by State 1 receptors is followed by a slow dissociation of /sup 125/I-ASOR from receptor but the immediate release of acid soluble degradation products. In contrast, State 2 receptors mediate endocytosis which involves a rapid dissociation step but a 20 min lag, prior to the release of degradation products. Both pathways follow first order kinetics and are functional under steady state conditions indicating coordinated receptor recycling. Degradation mediated by both pathways is inhibited by leupeptin and chloroquine. The State 1 and 2 pathways can be further differentiated by the greater sensitivity of the latter to microtubule drugs. These results suggest that there are either structurally different native receptors or that identical receptors are directed into two different functional pathways, for example by interaction with different types of coated pits.

  8. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria.

    PubMed

    Seliverstova, E V; Prutskova, N P

    2015-01-01

    The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endosomes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intracellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals. PMID:26150156

  9. Receptor-Mediated Endocytosis of Lysozyme in Renal Proximal Tubules of the Frog Rana Temporaria

    PubMed Central

    Seliverstova, E.V.

    2015-01-01

    The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endo-somes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intra-cellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals. PMID:26150156

  10. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively

    PubMed Central

    Shojima, Kensaku; Sato, Akira; Hanaki, Hideaki; Tsujimoto, Ikuko; Nakamura, Masahiro; Hattori, Kazunari; Sato, Yuji; Dohi, Keiji; Hirata, Michinari; Yamamoto, Hideki; Kikuchi, Akira

    2015-01-01

    Wnt5a activates the Wnt/?-catenin-independent pathway and its overexpression is associated with tumor aggressiveness enhancing invasive activity. For this action, Wnt5a-induced receptor endocytosis with clathrin is required. Wnt5a expression was previously believed to be associated with cancer cell motility but not proliferation. Recently, it was reported that Wnt5a is also implicated in cancer cell proliferation, but the mechanism was not clear. In this study, we generated a neutralizing anti-Wnt5a monoclonal antibody (mAb5A16) to investigate the mechanism by which Wnt5a regulates cancer cell proliferation. Wnt5a stimulated both invasion and proliferation of certain types of cancer cells, including HeLaS3 cervical cancer cells and A549 lung cancer cells although Wnt5a promoted invasion but not proliferation in other cancer cells such as KKLS gastric cancer cells. mAb5A16 did not affect the binding of Wnt5a to its receptor, but it suppressed Wnt5a-induced receptor-mediated endocytosis. mAb5A16 inhibited invasion but not proliferation of HeLaS3 and A549 cells. Wnt5a activated Src family kinases (SFKs) and Wnt5a-dependent cancer cell proliferation was dependent on SFKs, yet blockade of receptor-mediated endocytosis did not affect cancer cell proliferation and SFK activity. These results suggest that Wnt5a promotes invasion and proliferation of certain types of cancer cells through receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. PMID:25622531

  11. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively.

    PubMed

    Shojima, Kensaku; Sato, Akira; Hanaki, Hideaki; Tsujimoto, Ikuko; Nakamura, Masahiro; Hattori, Kazunari; Sato, Yuji; Dohi, Keiji; Hirata, Michinari; Yamamoto, Hideki; Kikuchi, Akira

    2015-01-01

    Wnt5a activates the Wnt/?-catenin-independent pathway and its overexpression is associated with tumor aggressiveness enhancing invasive activity. For this action, Wnt5a-induced receptor endocytosis with clathrin is required. Wnt5a expression was previously believed to be associated with cancer cell motility but not proliferation. Recently, it was reported that Wnt5a is also implicated in cancer cell proliferation, but the mechanism was not clear. In this study, we generated a neutralizing anti-Wnt5a monoclonal antibody (mAb5A16) to investigate the mechanism by which Wnt5a regulates cancer cell proliferation. Wnt5a stimulated both invasion and proliferation of certain types of cancer cells, including HeLaS3 cervical cancer cells and A549 lung cancer cells although Wnt5a promoted invasion but not proliferation in other cancer cells such as KKLS gastric cancer cells. mAb5A16 did not affect the binding of Wnt5a to its receptor, but it suppressed Wnt5a-induced receptor-mediated endocytosis. mAb5A16 inhibited invasion but not proliferation of HeLaS3 and A549 cells. Wnt5a activated Src family kinases (SFKs) and Wnt5a-dependent cancer cell proliferation was dependent on SFKs, yet blockade of receptor-mediated endocytosis did not affect cancer cell proliferation and SFK activity. These results suggest that Wnt5a promotes invasion and proliferation of certain types of cancer cells through receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. PMID:25622531

  12. Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes.

    PubMed

    Pinilla-Macua, Itziar; Watkins, Simon C; Sorkin, Alexander

    2016-02-23

    Signaling from epidermal growth factor receptor (EGFR) to extracellular-stimuli-regulated protein kinase 1/2 (ERK1/2) is proposed to be transduced not only from the cell surface but also from endosomes, although the role of endocytosis in this signaling pathway is controversial. Ras is the only membrane-anchored component in the EGFR-ERK signaling axis, and therefore, its location determines intracellular sites of downstream signaling. Hence, we labeled endogenous H-Ras (HRas) with mVenus fluorescent protein using gene editing in HeLa cells. mVenus-HRas was primarily located at the plasma membrane, and in small amounts in tubular recycling endosomes and associated vesicles. EGF stimulation resulted in fast but transient activation of mVenus-HRas. Although EGF:EGFR complexes were rapidly accumulated in endosomes together with the Grb2 adaptor, very little, if any, mVenus-HRas was detected in these endosomes. Interestingly, the activities of MEK1/2 and ERK1/2 remained high beyond the point of the physical separation of HRas from EGF:EGFR complexes and down-regulation of Ras activity. Paradoxically, this sustained MEK1/2 and ERK1/2 activation was dependent on the active EGFR kinase. Cell surface biotinylation and selective inactivation of surface EGFRs suggested that a small fraction of active EGFRs remaining in the plasma membrane is responsible for continuous signaling to MEK1/2 and ERK1/2. We propose that, under physiological conditions of cell stimulation, EGFR endocytosis serves to spatially separate EGFR-Grb2 complexes and Ras, thus terminating Ras-mediated signaling. However, sustained minimal activation of Ras by a small pool of active EGFRs in the plasma membrane is sufficient for extending MEK1/2 and ERK1/2 activities. PMID:26858456

  13. The membrane-lytic peptides K8L9 and melittin enter cancer cells via receptor endocytosis following subcytotoxic exposure.

    PubMed

    Kohno, Masayuki; Horibe, Tomohisa; Ohara, Koji; Ito, Shinji; Kawakami, Koji

    2014-11-20

    We investigate the cell entry mechanism of the membrane-lytic peptides K8L9 and melittin in cancer cell lines. K8L9 and melittin interacted with the highly expressed endocytic receptors neuropilin-1, low-density lipoprotein-related protein receptor 1 (LRP1), and transferrin receptor. Silencing of these receptors by small interfering RNAs (siRNAs) attenuated the cytotoxic activity of K8L9 in four cancer cell lines. Intracellular K8L9 and melittin triggered enlargement of the lysosomal compartments and cytosolic translocation of cathepsin B. Hsc70 was identified as a melittin-interactive molecule using coimmunoprecipitation and mass spectrometry, and Hsc70-siRNA attenuated the cellular uptake of K8L9 and cytotoxic activity by K8L9 and melittin. These findings suggest that K8L9 and melittin can enter cancer cells via receptor endocytosis following subcytotoxic treatment and subsequently affect lysosomal compartments. PMID:25444552

  14. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity.

    PubMed

    Postma, Jelle; Liebrand, Thomas W H; Bi, Guozhi; Evrard, Alexandre; Bye, Ruby R; Mbengue, Malick; Kuhn, Hannah; Joosten, Matthieu H A J; Robatzek, Silke

    2016-04-01

    The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the SUPPRESSOR OF BIR1 (SOBIR1) RLK contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. We employed live-cell imaging, gene silencing and coimmunoprecipitation to investigate the requirement of associated kinases for functioning and ligand-induced subcellular trafficking of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. Our research shows that after elicitation with matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) associates with Cf-4 and Cf-9. BAK1/SERK3 is required for the effector-triggered hypersensitive response and resistance of tomato against C. fulvum. Furthermore, Cf-4 interacts with SOBIR1 at the plasma membrane and is recruited to late endosomes upon Avr4 trigger, also depending on BAK1/SERK3. These observations indicate that RLP-mediated resistance and endocytosis require ligand-induced recruitment of BAK1/SERK3, reminiscent of BAK1/SERK3 interaction and subcellular fate of the FLAGELLIN SENSING 2 (FLS2) RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for initiation of resistance and endocytosis. PMID:26765243

  15. Endocytosis and degradation of prolactin and its receptor in Chinese hamster ovary cells stably transfected with prolactin receptor cDNA.

    PubMed

    Genty, N; Paly, J; Edery, M; Kelly, P A; Djiane, J; Salesse, R

    1994-03-01

    Molecular cloning of the prolactin (PRL) receptor cDNA has revealed different forms of the receptor: among them, the longest form encodes a transmembrane protein of 592-598 amino acids and was originally found in rabbit mammary gland as well as in human and rat tissues. It contains a cytoplasmic domain of 358 amino acids. In CHO cells transfected with the PRL receptor cDNA, PRL is able to induce the specific expression of a reporter gene provided with the promoter of the milk protein gene beta-lactoglobulin. The cDNA encoding this long receptor form has been expressed permanently after stable transfection of Chinese hamster ovary (CHO) cells. In these cells, we have determined the fate of the bound hormone and of the receptor. At 37 degrees C, transfected cells were able to endocytose 125I-labeled human growth hormone (hGH) or ovine prolactin (oPRL) at an initial rate of about 1 fmol/h at 100 pM labeled hormone and 10(6) cells/well. Lowering the temperature to 15 degrees C slowed the endocytosis of [125I]hGH by a factor of 5. These results were confirmed by electron microscopy with oPRL labeled with colloidal gold. At 37 degrees C, the receptor underwent rapid insertion to the cell surface and constitutive endocytosis (half-life 80 min). This rate of endocytosis was enhanced in the presence of 10 nM oPRL (half-life 8 min), leading to down-regulation of the receptor by exhaustion of the intracellular receptor pool. After down-regulation, the cell surface was replenished with newly synthesized PRL receptor with a half-time of 8-10 min. If cycloheximide was added, almost no receptors could be found on the cell surface. These results indicate that in transfected cells the PRL receptor behaved largely as in classical target cells. A "conveyor belt" endocytosis behavior was found, with degradation of the endocytosed receptors, and occupation by the hormone enhancing this process. Moreover, since the PRL receptor belongs to a family of receptors in which companion protein(s) seem to play important roles, transfected CHO cells appear to provide the expressed receptors with the necessary element(s) to function as in normal PRL target cells. PMID:8206330

  16. MAP1B-dependent Rac activation is required for AMPA receptor endocytosis during long-term depression

    PubMed Central

    Benoist, Marion; Palenzuela, Rocío; Rozas, Carlos; Rojas, Patricio; Tortosa, Elena; Morales, Bernardo; González-Billault, Christian; Ávila, Jesús; Esteban, José A

    2013-01-01

    The microtubule-associated protein 1B (MAP1B) plays critical roles in neurite growth and synapse maturation during brain development. This protein is well expressed in the adult brain. However, its function in mature neurons remains unknown. We have used a genetically modified mouse model and shRNA techniques to assess the role of MAP1B at established synapses, bypassing MAP1B functions during neuronal development. Under these conditions, we found that MAP1B deficiency alters synaptic plasticity by specifically impairing long-term depression (LTD) expression. Interestingly, this is due to a failure to trigger AMPA receptor endocytosis and spine shrinkage during LTD. These defects are accompanied by an impaired targeting of the Rac1 activator Tiam1 at synaptic compartments. Accordingly, LTD and AMPA receptor endocytosis are restored in MAP1B-deficient neurons by providing additional Rac1. Therefore, these results indicate that the MAP1B-Tiam1-Rac1 relay is essential for spine structural plasticity and removal of AMPA receptors from synapses during LTD. This work highlights the importance of MAPs as signalling hubs controlling the actin cytoskeleton and receptor trafficking during plasticity in mature neurons. PMID:23881099

  17. Delta opioid agonists and volatile anesthetics facilitate cardioprotection via potentiation of K(ATP) channel opening.

    PubMed

    Patel, Hemal H; Ludwig, Lynda M; Fryer, Ryan M; Hsu, Anna K; Warltier, David C; Gross, Garrett J

    2002-09-01

    Opioids and volatile anesthetics produce marked cardioprotective effects against myocardial infarction via the activation of ATP-sensitive potassium (K(ATP)) channels, however, the effect of combined treatment with both drugs is unknown. We examined the hypothesis that opioids and volatile anesthetics potentiate cardiac K(ATP) channel opening, thereby enhancing cardioprotection. Rats were treated with the delta opioid agonists, TAN-67 or BW373U86, or isoflurane, together or alone with and without diazoxide, a mitochondrial K(ATP) channel opener. Glibenclamide, a non-selective K(ATP) channel blocker, was used to further characterize the signaling mechanism involved. Myocardial infarct size (IS) was determined by tetrazolium staining and was expressed as a percent of the area at risk (AAR). High doses of TAN-67 (10 mg/kg), diazoxide (10 mg/kg), and isoflurane (1 MAC) produced a significant reduction in IS compared with the control group (30+/-3%, 36+/-5%, and 42+/-2 vs. 58+/-2%, respectively), whereas lower doses of the drugs had no effect except for the low dose of isoflurane (0.5 MAC). The combination of TAN-67 and diazoxide or isoflurane and diazoxide resulted in a marked reduction in IS compared with controls in the presence of high (9+/-3% and 14+/-3%) and low (17+/-7% and 31+/-7%) dose combinations, respectively. The combination of TAN-67 or BW373U86 and isoflurane also caused a striking reduction in IS/AAR (16+/-7% and 7+/-2%, respectively). To date, this is the first demonstration that opioids and volatile anesthetics work in conjunction to confer protection against myocardial infarction through potentiation of cardiac K(ATP) channel opening. PMID:12205051

  18. The human hyaluronan receptor for endocytosis (HARE/Stabilin-2) is a systemic clearance receptor for heparin.

    PubMed

    Harris, Edward N; Weigel, Janet A; Weigel, Paul H

    2008-06-20

    The hyaluronic acid receptor for endocytosis (HARE; also designated Stabilin-2) mediates systemic clearance of hyaluronan and chondroitin sulfates from the vascular and lymphatic circulations. The internalized glycosaminoglycans are degraded in lysosomes, thus completing their normal turnover process. Sinusoidal endothelial cells of human liver, lymph node, and spleen express two HARE isoforms of 315 and 190 kDa. Here we report that the 190- and 315-kDa HARE isoforms, expressed stably either in Flp-In 293 cell lines or as soluble ectodomains, specifically bind heparin (Hep). The K(d) for Hep binding to purified 190- and 315-kDa HARE ectodomains was 17.2 +/- 4.9 and 23.4 +/- 5.3 nm, respectively. Cells expressing HARE readily and specifically internalized (125)I-streptavidin-biotin-Hep complexes, which was inhibited >70% by hyperosmolar conditions, confirming that uptake is mediated by the clathrin-coated pit pathway. Internalization of Hep occurred for many hours with an estimated HARE recycling time of approximately 12 min. Internalized fluorescent streptavidin-biotin-Hep was present in a typical endocytic vesicular pattern and was delivered to lysosomes. We conclude that HARE in the sinusoidal endothelial cells of lymph nodes and liver likely mediates the efficient systemic clearance of Hep and many different Hep-binding protein complexes from the lymphatic and vascular circulations. PMID:18434317

  19. Inhibition of plasminogen activator inhibitor-1 binding to endocytosis receptors of the low-density-lipoprotein receptor family by a peptide isolated from a phage display library.

    PubMed

    Jensen, Jan K; Malmendal, Anders; Schiøtt, Birgit; Skeldal, Sune; Pedersen, Katrine E; Celik, Leyla; Nielsen, Niels Chr; Andreasen, Peter A; Wind, Troels

    2006-11-01

    The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA-PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA-PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction. PMID:16813566

  20. Dynamin 2-dependent endocytosis sustains T-cell receptor signaling and drives metabolic reprogramming in T lymphocytes

    PubMed Central

    Willinger, Tim; Staron, Matthew; Ferguson, Shawn M.; De Camilli, Pietro; Flavell, Richard A.

    2015-01-01

    Prolonged T-cell receptor (TCR) signaling is required for the proliferation of T lymphocytes. Ligation of the TCR activates signaling, but also causes internalization of the TCR from the cell surface. How TCR signaling is sustained for many hours despite lower surface expression is unknown. Using genetic inhibition of endocytosis, we show here that TCR internalization promotes continued TCR signaling and T-lymphocyte proliferation. T-cell–specific deletion of dynamin 2, an essential component of endocytosis, resulted in reduced TCR signaling strength, impaired homeostatic proliferation, and the inability to undergo clonal expansion in vivo. Blocking endocytosis resulted in a failure to maintain mammalian target of rapamycin (mTOR) activity and to stably induce the transcription factor myelocytomatosis oncogene (c-Myc), which led to metabolic stress and a defect in cell growth. Our results support the concept that the TCR can continue to signal after it is internalized from the cell surface, thereby enabling sustained signaling and cell proliferation. PMID:25831514

  1. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release

    SciTech Connect

    Chen, S.; Wong, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Ojima, I.

    2010-05-01

    An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate, drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This mechanism-based tumor-targeting drug delivery system will find a range of applications.

  2. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release.

    PubMed

    Chen, Shuyi; Zhao, Xianrui; Chen, Jingyi; Chen, Jin; Kuznetsova, Larisa; Wong, Stanislaus S; Ojima, Iwao

    2010-05-19

    An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate, drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This mechanism-based tumor-targeting drug delivery system will find a range of applications. PMID:20429547

  3. Mechanisms of Toll-like Receptor 4 Endocytosis Reveal a Common Immune-Evasion Strategy Used by Pathogenic and Commensal Bacteria.

    PubMed

    Tan, Yunhao; Zanoni, Ivan; Cullen, Thomas W; Goodman, Andrew L; Kagan, Jonathan C

    2015-11-17

    Microbe-induced receptor trafficking has emerged as an essential means to promote innate immune signal transduction. Upon detection of bacterial lipopolysaccharides (LPS), CD14 induces an inflammatory endocytosis pathway that delivers Toll-like receptor 4 (TLR4) to endosomes. Although several regulators of CD14-dependent TLR4 endocytosis have been identified, the cargo-selection mechanism during this process remains unknown. We reveal that, in contrast to classic cytosolic interactions that promoted the endocytosis of transmembrane receptors, TLR4 was selected as cargo for inflammatory endocytosis entirely through extracellular interactions. Mechanistically, the extracellular protein MD-2 bound to and dimerized TLR4 in order to promote this endocytic event. Our analysis of LPS variants from human pathogens and gut commensals revealed a common mechanism by which bacteria prevent inflammatory endocytosis. We suggest that evasion of CD14-dependent endocytosis is an attribute that transcends the concept of pathogenesis and might be a fundamental feature of bacteria that inhabit eukaryotic hosts. PMID:26546281

  4. Zonal differences in ethanol-induced impairments in receptor-mediated endocytosis of asialoglycoproteins in isolated rat hepatocytes

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J. )

    1991-02-01

    We have shown previously that ethanol-induced defects in receptor-mediated endocytosis of asialoorosomucoid occurred as early as 1 wk after ethanol feeding. This study was undertaken as an initial attempt to establish a possible role of defective receptor-mediated endocytosis in liver injury by investigating whether differences exist in the effects of ethanol on receptor-mediated endocytosis in hepatocytes isolated from different regions of the liver. Perivenule cells, present in the distal half of the liver, are thought to be more susceptible to ethanol-induced liver injury than are the periportal cells located in the proximal half of the liver acini. For these studies, we fed male Sprague-Dawley rats for 7 days with liquid diets containing either ethanol (36% of calories) or isocaloric carbohydrate. Perivenule and periportal hepatocytes were then isolated using a digitonin-collagenase perfusion method. In control animals, cells isolated from the perivenule region bound significantly more ligand than did cells from the periportal region. Amounts of ligand internalized and degraded were also greater in perivenule than in periportal cells in these animals. After ethanol feeding, cells isolated from both the perivenule and periportal regions bound significantly less ligand than their respective controls. This impairment in surface and total binding was more pronounced in perivenule than in periportal cells. Internalization and degradation of the ligand were also more adversely affected in the centrilobular region as shown by decreases of greater than 60% in perivenule cells and by only 20% to 30% in periportal cells of ethanol-fed animals compared with controls.

  5. Delta and kappa opioid receptors as suitable drug targets for pain.

    PubMed

    Vanderah, Todd W

    2010-01-01

    Similar to mu opioid receptors, kappa and delta opioid receptors reside in the periphery, the dorsal root ganglion, the spinal cord, and in supraspinal regions associated with pain modulation. Both delta and kappa opioid agonists have been shown to activate pain inhibitory pathways in the central nervous system. Yet, currently there are only a few pharmacologic agents that target kappa receptors, and none that target delta receptors. Spurred by the need for an efficacious analgesic without the unwanted side effects associated with the typical clinical profile of mu opioid agonists, new research has provided insight into why the development of effective kappa and delta opioid receptor agonists has remained elusive thus far, and importantly, how these obstacles may be overcome. For example, for delta opioid agonists to be effective, a state of inflammation may be required as this induces delta opioid receptors to migrate to the surface of neuronal cells and thereby become accessible to delta opioid agonists. Studies have shown that delta opioid agonists can provide relief of inflammatory pain and malignant bone pain. Meanwhile, peripherally restricted kappa opioid agonists have been developed to target kappa opioid receptors located on visceral and somatic afferent nerves for relief of inflammatory, visceral, and neuropathic chronic pain. The recently shown efficacy of these analgesics combined with a possible lower abuse potential and side effect burden than mu opioid receptor agonists makes delta and peripherally restricted kappa opioid receptor agonists promising targets for treating pain. PMID:20026960

  6. Transferrin receptor number, synthesis, and endocytosis during erythropoietin-induced maturation of Friend virus-infected erythroid cells

    SciTech Connect

    Sawyer, S.T.; Krantz, S.B.

    1986-07-15

    Erythropoietin (EP) responsive Friend virus-infected erythroid cells had 200,000 steady-state binding sites for transferrin at 37/sup 0/C when isolated from the spleens of Friend virus-infected mice. Upon culture of these cells with EP, the synthesis of transferrin receptors increased 4- to 7-fold and the number of transferrin-binding sites per cell doubled after 24 h. However, the rate of uptake of /sup 59/Fe from transferrin remained constant at approximately 35,000 atoms of /sup 59/Fe per minute per cell during this period in culture. The amount of /sup 125/I-transferrin internalized during the steady-state binding did not change during this culture period while the transferrin bound to the surface increased 3-fold. At all stages of erythroid maturation, the maximum rate of endocytosis was determined to be 18,000 molecules of transferrin per minute per cell, and the interval that /sup 125/I-transferrin remains in the interior of the cell was calculated to be 6.9 min. After 48 h of culture with EP, the number of steady-state transferrin-binding sites was reduced in part due to the sequestration of surface receptors within the cell. The uptake of iron from transferrin was limited by the level of endocytosis of transferrin during the initial phase of culture and the number of transferrin receptors at the cell surface during the latter stages of erythroid maturation of these cells.

  7. Corticosterone suppresses vasotocin-enhanced clasping behavior in male rough-skinned newts by novel mechanisms interfering with V1a receptor availability and receptor-mediated endocytosis.

    PubMed

    Davis, Audrey; Abraham, Emily; McEvoy, Erin; Sonnenfeld, Sarah; Lewis, Christine; Hubbard, Catherine S; Dolence, E Kurt; Rose, James D; Coddington, Emma

    2015-03-01

    In rough-skinned newts, Taricha granulosa, exposure to an acute stressor results in the rapid release of corticosterone (CORT), which suppresses the ability of vasotocin (VT) to enhance clasping behavior. CORT also suppresses VT-induced spontaneous activity and sensory responsiveness of clasp-controlling neurons in the rostromedial reticular formation (Rf). The cellular mechanisms underlying this interaction remain unclear. We hypothesized that CORT blocks VT-enhanced clasping by interfering with V1a receptor availability and/or VT-induced endocytosis. We administered a physiologically active fluorescent VT conjugated to Oregon Green (VT-OG) to the fourth ventricle 9 min after an intraperitoneal injection of CORT (0, 10, 40 ?g/0.1mL amphibian Ringers). The brains were collected 30 min post-VT-OG, fixed, and imaged with confocal microscopy. CORT diminished the number of endocytosed vesicles, percent area containing VT-OG, sum intensity of VT-OG, and the amount of VT-V1a within each vesicle; indicating that CORT was interfering with V1a receptor availability and VT-V1a receptor-mediated endocytosis. CORT actions were brain location-specific and season-dependent in a manner that is consistent with the natural and context-dependent expression of clasping behavior. Furthermore, the sensitivity of the Rf to CORT was much higher in animals during the breeding season, arguing for ethologically appropriate seasonal variation in CORT's ability to prevent VT-induced endocytosis. Our data are consistent with the time course and interaction effects of CORT and VT on clasping behavior and neurophysiology. CORT interference with VT-induced endocytosis may be a common mechanism employed by hormones across taxa for mediating rapid context- and season-specific behavioral responses. PMID:25528549

  8. CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors.

    PubMed

    Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly

    2016-02-01

    Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. PMID:26776730

  9. Towards predicting the lung fibrogenic activity of MWCNT: Key role of endocytosis, kinase receptors and ERK 1/2 signaling.

    PubMed

    Vietti, Giulia; Ibouraadaten, Saloua; Palmai-Pallag, Mihaly; Yakoub, Yousof; Piret, Jean-Pascal; Marbaix, Etienne; Lison, Dominique; van den Brule, Sybille

    2016-05-01

    Carbon nanotubes (CNT) have been reported to induce lung inflammation and fibrosis in rodents. We investigated the direct and indirect cellular mechanisms mediating the fibrogenic activity of multi-wall (MW) CNT on fibroblasts. We showed that MWCNT indirectly stimulate lung fibroblast (MLg) differentiation, via epithelial cells and macrophages, whereas no direct effect of MWCNT on fibroblast differentiation or collagen production was detected. MWCNT directly stimulated the proliferation of fibroblasts primed with low concentrations of growth factors, such as PDGF, TGF-β or EGF. MWCNT prolonged ERK 1/2 phosphorylation induced by low concentrations of PDGF or TGF-β in fibroblasts. This phenomenon and the proliferative activity of MWCNT on fibroblasts was abrogated by the inhibitors of ERK 1/2, PDGF-, TGF-β- and EGF-receptors. This activity was also reduced by amiloride, an endocytosis inhibitor. Finally, the lung fibrotic response to several MWCNT samples (different in length and diameter) correlated with their in vitro capacity to stimulate the proliferation of fibroblasts and to prolong ERK 1/2 signaling in these cells. Our findings point to a crosstalk between MWCNT, kinase receptors, ERK 1/2 signaling and endocytosis which stimulates the proliferation of fibroblasts. The mechanisms of action identified in this study contribute to predict the fibrogenic potential of MWCNT. PMID:26444902

  10. Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients

    PubMed Central

    Gorvin, Caroline M.; Wilmer, Martijn J.; Piret, Sian E.; Harding, Brian; van den Heuvel, Lambertus P.; Wrong, Oliver; Jat, Parmjit S.; Lippiat, Jonathan D.; Levtchenko, Elena N.; Thakker, Rajesh V.

    2013-01-01

    Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis that may not be coupled. PMID:23572577

  11. Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms.

    PubMed

    Asmat, Tauseef M; Agarwal, Vaibhav; Saleh, Malek; Hammerschmidt, Sven

    2014-11-01

    Colonization of Streptococcus pneumoniae (pneumococci) is a prerequisite for bacterial dissemination and their capability to enter the bloodstream. Pneumococci have evolved various successful strategies to colonize the mucosal epithelial barrier of humans. A pivotal mechanism of host cell invasion implicated with invasive diseases is promoted by the interaction of pneumococcal PspC with the polymeric Ig-receptor (pIgR). However, the mechanism(s) of pneumococcal endocytosis and the intracellular route of pneumococci upon uptake by the PspC-pIgR-interaction are not known. Here, we demonstrate by using a combination of pharmacological inhibitors and genetics interference approaches the involvement of active dynamin-dependent caveolae and clathrin-coated vesicles for pneumococcal uptake via the PspC-pIgR mechanism. Depleting cholesterol from host cell membranes and disruption of lipid microdomains impaired pneumococcal internalization. Moreover, chemical inhibition of clathrin or functional inactivation of dynamin, caveolae or clathrin by RNA interference significantly affected pneumococcal internalization suggesting that clathrin-mediated endocytosis (CME) and caveolae are involved in the bacterial uptake process. Confocal fluorescence microscopy of pIgR-expressing epithelial cells infected with pneumococci or heterologous Lactococcus lactis expressing PspC demonstrated bacterial co-localization with fluorescent-tagged clathrin and early as well as recycling or late endosomal markers such as Lamp1, Rab5, Rab4, and Rab7, respectively. In conclusion these data suggest that PspC-promoted uptake is mediated by both CME and caveolae. After endocytosis pneumococci are routed via the endocytic pathway into early endosomes and are then sorted into recycling or late endosomes, which can result in pneumococcal killing in phagolysosomes or transcytosis via recycling endosomes. PMID:25455218

  12. Restoration of Physiologically Responsive Low-Density Lipoprotein Receptor-Mediated Endocytosis in Genetically Deficient Induced Pluripotent Stem Cells

    PubMed Central

    Ramakrishnan, Venkat M.; Yang, Jeong-Yeh; Tien, Kevin T.; McKinley, Thomas R.; Bocard, Braden R.; Maijub, John G.; Burchell, Patrick O.; Williams, Stuart K.; Morris, Marvin E.; Hoying, James B.; Wade-Martins, Richard; West, Franklin D.; Boyd, Nolan L.

    2015-01-01

    Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source, but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis, FH-iPSC were transfected with a 31?kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10?kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture, pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells, which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis, FH-iPSC?±?LDLR were differentiated into mesenchymal cells (MC), pretreated with excess free sterols, Lovastatin, or ethanol (control), and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response, with virtually no DiI-LDL internalization with excess sterols and an ~2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes. PMID:26307169

  13. Receptors, Endocytosis, and Trafficking: the Biological Basis of Targeted Delivery of Antisense and siRNA Oligonucleotides

    PubMed Central

    Juliano, R.L.; Carver, K.; Cao, C.; Ming, X.

    2013-01-01

    The problem of targeted delivery of antisense and siRNA oligonucleotides can be resolved into two distinct aspects. The first concerns devising ligand-oligonucleotide or ligand-carrier moieties that bind with high selectivity to receptors on the cell type of interest and that are efficiently internalized by endocytosis. The second concerns releasing oligonucleotides from pharmacologically inert endomembrane compartments so that they can access RNA in the cytosol or nucleus. In this review we will address both of these aspects. Thus we present information on three important receptor families, the integrins, the receptor tyrosine kinases, and the G protein-coupled receptors in terms of their suitability for targeted delivery of oligonucleotides. This includes discussion of receptor abundance, internalization and trafficking pathways, and the availability of suitable high affinity ligands. We also consider the process of oligonucleotide uptake and intracellular trafficking and discuss approaches to modulating these processes in a pharmacologically productive manner. Hopefully the basic information presented in this review will be of value to investigators involved in designing delivery approaches for oligonucleotides. PMID:23163768

  14. The Ankrd 13 family of UIM-bearing proteins regulates EGF receptor endocytosis from the plasma membrane

    PubMed Central

    Tanno, Hidetaka; Yamaguchi, Teppei; Goto, Eiji; Ishido, Satoshi; Komada, Masayuki

    2012-01-01

    The mechanism of ubiquitin-dependent endocytosis of cell surface proteins is not completely understood. Here we examine the role of the ankyrin repeat domain (Ankrd) 13A, 13B, and 13D proteins, which constitute a functionally unknown family of ubiquitin-interacting motif (UIM)–bearing proteins, in the process. Stimulation of human HeLa cells with epidermal growth factor (EGF) rapidly induced direct binding of Ankrd 13 proteins to ubiquitinated EGF receptor (EGFR) via the UIMs. The binding was inhibited when the Ankrd 13 proteins underwent UIM-dependent monoubiquitination, suggesting that their activity is regulated by ubiquitination of themselves. Ankrd 13 proteins bound specifically to Lys-63–linked ubiquitin chains, which was consistent with a previous report that EGFR mainly undergoes Lys-63–linked polyubiquitination. Ankrd 13 proteins were anchored, via the central region and UIMs, to the plasma membrane, where they colocalized with EGFR. Finally, overexpression of wild-type as well as truncated-mutant Ankrd 13 proteins strongly inhibited rapid endocytosis of ubiquitinated EGFR from the surface in EGF-treated cells. We conclude that by binding to the Lys-63–linked polyubiquitin moiety of EGFR at the plasma membrane, Ankrd 13 proteins regulate the rapid internalization of ligand-activated EGFR. PMID:22298428

  15. Epidermal growth factor–stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis

    PubMed Central

    Garay, Camilo; Judge, Gurjeet; Lucarelli, Stefanie; Bautista, Stephen; Pandey, Rohan; Singh, Tanveer; Antonescu, Costin N.

    2015-01-01

    Epidermal growth factor (EGF) binding to its receptor (EGFR) activates several signaling intermediates, including Akt, leading to control of cell survival and metabolism. Concomitantly, ligand-bound EGFR is incorporated into clathrin-coated pits—membrane structures containing clathrin and other proteins—eventually leading to receptor internalization. Whether clathrin might regulate EGFR signaling at the plasma membrane before vesicle scission is poorly understood. We compared the effect of clathrin perturbation (preventing formation of, or receptor recruitment to, clathrin structures) to that of dynamin2 (allowing formation of clathrin structures but preventing EGFR internalization) under conditions in which EGFR endocytosis is clathrin dependent. Clathrin perturbation by siRNA gene silencing, with the clathrin inhibitor pitstop2, or knocksideways silencing inhibited EGF-simulated Gab1 and Akt phosphorylation in ARPE-19 cells. In contrast, perturbation of dynamin2 with inhibitors or by siRNA gene silencing did not affect EGF-stimulated Gab1 or Akt phosphorylation. EGF stimulation enriched Gab1 and phospho-Gab1 within clathrin structures. ARPE-19 cells have low ErbB2 expression, and overexpression and knockdown experiments revealed that robust ErbB2 expression bypassed the requirement for clathrin for EGF-stimulated Akt phosphorylation. Thus clathrin scaffolds may represent unique plasma membrane signaling microdomains required for signaling by certain receptors, a function that can be separated from vesicle formation. PMID:26246598

  16. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor.

    PubMed

    Amsalem, Ayelet R; Marom, Barak; Shapira, Keren E; Hirschhorn, Tal; Preisler, Livia; Paarmann, Pia; Knaus, Petra; Henis, Yoav I; Ehrlich, Marcelo

    2016-02-15

    The expression and function of transforming growth factor-? superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and -SF, respectively), which differ by an ?500 amino acid C-terminal extension, unique among TGF-? superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3' terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane. PMID:26739752

  17. Chronic morphine-induced loss of the facilitative interaction between vasoactive intestinal polypeptide and delta-opioid: involvement of protein kinase C and phospholipase Cbetas.

    PubMed

    Liu, Nai-Jiang; Chakrabarti, Sumita; Gintzler, Alan R

    2004-06-01

    This laboratory recently demonstrated a multiplicative interaction between the pelvic visceral afferent transmitter vasoactive intestinal polypeptide (VIP) and the delta-opioid receptor (DOR)-selective agonist [D-Pen2,5] enkephalin (DPDPE) to regulate cAMP levels in spinal cord [Brain Res. 959 (2003) 103]. Although DOR activation is required for the manifestation of the VIP-DPDPE facilitative interaction, its relevance to opioid antinociception remains unclear. The current study investigates whether or not the VIP-DPDPE facilitation of cAMP formation is subject to tolerance formation, a hallmark characteristic of opioid antinociception. Chronic morphine exposure abolishes the VIP-DPDPE facilitative interaction, consistent with its relevance to DOR antinociception. However, acute in vitro inhibition of protein kinase C (PKC) reinstates the VIP-DPDPE multiplicative interaction characteristic of opioid naïve spinal tissue. This suggests that its chronic morphine-induced loss requires a PKC phosphorylation. PKC phosphorylation negatively modulates phospholipase C (PLC)beta, enzymes intimately associated with phosphoinositide turnover and calcium trafficking. These are essential determinants of acute and chronic opioid effects. Accordingly, the effect of chronic morphine on their state of phosphorylation was also investigated. Central nervous system opioid tolerance is associated with the reciprocal phosphorylation (regulation) of two PLCbeta isoforms, PLCbeta1 and PLCbeta3. However, although chelerythrine reinstates the chronic morphine-induced loss of the multiplicative VIP-DPDPE interaction, it does not alter the associated changes in PLCbeta phosphorylation, possibly indicating different time courses of restitution of function and/or involvement of different kinases for different components of tolerance. These results could provide a mechanistic rubric for understanding positive modulation of opioid antinociception by afferent transmission. PMID:15126111

  18. Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome.

    PubMed

    Zhou, Chengwen; Huang, Zhiling; Ding, Li; Deel, M Elizabeth; Arain, Fazal M; Murray, Clark R; Patel, Ronak S; Flanagan, Christopher D; Gallagher, Martin J

    2013-07-19

    Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABAA receptors (GABAARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Het?1KO) of the human epilepsy gene, the GABAAR ?1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Het?1KO on the expression and physiology of GABAARs in the mouse cortex. We found that Het?1KO caused modest reductions in the total and surface expression of the ?2 subunit but did not alter ?1 or ?3 subunit expression, results consistent with a small reduction of GABAARs. Cortices partially compensated for Het?1KO by increasing the fraction of residual ?1 subunit on the cell surface and by increasing total and surface expression of ?3, but not ?2, subunits. Co-immunoprecipitation experiments revealed that Het?1KO increased the fraction of ?1 subunits, and decreased the fraction of ?3 subunits, that associated in hybrid ?1?3?? receptors. Patch clamp electrophysiology studies showed that Het?1KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Het?1KO reduced base-line GABAAR endocytosis, an effect that probably contributes to the observed changes in GABAAR expression. These findings demonstrate that Het?1KO exerts two principle disinhibitory effects on cortical GABAAR-mediated inhibitory neurotransmission: 1) a modest reduction of GABAAR number and 2) a partial compensation with GABAAR isoforms that possess physiological properties different from those of the otherwise predominant ?1?? GABAARs. PMID:23744069

  19. Receptor-Mediated Endocytosis of Two-Dimensional Nanomaterials Undergoes Flat Vesiculation and Occurs by Revolution and Self-Rotation.

    PubMed

    Mao, Jian; Chen, Pengyu; Liang, Junshi; Guo, Ruohai; Yan, Li-Tang

    2016-01-26

    Two-dimensional nanomaterials, such as graphene and transitional metal dichalcogenide nanosheets, are promising materials for the development of antimicrobial surfaces and the nanocarriers for intracellular therapy. Understanding cell interaction with these emerging materials is an urgently important issue to promoting their wide applications. Experimental studies suggest that two-dimensional nanomaterials enter cells mainly through receptor-mediated endocytosis. However, the detailed molecular mechanisms and kinetic pathways of such processes remain unknown. Here, we combine computer simulations and theoretical derivation of the energy within the system to show that the receptor-mediated transport of two-dimensional nanomaterials, such as graphene nanosheet across model lipid membrane, experiences a flat vesiculation event governed by the receptor density and membrane tension. The graphene nanosheet is found to undergo revolution relative to the membrane and, particularly, unique self-rotation around its normal during membrane wrapping. We derive explicit expressions for the formation of the flat vesiculation, which reveals that the flat vesiculation event can be fundamentally dominated by a dimensionless parameter and a defined relationship determined by complicated energy contributions. The mechanism offers an essential understanding on the cellular internalization and cytotoxicity of the emerging two-dimensional nanomaterials. PMID:26741298

  20. IDOL Stimulates Clathrin-Independent Endocytosis and Multivesicular Body-Mediated Lysosomal Degradation of the Low-Density Lipoprotein Receptor

    PubMed Central

    Scotti, Elena; Calamai, Martino; Goulbourne, Chris N.; Zhang, Li; Hong, Cynthia; Lin, Ron R.; Choi, Jinkuk; Pilch, Paul F.; Fong, Loren G.; Zou, Peng; Ting, Alice Y.; Pavone, Francesco S.; Young, Stephen G.

    2013-01-01

    The low-density lipoprotein receptor (LDLR) is a critical determinant of plasma cholesterol levels that internalizes lipoprotein cargo via clathrin-mediated endocytosis. Here, we show that the E3 ubiquitin ligase IDOL stimulates a previously unrecognized, clathrin-independent pathway for LDLR internalization. Real-time single-particle tracking and electron microscopy reveal that IDOL is recruited to the plasma membrane by LDLR, promotes LDLR internalization in the absence of clathrin or caveolae, and facilitates LDLR degradation by shuttling it into the multivesicular body (MVB) protein-sorting pathway. The IDOL-dependent degradation pathway is distinct from that mediated by PCSK9 as only IDOL employs ESCRT (endosomal-sorting complex required for transport) complexes to recognize and traffic LDLR to lysosomes. Small interfering RNA (siRNA)-mediated knockdown of ESCRT-0 (HGS) or ESCRT-I (TSG101) components prevents IDOL-mediated LDLR degradation. We further show that USP8 acts downstream of IDOL to deubiquitinate LDLR and that USP8 is required for LDLR entry into the MVB pathway. These results provide key mechanistic insights into an evolutionarily conserved pathway for the control of lipoprotein receptor expression and cellular lipid uptake. PMID:23382078

  1. Receptor-mediated Endocytosis 8 Utilizes an N-terminal Phosphoinositide-binding Motif to Regulate Endosomal Clathrin Dynamics.

    PubMed

    Xhabija, Besa; Vacratsis, Panayiotis O

    2015-08-28

    Receptor-mediated endocytosis 8 (RME-8) is a DnaJ domain containing protein implicated in translocation of Hsc70 to early endosomes for clathrin removal during retrograde transport. Previously, we have demonstrated that RME-8 associates with early endosomes in a phosphatidylinositol 3-phosphate (PI(3)P)-dependent fashion. In this study, we have now identified amino acid determinants required for PI(3)P binding within a region predicted to adopt a pleckstrin homology-like fold in the N terminus of RME-8. The ability of RME-8 to associate with PI(3)P and early endosomes is largely abolished when residues Lys(17), Trp(20), Tyr(24), or Arg(26) are mutated resulting in diffuse cytoplasmic localization of RME-8 while maintaining the ability to interact with Hsc70. We also provide evidence that RME-8 PI(3)P binding regulates early endosomal clathrin dynamics and alters the steady state localization of the cation-independent mannose 6-phosphate receptor. Interestingly, RME-8 endosomal association is also regulated by the PI(3)P-binding protein SNX1, a member of the retromer complex. Wild type SNX1 restores endosomal localization of RME-8 W20A, whereas a SNX1 variant deficient in PI(3)P binding disrupts endosomal localization of wild type RME-8. These results further highlight the critical role for PI(3)P in the RME-8-mediated organizational control of various endosomal activities, including retrograde transport. PMID:26134565

  2. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:26220312

  3. [INHIBITORS OF MAP-KINASE PATHWAY U0126 AND PD98059 DIFFERENTLY AFFECT ORGANIZATION OF TUBULIN CYTOSKELETON AFTER STIMULATION OF EGF RECEPTOR ENDOCYTOSIS].

    PubMed

    Zlobina, M V; Steblyanko, Yu Yu; Shklyaeva, M A; Kharchenko, V V; Salova, A V; Kornilova, E S

    2015-01-01

    To confirm the hypothesis about the involvement of EGF-stimulated MAP-kinase ERK1/2 in the regulation of microtubule (MT) system, the influence of two widely used ERK1/2 inhibitors, U0126 and PD98059, on the organization of tubulin cytoskeleton in interphase HeLa cells during EGF receptor endocytosis has been investigated. We have found that addition of U0126 or PD98059 to not-stimulated with EGF ells for 30 min has no effect on radially organized MT system. However, in the case of U0126 addition before EGF endocytosis stimulation, the number of MT per cell decreased within 15 min after such stimulation and was followed by complete MT depolymerization by 60-90 min. Stimulation of EGF endocytosis in the presence of PD98059 resulted only in insignificant depolymerization of MT and it could be detected mainly from their minus-ends. At the same time, MT regions close to plasma membrane became stabilized, which was proved by increase in tubulin acetylation level. This situation was characteristic for all period of the experiment. It has been also found that the inhibitors affect endocytosis dynamics of EGF-receptor complexes. Quantitative analysis demonstrated that the stimulation of endocytosis in the presence of U0126 generated a greater number of endosomes compared to control cells, and their number did not change significantly during the experiment. All these endosomes were localized peripherally. Effect of PD98059 resulted in the formation of lower number of endosomes that in control, but they demonstrated very slow clusterization despite the presence of some intact MT. Both inhibitors decreased EGFR colocolization with early endosomal marker EEA1, which indicated a delay in endosome fusions and maturation. The inhibitors were also shown to affect differently phospho-ERK 1 and 2 forms: U0126 completely inhibited phospho-ERK1 and 2, white, in the presence of PD98059, the two ERK forms demonstrated sharp transient activation in 15 min after stimulation, but only phospho-ERK2 could be detected after 60 min of endocytosis. In both cases, MAP-kinase activation dynamics was significantly different from the control. Our results suggest involvement of EGF-stimulated MAP-kinase pathway in cytoskeleton regulation. At the same time, they demonstrate that the two studied and widely used inhibitors are not equivalent with respect to not only the effect on MAP-kinase activity but also to such interdependent processes such as changes in cytoskeleton organization and signaling receptor' endocytosis. PMID:26349244

  4. THE AP-2 CLATHRIN ADAPTOR MEDIATES ENDOCYTOSIS OF AN INHIBITORY KILLER CELL Ig-LIKE RECEPTOR (KIR) IN HUMAN NK CELLS1

    PubMed Central

    Purdy, Amanda K.; Alvarez-Arias, Diana A.; Oshinsky, Jennifer; James, Ashley M.; Serebriiskii, Ilya; Campbell, Kerry S.

    2014-01-01

    Stable surface expression of human inhibitory killer cell immunoglobulin-like receptors (KIR) is critical for controlling NK cell function and maintaining NK cell tolerance toward normal MHC-I+ cells. Our recent experiments, however, have found that antibody-bound KIR3DL1 (3DL1) readily leaves the cell surface and undergoes endocytosis to early/recycling endosomes and subsequently to late endosomes. We found that 3DL1 internalization is at least partially mediated by an interaction between the ?2 subunit of the AP-2 clathrin adaptor complex and ITIM tyrosine residues in the cytoplasmic domain of 3DL1. Disruption of the 3DL1/?2 interaction, either by mutation of the ITIM tyrosines in 3DL1 or mutation of ?2, significantly diminished endocytosis and increased surface expression of 3DL1 in human primary NK cells and cell lines. Furthermore, we found that the 3DL1/AP-2 interaction is diminished upon antibody engagement with the receptor, as compared to untreated cells. Thus, we have identified AP-2-mediated endocytosis as a mechanism regulating the surface levels of inhibitory KIR though their ITIM domains. Based upon our results, we propose a model in which non-engaged KIR are internalized by this mechanism, whereas engagement with MHC-I ligand would diminish AP-2 binding, thereby prolonging stable receptor surface expression and promoting inhibitory function. Furthermore, this ITIM-mediated mechanism may similarly regulate the surface expression of other inhibitory immune receptors. PMID:25238755

  5. The endocytosis of epidermal growth factor in A431 cells: A pH of microenvironment and the dynamics of receptor complex dissociation

    SciTech Connect

    Sorkin, A.D.; Teslenko, L.V.; Nikolsky, N.N. )

    1988-03-01

    The endocytosis and intracellular fate of epidermal growth factor (EGF) were studied in A431 cells. After 15-20 min of internalization at 37{degree}C, rhodomaine-labeled ({sup 125}-I) EGF (EGR-Rh) accumulated into large juxtanuclear compartment consisting of closely related vesicles. This structure was shown to be localized in the para-Golgi region. Fluorescein-labeled transferrin (Tr-FITC) was observed in the same region when added to the cell simultaneously with EGF-Rh. Using microscopy spectrofluorometer, the authors determined that the Tr-FITC-containing para-Golgi structures have a pH of 6.1{plus minus}0.3 while lysosomes containing dextran-fluorescein have a pH of 5.0{plus minus}0.2. To study the dynamics of EGF-receptor dissociation during endocytosis a mild detergent treatment of living cells was used for extraction of an intracellular receptor-unbound EGF. These results suggest that EGF remains associated with receptors during endocytosis in A431 cells until it is transferred to lysosomes where the pH of the EGF microenvironment is dropped to 5. A prolonged presence of EGF-receptor complexes in the para-Golgi region might be of importance in mitotic signaling.

  6. Proteomic Analysis of the Epidermal Growth Factor Receptor (EGFR) Interactome and Post-translational Modifications Associated with Receptor Endocytosis in Response to EGF and Stress*

    PubMed Central

    Tong, Jiefei; Taylor, Paul; Moran, Michael F.

    2014-01-01

    Aberrant expression, activation, and stabilization of epidermal growth factor receptor (EGFR) are causally associated with several human cancers. Post-translational modifications and protein-protein interactions directly modulate the signaling and trafficking of the EGFR. Activated EGFR is internalized by endocytosis and then either recycled back to the cell surface or degraded in the lysosome. EGFR internalization and recycling also occur in response to stresses that activate p38 MAP kinase. Mass spectrometry was applied to comprehensively analyze the phosphorylation, ubiquitination, and protein-protein interactions of wild type and endocytosis-defective EGFR variants before and after internalization in response to EGF ligand and stress. Prior to internalization, EGF-stimulated EGFR accumulated ubiquitin at 7 K residues and phosphorylation at 7 Y sites and at S1104. Following internalization, these modifications diminished and there was an accumulation of S/T phosphorylations. EGFR internalization and many but not all of the EGF-induced S/T phosphorylations were also stimulated by anisomycin-induced cell stress, which was not associated with receptor ubiquitination or elevated Y phosphorylation. EGFR protein interactions were dramatically modulated by ligand, internalization, and stress. In response to EGF, different E3 ubiquitin ligases became maximally associated with EGFR before (CBL, HUWE1, and UBR4) or after (ITCH) internalization, whereas CBLB was distinctively most highly EGFR associated following anisomycin treatment. Adaptin subunits of AP-1 and AP-2 clathrin adaptor complexes also became EGFR associated in response to EGF and anisomycin stress. Mutations preventing EGFR phosphorylation at Y998 or in the S1039 region abolished or greatly reduced EGFR interactions with AP-2 and AP-1, and impaired receptor trafficking. These results provide new insight into spatial, temporal, and mechanistic aspects of EGFR regulation. PMID:24797263

  7. Proteomic analysis of the epidermal growth factor receptor (EGFR) interactome and post-translational modifications associated with receptor endocytosis in response to EGF and stress.

    PubMed

    Tong, Jiefei; Taylor, Paul; Moran, Michael F

    2014-07-01

    Aberrant expression, activation, and stabilization of epidermal growth factor receptor (EGFR) are causally associated with several human cancers. Post-translational modifications and protein-protein interactions directly modulate the signaling and trafficking of the EGFR. Activated EGFR is internalized by endocytosis and then either recycled back to the cell surface or degraded in the lysosome. EGFR internalization and recycling also occur in response to stresses that activate p38 MAP kinase. Mass spectrometry was applied to comprehensively analyze the phosphorylation, ubiquitination, and protein-protein interactions of wild type and endocytosis-defective EGFR variants before and after internalization in response to EGF ligand and stress. Prior to internalization, EGF-stimulated EGFR accumulated ubiquitin at 7 K residues and phosphorylation at 7 Y sites and at S(1104). Following internalization, these modifications diminished and there was an accumulation of S/T phosphorylations. EGFR internalization and many but not all of the EGF-induced S/T phosphorylations were also stimulated by anisomycin-induced cell stress, which was not associated with receptor ubiquitination or elevated Y phosphorylation. EGFR protein interactions were dramatically modulated by ligand, internalization, and stress. In response to EGF, different E3 ubiquitin ligases became maximally associated with EGFR before (CBL, HUWE1, and UBR4) or after (ITCH) internalization, whereas CBLB was distinctively most highly EGFR associated following anisomycin treatment. Adaptin subunits of AP-1 and AP-2 clathrin adaptor complexes also became EGFR associated in response to EGF and anisomycin stress. Mutations preventing EGFR phosphorylation at Y(998) or in the S(1039) region abolished or greatly reduced EGFR interactions with AP-2 and AP-1, and impaired receptor trafficking. These results provide new insight into spatial, temporal, and mechanistic aspects of EGFR regulation. PMID:24797263

  8. Dynamics of Virus-Receptor Interactions in Virus Binding, Signaling, and Endocytosis

    PubMed Central

    Boulant, Steeve; Stanifer, Megan; Lozach, Pierre-Yves

    2015-01-01

    During viral infection the first challenge that viruses have to overcome is gaining access to the intracellular compartment. The infection process starts when the virus contacts the surface of the host cell. A complex series of events ensues, including diffusion at the host cell membrane surface, binding to receptors, signaling, internalization, and delivery of the genetic information. The focus of this review is on the very initial steps of virus entry, from receptor binding to particle uptake into the host cell. We will discuss how viruses find their receptor, move to sub-membranous regions permissive for entry, and how they hijack the receptor-mediated signaling pathway to promote their internalization. PMID:26043381

  9. Second-messenger regulation of receptor association with clathrin-coated pits: a novel and selective mechanism in the control of CD4 endocytosis.

    PubMed Central

    Foti, M; Carpentier, J L; Aiken, C; Trono, D; Lew, D P; Krause, K H

    1997-01-01

    CD4, a member of the immunoglobulin superfamily, is not only expressed in T4 helper lymphocytes but also in myeloid cells. Receptor-mediated endocytosis plays a crucial role in the regulation of surface expression of adhesion molecules such as CD4. In T lymphocytes p56lck, a CD4-associated tyrosine kinase, prevents CD4 internalization, but in myeloid cells p56lck is not expressed and CD4 is constitutively internalized. In this study, we have investigated the role of cyclic AMP (cAMP) in the regulation of CD4 endocytosis in the myeloid cell line HL-60. Elevations of cellular cAMP were elicited by 1) cholera toxin, 2) pertussis toxin, 3) forskolin and IBMX, 4) NaF, or 5) the physiological receptor agonist prostaglandin E1. All five interventions led to an inhibition of CD4 internalization. Increased cAMP levels did not inhibit endocytosis per se, because internalization of insulin receptors and transferrin receptors and fluid phase endocytosis were either unchanged or slightly enhanced. The mechanism of cAMP inhibition was further analyzed at the ultrastructural level. CD4 internalization, followed either by quantitative electron microscopy autoradiography or by immunogold labeling, showed a rapid and temperature-dependent association of CD4 with clathrin-coated pits in control cells. This association was markedly inhibited in cells with elevated cAMP levels. Thus these findings suggest a second-messenger regulation of CD4 internalization through an inhibition of CD4 association with clathrin-coated pits in p56lck-negative cells. Images PMID:9243514

  10. Low density lipoprotein receptor-related protein 1 mediated endocytosis of ?1-integrin influences cell adhesion and cell migration.

    PubMed

    Rabiej, Verena K; Pflanzner, Thorsten; Wagner, Timo; Goetze, Kristina; Storck, Steffen E; Eble, Johannes A; Weggen, Sascha; Mueller-Klieser, Wolfgang; Pietrzik, Claus U

    2016-01-01

    The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with ?1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and ?1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of ?1-integrin and decreased ?1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model. Cells formed more focal adhesion complexes, whereby in vitro cell migration rates were decreased. Similar results could be observed in a corresponding mouse model, the C57Bl6 LRP1 NPxYxxL knock in mice, therefore, the biochemistry of cellular adhesion was altered in primary cortical neurons. In vivo cell migration experiments demonstrated a disturbance of neuroblast cell migration along the rostral migratory stream. In summary, our results indicate that LRP1 interacts with ?1-integrin mediating integrin internalization and thus correlates with downstream signaling of ?1-integrin such as focal adhesion dynamics. Consequently, the disturbance of this interaction resulted in a dysfunction in in vivo and in vitro cell adhesion and cell migration. PMID:26610862

  11. Cytoskeleton-dependent endocytosis is required for apical type 1 angiotensin II receptor-mediated phospholipase C activation in cultured rat proximal tubule cells.

    PubMed Central

    Schelling, J R; Hanson, A S; Marzec, R; Linas, S L

    1992-01-01

    Renal proximal tubule sodium reabsorption is enhanced by apical or basolateral angiotensin II (AII). Although AII activates phospholipase C (PLC) in other tissues, AII coupling to PLC on either apical or basolateral surfaces of proximal tubule cells is unclear. To determine if AII causes PLC activation, and the differences between apical and basolateral AII receptor function, receptors were unilaterally activated in rat proximal tubule cells cultured on permeable, collagen-coated supports. Apical AII incubation resulted in concentration- and time-dependent inositol trisphosphate (IP3) formation. Basolateral AII caused greater IP3 responses. Apical AII-induced IP3 generation was inhibited by DuP 753, suggesting that the type 1 AII receptor subtype mediated proximal tubule PLC activation. Apical AII signaling did not result from paracellular ligand leak to basolateral receptors since AII-induced PLC activation occurred when basolateral AII receptors were occupied by Sar-Leu AII or DuP 753. Inhibition of endocytosis with phenylarsine oxide prevented apical (but not basolateral) AII-induced IP3 formation. Cytoskeletal disruption with colchicine or cytochalasin D also prevented apical AII-induced IP3 generation. These results demonstrate that in cultured rat proximal tubule cells, AII is coupled to PLC via type 1 AII receptors and cytoskeleton-dependent endocytosis is required for apical (but not basolateral) AII receptor-mediated PLC activation. Images PMID:1334976

  12. Calcium-Sensing Receptor: Trafficking, Endocytosis, Recycling, and Importance of Interacting Proteins.

    PubMed

    Ray, Kausik

    2015-01-01

    The cloning of the extracellular calcium-sensing receptor (CaSR) provided a new paradigm in G-protein-coupled receptor (GPCR) signaling in which principal physiological ligand is a cation, namely, extracellular calcium (Ca(o)(2+)). A wealth of information has accumulated in the past two decades about the CaSR's structure and function, its contribution to pathology in disorders of calcium in humans, and CaSR-based therapeutics. The CaSR unlike many other GPCRs must function in the presence of its ligand, thus understanding the mechanisms such as anterograde trafficking and endocytic pathways of this receptor are complex and fallen behind other classical GPCRs. Factors controlling CaSR signaling include various proteins affecting the expression of the CaSR as well as modulation of its trafficking to and from the cell surface. The dimeric cell-surface CaSR links to various heterotrimeric G-proteins (G(q/11), G(i/o), G(12/13), and G(s)) to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. This chapter describes key features of CaSR structure and function and discusses novel mechanisms by which the level of cell-surface receptor expression can be regulated including forward trafficking during biosynthesis, desensitization, internalization and recycling from the cell surface, and degradation. These processes are impacted by its interactions with several proteins in addition to signaling molecules per se (i.e., G-proteins, protein kinases, inositol phosphates, etc.) and include small molecular weight G-proteins (Sar1, Rabs, ARF, P24A, RAMPs, filamin A, 14-3-3 proteins, calmodulin, and caveolin-1). Moreover, CaSR signaling seems compartmentalized in cell-type-specific manner, and caveolin and filamin A likely act as scaffolds that bind signaling components and other key cellular elements (e.g., the cytoskeleton) to facilitate the interaction of the receptor with its signaling pathways. Regulatory mechanisms are still evolving to understand how defects in trafficking of CaSR contribute to pathology in disorders of calcium homeostasis. PMID:26055057

  13. Identification of factors regulating MET receptor endocytosis by high-throughput siRNA screening.

    PubMed

    Gaziova, Ivana; Davey, Robert A; Elferink, Lisa A

    2015-01-01

    The tyrosine kinase MET, a receptor for hepatocyte growth factor, is a key regulator for normal development and organ renewal via stem cell maintenance. Dysregulated MET signaling contributes to tumor progression and metastasis and is considered a potent therapeutic target for a growing number of malignancies. Toward that goal it is critical to develop high-throughput assays to identify candidate regulators for the termination of MET signaling. We describe here a rapid and efficient method for identifying cellular factors required for MET ubiquitination, which utilizes high-throughput RNA interference screening (HT-siRNA) with a receptor internalization assay and an In-Cell ELISA in a 96-well format. The assay is amenable to a large array of cell surface proteins as well as genome-wide siRNA libraries, with high signal-to-background ratio and low well-to-well variability. PMID:25702130

  14. Receptor role of the annexin A2 in the mesothelial endocytosis of crocidolite fibers.

    PubMed

    Yamashita, Kyoko; Nagai, Hirotaka; Toyokuni, Shinya

    2015-07-01

    Asbestos-induced mesothelioma is a worldwide problem. Parietal mesothelial cells internalize asbestos fibers that traverse the entire lung parenchyma, an action that is linked to mesothelial carcinogenesis. Thus far, vitronectin purified from serum reportedly enhances the internalization of crocidolite by mesothelial cells via integrin ?v?5. To reveal another mechanism by which mesothelial cells endocytose (phagocytose) asbestos, we first evaluated the effects of serum on asbestos uptake, which proved to be nonessential. Thereafter, we undertook a study to identify proteins on the surface of mesothelial cells (MeT5A) that act as receptors for asbestos uptake based on the assumption that receptors bind to asbestos with physical affinity. To this end, we incubated the membrane fraction of MeT5A cells with crocidolite or chrysotile and evaluated the adsorbed proteins using sodium dodecyl sulfate polyacrylamide gel analysis. Next, we extensively identified the proteins using an in-solution or in-gel digestion coupled with mass spectrometry. Among the identified proteins, annexin A2 (ANXA2) and transferrin receptor protein 1 (TFRC) were distinguished because of their high score and presence at the cell surface. Crocidolite uptake by MeT5A cells was significantly decreased by shRNA (short hairpin RNA)-induced knockdown of ANXA2 and direct blockade of cell surface ANXA2 using anti-ANXA2 antibody. In addition, abundant ANXA2 protein was present on the cell membrane of mesothelial cells, particularly facing the somatic cavity. These findings demonstrate that ANXA2 has a role in the mesothelial phagocytosis of crocidolite and may serve as its receptor. PMID:25915724

  15. [Reabsorption of yellow fluorescent protein in the Rana temporaria kidney by receptor-mediated endocytosis].

    PubMed

    Seliverstova, E V; Prutskova, N P

    2014-01-01

    The absorption of yellow fluorescent protein (YFP) and the expression of the endocytic receptors, megalin and cubilin, were investigated in the renal proximal tubules (PT) in frogs Rana temporaria after parenteral YFP injections. The methods of confocal microscopy and immunohistochemistry were used. The dynamics of YFP absorption was analyzed 2 h after injection. The logarithmic time dependence of the accumulation of YFP-containing endocytic vesicles in PT cells and the completion of absorption process 90-120 min after injection were shown. Unlike substantial megalin and cubilin expression 15-30 min after YFP introduction, immunolabeled endocytic receptors were not detected in PT cells after 2 h. The re-injection of YFP led to the appearance of apical endocytic vesicles containing megalin or cubilin colocalized with YFP. At the same time, the decrease of YFP uptake associated with reduction in the number of receptor-containing vesicles was demonstrated, suggesting a failure of megalin and cubilin expression. The decrease of absorption capacity of PT cells after YFP re-injection was similar to that found previously under conditions of the competitive absorption of green fluorescent protein (GFP) and YFP injected in different sequences. The data are the further demonstration of the proposed mechanism limiting the tubular protein absorption in the frog kidney and suggest the involvement of megalin and cubilin in uptake and vesicular transport of YFP. PMID:25782287

  16. Receptor-mediated endocytosis of polypeptide hormones is a regulated process: inhibition of (125I)iodoinsulin internalization in hypoinsulinemic diabetes of rat and man

    SciTech Connect

    Carpentier, J.L.; Robert, A.; Grunberger, G.; van Obberghen, E.; Freychet, P.; Orci, L.; Gorden, P.

    1986-07-01

    Much data suggest that receptor-mediated endocytosis is regulated in states of hormone excess. Thus, in hyperinsulinemic states there is an accelerated loss of cell surface insulin receptors. In the present experiments we addressed this question in hypoinsulinemic states, in which insulin binding to cell surface receptors is generally increased. In hepatocytes obtained from hypoinsulinemic streptozotocin-induced diabetic rats, (/sup 125/I)iodoglucagon internalization was increased, while at the same time (/sup 125/I)iodoinsulin internalization was decreased. The defect in (/sup 125/I)iodoinsulin internalization was corrected by insulin treatment of the animal. In peripheral blood monocytes from patients with type I insulinopenic diabetes, internalization of (/sup 125/I)iodoinsulin was impaired; this defect was not present in insulin-treated patients. These data in the hypoinsulinemic rat and human diabetes suggest that receptor-mediated endocytosis is regulated in states of insulin deficiency as well as insulin excess. Delayed or reduced internalization of the insulin-receptor complex could amplify the muted signal caused by deficient hormone secretion.

  17. Light microscopic autoradiographic localization of mu and delta opioid binding sites in the mouse central nervous system

    SciTech Connect

    Moskowitz, A.S.; Goodman, R.R.

    1984-05-01

    Much work has been done on opioid systems in the rat CNS. Although the mouse is widely used in pharmacological studies of opioid action, little has been done to characterize opioid systems in this species. In the present study the distribution of mu and delta opioid binding sites in the mouse CNS was examined using a quantitative in vitro autoradiography procedure. Tritiated dihydromorphine was used to visualize mu sites and (3H-d-Ala2-d-Leu5)enkephalin with a low concentration of morphine was used to visualize delta sites. Mu and delta site localizations in the mouse are very similar to those previously described in the rat (Goodman, R.R., S.H. Snyder, M.J. Kuhar, and W.S. Young, 3d (1980) Proc. Natl. Acad. Sci. U.S.A. 77:6239-6243), with certain exceptions and additions. Mu and delta sites were observed in sensory processing areas, limbic system, extrapyramidal motor system, and cranial parasympathetic system. Differential distributions of mu and delta sites were noted in many areas. Mu sites were prominent in laminae I, IV, and VI of the neocortex, in patches in the striatum, and in the ventral pallidum, nucleus accumbens, medial and midline thalamic nuclei, medial habenular nucleus, interpeduncular nucleus, and laminae I and II of the spinal cord. In contrast, delta sites were prominent in all laminae of the neocortex, olfactory tubercle, diffusely throughout the striatum, and in the basal, lateral, and cortical nuclei of the amygdala. The determination of the differential distributions of opioid binding sites should prove useful in suggesting anatomical substrates for the actions of opiates and opioids.

  18. Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G protein-coupled receptors.

    PubMed

    Zheng, Mei; Zhang, Xiaohan; Guo, Shuohan; Zhang, Xiaowei; Min, Chengchun; Cheon, Seung Hoon; Oak, Min-Ho; Kim, Young Ran; Kim, Kyeong-Man

    2016-01-01

    GTP binding proteins are classified into two families: heterotrimeric large G proteins which are composed of three subunits, and one subunit of small G proteins. Roles of small G proteins in the intracellular trafficking of G protein-coupled receptors (GPCRs) were studied. Among various small G proteins tested, GTP-bound form (G23V) of RalA inhibited the internalization of dopamine D2 receptor independently of the previously reported downstream effectors of RalA, such as Ral-binding protein 1 and PLD. With high affinity for GRK2, active RalA inhibited the GPCR endocytosis by sequestering the GRK2 from receptors. When it was tested for several GPCRs including an endogenous GPCR, lysophosphatidic acid receptor 1, agonist-induced conversion of GTP-bound to GDP-bound RalA, which presumably releases the sequestered GRK2, was observed selectively with the GPCRs which have tendency to undergo endocytosis. Conversion of RalA from active to inactive state occurred by translocation of RGL, a guanine nucleotide exchange factor, from the plasma membrane to cytosol as a complex with G??. These results suggest that agonist-induced G??-mediated conversion of RalA from the GTP-bound form to the GDP-bound form could be a mechanism to facilitate agonist-induced internalization of GPCRs. PMID:26477566

  19. Hyaluronic acid receptor for endocytosis (HARE)-mediated endocytosis of hyaluronan, heparin, dermatan sulfate, and acetylated low density lipoprotein (AcLDL), but not chondroitin sulfate types A, C, D, or E, activates NF-?B-regulated gene expression.

    PubMed

    Pandey, Madhu S; Weigel, Paul H

    2014-01-17

    The hyaluronan (HA) receptor for endocytosis (HARE; Stab2) clears 14 systemic ligands, including HA and heparin. Here, we used NF-?B promoter-driven luciferase reporter assays to test HARE-mediated intracellular signaling during the uptake of eight ligands, whose binding sites in the HARE ectodomain were mapped by competition studies (Harris, E. N., and Weigel, P. H. (2008) Glycobiology 18, 638-648). Unique intermediate size Select-HA(TM), heparin, dermatan sulfate, and acetylated LDL stimulated dose-dependent HARE-mediated NF-?B activation of luciferase expression, with half-maximal values of 10-25 nM. In contrast, chondroitin sulfate types A, C, D, and E did not stimulate NF-?B activation. Moreover, degradation of endogenous IkB-? (an NF-?B inhibitor) was stimulated only by the signaling ligands. The stimulatory activities of pairwise combinations of the four signaling ligands were additive. The four nonstimulatory chondroitin sulfate types, which compete for HA binding, also effectively blocked HA-stimulated signaling. Clathrin siRNA decreased clathrin expression by ?50% and completely eliminated NF-?B-mediated signaling by all four ligands, indicating that activation of signaling complexes occurs after endocytosis. These results indicate that HARE not only binds and clears extracellular matrix degradation products (e.g. released normally or during infection, injury, tumorigenesis, or other stress situations) but that a subset of ligands also serves as signaling indicator ligands. HARE may be part of a systemic tissue-stress sensor feedback system that responds to abnormal tissue turnover or damage as a danger signal; the signaling indicator ligands would reflect the homeostatic status, whether normal or pathological, of tissue cells and biomatrix components. PMID:24247245

  20. Role of benzimidazole (Bid) in the delta-opioid agonist pseudopeptide H-Dmt-Tic-NH-CH(2)-Bid (UFP-502).

    PubMed

    Salvadori, Severo; Fiorini, Stella; Trapella, Claudio; Porreca, Frank; Davis, Peg; Sasaki, Yusuke; Ambo, Akihiro; Marczak, Ewa D; Lazarus, Lawrence H; Balboni, Gianfranco

    2008-03-15

    H-Dmt-Tic-NH-CH(2)-Bid (UFP-502) was the first delta-opioid agonist prepared from the Dmt-Tic pharmacophore. It showed interesting pharmacological properties, such as stimulation of mRNA BDNF expression and antidepression. To evaluate the importance of 1H-benzimidazol-2-yl (Bid) in the induction of delta-agonism, it was substituted by similar heterocycles: The substitution of NH(1) by O or S transforms the reference delta-agonist into delta-antagonists. Phenyl ring of benzimidazole is not important for delta-agonism; in fact 1H-imidazole-2-yl retains delta-agonist activity. PMID:18178091

  1. Real-time observation of the effect of iron on receptor-mediated endocytosis of transferrin conjugated with quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Li; Li, Yong-Qiang; Zhang, Ming-Zhen; Zhao, Yuan-Di

    2010-07-01

    The optical properties of antiphotobleaching and the advantage of long-term fluorescence observation of quantum dots are fully adopted to study the effects of iron on the endocytosis of transferrin. Quantum dots are labeled for transferrin and endocytosis of transferrin in HeLa cells is observed under the normal state, iron overloading, and an iron-deficient state. In these three states, the fluorescence undergoes a gradual process of first dark, then light, and finally dark, indicating the endocytosis of transferrin. The fluorescence intensity analysis shows that a platform emerges when fluorescence changes to a certain degree in the three states. Experienced a same period of time after platform, the fluorescence strength of cells in the normal state is 1.2 times the first value, and the iron-deficiency state is 1.4 times, but the iron overloading state was 0.85 times. We also find that the average fluorescence intensity in cells detected by the spectrophotometer in the iron-deficiency state is almost 7 times than that in a high iron state. All this proves that iron overloading would slow the process, but iron deficiency would accelerate endocytosis. We advance a direct observational method that may contribute to further study of the relationship of iron and transferrin.

  2. ?v?6- and ?v?8-Integrins Serve As Interchangeable Receptors for HSV gH/gL to Promote Endocytosis and Activation of Membrane Fusion

    PubMed Central

    Gianni, Tatiana; Salvioli, Stefano; Chesnokova, Liudmila S.; Hutt-Fletcher, Lindsey M.; Campadelli-Fiume, Gabriella

    2013-01-01

    Herpes simplex virus (HSV) - and herpesviruses in general - encode for a multipartite entry/fusion apparatus. In HSV it consists of the HSV-specific glycoprotein D (gD), and three additional glycoproteins, gH/gL and gB, conserved across the Herpesviridae family and responsible for the execution of fusion. According to the current model, upon receptor binding, gD propagates the activation to gH/gL and to gB in a cascade fashion. Questions remain about how the cascade of activation is controlled and how it is synchronized with virion endocytosis, to avoid premature activation and exhaustion of the glycoproteins. We considered the possibility that such control might be carried out by as yet unknown receptors. Indeed, receptors for HSV gB, but not for gH/gL, have been described. In other members of the Herpesviridae family, such as Epstein-Barr virus, integrin receptors bind gH/gL and trigger conformational changes in the glycoproteins. We report that ?v?6- and ?v?8-integrins serve as receptors for HSV entry into experimental models of keratinocytes and other epithelial and neuronal cells. Evidence rests on loss of function experiments, in which integrins were blocked by antibodies or silenced, and gain of function experiments in which ?v?6-integrin was expressed in integrin-negative cells. ?v?6- and ?v?8-integrins acted independently and are thus interchangeable. Both bind gH/gL with high affinity. The interaction profoundly affects the route of HSV entry and directs the virus to acidic endosomes. In the case of ?v?8, but not ?v?6-integrin, the portal of entry is located at lipid microdomains and requires dynamin 2. Thus, a major role of ?v?6- or ?v?8-integrin in HSV infection appears to be to function as gH/gL receptors and to promote virus endocytosis. We propose that placing the gH/gL activation under the integrin trigger point enables HSV to synchronize virion endocytosis with the cascade of glycoprotein activation that culminates in execution of fusion. PMID:24367260

  3. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2

    PubMed Central

    Chaparro-Garcia, Angela; Schwizer, Simon; Sklenar, Jan; Yoshida, Kentaro; Petre, Benjamin; Bos, Jorunn I. B.; Schornack, Sebastian; Jones, Alexandra M. E.; Bozkurt, Tolga O.; Kamoun, Sophien

    2015-01-01

    Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways. PMID:26348328

  4. The role of endocytosis in the uptake and intracellular trafficking of PepFect14-nucleic acid nanocomplexes via class A scavenger receptors.

    PubMed

    Juks, Carmen; Padari, Kärt; Margus, Helerin; Kriiska, Asko; Etverk, Indrek; Arukuusk, Piret; Koppel, Kaida; Ezzat, Kariem; Langel, Ülo; Pooga, Margus

    2015-12-01

    Cell penetrating peptides are efficient tools to deliver various bioactive cargos into cells, but their exact functioning mechanism is still debated. Recently, we showed that a delivery peptide PepFect14 condenses oligonucleotides (ON) into negatively charged nanocomplexes that are taken up by cells via class A scavenger receptors (SR-As). Here we unraveled the uptake mechanism and intracellular trafficking of PF14-ON nanocomplexes in HeLa cells. Macropinocytosis and caveolae-mediated endocytosis are responsible for the intracellular functionality of nucleic acids packed into nanocomplexes. However, only a negligible fraction of the complexes were trafficked to endoplasmic reticulum or Golgi apparatus - the common destinations of caveolar endocytosis. Neither were the PF14-SCO nanocomplexes routed to endo-lysosomal pathway, and they stayed in vesicles with slightly acidic pH, which were not marked with LysoSensor. "Naked" ON, in contrary, was rapidly targeted to acidic vesicles and lysosomes. The transmission electron microscopy analysis of interactions between SR-As and PF14-ON nanocomplexes on ultrastructural level revealed that nanocomplexes localized on the plasma membrane in close proximity to SR-As and their colocalization is retained in cells, suggesting that PF14-ON complexes associate with targeted receptors. PMID:26409186

  5. Ethanol-induced impairments in receptor-mediated endocytosis of asialoorosomucoid in isolated rat hepatocytes: Time course of impairments and recovery after ethanol withdrawal

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J.

    1989-04-01

    Chronic ethanol administration markedly impairs the process of receptor-mediated endocytosis (RME) of a representative asialoglycoprotein, asialoorosomucoid (ASOR), by the liver. In this study, we further characterized these impairments by identifying the time of onset for ethanol-induced changes in RME as well as establishing the time course for recovery to normal endocytotic values after ethanol withdrawal. Ethanol administration for 3 days did not alter any aspect of endocytosis examined in this study. After feeding ethanol to rats for 7 days, however, significant decreases in amounts of ligand bound, internalized, and degraded were apparent. These impairments persisted throughout the 5-week feeding study although the effects were somewhat attenuated with more prolonged ethanol feeding. In addition, an accumulation of intracellular receptors was observed in ethanol-fed animals relative to controls after 7 days of ethanol feeding. In all cases, recovery of endocytotic values to control levels was partially completed after 2 to 3 days of refeeding control diet and was fully completed after 7 days of refeeding. These results indicate that ethanol feeding for as little as 7 days profoundly impairs the process of RME by the liver. These impairments can be reversed after refeeding control diet for 7 days.

  6. Endocytosis of GABA(C) receptors depends on subunit composition and is regulated by protein kinase C-? and protein phosphatase 1.

    PubMed

    Linck, Lisa; Binder, Jasmin; Haynl, Christian; Enz, Ralf

    2015-07-01

    Neuronal excitability depends on the surface concentration of neurotransmitter receptors. Type C gamma-aminobutyric acid receptors (GABA(C)R) are composed of ? subunits that are highly expressed in the retina. Molecular mechanisms that guide the surface concentration of this receptor type are largely unknown. Previously, we reported physical interactions of GABA(C)R ? subunits with protein kinase C-? (PKC?) via adapter proteins of the ZIP protein family, as well as of protein phosphatase 1 (PP1) via PNUTS. Here, we demonstrate that co-expressing ?1 with ZIP3 and PKC? enhanced basal internalization of GABA(C)R, while receptor internalization was reduced in the presence of PNUTS and PP1. Co-expression of ?1 with individual binding partners showed no alterations, except for PP1. Heterooligomeric GABA(C)R composed of ?1 and ?2 subunits had a significant higher endocytosis rate than ?1 containing homooligomeric receptors. Mutant constructs lacking binding sites for protein interactions ensured the specificity of our data. Finally, substitution of serine and threonine residues with alanines indicated that GABA(C)R internalization depends on serine/threonine kinases and phosphatases, but not on tyrosine phosphorylation. We conclude that GABA(C)R internalization is reciprocally regulated by PKC? and PP1 that are anchored to the receptor via ZIP3 or PNUTS respectively. PMID:25868914

  7. Tritiation of delta opioid-receptor selective antagonist dipeptide ligands with extraordinary affinity containing 2', 6'dimethyltyrosine

    NASA Astrophysics Data System (ADS)

    Kertész, I.; Tóth, G.; Balboni, G.; Guerrini, R.; Salvadori, S.

    1999-01-01

    Recently a new class of δ opioid antagonists has been discovered by using Tyr-Tic sequence. The substitution of Tyr1 by Dmt resulted in a new analogue (H-Dmt-Tic-OH) with enhanced affinity and selectivity. Because of its excellent property we chose it for labelling with tritium. At the same time peptides containing Tic at position 2 undergo spontaneous diketopiperazine formation in some solvents, and they lose some of their binding ability. To avoid this unwanted side-reaction we synthetized the N-methylated analogue (N,N(Me)2-Dmt-Tic-OH), and it was more stable under storage condition, but δ affinity declined moderately. On the basis of this information we prepared diiodinated analogues of these dipeptides. Catalytic dehalotritiation of precursors resulted in tritiated peptides. High specific radioactivity, 44.67 Ci/mmol with [3H]Dmt-Tic-OH and 59.88 Ci/mmol with N,N(Me)2-[3H]Dmt-Tic-OH were achieved.

  8. Tritiation of delta opioid-receptor selective antagonist dipeptide ligands with extraordinary affinity containing 2‧, 6‧dimethyltyrosine

    NASA Astrophysics Data System (ADS)

    Kertész, I.; Tóth, G.; Balboni, G.; Guerrini, R.; Salvadori, S.

    1999-01-01

    Recently a new class of δ opioid antagonists has been discovered by using Tyr-Tic sequence. The substitution of Tyr1 by Dmt resulted in a new analogue (H-Dmt-Tic-OH) with enhanced affinity and selectivity. Because of its excellent property we chose it for labelling with tritium. At the same time peptides containing Tic at position 2 undergo spontaneous diketopiperazine formation in some solvents, and they lose some of their binding ability. To avoid this unwanted side-reaction we synthetized the N-methylated analogue (N,N(Me)2-Dmt-Tic-OH), and it was more stable under storage condition, but δ affinity declined moderately. On the basis of this information we prepared diiodinated analogues of these dipeptides. Catalytic dehalotritiation of precursors resulted in tritiated peptides. High specific radioactivity, 44.67 Ci/mmol with [3H]Dmt-Tic-OH and 59.88 Ci/mmol with N,N(Me)2-[3H]Dmt-Tic-OH were achieved.

  9. The Cytosolic Tail Dipeptide Ile-Met of the Pea Receptor BP80 Is Required for Recycling from the Prevacuole and for Endocytosis[W

    PubMed Central

    Saint-Jean, Bruno; Seveno-Carpentier, Emilie; Alcon, Carine; Neuhaus, Jean-Marc; Paris, Nadine

    2010-01-01

    Pea (Pisum sativum) BP80 is a vacuolar sorting receptor for soluble proteins and has a cytosolic domain essential for its intracellular trafficking between the trans-Golgi network and the prevacuole. Based on mammalian knowledge, we introduced point mutations in the cytosolic region of the receptor and produced chimeras of green fluorescent protein fused to the transmembrane domain of pea BP80 along with the modified cytosolic tails. By analyzing the subcellular location of these chimera, we found that mutating Glu-604, Asp-616, or Glu-620 had mild effects, whereas mutating the Tyr motif partially redistributed the chimera to the plasma membrane. Replacing both Ile-608 and Met-609 by Ala (IMAA) led to a massive redistribution of fluorescence to the vacuole, indicating that recycling is impaired. When the chimera uses the alternative route, the IMAA mutation led to a massive accumulation at the plasma membrane. Using Arabidopsis thaliana plants expressing a fluorescent reporter with the full-length sequence of At VSR4, we demonstrated that the receptor undergoes brefeldin A–sensitive endocytosis. We conclude that the receptors use two pathways, one leading directly to the lytic vacuole and the other going via the plasma membrane, and that the Ileu-608 Met-609 motif has a role in the retrieval step in both pathways. PMID:20807880

  10. The cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis.

    PubMed

    Saint-Jean, Bruno; Seveno-Carpentier, Emilie; Alcon, Carine; Neuhaus, Jean-Marc; Paris, Nadine

    2010-08-01

    Pea (Pisum sativum) BP80 is a vacuolar sorting receptor for soluble proteins and has a cytosolic domain essential for its intracellular trafficking between the trans-Golgi network and the prevacuole. Based on mammalian knowledge, we introduced point mutations in the cytosolic region of the receptor and produced chimeras of green fluorescent protein fused to the transmembrane domain of pea BP80 along with the modified cytosolic tails. By analyzing the subcellular location of these chimera, we found that mutating Glu-604, Asp-616, or Glu-620 had mild effects, whereas mutating the Tyr motif partially redistributed the chimera to the plasma membrane. Replacing both Ile-608 and Met-609 by Ala (IMAA) led to a massive redistribution of fluorescence to the vacuole, indicating that recycling is impaired. When the chimera uses the alternative route, the IMAA mutation led to a massive accumulation at the plasma membrane. Using Arabidopsis thaliana plants expressing a fluorescent reporter with the full-length sequence of At VSR4, we demonstrated that the receptor undergoes brefeldin A-sensitive endocytosis. We conclude that the receptors use two pathways, one leading directly to the lytic vacuole and the other going via the plasma membrane, and that the Ileu-608 Met-609 motif has a role in the retrieval step in both pathways. PMID:20807880

  11. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E. . E-mail: aaust@cc.usu.edu

    2006-01-15

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changes in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.

  12. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling

    PubMed Central

    Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Metcalfe, Dean D.

    2015-01-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLC?1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186

  13. ?-Arrestin–Dependent Endocytosis of Proteinase-Activated Receptor 2 Is Required for Intracellular Targeting of Activated Erk1/2

    PubMed Central

    DeFea, K.A.; Zalevsky, J.; Thoma, M.S.; Déry, O.; Mullins, R.D.; Bunnett, N.W.

    2000-01-01

    Recently, a requirement for ?-arrestin–mediated endocytosis in the activation of extracellular signal–regulated kinases 1 and 2 (ERK1/2) by several G protein–coupled receptors (GPCRs) has been proposed. However, the importance of this requirement for function of ERK1/2 is unknown. We report that agonists of G?q-coupled proteinase–activated receptor 2 (PAR2) stimulate formation of a multiprotein signaling complex, as detected by gel filtration, immunoprecipitation and immunofluorescence. The complex, which contains internalized receptor, ?-arrestin, raf-1, and activated ERK, is required for ERK1/2 activation. However, ERK1/2 activity is retained in the cytosol and neither translocates to the nucleus nor causes proliferation. In contrast, a mutant PAR2 (PAR2?ST363/6A), which is unable to interact with ?-arrestin and, thus, does not desensitize or internalize, activates ERK1/2 by a distinct pathway, and fails to promote both complex formation and cytosolic retention of the activated ERK1/2. Whereas wild-type PAR2 activates ERK1/2 by a PKC-dependent and probably a ras-independent pathway, PAR2(?ST363/6A) appears to activate ERK1/2 by a ras-dependent pathway, resulting in increased cell proliferation. Thus, formation of a signaling complex comprising PAR2, ?-arrestin, raf-1, and activated ERK1/2 might ensure appropriate subcellular localization of PAR2-mediated ERK activity, and thereby determine the mitogenic potential of receptor agonists. PMID:10725339

  14. Endocytosis and Cancer

    PubMed Central

    Mellman, Ira; Yarden, Yosef

    2013-01-01

    Endocytosis entails selective packaging of cell-surface proteins, such as receptors for cytokines and adhesion components, in cytoplasmic vesicles (endosomes). The series of sorting events that determines the fate of internalized proteins, either degradation in lysosomes or recycling back to the plasma membrane, relies on intrinsic sequence motifs, posttranslational modifications (e.g., phosphorylation and ubiquitination), and transient assemblies of both Rab GTPases and phosphoinositide-binding proteins. This multicomponent process is enhanced and skewed in cancer cells; we review mechanisms enabling both major drivers of cancer, p53 and Ras, to bias recycling of integrins and receptor tyrosine kinases (RTKs). Likewise, cadherins and other junctional proteins of cancer cells are constantly removed from the cell surface, thereby disrupting tissue polarity and instigating motile phenotypes. Mutant forms of RTKs able to evade Cbl-mediated ubiquitination, along with overexpression of the wild-type forms and a variety of defective feedback regulatory loops, are frequently detected in tumors. Finally, we describe pharmacological attempts to harness the peculiar endocytic system of cancer, in favor of effective patient treatment. PMID:24296170

  15. Low concentrations of primaquine inhibit degradation but not receptor-mediated endocytosis of asialoorosomucoid by HepG2 cells

    SciTech Connect

    Reif, J.S.; Schwartz, A.L.; Fallon, R.J. )

    1991-02-01

    Asialoorosomucoid (ASOR) is internalized and degraded by HepG2 cells after binding to the asialoglycoprotein (ASGP) receptor, internalization through the coated pit/coated vesicle pathway, and trafficking to lysosomes. Primaquine, an 8-aminoquinoline antimalarial compound, inhibits ASOR degradation at concentrations greater than 0.2 mM by neutralizing intracellular acid compartments. This leads to alterations in surface receptor number, receptor-ligand dissociation, and receptor recycling. We have investigated the effects of primaquine on 125I-ASOR uptake and degradation as a function of primaquine concentration and duration of exposure. Concentrations below those required for neutralization of acidic compartments block 125I-ASOR degradation in HepG2 cells and lead to intracellular ligand accumulation. This effect is maximal at 80 microM primaquine. The intracellular 125I-ASOR is undegraded, dissociated from the ASGP receptor, and contained within vesicular compartments distinct from lysosomes, plasma membrane, or endosomes. In addition, the effect of 80 microM primaquine on 125I-ASOR degradation is very slowly reversible (greater than 6 h), in contrast to primaquine's rapidly reversible effect on receptor recycling and ligand uptake (10 min). Furthermore, the effect is ligand-specific. 125I-asialofetuin, another ASGP receptor ligand, is internalized and degraded in lysosomes at normal rates in HepG2 cells exposed to 80 microM primaquine. These findings indicate that primaquine has multiple effects on the uptake and degradation of ligand occurring in the endosome-lysosome pathway. These effects of primaquine differ in their concentration-dependence, site of action, reversibility, and ligand selectivity.

  16. Deficits in receptor-mediated endocytosis and recycling in cells from mice with Gpr107 locus disruption.

    PubMed

    Zhou, Guo Ling; Na, Soon-Young; Niedra, Rasma; Seed, Brian

    2014-09-15

    GPR107 is a type III integral membrane protein that was initially predicted to be a member of the family of G-protein-coupled receptors. This report shows that deletion of Gpr107 leads to an embryonic lethal phenotype that is characterized by a reduction in cubilin transcript abundance and a decrease in the representation of multiple genes implicated in the cubilin-megalin endocytic receptor complex (megalin is also known as LRP2). Gpr107-null fibroblast cells exhibit reduced transferrin internalization, decreased uptake of low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) cargo and resistance to toxins. Colocalization studies and proteomic analyses suggest that GPR107 associates with clathrin and the retromer protein VPS35 and that GPR107 might be responsible for the return of receptors to the plasma membrane from endocytic compartments. The highly selective deficits observed in Gpr107-null cells indicate that GPR107 interacts directly or indirectly with a limited subset of surface receptors. PMID:24849652

  17. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin.

    PubMed Central

    Gordon, V M; Leppla, S H; Hewlett, E L

    1988-01-01

    Bordetella pertussis and Bacillus anthracis produce extracytoplasmic adenylate cyclase toxins (AC toxins) with shared features including activation by calmodulin and the ability to enter target cells and catalyze intracellular cyclic AMP (cAMP) production from host ATP. The two AC toxins were evaluated for sensitivities to a series of inhibitors of known uptake mechanisms. Cytochalasin D, an inhibitor of microfilament function, abrogated the cAMP response to B. anthracis AC toxin (93%) but not the cAMP response elicited by B. pertussis AC toxin. B. anthracis-mediated intoxication of CHO cells was completely inhibited by ammonium chloride (30 mM) and chloroquine (0.1 mM), whereas the cAMP accumulation produced by B. pertussis AC toxin remained unchanged. The block of target cell intoxication by cytochalasin D could be bypassed when cells were first treated with anthrax AC toxin and then exposed to an acidic medium. These data indicate that despite enzymatic similarities, these two AC toxins intoxicate target cells by different mechanisms, with anthrax AC toxin entering by means of receptor-mediated endocytosis into acidic compartments and B. pertussis AC toxin using a separate, and as yet undefined, mechanism. PMID:2895741

  18. The Matricellular Receptor LRP1 Forms an Interface for Signaling and Endocytosis in Modulation of the Extracellular Tumor Environment.

    PubMed

    Van Gool, Bart; Dedieu, Stéphane; Emonard, Hervé; Roebroek, Anton J M

    2015-01-01

    The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1) has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease inhibitor complexes, and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents. This mini-review focuses on LRP1's role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed. PMID:26617523

  19. The Matricellular Receptor LRP1 Forms an Interface for Signaling and Endocytosis in Modulation of the Extracellular Tumor Environment

    PubMed Central

    Van Gool, Bart; Dedieu, Stéphane; Emonard, Hervé; Roebroek, Anton J. M.

    2015-01-01

    The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1) has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease inhibitor complexes, and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents. This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed. PMID:26617523

  20. Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors

    PubMed Central

    2013-01-01

    Background Chronic exposure to low cadmium (Cd) levels produces urinary excretion of low molecular weight proteins, which is considered the critical effect of Cd exposure. However, the mechanisms involved in Cd-induced proteinuria are not entirely clear. Therefore, the present study was designed to evaluate the possible role of megalin and cubilin (important endocytic receptors in proximal tubule cells) and angiotensin II type 1 (AT1) receptor on Cd-induced microalbuminuria. Methods Four groups of female Wistar rats were studied. Control (CT) group, vehicle-treated rats; LOS group, rats treated with losartan (an AT1 antagonist) from weeks 5 to 8 (10 mg/kg/day by gavage); Cd group, rats subchronically exposed to Cd (3 mg/kg/day by gavage) during 8 weeks, and Cd + LOS group, rats treated with Cd for 8 weeks and LOS from weeks 5–8. Kidney Cd content, glomerular function (evaluated by creatinine clearance and plasma creatinine), kidney injury and tubular function (evaluated by Kim-1 expression, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and glucose, and microalbuminuria), oxidative stress (measured by lipid peroxidation and NAD(P)H oxidase activity), mRNA levels of megalin, expressions of megalin and cubilin (by confocal microscopy) and AT1 receptor (by Western blot), were measured in the different experimental groups. Data were analyzed by one-way ANOVA or Kruskal-Wallis test using GraphPad Prism 5 software (Version 5.00). P < 0.05 was considered statistically significant. Results Administration of Cd (Cd and Cd + LOS groups) increased renal Cd content. LOS-treatment decreased Cd-induced microalbuminuria without changes in: plasma creatinine, creatinine clearance, urinary NAG and glucose, oxidative stress, mRNA levels of megalin and cubilin, neither protein expression of megalin nor AT1 receptor, in the different experimental groups studied. However, Cd exposure did induce the expression of the tubular injury marker Kim-1 and decreased cubilin protein levels in proximal tubule cells whereas LOS-treatment restored cubilin levels and suppressed Kim-1 expression. Conclusion LOS treatment decreased microalbuminuria induced by Cd apparently through a cubilin receptor-dependent mechanism but independent of megalin. PMID:24093454

  1. New series of potent delta-opioid antagonists containing the H-Dmt-Tic-NH-hexyl-NH-R motif.

    PubMed

    Li, Tingyou; Shiotani, Kimitaka; Miyazaki, Anna; Fujita, Yoshio; Tsuda, Yuko; Ambo, Akihiro; Sasaki, Yusuke; Jinsmaa, Yunden; Marczak, Ewa; Bryant, Sharon D; Lazarus, Lawrence H; Okada, Yoshio

    2005-12-15

    Heterodimeric compounds H-Dmt-Tic-NH-hexyl-NH-R (R=Dmt, Tic, and Phe) exhibited high affinity to delta- (K(i)delta=0.13-0.89nM) and mu-opioid receptors (K(i)mu=0.38-2.81nM) with extraordinary potent delta antagonism (pA(2)=10.2-10.4). These compounds represent the prototype for a new class of structural homologues lacking mu-opioid receptor-associated agonism (IC(50)=1.6-5.8muM) based on the framework of bis-[H-Dmt-NH]-alkyl (Okada, Y.; Tsuda, Y.; Fujita, Y.; Yokoi, T.; Sasaki, Y.; Ambo, A.; Konishi, R.; Nagata, M.; Salvadori, S.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H. J. Med. Chem.2003, 46, 3201), which exhibited both high mu affinity and bioactivity. PMID:16183273

  2. Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages

    SciTech Connect

    Schlepper-Schaefer, J.; Huelsmann, D.; Djovkar, A.; Meyer, H.E.; Herbertz, L.; Kolb, H.; Kolb-Bachofen, V.

    1986-01-01

    The intrahepatic binding and uptake of variously sized ligands with terminal galactosyl residues is rat liver was followed. The ligands were administered to prefixed livers in binding studies and in vivo and in situ (serum-free perfused livers) in uptake studies. Gold sols with different particle diameters were prepared: 5 nm (Au/sub 5/), 17 nm (Au/sub 17/), 50 nm (Au/sub 50/) and coated with galactose exposing glycoproteins (asialofetuin (ASF) or lactosylated BSA (LacBSA)). Electron microscopy of mildly prefixed livers perfused with LacBSA-Au/sub 5/ in serum-free medium showed ligand binding to liver macrophages, hepatocytes and endothelial cells. Ligands bound to prefixed cell surfaces reflect the initial distribution of receptor activity: pre-aggregated clusters of ligands are found on liver macrophages, single particles statistically distributed on hepatocytes and pre-aggregated clusters of particles restricted to coated pits on endothelial cells. Ligand binding is prevented in the presence of 80 mM N-acetylgalactosamine (GalNAc), while N-acetylglucosamine (GlcNAc) is without effect. Electron microscopy of livers after ligand injection into the tail vein shows that in vivo uptake of electron-dense galactose particles by liver cells is size-dependent. In vivo uptake by liver macrophages is mediated by galactose-specific recognition as shown by inhibition with GalNAc.

  3. Windpipe Controls Drosophila Intestinal Homeostasis by Regulating JAK/STAT Pathway via Promoting Receptor Endocytosis and Lysosomal Degradation

    PubMed Central

    Li, Min; Wu, Longfei; Wang, Guolun; Baeg, Gyeong-Hun; You, Jia; Li, Zhouhua; Lin, Xinhua

    2015-01-01

    The adult intestinal homeostasis is tightly controlled by proper proliferation and differentiation of intestinal stem cells. The JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) signaling pathway is essential for the regulation of adult stem cell activities and maintenance of intestinal homeostasis. Currently, it remains largely unknown how JAK/STAT signaling activities are regulated in these processes. Here we have identified windpipe (wdp) as a novel component of the JAK/STAT pathway. We demonstrate that Wdp is positively regulated by JAK/STAT signaling in Drosophila adult intestines. Loss of wdp activity results in the disruption of midgut homeostasis under normal and regenerative conditions. Conversely, ectopic expression of Wdp inhibits JAK/STAT signaling activity. Importantly, we show that Wdp interacts with the receptor Domeless (Dome), and promotes its internalization for subsequent lysosomal degradation. Together, these data led us to propose that Wdp acts as a novel negative feedback regulator of the JAK/STAT pathway in regulating intestinal homeostasis. PMID:25923769

  4. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  5. High-purity selection and maintenance of gene expression in human neuroblastoma cells stably over-expressing GFP fusion protein. Application for opioid receptors desensitization studies.

    PubMed

    Aguila, Benjamin; Roussel, Mikel; Jauzac, Philippe; Allouche, Stéphane

    2006-10-01

    Chronic use of opiates such as morphine is associated with drug tolerance, which is correlated with the desensitization of opioid receptors. This latter process involves phosphorylation of opioid receptors by G protein-coupled receptors kinases (GRKs) and subsequent uncoupling by beta-arrestins. To explore these molecular mechanisms, neuronal cell lines, endogenously expressing the opioid receptors, provide an ideal cellular model. Unfortunately, there are two major drawbacks: (1) these cells are refractory to cDNA introduction, resulting in low transfection efficiency; (2) continuous culturing of transfected cells invariably leads to phenotypic drift of the cultures even after an antibiotic selection. So, these cells were dropped in favor of heterologous expression systems, which are easier to transfect but whose relevance as adequate cellular model for studying opioid receptor regulation should be questioned, as recently demonstrated by [Haberstock-Debic, H., Kim, K.A.,Yu, Y.J., von Zastrow, M., 2005. Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons. J. Neurosci. 25, 7847-7857]. In this work, we describe a method, based on fluorescence-activated cell sorting (FACS), to select and maintain a high proportion of transfected SK-N-BE cells (a neuronal cell line endogenously expressing human Delta-Opioid Receptor (hDOR)), expressing the beta-arrestin1 fused to green fluorescent protein (GFP). While in functional experiments, we were not able to observe a major effect in non-sorted SK-N-BE cells expressing beta-arrestin1-GFP, the enrichment by 18-fold with FACS resulted in a robust increase of beta-arrestin1-GFP expression associated with strong hDOR desensitization. Moreover, this method also allows to counteract the phenotypic drift and to maintain a high-purity selection of SK-N-BE cells expressing beta-arrestin1-GFP. Thus, this approach provides a valuable tool for exploring opioid receptors desensitization in neuronal cells. PMID:16938287

  6. Enhanced Receptor-Mediated Endocytosis and Cytotoxicity of a Folic Acid-Desacetylvinblastine Monohydrazide Conjugate in a Pemetrexed-Resistant Cell Line Lacking Folate-Specific Facilitative Carriers but with Increased Folate Receptor Expression

    PubMed Central

    Diop-Bove, Ndeye; Goldman, I. David

    2014-01-01

    The reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptors (FR) are folate-specific transporters. Antifolates currently in the clinic, such as pemetrexed, methotrexate, and pralatrexate, are transported into tumor cells primarily via RFC. Folic acid conjugated to cytotoxics, a new class of antineoplastics, are transported into cells via FR-mediated endocytosis. To better define the role of PCFT in antifolate resistance, a methotrexate-resistant cell line, M160-8, was selected from a HeLa subline in which the RFC gene was deleted and PCFT was highly overexpressed. These cells were cross-resistant to pemetrexed. PCFT function and the PCFT mRNA level in M160-8 cells were barely detectable, and FR-? function and mRNA level were increased as compared with the parent cells. While pemetrexed rapidly associated with FR and was internalized within endosomes in M160-8 cells, consistent with FR-mediated transport, subsequent pemetrexed and (6S)-5-formyltetrahydrofolate export into the cytosol was markedly impaired. In contrast, M160-8 cells were collaterally sensitive to EC0905, a folic acid–desacetylvinblastine monohydrazide conjugate also transported by FR-mediated endocytosis. However, in this case a sulfhydryl bond is cleaved to release the lipophilic cytotoxic moiety into the endosome, which passively diffuses out of the endosome into the cytosol. Hence, resistance to pemetrexed in M160-8 cells was due to entrapment of the drug within the endosome due to the absence of PCFT under conditions in which the FR cycling function was intact. PMID:24249723

  7. The Nef Protein of Human Immunodeficiency Virus Is a Broad-Spectrum Modulator of Chemokine Receptor Cell Surface Levels That Acts Independently of Classical Motifs for Receptor Endocytosis and G?i Signaling

    PubMed Central

    Michel, Nico; Ganter, Kerstin; Venzke, Stephanie; Bitzegeio, Julia; Fackler, Oliver T.

    2006-01-01

    Chemokine receptors (CKRs) are important physiological mediators of immune defense, inflammatory responses, and angiogenesis, and they have also been implicated in a number of viral disease processes. Here, we report that the Nef protein of human immunodeficiency virus (HIV) reduces cell surface levels of eight different members of the CC- and CXC-family of CKRs by up to 92%. This broad-range activity required specific elements in HIVSF2 Nef, including the proline-rich motif P73P76P79P82 as well as the acidic cluster motif E66E67E68E69, and Nef expression induced a marked perinuclear accumulation of CKRs. Surprisingly, receptor mutagenesis demonstrated that the cytoplasmic tail of CCR5 and CXCR4, which is critical for basal and ligand-mediated endocytosis, was completely dispensable for this Nef activity. In contrast, triple-mutation of the highly conserved DRY motif in the second intracellular CKR loop abolished the Nef-mediated down-regulation of CXCR4 independently of this motif’s role in CKR binding to heterotrimeric G proteins and signaling via the G?i subunit. Thus, we identify the lentiviral pathogenicity factor Nef as a unique and broad-range modulator of CKR cell surface levels. Nef uses a mechanism that is distinct from well-established pathways orchestrating CKR metabolism and offers an interesting tool to study the multifaceted biology of CKRs. PMID:16775006

  8. Endocytosis of Nanomedicines

    PubMed Central

    Sahay, Gaurav; Alakhova, Daria Y; Kabanov, Alexander V

    2010-01-01

    Novel nanomaterials are being developed to improve diagnosis and therapy of diseases through effective delivery of drugs, biopharmaceutical molecules and imaging agents to target cells in disease sites. Such diagnostic and therapeutic nanomaterials, also termed “nanomedicines”, often require site-specific cellular entry to deliver their payload to subcellular locations hidden beneath cell membranes. Nanomedicines can employ multiple pathways for cellular entry, which are currently insufficiently understood. This review, first, classifies various mechanisms of endocytosis available to nanomedicines including phagocytosis and pinocytosis through clathrin-dependent and clathrin-independent pathways. Second, it describes the current experimental tools to study endocytosis of nanomedicines. Third, it provides specific examples from recent literature and our own work on endocytosis of nanomedicines. Finally, these examples are used to ascertain 1) the role of particle size, shape, material composition, surface chemistry and/or charge for utilization of a selected pathway(s); 2) the effect of cell type on the processing of nanomedicines; 3) the effect of nanomaterial-cell interactions on the processes of endocytosis, the fate of the nanomedicines and the resulting cellular responses. This review will be useful to a diverse audience of students and scientists who are interested in understanding endocytosis of nanomedicines. PMID:20226220

  9. Discovery of tripeptide-derived multifunctional ligands possessing delta/mu opioid receptor agonist and neurokinin 1 receptor antagonist activities.

    PubMed

    Nair, Padma; Yamamoto, Takashi; Cowell, Scott; Kulkarni, Vinod; Moye, Sharif; Navratilova, Edita; Davis, Peg; Ma, Shou-Wu; Vanderah, Todd W; Lai, Josephine; Porreca, Frank; Hruby, Victor J

    2015-09-01

    Several bifunctional peptides were synthesized and characterized based on the pentapeptide-derived ligand NP30 (1: Tyr-DAla-Gly-Phe-Gly-Trp-O-[3',5'-Bzl(CF3)2]). Modification and truncation of amino acid residues were performed, and the tripeptide-derived ligand NP66 (11: Dmt-DAla-Trp-NH-[3',5'-(CF3)2-Bzl]) was obtained based on the overlapping pharmacophore concept. The Trp(3) residue of ligand 11 works as a message residue for both opioid and NK1 activities. The significance lies in the observation that the approach of appropriate truncation of peptide sequence could lead to a tripeptide-derived chimeric ligand with effective binding and functional activities for both mu and delta opioid and NK1 receptors with agonist activities at mu and delta opioid and antagonist activity at NK1 receptors, respectively. PMID:26212775

  10. Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion

    PubMed Central

    Mutch, Laura Jane; Howden, Jake Davey; Jenner, Emma Poppy Louise; Poulter, Natalie Sarah; Rappoport, Joshua Zachary

    2014-01-01

    Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin-mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA-MB-231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin-mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin-mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin-mediated endocytosis to directed cell motility. PMID:24921075

  11. Endocytosis and Signaling during Development

    PubMed Central

    Bökel, Christian

    2014-01-01

    The development of multicellular organisms relies on an intricate choreography of intercellular communication events that pattern the embryo and coordinate the formation of tissues and organs. It is therefore not surprising that developmental biology, especially using genetic model organisms, has contributed significantly to the discovery and functional dissection of the associated signal-transduction cascades. At the same time, biophysical, biochemical, and cell biological approaches have provided us with insights into the underlying cell biological machinery. Here we focus on how endocytic trafficking of signaling components (e.g., ligands or receptors) controls the generation, propagation, modulation, reception, and interpretation of developmental signals. A comprehensive enumeration of the links between endocytosis and signal transduction would exceed the limits of this review. We will instead use examples from different developmental pathways to conceptually illustrate the various functions provided by endocytic processes during key steps of intercellular signaling. PMID:24591521

  12. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development

    PubMed Central

    Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2). PMID:25904845

  13. Immunoprecipitation of opioid receptor-Go-protein complexes using specific GTP-binding-protein antisera.

    PubMed Central

    Georgoussi, Z; Milligan, G; Zioudrou, C

    1995-01-01

    Solubilization of opioid receptors from rat cortical membranes that retained high-affinity guanine nucleotide-sensitive agonist binding was achieved using 10 mM CHAPS. We report the nature of the interactions of mu and delta opioid receptors with the guanine nucleotide-binding protein G(o) by immunoprecipitation of CHAPS extracts with selective G(o)alpha-subunit protein antisera. Antiserum IM1 raised against amino acids 22-35 of G(o)alpha selectively co-immunoprecipitated G(o)alpha-mu and G(o)alpha-delta opioid receptor complexes detected in the immunoprecipitates by specific [3H][D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin and [3H][D-Ser2,Leu5,Thr6]enkephalin binding respectively. By contrast, antisera directed against the C-terminal decapeptide (OC2) and the N-terminal hexadecapeptide (ON1) of isoforms of G(o)alpha were unable to immunoprecipitate solubilized opioid receptor-G(o) complexes, although both were able to immunoprecipitate solubilized G(o)alpha and have been shown to reduce the affinity of [D-Ala2,D-Leu5]enkephalin for opioid receptors in rat cortical membranes [Georgoussi, Carr and Milligan (1993) Mol. Pharmacol. 44, 62-69]. These findings demonstrate that CHAPS-solubilized mu and delta opioid receptors from rat cortical membranes form stable complexes with one or more variants of G(o). Images Figure 3 PMID:7864831

  14. Immunoprecipitation of opioid receptor-Go-protein complexes using specific GTP-binding-protein antisera.

    PubMed

    Georgoussi, Z; Milligan, G; Zioudrou, C

    1995-02-15

    Solubilization of opioid receptors from rat cortical membranes that retained high-affinity guanine nucleotide-sensitive agonist binding was achieved using 10 mM CHAPS. We report the nature of the interactions of mu and delta opioid receptors with the guanine nucleotide-binding protein G(o) by immunoprecipitation of CHAPS extracts with selective G(o)alpha-subunit protein antisera. Antiserum IM1 raised against amino acids 22-35 of G(o)alpha selectively co-immunoprecipitated G(o)alpha-mu and G(o)alpha-delta opioid receptor complexes detected in the immunoprecipitates by specific [3H][D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin and [3H][D-Ser2,Leu5,Thr6]enkephalin binding respectively. By contrast, antisera directed against the C-terminal decapeptide (OC2) and the N-terminal hexadecapeptide (ON1) of isoforms of G(o)alpha were unable to immunoprecipitate solubilized opioid receptor-G(o) complexes, although both were able to immunoprecipitate solubilized G(o)alpha and have been shown to reduce the affinity of [D-Ala2,D-Leu5]enkephalin for opioid receptors in rat cortical membranes [Georgoussi, Carr and Milligan (1993) Mol. Pharmacol. 44, 62-69]. These findings demonstrate that CHAPS-solubilized mu and delta opioid receptors from rat cortical membranes form stable complexes with one or more variants of G(o). PMID:7864831

  15. An immersed boundary method for endocytosis

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Hau; Huang, Huaxiong

    2014-09-01

    Endocytosis is one of the cellular functions for capturing (engulfing) vesicles or microorganisms. Understanding the biophysical mechanisms of this cellular process is essential from a bioengineering point of view since it will provide guidance for developing effective targeted drug delivery therapies. In this paper, we propose an immersed boundary (IB) method that can be used to simulate the dynamical process of this important biological function. In our model, membranes of the vesicle and the cell are treated as Canham-Helfrich Hamiltonian interfaces. The membrane-bound molecules are modeled as insoluble surfactants such that the molecules after binding are regarded as a product of a “chemical” reaction. Our numerical examples show that the immersed boundary method is a useful simulation tool for studying endocytosis, where the roles of interfacial energy, fluid flow and viscous dissipation in the success of the endocytosis process can be investigated in detail. A distinct feature of our IB method is the treatment of the two binding membranes that is different from the merging of fluid-fluid interfaces. Another important feature of our method is the strict conservation of membrane-borne receptors and ligands, which is important for predicting the dynamics of the endocytosis process.

  16. Exploiting endocytosis for nanomedicines.

    PubMed

    Akinc, Akin; Battaglia, Giuseppe

    2013-11-01

    In this article, we briefly review the endocytic pathways used by cells, pointing out their defining characteristics and highlighting physical limitations that may direct the internalization of nanoparticles to a subset of these pathways. A more detailed description of these pathways is presented in the literature. We then focus on the endocytosis of nanomedicines and present how various nanomaterial parameters impact these endocytic processes. This topic is an area of active research, motivated by the recognition that an improved understanding of how nanomaterials interact at the molecular, cellular, and whole-organism level will lead to the design of better nanomedicines in the future. Next, we briefly review some of the important nanomedicines already on the market or in clinical development that serve to exemplify how endocytosis can be exploited for medical benefit. Finally, we present some key unanswered questions and remaining challenges to be addressed by the field. PMID:24186069

  17. Exploiting Endocytosis for Nanomedicines

    PubMed Central

    Akinc, Akin; Battaglia, Giuseppe

    2013-01-01

    In this article, we briefly review the endocytic pathways used by cells, pointing out their defining characteristics and highlighting physical limitations that may direct the internalization of nanoparticles to a subset of these pathways. A more detailed description of these pathways is presented in the literature. We then focus on the endocytosis of nanomedicines and present how various nanomaterial parameters impact these endocytic processes. This topic is an area of active research, motivated by the recognition that an improved understanding of how nanomaterials interact at the molecular, cellular, and whole-organism level will lead to the design of better nanomedicines in the future. Next, we briefly review some of the important nanomedicines already on the market or in clinical development that serve to exemplify how endocytosis can be exploited for medical benefit. Finally, we present some key unanswered questions and remaining challenges to be addressed by the field. PMID:24186069

  18. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages

    PubMed Central

    Shim, Do-Wan; Heo, Kang-Hyuck; Kim, Young-Kyu; Sim, Eun-Jeong; Kang, Tae-Bong; Choi, Jae-Wan; Sim, Dae-Won; Cheong, Sun-Hee; Lee, Seung-Hong; Bang, Jeong-Kyu; Won, Hyung-Sik; Lee, Kwang-Ho

    2015-01-01

    Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation. PMID:26017270

  19. Functions of actin in endocytosis.

    PubMed

    Robertson, Alastair S; Smythe, Elizabeth; Ayscough, Kathryn R

    2009-07-01

    Endocytosis is a fundamental eukaryotic process required for remodelling plasma-membrane lipids and protein to ensure appropriate membrane composition. Increasing evidence from a number of cell types reveals that actin plays an active, and often essential, role at key endocytic stages. Much of our current mechanistic understanding of the endocytic process has come from studies in budding yeast and has been facilitated by yeast's genetic amenability and by technological advances in live cell imaging. While endocytosis in metazoans is likely to be subject to a greater array of regulatory signals, recent reports indicate that spatiotemporal aspects of vesicle formation requiring actin are likely to be conserved across eukaryotic evolution. In this review we focus on the 'modular' model of endocytosis in yeast before highlighting comparisons with other cell types. Our discussion is limited to endocytosis involving clathrin as other types of endocytosis have not been demonstrated in yeast. PMID:19290477

  20. Endocytosis of Integrin-Binding Human Picornaviruses

    PubMed Central

    Merilahti, Pirjo; Koskinen, Satu; Heikkilä, Outi; Karelehto, Eveliina; Susi, Petri

    2012-01-01

    Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to ?V-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin ?2?1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive ?1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses. PMID:23227048

  1. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  2. STAT6 transcription factor binding sites with mismatches within the canonical 5'-TTC...GAA-3' motif involved in regulation of delta- and mu-opioid receptors.

    PubMed

    Börner, Christine; Wöltje, Michael; Höllt, Volker; Kraus, Jürgen

    2004-12-01

    Opioid receptors are expressed in neuronal and immune cells and regulated in response to immunological processes. Herein, we demonstrate up-regulation of the delta-opioid receptor gene by interleukin-4 in immune cells (primary T and polymorphonuclear leukocytes, Jurkat E6 T cells), and in NG 108-15 neuronal cells. We identified an interleukin-4-responsive element at nt -671 on the murine gene promoter, to which the transcription factor STAT6 binds, as shown by reporter gene analysis and STAT6/DNA interaction studies in living cells with transcription factor decoy oligonucleotides. STAT6 normally binds to palindromic DNA motifs with a 5'-TTC...GAA-3' core. Notably, the delta-opioid receptor STAT6 site (5'-TTC...GGA-3') is an imperfect palindrome with a mismatch within this core sequence. A systematic analysis of possible mismatch 5'-TTC...GAA-3' motifs revealed that STAT6 also binds to the sequence 5'-TTA...GAA-3'. This motif occurs as a polymorphism in the human mu-opioid receptor gene (Kraus et al. 2001 J. Biol. Chem 276, 43901-43908). We show that this mutated element has a significantly reduced STAT6 binding activity which correlates to its reduced interleukin (IL)-4 inducibility. In contrast, the non-canonical STAT6 site of the delta-opioid receptor binds STAT6 with similar high activity as a perfectly palindromic STAT6 site and is strongly inducible by IL-4. PMID:15584925

  3. Notch1 endocytosis is induced by ligand and is required for signal transduction.

    PubMed

    Chapman, G; Major, J A; Iyer, K; James, A C; Pursglove, S E; Moreau, J L M; Dunwoodie, S L

    2016-01-01

    The Notch signalling pathway is widely utilised during embryogenesis in situations where cell-cell interactions are important for cell fate specification and differentiation. DSL ligand endocytosis into the ligand-expressing cell is an important aspect of Notch signalling because it is thought to supply the force needed to separate the Notch heterodimer to initiate signal transduction. A functional role for receptor endocytosis during Notch signal transduction is more controversial. Here we have used live-cell imaging to examine trafficking of the Notch1 receptor in response to ligand binding. Contact with cells expressing ligands induced internalisation and intracellular trafficking of Notch1. Notch1 endocytosis was accompanied by transendocytosis of ligand into the Notch1-expressing signal-receiving cell. Ligand caused Notch1 endocytosis into SARA-positive endosomes in a manner dependent on clathrin and dynamin function. Moreover, inhibition of endocytosis in the receptor-expressing cell impaired ligand-induced Notch1 signalling. Our findings resolve conflicting observations from mammalian and Drosophila studies by demonstrating that ligand-dependent activation of Notch1 signalling requires receptor endocytosis. Endocytosis of Notch1 may provide a force on the ligand:receptor complex that is important for potent signal transduction. PMID:26522918

  4. The mechanochemistry of endocytosis.

    PubMed

    Liu, Jian; Sun, Yidi; Drubin, David G; Oster, George F

    2009-09-01

    Endocytic vesicle formation is a complex process that couples sequential protein recruitment and lipid modifications with dramatic shape transformations of the plasma membrane. Although individual molecular players have been studied intensively, how they all fit into a coherent picture of endocytosis remains unclear. That is, how the proper temporal and spatial coordination of endocytic events is achieved and what drives vesicle scission are not known. Drawing upon detailed knowledge from experiments in yeast, we develop the first integrated mechanochemical model that quantitatively recapitulates the temporal and spatial progression of endocytic events leading to vesicle scission. The central idea is that membrane curvature is coupled to the accompanying biochemical reactions. This coupling ensures that the process is robust and culminates in an interfacial force that pinches off the vesicle. Calculated phase diagrams reproduce endocytic mutant phenotypes observed in experiments and predict unique testable endocytic phenotypes in yeast and mammalian cells. The combination of experiments and theory in this work suggest a unified mechanism for endocytic vesicle formation across eukaryotes. PMID:19787029

  5. Analysis of endocytosis and ubiquitination of the BOR1 transporter.

    PubMed

    Kasai, Koji; Takano, Junpei; Fujiwara, Toru

    2014-01-01

    Endocytosis and membrane trafficking are the major factors controlling the abundance of plasma membrane proteins, such as transporters and receptors. We have found that Arabidopsis borate transporter BOR1 is polarly localized to the inner (stele-facing) plasma membrane domain of various root cells under boron limitation, and when boron is supplied in excess, BOR1 is rapidly transferred to the vacuole for immediate degradation. The BOR1 polarity and degradation are controlled by membrane trafficking including endocytosis. In this chapter, we describe methods for observation of endocytic trafficking of BOR1, and detection of BOR1 ubiquitination that is required for vacuolar sorting for degradation. PMID:25117286

  6. CD14 Mediates Toll-like Receptor 4 (TLR4) Endocytosis and Spleen Tyrosine Kinase (Syk) and Interferon Regulatory Transcription Factor 3 (IRF3) Activation in Epithelial Cells and Impairs Neutrophil Infiltration and Pseudomonas aeruginosa Killing in Vivo*

    PubMed Central

    Roy, Sanhita; Karmakar, Mausita; Pearlman, Eric

    2014-01-01

    In the current study, we examined the role of CD14 in regulating LPS activation of corneal epithelial cells and Pseudomonas aeruginosa corneal infection. Our findings demonstrate that LPS induces Toll-like receptor 4 (TLR4) internalization in corneal epithelial cells and that blocking with anti-CD14 selectively inhibits TLR4 endocytosis, spleen tyrosine kinase (Syk) and IRF3 phosphorylation, and production of CCL5/RANTES and IFN-?, but not IL-8. Using a murine model of P. aeruginosa corneal infection, we show that although infected CD14?/? corneas produce less CCL5, they exhibit significantly increased CXC chemokine production, neutrophil recruitment to the corneal stroma, and bacterial clearance than C57BL/6 mice. We conclude that CD14 has a critical role in mediating TLR4 signaling through IRF3 in resident corneal epithelial cells and macrophages and thereby modulates TLR4 cell surface activation of the MyD88/NF-?B/AP-1 pathway and production of CXC chemokines and neutrophil infiltration to infected tissues. PMID:24275652

  7. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo.

    PubMed

    Roy, Sanhita; Karmakar, Mausita; Pearlman, Eric

    2014-01-10

    In the current study, we examined the role of CD14 in regulating LPS activation of corneal epithelial cells and Pseudomonas aeruginosa corneal infection. Our findings demonstrate that LPS induces Toll-like receptor 4 (TLR4) internalization in corneal epithelial cells and that blocking with anti-CD14 selectively inhibits TLR4 endocytosis, spleen tyrosine kinase (Syk) and IRF3 phosphorylation, and production of CCL5/RANTES and IFN-β, but not IL-8. Using a murine model of P. aeruginosa corneal infection, we show that although infected CD14(-/-) corneas produce less CCL5, they exhibit significantly increased CXC chemokine production, neutrophil recruitment to the corneal stroma, and bacterial clearance than C57BL/6 mice. We conclude that CD14 has a critical role in mediating TLR4 signaling through IRF3 in resident corneal epithelial cells and macrophages and thereby modulates TLR4 cell surface activation of the MyD88/NF-κB/AP-1 pathway and production of CXC chemokines and neutrophil infiltration to infected tissues. PMID:24275652

  8. Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis

    PubMed Central

    Jeong, Sun-Young; Martchenko, Mikhail; Cohen, Stanley N.

    2013-01-01

    The protective antigen component of Bacillus anthracis toxins can interact with at least three distinct proteins on the host cell surface, capillary morphogenesis gene 2 (CMG2), tumor endothelial marker 8, and ?1-integrin, and, with the assistance of other host proteins, enters targeted cells by receptor-mediated endocytosis. Using an antisense-based phenotypic screen, we discovered the role of calpains in this process. We show that functions of a ubiquitous Ca2+-dependent cysteine protease, calpain-2, and of the calpain substrate talin-1 are exploited for association of anthrax toxin and its principal receptor, CMG2, with higher-order actin filaments and consequently for toxin entry into host cells. Down-regulated expression of calpain-2 or talin-1, or pharmacological interference with calpain action, did not affect toxin binding but reduced endocytosis and increased the survival of cells exposed to anthrax lethal toxin. Adventitious expression of wild-type talin-1 promoted toxin endocytosis and lethality, whereas expression of a talin-1 mutant (L432G) that is insensitive to calpain cleavage did not. Disruption of talin-1, which links integrin-containing focal adhesion complexes to the actin cytoskeleton, facilitated association of toxin bound to its principal cell-surface receptor, CMG2, with higher-order actin filaments undergoing dynamic disassembly and reassembly during endocytosis. Our results reveal a mechanism by which a bacterial toxin uses constitutively occurring calpain-mediated cytoskeletal rearrangement for internalization. PMID:24085852

  9. Long Isoform Mouse Selenoprotein P (Sepp1) Supplies Rat Myoblast L8 Cells with Selenium via Endocytosis Mediated by Heparin Binding Properties and Apolipoprotein E Receptor-2 (ApoER2)*

    PubMed Central

    Kurokawa, Suguru; Hill, Kristina E.; McDonald, W. Hayes; Burk, Raymond F.

    2012-01-01

    In vivo studies have shown that selenium is supplied to testis and brain by apoER2-mediated endocytosis of Sepp1. Although cultured cell lines have been shown to utilize selenium from Sepp1 added to the medium, the mechanism of uptake and utilization has not been characterized. Rat L8 myoblast cells were studied. They took up mouse Sepp1 from the medium and used its selenium to increase their glutathione peroxidase (Gpx) activity. L8 cells did not utilize selenium from Gpx3, the other plasma selenoprotein. Neither did they utilize it from Sepp1?240–361, the isoform of Sepp1 that lacks the selenium-rich C-terminal domain. To identify Sepp1 receptors, a solubilized membrane fraction was passed over a Sepp1 column. The receptors apoER2 and Lrp1 were identified in the eluate by mass spectrometry. siRNA experiments showed that knockdown of apoER2, but not of Lrp1, inhibited 75Se uptake from 75Se-labeled Sepp1. The addition of protamine to the medium or treatment of the cells with chlorate also inhibited 75Se uptake. Blockage of lysosome acidification did not inhibit uptake of Sepp1 but did prevent its digestion and thereby utilization of its selenium. These results indicate that L8 cells take up Sepp1 by an apoER2-mediated mechanism requiring binding to heparin sulfate proteoglycans. The presence of at least part of the selenium-rich C-terminal domain of Sepp1 is required for uptake. RT-PCR showed that mouse tissues express apoER2 in varying amounts. It is postulated that apoER2-mediated uptake of long isoform Sepp1 is responsible for selenium distribution to tissues throughout the body. PMID:22761431

  10. Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (ApoER2).

    PubMed

    Kurokawa, Suguru; Hill, Kristina E; McDonald, W Hayes; Burk, Raymond F

    2012-08-17

    In vivo studies have shown that selenium is supplied to testis and brain by apoER2-mediated endocytosis of Sepp1. Although cultured cell lines have been shown to utilize selenium from Sepp1 added to the medium, the mechanism of uptake and utilization has not been characterized. Rat L8 myoblast cells were studied. They took up mouse Sepp1 from the medium and used its selenium to increase their glutathione peroxidase (Gpx) activity. L8 cells did not utilize selenium from Gpx3, the other plasma selenoprotein. Neither did they utilize it from Sepp1(?240-361), the isoform of Sepp1 that lacks the selenium-rich C-terminal domain. To identify Sepp1 receptors, a solubilized membrane fraction was passed over a Sepp1 column. The receptors apoER2 and Lrp1 were identified in the eluate by mass spectrometry. siRNA experiments showed that knockdown of apoER2, but not of Lrp1, inhibited (75)Se uptake from (75)Se-labeled Sepp1. The addition of protamine to the medium or treatment of the cells with chlorate also inhibited (75)Se uptake. Blockage of lysosome acidification did not inhibit uptake of Sepp1 but did prevent its digestion and thereby utilization of its selenium. These results indicate that L8 cells take up Sepp1 by an apoER2-mediated mechanism requiring binding to heparin sulfate proteoglycans. The presence of at least part of the selenium-rich C-terminal domain of Sepp1 is required for uptake. RT-PCR showed that mouse tissues express apoER2 in varying amounts. It is postulated that apoER2-mediated uptake of long isoform Sepp1 is responsible for selenium distribution to tissues throughout the body. PMID:22761431

  11. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other. PMID:25010412

  12. Quantitative Analysis of HER2-mediated Effects on HER2 and Epidermal Growth Factor Receptor Endocytosis: DISTRIBUTION OF HOMO- AND HETERODIMERS DEPENDS ON RELATIVE HER2 LEVELS

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee ); Wiley, H Steven ); Lauffenburger, Douglas A.

    2003-05-15

    Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR) family. Many cell types express multiple EGFR family members (including EGFR, HER2, HER3 and/or HER4) that interact to form an array of homo- and hetero-dimers. Differential trafficking of these receptors should strongly affect signaling through this system by changing substrate access and heterodimerization efficiency. Because of the complexity of these dynamic processes we used a quantitative, computational model to understand this system. As a test case, parameters characterizing EGFR and HER2 interactions were derived using experimental data obtained from mammary epithelial cells constructed to express different levels of HER2. With this data we were able to estimate receptor-specific internalization rate constants and dimer uncoupling rate constants. These parameters were not otherwise experimentally accessible due to the complex system interplay. Our models indicated that HER2:EGFR heterodimers traffic as single entities. Direct experiments using EGF and anti-HER2 and anti-EGFR antibodies using independently derived cell lines confirmed many of the predictions of the model. Furthermore, our model could predict the relationship between HER2 expression levels and the transient distribution of EGFR homodimers and heterodimers. Our results suggest that the levels of HER2 found on normal cells are barely at the threshold necessary to drive efficient heterodimerization. Thus, altering local HER2 concentrations in membrane microdomains could serve as an effective mechanism for regulating HER2 heterodimerization and could explain why HER2 overexpression found in some cancers have such a profound effect on cell physiology.

  13. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants

    PubMed Central

    Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid

    2014-01-01

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy. PMID:25493220

  14. Cell adhesion defines the topology of endocytosis and signaling

    PubMed Central

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an “outside-in” mechanism. PMID:24366944

  15. Yeast Exocytic v-SNAREs Confer Endocytosis

    PubMed Central

    Gurunathan, Sangiliyandi; Chapman-Shimshoni, Daphne; Trajkovic, Selena; Gerst, Jeffrey E.

    2000-01-01

    In yeast, homologues of the synaptobrevin/VAMP family of v-SNAREs (Snc1 and Snc2) confer the docking and fusion of secretory vesicles at the cell surface. As no v-SNARE has been shown to confer endocytosis, we examined whether yeast lacking the SNC genes, or possessing a temperature-sensitive allele of SNC1 (SNC1ala43), are deficient in the endocytic uptake of components from the cell surface. We found that both SNC and temperature-shifted SNC1ala43 yeast are deficient in their ability to deliver the soluble dye FM4–64 to the vacuole. Under conditions in which vesicles accumulate, FM4–64 stained primarily the cytoplasm as well as fragmented vacuoles. In addition, ?-factor–stimulated endocytosis of the ?-factor receptor, Ste2, was fully blocked, as evidenced using a Ste2-green fluorescent protein fusion protein as well as metabolic labeling studies. This suggests a direct role for Snc v-SNAREs in the retrieval of membrane proteins from the cell surface. Moreover, this idea is supported by genetic and physical data that demonstrate functional interactions with t-SNAREs that confer endosomal transport (e.g., Tlg1,2). Notably, Snc1ala43 was found to be nonfunctional in cells lacking Tlg1 or Tlg2. Thus, we propose that synaptobrevin/VAMP family members are engaged in anterograde and retrograde protein sorting steps between the Golgi and the plasma membrane. PMID:11029060

  16. Facilitative interactions between vasoactive intestinal polypeptide and receptor type-selective opioids: implications for sensory afferent regulation of spinal opioid action.

    PubMed

    Liu, Nai Jiang; Gintzler, Alan R

    2003-01-01

    Afferent tone is known to influence spinal opioid antinociception but the underlying neurochemical events are not well defined. This study investigates the consequence on cAMP formation of the coincident activation of signal transduction sequelae initiated by an afferent transmitter and opioid using dissociated spinal cord tissue. Afferent transmission was simulated via the addition of vasoactive intestinal polypeptide (VIP), a pelvic visceral afferent transmitter. Individually, mu, delta-, or kappa-selective opioids (1 microM each) did not alter basal spinal content of cAMP. However, VIP (1 microM) and the delta-opioid selective agonist, [D-Pen(2,5)] enkephalin (DPDPE; 1 microM), in combination, manifest a striking facilitative interaction to augment spinal levels of cAMP. Facilitative interactions between VIP and kappa- or mu-opioids were of a reduced magnitude or not observed, respectively. Blockade of delta-opioid or VIP receptors using naltrindole or VIP6-28, respectively antagonized the VIP-DPDPE facilitative interaction, as did pertussis toxin treatment. The VIP-DPDPE facilitative interaction was also eliminated by phospholipase Cbeta inhibition and inositol trisphosphate receptor blockade. This suggests that modulation of Ca(2+) trafficking by VIP and delta-opioid agonists is a point of convergence of their respective signal transduction cascades, the concomitant action at which achieves cytosolic Ca(2+) concentrations that are now sufficient for the activation of signaling molecules, e.g. Ca(2+)/calmodulin-stimulated adenylyl cyclase isoforms. These data underscore the plasticity of spinal delta-opioid neurochemical sequelae and their dependence on concomitant afferent transmitter-initiated neurochemical events. PMID:12480163

  17. Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior

    PubMed Central

    Al-Hasani, Ream; Bruchas, Michael R.

    2013-01-01

    Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years, and remain the most widely used analgesics in the clinic. Mu (?), kappa (?), and delta (?) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled, and activate inhibitory G-proteins. These receptors form homo- and hetereodimeric complexes, signal to kinase cascades, and scaffold a variety of proteins. In this review, we discuss classical mechanisms and developments in understanding opioid tolerance, opioid receptor signaling, and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. We put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, we conclude that there is a continued need for more translational work on opioid receptors in vivo. PMID:22020140

  18. Inhibition of the development of morphine tolerance by a potent dual mu-delta-opioid antagonist, H-Dmt-Tic-Lys-NH-CH2-Ph.

    PubMed

    Jinsmaa, Yunden; Marczak, Ewa D; Balboni, Gianfranco; Salvadori, Severo; Lazarus, Lawrence H

    2008-10-01

    Three analogues of the dual mu-/delta-antagonist, H-Dmt-Tic-R-NH-CH2-Ph (R = 1, Lys-Z; 2, Lys-Ac; 3, Lys) were examined in vivo: 1 and 2 exhibited weak bioactivity, while 3 injected intracerebroventricularly was a potent dual antagonist for morphine- and deltorphin C-induced antinociception comparable to naltrindole (delta-antagonist), but 93% as effective as naloxone (nonspecific opioid receptor antagonist) and 4% as active as CTOP, a mu antagonist. Subcutaneous or oral administration of 3 antagonized morphine-induced antinociception indicating passage across epithelial and blood-brain barriers. Mice pretreated with 3 before morphine did not develop morphine tolerance indicative of a potential clinical role to inhibit development of drug tolerance. PMID:18571706

  19. Rostral ventrolateral medullary opioid receptor subtypes in the inhibitory effect of electroacupuncture on reflex autonomic response in cats.

    PubMed

    Li, P; Tjen-A-Looi, S; Longhurst, J C

    2001-06-20

    Electroacupuncture (EA) is used in traditional Chinese medicine to treat arrhythmias, hypertension and myocardial ischemia. Our previous work suggests that the inhibitory effect of EA on the pressor reflex induced by bradykinin (BK) applied to the gallbladder is due, in part, to the activation of opioid receptors, most likely located in the rostral ventrolateral medulla (rVLM). However, specific opioid receptor subtypes, and hence the neurotransmitters. responsible for this inhibition are unknown. Therefore, in anesthetized cats, BK (10 microg/ml) was applied to the gallbladder to induce transient reflex increases in arterial blood pressure (BP). EA (1-2 mA, 5 Hz, 0.5 ms pulses) was delivered through acupuncture needles inserted bilaterally into Neiguan and Jianshi acupoints on forelimbs, overlying the median nerves. EA attenuated the BK-induced pressor response by 39%. Opioid receptor subtype antagonists or agonists were microinjected unilaterally into the rVLM. The mu- and delta-receptor antagonists CTOP and ICI 174,864, respectively, significantly attenuated the EA-induced inhibition for at least 30 min. The K-receptor antagonist (nor-BNI) was less effective and was shorter acting. Like EA, microinjection of mu- and delta-opioid agonists, DAGO and DADLE, respectively, into the rVLM significantly decreased the pressor responses. In contrast, the kappa-opioid agonist, U50,488, failed to alter the BK-induced pressor response. We conclude that a significant portion of inhibition of the gallbladder pressor response by EA is related to activation of mu- and delta-opioid receptors in the rVLM. The endogenous neurotransmitters for mu- and delta-opioid receptors, beta-endorphins and enkephalins, in the rVLM, therefore appear to play a role in the EA-related modulation of cardiovascular reflex responses. Conversely, dynorphin is less likely to be involved in this response. PMID:11474645

  20. The pleckstrin homology domain of phospholipase D1 accelerates EGFR endocytosis by increasing the expression of the Rab5 effector, rabaptin-5.

    PubMed

    Park, Mi Hee; Choi, Kang-Yell; Min, Do Sik

    2015-01-01

    Endocytosis is differentially regulated by hypoxia-inducible factor-1? (HIF-1?) and phospholipase D (PLD). However, the relationship between HIF-1? and PLD in endocytosis is unknown. HIF-1? is degraded through the prolyl hydroxylase (PHD)/von Hippel-Lindau (VHL) ubiquitination pathway in an oxygen-dependent manner. Here, we show that PLD1 recovers the decrease in epidermal growth factor receptor (EGFR) endocytosis induced by HIF-1? independent of lipase activity via the Rab5-mediated endosome fusion pathway. EGF-induced interaction of PLD1 with HIF-1?, PHD and VHL may contribute to EGFR endocytosis. The pleckstrin homology domain (PH) of PLD1 itself promotes degradation of HIF-1?, then accelerates EGFR endocytosis via upregulation of rabaptin-5 and suppresses tumor progression. These findings reveal a novel role of the PLD1-PH domain as a positive regulator of endocytosis and provide a link between PLD1 and HIF-1? in the EGFR endocytosis pathway. PMID:26680696

  1. The pleckstrin homology domain of phospholipase D1 accelerates EGFR endocytosis by increasing the expression of the Rab5 effector, rabaptin-5

    PubMed Central

    Park, Mi Hee; Choi, Kang-Yell; Min, Do Sik

    2015-01-01

    Endocytosis is differentially regulated by hypoxia-inducible factor-1? (HIF-1?) and phospholipase D (PLD). However, the relationship between HIF-1? and PLD in endocytosis is unknown. HIF-1? is degraded through the prolyl hydroxylase (PHD)/von Hippel–Lindau (VHL) ubiquitination pathway in an oxygen-dependent manner. Here, we show that PLD1 recovers the decrease in epidermal growth factor receptor (EGFR) endocytosis induced by HIF-1? independent of lipase activity via the Rab5-mediated endosome fusion pathway. EGF-induced interaction of PLD1 with HIF-1?, PHD and VHL may contribute to EGFR endocytosis. The pleckstrin homology domain (PH) of PLD1 itself promotes degradation of HIF-1?, then accelerates EGFR endocytosis via upregulation of rabaptin-5 and suppresses tumor progression. These findings reveal a novel role of the PLD1-PH domain as a positive regulator of endocytosis and provide a link between PLD1 and HIF-1? in the EGFR endocytosis pathway. PMID:26680696

  2. Energized endocytosis in human erythrocyte ghosts.

    PubMed Central

    Schriei, S L; Bensch, K G; Johnson, M; Junga, I

    1975-01-01

    The mechanism of endocytosis in resealed human erythrocyte ghosts was studied. The energy for endocytosis or micropinocytosis appears to be derived from Mg-ATP, and membrane internalization is preceded by activation of a membrane-associated Ca,Mg-ATPase and by the active efflux of Ca. Endocytosis, Ca,Mg-ATPase activity, and active Ca efflux all require the presence of Mg. Furthermore, these three phenomena, endocytosis, Ca,Mg-ATPase activity, and active Ca extrusion, all have a concentration dependence on Ca such that low concentrations stimulate and higher concentrations inhibit the phenomena. The optimal concentration of Ca is identical for endocytosis, active Ca efflux, and Ca,Mg-ATPase. Morphologic studies indicated that while active Ca efflux and activation of the Ca,Mg-ATPase activity occurred promptly upon onset of incubation, there was a significant time delay before endocytosis occurred, which suggests that endocytosis additionally involved a more slowly functioning mechanicochemical mechanism. Ruthenium red, a specific inhibitor of Ca,Mg-ATPase and Ca transport, inhibited endocytosis in a concentration-related manner. Prostaglandins E1 and E2 had no measurable effect on ghost endocytosis, active Ca efflux, or Ca,Mg-ATPase activity. Images PMID:124748

  3. Human SCARB2-Mediated Entry and Endocytosis of EV71

    PubMed Central

    Tsou, Yueh-Liang; Chitra, Ebenezer; Hsiao, Kuang-Nan; Shao, Hsiao-Yun; Liu, Chia-Chyi; Sia, Charles; Chong, Pele; Chow, Yen-Hung

    2012-01-01

    Enterovirus (EV) 71 infection is known to cause hand-foot-and-mouth disease (HFMD) and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2) has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2) to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus. PMID:22272359

  4. Potent Dmt-Tic pharmacophoric delta- and mu-opioid receptor antagonists.

    PubMed

    Li, Tingyou; Fujita, Yoshio; Shiotani, Kimitaka; Miyazaki, Anna; Tsuda, Yuko; Ambo, Akihiro; Sasaki, Yusuke; Jinsmaa, Yunden; Marczak, Ewa; Bryant, Sharon D; Salvadori, Severo; Lazarus, Lawrence H; Okada, Yoshio

    2005-12-15

    A series of dimeric Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) analogues (8-14, 18-22) were covalently linked through diaminoalkane and symmetric or asymmetric 3,6-diaminoalkyl-2(1H)-pyrazinone moieties. All the compounds exhibited high affinity for both delta-opioid receptors [Ki(delta) = 0.06-1.53 nM] and mu-opioid receptors [Ki(mu) = 1.37-5.72 nM], resulting in moderate delta-receptor selectivity [Ki(mu)/Ki(delta) = 3-46]. Regardless of the type of linker between the Dmt-Tic pharmacophores, delta-opioid-mediated antagonism was extraordinarily high in all analogues (pA2 = 10.42-11.28), while in vitro agonism (MVD and GPI bioassays) was essentially absent (ca. 3 to >10 microM). While an unmodified N-terminus (9, 13, 18) revealed weak mu-opioid antagonism (pA2 = 6.78-6.99), N,N'-dimethylation (21, 22), which negatively impacts on mu-opioid-associated agonism (Balboni et al., Bioorg. Med. Chem. 2003, 11, 5435-5441), markedly enhanced mu-opioid antagonism (pA2 = 8.34 and 7.71 for 21 and 22, respectively) without affecting delta-opioid activity. These data are the first evidence that a single dimeric opioid ligand containing the Dmt-Tic pharmacophore exhibits highly potent delta- and mu-opioid antagonist activities. PMID:16335927

  5. Endocytosis of the Anthrax Toxin Is Mediated by Clathrin, Actin and Unconventional Adaptors

    PubMed Central

    Abrami, Laurence; Bischofberger, Mirko; Kunz, Béatrice; Groux, Romain; van der Goot, F. Gisou

    2010-01-01

    The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a ?-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. PMID:20221438

  6. Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa.

    PubMed

    Reyes-López, Magda; Piña-Vázquez, Carolina; Serrano-Luna, Jesús

    2015-01-01

    Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites. PMID:26090431

  7. Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa

    PubMed Central

    Serrano-Luna, Jesús

    2015-01-01

    Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites. PMID:26090431

  8. The Coiled-Coil Domain of EHD2 Mediates Inhibition of LeEix2 Endocytosis and Signaling

    PubMed Central

    Bar, Maya; Sharfman, Miya; Schuster, Silvia; Avni, Adi

    2009-01-01

    Endocytosis has been suggested to be crucial for the induction of plant immunity in several cases. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and LeEix2. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD2 that are required for its inhibitory activity on endocytosis remained unknown. In this work we demonstrate that the coiled-coil domain of EHD2 is crucial for the ability of EHD2 to inhibit endocytosis in plants, as mutant EHD2 forms lacking the coiled-coil lost the ability to inhibit endocytosis and signaling of LeEix2. The coiled-coil was also required for binding of EHD2 to the LeEix2 receptor. It is therefore probable that binding of EHD2 to the LeEix2 receptor is required for inhibition of LeEix2 internalization. We also show herein that the P-loop of EHD2 is important for EHD2 to function properly. The EH domain of AtEHD2 does not appear to be involved in inhibition of endocytosis. Moreover, AtEHD2 influences actin organization and may exert its inhibitory effect on endocytosis through actin re-distribution. The coiled-coil domain of EHD2 functions in inhibition of endocytosis, while the EH domain does not appear to be involved in inhibition of endocytosis. PMID:19936242

  9. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells.

    PubMed

    Anas, Abdulaziz; Okuda, Tetsuya; Kawashima, Nagako; Nakayama, Kenichi; Itoh, Tamitake; Ishikawa, Mitsuru; Biju, Vasudevanpillai

    2009-08-25

    Efficient intracellular delivery of quantum dots (QDs) and unravelling the mechanism underlying the intracellular delivery are essential for advancing the applications of QDs toward in vivo imaging and therapeutic interventions. Here, we show that clathrin-mediated endocytosis is the most important pathway for the intracellular delivery of peptide-conjugated QDs. We selected an insect neuropeptide, namely, allatostatin (AST1, APSGAQRLYG FGL-NH(2)), conjugated it with CdSe-ZnS QDs, and investigated the intracellular delivery of the conjugate in living cells such as human epidermoid ovarian carcinoma cells (A431) and mouse embryonic fibroblast cells (3T3). We selected AST1 to investigate the intracellular delivery of QDs because we recently found it to be efficient for delivering QDs in living mammalian cells. Also, the receptors of AST1 in insects show functional and sequence similarity to G-protein-coupled galanin receptors in mammals. We employed flow cytometry and fluorescence microscopy and investigated the contributions of clathrin-mediated endocytosis, receptor-mediated endocytosis, and charge-based cell penetration or transduction to the intracellular delivery of QD-AST1 conjugates. Interestingly, the intracellular delivery was suppressed by approximately 57% when we inhibited the regulatory enzyme phosphoinositide 3-kinase (PI3K) with wortmannin and blocked the formation of clathrin-coated vesicles. In parallel, we investigated clathrin-mediated endocytosis by colocalizing QD560-labeled clathrin heavy-chain antibody and QD605-AST1. We also estimated galanin receptor-mediated endocytosis of QD-AST1 at <10% by blocking the cells with a galanin antagonist and transduction at <30% by both removing the charge of the peptide due to arginine and suppressing the cell-surface charge due to glycosaminoglycan. In short, the current work shows that multiple pathways are involved in the intracellular delivery of peptide-conjugated QDs, among which clathrin-mediated endocytosis is the most important. PMID:19653641

  10. A hyaluronan receptor for endocytosis (HARE) link domain N-glycan is required for extracellular signal-regulated kinase (ERK) and nuclear factor-?B (NF-?B) signaling in response to the uptake of hyaluronan but not heparin, dermatan sulfate, or acetylated low density lipoprotein (LDL).

    PubMed

    Pandey, Madhu S; Weigel, Paul H

    2014-08-01

    The human hyaluronan (HA) receptor for endocytosis (HARE; the 190-kDa C terminus of Stab2) is a major clearance receptor for multiple circulating ligands including HA, heparin (Hep), acetylated LDL (AcLDL), dermatan sulfate (DS), apoptotic debris, and chondroitin sulfate types A, C, D, and E. We previously found that HARE contains an N-glycan in the HA binding Link domain (at Asn(2280)), and cells expressing membrane-bound HARE(N2280A) bind and endocytose HA normally (Harris, E. N., Parry, S., Sutton-Smith, M., Pandey, M. S., Panico, M., Morris, H. R., Haslam, S. M., Dell, A., and Weigel, P. H. (2010) Glycobiology 20, 991-1001). Also, NF-?B-mediated signaling is activated by HARE-mediated endocytosis of HA, Hep, AcLDL, or DS but not by chondroitin sulfates (Pandey, M. S., and Weigel, P. H. (2014) J. Biol. Chem. 289, 1756-1767). Here we investigated the role of Link N-glycans in ligand uptake and NF-?B and ERK1/2 signaling. HA·HARE-mediated ERK1/2 activation was HA size- dependent, as found for NF-?B activation. HARE(N2280A) cells internalized HA, Hep, AcLDL, and DS normally. No ERK1/2 activation occurred during HA endocytosis by HARE(N2280A) cells, but activation did occur with Hep. Dual-luciferase recorder assays showed that NF-?B-mediated gene expression occurred normally in HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but did not occur with HA. Activation of NF-?B by endogenous degradation of I?B-? was observed for HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but not HA. We conclude that a Link domain complex N-glycan is required specifically for HARE·HA-mediated activation of ERK1/2 and NF-?B-mediated gene expression and that this initial activation mechanism is different from and independent of the initial mechanisms for HARE-mediated signaling in response to Hep, AcLDL, or DS uptake. PMID:24942734

  11. Opioid receptors and legal highs: Salvia divinorum and Kratom.

    PubMed

    Babu, Kavita M; McCurdy, Christopher R; Boyer, Edward W

    2008-02-01

    Salvia divinorum and Mitragyna speciosa ("Kratom"), two unscheduled dietary supplements whose active agents are opioid receptor agonists, have discrete psychoactive effects that have contributed to their increasing popularity. Salvia divinorum contains the highly selective kappa- opioid receptor agonist salvinorin A; this compound produces visual hallucinations and synesthesia. Mitragynine, the major alkaloid identified from Kratom, has been reported as a partial opioid agonist producing similar effects to morphine. An interesting minor alkaloid of Kratom, 7-hydroxymitragynine, has been reported to be more potent than morphine. Both Kratom alkaloids are reported to activate supraspinal mu- and delta- opioid receptors, explaining their use by chronic narcotics users to ameliorate opioid withdrawal symptoms. Despite their widespread Internet availability, use of Salvia divinorum and Kratom represents an emerging trend that escapes traditional methods of toxicologic monitoring. The purpose of this article is to familiarize toxicologists and poison control specialists with these emerging psychoactive dietary supplements. PMID:18259963

  12. Spatial encoding of cyclic AMP signalling specificity by GPCR endocytosis

    PubMed Central

    Tsvetanova, Nikoleta G.; von Zastrow, Mark

    2014-01-01

    G protein-coupled receptors (GPCRs) are well known to signal via cyclic AMP (cAMP) production at the plasma membrane, but it is now clear that various GPCRs also signal after internalization. Apart from its temporal impact through prolonging the cellular response, does the endosome-initiated signal encode any discrete spatial information? Using the beta2-adrenoceptor (?2-AR) as a model, we show that endocytosis is required for the full repertoire of downstream cAMP-dependent transcriptional control. Next, we describe an orthogonal optogenetic approach to definitively establish that the location of cAMP production is indeed the critical variable determining the transcriptional response. Finally, our results suggest that this spatial encoding scheme helps cells functionally discriminate chemically distinct ?2-AR ligands according to differences in their ability to promote receptor endocytosis. These findings reveal a discrete principle for achieving cellular signalling specificity, based on endosome-mediated spatial encoding of intracellular second messenger production and ‘location aware’ downstream transcriptional control. PMID:25362359

  13. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal ?-catenin/Armadillo

    PubMed Central

    Gagliardi, Maria; Hernandez, Ana; McGough, Ian J.; Vincent, Jean-Paul

    2014-01-01

    ABSTRACT A key step in the canonical Wnt signalling pathway is the inhibition of GSK3?, which results in the accumulation of nuclear ?-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand–receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3? from accessing ?-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3? is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand–receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of ?-catenin upon which GSK3? normally acts. PMID:25236598

  14. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal ?-catenin/Armadillo.

    PubMed

    Gagliardi, Maria; Hernandez, Ana; McGough, Ian J; Vincent, Jean-Paul

    2014-11-15

    A key step in the canonical Wnt signalling pathway is the inhibition of GSK3?, which results in the accumulation of nuclear ?-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand-receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3? from accessing ?-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3? is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand-receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of ?-catenin upon which GSK3? normally acts. PMID:25236598

  15. Rapid endocytosis of interleukin-15 by cerebral endothelia.

    PubMed

    Stone, Kirsten P; Kastin, Abba J; Hsuchou, Hung; Yu, Chuanhui; Pan, Weihong

    2011-02-01

    Interleukin (IL)-15 receptors are present in the cerebral endothelia composing the blood-brain barrier where they show robust up-regulation by neuroinflammation. To determine how IL15 receptor subunits participate in the endocytosis and intracellular trafficking of IL15, we performed confocal microscopic imaging and radioactive tracer uptake assays in primary brain microvessel endothelial cells and related cell lines transfected with modulatory molecules. By immunostaining and co-localization studies with organelle markers, we showed that IL15 was rapidly endocytosed via lipid rafts and was directed to diverse intracellular pathways. During the course of intracellular trafficking, Alexa dye-conjugated IL15 was partially co-localized with both the specific receptor IL15R? and the co-receptor IL2R?. However, deletion of one of the receptor subunits had only a minor effect in slowing IL15 uptake when primary brain microvessel endothelial cells from the receptor knockout mice were compared with those from wildtype mice. IL15 was trafficked to early, recycling, and late endosomes, to the Golgi, and to lysosomes. The diffuse distribution suggests that IL15 activates multiple endothelial signaling events. PMID:21155807

  16. Regulatory mechanisms of dynamin-dependent endocytosis.

    PubMed

    Takei, Kohji; Yoshida, Yumi; Yamada, Hiroshi

    2005-03-01

    Extensive studies on endocytosis in the last decade have resulted in identification of several key molecules that function in clathrin- and dynamin-dependent endocytosis. Most endocytic molecules contain multiple binding motifs that mediate protein-protein or protein-lipid interactions, which must be modulated spatially and temporally during endocytosis. Regulation of these interactions is the molecular basis of regulatory mechanisms involved in endocytosis. This review first describes current models of the mechanism of dynamin-dependent fission, then introduces several mechanisms that modulate dynamin GTPase activity and dynamin-dependent vesicle formation. Such mechanisms include regulation by inositol phospholipids, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)], and their metabolism. It concludes by describing the regulation of dynamin 1 by its binding partner, amphiphysin 1, and regulation by cyclin-dependent kinase 5 (Cdk5)-dependent phosphorylation of dynamin 1 and amphiphysin 1. These mechanisms help endocytic molecules to function properly, and cooperatively regulate dynamin-dependent endocytosis. PMID:15809324

  17. Ultrafast endocytosis at mouse hippocampal synapses

    PubMed Central

    Watanabe, Shigeki; Davis, M. Wayne; Söhl-Kielczynski, Berit; Rosenmund, Christian; Jorgensen, Erik M.

    2014-01-01

    To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated ~20 s after fusion by the assembly of clathrin scaffolds or in ~1 s by the reversal of fusion pores via ‘kiss-and-run’ endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy – ‘flash-and-freeze’ electron microscopy. Docked vesicles fuse and collapse into the membrane within 30 ms of the stimulus. Compensatory endocytosis occurs with 50-100 ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover it is 200-fold faster than clathrin-mediated endocytosis. It is likely that ‘ultrafast endocytosis’ is specialized to rapidly restore the surface area of the membrane. PMID:24305055

  18. Blocking endocytosis in Drosophila's circadian pacemaker neurons interferes with the endogenous clock in a PDF-dependent way.

    PubMed

    Wülbeck, Corinna; Grieshaber, Eva; Helfrich-Förster, Charlotte

    2009-10-01

    The neuropeptide pigment-dispersing factor (PDF) plays an essential role in the circadian clock of the fruit fly Drosophila melanogaster, but many details of PDF signaling in the clock network are still unknown. We tried to interfere with PDF signaling by blocking the GTPase Shibire in PDF neurons. Shibire is an ortholog of the mammalian Dynamins and is essential for endocytosis of clathrin-coated vesicles at the plasma membrane. Such endocytosis is used for neurotransmitter reuptake by presynaptic neurons, which is a prerequisite of synaptic vesicle recycling, and receptor-mediated endocytosis in the postsynaptic neuron, which leads to signal termination. By blocking Shibire function via overexpression of a dominant negative mutant form of Shibire in PDF neurons, we slowed down the behavioral rhythm by 3 h. This effect was absent in PDF receptor null mutants, indicating that we interfered with PDF receptor-mediated endocytosis. Because we obtained similar behavioral phenotypes by increasing the PDF level in regions close to PDF neurons, we conclude that blocking Shibire did prolong PDF signaling in the neurons that respond to PDF. Obviously, terminating the PDF signaling via receptor-mediated endocytosis is a crucial step in determining the period of behavioral rhythms. PMID:19916833

  19. Fluorogenic Probe for Constitutive Cellular Endocytosis

    PubMed Central

    Levine, Michael N.; Hoang, Trish T.; Raines, Ronald T.

    2013-01-01

    SUMMARY Endocytosis is a fundamental process of eukaryotic cells that is critical for nutrient uptake, signal transduction, and growth. We have developed a molecular probe to quantify endocytosis. The probe is a lipid conjugated to a fluorophore that is masked with an enzyme-activatable moiety known as the trimethyl lock. The probe is not fluorescent when incorporated into the plasma membrane of human cells but becomes fluorescent upon internalization into endosomes, where cellular esterases activate the trimethyl lock. Using this probe, we found that human breast cancer cells undergo constitutive endocytosis more rapidly than do matched noncancerous cells. These data reveal a possible phenotypic distinction of cancer cells that could be the basis for chemotherapeutic intervention. PMID:23601650

  20. Mitotic inhibition of clathrin-mediated endocytosis

    PubMed Central

    Fielding, Andrew B.; Royle, Stephen J.

    2014-01-01

    Endocytosis and mitosis are fundamental processes in a cell’s life. Nearly fifty years of research suggest that these processes are linked and that endocytosis is shut down as cells undergo the early stages of mitosis. Precisely how this occurs at a molecular level is an open question. In this review, we summarize the early work characterizing the inhibition of clathrin-mediated endocytosis and discuss recent challenges to this established concept. We also set out four proposed mechanisms for the inhibition: mitotic phosphorylation of endocytic proteins, altered membrane tension, moonlighting of endocytic proteins and a mitotic spindle-dependent mechanism. Finally, we speculate the functional consequences of endocytic shutdown during mitosis and where an understanding of the mechanism of inhibition will lead us in the future. PMID:23307073

  1. 3D modeling, ligand binding and activation studies of the cloned mouse delta, mu; and kappa opioid receptors.

    PubMed

    Filizola, M; Laakkonen, L; Loew, G H

    1999-11-01

    Refined 3D models of the transmembrane domains of the cloned delta, mu and kappa opioid receptors belonging to the superfamily of G-protein coupled receptors (GPCRs) were constructed from a multiple sequence alignment using the alpha carbon template of rhodopsin recently reported. Other key steps in the procedure were relaxation of the 3D helix bundle by unconstrained energy optimization and assessment of the stability of the structure by performing unconstrained molecular dynamics simulations of the energy optimized structure. The results were stable ligand-free models of the TM domains of the three opioid receptors. The ligand-free delta receptor was then used to develop a systematic and reliable procedure to identify and assess putative binding sites that would be suitable for similar investigation of the other two receptors and GPCRs in general. To this end, a non-selective, 'universal' antagonist, naltrexone, and agonist, etorphine, were used as probes. These ligands were first docked in all sites of the model delta opioid receptor which were sterically accessible and to which the protonated amine of the ligands could be anchored to a complementary proton-accepting residue. Using these criteria, nine ligand-receptor complexes with different binding pockets were identified and refined by energy minimization. The properties of all these possible ligand-substrate complexes were then examined for consistency with known experimental results of mutations in both opioid and other GPCRs. Using this procedure, the lowest energy agonist-receptor and antagonist-receptor complexes consistent with these experimental results were identified. These complexes were then used to probe the mechanism of receptor activation by identifying differences in receptor conformation between the agonist and the antagonist complex during unconstrained dynamics simulation. The results lent support to a possible activation mechanism of the mouse delta opioid receptor similar to that recently proposed for several other GPCRs. They also allowed the selection of candidate sites for future mutagenesis experiments. PMID:10585498

  2. METHODS TO QUANTIFY ENDOCYTOSIS: A REVIEW

    EPA Science Inventory

    Endocytosis is a process whereby extracellular matter is transported in bulk to the cell's interior. To accomplish this the cell extends portions of the plasma membrane which surround the mass to be ingested. As these cytoplasmic projections meet, they fuse. The endocytic vacuole...

  3. Synthesis and evaluation of 4-substituted piperidines and piperazines as balanced affinity ? opioid receptor (MOR) agonist/? opioid receptor (DOR) antagonist ligands.

    PubMed

    Bender, Aaron M; Clark, Mary J; Agius, Michael P; Traynor, John R; Mosberg, Henry I

    2014-01-15

    In this letter, we describe a series of 4-substituted piperidine and piperazine compounds based on tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing the length and flexibility profile of the side chain in this position, binding affinity is improved at both receptors by a significant degree. Furthermore, several of the compounds described herein display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by selective MOR agonists, namely the development of dependence and tolerance. PMID:24365161

  4. Proneurotrophins require endocytosis and intracellular proteolysis to induce TrkA activation.

    PubMed

    Boutilier, Jacqueline; Ceni, Claire; Pagdala, Promila C; Forgie, Alison; Neet, Kenneth E; Barker, Philip A

    2008-05-01

    The uncleaved, pro-form of nerve growth factor (proNGF) functions as a pro-apoptotic ligand for the p75 neurotrophin receptor (p75NTR). However, some reports have indicated that proneurotrophins bind and activate Trk receptors. In this study, we have examined proneurotrophin receptor binding and activation properties in an attempt to reconcile these findings. We show that proNGF readily binds p75NTR expressed in HEK293T cells but does not interact with TrkA expressed under similar circumstances. Importantly, proNGF activates TrkA tyrosine phosphorylation, induces Erk and Akt activation, and causes PC12 cell differentiation. We show that inhibiting endocytosis or furin activity reduced TrkA activation induced by proNGF but not that induced by mature NGF and that proNGF123, a mutant form of NGF lacking dibasic cleavage sites in the prodomain, does not induce TrkA phosphorylation in PC12 cells. Therefore, endocytosis and cleavage appear to be prerequisites for proNGF-induced TrkA activity. We also found that proBDNF induces activation of TrkB in cerebellar granule neurons and that proBDNF cleavage by furin and metalloproteases facilitates this effect. Taken together, these data indicate that under physiological conditions, proneurotrophins do not directly bind or activate Trk receptors. However, endocytosis and cleavage of proneurotrophins produce processed forms of neurotrophins that are capable of inducing Trk activation. PMID:18299325

  5. Hyaluronic acid binding, endocytosis and degradation by sinusoidal liver endothelial cells

    SciTech Connect

    McGary, C.T.

    1988-01-01

    The binding, endocytosis, and degradation of {sup 125}I-hyaluronic acid ({sup 125}I-HA) by liver endothelial cells (LEC) was studied under several conditions. The dissociation of receptor-bound {sup 125}I-HA was rapid, with a half time of {approx}31 min and a K{sub off} of 6.3 {times} 10{sup {minus}4}/sec. A large reversible increase in {sup 125}I-HA binding to LEC at pH 5.0 was due to an increase in the observed affinity of the binding interaction. Pronase digestion suggested the protein nature of the receptor and the intracellular location of the digitonin exposed binding activity. Binding and endocytosis occur in the presence of 10 mM EGTA indicating that divalent cations are not required for receptor function. To study the degradation of {sup 125}I-HA by LEC, a cetylpyridinium chloride (CPC) precipitation assay was characterized. The minimum HA length required for precipitation was elucidated. The fate of the LEC HA receptor after endocytosis was examined.

  6. Molecular Mechanisms of B Cell Antigen Gathering and Endocytosis.

    PubMed

    Hoogeboom, Robbert; Tolar, Pavel

    2016-01-01

    Generation of high-affinity, protective antibodies requires B cell receptor (BCR) signaling, as well as antigen internalization and presentation to helper T cells. B cell antigen internalization is initiated by antigen capture, either from solution or from immune synapses formed on the surface of antigen-presenting cells, and proceeds via clathrin-dependent endocytosis and intracellular routing to late endosomes. Although the components of this pathway are still being discovered, it has become clear that antigen internalization is actively regulated by BCR signaling at multiple steps and, vice versa, that localization of the BCR along the endocytic pathway modulates signaling. Accordingly, defects in BCR internalization or trafficking contribute to enhanced B cell activation in models of autoimmune diseases and in B cell lymphomas. In this review, we discuss how BCR signaling complexes regulate each of the steps of this endocytic process and why defects along this pathway manifest as hyperactive B cell responses in vivo. PMID:26336965

  7. Evidence for carbohydrate-independent endocytosis of tissue-type plasminogen activator by liver cells.

    PubMed Central

    Stang, E; Roos, N; Schlüter, M; Berg, T; Krause, J

    1992-01-01

    In the liver, tissue-type plasminogen activator (t-PA) is endocytosed by hepatic parenchymal (PC), endothelial (EC) and Kupffer (KC) cells. Although the endocytosis is receptor-mediated, it remains a matter of discussion which receptors are involved in this catabolic process. To evaluate the role of a protein-specific receptor, as well as the possible involvement of the galactose receptor on PC and the mannose receptor on EC, we have employed different glycosylation variants of t-PA in biochemical and immunocytochemical studies. Partial or total removal of carbohydrate side-chains by endoglycosidases did not prevent clearance and hepatic endocytosis of t-PA by either of the liver cell types. Blockade of the galactose and mannose receptors by co-application of a large excess of the glycoprotein ovalbumin remained without effect on the binding and uptake of t-PA by hepatic cells. However, the contribution of different liver cell types to the hepatic clearance of t-PA was to a certain extent dependent on the type of oligosaccharide chains removed. The mannose receptor on EC is partially responsible for the clearance of t-PA by this cell type, whereas the galactose receptor does not seem to be involved in this process. The results obtained in this study further demonstrate that the major portion of the hepatic catabolism of t-PA is independent of its carbohydrate side-chains. Images Fig. 4. PMID:1323274

  8. Microtubule Motors Power Plasma Membrane Tubulation in Clathrin-Independent Endocytosis

    PubMed Central

    Day, Charles A; Baetz, Nicholas W; Copeland, Courtney A; Kraft, Lewis J; Han, Bing; Tiwari, Ajit; Drake, Kimberly R; De Luca, Heidi; Chinnapen, Daniel J-F; Davidson, Michael W; Holmes, Randall K; Jobling, Michael G; Schroer, Trina A; Lencer, Wayne I; Kenworthy, Anne K

    2015-01-01

    How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis. PMID:25690058

  9. Enhanced endocytosis of nano-curcumin in nasopharyngeal cancer cells: An atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Prasanth, R.; Nair, Greshma; Girish, C. M.

    2011-10-01

    Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells.

  10. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis

    PubMed Central

    Dong, Zhifang; Han, Huili; Li, Hongjie; Bai, Yanrui; Wang, Wei; Tu, Man; Peng, Yan; Zhou, Limin; He, Wenting; Wu, Xiaobin; Tan, Tao; Liu, Mingjing; Wu, Xiaoyan; Zhou, Weihui; Jin, Wuyang; Zhang, Shu; Sacktor, Todd Charlton; Li, Tingyu; Song, Weihong; Wang, Yu Tian

    2014-01-01

    Long-term potentiation (LTP) of synaptic strength between hippocampal neurons is associated with learning and memory, and LTP dysfunction is thought to underlie memory loss. LTP can be temporally and mechanistically classified into decaying (early-phase) LTP and nondecaying (late-phase) LTP. While the nondecaying nature of LTP is thought to depend on protein synthesis and contribute to memory maintenance, little is known about the mechanisms and roles of decaying LTP. Here, we demonstrated that inhibiting endocytosis of postsynaptic ?-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) prevents LTP decay, thereby converting it into nondecaying LTP. Conversely, restoration of AMPAR endocytosis by inhibiting protein kinase M? (PKM?) converted nondecaying LTP into decaying LTP. Similarly, inhibition of AMPAR endocytosis prolonged memory retention in normal animals and reduced memory loss in a murine model of Alzheimer’s disease. These results strongly suggest that an active process that involves AMPAR endocytosis mediates the decay of LTP and that inhibition of this process can prolong the longevity of LTP as well as memory under both physiological and pathological conditions. PMID:25437879

  11. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    PubMed Central

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  12. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  13. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability

    PubMed Central

    Pang, Hong-Bo; Braun, Gary B.; Friman, Tomas; Aza-Blanc, Pedro; Ruidiaz, Manuel E.; Sugahara, Kazuki N.; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    Neuropilins (NRPs) are trans-membrane receptors involved in axon guidance and vascular development. Many growth factors and other signaling molecules bind to NRPs through a C-terminal, basic sequence motif (C-end Rule or CendR motif). Peptides with this motif (CendR peptides) are taken up into cells by endocytosis. Tumor-homing CendR peptides penetrate through tumor tissue and have shown utility in enhancing drug delivery into tumors. Here we show, using RNAi screening and subsequent validation studies, that NRP1-mediated endocytosis of CendR peptides is distinct from known endocytic pathways. Ultrastructurally, CendR endocytosis resembles macropinocytosis, but is mechanistically different. We also show that nutrient-sensing networks such as mTOR signaling regulate CendR endocytosis and subsequent intercellular transport of CendR cargo, both of which are stimulated by nutrient depletion. As CendR is a bulk transport pathway, our results suggest a role for it in nutrient transport; CendR-enhanced drug delivery then makes use of this natural pathway. PMID:25277522

  14. Multiscale perspectives of virus entry via endocytosis

    PubMed Central

    2013-01-01

    Most viruses take advantage of endocytic pathways to gain entry into host cells and initiate infections. Understanding of virus entry via endocytosis is critically important for the design of antiviral strategies. Virus entry via endocytosis is a complex process involving hundreds of cellular proteins. The entire process is dictated by events occurring at multiple time and length scales. In this review, we discuss and evaluate the available means to investigate virus endocytic entry, from both experimental and theoretical/numerical modeling fronts, and highlight the importance of multiscale features. The complexity of the process requires investigations at a systems biology level, which involves the combination of different experimental approaches, the collaboration of experimentalists and theorists across different disciplines, and the development of novel multiscale models. PMID:23734580

  15. Endocytosis of glycosylphosphatidylinositol-anchored proteins

    PubMed Central

    2009-01-01

    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies. PMID:19832981

  16. Shank2 Regulates Renal Albumin Endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Lewis, Linda; Doctor, R Brian; Okamura, Kayo; Lee, Min Goo; Altmann, Christopher; Faubel, Sarah; Kopp, Jeffrey B; Blaine, Judith

    2015-01-01

    Albuminuria is a strong and independent predictor of kidney disease progression but the mechanisms of albumin handling by the kidney remain to be fully defined. Previous studies have shown that podocytes endocytose albumin. Here we demonstrate that Shank2, a large scaffolding protein originally identified at the neuronal postsynaptic density, is expressed in podocytes in vivo and in vitro and plays an important role in albumin endocytosis in podocytes. Knockdown of Shank2 in cultured human podocytes decreased albumin uptake, but the decrease was not statistically significant likely due to residual Shank2 still present in the knockdown podocytes. Complete knockout of Shank2 in podocytes significantly diminished albumin uptake in vitro. Shank2 knockout mice develop proteinuria by 8 weeks of age. To examine albumin handling in vivo in wild-type and Shank2 knockout mice we used multiphoton intravital imaging. While FITC-labeled albumin was rapidly seen in the renal tubules of wild-type mice after injection, little albumin was seen in the tubules of Shank2 knockout mice indicating dysregulated renal albumin trafficking in the Shank2 knockouts. We have previously found that caveolin-1 is required for albumin endocytosis in cultured podocytes. Shank2 knockout mice had significantly decreased expression and altered localization of caveolin-1 in podocytes suggesting that disruption of albumin endocytosis in Shank2 knockouts is mediated via caveolin-1. In summary, we have identified Shank2 as another component of the albumin endocytic pathway in podocytes. PMID:26333830

  17. Molecular characterization of opioid receptors

    SciTech Connect

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  18. Opioid receptors in the gastrointestinal tract.

    PubMed

    Holzer, Peter

    2009-06-01

    Opium is arguably one of the oldest herbal medicines, being used as analgesic, sedative and antidiarrheal drug for thousands of years. These effects mirror the actions of the endogenous opioid system and are mediated by the principal mu-, kappa- and delta-opioid receptors. In the gut, met-enkephalin, leu-enkephalin, beta-endorphin and dynorphin occur in both neurons and endocrine cells. When released, opioid peptides activate opioid receptors on the enteric circuitry controlling motility and secretion. As a result, inhibition of gastric emptying, increase in sphincter tone, induction of stationary motor patterns and blockade of peristalsis ensue. Together with inhibition of ion and fluid secretion, these effects cause constipation, one of the most frequent and troublesome adverse reactions of opioid analgesic therapy. Although laxatives are most frequently used to ameliorate opioid-induced bowel dysfunction, their efficacy is unsatisfactory. Specific antagonism of peripheral opioid receptors is a more rational approach. This goal is addressed by the use of opioid receptor antagonists with limited absorption such as oral prolonged-release naloxone and opioid receptor antagonists that do not penetrate the blood-brain barrier such as methylnaltrexone and alvimopan. Preliminary evidence indicates that peripherally restricted opioid receptor antagonists may act as prokinetic drugs in their own right. PMID:19345246

  19. Postnatal development of opioid receptors modulating acetylcholine release in hippocampus and septum of the rat.

    PubMed

    Gazyakan, E; Disko, U; Haaf, A; Heimrich, B; Jackisch, R

    2000-10-28

    The postnatal development of presynaptic opioid receptors inhibiting the release of acetylcholine (ACh) was studied in rat brain hippocampus, medial septum (MS) and diagonal band of Broca (DB). To this end, the corresponding brain slices (350 microm thick) of rats of various postnatal ages (postnatal day 4 [P4] to P16, and adult) were preincubated with [(3)H]choline and stimulated twice for 2 min (S(1), S(2): at 3 Hz, 2 ms, 60 mA) during superfusion with physiological buffer containing hemicholinium-3. In parallel, the activity of choline acetyltransferase (ChAT) was determined in crude homogenates of the tissues as a marker for the development of cholinergic neurons. At any postnatal age, the electrically evoked overflow of tritium from slices preincubated with [(3)H]choline was highest in the DB, followed by the MS and the hippocampus. The evoked [(3)H]overflow increased with postnatal age, reached about 50% (MS, DB) or 30% (hippocampus) of the corresponding adult levels at P16 and correlated significantly with the corresponding ChAT activities. Presence of the preferential mu-opioid receptor agonist DAMGO during S(2) significantly inhibited the evoked overflow of tritium already at P4 in DB and MS, whereas in the hippocampus significant inhibitory effects were first observed at P8 only. Moreover, adult levels of inhibition due to DAMGO were reached at P16 in the DB and MS but not in the hippocampus. In septal areas, also the effect of the preferential delta-opioid receptor agonist DPDPE on the evoked [(3)H]overflow was studied: in contrast to DAMGO, however, significant inhibitory effects of DPDPE were first observed at P12 only. In conclusion, the postnatal development of presynaptic mu-opioid receptors on cholinergic neurons in the DB and MS starts earlier than in the hippocampus and precedes that of presynaptic delta-opioid receptors. PMID:11042342

  20. Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition.

    PubMed

    Sun, Congshan; Velazquez, Miguel A; Marfy-Smith, Stephanie; Sheth, Bhavwanti; Cox, Andy; Johnston, David A; Smyth, Neil; Fleming, Tom P

    2014-03-01

    Mammalian extra-embryonic lineages perform the crucial role of nutrient provision during gestation to support embryonic and fetal growth. These lineages derive from outer trophectoderm (TE) and internal primitive endoderm (PE) in the blastocyst and subsequently give rise to chorio-allantoic and visceral yolk sac placentae, respectively. We have shown maternal low protein diet exclusively during mouse preimplantation development (Emb-LPD) is sufficient to cause a compensatory increase in fetal and perinatal growth that correlates positively with increased adult-onset cardiovascular, metabolic and behavioural disease. Here, to investigate early mechanisms of compensatory nutrient provision, we assessed the influence of maternal Emb-LPD on endocytosis within extra-embryonic lineages using quantitative imaging and expression of markers and proteins involved. Blastocysts collected from Emb-LPD mothers within standard culture medium displayed enhanced TE endocytosis compared with embryos from control mothers with respect to the number and collective volume per cell of vesicles with endocytosed ligand and fluid and lysosomes, plus protein expression of megalin (Lrp2) LDL-family receptor. Endocytosis was also stimulated using similar criteria in the outer PE-like lineage of embryoid bodies formed from embryonic stem cell lines generated from Emb-LPD blastocysts. Using an in vitro model replicating the depleted amino acid (AA) composition found within the Emb-LPD uterine luminal fluid, we show TE endocytosis response is activated through reduced branched-chain AAs (leucine, isoleucine, valine). Moreover, activation appears mediated through RhoA GTPase signalling. Our data indicate early embryos regulate and stabilise endocytosis as a mechanism to compensate for poor maternal nutrient provision. PMID:24504338

  1. Integrin alphavbeta3-mediated endocytosis of immobilized fibrinogen by A549 lung alveolar epithelial cells.

    PubMed

    Odrljin, T M; Haidaris, C G; Lerner, N B; Simpson-Haidaris, P J

    2001-01-01

    Fibrinogen (FBG), together with its polymerized form fibrin, modulates cellular responses during wound repair and tissue remodeling. Thus, we sought to determine whether A549 lung epithelial type II-like cells would endocytose insoluble, surface-bound FBG as a potential mechanism of alveolar matrix remodeling. Surface-bound FBG was endocytosed into either lysosomes or late endosomes by A549 cells through arg-gly-asp-dependent binding to alphavbeta3 but not alpha5beta1 integrin receptors. Soluble FBG added to confluent monolayers of A549 cells was not endocytosed. Unlike the uptake of the extracellular matrix glycoproteins vitronectin and thrombospondin by other cell types, endocytosis of FBG by A549 cells was neither inhibited by heparin nor dependent on binding to cell-surface heparan sulfate proteoglycans. FBG did not colocalize with endocytosed transferrin, whereas dextran showed partial colocalization with FBG in endocytic vesicles, suggesting nonclathrin-mediated endocytosis. Inhibition of actin filament polymerization blocked endocytosis of both dextran and FBG but not transferrin, providing further support that FBG is endocytosed via a nonclathrin pathway. Disruption of actin polymerization inhibited integrin-mediated cell spreading, which contributed to an overall reduction in FBG clearance that was most likely due to reduced cell migration and associated pericellular proteolysis. Trasylol inhibition of extracellular plasmin activity did not inhibit endocytosis of FBG. The endocytosed FBG was degraded to trichloroacetic acid-soluble fragments that showed an electrophoretic pattern distinctly different from plasmin-degraded FBG. Together, these results suggest that endocytosis of matrix-associated FBG by alveolar epithelial cells may be involved in the processes of alveolar tissue repair and matrix remodeling. PMID:11152645

  2. Rift Valley Fever Virus Strain MP-12 Enters Mammalian Host Cells via Caveola-Mediated Endocytosis

    PubMed Central

    Harmon, Brooke; Schudel, Benjamin R.; Maar, Dianna; Kozina, Carol; Ikegami, Tetsuro; Tseng, Chien-Te Kent

    2012-01-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis. PMID:22993156

  3. LRP1 mediates Hedgehog-induced endocytosis of the GPC3–Hedgehog complex

    PubMed Central

    Capurro, Mariana I.; Shi, Wen; Filmus, Jorge

    2013-01-01

    Summary Glypican-3 (GPC3) is a heparan sulfate (HS) proteoglycan that is bound to the cell membrane through a glycosylphosphatidylinositol link. This glypican regulates embryonic growth by inhibiting the hedgehog (Hh) signaling pathway. GPC3 binds Hh and competes with Patched (Ptc), the Hh receptor, for Hh binding. The interaction of Hh with GPC3 triggers the endocytosis and degradation of the GPC3–Hh complex with the consequent reduction of Hh available for binding to Ptc. Currently, the molecular mechanisms by which the GPC3–Hh complex is internalized remains unknown. Here we show that the low-density-lipoprotein receptor-related protein-1 (LRP1) mediates the Hh-induced endocytosis of the GPC3–Hh complex, and that this endocytosis is necessary for the Hh-inhibitory activity of GPC3. Furthermore, we demonstrate that GPC3 binds through its HS chains to LRP1, and that this interaction causes the removal of GPC3 from the lipid rafts domains. PMID:22467855

  4. Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Models

    PubMed Central

    Anand, Jessica P.; Purington, Lauren C.; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I.

    2012-01-01

    Mu opioid receptor (MOR) agonists are widely used for the treatment of pain; however chronic use results in the development of tolerance and dependence. It has been demonstrated that co-administration of a MOR agonist with a delta opioid receptor (DOR) antagonist maintains the analgesia associated with MOR agonists, but with reduced negative side effects. Using our newly refined opioid receptor models for structure-based ligand design, we have synthesized several pentapeptides with tailored affinity and efficacy profiles. In particular, we have obtained pentapeptides 8, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]NH2, and 12, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]OH, which demonstrates high affinity and full agonist behavior at MOR, high affinity but very low efficacy for DOR, and minimal affinity for the kappa opioid receptor (KOR). Functional properties of these peptides as MOR agonists/DOR antagonists lacking undesired KOR activity make them promising candidates for future in vivo studies of MOR/DOR interactions. Subtle structural variation of 12, by substituting D-Cys5 for L-Cys5, generated analog 13 which maintains low nanomolar MOR and DOR affinity, but which displays no efficacy at either receptor. These results demonstrate the power and utility of accurate receptor models for structure-based ligand design, as well as the profound sensitivity of ligand function on its structure. PMID:22882801

  5. Cell mobility after endocytosis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pirbhai, Massooma; Flores, Thomas; Jedlicka, Sabrina; Rotkin, Slava

    2013-03-01

    Directed cell movement plays a crucial role in cellular behaviors such as neuronal cell division, cell migration, and cell differentiation. There is evidence in preclinical in vivo studies that small fields have successfully been used to enhance regrowth of damages spinal cord axons but with a small success rate. Fortunately, the evolution of functional biomaterials and nanotechnology may provide promising solutions for enhancing the application of electric fields in guiding neuron migration and neurogenesis within the central nervous system. In this work, we studied how endocytosis and subsequent retention of carbon nanotubes affects the mobility of cells under the influence of an electric field, including the directed cell movement.

  6. Nanomechanics of magnetically driven cellular endocytosis

    NASA Astrophysics Data System (ADS)

    Zablotskii, V.; Lunov, O.; Dejneka, A.; Jastrabík, L.; Polyakova, T.; Syrovets, T.; Simmet, Th.

    2011-10-01

    Being essential for many pharmacodynamic and pharmacokinetic processes and playing a crucial role in regulating substrate detachment that enables cellular locomotion, endocytotic mechanisms in many aspects still remain a mystery and therefore can hardly be controlled. Here, we report on experimental and modeling studies of the magnetically assisted endocytosis of functionalized superparamagnetic iron oxide nanoparticles by prostate cancer cells (PC-3) and characterize the time and force scales of the cellular uptake machinery. The results indicate how the cellular uptake rate could be controlled by applied magnetic field, membrane elasticity, and nanoparticle magnetic moment.

  7. Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice.

    PubMed

    Thongpradichote, S; Matsumoto, K; Tohda, M; Takayama, H; Aimi, N; Sakai, S; Watanabe, H

    1998-01-01

    Mitragynine (MG), a major alkaloidal constituent extracted from the plant Mitragyna speciosa Korth, is known to exert an opioid-like activity. Our previous study showed the involvement of opioid systems in the antinociceptive activity of MG in the tail-pinch and hot-plate tests in mice. In the present study, to clarify the opioid receptor subtypes involved in the antinociceptive action of MG, we investigated the effects of selective antagonists for mu-, delta- and kappa- opioid receptors on antinociception caused by the intracerebroventricular (i.c.v.) injection of MG in the tail-pinch and hot-plate tests in mice. The coadministration of a selective mu-opioid antagonist, cyprodime (1-10 microg, i.c.v.) and the pretreatment with a selective mu1-opioid antagonist naloxonazine (1-3 microg, i.c.v.) significantly antagonized the antinociceptive activities of MG (10 microg, i.c.v.) and morphine (MOR, 3 microg, i.c.v.) in the tail-pinch and hot-plate tests. Naltrindole (1-5 ng, i.c.v.), a selective delta-opioid antagonist, also blocked the effects of MG (10 microg, i.c.v.) without affecting MOR (3 microg, i.c.v.) antinociception. Nor-binaltorphimine, a selective kappa-opioid antagonist, significantly attenuated MG (10 microg, i.c.v.) antinociception in the tail-pinch test but not in the hot-plate test at the dose (1 microg, i.c.v.) that antagonized the antinociceptive effects of the selective kappa-opioid agonist U50,488H in both tests, while it had no effect on MOR antinociception in either tests. These results suggest that antinociception caused by i.c.v. MG is dominantly mediated by mu- and delta-opioid receptor subtypes, and that the selectivity of MG for the supraspinal opioid receptor subtypes differs from that of MOR in mice. PMID:9585164

  8. Dynamic spectrin/ankyrin-G microdomains promote lateral membrane assembly by opposing endocytosis

    PubMed Central

    Jenkins, Paul M.; He, Meng; Bennett, Vann

    2015-01-01

    Current physical models for plasma membranes emphasize dynamic 10- to 300-nm compartments at thermodynamic equilibrium but subject to thermal fluctuations. However, epithelial lateral membranes contain micrometer-sized domains defined by an underlying membrane skeleton composed of spectrin and its partner ankyrin-G. We demonstrate that these spectrin/ankyrin-G domains exhibit local microtubule-dependent movement on a time scale of minutes and encounter most of the lateral membranes within an hour. Spectrin/ankyrin-G domains exclude clathrin and clathrin-dependent cargo, and inhibit both receptor-mediated and bulk endocytosis. Moreover, inhibition of endocytosis fully restores lateral membrane height in spectrin- or ankyrin-G–depleted cells. These findings support a non-equilibrium cellular-scale model for epithelial lateral membranes, where spectrin/ankyrin-G domains actively patrol the plasma membrane, analogous to “window washers,” and promote columnar morphology by blocking membrane uptake. PMID:26523289

  9. Selective integrin endocytosis is driven by interactions between the integrin ?-chain and AP2.

    PubMed

    De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna

    2016-02-01

    Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible ?-chains and one of eight possible ?-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through ? subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of ? subunits contain an evolutionarily conserved and functional Yxx? motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin ?4-tail motif in complex with the AP2 C-?2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions. PMID:26779610

  10. Dynamic spectrin/ankyrin-G microdomains promote lateral membrane assembly by opposing endocytosis.

    PubMed

    Jenkins, Paul M; He, Meng; Bennett, Vann

    2015-09-11

    Current physical models for plasma membranes emphasize dynamic 10- to 300-nm compartments at thermodynamic equilibrium but subject to thermal fluctuations. However, epithelial lateral membranes contain micrometer-sized domains defined by an underlying membrane skeleton composed of spectrin and its partner ankyrin-G. We demonstrate that these spectrin/ankyrin-G domains exhibit local microtubule-dependent movement on a time scale of minutes and encounter most of the lateral membranes within an hour. Spectrin/ankyrin-G domains exclude clathrin and clathrin-dependent cargo, and inhibit both receptor-mediated and bulk endocytosis. Moreover, inhibition of endocytosis fully restores lateral membrane height in spectrin- or ankyrin-G-depleted cells. These findings support a non-equilibrium cellular-scale model for epithelial lateral membranes, where spectrin/ankyrin-G domains actively patrol the plasma membrane, analogous to "window washers," and promote columnar morphology by blocking membrane uptake. PMID:26523289

  11. Kinetics of virus entry by endocytosis

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2015-04-01

    Entry of virions into the host cells is either endocytotic or fusogenic. In both cases, it occurs via reversible formation of numerous relatively weak bonds resulting in wrapping of a virion by the host membrane with subsequent membrane rupture or scission. The corresponding kinetic models are customarily focused on the formation of bonds and do not pay attention to the energetics of the whole process, which is crucially dependent, especially in the case of endocytosis, on deformation of actin filaments forming the cytoskeleton of the host cell. The kinetic model of endocytosis, proposed by the author, takes this factor into account and shows that the whole process can be divided into a rapid initial transient stage and a long steady-state stage. The entry occurs during the latter stage and can be described as a first-order reaction. Depending on the details of the dependence of the grand canonical potential on the number of bonds, the entry can be limited either by the interplay of bond formation and membrane rupture (or scission) or by reaching a maximum of this potential.

  12. The mu-opioid receptor subtype is required for the anorectic effect of an opioid receptor antagonist.

    PubMed

    Zhang, Jiaping; Frassetto, Andrea; Huang, Ruey-Ruey C; Lao, Julie Z; Pasternak, Alexander; Wang, Sheng-Ping; Metzger, Joseph M; Strack, Alison M; Fong, Tung M; Chen, Richard Z

    2006-09-18

    A diaryl ether derivative, (6-(4-{[(3-methylbutyl)amino]methyl}phenoxy)nicotinamide, was prepared and investigated for its biochemical properties at cloned opioid receptors and its pharmacological effects on animal feeding. The compound displaced [(3)H]DAMGO binding of human mu-opioid receptor, [(3)H]U-69593 of human kappa-opioid receptor, and [(3)H]DPDPE of human delta-opioid receptor with IC(50) values of 0.5+/-0.2 nM, 1.4+/-0.2 nM, and 71+/-15 nM, respectively. The compound also potently inhibited [(3)H]DAMGO binding of cloned mouse and rat mu-opioid receptors (IC(50) approximately 1 nM), and acted as a competitive antagonist in a cAMP functional assay using cultured cells expressing human or mouse mu-opioid receptors. Following a single oral administration in diet-induced obese mice (at 10 or 50 mg/kg) or rats (at 1, 3, or 10 mg/kg), the compound caused a dose-dependent suppression of acute food intake and body weight gain in both species. Importantly, the anorectic efficacy of the compound was mostly diminished in mice deficient in the mu-opioid receptor. Our results suggest an important role for the mu-opioid receptor subtype in animal feeding regulation and support the development of mu-selective antagonists as potential agents for treating human obesity. PMID:16876155

  13. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis

    PubMed Central

    Shen, Yi; Rosendale, Morgane

    2014-01-01

    Fluorescent proteins with pH-sensitive fluorescence are valuable tools for the imaging of exocytosis and endocytosis. The Aequorea green fluorescent protein mutant superecliptic pHluorin (SEP) is particularly well suited to these applications. Here we describe pHuji, a red fluorescent protein with a pH sensitivity that approaches that of SEP, making it amenable for detection of single exocytosis and endocytosis events. To demonstrate the utility of the pHuji plus SEP pair, we perform simultaneous two-color imaging of clathrin-mediated internalization of both the transferrin receptor and the β2 adrenergic receptor. These experiments reveal that the two receptors are differentially sorted at the time of endocytic vesicle formation. PMID:25385186

  14. Kistrin, an integrin antagonist, blocks endocytosis of fibrinogen into guinea pig megakaryocyte and platelet alpha-granules.

    PubMed Central

    Handagama, P; Bainton, D F; Jacques, Y; Conn, M T; Lazarus, R A; Shuman, M A

    1993-01-01

    Recent data indicate that megakaryocyte/platelet alpha-granule fibrinogen is endocytosed from plasma. Because fibrinogen is the major platelet protein present in high concentrations in alpha-granules, fibrinogen uptake into alpha-granules may occur via specific receptors. In that cells of the megakaryocyte/platelet lineage contain two integrins--alpha IIb beta 3 (GP IIb-IIIa) and the vitronectin receptor (alpha v beta 3)--that can bind fibrinogen, one or both of these receptors may mediate the endocytic uptake of fibrinogen. To test this hypothesis, we examined the effect of Kistrin, an RGD-containing protein purified from the venom of Agkistrodon rhodostoma that inhibits fibrinogen binding to human platelet receptors, on endocytosis of fibrinogen by megakaryocytes and platelets. Continuous intravenous infusion of kistrin into guinea pigs (200 micrograms/h) over a 24-h period inhibited collagen-induced platelet aggregation. When biotinylated fibrinogen was injected intravenously into animals receiving Kistrin, megakaryocytes failed to endocytose the labeled fibrinogen. Endocytosis of fibrinogen into platelets was also inhibited in these animals. In contrast, platelets and megakaryocytes obtained from sham-infused control animals contained the injected biotinylated fibrinogen. We conclude that, in addition to the well-known extracellular function of cell adhesion, integrins can also act as receptors that mediate endocytosis of exogenous proteins and incorporate them into regulated secretory granules. Images PMID:8423218

  15. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis.

    PubMed

    Wang, Changhe; Wang, Yeshi; Hu, Meiqin; Chai, Zuying; Wu, Qihui; Huang, Rong; Han, Weiping; Zhang, Claire Xi; Zhou, Zhuan

    2016-01-01

    Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis. PMID:26589353

  16. PLD1 regulates Xenopus convergent extension movements by mediating Frizzled7 endocytosis for Wnt/PCP signal activation.

    PubMed

    Lee, Hyeyoon; Lee, Seung Joon; Kim, Gun-Hwa; Yeo, Inchul; Han, Jin-Kwan

    2016-03-01

    Phospholipase D (PLD) is involved in the regulation of receptor-associated signaling, cell movement, cell adhesion and endocytosis. However, its physiological role in vertebrate development remains poorly understood. In this study, we show that PLD1 is required for the convergent extension (CE) movements during Xenopus gastrulation by activating Wnt/PCP signaling. Xenopus PLD1 protein is specifically enriched in the dorsal region of Xenopus gastrula embryo and loss or gain-of-function of PLD1 induce defects in gastrulation and CE movements. These defective phenotypes are due to impaired regulation of Wnt/PCP signaling pathway. Biochemical and imaging analysis using Xenopus tissues reveal that PLD1 is required for Fz7 receptor endocytosis upon Wnt11 stimulation. Moreover, we show that Fz7 endocytosis depends on dynamin and regulation of GAP activity of dynamin by PLD1 via its PX domain is crucial for this process. Taken together, our results suggest that PLD1 acts as a new positive mediator of Wnt/PCP signaling by promoting Wnt11-induced Fz7 endocytosis for precise regulation of Xenopus CE movements. PMID:26806705

  17. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    PubMed

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself. PMID:23969180

  18. Effects of mitragynine on cAMP formation mediated by delta-opiate receptors in NG108-15 cells.

    PubMed

    Tohda, M; Thongpraditchote, S; Matsumoto, K; Murakami, Y; Sakai, S; Aimi, N; Takayama, H; Tongroach, P; Watanabe, H

    1997-04-01

    Mitragynine, a major constituent of the young leaves of Mitragyna speciosa KORTH., has been reported to exert antinociceptive activity in mice. To determine the mechanism the influence of mitragynine on cAMP content was measured in NG108-15 cells which possess delta opioid receptors and alpha 2B-adrenoceptors. Mitragynine inhibited the forskolin-stimulated cAMP content in a concentration dependent manner as well as morphine and noradrenaline. Mitragynine- and morphine-induced inhibition of cAMP content were blocked by naloxone. Although idazoxane inhibited noradrenaline-induced inhibition of the cAMP content, idazoxane had no effect on mitragynine-induced inhibition. These results suggest that mitragynine acts directly on opioid receptors, but not on alpha 2-adrenoceptors, to show antinociceptive activity. PMID:9145205

  19. Modification of the furan ring of salvinorin A: identification of a selective partial agonist at the kappa opioid receptor

    PubMed Central

    Béguin, Cécile; Duncan, Katharine K.; Munro, Thomas A.; Ho, Douglas M.; Xu, Wei; Liu-Chen, Lee-Yuan; Carlezon, William A.; Cohen, Bruce M.

    2009-01-01

    In an effort to find novel agents which selectively target the kappa opioid receptor (KOPR), we modified the furan ring of the highly potent and selective KOPR agonist salvinorin A. Introduction of small substituents at C-16 was well tolerated. 12-epi-Salvinorin A, synthesized in four steps from salvinorin A, was a selective partial agonist at the KOPR. No clear SAR patterns were observed for C-13 aryl ketones. Introducing a hydroxymethylene group between C-12 and the furan ring was tolerated. Small C-13 esters and ethers gave weak KOPR agonists, while all C-13 amides were inactive. Finally, substitution of oxadiazoles for the furan ring abolished affinity for the KOPR. None of the compounds displayed any KOPR antagonism or any affinity for mu or delta opioid receptors. PMID:19147366

  20. Physical Principles of Nanoparticle Cellular Endocytosis.

    PubMed

    Zhang, Sulin; Gao, Huajian; Bao, Gang

    2015-09-22

    This review article focuses on the physiochemical mechanisms underlying nanoparticle uptake into cells. When nanoparticles are in close vicinity to a cell, the interactions between the nanoparticles and the cell membrane generate forces from different origins. This leads to the membrane wrapping of the nanoparticles followed by cellular uptake. This article discusses how the kinetics, energetics, and forces are related to these interactions and dependent on the size, shape, and stiffness of nanoparticles, the biomechanical properties of the cell membrane, as well as the local environment of the cells. The discussed fundamental principles of the physiochemical causes for nanoparticle-cell interaction may guide new studies of nanoparticle endocytosis and lead to better strategies to design nanoparticle-based approaches for biomedical applications. PMID:26256227

  1. Regulation of cargo-selective endocytosis by dynamin 2 GTPase-activating protein girdin

    PubMed Central

    Weng, Liang; Enomoto, Atsushi; Miyoshi, Hiroshi; Takahashi, Kiyofumi; Asai, Naoya; Morone, Nobuhiro; Jiang, Ping; An, Jian; Kato, Takuya; Kuroda, Keisuke; Watanabe, Takashi; Asai, Masato; Ishida-Takagishi, Maki; Murakumo, Yoshiki; Nakashima, Hideki; Kaibuchi, Kozo; Takahashi, Masahide

    2014-01-01

    In clathrin-mediated endocytosis (CME), specificity and selectivity for cargoes are thought to be tightly regulated by cargo-specific adaptors for distinct cellular functions. Here, we show that the actin-binding protein girdin is a regulator of cargo-selective CME. Girdin interacts with dynamin 2, a GTPase that excises endocytic vesicles from the plasma membrane, and functions as its GTPase-activating protein. Interestingly, girdin depletion leads to the defect in clathrin-coated pit formation in the center of cells. Also, we find that girdin differentially interacts with some cargoes, which competitively prevents girdin from interacting with dynamin 2 and confers the cargo selectivity for CME. Therefore, girdin regulates transferrin and E-cadherin endocytosis in the center of cells and their subsequent polarized intracellular localization, but has no effect on integrin and epidermal growth factor receptor endocytosis that occurs at the cell periphery. Our results reveal that girdin regulates selective CME via a mechanism involving dynamin 2, but not by operating as a cargo-specific adaptor. PMID:25061227

  2. Endocytosis of Cadherin from Intracellular Junctions Is the Driving Force for Cadherin Adhesive Dimer Disassembly

    PubMed Central

    Troyanovsky, Regina B.; Sokolov, Eugene P.

    2006-01-01

    The adhesion receptor E-cadherin maintains cell–cell junctions by continuously forming short-lived adhesive dimers. Here mixed culture cross-linking and coimmunoprecipitation assays were used to determine the dynamics of adhesive dimer assembly. We showed that the amount of these dimers increased dramatically minutes after the inhibition of endocytosis by ATP depletion or by hypertonic sucrose. This increase was accompanied by the efficient recruitment of E-cadherin into adherens junctions. After 10 min, when the adhesive dimer amount had reached a plateau, the assembly of new dimers stalled completely. These cells, in a striking difference from the control, became unable to disintegrate both their intercellular contacts and adhesive dimers in response to calcium depletion. The same effects, but after a slightly longer time course, were obtained using acidic media, another potent approach inhibiting endocytosis. These data suggest that endocytosis is the main pathway for the dissociation of E-cadherin adhesive dimers. Its inhibition blocks the replenishment of the monomeric cadherin pool, thereby inhibiting new dimer formation. This suggestion has been corroborated by immunoelectron microscopy, which revealed cadherin-enriched coated pit-like structures in close association with adherens junctions. PMID:16760429

  3. The giardial ENTH protein participates in lysosomal protein trafficking and endocytosis.

    PubMed

    Feliziani, Constanza; Zamponi, Nahuel; Gottig, Natalia; Rópolo, Andrea S; Lanfredi-Rangel, Adriana; Touz, Maria C

    2015-03-01

    In the protozoa parasite Giardia lamblia, endocytosis and lysosomal protein trafficking are vital parasite-specific processes that involve the action of the adaptor complexes AP-1 and AP-2 and clathrin. In this work, we have identified a single gene in Giardia encoding a protein containing an ENTH domain that defines monomeric adaptor proteins of the epsin family. This domain is present in the epsin or epsin-related (epsinR) adaptor proteins, which are implicated in endocytosis and Golgi-to-endosome protein trafficking, respectively, in other eukaryotic cells. We found that GlENTHp (for G. lamblia ENTH protein) localized in the cytosol, strongly interacted with PI3,4,5P3, was associated with the alpha subunit of AP-2, clathrin and ubiquitin and was involved in receptor-mediated endocytosis. It also bonded PI4P, the gamma subunit of AP-1 and was implicated in ER-to-PV trafficking. Alteration of the GlENTHp function severely affected trophozoite growth showing an unusual accumulation of dense material in the lysosome-like peripheral vacuoles (PVs), indicating that GlENTHp might be implicated in the maintenance of PV homeostasis. In this study, we showed evidence suggesting that GlENTHp might function as a monomeric adaptor protein supporting the findings of other group indicating that GlENTHp might be placed at the beginning of the ENTH family. PMID:25576518

  4. The Lowe Syndrome Protein OCRL1 Is Required for Endocytosis in the Zebrafish Pronephric Tubule

    PubMed Central

    Oltrabella, Francesca; Pietka, Grzegorz; Ramirez, Irene Barinaga-Rementeria; Mironov, Aleksandr; Starborg, Toby; Drummond, Iain A.; Hinchliffe, Katherine A.; Lowe, Martin

    2015-01-01

    Lowe syndrome and Dent-2 disease are caused by mutation of the inositol 5-phosphatase OCRL1. Despite our increased understanding of the cellular functions of OCRL1, the underlying basis for the renal tubulopathy seen in both human disorders, of which a hallmark is low molecular weight proteinuria, is currently unknown. Here, we show that deficiency in OCRL1 causes a defect in endocytosis in the zebrafish pronephric tubule, a model for the mammalian renal tubule. This coincides with a reduction in levels of the scavenger receptor megalin and its accumulation in endocytic compartments, consistent with reduced recycling within the endocytic pathway. We also observe reduced numbers of early endocytic compartments and enlarged vacuolar endosomes in the sub-apical region of pronephric cells. Cell polarity within the pronephric tubule is unaffected in mutant embryos. The OCRL1-deficient embryos exhibit a mild ciliogenesis defect, but this cannot account for the observed impairment of endocytosis. Catalytic activity of OCRL1 is required for renal tubular endocytosis and the endocytic defect can be rescued by suppression of PIP5K. These results indicate for the first time that OCRL1 is required for endocytic trafficking in vivo, and strongly support the hypothesis that endocytic defects are responsible for the renal tubulopathy in Lowe syndrome and Dent-2 disease. Moreover, our results reveal PIP5K as a potential therapeutic target for Lowe syndrome and Dent-2 disease. PMID:25838181

  5. Endocytosis of heat-denatured albumin by cultured rat Kupffer cells

    SciTech Connect

    Brouwer, A.; Knook, D.L.

    1982-10-01

    Purified Kupffer cells were obtained by centrifugal elutriation of sinusoidal cells isolated by pronase treatment of the rat liver. The endocytosis of radioactively labeled heat-aggregated colloidal albumin (CA /sup 125/I) was investigated in maintenance cultures of the purified Kupffer cells. The endocytic capacity of the cells was studied during 4 days of culture. Maximum uptake was observed after 24 hr of culture, with a gradual decline during the following days. When the uptake was measured after incubation with increasing concentrations of CA /sup 125/I, a saturation effect was observed. This finding and the observed high rate of uptake are strong indications that receptor sites on the cell membrane are involved in the mechanism of endocytosis. The uptake of CA /sup 125/I by Kupffer cells was inhibited by the metabolic inhibitors fluoride and antimycin A, indicating that endocytosis of CA /sup 125/I is dependent on energy derived from both glycolysis and mitochondrial respiration. The mechanism of internalization may also require the action of microfilaments as well as intact microtubules, since both cytochalasin B and colchicine inhibited the uptake of CA /sup 125/I. The intracellular degradation of CA /sup 125/I by Kupffer cells was strongly inhibited by chloroquine but not by colchicine. The degradation of ingested CA /sup 125/I occurred within the Kupffer cell lysosomes.

  6. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur.

    PubMed

    Nichols, James T; Miyamoto, Alison; Olsen, Samantha L; D'Souza, Brendan; Yao, Christine; Weinmaster, Gerry

    2007-02-12

    Cleavage of Notch by furin is required to generate a mature, cell surface heterodimeric receptor that can be proteolytically activated to release its intracellular domain, which functions in signal transduction. Current models propose that ligand binding to heterodimeric Notch (hNotch) induces a disintegrin and metalloprotease (ADAM) proteolytic release of the Notch extracellular domain (NECD), which is subsequently shed and/or endocytosed by DSL ligand cells. We provide evidence for NECD release and internalization by DSL ligand cells, which, surprisingly, did not require ADAM activity. However, losses in either hNotch formation or ligand endocytosis significantly decreased NECD transfer to DSL ligand cells, as well as signaling in Notch cells. Because endocytosis-defective ligands bind hNotch, but do not dissociate it, additional forces beyond those produced through ligand binding must function to disrupt the intramolecular interactions that keep hNotch intact and inactive. Based on our findings, we propose that mechanical forces generated during DSL ligand endocytosis function to physically dissociate hNotch, and that dissociation is a necessary step in Notch activation. PMID:17296795

  7. Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis.

    PubMed

    Martínez-Mármol, Ramón; Comes, Núria; Styrczewska, Katarzyna; Pérez-Verdaguer, Mireia; Vicente, Rubén; Pujadas, Lluís; Soriano, Eduardo; Sorkin, Alexander; Felipe, Antonio

    2016-04-01

    The potassium channel Kv1.3 plays roles in immunity, neuronal development and sensory discrimination. Regulation of Kv1.3 by kinase signaling has been studied. In this context, EGF binds to specific receptors (EGFR) and triggers tyrosine kinase-dependent signaling, which down-regulates Kv1.3 currents. We show that Kv1.3 undergoes EGF-dependent endocytosis. This EGF-mediated mechanism is relevant because is involved in adult neural stem cell fate determination. We demonstrated that changes in Kv1.3 subcellular distribution upon EGFR activation were due to Kv1.3 clathrin-dependent endocytosis, which targets the Kv1.3 channels to the lysosomal degradative pathway. Interestingly, our results further revealed that relevant tyrosines and other interacting motifs, such as PDZ and SH3 domains, were not involved in the EGF-dependent Kv1.3 internalization. However, a new, and yet undescribed mechanism, of ERK1/2-mediated threonine phosphorylation is crucial for the EGF-mediated Kv1.3 endocytosis. Our results demonstrate that EGF triggers the down-regulation of Kv1.3 activity and its expression at the cell surface, which is important for the development and migration of adult neural progenitors. PMID:26542799

  8. Ouabain uptake by endocytosis in isolated guinea pig atria

    SciTech Connect

    Nunez-Duran, H.; Riboni, L.; Ubaldo, E.; Kabela, E.; Barcenas-Ruiz, L. Instituto Nacional de Cardiologia, Mexico DF )

    1988-10-01

    Mammalian cells specifically internalize some molecular species through receptor-mediated endocytosis (RME). The authors have used four different experimental protocols to investigate whether ouabain enters cardiac cells of guinea pig atrium through this pathway. First, by electron microscope morphometry the authors found that ouabain increased endocytic vesicles in atrial cells. Second, by scintillation counting they found that ({sup 3}H)ouabain uptake by the tissue is decreased by three treatments that decrease RME, i.e., NH{sub 4}Cl, trifluoperazine, and 16 mM (K{sup +}){sub 0}. Third, by radioautography at the electron microscope level, they checked that in preceding experiments ({sup 3}H)ouabain was washed out of plasma membrane after 60-min rinse and interiorized into the cardiac cells. Fourth, isometric tension recordings showed that the positive inotropic effect of ouabain was diminished in the presence of inhibitors, whereas that of a hydrophobic analogue, ouabagenin, was not affected. These results suggest that ouabain enters cardiac cells through RME and also that an intracellular site may, at least in part, be responsible for its inotropic effect.

  9. Bradykinin Release Avoids High Molecular Weight Kininogen Endocytosis

    PubMed Central

    Nascimento, Fabio D.; Souza, Daianne S. P.; Araujo, Mariana S.; Souza, Sinval E. G.; Sampaio, Misako U.; Nader, Helena B.; Tersariol, Ivarne L. S.; Motta, Guacyara

    2015-01-01

    Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present data also demonstrates that serine or cysteine proteases in lipid raft domains/caveolae on the CHO cell can hydrolyze H-kininogen, thus releasing kinins. PMID:25822177

  10. From uncertain beginnings: Initiation mechanisms of clathrin-mediated endocytosis

    PubMed Central

    Godlee, Camilla

    2013-01-01

    Clathrin-mediated endocytosis is a central and well-studied trafficking process in eukaryotic cells. How this process is initiated is likely to be a critical point in regulating endocytic activity spatially and temporally, but the underlying mechanisms are poorly understood. During the early stages of endocytosis three components—adaptor and accessory proteins, cargo, and lipids—come together at the plasma membrane to begin the formation of clathrin-coated vesicles. Although different models have been proposed, there is still no clear picture of how these three components cooperate to initiate endocytosis, which may indicate that there is some flexibility underlying this important event. PMID:24322426

  11. Role of endocytosis and cathepsin-mediated activation in Nipah virus entry

    SciTech Connect

    Diederich, Sandra; Thiel, Lena; Maisner, Andrea

    2008-06-05

    The recent discovery that the Nipah virus (NiV) fusion protein (F) is activated by endosomal cathepsin L raised the question if NiV utilize pH- and protease-dependent mechanisms of entry. We show here that the NiV receptor ephrin B2, virus-like particles and infectious NiV are internalized from the cell surface. However, endocytosis, acidic pH and cathepsin-mediated cleavage are not necessary for the initiation of infection of new host cells. Our data clearly demonstrate that proteolytic activation of the NiV F protein is required before incorporation into budding virions but not after virus entry.

  12. Estrogen and androgen regulate actin-remodeling and endocytosis-related genes during rat spermiation.

    PubMed

    Kumar, Anita; Dumasia, Kushaan; Gaonkar, Reshma; Sonawane, Shobha; Kadam, Leena; Balasinor, N H

    2015-03-15

    Spermiation, the sperm release process, is imperative to male fertility and reproduction. Morphologically, it is characterized by removal of atypical adherens junctions called ectoplasmic specializations, and formation of transient endocytic devices called tubulobulbar complexes requiring cytoskeleton remodeling and recruitment of proteins needed for endocytosis. Earlier, estrogen administration to adult male rats was seen to cause spermiation failure due to disruption of tubulobulbar complexes. This was accompanied by reduction in intratesticular testosterone levels and increase in intratesticular estrogen along with deregulation of genes involved in cytoskeleton remodeling (Arpc1b, Evl and Capg) and endocytosis (Picalm, Eea1 and Stx5a). In the present study, we aim to understand the role of estrogen and androgen in regulating these genes independently using seminiferous tubule culture system treated with estrogen, androgen or agonists and antagonists of estrogen receptors. We find that transcripts of Arpc1b, Evl and Picalm are responsive to estrogen while those of Picalm, Eea1 and Stx5a are responsive to androgen. We also find that the estrogen regulation of Arpc1b and Evl is mediated through estrogen receptor ? and that of Picalm occurs through estrogen receptors ? and ?. Localization of these proteins at or in the vicinity of tubulobulbar complexes reveals that ARPC1B, EVL, PICALM, EEA1 and STX5A seem to be involved in spermiation. Thus, estrogen and androgen regulate specific genes in seminiferous tubules that could play a role in spermiation. PMID:25637714

  13. Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia

    PubMed Central

    Raghavan, Venkatesan; Rbaibi, Youssef; Pastor-Soler, Núria M.; Carattino, Marcelo D.; Weisz, Ora A.

    2014-01-01

    The kidney has an extraordinary ability to maintain stable fractional solute and fluid reabsorption over a wide range of glomerular filtration rates (GFRs). Internalization of filtered low molecular weight proteins, vitamins, hormones, and other small molecules is mediated by the proximal tubule (PT) multiligand receptors megalin and cubilin. Changes in GFR and the accompanying fluid shear stress (FSS) modulate acute changes in PT ion transport thought to be mediated by microvillar bending. We found that FSS also affects apical endocytosis in PT cells. Exposure of immortalized PT cell lines to physiologically relevant levels of FSS led to dramatically increased internalization of the megalin–cubilin ligand albumin as well as the fluid phase marker dextran. FSS-stimulated apical endocytosis was initiated between 15 and 30 min postinduction of FSS, occurred via a clathrin- and dynamin-dependent pathway, and was rapidly reversed upon removing the FSS. Exposure to FSS also caused a rapid elevation in intracellular Ca2+ [Ca2+]i, which was not observed in deciliated cells, upon treatment with BAPTA-AM, or upon inclusion of apyrase in the perfusion medium. Strikingly, deciliation, BAPTA-AM, and apyrase also blocked the flow-dependent increase in endocytosis. Moreover, addition of ATP bypassed the need for FSS in enhancing endocytic capacity. Our studies suggest that increased [Ca2+]i and purinergic signaling in response to FSS-dependent ciliary bending triggers a rapid and reversible increase in apical endocytosis that contributes to the efficient retrieval of filtered proteins in the PT. PMID:24912170

  14. ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells.

    PubMed

    Altschuler, Y; Liu, S; Katz, L; Tang, K; Hardy, S; Brodsky, F; Apodaca, G; Mostov, K

    1999-10-01

    We report that the small GTPase, ADP-ribosylation factor 6 (ARF6), is present only on the apical surface of polarized MDCK epithelial cells. Overexpression of a mutant of ARF6, ARF6-Q67L, which is predicted to be in the GTP-bound form, stimulates endocytosis exclusively at this surface. Surprisingly, overexpression of the mutant ARF6-T27N, which is predicted to be in the GDP-bound form, also stimulated apical endocytosis, though to a lesser extent. ARF6-stimulated endocytosis is inhibited by a dominant-negative form of dynamin, or a dominant-negative hub fragment of clathrin heavy chain, indicating that it is mediated by clathrin. Correspondingly, overexpression of either mutant of ARF6 leads to an increase in the number of clathrin-coated pits at the apical plasma membrane. When ARF6-Q67L is overexpressed in the presence of the dominant-negative dynamin, the ARF6-Q67L colocalizes with clathrin and with IgA bound to its receptor. We conclude that ARF6 is an important modulator of clathrin-mediated endocytosis at the apical surface of epithelial cells. PMID:10508850

  15. Characterization and visualization of rat and guinea pig brain. kappa. opioid receptors: Evidence for. kappa. sub 1 and. kappa. sub 2 opioid receptors

    SciTech Connect

    Zukin, R.S.; Eghbali, M.; Olive, D.; Unterwald, E.M.; Tempel, A. )

    1988-06-01

    {kappa} opioid receptors ({kappa} receptors) have been characterized in homogenates of guinea pig and rat brain under in vitro binding conditions. {kappa} receptors were labeled by using the tritiated prototypic {kappa} opioid ethylketocyclazocine under conditions in which {mu} and {delta} opioid binding was suppressed. In the case of guinea pig brain membranes, a single population of high-affinity {kappa} opioid receptor sites was observed. In contrast, in the case of rat brain, two populations of {kappa} sites were observed. To test the hypothesis that the high- and low-affinity {kappa} sites represent two distinct {kappa} receptor subtypes, a series of opioids were tested for their abilities to compete for binding to the two sites. U-69,593 and Cambridge 20 selectively displaced the high-affinity {kappa} site in both guinea pig and rat tissue, but were inactive at the rat-brain low-affinity site. Other {kappa} opioid drugs competed for binding to both sites, but with different rank orders of potency. Quantitative light microscopy in vitro autoradiography was used to visualize the neuroanatomical pattern of {kappa} receptors in rat and guinea pig brain. The distribution patterns of the two {kappa} receptor subtypes of rat brain were clearly different. Collectively, these data provide direct evidence for the presence of two {kappa} receptor subtypes; the U-69,593-sensitive, high-affinity {kappa}{sub 1} site predominates in guinea pig brain, and the U-69,593-insensitive, low-affinity {kappa}{sub 2} site predominates in rat brain.

  16. Molecular cloning and expression of a rat kappa opioid receptor.

    PubMed Central

    Li, S; Zhu, J; Chen, C; Chen, Y W; Deriel, J K; Ashby, B; Liu-Chen, L Y

    1993-01-01

    At least three types of opioid receptors have been identified in the nervous system. In this paper we report molecular cloning and expression of a rat kappa opioid receptor. PCR was performed on double-stranded cDNA derived from poly(A)+ RNA of the rat striatum with primers similar to those of Libert and co-workers [Libert, Parmentier, Lefort, Dinsart, Van Sande, Maenhaut, Simons, Dumont and Vassart (1989) Science 244, 569-572]. One of the PCR products, which had 65% sequence similarity to the mouse delta opioid receptor, was used to screen a rat striatum cDNA library. Two positive clones were isolated and found to be identical. The clone had a 2.1-kb insert, which was termed RKOR-1. RKOR-1 has an open reading frame of 1140 bp and encodes a 380-amino-acid protein. Hydropathy analysis indicates that RKOR-1 has seven putative transmembrane domains with short intra- and extra-cellular loops. Membranes of Cos-7 cells transfected with RKOR-1 exhibited high specific binding for [3H]diprenorphine ([3H]DIP), a non-selective opioid ligand. Naloxone inhibited [3H]DIP binding with stereospecificity. [3H]DIP binding was potently inhibited by selective kappa opioid ligands, with Ki values in the nanomolar or subnanomolar range, but much less potently inhibited by drugs selective for mu or delta receptors. Thus, RKOR-1 represents an opioid receptor with kappa characteristics. Images Figure 2 PMID:8240268

  17. Retrovirus Entry by Endocytosis and Cathepsin Proteases

    PubMed Central

    Kubo, Yoshinao; Hayashi, Hideki; Matsuyama, Toshifumi; Sato, Hironori; Yamamoto, Naoki

    2012-01-01

    Retroviruses include infectious agents inducing severe diseases in humans and animals. In addition, retroviruses are widely used as tools to transfer genes of interest to target cells. Understanding the entry mechanism of retroviruses contributes to developments of novel therapeutic approaches against retrovirus-induced diseases and efficient exploitation of retroviral vectors. Entry of enveloped viruses into host cell cytoplasm is achieved by fusion between the viral envelope and host cell membranes at either the cell surface or intracellular vesicles. Many animal retroviruses enter host cells through endosomes and require endosome acidification. Ecotropic murine leukemia virus entry requires cathepsin proteases activated by the endosome acidification. CD4-dependent human immunodeficiency virus (HIV) infection is thought to occur via endosomes, but endosome acidification is not necessary for the entry whereas entry of CD4-independent HIVs, which are thought to be prototypes of CD4-dependent viruses, is low pH dependent. There are several controversial results on the retroviral entry pathways. Because endocytosis and endosome acidification are complicatedly controlled by cellular mechanisms, the retrovirus entry pathways may be different in different cell lines. PMID:23304142

  18. Endocytosis of Gene Delivery Vectors: From Clathrin-dependent to Lipid Raft-mediated Endocytosis

    PubMed Central

    El-Sayed, Ayman; Harashima, Hideyoshi

    2013-01-01

    The ideal nonviral vector delivers its nucleic acid cargo to a specific intracellular target. Vectors enter cells mainly through endocytosis and are distributed to various intracellular organelles. Recent advances in microscopy, lipidomics, and proteomics confirm that the cell membrane is composed of clusters of lipids, organized in the form of lipid raft domains, together with non-raft domains that comprise a generally disordered lipid milieu. The binding of a nonviral vector to either region can determine the pathway for its endocytic uptake and subsequent intracellular itinerary. Given this model of the cell membrane structure, endocytic pathways should be reclassified in relation to lipid rafts. In this review, we attempt to assess the currently recognized endocytic pathways in mammalian cells. The endocytic pathways are classified in relation to the membrane regions that make up the primary endocytic vesicles. This review covers the well-recognized clathrin-mediated endocytosis (CME), phagocytosis, and macropinocytosis in addition to the less addressed pathways that take place in lipid rafts. These include caveolae-mediated, flotillin-dependent, GTPase regulator associated with focal adhesion kinase-1 (GRAF1)-dependent, adenosine diphosphate-ribosylation factor 6 (Arf6)-dependent, and RhoA-dependent endocytic pathways. We summarize the regulators associated with each uptake pathway and methods for interfering with these regulators are discussed. The fate of endocytic vesicles resulting from each endocytic uptake pathway is highlighted. PMID:23587924

  19. CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance.

    PubMed

    Rajaiah, Rajesh; Perkins, Darren J; Ireland, Derek D C; Vogel, Stefanie N

    2015-07-01

    Dimerization of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) heterodimers is critical for both MyD88- and TIR-domain-containing adapter-inducing IFN-β (TRIF)-mediated signaling pathways. Recently, Zanoni et al. [(2011) Cell 147(4):868-880] reported that cluster of differentiation 14 (CD14) is required for LPS-/Escherichia coli- induced TLR4 internalization into endosomes and activation of TRIF-mediated signaling in macrophages. We confirmed their findings with LPS but report here that CD14 is not required for receptor endocytosis and downstream signaling mediated by TLR4/MD2 agonistic antibody (UT12) and synthetic small-molecule TLR4 ligands (1Z105) in murine macrophages. CD14 deficiency completely ablated the LPS-induced TBK1/IRF3 signaling axis that mediates production of IFN-β in murine macrophages without affecting MyD88-mediated signaling, including NF-κB, MAPK activation, and TNF-α and IL-6 production. However, neither the MyD88- nor TRIF-signaling pathways and their associated cytokine profiles were altered in the absence of CD14 in UT12- or 1Z105-treated murine macrophages. Eritoran (E5564), a lipid A antagonist that binds the MD2 "pocket," completely blocked LPS- and 1Z105-driven, but not UT12-induced, TLR4 dimerization and endocytosis. Furthermore, TLR4 endocytosis is induced in macrophages tolerized by exposure to either LPS or UT12 and is independent of CD14. These data indicate that TLR4 receptor endocytosis and the TRIF-signaling pathway are dissociable and that TLR4 internalization in macrophages can be induced by UT12, 1Z105, and during endotoxin tolerance in the absence of CD14. PMID:26106158

  20. Exploring Molecular Mechanisms of Ligand Recognition by Opioid Receptors with Metadynamics†

    PubMed Central

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-01-01

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible entry pathways of the non-selective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the ?2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates), and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs. PMID:19785461

  1. Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics.

    PubMed

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-10-27

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible pathways for entry of the nonselective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the beta2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates) and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs. PMID:19785461

  2. Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis.

    PubMed

    Fogelgren, Ben; Zuo, Xiaofeng; Buonato, Janine M; Vasilyev, Aleksandr; Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F; Palmyre, Aurélien; Polgar, Noemi; Drummond, Iain; Park, Kwon Moo; Lazzara, Matthew J; Lipschutz, Joshua H

    2014-12-15

    Acute kidney injury is common and has a high mortality rate, and no effective treatment exists other than supportive care. Using cell culture models, we previously demonstrated that exocyst Sec10 overexpression reduced damage to renal tubule cells and speeded recovery and that the protective effect was mediated by higher basal levels of mitogen-activated protein kinase (MAPK) signaling. The exocyst, a highly-conserved eight-protein complex, is known for regulating protein trafficking. Here we show that the exocyst biochemically interacts with the epidermal growth factor receptor (EGFR), which is upstream of MAPK, and Sec10-overexpressing cells express greater levels of phosphorylated (active) ERK, the final step in the MAPK pathway, in response to EGF stimulation. EGFR endocytosis, which has been linked to activation of the MAPK pathway, increases in Sec10-overexpressing cells, and gefitinib, a specific EGFR inhibitor, and Dynasore, a dynamin inhibitor, both reduce EGFR endocytosis. In turn, inhibition of the MAPK pathway reduces ligand-mediated EGFR endocytosis, suggesting a potential feedback of elevated ERK activity on EGFR endocytosis. Gefitinib also decreases MAPK signaling in Sec10-overexpressing cells to levels seen in control cells and, demonstrating a causal role for EGFR, reverses the protective effect of Sec10 overexpression following cell injury in vitro. Finally, using an in vivo zebrafish model of acute kidney injury, morpholino-induced knockdown of sec10 increases renal tubule cell susceptibility to injury. Taken together, these results suggest that the exocyst, acting through EGFR, endocytosis, and the MAPK pathway is a candidate therapeutic target for acute kidney injury. PMID:25298525

  3. Effects of Intrathecal SNC80, a Delta Receptor Ligand, on Nociceptive Threshold and Dorsal Horn Substance P Release

    PubMed Central

    Kouchek, Milad; Takasusuki, Toshifumi; Terashima, Tetsuji; Yaksh, Tony L.

    2013-01-01

    Delta-opioid receptors (DOR) are present in the superficial dorsal horn and are believed to regulate the release of small afferent transmitters as evidenced by the effects of spinally delivered delta-opioid preferring peptides. Here we examined the effects of intrathecal SNC80 [(+)-4-[?(R)-?-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-(methoxybenzyl)-N,N-diethylbenzamide], a selective nonpeptidic DOR agonist, in three preclinical pain models, acute thermal escape, intraplantar carrageenan-tactile allodynia, and intraplantar formalin flinches, and on the evoked release of substance P (SP) from small primary afferents. Rats with chronic intrathecal catheters received intrathecal vehicle or SNC80 (100 or 200 ?g). Intrathecal SNC80 did not change acute thermal latencies or carrageenan-induced thermal hyperalgesia. However, SNC80 attenuated carrageenan-induced tactile allodynia and significantly reduced both phase 1 and phase 2 formalin-induced paw flinches, as assessed by an automatic flinch counting device. These effects were abolished by naltrindole (3 mg/kg i.p.), a selective DOR antagonist, but not CTOP (10 µg i.t.), a selective MOR antagonist. Furthermore, intrathecal SNC80 (200 ?g) blocked formalin-induced substance P release otherwise evoked in the ispilateral superficial dorsal horn as measured by NK1 receptor internalization. In conclusion, intrathecal SNC80 alleviated pain hypersensitivity after peripheral inflammation in a fashion paralleling its ability to block peptide transmitter release from small peptidergic afferents, which by its pharmacology appears to represent an effect mediated by a spinal DOR. PMID:23978562

  4. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    PubMed Central

    Zhang, Jifeng; Tan, Minghui; Yin, Yichen; Ren, Bingyu; Jiang, Nannan; Guo, Guoqing; Chen, Yuan

    2015-01-01

    Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV) endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons. PMID:26682072

  5. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    PubMed

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-01

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with ?- and ?-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. PMID:26574545

  6. Vesicle formation and endocytosis: function, machinery, mechanisms, and modeling.

    PubMed

    Parkar, Nihal S; Akpa, Belinda S; Nitsche, Ludwig C; Wedgewood, Lewis E; Place, Aaron T; Sverdlov, Maria S; Chaga, Oleg; Minshall, Richard D

    2009-06-01

    Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis. PMID:19113823

  7. Vesicle Formation and Endocytosis: Function, Machinery, Mechanisms, and Modeling

    PubMed Central

    Parkar, Nihal S.; Akpa, Belinda S.; Nitsche, Ludwig C.; Wedgewood, Lewis E.; Place, Aaron T.; Sverdlov, Maria S.; Chaga, Oleg

    2009-01-01

    Abstract Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis. Antioxid. Redox Signal. 11, 1301–1312. PMID:19113823

  8. The Plant Defense Elicitor Cryptogein Stimulates Clathrin-Mediated Endocytosis Correlated with Reactive Oxygen Species Production in Bright Yellow-2 Tobacco Cells1[C

    PubMed Central

    Leborgne-Castel, Nathalie; Lherminier, Jeannine; Der, Christophe; Fromentin, Jérôme; Houot, Valérie; Simon-Plas, Françoise

    2008-01-01

    The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 ?m tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD. PMID:18184734

  9. The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells.

    PubMed

    Leborgne-Castel, Nathalie; Lherminier, Jeannine; Der, Christophe; Fromentin, Jérôme; Houot, Valérie; Simon-Plas, Françoise

    2008-03-01

    The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 microm tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD. PMID:18184734

  10. Comparison of the butyrate effects on neurotransmitter receptors in neurohybrids NG108-15 and NCB-20 cells

    SciTech Connect

    Zhu, X.Z.; Chuang, D.M.

    1987-08-31

    The authors previous study demonstrated that long term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the density of delta-opioid receptors with a much lesser effect on muscarinic cholinergic and no effect on alpha/sub 2/-adrenergic receptors. In the present study the authors investigated the effect of sodium butyrate on these three types of receptors in NG108-15 cells whose neuroblastoma parent is the same as that of NCB-20 cells. Long term treatment of NG108-15 cells with sodium butyrate (0.5 mM) induced a 2-fold increase in the density of the specific binding of /sup 3/H-clonidine. A comparable increase in the number of binding sites was detected when /sup 3/H-yohimbine was used as the receptor ligand. The butyrate-induced increase in the alpha/sub 2/-adrenergic receptor binding could be totally abolished by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that synthesis of receptor protein is involved. The same butyrate treatment had no significant effect on opioid and muscarinic cholinergic receptor bindings. Thus, butyrate effects on the expression of these three types of receptors in NG108-15 and NCB-20 cells are dramatically different. These data suggest that induction by butyrate of neurotransmitter receptors requires concerted action of genetic factors of both parents of the neurohybrids. 22 references, 2 figures, 2 tables.

  11. Stonin1 mediates endocytosis of the proteoglycan NG2 and regulates focal adhesion dynamics and cell motility

    PubMed Central

    Feutlinske, Fabian; Browarski, Marietta; Ku, Min-Chi; Trnka, Philipp; Waiczies, Sonia; Niendorf, Thoralf; Stallcup, William B.; Glass, Rainer; Krause, Eberhard; Maritzen, Tanja

    2015-01-01

    Cellular functions, ranging from focal adhesion (FA) dynamics and cell motility to tumour growth, are orchestrated by signals cells receive from outside via cell surface receptors. Signalling is fine-tuned by the exo–endocytic cycling of these receptors to control cellular responses such as FA dynamics, which determine cell motility. How precisely endocytosis regulates turnover of the various cell surface receptors remains unclear. Here we identify Stonin1, an endocytic adaptor of unknown function, as a regulator of FA dynamics and cell motility, and demonstrate that it facilitates the internalization of the oncogenic proteoglycan NG2, a co-receptor of integrins and platelet-derived growth factor receptor. Embryonic fibroblasts obtained from Stonin1-deficient mice display a marked surface accumulation of NG2, increased cellular signalling and defective FA disassembly as well as altered cellular motility. These data establish Stonin1 as a specific adaptor for the endocytosis of NG2 and as an important factor for FA dynamics and cell migration. PMID:26437238

  12. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells

    PubMed Central

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage. PMID:26465605

  13. /sup 3/H)-(H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) ((/sup 3/H)CTOP), a potent and highly selective peptide for mu opioid receptors in rat brain

    SciTech Connect

    Hawkins, K.N.; Knapp, R.J.; Lui, G.K.; Gulya, K.; Kazmierski, W.; Wan, Y.P.; Pelton, J.T.; Hruby, V.J.; Yamamura, H.I.

    1989-01-01

    The cyclic, conformationally restricted octapeptide (3H)-(H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) ((3H)CTOP) was synthesized and its binding to mu opioid receptors was characterized in rat brain membrane preparations. Association rates (k+1) of 1.25 x 10(8) M-1 min-1 and 2.49 x 10(8) M-1 min-1 at 25 and 37 degrees C, respectively, were obtained, whereas dissociation rates (k-1) at the same temperatures were 1.93 x 10(-2) min-1 and 1.03 x 10(-1) min-1 at 25 and 37 degrees C, respectively. Saturation isotherms of (3H)CTOP binding to rat brain membranes gave apparent Kd values of 0.16 and 0.41 nM at 25 and 37 degrees C, respectively. Maximal number of binding sites in rat brain membranes were found to be 94 and 81 fmol/mg of protein at 25 and 37 degrees C, respectively. (3H)CTOP binding over a concentration range of 0.1 to 10 nM was best fit by a one site model consistent with binding to a single site. The general effect of different metal ions and guanyl-5'-yl-imidodiphosphate on (3H)CTOP binding was to reduce its affinity. High concentrations (100 mM) of sodium also produced a reduction of the apparent mu receptor density. Utilizing the delta opioid receptor specific peptide (3H)-(D-Pen2,D-Pen5)enkephalin, CTOP appeared to be about 2000-fold more specific for mu vs. delta opioid receptor than naloxone. Specific (3H)CTOP binding was inhibited by a large number of opioid or opiate ligands.

  14. SUMOylation of Syntaxin1A regulates presynaptic endocytosis.

    PubMed

    Craig, Tim J; Anderson, Dina; Evans, Ashley J; Girach, Fatima; Henley, Jeremy M

    2015-01-01

    Neurotransmitter release from the presynaptic terminal is under very precise spatial and temporal control. Following neurotransmitter release, synaptic vesicles are recycled by endocytosis and refilled with neurotransmitter. During the exocytosis event leading to release, SNARE proteins provide most of the mechanical force for membrane fusion. Here, we show one of these proteins, Syntaxin1A, is SUMOylated near its C-terminal transmembrane domain in an activity-dependent manner. Preventing SUMOylation of Syntaxin1A reduces its interaction with other SNARE proteins and disrupts the balance of synaptic vesicle endo/exocytosis, resulting in an increase in endocytosis. These results indicate that SUMOylation regulates the emerging role of Syntaxin1A in vesicle endocytosis, which in turn, modulates neurotransmitter release and synaptic function. PMID:26635000

  15. Imaging the Dynamics of Endocytosis in Live Mammalian Tissues

    PubMed Central

    Weigert, Roberto

    2014-01-01

    In mammalian cells, endocytosis plays a pivotal role in regulating several basic cellular functions. Up to now, the dynamics and the organization of the endocytic pathways have been primarily investigated in reductionist model systems such as cell and organ cultures. Although these experimental models have been fully successful in unraveling the endocytic machinery at a molecular level, our understanding of the regulation and the role of endocytosis in vivo has been limited. Recently, advancements in intravital microscopy have made it possible to extend imaging in live animals to subcellular structures, thus revealing new aspects of the molecular machineries regulating membrane trafficking that were not previously appreciated in vitro. Here, we focus on the use of intravital microscopy to study endocytosis in vivo, and discuss how this approach will allow addressing two fundamental questions: (1) how endocytic processes are organized in mammalian tissues, and (2) how they contribute to organ physiopathology. PMID:24691962

  16. Endocytosis and exocytosis of nanoparticles in mammalian cells

    PubMed Central

    Oh, Nuri; Park, Ji-Ho

    2014-01-01

    Engineered nanoparticles that can be injected into the human body hold tremendous potential to detect and treat complex diseases. Understanding of the endocytosis and exocytosis mechanisms of nanoparticles is essential for safe and efficient therapeutic application. In particular, exocytosis is of significance in the removal of nanoparticles with drugs and contrast agents from the body, while endocytosis is of great importance for the targeting of nanoparticles in disease sites. Here, we review the recent research on the endocytosis and exocytosis of functionalized nanoparticles based on various sizes, shapes, and surface chemistries. We believe that this review contributes to the design of safe nanoparticles that can efficiently enter and leave human cells and tissues. PMID:24872703

  17. SUMOylation of Syntaxin1A regulates presynaptic endocytosis

    PubMed Central

    Craig, Tim J.; Anderson, Dina; Evans, Ashley J.; Girach, Fatima; Henley, Jeremy M.

    2015-01-01

    Neurotransmitter release from the presynaptic terminal is under very precise spatial and temporal control. Following neurotransmitter release, synaptic vesicles are recycled by endocytosis and refilled with neurotransmitter. During the exocytosis event leading to release, SNARE proteins provide most of the mechanical force for membrane fusion. Here, we show one of these proteins, Syntaxin1A, is SUMOylated near its C-terminal transmembrane domain in an activity-dependent manner. Preventing SUMOylation of Syntaxin1A reduces its interaction with other SNARE proteins and disrupts the balance of synaptic vesicle endo/exocytosis, resulting in an increase in endocytosis. These results indicate that SUMOylation regulates the emerging role of Syntaxin1A in vesicle endocytosis, which in turn, modulates neurotransmitter release and synaptic function. PMID:26635000

  18. The endocytosis of cellulose synthase in Arabidopsis is dependent on ?2, a clathrin-mediated endocytosis adaptin.

    PubMed

    Bashline, Logan; Li, Shundai; Anderson, Charles T; Lei, Lei; Gu, Ying

    2013-09-01

    Clathrin-mediated endocytosis (CME) is the best-characterized type of endocytosis in eukaryotic cells. Plants appear to possess all of the molecular components necessary to carry out CME; however, functional characterization of the components is still in its infancy. A yeast two-hybrid screen identified ?2 as a putative interaction partner of CELLULOSE SYNTHASE6 (CESA6). Arabidopsis (Arabidopsis thaliana) ?2 is homologous to the medium subunit 2 of the mammalian ADAPTOR PROTEIN COMPLEX2 (AP2). In mammals, the AP2 complex acts as the central hub of CME by docking to the plasma membrane while concomitantly recruiting cargo proteins, clathrin triskelia, and accessory proteins to the sites of endocytosis. We confirmed that ?2 interacts with multiple CESA proteins through the ?-homology domain of ?2, which is involved in specific interactions with endocytic cargo proteins in mammals. Consistent with its role in mediating the endocytosis of cargos at the plasma membrane, ?2-YELLOW FLUORESCENT PROTEIN localized to transient foci at the plasma membrane, and loss of ?2 resulted in defects in bulk endocytosis. Furthermore, loss of ?2 led to increased accumulation of YELLOW FLUORESCENT PROTEIN-CESA6 particles at the plasma membrane. Our results suggest that CESA represents a new class of CME cargo proteins and that plant cells might regulate cellulose synthesis by controlling the abundance of active CESA complexes at the plasma membrane through CME. PMID:23843604

  19. Does the kappa opioid receptor system contribute to pain aversion?

    PubMed Central

    Cahill, Catherine M.; Taylor, Anna M. W.; Cook, Christopher; Ong, Edmund; Morón, Jose A.; Evans, Christopher J.

    2014-01-01

    The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain. PMID:25452729

  20. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portion of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.

  1. High-Resolution Fractionation of Signaling Endosomes Containing Different Receptors

    PubMed Central

    McCaffrey, Gretchen; Welker, Jonathan; Scott, Jessica; van Der Salm, Louise; Grimes, Mark L.

    2010-01-01

    Receptor endocytosis is regulated by ligand binding, and receptors may signal after endocytosis in signaling endosomes. We hypothesized that signaling endosomes containing different types of receptors may be distinct from one another and have different physical characteristics. To test this hypothesis, we developed a high-resolution organelle fractionation method based on mass and density, optimized to resolve endosomes from other organelles. Three different types of receptors undergoing ligand-induced endocytosis were localized predominately in endosomes that were resolved from one another using this method. Endosomes containing activated receptor tyrosine kinases (RTKs), TrkA and EGFR, were similar to one another. Endosomes containing p75NTR (in the tumor necrosis receptor superfamily) and PAC1 (a G-protein-coupled receptor) were distinct from each other and from RTK endosomes. Receptor-specific endosomes may direct the intracellular location and duration of signal transduction pathways to dictate response to signals and determine cell fate. PMID:19416476

  2. Recombinant tissue-type plasminogen activator transiently enhances blood-brain barrier permeability during cerebral ischemia through vascular endothelial growth factor-mediated endothelial endocytosis in mice.

    PubMed

    Suzuki, Yasuhiro; Nagai, Nobuo; Yamakawa, Kasumi; Muranaka, Yoshinori; Hokamura, Kazuya; Umemura, Kazuo

    2015-12-01

    Recombinant tissue-type plasminogen activator (rt-PA) modulates cerebrovascular permeability and exacerbates brain injury in ischemic stroke, but its mechanisms remain unclear. We studied the involvement of vascular endothelial growth factor (VEGF)-mediated endocytosis in the increase of blood-brain barrier (BBB) permeability potentiated by rt-PA after ischemic stroke. The rt-PA treatment at 4 hours after middle cerebral artery occlusion induced a transient increase in BBB permeability after ischemic stroke in mice, which was suppressed by antagonists of either low-density lipoprotein receptor families (LDLRs) or VEGF receptor-2 (VEGFR-2). In immortalized bEnd.3 endothelial cells, rt-PA treatment upregulated VEGF expression and VEGFR-2 phosphorylation under ischemic conditions in an LDLR-dependent manner. In addition, rt-PA treatment increased endocytosis and transcellular transport in bEnd.3 monolayers under ischemic conditions, which were suppressed by the inhibition of LDLRs, VEGF, or VEGFR-2. The rt-PA treatment also increased the endocytosis of endothelial cells in the ischemic brain region after stroke in mice. These findings indicate that rt-PA increased BBB permeability via induction of VEGF, which at least partially mediates subsequent increase in endothelial endocytosis. Therefore, inhibition of VEGF induction may have beneficial effects after thrombolytic therapy with rt-PA treatment after stroke. PMID:26219596

  3. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-02-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.

  4. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis.

    PubMed

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-01-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics. PMID:26871680

  5. Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling.

    PubMed

    Yuan, Tianyi; Liu, Lin; Zhang, Yongdeng; Wei, Lisi; Zhao, Shiqun; Zheng, Xiaolu; Huang, Xiaoshuai; Boulanger, Jerome; Gueudry, Charles; Lu, Jingze; Xie, Lihan; Du, Wen; Zong, Weijian; Yang, Lu; Salamero, Jean; Liu, Yanmei; Chen, Liangyi

    2015-10-12

    Many receptor-mediated endocytic processes are mediated by constitutive budding of clathrin-coated pits (CCPs) at spatially randomized sites before slowly pinching off from the plasma membrane (60-100 s). In contrast, clathrin-mediated endocytosis (CME) coupled with regulated exocytosis in excitable cells occurs at peri-exocytic sites shortly after vesicle fusion (?10 s). The molecular mechanism underlying this spatiotemporal coupling remains elusive. We show that coupled endocytosis makes use of pre-formed CCPs, which hop to nascent fusion sites nearby following vesicle exocytosis. A dynamic cortical microtubular network, anchored at the cell surface by the cytoplasmic linker-associated protein on microtubules and the LL5?/ELKS complex on the plasma membrane, provides the track for CCP hopping. Local diacylglycerol gradients generated upon exocytosis guide the direction of hopping. Overall, the CCP-cytoskeleton-lipid interaction demonstrated here mediates exocytosis-coupled fast recycling of both plasma membrane and vesicular proteins, and it is required for the sustained exocytosis during repetitive stimulations. PMID:26439397

  6. On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation

    PubMed Central

    Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Rivera, Alicia; Van Craenenbroeck, Kathleen; Tarakanov, Alexander O.; Agnati, Luigi F.; Fuxe, Kjell

    2013-01-01

    The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via β-arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia. PMID:23956775

  7. Role of turgor pressure in endocytosis in fission yeast

    PubMed Central

    Basu, Roshni; Munteanu, Emilia Laura; Chang, Fred

    2014-01-01

    Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane. PMID:24403609

  8. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.

    PubMed

    Schubert, Thomas; Römer, Winfried

    2015-11-01

    Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. PMID:26211452

  9. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis

    PubMed Central

    Wedlich-Söldner, Roland; Bölker, Michael; Kahmann, Regine; Steinberg, Gero

    2000-01-01

    We identified a temperature-sensitive mutant of the plant pathogenic fungus Ustilago maydis that is defective in the polar distribution of cell wall components and shows abnormal morphology. The affected gene, yup1, was cloned by complementation. It encodes a putative target soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (t-SNARE), suggesting a function in membrane fusion. A Yup1–GFP fusion protein localized to vesicles that showed rapid saltatory motion along microtubules. These vesicles are part of the endocytic pathway and accumulate at sites of active growth, thereby supporting the expansion of the hyphal tip. In yup1ts cells, endocytosis is impaired and accumulation of Yup1-carrying endosomes at cell poles is abolished, resulting in apolar distribution of wall components and morphological alterations. This suggests that a membrane recycling process via early endosomes supports polar growth of U.maydis. PMID:10790364

  10. Routes to and from the plasma membrane: bulk flow versus signal mediated endocytosis

    PubMed Central

    Gershlick, David C; Lousa, Carine De Marcos; Farmer, Lucy; Denecke, Jurgen

    2014-01-01

    Transport of proteins via the secretory pathway is controlled by a combination of signal dependent cargo selection as well as unspecific bulk flow of membranes and aqueous lumen. Using the plant vacuolar sorting receptor as model for membrane spanning proteins, we have distinguished bulk flow from signal mediated protein targeting in biosynthetic and endocytic transport routes and investigated the influence of transmembrane domain length. More specifically, long transmembrane domains seem to prevent ER retention, either by stimulating export or preventing recycling from post ER compartments. Long transmembrane domains also seem to prevent endocytic bulk flow from the plasma membrane, but the presence of specific endocytosis signals overrules this in a dominant manner. PMID:25482763

  11. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system.

    PubMed Central

    Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B

    1995-01-01

    Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359

  12. Interleukin-1beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C

    PubMed Central

    Yan, Xisheng; Yadav, Ruchi; Gao, Mei; Weng, Han-Rong

    2014-01-01

    Excessive activation of glutamate receptors in spinal dorsal horn neurons is a key mechanism leading to abnormal neuronal activation in pathological pain conditions. Previous studies have shown that activation of glutamate receptors in the spinal dorsal horn is enhanced by impaired glial glutamate transporter functions and pro-inflammatory cytokines including interleukin-1 beta (IL-1β). In this study, we for the first time revealed that spinal glial glutamate transporter activities in the neuropathic animals are attenuated by endogenous IL-1β. Specifically, we demonstrated that nerve injury results in an increased expression of IL-1β and activation of PKC in the spinal dorsal horn as well as suppression of glial glutamate uptake activities. We provided evidence that the nerve-injury induced suppression of glial glutamate uptake is at least in part ascribed to endogenous IL-1β and activation of PKC in the spinal dorsal horn. IL-1β reduces glial glutamate transporter activities through enhancing the endocytosis of both GLT-1 and GLAST glial glutamate transporters. The IL-1β induced trafficking of glial glutamate transporters is through the calcium/PKC signaling pathway, and the dynamin-dependent endocytosis, which is dependent on the integrity of actin filaments. The signaling pathway regulating glial glutamate transporters revealed in this study provides novel targets to attenuate aberrant activation of glutamate receptors in the spinal dorsal horn, which could ultimately help the development of analgesics. PMID:24677092

  13. Rare earth elements activate endocytosis in plant cells

    PubMed Central

    Wang, Lihong; Li, Jigang; Zhou, Qing; Yang, Guangmei; Ding, Xiao Lan; Li, Xiaodong; Cai, Chen Xin; Zhang, Zhao; Wei, Hai Yan; Lu, Tian Hong; Deng, Xing Wang; Huang, Xiao Hua

    2014-01-01

    It has long been observed that rare earth elements (REEs) regulate multiple facets of plant growth and development. However, the underlying mechanisms remain largely unclear. Here, using electron microscopic autoradiography, we show the life cycle of a light REE (lanthanum) and a heavy REE (terbium) in horseradish leaf cells. Our data indicate that REEs were first anchored on the plasma membrane in the form of nanoscale particles, and then entered the cells by endocytosis. Consistently, REEs activated endocytosis in plant cells, which may be the cellular basis of REE actions in plants. Moreover, we discovered that a portion of REEs was successively released into the cytoplasm, self-assembled to form nanoscale clusters, and finally deposited in horseradish leaf cells. Taken together, our data reveal the life cycle of REEs and their cellular behaviors in plant cells, which shed light on the cellular mechanisms of REE actions in living organisms. PMID:25114214

  14. Mechanism of ?-1 antitrypsin endocytosis by lung endothelium

    PubMed Central

    Sohrab, Sadaf; Petrusca, Daniela N.; Lockett, Angelia D.; Schweitzer, Kelly S.; Rush, Natalia I.; Gu, Yuan; Kamocki, Krzysztof; Garrison, Jana; Petrache, Irina

    2009-01-01

    The integrity of lung alveoli is maintained by proper circulating levels of ?-1 antitrypsin (A1AT). Next to cigarette smoking, A1AT deficiency is a major risk factor for lung emphysema development. We recently reported that in addition to neutralizing neutrophil elastases in the extracellular compartment, A1AT is internalized by lung endothelial cells and inhibits apoptosis. We hypothesized that the intracellular uptake of A1AT by endothelial cells may be required for its protective function; therefore, we studied the mechanisms of A1AT internalization by primary rat lung microvascular endothelial cells and the effect of cigarette smoke on this process both in vitro and in vivo (in mice). Purified A1AT was taken up intracellularly by endothelial cells in a time-dependent, dose-dependent, and conformer-specific manner and was detected in the cytoplasm of endothelial cells of nondiseased human lung sections. Despite a critical role for caveoli in endothelial cell endocytosis in general, specific inhibition of clathrin-mediated, but not caveoli-mediated, endocytosis profoundly decreased A1AT internalization and reversed the A1AT’s antiapoptotic action. Further more, A1AT associated with clathrin heavy chains, but not with caveolin-1 in the plasma membrane fraction of endothelial cells. Interestingly, cigarette smoke exposure significantly inhibited A1AT uptake both in endothelial cells and in the mouse lung and altered the intracellular distribution of clathrin heavy chains. Our results suggest that clathrin-mediated endocytosis regulates A1AT intracellular function in the lung endothelium and may be an important determinant of the serpin’s protection against developing cigarette smoke-induced emphysema. Sohrab, S., Petrusca, D. N., Lockett, A. D., Schweitzer, K. S., Rush, N. I., Gu, Y., Kamocki, K., Garrison, J., Petrache, I. Mechanism of ?-1 antitrypsin endocytosis by lung endothelium. PMID:19423638

  15. Signaling induced by hop/STI-1 depends on endocytosis

    SciTech Connect

    Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael . E-mail: rlinden@biof.ufrj.br

    2007-06-29

    The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP{sup C}), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP{sup C} and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling induced by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP{sup C} by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.

  16. Translocation and Endocytosis for Cell-penetrating Peptide Internalization

    PubMed Central

    Jiao, Chen-Yu; Delaroche, Diane; Burlina, Fabienne; Alves, Isabel D.; Chassaing, Gérard; Sagan, Sandrine

    2009-01-01

    Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells. PMID:19833724

  17. Dynamin Inhibitors Impair Endocytosis and Mitogenic Signaling of PDGF

    PubMed Central

    Sadowski, Łukasz; Jastrzębski, Kamil; Kalaidzidis, Yannis; Heldin, Carl-Henrik; Hellberg, Carina; Miaczynska, Marta

    2013-01-01

    Platelet-derived growth factor (PDGF) isoforms regulate cell proliferation, migration and differentiation both in embryonic development and adult tissue remodeling. At the cellular level, growth-factor signaling is often modulated by endocytosis. Despite important functions of PDGF, its endocytosis remains poorly studied, mainly for lack of tools to track internalized ligand by microscopy. Here, we developed such a tool and quantitatively analyzed internalization and endosomal trafficking of PDGF-BB in human fibroblasts. We further show that PDGF can be internalized in the presence of dynamin inhibitors, arguing that both dynamin-dependent and dynamin-independent pathways can mediate PDGF uptake. Although these routes operate with somewhat different kinetics, they both ultimately lead to lysosomal degradation of PDGF. Although acute inhibition of dynamin activity only moderately affects PDGF endocytosis, it specifically decreases downstream signaling of PDGF via signal transducer and activator of transcription 3 (STAT3). This correlates with reduced expression of MYC and impaired cell entry into S-phase, indicating that dynamin activity is required for PDGF-induced mitogenesis. Our data support a general view that the components governing endocytic trafficking may selectively regulate certain signaling effectors activated by a growth factor. PMID:23425318

  18. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval

    PubMed Central

    Smith, Stephen M.; Renden, Robert; von Gersdorff, Henrique

    2013-01-01

    Several modes of synaptic vesicle release, retrieval and recycling have been identified. In a well-established mode of exocytosis, termed ‘full-collapse fusion’, vesicles empty their neurotransmitter content fully into the synaptic cleft by flattening out and becoming part of the presynaptic membrane. The fused vesicle membrane is then reinternalized via a slow and clathrin-dependent mode of compensatory endocytosis that takes several seconds. A more fleeting mode of vesicle fusion, termed ‘kiss-and-run’ exocytosis or ‘flicker-fusion’, indicates that during synaptic transmission some vesicles are only briefly connected to the presynaptic membrane by a transient fusion pore. Finally, a mode that retrieves a large amount of membrane, equivalent to that of several fused vesicles, termed ‘bulk endocytosis’, has been found after prolonged exocytosis. We are of the opinion that both fast and slow modes of endocytosis co-exist at central nervous system nerve terminals and that one mode can predominate depending on stimulus strength, temperature and synaptic maturation. PMID:18817990

  19. Doublecortin (DCX) mediates endocytosis of neurofascin independently of microtubule binding.

    PubMed

    Yap, Chan Choo; Vakulenko, Max; Kruczek, Kamil; Motamedi, Bashir; Digilio, Laura; Liu, Judy S; Winckler, Bettina

    2012-05-30

    Doublecortin on X chromosome (DCX) is one of two major genetic loci underlying human lissencephaly, a neurodevelopmental disorder with defects in neuronal migration and axon outgrowth. DCX is a microtubule-binding protein, and much work has focused on its microtubule-associated functions. DCX has other reported binding partners, including the cell adhesion molecule neurofascin, but the functional significance of the DCX-neurofascin interaction is not understood. Neurofascin localizes strongly to the axon initial segment in mature neurons, where it plays a role in assembling and maintaining other axon initial segment components. During development, neurofascin likely plays additional roles in axon guidance and in GABAergic synaptogenesis. We show here that DCX can modulate the surface distribution of neurofascin in developing cultured rat neurons and thereby the relative extent of accumulation between the axon initial segment and soma and dendrites. Mechanistically, DCX acts via increasing endocytosis of neurofascin from soma and dendrites. Surprisingly, DCX increases neurofascin endocytosis apparently independently of its microtubule-binding activity. We additionally show that the patient allele DCXG253D still binds microtubules but is deficient in promoting neurofascin endocytosis. We propose that DCX acts as an endocytic adaptor for neurofascin to fine-tune its surface distribution during neuronal development. PMID:22649224

  20. Opioid receptor mechanisms at the hypoglossal motor pool and effects on tongue muscle activity in vivo.

    PubMed

    Hajiha, Mohammad; DuBord, Marq-André; Liu, Hattie; Horner, Richard L

    2009-06-01

    Opioids can modulate breathing and predispose to respiratory depression by actions at various central nervous system sites, but the mechanisms operating at respiratory motor nuclei have not been studied. This study tests the hypotheses that (i) local delivery of the mu-opioid receptor agonist fentanyl into the hypoglossal motor nucleus (HMN) will suppress genioglossus activity in vivo, (ii) a component of this suppression is mediated by opioid-induced acetylcholine release acting at muscarinic receptors, and (iii) delta- and kappa-opioid receptors also modulate genioglossus activity. Seventy-two isoflurane-anaesthetised, tracheotomised, spontaneously breathing rats were studied during microdialysis perfusion into the HMN of (i) fentanyl and naloxone (mu-opioid receptor antagonist), (ii) fentanyl with and without co-application of muscarinic receptor antagonists, and (iii) delta- and kappa-opioid receptor agonists and antagonists. The results showed (i) that fentanyl at the HMN caused a suppression of genioglossus activity (P < 0.001) that reversed with naloxone (P < 0.001), (ii) that neither atropine nor scopolamine affected the fentanyl-induced suppression of genioglossus activity, and (iii) that delta-, but not kappa-, opioid receptor stimulation also suppressed genioglossus activity (P = 0.036 and P = 0.402 respectively). We conclude that mu-opioid receptor stimulation suppresses motor output from a central respiratory motoneuronal pool that activates genioglossus muscle, and this suppression does not involve muscarinic receptor-mediated inhibition. This mu-opioid receptor-induced suppression of tongue muscle activity by effects at the hypoglossal motor pool may underlie the clinical concern regarding adverse upper airway function with mu-opioid analgesics. The inhibitory effects of mu- and delta-opioid receptors at the HMN also indicate an influence of endogenous enkephalins and endorphins in respiratory motor control. PMID:19403616

  1. Endocytosis of Mycobacterium tuberculosis Heat Shock Protein 60 Is Required to Induce Interleukin-10 Production in Macrophages*

    PubMed Central

    Parveen, Nazia; Varman, Raja; Nair, Shiny; Das, Gobardhan; Ghosh, Sudip; Mukhopadhyay, Sangita

    2013-01-01

    Understanding the signaling pathways involved in the regulation of anti-inflammatory and pro-inflammatory responses in tuberculosis is extremely important in tailoring a macrophage innate response to promote anti-tuberculosis immunity in the host. Although the role of toll-like receptors (TLRs) in the regulation of anti-inflammatory and pro-inflammatory responses is known, the detailed molecular mechanisms by which the Mycobacterium tuberculosis bacteria modulate these innate responses are not clearly understood. In this study, we demonstrate that M. tuberculosis heat shock protein 60 (Mtbhsp60, Cpn60.1, and Rv3417c) interacts with both TLR2 and TLR4 receptors, but its interaction with TLR2 leads to clathrin-dependent endocytosis resulting in an increased production of interleukin (IL)-10 and activated p38 MAPK. Blockage of TLR2-mediated endocytosis inhibited IL-10 production but induced production of tumor necrosis factor (TNF)-? and activated ERK1/2. In contrast, upon interaction with TLR4, Mtbhsp60 remained predominantly localized on the cell surface due to poorer endocytosis of the protein that led to decreased IL-10 production and p38 MAPK activation. The Escherichia coli homologue of hsp60 was found to be retained mainly on the macrophage surface upon interaction with either TLR2 or TLR4 that triggered predominantly a pro-inflammatory-type immune response. Our data suggest that cellular localization of Mtbhsp60 upon interaction with TLRs dictates the type of polarization in the innate immune responses in macrophages. This information is likely to help us in tailoring the host protective immune responses against M. tuberculosis. PMID:23846686

  2. Chemistry of opium alkaloids. Part 44: synthesis and opioid receptor binding profile of substituted ethenoisomorphinans and ethenomorphinans.

    PubMed

    Maat, L; Woudenberg, R H; Meuzelaar, G J; Linders, J T

    1999-03-01

    7- and 8-substituted 6alpha,14alpha-ethenoisomorphinans were synthesized by reaction of properly substituted morphinan-6,8-dienes (analogues of thebaine) with methyl vinyl ketone or ethyl acrylate. Reaction with the appropriate Grignard reagent gave the 7- and 8-dialkylmethanols, respectively. Cleavage of the 3-methyl ether with KOH/glycol or boron tribromide afforded the 3-hydroxyl derivatives. In general, the compounds with the ethoxycarbonyl or dimethylmethanol substituent at the 8alpha-position showed lower affinity for the mu, kappa, and delta opioid receptor subtypes than the corresponding 7alpha- and 7beta-substituted compounds. Introduction of a chloro substituent in position 18 increased the potency significantly. The 7-substituent could be connected to the 18-position without loss of affinity. 5Beta-alkyl substitution of 6alpha,14alpha-ethenoisomorphinans led to a decrease in affinity for the three opioid receptor subtypes. In the 5beta-methyl series the affinity for the mu and delta receptors increased from 7alpha-dimethylmethanol to 7alpha-methylhexylmethanol. In the 5beta-alkyl series, the affinity for the mu-receptor could be increased by connecting the 5- and 7-substituents, yielding a compound with high mu-selectivity. The new 6beta,14beta-ethenomorphinans did not show affinity for any of the opioid receptors, in accordance with the inactivity earlier found in in vivo experiments. PMID:10220038

  3. Kaposi's Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Infection of Human Fibroblast Cells Occurs through Endocytosis

    PubMed Central

    Akula, Shaw M.; Naranatt, Pramod P.; Walia, Neelam-Sharma; Wang, Fu-Zhang; Fegley, Barbara; Chandran, Bala

    2003-01-01

    Kaposi's sarcoma (KS)-associated herpesvirus or human herpesvirus 8 (HHV-8) DNA and transcripts have been detected in the B cells, macrophages, keratinocytes, and endothelial and epithelial cells of KS patients. In vitro, HHV-8 infects human B, endothelial, epithelial, and fibroblast cells, as well as animal cells, and the infection is characterized by (i) absence of lytic replication by the input virus and (ii) latent infection. For its initial binding to target cells, HHV-8 uses ubiquitous heparan sulfate molecules via its envelope-associated glycoproteins gB and gpK8.1A. HHV-8 also interacts with the ?3?1 integrin via its glycoprotein gB, and virus binding studies suggest that ?3?1 is one of the HHV-8 entry receptors (S. M. Akula, N. P. Pramod, F. Z. Wang, and B. Chandran, Cell 108:407-419, 2002). In this study, morphological and biochemical techniques were used to examine the entry of HHV-8 into human foreskin fibroblasts (HFF). HHV-8 was detected in coated vesicles and in large, smooth-surfaced endocytic vesicles. Fusion of viral envelope with the vesicle wall was also observed. In immune electron microscopy, anti-HHV-8 gB antibodies colocalized with virus-containing endocytic vesicles. In fluorescence microscopic analyses, transferrin was colocalized with HHV-8. HHV-8 infection was significantly inhibited by preincubation of cells with chlorpromazine HCl, which blocks endocytosis via clathrin-coated pits, but not by nystatin and cholera toxin B, which blocks endocytosis via caveolae and induces the dissociation of lipid rafts, respectively. Infection was also inhibited by blocking the acidification of endosomes by NH4Cl and bafilomycin A. Inhibition of HHV-8 open reading frame 73 gene expression by chlorpromazine HCl, bafilomycin A, and NH4Cl demonstrated that the virions in the vesicles could proceed to cause an infection. Taken together, these findings suggest that for its infectious entry into HFF, HHV-8 uses clathrin-mediated endocytosis and a low-pH intracellular environment. PMID:12829837

  4. Quantum dots induced interferon beta expression via TRIF-dependent signaling pathways by promoting endocytosis of TLR4.

    PubMed

    Ho, Chia-Chi; Luo, Yueh-Hsia; Chuang, Tsung-Hsien; Lin, Pinpin

    2016-02-17

    Quantum dots (QDs) are nano-sized semiconductors. Previously, intratracheal instillation of QD705s induces persistent inflammation and remodeling in the mouse lung. Expression of interferon beta (IFN-β), involved in tissue remodeling, was induced in the mouse lung. The objective of this study was to understand the mechanism of QD705 induced interferon beta (IFN-β) expression. QD705-COOH and QD705-PEG increased IFN-β and IP-10 mRNA levels during day1 to 90 post-exposure in mouse lungs. QD705-COOH increased IFN-β expression via Toll/interleukin-1 receptor domain-containing adapter protein (TRIF) dependent Toll-like receptor (TLR) signaling pathways in macrophages RAW264.7. Silencing TRIF expression with siRNA or co-treatment with a TRIF inhibitor tremendously abolished QD705s-induced IFN-β expression. Co-treatment with a TLR4 inhibitor completely prevented IFN-β induction by QD705-COOH. QD705-COOH readily entered cells, and co-treatment with either inhibitors of endocytosis or intracellular TLRs prevented IFN-β induction. Thus, activation of the TRIF dependent TLRs pathway by promoting endocytosis of TLR4 is one of the mechanisms for immunomodulatory effects of nanoparticles. PMID:26925925

  5. A Neurotoxic Phospholipase A2 Impairs Yeast Amphiphysin Activity and Reduces Endocytosis

    PubMed Central

    Mattiazzi, Mojca; Sun, Yidi; Wolinski, Heimo; Bavdek, Andrej; Petan, Toni; Anderluh, Gregor; Kohlwein, Sepp D.; Drubin, David G.; Križaj, Igor; Petrovi?, Uroš

    2012-01-01

    Background Presynaptically neurotoxic phospholipases A2 inhibit synaptic vesicle recycling through endocytosis. Principal Findings Here we provide insight into the action of a presynaptically neurotoxic phospholipase A2 ammodytoxin A (AtxA) on clathrin-dependent endocytosis in budding yeast. AtxA caused changes in the dynamics of vesicle formation and scission from the plasma membrane in a phospholipase activity dependent manner. Our data, based on synthetic dosage lethality screen and the analysis of the dynamics of sites of endocytosis, indicate that AtxA impairs the activity of amphiphysin. Conclusions We identified amphiphysin and endocytosis as the target of AtxA intracellular activity. We propose that AtxA reduces endocytosis following a mechanism of action which includes both a specific protein–protein interaction and enzymatic activity, and which is applicable to yeast and mammalian cells. Knowing how neurotoxic phospholipases A2 work can open new ways to regulate endocytosis. PMID:22844417

  6. Phosphorylation and ubiquitination are necessary for Na,K-ATPase endocytosis during hypoxia

    PubMed Central

    Dada, Laura A.; Welch, Lynn C.; Zhou, Guofei; Ben-Saadon, Ronen; Ciechanover, Aaron; Sznajder, Jacob I.

    2007-01-01

    As a cellular adaptative response, hypoxia decreases Na,K-ATPase activity by triggering the endocytosis of its α1 subunit in alveolar epithelial cells. Here, we present evidence that the ubiquitin conjugating system is important in the Na,K-ATPase endocytosis during hypoxia and ubiquitination of Na,K-ATPase α1 subunit occurs at the basolateral membrane. Endocytosis and ubiquitination were prevented when the Ser 18 in the PKC phosphorylation motif of the Na,K-ATPase α1 subunit was mutated to an alanine, suggesting that phosphorylation at Ser-18 is required for ubiquitination. Mutation of the four lysines surrounding Ser 18 to arginine prevented Na,K-ATPase ubiquitination and endocytosis during hypoxia; however, only one of them was sufficient to restore hypoxia-induced endocytosis. We provide evidence that ubiquitination plays an important role in cellular adaptation to hypoxia by regulating Na,K-ATPase α1-subunit endocytosis. PMID:17532187

  7. Regulation by intracellular Ca sup 2+ and cyclic AMP of the growth factor-induced ruffling membrane formation and stimulation of fluid-phase endocytosis and exocytosis

    SciTech Connect

    Miyata, Yoshihiko Tokyo Metropolitan Inst. of Medical Science ); Nishida, Eisuke; Sakai, Hikoichi ); Koyasu, Shigeo; Yahara, Ichiro )

    1989-04-01

    Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) induce formation of ruffling membranes and stimulate the fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells. An increase in intracellular Ca{sup 2+} concentration by treatment with A23187, a calcium ionophore, or an increase in intracellular cAMP level by treatment with dibutyryl cAMP or forskolin almost completely inhibited the insulin-, IGF-I-, or EGF-induced formation of ruffling membranes. Increases in Ca{sup 2+} or cAMP concentration also inhibited almost completely the stimulation of fluid-phase endocytosis and exocytosis elicited by these growth factors. These results suggest that the growth factor-induced ruffling membrane formation and the stimulation of fluid-phase endocytosis and exocytosis have a common regulatory mechanism involving intracellular concentrations of Ca{sup 2+} and cAMP. {sup 125}I-EGF binding assays and immunoprecipitation experiments with anti-phosphotyrosine antibody revealed that treatment of KB cells with A23187, dibutyryl cAMP, or forskolin did not inhibit the EGF binding to the cells nor subsequent tyrosine autophosphorylation of its receptors. These results indicate that Ca{sup 2+}- and/or cAMP-sensitive intracellular reactions exist downstream from the receptor kinase activation in the process of these early cellular responses.

  8. Crosstalk between Akt/GSK3? signaling and dynamin-1 regulates clathrin-mediated endocytosis.

    PubMed

    Reis, Carlos R; Chen, Ping-Hung; Srinivasan, Saipraveen; Aguet, François; Mettlen, Marcel; Schmid, Sandra L

    2015-08-13

    Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal trafficking, maturation and acidification, confirming the importance of this "checkpoint." Dysregulated CME also alters EGF receptor signaling and leads to constitutive activation of the protein kinase Akt. Dynamin-1, which was thought to be neuron specific, is activated by the Akt/GSK3? signaling cascade in non-neuronal cells to trigger rapid, dysregulated CME. Acute activation of dynamin-1 in RPE cells by inhibition of GSK3? accelerates CME, alters CCP dynamics and, unexpectedly, increases the rate of CCP initiation. CRISPR-Cas9n-mediated knockout and reconstitution studies establish that dynamin-1 is activated by Akt/GSK3? signaling in H1299 non-small lung cancer cells. These findings provide direct evidence for an isoform-specific role for dynamin in regulating CME and reveal a feed-forward pathway that could link signaling from cell surface receptors to the regulation of CME. PMID:26139537

  9. TRIM72 modulates caveolar endocytosis in repair of lung cells.

    PubMed

    Nagre, Nagaraja; Wang, Shaohua; Kellett, Thomas; Kanagasabai, Ragu; Deng, Jing; Nishi, Miyuki; Shilo, Konstantin; Oeckler, Richard A; Yalowich, Jack C; Takeshima, Hiroshi; Christman, John; Hubmayr, Rolf D; Zhao, Xiaoli

    2016-03-01

    Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs. PMID:26637632

  10. SNX15 links clathrin endocytosis to the PtdIns3P early endosome independently of the APPL1 endosome

    PubMed Central

    Danson, Chris; Brown, Edward; Hemmings, Oliver J.; McGough, Ian J.; Yarwood, Sam; Heesom, Kate J.; Carlton, Jeremy G.; Martin-Serrano, Juan; May, Margaret T.; Verkade, Paul; Cullen, Peter J.

    2013-01-01

    Summary Sorting nexins (SNXs) are key regulators of the endosomal network. In designing an RNAi-mediated loss-of-function screen, we establish that of 30 human SNXs only SNX3, SNX5, SNX9, SNX15 and SNX21 appear to regulate EGF receptor degradative sorting. Suppression of SNX15 results in a delay in receptor degradation arising from a defect in movement of newly internalised EGF-receptor-labelled vesicles into early endosomes. Besides a phosphatidylinositol 3-phosphate- and PX-domain-dependent association to early endosomes, SNX15 also associates with clathrin-coated pits and clathrin-coated vesicles by direct binding to clathrin through a non-canonical clathrin-binding box. From live-cell imaging, it was identified that the activated EGF receptor enters distinct sub-populations of SNX15- and APPL1-labelled peripheral endocytic vesicles, which do not undergo heterotypic fusion. The SNX15-decorated receptor-containing sub-population does, however, undergo direct fusion with the Rab5-labelled early endosome. Our data are consistent with a model in which the EGF receptor enters the early endosome following clathrin-mediated endocytosis through at least two parallel pathways: maturation through an APPL1-intermediate compartment and an alternative more direct fusion between SNX15-decorated endocytic vesicles and the Rab5-positive early endosome. PMID:23986476

  11. How to Take Autophagy and Endocytosis Up a Notch

    PubMed Central

    Barth, Julia M. I.; Köhler, Katja

    2014-01-01

    The interconnection of the endocytic and autophagosomal trafficking routes has been recognized more than two decades ago with both pathways using a set of identical effector proteins and sharing the same ultimate lysosomal destination. More recent data sheds light onto how other pathways are intertwined into this network, and how degradation via the endosomal/autophagosomal system may affect signaling pathways in multicellular organisms. Here, we briefly review the common features of autophagy and endocytosis and discuss how other players enter this mix with particular respect to the Notch signaling pathway. PMID:24860831

  12. Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity

    PubMed Central

    Liu, Ke; Lei, Run; Li, Qiong; Wang, Xin-Xin; Wu, Qian; An, Peng; Zhang, Jianchao; Zhu, Minyan; Xu, Zhiheng; Hong, Yang; Wang, Fudi; Shen, Ying; Li, Hongchang; Li, Huashun

    2016-01-01

    Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity. PMID:26880306

  13. Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity.

    PubMed

    Liu, Ke; Lei, Run; Li, Qiong; Wang, Xin-Xin; Wu, Qian; An, Peng; Zhang, Jianchao; Zhu, Minyan; Xu, Zhiheng; Hong, Yang; Wang, Fudi; Shen, Ying; Li, Hongchang; Li, Huashun

    2016-01-01

    Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity. PMID:26880306

  14. Uromodulin Upregulates TRPV5 by Impairing Caveolin-Mediated Endocytosis

    PubMed Central

    Wolf, Matthias T.F.; Wu, Xue-Ru; Huang, Chou-Long

    2013-01-01

    Uromodulin (UMOD) is synthesized in the thick ascending limb and secreted into urine as the most abundant protein. Association studies in humans suggest protective effects of UMOD against calcium-containing kidney stones. Mice carrying mutations of Umod found in human uromodulin-associated kidney disease (UAKD) and Umod deficient mice exhibit hypercalciuria. The mechanism for UMOD regulation of urinary Ca2+ excretion is incompletely understood. We examined if UMOD regulates TRPV5 and TRPV6, channels critical for renal transcellular Ca2+ reabsorption. Coexpression with UMOD increased whole-cell TRPV5 current density in HEK293 cells. In biotinylation studies UMOD increased TRPV5 cell-surface abundance. Extracellular application of purified UMOD upregulated TRPV5 current density within physiological relevant concentration ranges. UMOD exerted a similar effect on TRPV6. TRPV5 undergoes constitutive caveolin-mediated endocytosis. UMOD had no effect on TRPV5 in a caveolin-1 deficient cell line. Expression of recombinant caveolin-1 in these cells restored the ability of UMOD to upregulate TRPV5. Secretion of UAKD-mutant UMOD was markedly reduced and coexpression of mutant UMOD with TRPV5 failed to increase its current. Immunofluorescent studies demonstrated lower TRPV5 expression in Umod−/− mice compared to wild-type. UMOD upregulates TRPV5 by acting from extracellular and by decreasing endocytosis of TRPV5. The stimulation of Ca2+ reabsorption via TRPV5 by UMOD may contribute to protection against kidney stone formation. PMID:23466996

  15. Lysosomal Trafficking of TGFBIp via Caveolae-Mediated Endocytosis

    PubMed Central

    Choi, Seung-il; Maeng, Yong-Sun; Kim, Tae-im; Lee, Yangsin; Kim, Yong-Sun; Kim, Eung Kweon

    2015-01-01

    Transforming growth factor-beta-induced protein (TGFBIp) is ubiquitously expressed in the extracellular matrix (ECM) of various tissues and cell lines. Progressive accumulation of mutant TGFBIp is directly involved in the pathogenesis of TGFBI-linked corneal dystrophy. Recent studies reported that mutant TGFBIp accumulates in cells; however, the trafficking of TGFBIp is poorly understood. Therefore, we investigated TGFBIp trafficking to determine the route of its internalization and secretion and to elucidate its roles in the pathogenesis of granular corneal dystrophy type 2 (GCD2). Our data indicate that newly synthesized TGFBIp was secreted via the endoplasmic reticulum/Golgi-dependent secretory pathway, and this secretion was delayed in the corneal fibroblasts of patients with GCD2. We also found that TGFBIp was internalized by caveolae-mediated endocytosis, and the internalized TGFBIp accumulated after treatment with bafilomycin A1, an inhibitor of lysosomal degradation. In addition, the proteasome inhibitor MG132 inhibits the endocytosis of TGFBIp. Co-immunoprecipitation revealed that TGFBIp interacted with integrin ?V?3. Moreover, treatment with arginine-glycine-aspartic acid (RGD) tripeptide suppressed the internalization of TGFBIp. These insights on TGFBIp trafficking could lead to the identification of novel targets and the development of new therapies for TGFBI-linked corneal dystrophy. PMID:25853243

  16. Tetraspanin CD151 Mediates Papillomavirus Type 16 Endocytosis

    PubMed Central

    Scheffer, Konstanze D.; Gawlitza, Alexander; Spoden, Gilles A.; Zhang, Xin A.; Lambert, Carsten

    2013-01-01

    Human papillomavirus type 16 (HPV16) is the primary etiologic agent for cervical cancer. The infectious entry of HPV16 into cells occurs via a so-far poorly characterized clathrin- and caveolin-independent endocytic pathway, which involves tetraspanin proteins and actin. In this study, we investigated the specific role of the tetraspanin CD151 in the early steps of HPV16 infection. We show that surface-bound HPV16 moves together with CD151 within the plane of the membrane before they cointernalize into endosomes. Depletion of endogenous CD151 did not affect binding of viral particles to cells but resulted in reduction of HPV16 endocytosis. HPV16 uptake is dependent on the C-terminal cytoplasmic region of CD151 but does not require its tyrosine-based sorting motif. Reexpression of the wild-type CD151 but not mutants affecting integrin functions restored virus internalization in CD151-depleted cells. Accordingly, short interfering RNA (siRNA) gene knockdown experiments confirmed that CD151-associated integrins (i.e., ?3?1 and ?6?1/4) are involved in HPV16 infection. Furthermore, palmitoylation-deficient CD151 did not support HPV16 cell entry. These data show that complex formation of CD151 with laminin-binding integrins and integration of the complex into tetraspanin-enriched microdomains are critical for HPV16 endocytosis. PMID:23302890

  17. Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes

    PubMed Central

    Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena

    2013-01-01

    The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/?-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190

  18. Stretch-regulated Exocytosis/Endocytosis in Bladder Umbrella Cells

    PubMed Central

    Truschel, Steven T.; Wang, Edward; Ruiz, Wily G.; Leung, Som-Ming; Rojas, Raul; Lavelle, John; Zeidel, Mark; Stoffer, David; Apodaca, Gerard

    2002-01-01

    The epithelium of the urinary bladder must maintain a highly impermeable barrier despite large variations in urine volume during bladder filling and voiding. To study how the epithelium accommodates these volume changes, we mounted bladder tissue in modified Ussing chambers and subjected the tissue to mechanical stretch. Stretching the tissue for 5 h resulted in a 50% increase in lumenal surface area (from ?2900 to 4300 ?m2), exocytosis of a population of discoidal vesicles located in the apical cytoplasm of the superficial umbrella cells, and release of secretory proteins. Surprisingly, stretch also induced endocytosis of apical membrane and 100% of biotin-labeled membrane was internalized within 5 min after stretch. The endocytosed membrane was delivered to lysosomes and degraded by a leupeptin-sensitive pathway. Last, we show that the exocytic events were mediated, in part, by a cyclic adenosine monophosphate, protein kinase A-dependent process. Our results indicate that stretch modulates mucosal surface area by coordinating both exocytosis and endocytosis at the apical membrane of umbrella cells and provide insight into the mechanism of how mechanical forces regulate membrane traffic in nonexcitable cells. PMID:11907265

  19. Releasable SNAP-tag Probes for Studying Endocytosis and Recycling

    PubMed Central

    2012-01-01

    Site-specific labeling of cellular proteins with chemical probes is a powerful tool for live cell imaging of biological processes. One popular system, known as the SNAP-tag, is based on an engineered variant of the 20-kDa DNA repair protein O6-alkylguanine-DNA-alkyltransferase (AGT) that covalently reacts with O6-benzylguanine (BG) and can be derivatized with a number of reporter groups. For studying the endocytosis and recycling of cell surface proteins, the covalent nature of BG binding to the SNAP-tag is problematic, since removing excess noninternalized probe from the cell surface is not feasible. Here we describe a modification of the SNAP-tag technology that permits the rapid release of fluorescently labeled probes from the cell surface without affecting the population of labeled molecules sequestered within endosomes. This simple yet effective approach allows quantitative measurements of endocytosis and recycling in both imaging and biochemical assays and is especially useful when studying endosomal dynamics in live cells. PMID:22216966

  20. Membrane Mechanics of Endocytosis in Cells with Turgor

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane deformations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck constriction by actin may not be required, while its pulling role is essential. Finally, the theory shows that anisotropic curvature effectors stabilize membrane invaginations, and the loss of crescent-shaped BAR domain proteins such as Rvs167 could therefore trigger membrane scission. PMID:26517669

  1. Ricin A chain reaches the endoplasmic reticulum after endocytosis

    SciTech Connect

    Liu Qiong; Zhan Jinbiao . E-mail: jzhan2k@zju.edu.cn; Chen Xinhong; Zheng Shu

    2006-05-12

    Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum.

  2. Endocytosis of a chimera between human pro-urokinase and the plant toxin saporin: an unusual internalization mechanism.

    PubMed

    Ippoliti, R; Lendaro, E; Benedetti, P A; Torrisi, M R; Belleudi, F; Carpani, D; Soria, M R; Fabbrini, M S

    2000-07-01

    A fluorescent derivative of a chimeric toxin between human pro-urokinase and the plant ribosome-inactivating protein saporin (p-uPA-Sap(TRITC)), has been prepared in order to study the endocytosis of this potentially antimetastatic conjugate in the murine model cell line LB6 clone19 (Cl19) transfected with the human urokinase receptor gene. The physiological internalization of urokinase-inhibitor complexes is triggered by the interaction of plasminogen inhibitors (PAIs) with receptors belonging to the low density lipoprotein-related receptor protein (LRP) family, and involves a macro-quaternary structure including uPAR, LRP, and PAIs. However, in contrast to this mechanism, we observed a two-step process: first, the urokinase receptor (uPAR) acts as the anchoring factor on the plasma membrane; subsequently, LRP acts as the endocytic trigger. Once the chimera is bound to the plasma membrane by interaction with uPAR, we suggest that a possible exchange may occur to transfer the toxin to LRP via the saporin moiety and begin the internalization. So an unusual endocytic process is described, where the toxin enters the cell via a receptor different from that used to bind the plasma membrane. PMID:10877826

  3. Inhibitors of phosphoinositide 3-kinase cause defects in the postendocytic sorting of β2-adrenergic receptors

    PubMed Central

    Awwad, Hibah O.; Iyer, Varsha; Rosenfeld, Jennifer L.; Millman, Ellen E.; Foster, Estrella; Moore, Robert H.; Knoll, Brian J.

    2007-01-01

    Phosphatidylinositol 3-kinase inhibitors have been shown to affect the endocytosis or subsequent intracellular sorting in various receptor systems. Agonist-activated β2-adrenergic receptors undergo desensitization by mechanisms that include the phosphorylation, endocytosis and degradation of receptors. Following endocytosis, most internalized receptors are sorted to the cell surface, but some proportion is sorted to lysosomes for degradation. It is not known what governs the ratio of receptors that recycle versus receptors that undergo degradation. To determine if phosphatidylinositol 3-kinases regulate β2-adrenergic receptor trafficking, HEK293 cells stably expressing these receptors were treated with the phosphatidylinositol 3-kinase inhibitors LY294002 or wortmannin. We then studied agonist-induced receptor endocytosis and postendocytic sorting, including recycling and degradation of the internalized receptors. Both inhibitors amplified the internalization of receptors after exposure to the β-agonist isoproterenol, which was attributable to the sorting of a significant fraction of receptors to an intracellular compartment from which receptor recycling did not occur. The initial rate of β2-adrenergic receptor endocytosis and the default rate of receptor recycling were not significantly altered. During prolonged exposure to agonist, LY294002 slowed the degradation rate of β2-adrenergic receptors and caused the accumulation of receptors within rab7-positive vesicles. These results suggest that phosphatidylinositol 3-kinase inhibitors (1) cause a misrouting of β2-adrenergic receptors into vesicles that are neither able to efficiently recycle to the surface nor sort to lysosomes, and (2) delays the movement of receptors from late endosomes to lysosomes. PMID:17553490

  4. The Secretion-coupled Endocytosis Correlates with Membrane Tension Changes in RBL 2H3 Cells

    PubMed Central

    Dai, Jianwu; Ting-Beall, H. Ping; Sheetz, Michael P.

    1997-01-01

    Stimulated secretion in endocrine cells and neuronal synapses causes a rise in endocytosis rates to recover the added membrane. The endocytic process involves the mechanical deformation of the membrane to produce an invagination. Studies of osmotic swelling effects on endocytosis indicate that the increased surface tension is tightly correlated to a significant decrease of endocytosis. When rat basophilic leukemia (RBL) cells are stimulated to secrete, there is a dramatic drop in the membrane tension and only small changes in membrane bending stiffness. Neither the shape change that normally accompanies secretion nor the binding of ligand without secretion causes a drop in tension. Further, tension decreases within 6 s, preceding shape change and measurable changes in endocytosis. After secretion stops, tension recovers. On the basis of these results we suggest that the physical parameter of membrane tension is a major regulator of endocytic rate in RBL cells. Low tensions would stimulate endocytosis and high tensions would stall the endocytic machinery. PMID:9234166

  5. Expression of mammalian protein kinase C in Schizosaccharomyces pombe: isotype-specific induction of growth arrest, vesicle formation, and endocytosis.

    PubMed Central

    Goode, N T; Hajibagheri, M A; Warren, G; Parker, P J

    1994-01-01

    Mammalian protein kinase C (PKC) isotypes elicit a number of effects on expression in Schizosaccharomyces pombe. A small decrease in growth rate results from PKC-gamma expression, and treatment of these cells with phorbol esters leads to marked growth inhibition and vesicle formation. PKC-delta and -eta expression causes growth inhibition and vesiculation, and the magnitude of both of these effects is increased by phorbol esters. In contrast, PKC-epsilon expression produces growth inhibition but no vesicle accumulation, and this effect is not responsive to phorbol ester. Finally, PKC-zeta has no observable effect. Thus, isotype-specific biological effects are observed. The accumulation of vesicles correlates with phorbol ester-dependent growth inhibition and occurs only with expression of those isotypes that down-regulate in response to phorbol esters in these cells. Antibodies against mammalian clathrin light chain 1a identified clathrin-coated vesicles and up-regulation of clathrin expression in those cells where vesicles accumulate; the increased vesicular traffic includes an element of endocytosis. Thus expression of specific mammalian PKC isotypes up-regulates endocytosis in S. pombe, providing a likely explanation for PKC-mediated receptor internalization in higher eukaryotes. Images PMID:7803858

  6. Probing the effect of an inhibitor of an ATPase domain of Hsc70 on clathrin-mediated endocytosis.

    PubMed

    Cho, Hyungseoph J; Kim, Gun-Hee; Park, Seong-Hyun; Hyun, Ji Young; Kim, Nak-Kyoon; Shin, Injae

    2015-10-01

    Hsc70 is known to be involved in clathrin-mediated endocytosis (CME) by which cells take up various extracellular materials. More specifically, this protein promotes the disassembly of clathrin-coated vesicles (CCVs) by directly binding to clathrin during CME. As the ATPase activity of Hsc70 is required for its association with clathrin, we have investigated the effect of an inhibitor (apoptozole, Az) of an ATPase domain of Hsc70 on CME. The results of biochemical studies show that Az binds to Hsc70 and Hsp70 without binding to other types of heat shock proteins. Structure-activity relationship studies provide information on the structural features responsible for the inhibition of the ATPase activity of Hsc70. The results obtained from cell experiments reveal that Az disrupts the interaction of Hsc70 with clathrin in cells, thereby leading to the accumulation of transferrin in CCVs and suppression of release of free Fe(3+) from CCVs during transferrin receptor-mediated endocytosis. PMID:25728281

  7. Endocytosis of simian virus 40 into the endoplasmic reticulum

    SciTech Connect

    Kartenbeck, J.; Stukenbrok, H.; Helenius, A. )

    1989-12-01

    The endocytosis of SV-40 into CV-1 cells we studied using biochemical and ultrastructural techniques. The half-time of binding of ({sup 35}S)methionine-radiolabeled SV-40 to CV-1 cells was 25 min. Most of the incoming virus particles remained undegraded for several hours. Electron microscopy showed that some virus entered the endosomal/lysosomal pathway via coated vesicles, while the majority were endocytosed via small uncoated vesicles. After infection at high multiplicity, one third of total cell-associated virus was observed to enter the ER, starting 1-2 h after virus application. The viruses were present in large, tubular, smooth membrane networks generated as extentions of the ER. The results describe a novel and unique membrane transport pathway that allows endocytosed viral particles to be targeted from the plasma membrane to the ER.

  8. Caveolae-mediated endocytosis of conjugated polymer nanoparticlesa

    PubMed Central

    Lee, Junghan; Twomey, Megan; Machado, Christian; Gomez, Giselle; Doshi, Mona; Gesquiere, Andre. J.

    2013-01-01

    Understanding cellular interactions and entry pathways of synthetic biomaterials are highly important to improve overall labeling and delivery efficiency. Conjugated polymer nanoparticles (CPNs) are emerging, fluorescent materials that have been used for cancer cell labeling and small interfering RNA (siRNA) delivery. In this contribution, detailed biophysical properties of CPNs including entry mechanisms and subcellular localization were studied using fluorescent-based techniques. While CPNs cause no toxicity, decreased CPN uptake was observed from cancer cells pretreated with genistein, which is an inhibitor of caveolae-mediated endocytosis (CvME). CvME was further confirmed by high co-localization with caveolin-1 proteins, which are found in the caveolae and caveosomes. Excellent photophysical properties, non-toxicity, and non-destructive delivery pathways support that CPNs are promising multifunctional carriers minimizing degradation of contents during delivery. PMID:23629923

  9. UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis.

    PubMed

    Sun, Jiandong; Zhu, Guoqi; Liu, Yan; Standley, Steve; Ji, Angela; Tunuguntla, Rashmi; Wang, Yubin; Claus, Chad; Luo, Yun; Baudry, Michel; Bi, Xiaoning

    2015-07-21

    Gated solely by activity-induced changes in intracellular calcium, small-conductance potassium channels (SKs) are critical for a variety of functions in the CNS, from learning and memory to rhythmic activity and sleep. While there is a wealth of information on SK2 gating, kinetics, and Ca(2+) sensitivity, little is known regarding the regulation of SK2 subcellular localization. We report here that synaptic SK2 levels are regulated by the E3 ubiquitin ligase UBE3A, whose deficiency results in Angelman syndrome and overexpression in increased risk of autistic spectrum disorder. UBE3A directly ubiquitinates SK2 in the C-terminal domain, which facilitates endocytosis. In UBE3A-deficient mice, increased postsynaptic SK2 levels result in decreased NMDA receptor activation, thereby impairing hippocampal long-term synaptic plasticity. Impairments in both synaptic plasticity and fear conditioning memory in UBE3A-deficient mice are significantly ameliorated by blocking SK2. These results elucidate a mechanism by which UBE3A directly influences cognitive function. PMID:26166566

  10. Evolutionary Changes on the Way to Clathrin-Mediated Endocytosis in Animals.

    PubMed

    Dergai, Mykola; Iershov, Anton; Novokhatska, Olga; Pankivskyi, Serhii; Rynditch, Alla

    2016-01-01

    Endocytic pathways constitute an evolutionarily ancient system that significantly contributed to the eukaryotic cell architecture and to the diversity of cell type-specific functions and signaling cascades, in particular of metazoans. Here we used comparative proteomic studies to analyze the universal internalization route in eukaryotes, clathrin-mediated endocytosis (CME), to address the issues of how this system evolved and what are its specific features. Among 35 proteins crucially required for animal CME, we identified a subset of 22 proteins common to major eukaryotic branches and 13 gradually acquired during evolution. Based on exploration of structure-function relationship between conserved homologs in sister, distantly related and early diverged branches, we identified novel features acquired during evolution of endocytic proteins on the way to animals: Elaborated way of cargo recruitment by multiple sorting proteins, structural changes in the core endocytic complex AP2, the emergence of the Fer/Cip4 homology domain-only protein/epidermal growth factor receptor substrate 15/intersectin functional complex as an additional interaction hub and activator of AP2, as well as changes in late endocytic stages due to recruitment of dynamin/sorting nexin 9 complex and involvement of the actin polymerization machinery. The evolutionary reconstruction showed the basis of the CME process and its subsequent step-by-step development. Documented changes imply more precise regulation of the pathway, as well as CME specialization for the uptake of specific cargoes and cell type-specific functions. PMID:26872775

  11. GUCY2C lysosomotropic endocytosis delivers immunotoxin therapy to metastatic colorectal cancer

    PubMed Central

    Marszalowicz, Glen P.; Snook, Adam E.; Magee, Michael S.; Merlino, Dante; Lisa, D. Berman-Booty; Waldman, Scott A.

    2014-01-01

    The emergence of targeted cancer therapy has been limited by the paucity of determinants which are tumor-specific and generally associated with disease, and have cell dynamics which effectively deploy cytotoxic payloads. Guanylyl cyclase C (GUCY2C) may be ideal for targeting because it is normally expressed only in insulated barrier compartments, including intestine and brain, but over-expressed by systemic metastatic colorectal tumors. Here, we reveal that GUCY2C rapidly internalizes from the cell surface to lysosomes in intestinal and colorectal cancer cells. Endocytosis is independent of ligand binding and receptor activation, and is mediated by clathrin. This mechanism suggests a design for immunotoxins comprising a GUCY2C-directed monoclonal antibody conjugated through a reducible disulfide linkage to ricin A chain, which is activated to a potent cytotoxin in lysosomes. Indeed, this immunotoxin specifically killed GUCY2C-expressing colorectal cancer cells in a lysosomal- and clathrin-dependent fashion. Moreover, this immunotoxin reduced pulmonary tumors >80% (p<0.001), and improved survival 25% (p<0.001), in mice with established colorectal cancer metastases. Further, therapeutic efficacy was achieved without histologic evidence of toxicity in normal tissues. These observations support GUCY2C-targeted immunotoxins as novel therapeutics for metastatic tumors originating in the GI tract, including colorectum, stomach, esophagus, and pancreas. PMID:25294806

  12. Dynamin 2–dependent endocytosis is required for sustained S1PR1 signaling

    PubMed Central

    Ferguson, Shawn M.; Pereira, João P.; De Camilli, Pietro

    2014-01-01

    Sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) is critical for lymphocyte egress from lymphoid organs. Lymphocytes encounter low S1P concentrations near exit sites before transmigration, yet S1PR1 signaling is rapidly terminated after exposure to S1P. How lymphocytes maintain S1PR1 signaling in a low S1P environment near egress sites is unknown. Here we identify dynamin 2, an essential component of endocytosis, as a novel regulator of T cell egress. Mice with T cell–specific dynamin 2 deficiency had profound lymphopenia and impaired egress from lymphoid organs. Dynamin 2 deficiency caused impaired egress through regulation of S1PR1 signaling, and transgenic S1PR1 overexpression rescued egress in dynamin 2 knockout mice. In low S1P concentrations, dynamin 2 was essential for S1PR1 internalization, which enabled continuous S1PR1 signaling and promoted egress from both thymus and lymph nodes. In contrast, dynamin 2–deficient cells were only capable of a pulse of S1PR1 signaling, which was insufficient for egress. Our results suggest a possible mechanism by which T lymphocytes positioned at exit portals sense low S1P concentrations, promoting their egress into circulatory fluids. PMID:24638168

  13. The granzyme B-serglycin complex from cytotoxic granules requires dynamin for endocytosis.

    PubMed

    Veugelers, Kirstin; Motyka, Bruce; Frantz, Christine; Shostak, Irene; Sawchuk, Tracy; Bleackley, R Chris

    2004-05-15

    Cytotoxic T lymphocytes and natural killer cells destroy target cells via the directed exocytosis of lytic effector molecules such as perforin and granzymes. The mechanism by which these proteins enter targets is uncertain. There is ongoing debate over whether the most important endocytic mechanism is nonspecific or is dependent on the cation-independent mannose 6-phosphate receptor. This study tested whether granzyme B endocytosis is facilitated by dynamin, a key factor in many endocytic pathways. Uptake of and killing by the purified granzyme B molecule occurred by both dynamin-dependent and -independent mechanisms. However most importantly, serglycin-bound granzyme B in high-molecular-weight degranulate material from cytotoxic T lymphocytes predominantly followed a dynamin-dependent pathway to kill target cells. Similarly, killing by live cytotoxic T lymphocytes was attenuated by a defect in the dynamin endocytic pathway, and in particular, the pathways characteristically activated by granzyme B were affected. We therefore propose a model where degranulated serglycin-bound granzymes require dynamin for uptake. PMID:14739229

  14. Myosin II Regulates Activity Dependent Compensatory Endocytosis at Central Synapses

    PubMed Central

    Chandrasekar, Indra; Huettner, James E.; Turney, Stephen G.

    2013-01-01

    Recent evidence suggests that endocytosis, not exocytosis, can be rate limiting for neurotransmitter release at excitatory CNS synapses during sustained activity and therefore may be a principal determinant of synaptic fatigue. At low stimulation frequencies, the probability of synaptic release is linked to the probability of synaptic retrieval such that evoked release results in proportional retrieval even for release of single synaptic vesicles. The exact mechanism by which the retrieval rates are coupled to release rates, known as compensatory endocytosis, remains unknown. Here we show that inactivation of presynaptic myosin II (MII) decreases the probability of synaptic retrieval. To be able to differentiate between the presynaptic and postsynaptic functions of MII, we developed a live cell substrate patterning technique to create defined neural circuits composed of small numbers of embryonic mouse hippocampal neurons and physically isolated from the surrounding culture. Acute application of blebbistatin to inactivate MII in circuits strongly inhibited evoked release but not spontaneous release. In circuits incorporating both control and MIIB knock-out cells, loss of presynaptic MIIB function correlated with a large decrease in the amplitude of evoked release. Using activity-dependent markers FM1–43 and horseradish peroxidase, we found that MII inactivation greatly slowed vesicular replenishment of the recycling pool but did not impede synaptic release. These results indicate that MII-driven tension or actin dynamics regulate the major pathway for synaptic vesicle retrieval. Changes in retrieval rates determine the size of the recycling pool. The resulting effect on release rates, in turn, brings about changes in synaptic strength. PMID:24107946

  15. Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages

    SciTech Connect

    Tomoda, H.; Kishimoto, Y.; Lee, Y.C. )

    1989-09-15

    Endocytosis of 125I-mannose-bovine serum albumin (BSA) and exocytosis of {sup 125}I-mannose-poly-D-lysine by rabbit alveolar macrophages were examined as a function of temperature. A plot for total ligand uptake (cell-associated ligand plus degraded ligand) versus time shows a single inflection point at 20{degrees}C. Ligand degradation does not occur below 20{degrees}C. Internalization of surface-bound {sup 125}I-mannose-BSA is negligible below 10{degrees}C. The rate constant for internalization increases dramatically above 20{degrees}C: 0.02 min-1 at 20{degrees}C, 0.05 min-1 at 25 degrees C, 0.13 min-1 at 30{degrees}C, and 0.29 min-1 at 35{degrees}C. {sup 125}I-Mannose-N-acetyl-poly-D-lysine preloaded in lysosomes is exocytosed in a temperature and time-dependent fashion. Even at lower temperatures (2-10{degrees}C), secretion of {sup 125}I-mannose-N-acetyl-poly-D-lysine was detected, indicating that movement of lysosomal content to plasma membrane and beyond cannot be suppressed at these temperatures. Thus, the temperature dependence of exocytosis of an {sup 125}I-labeled ligand is quite different from that of endocytosis, suggesting that the two processes are controlled by different mechanisms. Stimulation of secretion of preloaded {sup 125}I-mannose-N-acetyl-poly-D-lysine by mannose-BSA was more pronounced at lower temperatures with a sharp inflection point at 10{degrees}C. These findings suggest that endosomes containing newly internalized mannose-BSA interact with the exocytosis pathway and enhance secretion of {sup 125}I-mannose-N-acetyl-poly-D-lysine from lysosomes.

  16. Pronounced infracuticular endocytosis in mammalian outer hair cells.

    PubMed

    Meyer, J; Mack, A F; Gummer, A W

    2001-11-01

    Endocytosis in cochlear hair cells was investigated by staining with the vital fluorescent dye FM 1-43, that partitions reversibly into membranes and is trapped in vesicles during endocytosis. The temporal development and spatial distribution of FM 1-43 induced fluorescence was investigated using confocal laser-scanning microscopy. FM 1-43 rapidly and intensely stained cochlear hair cells, leaving the supporting cells unstained. For short application (0.2-30 s), only the infracuticular region of outer hair cells (OHCs) was labeled, whereas for long application (30-60 s), the OHCs were also labeled in the infranuclear zone and along a central strand extending from the infracuticular zone down to the nucleus, as well as along the entire cell membrane. Except for the cell membrane, the infracuticular zone, directly below the cuticular plate, showed the most rapid and intense staining, and in most cases staining was spherically shaped with a diameter of 3-7 microm. Localization and size of this infracuticular staining coincided with Hensen's body, a specialized variant of the endoplasmic reticulum. In contrast to the OHCs, apical fluorescence of inner hair cells presented a homogeneous distribution. When OHCs were incubated in FM 1-43 for longer than 1 min, many points of contact between the central strand, the infracuticular zone and the lateral cell membrane were observed. Since Hensen's bodies are a specialty of OHCs and the fluorescent staining pattern of these cells was unique, it is proposed that Hensen's body is involved in the turnover of OHC-specific proteins, such as those involved in the molecular machinery of the motor action of the plasma membrane. PMID:11744276

  17. Simian Hemorrhagic Fever Virus Cell Entry Is Dependent on CD163 and Uses a Clathrin-Mediated Endocytosis-Like Pathway

    PubMed Central

    McCluskey, Adam; Robinson, Phillip J.; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L.; Lauck, Michael; Friedrich, Thomas C.; Goldberg, Tony L.

    2014-01-01

    ABSTRACT Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein. PMID:25355889

  18. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1

    PubMed Central

    Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M.; Rinné, Susanne; Decher, Niels; Schlichthörl, Günter; Daut, Jürgen

    2014-01-01

    The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion. PMID:24743596

  19. Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held

    PubMed Central

    Midorikawa, Mitsuharu; Okamoto, Yuji; Sakaba, Takeshi

    2014-01-01

    At the mammalian central synapse, Ca2+ influx through Ca2+ channels triggers neurotransmitter release by exocytosis of synaptic vesicles, which fuse with the presynaptic membrane and are subsequently retrieved by endocytosis. At the calyx of Held terminal, P/Q-type Ca2+ channels mainly mediate exocytosis, while N- and R-type channels have a minor role in young terminals (postnatal days 8–11). The role of each Ca2+ channel subtype in endocytosis remains to be elucidated; therefore, we examined the role of each type of Ca2+ channel in endocytosis, by using whole-cell patch-clamp recordings in conjunction with capacitance measurement techniques. We found that at the young calyx terminal, when R-type Ca2+ channels were blocked, the slow mode of endocytosis was further slowed, while blocking of either P/Q- or N-type Ca2+ channels had no major effect. In more mature terminals (postnatal days 14–17), the slow mode of endocytosis was mainly triggered by P/Q-type Ca2+ channels, suggesting developmental changes in the regulation of the slow mode of endocytosis by different Ca2+ channel subtypes. In contrast, a fast mode of endocytosis was observed after strong stimulation in young terminals that was mediated mainly by P/Q-type, but not R- or N-type Ca2+ channels. These results suggest that different types of Ca2+ channels regulate the two different modes of endocytosis. The results may also suggest that exo- and endocytosis are regulated independently at different sites in young animals but are more tightly coupled in older animals, allowing more efficient synaptic vesicle cycling adapted for fast signalling. PMID:24907302

  20. Standardizing scavenger receptor nomenclature.

    PubMed

    Prabhudas, Mercy; Bowdish, Dawn; Drickamer, Kurt; Febbraio, Maria; Herz, Joachim; Kobzik, Lester; Krieger, Monty; Loike, John; Means, Terry K; Moestrup, Soren K; Post, Steven; Sawamura, Tatsuya; Silverstein, Samuel; Wang, Xiang-Yang; El Khoury, Joseph

    2014-03-01

    Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a variety of ligands, including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the U.S. National Institute of Allergy and Infectious Diseases, National Institutes of Health to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of non-self or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. The discussion and nomenclature recommendations described in this report only refer to mammalian scavenger receptors. The purpose of this article is to describe the proposed mammalian nomenclature and classification developed at the workshop and to solicit additional feedback from the broader research community. PMID:24563502

  1. Lack of dependence and rewarding effects of deltorphin II in mu-opioid receptor-deficient mice.

    TOXLINE Toxicology Bibliographic Information

    Hutcheson DM; Matthes HW; Valjent E; Sánchez-Blázquez P; Rodríguez-Díaz M; Garzón J; Kieffer BL; Maldonado R

    2001-01-01

    We have previously shown that the antinociceptive effects produced by the delta opioid-selective agonist deltorphin II are preserved in mu-opioid receptor (MOR)-deficient mice. We have now investigated rewarding effects and physical dependence produced by deltorphin II in these animals. Wild-type and MOR-deficient mice were implanted with a cannula into the third ventricle and deltorphin II was administered centrally. The rewarding effects induced by deltorphin II were then investigated using the place preference paradigm. Wild-type mice showed place preference for the compartment previously associated with deltorphin II and this effect was not observed in MOR-deficient mice. In a second experiment, mice received a chronic perfusion of deltorphin II over 6 days, via an Alzet minipump connected to the intraventricular cannula, and withdrawal was precipitated by naloxone administration. Wild-type animals showed a moderate but significant incidence of several somatic signs of withdrawal. This withdrawal response was suppressed in MOR-deficient mice. Analysis of the immunoreactivity levels of PKC-alpha, PKC-beta (I and II) and PKC-gamma isozymes in the cerebral cortex of mice infused chronically with deltorphin II showed a significant up-regulation of all these isozymes in the soluble fraction in wild-type but not in MOR-deficient mice. In conclusion, mu-opioid receptors, which are not involved in deltorphin II antinociception, appear to mediate the effects of chronic deltorphin II on rewarding responses, physical dependence and adaptive changes to PKC.

  2. Down-regulation of insulin receptors is related to insulin internalization

    SciTech Connect

    Geiger, D.; Carpentier, J.L.; Gorden, P.; Orci, L. )

    1989-11-01

    In the present study, we have tested the influence of inhibition of endocytosis by hypertonic medium on the regulation of cell surface insulin receptors. We show that active internalization of {sup 125}I-insulin is markedly inhibited by hypertonic media and that, in parallel, cell surface invaginations are significantly diminished. These two events are accompanied by a marked inhibition of cell surface insulin receptor down-regulation. These data provide further strong evidence that receptor-mediated endocytosis is the major mechanism by which insulin receptors are regulated at the surface of target cells.

  3. D2-Dopamine Receptors Target Regulator of G Protein Signaling 9-2 (RGS9-2) to Detergent-Resistant Membrane Fractions

    PubMed Central

    Celver, Jeremy; Sharma, Meenakshi; Kovoor, Abraham

    2011-01-01

    Detergent-resistant membranes (DRM) are thought to contain structures such as lipid rafts that are involved in compartmentalizing cell membranes. We report that the majority of D2-dopamine receptors (D2R) expressed endogenously in mouse striatum or expressed in immortalized cell-lines is found in DRM. In addition, exogenous co-expression of D2R in a cell line shifted the expression of regulator of G protein signaling 9-2 (RGS9-2) into DRM. RGS9-2 is a protein that is highly enriched in the striatum and specifically regulates striatal D2R. In the striatum, RGS9-2 is mostly associated with DRMs but when expressed in cell lines, RGS9-2 is present in the soluble cytoplasmic fraction. In contrast, the majority of mu opioid receptors (MOR) and delta opioid receptors (DOR) are found in detergent-soluble membrane and there was no shift of RGS9-2 into DRM after co-expression of MOR. These data suggest that the targeting of RGS9-2 to DRM in the striatum is mediated by D2R and that DRM is involved in the formation of a D2R signaling complex. D2R-mediated targeting of RGS9-2 to DRM was blocked by the deletion of the RGS9-2 DEP domain or by a point mutation that abolishes the GTPase accelerating protein function of RGS9-2. PMID:22035199

  4. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging

    PubMed Central

    Qu, M.; Mehrmohammadi, M.; Emelianov, S.Y.

    2015-01-01

    Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA) imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA) and magneto-motive ultrasound (MMUS) signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles. The results indicated that during the delivery of nanoparticles to the vicinity of the cells, both PA and MMUS signals are almost linearly proportional. However, accumulation of nanoparticles within the cells leads to nonlinear MMUS-PA relationship, due to non-linear MMUS signal amplification. Therefore, through longitudinal MPA imaging, it is possible to monitor the delivery of nanoparticles and identify the endocytosis of the nanoparticles by living cells. PMID:26640773

  5. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing

    NASA Astrophysics Data System (ADS)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-04-01

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly. Electronic supplementary information (ESI) available: Details of the experimental procedures and the results of the control experiments. See DOI: 10.1039/c5nr01020a

  6. Coupling between endocytosis and sphingosine kinase I recruitment

    PubMed Central

    Shen, Hongying; Giordano, Francesca; Wu, Yumei; Chan, Jason; Zhu, Chen; Milosevic, Ira; Wu, Xudong; Yao, Kai; Chen, Bo; Baumgart, Tobias; Sieburth, Derek; De Camilli, Pietro

    2014-01-01

    Genetic studies have suggested a functional link between cholesterol/sphingolipid metabolism and endocytic membrane traffic. Here we show that perturbing the cholesterol/sphingomyelin balance in the plasma membrane results in the massive formation of clusters of narrow endocytic tubular invaginations positive for N-BAR proteins. These tubules are intensely positive for sphingosine kinase 1 (SPHK1). SPHK1 is also targeted to physiologically occurring early endocytic intermediates, and is highly enriched in nerve terminals, cellular compartments specialized for exo-endocytosis. Membrane recruitment of SPHK1 involves a direct, curvature-sensitive interaction with the lipid bilayer mediated by a hydrophobic patch on the enzyme’s surface. The knockdown of SPHKs results in endocytic recycling defects, and a mutation that disrupts the hydrophobic patch of C. elegans SPHK fails to rescue the neurotransmission defects in loss-of-function mutants of this enzyme. Our studies support a role of sphingosine phosphorylation in endocytic membrane trafficking beyond the established function of sphingosine-1-phosphate in intercellular signaling. PMID:24929359

  7. Tao controls epithelial morphogenesis by promoting Fasciclin 2 endocytosis

    PubMed Central

    Gomez, Juan Manuel; Wang, Ying

    2012-01-01

    Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium. PMID:23266957

  8. Casein Kinase 1 Promotes Initiation of Clathrin-Mediated Endocytosis

    PubMed Central

    Peng, Yutian; Grassart, Alexandre; Lu, Rebecca; Wong, Catherine C. L.; Yates, John; Barnes, Georjana; Drubin, David G.

    2014-01-01

    Summary In budding yeast, over 60 proteins functioning in at least 5 modules are recruited to endocytic sites with predictable order and timing. However, how sites of clathrin-mediated endocytosis are initiated and stabilized is not well understood. Here, the casein kinase 1 (CK1) Hrr25 is shown to be an endocytic protein and to be among the earliest proteins to appear at endocytic sites. Hrr25 absence or overexpression decreases or increases the rate of endocytic site initiation, respectively. Ede1, an early endocytic Eps15-like protein important for endocytic initiation, is an Hrr25 target and is required for Hrr25 recruitment to endocytic sites. Hrr25 phosphorylation of Ede1 is required for Hrr25-Ede1 interaction and promotes efficient initiation of endocytic sites. These observations indicate that Hrr25 kinase and Ede1 cooperate to initiate and stabilize endocytic sites. Analysis of the mammalian homologs CK1?/? suggests a conserved role for these protein kinases in endocytic site initiation and stabilization. PMID:25625208

  9. Ca2+-influx slows single synaptic vesicle endocytosis

    PubMed Central

    Leitz, Jeremy; Kavalali, Ege T.

    2011-01-01

    Ca2+-dependent synaptic vesicle recycling is critical for maintenance of neurotransmission. However, uncoupling the roles of Ca2+ in synaptic vesicle fusion and retrieval has been difficult as studies probing the role of Ca2+ in endocytosis relied on measurements of bulk synaptic vesicle retrieval. Here, to dissect the role of Ca2+ in these processes, we utilized a low signal-to-noise pHluorin-tagged vesicular probe to monitor single synaptic vesicle recycling in rat hippocampal neurons. We show that Ca2+ increases synaptic vesicle fusion probability in the classical sense, but surprisingly decreases the rate of synaptic vesicle retrieval. This negative regulation of synaptic vesicle retrieval is blocked by the Ca2+ chelator, EGTA, as well as FK506, a specific inhibitor of Ca2+-calmodulin-dependent phosphatase calcineurin. The slow time course of aggregate synaptic vesicle retrieval detected during repetitive activity could be explained by a progressive decrease in the rate of synaptic vesicle retrieval during the stimulation train. These results indicate Ca2+ entry during single action potentials slows the pace of subsequent synaptic vesicle recycling. PMID:22072683

  10. Evidence for a Clathrin-independent mode of endocytosis at a continuously active sensory synapse.

    PubMed

    Fuchs, Michaela; Brandstätter, Johann Helmut; Regus-Leidig, Hanna

    2014-01-01

    Synaptic vesicle exocytosis at chemical synapses is followed by compensatory endocytosis. Multiple pathways including Clathrin-mediated retrieval of single vesicles, bulk retrieval of large cisternae, and kiss-and-run retrieval have been reported to contribute to vesicle recycling. Particularly at the continuously active ribbon synapses of retinal photoreceptor and bipolar cells, compensatory endocytosis plays an essential role to provide ongoing vesicle supply. Yet, little is known about the mechanisms that contribute to endocytosis at these highly complex synapses. To identify possible specializations in ribbon synaptic endocytosis during different states of activity, we exposed mice to controlled lighting conditions and compared the distribution of endocytotic proteins at rod and cone photoreceptor, and ON bipolar cell ribbon synapses with light and electron microscopy. In mouse ON bipolar cell terminals, Clathrin-mediated endocytosis seemed to be the dominant mode of endocytosis at all adaptation states analyzed. In contrast, in mouse photoreceptor terminals in addition to Clathrin-coated pits, clusters of membranously connected electron-dense vesicles appeared during prolonged darkness. These clusters labeled for Dynamin3, Endophilin1, and Synaptojanin1, but not for AP180, Clathrin LC, and hsc70. We hypothesize that rod and cone photoreceptors possess an additional Clathrin-independent mode of vesicle retrieval supporting the continuous synaptic vesicle supply during prolonged high activity. PMID:24616664

  11. ‘Delayed’ endocytosis is regulated by extracellular Ca2+ in snake motor boutons

    PubMed Central

    Teng, Haibing; Wilkinson, Robert S

    2003-01-01

    When cooled below ?7 °C, recently endocytosed vesicles in the motor terminals of the garter snake fail to shed their clathrin coats. Perhaps as a result, the terminals complete only about one-half of the compensatory endocytosis expected after a given period of stimulation. Upon return to room temperature (RT), endocytosis resumes immediately and is complete within minutes. This ‘delayed’ endocytosis following release from cold block provides an opportunity to study clathrin-dependent endocytotic mechanisms in temporal isolation from those events, such as Ca2+ entry and consequent exocytosis, that are normally associated with the activation of nerve terminals. We have taken advantage of clathrin decoating blockade to examine the rate, temperature dependence and extracellular Ca2+ dependence of endocytosis at the snake nerve-muscle synapse. Endocytosis was fast at RT (complete in < 1 min) and markedly faster still at 35 °C. Moreover, the rate of endocytosis varied significantly with change in [Ca2+]o; the rate at 7.2 mM (single exponential time constant, ?3 s) was approximately double that at 0 mM (single exponential time constant, ?7 s). Thus, membrane retrieval via clathrin is rapid and, due to its dependence on [Ca2+]o, potentially regulated by changes in the milieu of the synaptic cleft during neural activity. PMID:12813154

  12. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo.

    PubMed

    Markelc, Bostjan; Skvarca, Eva; Dolinsek, Tanja; Kloboves, Veronika Prevodnik; Coer, Andrej; Sersa, Gregor; Cemazar, Maja

    2015-06-01

    Application of electric pulses (electroporation/electropermeabilization) is an effective method for gene transfer (i.e. gene electrotransfer (GET)) in vitro and in vivo. Currently, the mechanisms by which the DNA enters the cell are not yet fully understood. Experimental evidence is building up that endocytosis is the main mechanism by which the DNA, which is later expressed, enters the cell. Therefore the aim of our study was to elucidate whether inhibitors of endocytosis, methyl-?-cyclodextrin (M?CD), Concanavalin A (ConA) and Dynasore, can impair the transfection efficacy of GET in vitro in B16F1 murine melanoma and in vivo in m. tibialis cranialis in mice. We show that M?CD--general inhibitor of endocytosis--can almost prevent GET of EGFP-N1 plasmid in vitro, that ConA--inhibitor of clathrin mediated endocytosis--also abrogates GET but to a lesser extent, and when using Dynasore--reversible inhibitor of dynamin--there is no effect on GET efficacy, if endocytosis is blocked for only 5 min after GET. Moreover, M?CD also reduced GET efficacy in vivo in m. tibialis cranialis and this effect was long lasting. The results of this study show that endocytosis is probably the main mechanism of entrance of DNA after GET in vitro and also in vivo. PMID:25200990

  13. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants.

    PubMed Central

    Fares, H; Greenwald, I

    2001-01-01

    The coelomocytes of Caenorhabditis elegans are scavenger cells that continuously and nonspecifically endocytose fluid from the pseudocoelom (body cavity). Green fluorescent protein (GFP) secreted into the pseudocoelom from body wall muscle cells is endocytosed and degraded by coelomocytes. We show that toxin-mediated ablation of coelomocytes results in viable animals that fail to endocytose pseudocoelomic GFP, indicating that endocytosis by coelomocytes is not essential for growth or survival of C. elegans under normal laboratory conditions. We examined known viable endocytosis mutants, and performed RNAi for other known endocytosis genes, for coelomocyte uptake defective (Cup) phenotypes. We also screened for new genes involved in endocytosis by isolating viable mutants with Cup defects; this screen identified 14 different genes, many with multiple alleles. A variety of Cup terminal phenotypes were observed, consistent with defects at various steps in the endocytic pathway. Available molecular information indicates that the Cup mutant screen has identified novel components of the endocytosis machinery that are conserved in mammals but not in Saccharomyces cerevisiae, the only other organism for which large-scale genetic screens for endocytosis mutants have been performed. PMID:11560892

  14. Adaptor Protein Complex 2 (AP-2) Mediated, Clathrin Dependent Endocytosis, And Related Gene Activities, Are A Prominent Feature During Maturation Stage Amelogenesis

    PubMed Central

    LACRUZ, Rodrigo S.; BROOKES, Steven J.; WEN, Xin; JIMENEZ, Jaime M.; VIKMAN, Susanna; HU, Ping; WHITE, Shane N.; LYNGSTADAAS, S. Petter; OKAMOTO, Curtis T.; SMITH, Charles E.; PAINE, Michael L.

    2012-01-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real time PCR, we show that the expression of clathrin and adaptor protein subunits are up-regulated in maturation stage rodent enamel organ cells. AP-2 is the most up-regulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin dependent endocytosis, thus implying the likelihood of a specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also up-regulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1), cluster of differentiation 63 and 68 (Cd63 and Cd68), ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2), ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2), chloride channel, voltage-sensitive 7 (Clcn7) and cathepsin K (Ctsk). Immunohistological data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain® showed up-regulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation. PMID:23044750

  15. Internalization of the opioid growth factor, [Met5]-enkephalin, is dependent on clathrin-mediated endocytosis for downregulation of cell proliferation

    PubMed Central

    Cheng, Fan; McLaughlin, Patricia J.; Banks, William A.

    2010-01-01

    The opioid growth factor (OGF; [Met5]-enkephalin), a constitutively expressed and tonically active inhibitory peptide, interacts with the OGF receptor (OGFr) to form an endogenous growth-regulating pathway in homeostasis. Amplification of OGF-OGFr interfacing in animal and clinical studies depresses development, neoplasia, angiogenesis, and immunity. Disruption of the OGF-OGFr axis accelerates cell proliferation and has been particularly important in wound repair. To investigate how OGF enters cells, OGF was labeled with 5,6-tetramethylrhodamine OGF (RhoOGF) to study its uptake in live cells. African green monkey kidney cells (COS-7) incubated with RhoOGF exhibited a temperature-dependent course of entry, being internalized at 37°C but not at 4°C. RhoOGF was detected in the cytoplasm 15 min after initial exposure, observed in both cytoplasm and nucleus within 30 min, and remained in the cells for as long as 5 h. A 100-fold excess of OGF or the opioid antagonist naltrexone, but not other opioid ligands (some selective for classic opioid receptors), markedly reduced entry of RhoOGF into cells. RhoOGF was functional because DNA synthesis in cells incubated with RhoOGF (10?5 to 10?8 M) was decreased 24–36%, and was comparable to cells treated with unlabeled OGF (reductions of 26–39%). OGF internalization was dependent on clathrin-mediated endocytosis, with addition of clathrin siRNA diminishing the uptake of RhoOGF and upregulating DNA synthesis. RhoOGF clathrin-mediated endocytosis was unrelated to endosomal or Golgi pathways. Taken together, these results suggest that OGF enters cells by active transport in a saturable manner that requires clathrin-mediated endocytosis. PMID:20592180

  16. Flavivirus Entry Receptors: An Update

    PubMed Central

    Perera-Lecoin, Manuel; Meertens, Laurent; Carnec, Xavier; Amara, Ali

    2013-01-01

    Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s) that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM) and TYRO3, AXL and MER (TAM). Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth. PMID:24381034

  17. Effects of cholesterol on CCK-1 receptors and caveolin-3 proteins recycling in human gallbladder muscle.

    PubMed

    Cong, P; Pricolo, V; Biancani, P; Behar, J

    2010-09-01

    The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors. Muscle cells from human and guinea pig GBs were studied. Antibodies were used to examine CCK-1R, antigens of early and recycling endosomes, and total (CAV-3) and phosphorylated caveolar-3 protein (pCAV-3) by Western blots. Contraction was measured in muscle cells transfected with CAV3 mRNA or clathrin heavy-chain small-interfering RNA (siRNA). CCK-1R returned back to the bulk plasma membrane (PM) 30 min after CCK-8 recycled by endosomes, peaking at 5 min in early endosomes and at 20 min in recycling endosomes. Pretreatment with cholesterol-rich liposomes inhibited the transfer of CCK-1R and of CAV-3 in the endosomes by blocking CAV-3 phosphorylation. 4-Amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (inhibitor of tyrosine kinase) reproduced these effects by blocking pCAV-3 formation, increasing CAV-3 and CCK-1R sequestration in the caveolae and impairing CCK-8-induced contraction. CAV-3 siRNA reduced CAV-3 protein expression, decreased CCK-8-induced contraction, and accumulated CCK-1R in the caveolae. Abnormal concentrations of caveolar cholesterol had no effect on met-enkephalin that stimulates a delta-opioid receptor that internalizes through clathrin. We found that impaired muscle contraction in GBs with cholesterol stones is due to high caveolar levels of cholesterol that inhibits pCAV-3 generation. Caveolar cholesterol increases the caveolar sequestration of CAV-3 and CCK-1R caused by their reduced recycling to the PM. PMID:20558763

  18. Antinociceptive effects of the ORL1 receptor agonist nociceptin/orphanin FQ in diabetic mice.

    PubMed

    Kamei, J; Ohsawa, M; Kashiwazaki, T; Nagase, H

    1999-04-01

    The antinociceptive potency of nociceptin/orphanin FQ, an opioid-like orphan receptor agonist, was examined using the tail-flick test and the formalin-induced nociception test in diabetic mice. Nociceptin/orphanin FQ, at doses of 0.1 to 10 nmol, intrathecal (i.t.), produced a marked and dose-dependent inhibition of the tail-flick response in both non-diabetic and diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ in the tail-flick test in diabetic mice was greater than that in non-diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ was not antagonized by pretreatment with either beta-funaltrexamine, a selective mu-opioid receptor antagonist, naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist. The antinociceptive effects of nociceptin/orphanin FQ in diabetic, but not in non-diabetic mice, were abolished when mice were pretreated with capsaicin i.t. 24 h before testing. In the formalin test, nociceptin/orphanin FQ also produced a marked and dose-dependent antinociceptive effect on the first-phase response, but not the second phase-response, in both diabetic and non-diabetic mice. Furthermore, nociceptin/orphanin FQ significantly and dose-dependently reduced the flinching responses to i.t.-administered substance P in diabetic mice, but not in non-diabetic mice. The results of the present experiments clearly indicate that the antinociceptive potency of nociceptin/orphanin FQ is significantly greater in diabetic mice than in non-diabetic mice. Furthermore, the results of this study suggest that the reduction of substance P-mediated nociceptive transmission in the spinal cord may be responsible for the antinociceptive effect of nociceptin/orphanin FQ. PMID:10323258

  19. Endocytosis and intracellular processing of tissue-type plasminogen activator by rat liver cells in vivo.

    PubMed Central

    Stang, E; Krause, J; Seydel, W; Berg, T; Roos, N

    1992-01-01

    Endocytosis of tissue-type plasminogen activator (t-PA) by different types of rat liver cells was studied in immunocytochemically labelled cryosections as well as in biochemical experiments. For morphological localization of the ligand in different endocytic compartments involved in its catabolism, rat livers were fixed at various times (1-24 min) after injection of t-PA. Late-endosomal and lysosomal compartments were identified by double-labelling the sections with antibodies to the lysosomal proteins glycoprotein Igp 120 and cathepsin D. In liver t-PA was localized in sinusoidal endothelial cells (EC), parenchymal cells (PC) and to some extent in Kupffer cells (KC), indicating that it is internalized and degraded in all three cell types. In specimens fixed 6 min after injection PC, EC and KC were found to contribute to 69, 24 and 7% respectively of total t-PA endocytosed. The transfer from late endosomes to lysosomes was found to be faster in EC than in PC. The morphological findings were supported by studies of the endocytic mechanisms employing isolated perfused livers and primary hepatocytes. The presence of monensin, an inhibitor of lysosomal protein degradation, reduced the amount of t-PA degraded to about 50% of the control values. The catalytic site seems not to be required for the catabolism of t-PA in hepatic cells. The inhibition of t-PA by D-phenylalanyl-L-prolylarginyl-chloromethane did not influence receptor recognition and catabolic processing, as determined in morphological studies using labelled cryosections, in binding studies employing liver cell membranes and primary hepatocytes, as well as in liver-perfusion experiments. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1554369

  20. A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis

    PubMed Central

    Taylor, Marcus J.; Perrais, David; Merrifield, Christien J.

    2011-01-01

    Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein–tagged endocytic protein was referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total internal reflection fluorescence microscopy to detect scission events with a resolution of ∼2 s. We found that scission events engulfed comparable amounts of transferrin receptor cargo at CCSs of different sizes and CCS did not always disappear following scission. We measured the recruitment dynamics of 34 types of endocytic protein to scission events: Abp1, ACK1, amphiphysin1, APPL1, Arp3, BIN1, CALM, CIP4, clathrin light chain (Clc), cofilin, coronin1B, cortactin, dynamin1/2, endophilin2, Eps15, Eps8, epsin2, FBP17, FCHo1/2, GAK, Hip1R, lifeAct, mu2 subunit of the AP2 complex, myosin1E, myosin6, NECAP, N-WASP, OCRL1, Rab5, SNX9, synaptojanin2β1, and syndapin2. For each protein we aligned ∼1,000 recruitment profiles to their respective scission events and constructed characteristic “recruitment signatures” that were grouped, as for yeast, to reveal the modular organization of mammalian CME. A detailed analysis revealed the unanticipated recruitment dynamics of SNX9, FBP17, and CIP4 and showed that the same set of proteins was recruited, in the same order, to scission events at CCSs of different sizes and lifetimes. Collectively these data reveal the fine-grained temporal structure of CME and suggest a simplified canonical model of mammalian CME in which the same core mechanism of CME, involving actin, operates at CCSs of diverse sizes and lifetimes. PMID:21445324

  1. Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells

    PubMed Central

    Phan, Quynh T; Myers, Carter L; Fu, Yue; Sheppard, Donald C; Yeaman, Michael R; Welch, William H; Ibrahim, Ashraf S; Edwards, John E; Filler, Scott G

    2007-01-01

    Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3Δ/als3Δ mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin–cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins. PMID:17311474

  2. Spatial Organization of EphA2 at the Cell-Cell Interface Modulates Trans-Endocytosis of EphrinA1

    PubMed Central

    Greene, Adrienne C.; Lord, Samuel J.; Tian, Aiwei; Rhodes, Christopher; Kai, Hiroyuki; Groves, Jay T.

    2014-01-01

    EphA2 is a receptor tyrosine kinase (RTK) that is sensitive to spatial and mechanical aspects of the cell’s microenvironment. Misregulation of EphA2 occurs in many aggressive cancers. Although its juxtacrine signaling geometry (EphA2’s cognate ligand ephrinA1 is expressed on the surface of an apposing cell) provides a mechanism by which the receptor may experience extracellular forces, this also renders the system challenging to decode. By depositing living cells on synthetic supported lipid membranes displaying ephrinA1, we have reconstituted key features of the juxtacrine EphA2-ephrinA1 signaling system while maintaining the ability to perturb the spatial and mechanical properties of the membrane-cell interface with precision. In addition, we developed a trans-endocytosis assay to monitor internalization of ephrinA1 from a supported membrane into the apposing cell using a quantitative three-dimensional fluorescence microscopy assay. Using this experimental platform to mimic a cell-cell junction, we found that the signaling complex is not efficiently internalized when lateral reorganization at the membrane-cell contact sites is physically hindered. This suggests that EphA2-ephrinA1 trans-endocytosis is sensitive to the mechanical properties of a cell’s microenvironment and may have implications in physical aspects of tumor biology. PMID:24853748

  3. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with misbalance between endocytosis and exocytosis could be involved in the anticonvulsant activity of the ketogenic diet. PMID:26748385

  4. Recruitment of endocytosis in sonopermeabilization-mediated drug delivery: a real-time study

    NASA Astrophysics Data System (ADS)

    Derieppe, Marc; Rojek, Katarzyna; Escoffre, Jean-Michel; de Senneville, Baudouin Denis; Moonen, Chrit; Bos, Clemens

    2015-07-01

    Microbubbles (MBs) in combination with ultrasound (US) can enhance cell membrane permeability, and have the potential to facilitate the cellular uptake of hydrophilic molecules. However, the exact mechanism behind US- and MB-mediated intracellular delivery still remains to be fully understood. Among the proposed mechanisms are formation of transient pores and endocytosis stimulation. In our study, we investigated whether endocytosis is involved in US- and MB-mediated delivery of small molecules. Dynamic fluorescence microscopy was used to investigate the effects of endocytosis inhibitors on the pharmacokinetic parameters of US- and MB-mediated uptake of SYTOX Green, a 600 Da hydrophilic model drug. C6 rat glioma cells, together with SonoVue® MBs, were exposed to 1.4 MHz US waves at 0.2 MPa peak-negative pressure. Collection of the signal intensity in each individual nucleus was monitored during and after US exposure by a fibered confocal fluorescence microscope designed for real-time imaging. Exposed to US waves, C6 cells pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, showed up to a 2.5-fold significant increase of the uptake time constant, and a 1.1-fold increase with genistein, an inhibitor of caveolae-mediated endocytosis. Both inhibitors slowed down the US-mediated uptake of SYTOX Green. With C6 cells and our experimental settings, these quantitative data indicate that endocytosis plays a role in sonopermeabilization-mediated delivery of small molecules with a more predominant contribution of clathrin-mediated endocytosis.

  5. Recruitment of endocytosis in sonopermeabilization-mediated drug delivery: a real-time study.

    PubMed

    Derieppe, Marc; Rojek, Katarzyna; Escoffre, Jean-Michel; de Senneville, Baudouin Denis; Moonen, Chrit; Bos, Clemens

    2015-07-01

    Microbubbles (MBs) in combination with ultrasound (US) can enhance cell membrane permeability, and have the potential to facilitate the cellular uptake of hydrophilic molecules. However, the exact mechanism behind US- and MB-mediated intracellular delivery still remains to be fully understood. Among the proposed mechanisms are formation of transient pores and endocytosis stimulation. In our study, we investigated whether endocytosis is involved in US- and MB-mediated delivery of small molecules. Dynamic fluorescence microscopy was used to investigate the effects of endocytosis inhibitors on the pharmacokinetic parameters of US- and MB-mediated uptake of SYTOX Green, a 600 Da hydrophilic model drug. C6 rat glioma cells, together with SonoVue(®) MBs, were exposed to 1.4 MHz US waves at 0.2 MPa peak-negative pressure. Collection of the signal intensity in each individual nucleus was monitored during and after US exposure by a fibered confocal fluorescence microscope designed for real-time imaging. Exposed to US waves, C6 cells pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, showed up to a 2.5-fold significant increase of the uptake time constant, and a 1.1-fold increase with genistein, an inhibitor of caveolae-mediated endocytosis. Both inhibitors slowed down the US-mediated uptake of SYTOX Green. With C6 cells and our experimental settings, these quantitative data indicate that endocytosis plays a role in sonopermeabilization-mediated delivery of small molecules with a more predominant contribution of clathrin-mediated endocytosis. PMID:26118644

  6. Synthetic Cell Surface Receptors for Delivery of Therapeutics and Probes

    PubMed Central

    Hymel, David; Peterson, Blake R.

    2012-01-01

    Receptor-mediated endocytosis is a highly efficient mechanism for cellular uptake of membrane-impermeant ligands. Cells use this process to acquire nutrients, initiate signal transduction, promote development, regulate neurotransmission, and maintain homeostasis. Natural receptors that participate in receptor-mediated endocytosis are structurally diverse, ranging from large transmembrane proteins to small glycolipids embedded in the outer leaflet of cellular plasma membranes. Despite their vast structural differences, these receptors share common features of binding to extracellular ligands, clustering in dynamic membrane regions that pinch off to yield intracellular vesicles, and accumulation of receptor-ligand complexes in membrane-sealed endosomes. Receptors typically dissociate from ligands in endosomes and cycle back to the cell surface, whereas internalized ligands are usually delivered into lysosomes, where they are degraded, but some can escape and penetrate into the cytosol. Here, we review efforts to develop synthetic cell surface receptors, defined as nonnatural compounds, exemplified by mimics of cholesterol, that insert into plasma membranes, bind extracellular ligands including therapeutics, probes, and endogenous proteins, and engage endocytic membrane trafficking pathways. By mimicking natural mechanisms of receptor-mediated endocytosis, synthetic cell surface receptors have the potential to function as prosthetic molecules capable of seamlessly augmenting the endocytic uptake machinery of living mammalian cells. PMID:22401875

  7. Prolonged Activity of the Pestiviral RNase Erns as an Interferon Antagonist after Uptake by Clathrin-Mediated Endocytosis

    PubMed Central

    Zürcher, Christoph; Sauter, Kay-Sara; Mathys, Veronika; Wyss, Fabienne

    2014-01-01

    ABSTRACT The RNase activity of the envelope glycoprotein Erns of the pestivirus bovine viral diarrhea virus (BVDV) is required to block type I interferon (IFN) synthesis induced by single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) in bovine cells. Due to the presence of an unusual membrane anchor at its C terminus, a significant portion of Erns is also secreted. In addition, a binding site for cell surface glycosaminoglycans is located within the C-terminal region of Erns. Here, we show that the activity of soluble Erns as an IFN antagonist is not restricted to bovine cells. Extracellularly applied Erns protein bound to cell surface glycosaminoglycans and was internalized into the cells within 1 h of incubation by an energy-dependent mechanism that could be blocked by inhibitors of clathrin-dependent endocytosis. Erns mutants that lacked the C-terminal membrane anchor retained RNase activity but lost most of their intracellular activity as an IFN antagonist. Surprisingly, once taken up into the cells, Erns remained active and blocked dsRNA-induced IFN synthesis for several days. Thus, we propose that Erns acts as an enzymatically active decoy receptor that degrades extracellularly added viral RNA mainly in endolysosomal compartments that might otherwise activate intracellular pattern recognition receptors (PRRs) in order to maintain a state of innate immunotolerance. IMPORTANCE The pestiviral RNase Erns was previously shown to inhibit viral ssRNA- and dsRNA-induced interferon (IFN) synthesis. However, the localization of Erns at or inside the cells, its species specificity, and its mechanism of interaction with cell membranes in order to block the host's innate immune response are still largely unknown. Here, we provide strong evidence that the pestiviral RNase Erns is taken up within minutes by clathrin-mediated endocytosis and that this uptake is mostly dependent on the glycosaminoglycan binding site located within the C-terminal end of the protein. Remarkably, the inhibitory activity of Erns remains for several days, indicating the very potent and prolonged effect of a viral IFN antagonist. This novel mechanism of an enzymatically active decoy receptor that degrades a major viral pathogen-associated molecular pattern (PAMP) might be required to efficiently maintain innate and, thus, also adaptive immunotolerance, and it might well be relevant beyond the bovine species. PMID:24741078

  8. Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) Symptoms in an Opioid-Receptor Dependent Manner

    PubMed Central

    Pan, Qiuhui; Fichna, Jakub; Zheng, Lijun; Wang, Kesheng; Yu, Zhen; Li, Yongyu; Li, Kun; Song, Aihong; Liu, Zhongchen; Song, Zhenshun; Kreis, Martin

    2015-01-01

    Background and Aims Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI) tract and cortical neurons using animal models and in vitro tests. Methods The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D) symptoms. Then the opioidantagonists were used to identify the receptors involved. Furthermore, the effect of berberineon opioid receptors expression was established in the mouse intestine and rat fetal cortical neurons. Results In mouse models, berberine prolonged GI transit and time to diarrhea in a dose-dependent manner, and significantly reduced visceral pain. In physiological conditions the effects of berberine were mediated by mu- (MOR) and delta- (DOR) opioidreceptors; hypermotility, excessive secretion and nociception were reversed by berberine through MOR and DOR-dependent action. We also found that berberine increased the expression of MOR and DOR in the mouse bowel and rat fetal cortical neurons. Conclusion Berberine significantly improved IBS-D symptoms in animal models, possibly through mu- and delta- opioid receptors. Berberine may become a new drug candidate for the successful treatment of IBS-D in clinical conditions. PMID:26700862

  9. Increased endocytosis and formation of multivesicular bodies in phorbol-ester-stimulated human monoblastic U-937 cells

    SciTech Connect

    Nilsson, M. ); Nilsson, K.; Forsbeck, K. )

    1989-04-01

    The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is known to arrest mitotic activity and induce macrophage differentiation in the U-937 monoblastic cell line. The acute effect of TPA on ultrastructural morphology and endocytic activity of U-937 cells was studied. TPA induced within 15 minutes {alpha} marked enlargement of multivesicular bodies (MVBs), comprising both volume and number of inclusion vesicles (other organelles appeared unchanged). At this stage the MVBs frequently showed tubular cytoplasmic extensions. Inclusion vesicles accumulated in MVBs with prolonged incubation (60 minutes). Cellular uptake of {sup 125}I-HRP was increased five times the control values already after 5 minutes of TPA stimulation. The uptake increased further with prolonged incubation (60 minutes), but at a slower rate. Together these indicate a TPA-induced transfer by endocytosis of portions of the plasma membrane to the lysosomal system via MVBs. Consideration of MVBs as part of the receptor-mediated endocytic pathway suggests that this effect of TPA might involve down-regulation of cell-surface receptors. The possibility of MVBs as a proton-sequestrating compartment, responsible for the cytoplasmic alkalinization previously reported for TPA-stimulated U-937 monoblastic cells, is discussed.

  10. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells

    NASA Astrophysics Data System (ADS)

    Youta Dombu, Christophe; Kroubi, Maya; Zibouche, Rima; Matran, Regis; Betbeder, Didier

    2010-09-01

    A major challenge of drug delivery using colloids via the airway is to understand the mechanism implied in their interactions with epithelial cells. The purpose of this work was to characterize the process of endocytosis and exocytosis of cationic nanoparticles (NPs) made of maltodextrin which were developed as a delivery system for antigens in vaccine applications. Confocal microscopy demonstrated that these NP are rapidly endocytosed after as little as 3 min incubation, and that the endocytosis was also faster than NP binding since most of the NPs were found in the middle of the cells around the nuclei. A saturation limit was observed after a 40 min incubation, probably due to an equilibrium becoming established between endocytosis and exocytosis. Endocytosis was dramatically reduced at 4 °C compared with 37 °C, or by NaN3 treatment, both results suggesting an energy dependent process. Protamine pretreatment of the cells inhibited NPs uptake and we found that clathrin pathway is implied in their endocytosis. Cholesterol depletion increased NP uptake by 300% and this phenomenon was explained by the fact that cholesterol depletion totally blocked NP exocytosis. These results suggest that these cationic NPs interact with anionic sites, are quickly endocytosed via the clathrin pathway and that their exocytosis is cholesterol dependent, and are similar to those obtained in other studies with viruses such as influenza.

  11. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells

    PubMed Central

    Maruyama, Kayo; Matsuda, Yoshikazu; Kobayashi, Shinsuke; Tanaka, Manabu; Aoki, Kaoru; Takanashi, Seiji; Okamoto, Masanori; Kato, Hiroyuki

    2015-01-01

    Bronchial epithelial cells and mesothelial cells are crucial targets for the safety assessment of inhalation of carbon nanotubes (CNTs), which resemble asbestos particles in shape. Intrinsic properties of multiwalled CNTs (MWCNTs) are known to cause potentially hazardous effects on intracellular and extracellular pathways. These interactions alter cellular signaling and affect major cell functions, resulting in cell death, lysosome injury, reactive oxygen species production, apoptosis, and cytokine release. Furthermore, CNTs are emerging as a novel class of autophagy inducers. Thus, in this study, we focused on the mechanisms of MWCNT uptake into the human bronchial epithelial cells (HBECs) and human mesothelial cells (HMCs). We verified that MWCNTs are actively internalized into HBECs and HMCs and were accumulated in the lysosomes of the cells after 24-hour treatment. Next, we determined which endocytosis pathways (clathrin-mediated, caveolae-mediated, and macropinocytosis) were associated with MWCNT internalization by using corresponding endocytosis inhibitors, in two nonphagocytic cell lines derived from bronchial epithelial cells and mesothelioma cells. Clathrin-mediated endocytosis inhibitors significantly suppressed MWCNT uptake, whereas caveolae-mediated endocytosis and macropinocytosis were also found to be involved in MWCNT uptake. Thus, MWCNTs were positively taken up by nonphagocytic cells, and their cytotoxicity was closely related to these three endocytosis pathways. PMID:26090445

  12. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis.

    PubMed

    Albecka, Anna; Laine, Romain F; Janssen, Anne F J; Kaminski, Clemens F; Crump, Colin M

    2016-01-01

    Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment. PMID:26459807

  13. Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis

    PubMed Central

    Sieczkarski, Sara B.; Whittaker, Gary R.

    2002-01-01

    Influenza virus has been described to enter host cells via clathrin-mediated endocytosis. However, it has also been suggested that other endocytic routes may provide additional entry pathways. Here we show that influenza virus may enter and infect HeLa cells that are unable to take up ligands by clathrin-mediated endocytosis. By overexpressing a dominant-negative form of the Eps15 protein to inhibit clathrin-mediated endocytosis, we demonstrate that while transferrin uptake and Semliki Forest virus infection were prevented, influenza virus could enter and infect cells expressing Eps15?95/295. This finding is supported by the successful infection of cells with influenza virus in the presence of chemical treatments that block endocytosis, namely, chlorpromazine and potassium depletion. We show also that influenza virus may infect cells incapable of uptake by caveolae. Treatment with the inhibitors nystatin, methyl-?-cyclodextrin, and genistein, as well as transfection of cells with dominant-negative caveolin-1, had no effect on influenza virus infection. By combining inhibitory methods to block both clathrin-mediated endocytosis and uptake by caveolae in the same cell, we demonstrate that influenza virus may infect cells by an additional non-clathrin-dependent, non-caveola-dependent endocytic pathway. We believe this to be the first conclusive analysis of virus entry via such a non-clathrin-dependent pathway, in addition to the traditional clathrin-dependent route. PMID:12239322

  14. Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast

    PubMed Central

    Friant, Sylvie; Lombardi, Ruben; Schmelzle, Tobias; Hall, Michael N.; Riezman, Howard

    2001-01-01

    In yeast, sphingoid base synthesis is required for the internalization step of endocytosis and organization of the actin cytoskeleton. We show that overexpression of either one of the two kinases Pkh1p or Pkh2p, that are homologous to mammalian 3-phosphoinositide-dependent kinase-1 (PDK1), can specifically suppress the sphingoid base synthesis requirement for endocytosis. Pkh1p and Pkh2p have an overlapping function because only a mutant with impaired function of both kinases is defective for endocytosis. Pkh1/2p kinases are activated in vitro by nanomolar concentrations of sphingoid base. These results suggest that Pkh1/2p kinases are part of a sphingoid base-mediated signaling pathway that is required for the internalization step of endocytosis. The Pkc1p kinase that is phosphorylated by Pkh1/2p kinases and plays a role in endocytosis was identified as one of the downstream effectors of this signaling cascade. PMID:11726514

  15. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability.

    PubMed

    Fairfax, Benjamin P; Pitcher, Julie A; Scott, Mark G H; Calver, Andrew R; Pangalos, Menelas N; Moss, Stephen J; Couve, Andrés

    2004-03-26

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors. PMID:14707142

  16. Drosophila p120-catenin is crucial for endocytosis of the dynamic E-cadherin-Bazooka complex.

    PubMed

    Bulgakova, Natalia A; Brown, Nicholas H

    2016-02-01

    The intracellular functions of classical cadherins are mediated through the direct binding of two catenins: ?-catenin and p120-catenin (also known as CTNND1 in vertebrates, and p120ctn in Drosophila). Whereas ?-catenin is crucial for cadherin function, the role of p120-catenin is less clear and appears to vary between organisms. We show here that p120-catenin has a conserved role in regulating the endocytosis of cadherins, but that its ancestral role might have been to promote endocytosis, followed by the acquisition of a new inhibitory role in vertebrates. In Drosophila, p120-catenin facilitates endocytosis of the dynamic E-cadherin-Bazooka subcomplex, which is followed by its recycling. The absence of p120-catenin stabilises this subcomplex at the membrane, reducing the ability of cells to exchange neighbours in embryos and expanding cell-cell contacts in imaginal discs. PMID:26698216

  17. Drosophila p120-catenin is crucial for endocytosis of the dynamic E-cadherin–Bazooka complex

    PubMed Central

    Bulgakova, Natalia A.; Brown, Nicholas H.

    2016-01-01

    ABSTRACT The intracellular functions of classical cadherins are mediated through the direct binding of two catenins: β-catenin and p120-catenin (also known as CTNND1 in vertebrates, and p120ctn in Drosophila). Whereas β-catenin is crucial for cadherin function, the role of p120-catenin is less clear and appears to vary between organisms. We show here that p120-catenin has a conserved role in regulating the endocytosis of cadherins, but that its ancestral role might have been to promote endocytosis, followed by the acquisition of a new inhibitory role in vertebrates. In Drosophila, p120-catenin facilitates endocytosis of the dynamic E-cadherin–Bazooka subcomplex, which is followed by its recycling. The absence of p120-catenin stabilises this subcomplex at the membrane, reducing the ability of cells to exchange neighbours in embryos and expanding cell–cell contacts in imaginal discs. PMID:26698216

  18. HIV-1 endocytosis in astrocytes: a kiss of death or survival of the fittest?

    PubMed

    Chauhan, Ashok; Tikoo, Akshay; Patel, Jankiben; Abdullah, Arwa Mujahid

    2014-11-01

    The brain is a target of HIV-1 and serves as an important viral reservoir. Astrocytes, the most abundant glial cell in the human brain, are involved in brain plasticity and neuroprotection. Several studies have reported HIV-1 infection of astrocytes in cell cultures and infected brain tissues. The prevailing concept is that HIV-1 infection of astrocytes leads to latent infection. Here, we provide our perspective on endocytosis-mediated HIV-1 entry and its fate in astrocytes. Natural entry of HIV-1 into astrocytes occurs via endocytosis. However, endocytosis of HIV-1 in astrocytes is a natural death trap where the majority of virus particles are degraded in endosomes and a few which escape intact lead to successful infection. Thus, regardless of artificial fine-tuning (treatment with cytokines or proinflammatory products) done to astrocytes, HIV-1 does not infect them efficiently unless the viral entry route or the endosomal enzymatic machinery has been manipulated. PMID:25219546

  19. Local actin-dependent endocytosis is zygotically controlled to initiate Drosophila cellularization

    PubMed Central

    Sokac, Anna Marie; Wieschaus, Eric

    2008-01-01

    Summary In early Drosophila embryos, several mitotic cycles proceed with aborted cytokinesis before a modified cytokinesis, called cellularization, finally divides the syncytium into individual cells. Here we find that scission of endocytic vesicles from the plasma membrane (PM) provides a control point to regulate the furrowing events that accompany this development. At early mitotic cycles, local furrow-associated endocytosis is controlled by cell cycle progression, whereas at cellularization, which occurs in a prolonged interphase, it is controlled by expression of the zygotic gene nullo. nullo mutations impair cortical F-actin accumulation and scission of endocytic vesicles, such that membrane tubules remain tethered to the PM and deplete structural components from the furrows, precipitating furrow regression. Thus, Nullo regulates scission to restrain endocytosis of proteins essential for furrow stabilization at the onset of cellularization. We propose that developmentally regulated endocytosis can coordinate actin/PM remodeling to directly drive furrow dynamics during morphogenesis. PMID:18477459

  20. HIV-1 endocytosis in astrocytes: A kiss of death or survival of the fittest?

    PubMed Central

    Chauhan, Ashok; Tikoo, Akshay; Patel, Jankiben; Abdullah, Arwa Mujahid

    2014-01-01

    The brain is a target of HIV-1 and serves as an important viral reservoir. Astrocytes, the most abundant glial cell in the human brain, are involved in brain plasticity and neuroprotection. Several studies have reported HIV-1 infection of astrocytes in cell cultures and infected brain tissues. The prevailing concept is that HIV-1 infection of astrocytes leads to latent infection. Here, we provide our perspective on endocytosis-mediated HIV-1 entry and its fate in astrocytes. Natural entry of HIV-1 into astrocytes occurs via endocytosis. However, endocytosis of HIV-1 in astrocytes is a natural death trap where the majority of virus particles are degraded in endosomes and a few which escape intact lead to successful infection. Thus, regardless of artificial fine-tuning (treatment with cytokines or proinflammatory products) done to astrocytes, HIV-1 does not infect them efficiently unless the viral entry route or the endosomal enzymatic machinery has been manipulated. PMID:25219546

  1. Drosophila king tubby (ktub) mediates light-induced rhodopsin endocytosis and retinal degeneration

    PubMed Central

    2012-01-01

    Background The tubby (tub) and tubby-like protein (tulp) genes encode a small family of proteins found in many organisms. Previous studies have shown that TUB and TULP genes in mammalian involve in obesity, neural development, and retinal degeneration. The purpose of this study was to investigate the role of Drosophila king tubby (ktub) in rhodopsin 1 (Rh1) endocytosis and retinal degeneration upon light stimulation. Results Drosophila ktub mutants were generated using imprecise excision. Wild type and mutant flies were raised in dark or constant light conditions. After a period of light stimulation, retinas were dissected, fixed and stained with anti-Rh1 antibody to reveal Rh1 endocytosis. Confocal and transmission electron microscope were used to examine the retinal degeneration. Immunocytochemical analysis shows that Ktub is expressed in the rhabdomere domain under dark conditions. When flies receive light stimulation, the Ktub translocates from the rhabdomere to the cytoplasm and the nucleus of the photoreceptor cells. Wild type photoreceptors form Rh1-immunopositive large vesicles (RLVs) shortly after light stimulation. In light-induced ktub mutants, the majority of Rh1 remains at the rhabdomere, and only a few RLVs appear in the cytoplasm of photoreceptor cells. Mutation of norpA allele causes massive Rh1 endocytosis in light stimulation. In ktub and norpA double mutants, however, Rh1 endocytosis is blocked under light stimulation. This study also shows that ktub and norpA double mutants rescue the light-induced norpA retinal degeneration. Deletion constructs further demonstrate that the Tubby domain of the Ktub protein participates in an important role in Rh1 endocytosis. Conclusions The results in this study delimit the novel function of Ktub in Rh1 endocytosis and retinal degeneration. PMID:23228091

  2. Endocytosis of somatodendritic NCKX2 is regulated by Src family kinase-dependent tyrosine phosphorylation

    PubMed Central

    Lee, Kyu-Hee; Ho, Won-Kyung; Lee, Suk-Ho

    2013-01-01

    We have previously reported that the surface expression of K+-dependent Na+/Ca2+ exchanger 2 (NCKX2) in the somatodendritic compartment is kept low by constitutive endocytosis, which results in the polarization of surface NCKX2 to the axon. Clathrin-mediated endocytosis is initiated by interaction of the ? subunit of adaptor protein complex 2 (AP-2) with the canonical tyrosine motif (Yxx?) of a target molecule. We examined whether endocytosis of NCKX2 involves two putative tyrosine motifs (365YGKL and 371YDTM) in the cytoplasmic loop of NCKX2. Coimmunoprecipitation assay revealed that the 365YGKL motif is essential for the interaction with the ? subunit of AP-2 (AP2M1). Consistently, either overexpression of NCKX2-Y365A mutant or knockdown of AP2M1 in cultured hippocampal neurons significantly reduced the internalization of NCKX2 from the somatodendritic surface and thus abolished the axonal polarization of surface NCKX2. Next, we tested whether the interaction between the tyrosine motif and AP2M1 is regulated by phosphorylation of the 365th tyrosine residue (Tyr-365). Tyrosine phosphorylation of heterologously expressed NCKX2-WT, but not NCKX2-Y365A, was increased by carbachol (CCh) in PC-12 cells. The effect of CCh was inhibited by PP2, a Src family kinase (SFK) inhibitor. Moreover, PP2 facilitated the endocytosis of NCKX2 in both the somatodendritic and axonal compartments, suggesting that tyrosine phosphorylation of NCKX2 by SFK negatively regulates its endocytosis. Supporting this idea, activation of SFK enhanced the NCKX activity in the proximal dendrites of dentate granule cells (GCs). These results suggest that endocytosis of somatodendritic NCKX2 is regulated by SFK-dependent phosphorylation of Tyr-365. PMID:23431067

  3. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    SciTech Connect

    Singh, Raman Deep Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L. Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.

  4. Endocytosed B cell receptors sequentially regulate MAP kinase and Akt signaling pathways from intracellular compartments

    PubMed Central

    Chaturvedi, Akanksha; Martz, Rebecca; Dorward, David; Waisberg, Michael; Pierce, Susan K.

    2013-01-01

    Antigen binding to the B cell receptor (BCR) triggers both BCR signaling and endocytosis. How endocytosis regulates BCR signaling remains unknown. Here we report that BCR signaling is not extinguished by BCR endocytosis, rather BCR signaling initiated at the plasma membrane continued as the BCR trafficked intracellularly with the sequential phosphorylation of kinases. Blocking BCR endocytosis resulted in the recruitment of both proximal and downstream kinases to the plasma membrane where mitogen-activated protein (MAP) kinases were hyper-phosphorylated and Akt and its downstream target Foxo were hypo-phosphorylated leading to the dysregulation of gene transcription controlled through these pathways. Thus the cellular location of the BCR serves to compartmentalize kinase activation to regulate the outcome of signaling. PMID:21964606

  5. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a.

    PubMed

    Yamaoka, Mami; Ando, Tomomi; Terabayashi, Takeshi; Okamoto, Mitsuhiro; Takei, Masahiro; Nishioka, Tomoki; Kaibuchi, Kozo; Matsunaga, Kohichi; Ishizaki, Ray; Izumi, Tetsuro; Niki, Ichiro; Ishizaki, Toshimasa; Kimura, Toshihide

    2016-02-01

    In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages. PMID:26683831

  6. UMA and MABP domains throw light on receptor endocytosis and selection of endosomal cargoes

    PubMed Central

    de Souza, Robson F.; Aravind, L.

    2010-01-01

    Interactions of the ESCRT complexes are critical for endosomal trafficking. We identify two domains with potential significance for this process. The MABP domain present in metazoan ESCRT-I/MVB12 subunits, Crag, a regulator of protein sorting, and bacterial pore-forming proteins might mediate novel membrane interactions in trafficking. The UBAP1-MVB12-associated UMA domain found in MVB12 and UBAP1 defines a novel adaptor that might recruit diverse targets to ESCRT-I. Contact: aravind@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at ftp://ftp.ncbi.nih.gov/pub/aravind/UMA/MVB12.html. PMID:20448139

  7. Safety, tolerability, and pharmacokinetic evaluation of single- and multiple-ascending doses of a novel kappa opioid receptor antagonist LY2456302 and drug interaction with ethanol in healthy subjects.

    PubMed

    Lowe, Stephen L; Wong, Conrad J; Witcher, Jennifer; Gonzales, Celedon R; Dickinson, Gemma L; Bell, Robert L; Rorick-Kehn, Linda; Weller, MaryAnn; Stoltz, Randall R; Royalty, Jane; Tauscher-Wisniewski, Sitra

    2014-09-01

    Accumulating evidence indicates that selective antagonism of kappa opioid receptors may provide therapeutic benefit in the treatment of major depressive disorder, anxiety disorders, and substance use disorders. LY2456302 is a high-affinity, selective kappa opioid antagonist that demonstrates >30-fold functional selectivity over mu and delta opioid receptors. The safety, tolerability, and pharmacokinetics (PK) of LY2456302 were investigated following single oral doses (2-60?mg), multiple oral doses (2, 10, and 35?mg), and when co-administered with ethanol. Plasma concentrations of LY2456302 were measured by liquid chromatography-tandem mass spectrometry method. Safety analyses were conducted on all enrolled subjects. LY2456302 doses were well-tolerated with no clinically significant findings. No safety concerns were seen on co-administration with ethanol. No evidence for an interaction between LY2456302 and ethanol on cognitive-motor performance was detected. LY2456302 displayed rapid oral absorption and a terminal half-life of approximately 30-40?hours. Plasma exposure of LY2456302 increased proportionally with increasing doses and reached steady state after 6-8 days of once-daily dosing. Steady-state PK of LY2456302 were not affected by coadministration of a single dose of ethanol. No clinically important changes in maximum concentration (Cmax ) or AUC of ethanol (in the presence of LY2456302) were observed. PMID:24619932

  8. Clathrin-mediated endocytosis and lysosomal cleavage of hepatitis B virus capsid-like core particles.

    PubMed

    Cooper, Arik; Shaul, Yosef

    2006-06-16

    The hepatitis B virus (HBV) core particle serves as a protective capsid shell for the viral genome and is highly immunogenic. Recombinant capsid-like core particles are used as effective carriers of foreign T and B cell epitopes and as delivery vehicles for oligonucleotides. The core monomer contains an arginine-rich C terminus that directs core particle attachment to cells via membrane heparan sulfate proteoglycans. Here we investigated the mechanism of recombinant core particle uptake and its intracellular fate following heparan sulfate binding. We found that the core particles are internalized in an energy-dependent manner. Core particle uptake is inhibited by chlorpromazine and by cytosol acidification known to block clathrin-mediated endocytosis but not by nystatin, which blocks lipid raft endocytosis. Particle uptake is abolished by expression of dominant negative forms of eps15 and Rab5, adaptors involved in clathrin-mediated endocytosis and early endosome transport, respectively. Endocytosed particles are transported to lysosomes where the core monomer is endoproteolytically cleaved into its distinct domains. Using protease inhibitors, cathepsin B was identified as the enzyme responsible for core monomer cleavage. Finally we found that monomer cleavage promotes particle dissociation within cells. Together, our results show that HBV capsid-like core particles are internalized through clathrin-mediated endocytosis, leading to lysosomal cleavage of the core monomer and particle dissociation. PMID:16618702

  9. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair.

    PubMed

    Hunter, Miranda V; Lee, Donghoon M; Harris, Tony J C; Fernandez-Gonzalez, Rodrigo

    2015-08-31

    Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair. PMID:26304727

  10. ABP1 and ROP6 GTPase signaling regulate clathrin-mediated endocytosis in Arabidopsis roots.

    PubMed

    Chen, Xu; Naramoto, Satoshi; Robert, Stéphanie; Tejos, Ricardo; Löfke, Christian; Lin, Deshu; Yang, Zhenbiao; Friml, Jiří

    2012-07-24

    The dynamic spatial and temporal distribution of the crucial plant signaling molecule auxin is achieved by feedback coordination of auxin signaling and intercellular auxin transport pathways. Developmental roles of auxin have been attributed predominantly to its effect on transcription; however, an alternative pathway involving AUXIN BINDING PROTEIN1 (ABP1) has been proposed to regulate clathrin-mediated endocytosis in roots and Rho-like GTPase (ROP)-dependent pavement cell interdigitation in leaves. In this study, we show that ROP6 and its downstream effector RIC1 regulate clathrin association with the plasma membrane for clathrin-mediated endocytosis, as well as for its feedback regulation by auxin. Genetic analysis revealed that ROP6/RIC1 acts downstream of ABP1 to regulate endocytosis. This signaling circuit is also involved in the feedback regulation of PIN-FORMED 1 (PIN1) and PIN2 auxin transporters activity (via its constitutive endocytosis) and corresponding auxin transport-mediated processes, including root gravitropism and leave vascular tissue patterning. Our findings suggest that the signaling module auxin-ABP1-ROP6/RIC1-clathrin-PIN1/PIN2 is a shared component of the feedback regulation of auxin transport during both root and aerial development. PMID:22683261

  11. VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis.

    PubMed

    Nicholson-Fish, Jessica C; Kokotos, Alexandros C; Gillingwater, Thomas H; Smillie, Karen J; Cousin, Michael A

    2015-12-01

    The accurate formation of synaptic vesicles (SVs) and incorporation of their protein cargo during endocytosis is critical for the maintenance of neurotransmission. During intense neuronal activity, a transient and acute accumulation of SV cargo occurs at the plasma membrane. Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode under these conditions; however, it is currently unknown how ADBE mediates cargo retrieval. We examined the retrieval of different SV cargo molecules during intense stimulation using a series of genetically encoded pH-sensitive reporters in neuronal cultures. The retrieval of only one reporter, VAMP4-pHluorin, was perturbed by inhibiting ADBE. This selective recovery was confirmed by the enrichment of endogenous VAMP4 in purified bulk endosomes formed by ADBE. VAMP4 was also essential for ADBE, with a cytoplasmic di-leucine motif being critical for this role. Therefore, VAMP4 is the first identified ADBE cargo and is essential for this endocytosis mode to proceed. PMID:26607000

  12. Live Cell Imaging of the Endocytosis and the Intracellular Trafficking of Multifunctional Lipid Nanoparticles

    SciTech Connect

    Zhang, Tieqiao; Danthi, S. N.; Xie, Jianwu; Hu, Dehong; Lu, H. Peter; Li, King H.

    2006-12-01

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug delivery system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.

  13. Silence of synaptotagmin I in INS-1 cells inhibits fast exocytosis and fast endocytosis

    SciTech Connect

    Xiong Xiong; Zhou Keming; Wu Zhengxing . E-mail: xutao@ibp.ac.cn; Xu Tao . E-mail: ibbwuzx@mail.hust.edu.cn

    2006-08-18

    Synaptotagmin I (Syt I) is a Ca{sup 2+} sensor for triggering fast synchronized release of neurotransmitters. However, controversy remains whether Syt I is also obligatory for the exocytosis and endocytosis of larger dense core vesicles (LDCVs) in endocrine cells. In this study, we used a short hairpin RNA (shRNA) to silence the expression of Syt I and investigated the roles of Syt I on exocytosis and endocytosis in INS-1 cells. Our results demonstrated that expression of Syt I is remarkably reduced by the Syt I gene targeting shRNA. Using high-time resolution capacitance measurement, we found that the silence of Syt I decreased the calcium sensitivity of fusion of insulin granules and therefore reduced the exocytotic burst triggered by step-like [Ca{sup 2+}] {sub i} elevation. In addition, the occurrence frequency and amplitude of fast endocytosis were remarkably reduced in the silenced cells. We conclude that Syt I not only participates in the Ca{sup 2+}-sensing of LDCV fusion with plasmalemma, but also plays a crucial role in fast endocytosis in INS-1 cells.

  14. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair

    PubMed Central

    Hunter, Miranda V.; Lee, Donghoon M.; Harris, Tony J.C.

    2015-01-01

    Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair. PMID:26304727

  15. Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana.

    PubMed

    Zwiewka, Marta; Nodzyński, Tomasz; Robert, Stéphanie; Vanneste, Steffen; Friml, Jiří

    2015-08-01

    The sessile life style of plants creates the need to deal with an often adverse environment, in which water availability can change on a daily basis, challenging the cellular physiology and integrity. Changes in osmotic conditions disrupt the equilibrium of the plasma membrane: hypoosmotic conditions increase and hyperosmotic environment decrease the cell volume. Here, we show that short-term extracellular osmotic treatments are closely followed by a shift in the balance between endocytosis and exocytosis in root meristem cells. Acute hyperosmotic treatments (ionic and nonionic) enhance clathrin-mediated endocytosis simultaneously attenuating exocytosis, whereas hypoosmotic treatments have the opposite effects. In addition to clathrin recruitment to the plasma membrane, components of early endocytic trafficking are essential during hyperosmotic stress responses. Consequently, growth of seedlings defective in elements of clathrin or early endocytic machinery is more sensitive to hyperosmotic treatments. We also found that the endocytotic response to a change of osmotic status in the environment is dominant over the presumably evolutionary more recent regulatory effect of plant hormones, such as auxin. These results imply that osmotic perturbation influences the balance between endocytosis and exocytosis acting through clathrin-mediated endocytosis. We propose that tension on the plasma membrane determines the addition or removal of membranes at the cell surface, thus preserving cell integrity. PMID:25795554

  16. VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis

    PubMed Central

    Nicholson-Fish, Jessica C.; Kokotos, Alexandros C.; Gillingwater, Thomas H.; Smillie, Karen J.; Cousin, Michael A.

    2015-01-01

    Summary The accurate formation of synaptic vesicles (SVs) and incorporation of their protein cargo during endocytosis is critical for the maintenance of neurotransmission. During intense neuronal activity, a transient and acute accumulation of SV cargo occurs at the plasma membrane. Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode under these conditions; however, it is currently unknown how ADBE mediates cargo retrieval. We examined the retrieval of different SV cargo molecules during intense stimulation using a series of genetically encoded pH-sensitive reporters in neuronal cultures. The retrieval of only one reporter, VAMP4-pHluorin, was perturbed by inhibiting ADBE. This selective recovery was confirmed by the enrichment of endogenous VAMP4 in purified bulk endosomes formed by ADBE. VAMP4 was also essential for ADBE, with a cytoplasmic di-leucine motif being critical for this role. Therefore, VAMP4 is the first identified ADBE cargo and is essential for this endocytosis mode to proceed. PMID:26607000

  17. Flipping the Switch on Clathrin-Mediated Endocytosis using Thermally Responsive Protein Microdomains.

    PubMed

    Pastuszka, Martha K; Okamoto, Curtis T; Hamm-Alvarez, Sarah F; MacKay, J Andrew

    2014-09-10

    A ubiquitous approach to study protein function is to knock down activity (gene deletions, siRNA, small molecule inhibitors, etc) and study the cellular effects. Using a new methodology, this manuscript describes how to rapidly and specifically switch off cellular pathways using thermally responsive protein polymers. A small increase in temperature stimulates cytosolic elastin-like polypeptides (ELPs) to assemble microdomains. We hypothesize that ELPs fused to a key effector in a target macromolecular complex will sequester the complex within these microdomains, which will bring the pathway to a halt. To test this hypothesis, we fused ELPs to clathrin-light chain (CLC), a protein associated with clathrin-mediated endocytosis. Prior to thermal stimulation, the ELP fusion is soluble and clathrin-mediated endocytosis remains 'on.' Increasing the temperature induces the assembly of ELP fusion proteins into organelle-sized microdomains that switches clathrin-mediated endocytosis 'off.' These microdomains can be thermally activated and inactivated within minutes, are reversible, do not require exogenous chemical stimulation, and are specific for components trafficked within the clathrin-mediated endocytosis pathway. This temperature-triggered cell switch system represents a new platform for the temporal manipulation of trafficking mechanisms in normal and disease cell models and has applications for manipulating other intracellular pathways. PMID:25419208

  18. Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants.

    PubMed

    Seiler, C; Nicolson, T

    1999-11-15

    Vertebrate mechanosensory hair cells contain a narrow "pericuticular" zone which is densely populated with small vesicles between the cuticular plate and cellular junctions near the apical surface. The presence of many cytoplasmic vesicles suggests that the apical surface of hair cells has a high turnover rate. The significance of intense membrane trafficking at the apical surface is not known. Using a marker of endocytosis, the styryl dye FM1-43, this report shows that rapid apical endocytosis in zebrafish lateral line sensory hair cells is calcium and calmodulin dependent and is partially blocked by the presence of amiloride and dihydrostreptomycin, known inhibitors of mechanotransduction channels. As seen in lateral line hair cells, sensory hair cells within the larval otic capsule also exhibit rapid apical endocytosis. Defects in internalization of the dye in both lateral line and inner ear hair cells were found in five zebrafish auditory/vestibular mutants: sputnik, mariner, orbiter, mercury, and skylab. In addition, lateral line hair cells in these mutants were not sensitive to prolonged exposure to streptomycin, which is toxic to hair cells. The presence of endocytic defects in the majority of zebrafish mechanosensory mutants points to a important role of apical endocytosis in hair cell function. PMID:10526320

  19. Live cell imaging of the endocytosis and the intracellular trafficking of m