Science.gov

Sample records for demonstrates potent activity

  1. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus neoformans and Cryptococcus gattii.

    PubMed

    Lockhart, Shawn R; Fothergill, Annette W; Iqbal, Naureen; Bolden, Carol B; Grossman, Nina T; Garvey, Edward P; Brand, Stephen R; Hoekstra, William J; Schotzinger, Robert J; Ottinger, Elizabeth; Patterson, Thomas F; Wiederhold, Nathan P

    2016-04-01

    Thein vitroactivities of the novel fungal Cyp51 inhibitor VT-1129 were evaluated against a large panel ofCryptococcus neoformansandCryptococcus gattiiisolates. VT-1129 demonstrated potent activities against bothCryptococcusspecies as demonstrated by low MIC50and MIC90values. ForC. gattii, thein vitropotency was maintained against all genotypes. In addition, significantly lower geometric mean MICs were observed for VT-1129 than for fluconazole againstC. neoformans, including isolates with reduced fluconazole susceptibility. PMID:26787697

  2. Tocotrienol-Rich Fraction from Rice Bran Demonstrates Potent Radiation Protection Activity.

    PubMed

    Krager, Kimberly J; Pineda, E Nathalie; Kharade, Sujay V; Kordsmeier, Mary; Howard, Luke; Breen, Philip J; Compadre, Cesar M; Hauer-Jensen, Martin; Aykin-Burns, Nukhet

    2015-01-01

    The vitamin E analogs δ-tocotrienol (DT3) and γ-tocotrienol (GT3) have significant protective and mitigative capacity against the detrimental effects of ionizing radiation (IR). However, the expense of purification limits their potential use. This study examined the tocotrienol-rich fraction of rice bran (TRFRB) isolated from rice bran deodorizer distillate, a rice oil refinement waste product, to determine its protective effects against IR induced oxidative damage and H2O2. Several cell lines were treated with tocotrienols or TRFRB prior to or following exposure to H2O2 or IR. To determine the radioprotective capacity cells were analyzed for morphology, mitochondrial bioenergetics, clonogenic survival, glutathione oxidation, cell cycle, and migration rate. TRFRB displayed similar antioxidant activity compared to pure tocotrienols. Cells pretreated with TRFRB or DT3 exhibited preserved cell morphology and mitochondrial respiration when exposed to H2O2. Oxidized glutathione was decreased in TRFRB treated cells exposed to IR. TRFRB reversed mitochondrial uncoupling and protected cells migration rates following IR exposure. The protective antioxidant capacity of TRFRB treated cells against oxidative injury was similar to that of purified DT3. TRFRB effectively protects normal cells against IR induced injury suggesting that rice bran distillate may be an inexpensive and abundant alternate source. PMID:26425129

  3. Tocotrienol-Rich Fraction from Rice Bran Demonstrates Potent Radiation Protection Activity

    PubMed Central

    Krager, Kimberly J.; Pineda, E. Nathalie; Kharade, Sujay V.; Kordsmeier, Mary; Howard, Luke; Breen, Philip J.; Compadre, Cesar M.; Hauer-Jensen, Martin; Aykin-Burns, Nukhet

    2015-01-01

    The vitamin E analogs δ-tocotrienol (DT3) and γ-tocotrienol (GT3) have significant protective and mitigative capacity against the detrimental effects of ionizing radiation (IR). However, the expense of purification limits their potential use. This study examined the tocotrienol-rich fraction of rice bran (TRFRB) isolated from rice bran deodorizer distillate, a rice oil refinement waste product, to determine its protective effects against IR induced oxidative damage and H2O2. Several cell lines were treated with tocotrienols or TRFRB prior to or following exposure to H2O2 or IR. To determine the radioprotective capacity cells were analyzed for morphology, mitochondrial bioenergetics, clonogenic survival, glutathione oxidation, cell cycle, and migration rate. TRFRB displayed similar antioxidant activity compared to pure tocotrienols. Cells pretreated with TRFRB or DT3 exhibited preserved cell morphology and mitochondrial respiration when exposed to H2O2. Oxidized glutathione was decreased in TRFRB treated cells exposed to IR. TRFRB reversed mitochondrial uncoupling and protected cells migration rates following IR exposure. The protective antioxidant capacity of TRFRB treated cells against oxidative injury was similar to that of purified DT3. TRFRB effectively protects normal cells against IR induced injury suggesting that rice bran distillate may be an inexpensive and abundant alternate source. PMID:26425129

  4. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  5. Biostable multi-Aib analogs of tachykinin-related peptides demonstrate potent oral aphicidal activity in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae).

    PubMed

    Nachman, Ronald J; Mahdian, Kamran; Nässel, Dick R; Isaac, R Elwyn; Pryor, Nan; Smagghe, Guy

    2011-03-01

    The tachykinin-related peptides (TRPs) are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Two new biostable TRP analogs containing multiple, sterically hindered Aib residues were synthesized and found to exhibit significantly enhanced resistance to hydrolysis by angiotensin converting enzyme and neprilysin, membrane-bound enzymes that degrade and inactivate natural TRPs. The two biostable analogs were also found to retain significant myostimulatory activity in an isolated cockroach hindgut preparation, the bioassay used to isolate and identify the first members of the TRP family. Indeed one of the analogs (Leuma-TRP-Aib-1) matched the potency and efficacy of the natural, parent TRP peptide in this myotropic bioassay. The two biostable TRP analogs were further fed in solutions of artificial diet to the pea aphid over a period of 3 days and evaluated for antifeedant and aphicidal activity and compared with the effect of treatment with three natural, unmodified TRPs. The two biostable multi-Aib TRP analogs were observed to elicit aphicidal effects within the first 24 h. In contrast natural, unmodified TRPs, including two that are native to the pea aphid, demonstrated little or no activity. The most active analog, double-Aib analog Leuma-TRP-Aib-1 (pEA[Aib]SGFL[Aib]VR-NH(2)), featured aphicidal activity calculated at an LC(50) of 0.0083 nmol/μl (0.0087 μg/μl) and an LT(50) of 1.4 days, matching or exceeding the potency of commercially available aphicides. The mechanism of this activity has yet to be established. The aphicidal activity of the biostable TRP analogs may result from disruption of digestive processes by interfering with gut motility patterns and/or with fluid cycling in the gut; processes shown to be regulated by the TRPs in other insects. These active TRP analogs and/or second generation analogs offer potential as environmentally friendly pest aphid control agents

  6. Aib-containing analogues of the insect kinin neuropeptide family demonstrate resistance to an insect angiotensin-converting enzyme and potent diuretic activity.

    PubMed

    Nachman, R J; Isaac, R E; Coast, G M; Holman, G M

    1997-01-01

    Analogues of the insect kinin family in which the Xaa2 residue of the C-terminal pentapeptide core sequence Phe-Xaa1-Xaa2-Trp-Gly-NH2 (Xaa1 = Asn, His, Phe, Ser, or Tyr; Xaa2 = Ala, Ser, or Pro) is replaced with sterically hindered aminoisobutyric acid (Aib) prove to be resistant to hydrolysis by housefly (Musca domestica) angiotensin-converting enzyme (ACE), an endopeptidase capable of hydrolysis and inactivation of the naturally occurring insect kinin peptides. The Aib residue is compatible with formation of turn in the active core region that is important for the biological activity of the insect kinins. One of the Aib-containing analogues, pGlu-Lys-Phe-Phe-Aib-Trp-Gly-NH2, is five- and eightfold more active than the most active endogenous insect kinins in cockroach (Leucophaea maderae) hindgut myotropic and cricket (Acheta domesticus) Malpighian tubule fluid secretion assays, respectively. As the analogue is blocked at both the amino- and the carboxyl-terminus and resistant to an endopeptidase present in insects, it is better adapted than the endogenous peptides to survive for long periods in the hemolymph. Enzyme-resistant insect kinin analogues can provide useful tools to insect researchers studying the neuroendocrine control of water and ion balance and the physiological consequences of challenging insect with diuretic factors that demonstrate enhanced resistance to peptidase attack. If these analogues, whether in isolation or in combination with other factors, can disrupt the water and/or ion balance they hold potential utility for the control of pest insect populations in the future. PMID:9114452

  7. Storage xyloglucans: potent macrophages activators.

    PubMed

    do Rosário, Marianna Maia Taulois; Kangussu-Marcolino, Mônica Mendes; do Amaral, Alex Evangelista; Noleto, Guilhermina Rodrigues; Petkowicz, Carmen Lúcia de Oliveira

    2011-01-15

    Storage xyloglucans from the seeds of Copaifera langsdorffii, Hymenaea courbaril and Tamarindus indica were obtained by aqueous extraction from the milled and defatted cotyledons, XGC, XGJ and XGT, respectively. The resulting fractions showed similar monosaccharide composition with Glc:Xyl:Gal molar ratios of 2.4:1.5:1.0, 3.8:1.5:1,0 and 3.6:2.4:1.0 for XGC, XGJ and XGT, respectively. High-performance size-exclusion chromatography of the polysaccharides showed unimodal profiles, and the average molar mass (M(w)) was obtained for XGC (9.6 × 10⁵ g/mol), XGJ (9.1 × 10⁵ g/mol) and XGT (7.3 × 10⁵ g/mol). The immunomodulatory effects of the xyloglucans on peritoneal macrophages were evaluated. Phagocytic activity was observed in macrophages treated with XGT. The effect of XGT was tested on the production of O₂(.-) and NO. At 25 μg/ml XGT caused a 100% increase in NO production when compared to the control group; however, it did not affect O₂(.-) production in the absence of PMA. The production of TNF-α, interleukins 1β and 6 by macrophages in the presence of the xyloglucans was evaluated. The polysaccharides affected the production of the cytokines by macrophages to different degrees. XGC caused an enhancement of IL-1β and TNF-α production, compared to the other xyloglucans. For IL-6 production, XGT gave greater stimulation than XGC and XGJ, reaching 87% at 50 μg/ml. XGJ promoted a statistically significant effect on all cytokine productions tested. The results indicate that the xyloglucans from C. langsdorffii, H. courbaril and T. indica can be classified as biological response modifiers (BRM). PMID:20888807

  8. Two new proanthocyanidin trimers isolated from Cistus incanus L. demonstrate potent anti-inflammatory activity and selectivity to cyclooxygenase isoenzymes inhibition.

    PubMed

    Mansoor, K A; Matalka, K Z; Qa'dan, F S; Awad, R; Schmidt, M

    2016-09-01

    Two new proanthocyanidin trimers have been isolated from Cistus incanus herb; gallocatechin-(4α→6)-gallocatechin-(4α→8)-gallocatechin (compound 1) and epigallocatechin-3-O-gallate-(4ß→8)-epigallocatechin-3-O-gallate-(4ß→8)-gallocatechin (compound 2). The structures were determined on the basis of 1D- and 2D-NMR (HSQC, HMBC) of their peracetylated derivatives, MALDI-TOF-MS and by acid-catalysed degradation with phloroglucinol. A more abundant proanthocyanidin oligomer was also isolated, purified and its chemical constitution studied by (13)C-NMR and phloroglucinol degradation. The mean molecular weight of the polymer was estimated to be about 7 to 8 flavan-3-ol-units with a ratio of procyanidin : prodelphinidin units at 1:5, some of which are derivatised by gallic acid. Water extract and higher oligomeric proanthocyanidin fractions of C. incanus significantly inhibited TPA-induced oedema when applied topically at doses of 0.5 and 1 mg/ear in mice. Furthermore, the extracts and the pure compounds inhibited COX-1 and COX-2 activities. In addition, compound 2 exhibited an IC50 of 4.5 μM against COX-2 indicating its high selectivity towards COX-2. PMID:26414773

  9. Mono- and bis-thiazolium salts have potent antimalarial activity.

    PubMed

    Hamzé, Abdallah; Rubi, Eric; Arnal, Pascal; Boisbrun, Michel; Carcel, Carole; Salom-Roig, Xavier; Maynadier, Marjorie; Wein, Sharon; Vial, Henri; Calas, Michèle

    2005-05-19

    Three new series comprising 24 novel cationic choline analogues and consisting of mono- or bis (N or C-5-duplicated) thiazolium salts have been synthesized. Bis-thiazolium salts showed potent antimalarial activity (much superior to monothiazoliums). Among them, bis-thiazolium salts 12 and 13 exhibited IC(50) values of 2.25 nM and 0.65 nM, respectively, against P. falciparum in vitro. These compounds also demonstrated good in vivo activity (ED(50)

  10. Enteromorpha compressa Exhibits Potent Antioxidant Activity

    PubMed Central

    Shanab, Sanaa M. M.; Shalaby, Emad A.; El-Fayoumy, Eman A.

    2011-01-01

    The green macroalgae, Enteromorpha compressa (Linnaeus) Nees, Ulva lactuca, and E. linza, were seasonally collected from Abu Qir bay at Alexandria (Mediterranean Sea) This work aimed to investigate the seasonal environmental conditions, controlling the green algal growth, predominance, or disappearance and determining antioxidant activity. The freshly collected selected alga (E. compressa) was subjected to pigment analysis (chlorophyll and carotenoids) essential oil and antioxidant enzyme determination (ascorbate oxidase and catalase). The air-dried ground alga was extracted with ethanol (crude extract) then sequentially fractionated by organic solvents of increasing polarity (petroleum ether, chloroform, ethyl acetate, and water). Antioxidant activity of all extracts was assayed using different methods (total antioxidant, DPPH [2, 2 diphenyl-1-picrylhydrazyl], ABTS [2, 2 azino-bis ethylbenzthiazoline-6-sulfonic acid], and reducing power, and β-carotene linoleic acid bleaching methods). The results indicated that the antioxidant activity was concentration and time dependent. Ethyl acetate fraction demonstrated higher antioxidant activity against DPPH method (82.80%) compared to the synthetic standard butylated hydroxyl toluene (BHT, 88.5%). However, the crude ethanolic extract, pet ether, chloroform fractions recorded lower to moderate antioxidant activities (49.0, 66.0, and 78.0%, resp.). Using chromatographic and spectroscopic analyses, an active compound was separated and identified from the promising ethyl acetate fraction. PMID:21869863

  11. Lexical activation produces potent phonemic percepts.

    PubMed

    Samuel, A G

    1997-03-01

    Theorists disagree about whether auditory word recognition is a fully bottom-up, autonomous process, or whether there is top-down processing within a more interactive architecture. The current study provides evidence for top-down lexical to phonemic activation. In several experiments, listeners labeled members of a /bI/-/dI/ test series, before and after listening to repeated presentations of various adapting sounds. Real English words (containing either a /b/ or a /d/) produced reliable adaptation shifts in labeling of the /bI/-/dI/ syllables. Critically, so did words in which the /b/ or /d/ was perceptually restored (when noise replaced the /b/ or /d/). Several control conditions demonstrated that no adaptation occurred when no phonemic restoration occurred. Similarly, no independent role in adaptation was found for lexical representations themselves. Thus, the results indicate that lexical activation can cause the perceptual process to synthesize a highly functional phonemic code. This result provides strong evidence for interactive models of word recognition. PMID:9095679

  12. Lexical Activation Produces Potent Phonemic Percepts.

    ERIC Educational Resources Information Center

    Samuel, Arthur G.

    1997-01-01

    Several experiments involving 150 college students and adults provide evidence for top-down lexical to phonemic activation in auditory word processing. Results indicate that lexical activation can cause the perceptual process to synthesize a highly functional phonemic code. (SLD)

  13. Novel Gemini vitamin D(3) analogs have potent antitumor activity.

    PubMed

    Saito, Tsuyako; Okamoto, Ryoko; Haritunians, Talin; O'Kelly, James; Uskokovic, Milan; Maehr, Hubert; Marczak, Stanislaw; Jankowski, Pawel; Badr, Riem; Koeffler, H Phillip

    2008-11-01

    The active form of vitamin D(3), 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], modulates proliferation and induces differentiation of many cancer cells. A new class of analogs of vitamin D(3) has been synthesized, having two side-chains attached to carbon-20 (Gemini) and deuterium substituted on one side-chain. We have examined six of these analogs for their ability to inhibit growth of myeloid leukemia (HL-60), prostate (LNCaP, PC-3, DU145), lung (H520), colon (HT-29), and breast (MCF-7) cancer cell lines. Dose-response clonogenic studies showed that all six analogs had greater antiproliferative activities against cancer cells than 1,25(OH)(2)D(3). Although they had similar potency, the most active of these analogs was BXL-01-0120. BXL-01-0120 was 529-fold more potent than 1,25(OH)(2)D(3) in causing 50% clonal growth inhibition (ED(50)) of HL-60 cells. Pulse-exposure studies demonstrated that exposure to BXL-01-120 (10(-9)M, 48h) resulted in 85% clonal inhibition of HL-60 growth. BXL-01-0120 (10(-11)M, 4 days) induced the differentiation marker, CD11b. Also, morphologically differentiation was more prominent compared to 1,25(OH)(2)D(3). Annexin V assay showed that BXL-01-0120 (10(-10)M, 4 days) induced significantly (p<0.05) more apoptosis than 1,25(OH)(2)D(3). In summary, these analogs have a unique structure resulting in extremely potent inhibition of clonal proliferation of various types of cancer cells, especially HL-60 cells. PMID:18938245

  14. Peroxynitrite has potent pulmonary vasodilator activity in the rat.

    PubMed

    Casey, David B; Pankey, Edward A; Badejo, Adeleke M; Bueno, Franklin R; Bhartiya, Manish; Murthy, Subramanyam N; Uppu, Rao M; Nossaman, Bobby D; Kadowitz, Philip J

    2012-04-01

    Peroxynitrite (PN) worsens pathological conditions associated with oxidative stress. However, beneficial effects have also been reported. PN has been shown to demonstrate vasodilator as well as vasoconstrictor properties that are dependent upon the experimental conditions and the vascular bed studied. PN-induced vascular smooth muscle relaxation may involve the formation of nitric oxide (NO) donors. The present results show that PN has significant vasodilator activity in the pulmonary and systemic vascular beds, and that responses to PN were not attenuated by L-penicillamine (L-PEN), a PN scavenger, whereas responses to sodium nitroprusside (SNP) were decreased. PN had a small inhibitory effect on decreases in arterial pressure in response to the NO donors diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA/NO) and S-nitrosoglutathione (GSNO). PN partially reversed hypoxic pulmonary vasoconstriction. PN responses were attenuated by the soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and responses to PN and the PN precursor, 3-morpholinosydnonimine (SIN-1), were different. These data show that PN has potent pulmonary vasodilator activity in the rat, and provide evidence that a PN interaction with S-nitrosothiols is not the major mechanism mediating the response. These data suggest that responses to PN are mediated by the activation of sGC, and that PN has a small inhibitory effect on NO responses. PMID:22452357

  15. Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity

    PubMed Central

    Cortes, Leonel A.; Castro, Lorena; Pesce, Bárbara; Maya, Juan D.; Ferreira, Jorge; Castro-Castillo, Vicente; Parra, Eduardo; Jara, José A.; López-Muñoz, Rodrigo

    2015-01-01

    Chagas disease is one of the most neglected tropical diseases in the world, affecting nearly 15 million people, primarily in Latin America. Only two drugs are used for the treatment of this disease, nifurtimox and benznidazole. These drugs have limited efficacy and frequently induce adverse effects, limiting their usefulness. Consequently, new drugs must be found. In this study, we demonstrated the in vitro trypanocidal effects of a series of four gallic acid derivatives characterized by a gallate group linked to a triphenylphosphonium (TPP+) moiety (a delocalized cation) via a hydrocarbon chain of 8, 10, 11, or 12 atoms (TPP+-C8, TPP+-C10, TPP+-C11, and TPP+-C12, respectively). We analyzed parasite viability in isolated parasites (by MTT reduction and flow cytometry) and infected mammalian cells using T. cruzi Y strain trypomastigotes. Among the four derivatives, TPP+-C10 and TPP+-C12 were the most potent in both models, with EC50 values (in isolated parasites) of 1.0 ± 0.6 and 1.0 ± 0.7 μM, respectively, and were significantly more potent than nifurtimox (EC50 = 4.1 ± 0.6 μM). At 1 μM, TPP+-C10 and TPP+-C12 induced markers of cell death, such as phosphatidylserine exposure and propidium iodide permeabilization. In addition, at 1 μM, TPP+-C10 and TPP+-C12 significantly decreased the number of intracellular amastigotes (TPP+-C10: 24.3%, TPP+-C12: 19.0% of control measurements, as measured by DAPI staining) and the parasite’s DNA load (C10: 10%, C12: 13% of control measurements, as measured by qPCR). Based on the previous mode of action described for these compounds in cancer cells, we explored their mitochondrial effects in isolated trypomastigotes. TPP+-C10 and TPP+-C12 were the most potent compounds, significantly altering mitochondrial membrane potential at 1 μM (measured by JC-1 fluorescence) and inducing mitochondrial transition pore opening at 5 μM. Taken together, these results indicate that the TPP+-C10 and TPP+-C12 derivatives of gallic acid are

  16. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  17. Synthesis and Potent Antimalarial Activity of Kalihinol B

    PubMed Central

    2016-01-01

    Of the 50+ kalihinane diterpenoids reported to date, only five had been tested for antimalarial activity, in spite of the fact that kalihinol A is the most potent among the members of the larger family of antimalarial isocyanoterpenes. We have validated a strategy designed to access many of the kalihinanes with a 12-step enantioselective synthesis of kalihinol B, the tetrahydrofuran isomer of kalihinol A (a tetrahydropyran). Kalihinol B shows similarly high potency against chloroquine-resistant Plasmodium falciparum. PMID:25815413

  18. Bryostatins: potent, new activators of protein kinase C

    SciTech Connect

    Smith, L.; Pettit, G.R.; Smith, J.B.

    1986-03-01

    Bryostatins (B) are a class of 17 macrocyclic lactones that have antineoplastic activity in the murine P388 lymphocytic leukemia system. Bryostatin-1 (B-1) is a potent co-mitogen for the Swiss 3T3 line of murine fibroblasts that have been arrested in G/sub 1//G/sub 0/. B-1 and insulin synergistically increase entry into the S phase of the cell cycle measured autoradiographically as % nuclei labeled with (/sup 3/H)thymidine. A prior treatment of the cells with phorbol 13-myristate 12-acetate (PMA) selectively eliminated the mitogenic response to B-1 or PMA. Conversely, a prior treatment of the cells with B-1 eliminated the mitogenic response to PMA or B-1. Five other B are approximately equipotent to B-1, but B-3 is 5 to 10 times less potent than B-1 as a mitogen. B-1 inhibits the binding of (/sup 3/H)phorbol dibutyrate ((/sup 3/H)PDB) at 4/sup 0/C to a high affinity receptor in the cells. B-3 was also less potent than B-1 as an inhibitor of (/sup 3/H)PDB binding. B-3 differs from B-1 in the diacylglycerol-like component of the molecule. In vitro B-1 and PMA are similarly potent activators of protein kinase C from bovine brain. Further comparisons of the relative activities of the various B are needed to define the structural features that are critical for the activation of protein kinase C which may help in the design of tumor promoter antagonists.

  19. Structure-activity relationship studies on chalcone derivatives. the potent inhibition of chemical mediators release.

    PubMed

    Ko, Horng-Huey; Tsao, Lo-Ti; Yu, Kun-Lung; Liu, Cheng-Tsung; Wang, Jih-Pyang; Lin, Chun-Nan

    2003-01-01

    Some chalcones exert potent anti-inflammatory activities. 2',5'-Dialkoxychalcones and 2',5'-dihydroxy-4-chloro-dihydrochalcone inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-activated N9 microglial cells and in LPS-activated RAW 264.7 macrophage-like cells have been demonstrated in our previous reports. These compounds also suppressed the inducible NO synthase (iNOS) expression and cyclooxygenase-2 (COX-2) activity in RAW 264.7 cells. In an effort to continually develop potent anti-inflammatory agent, a series of chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehyde and then evaluated their inhibitory effects on the activation of mast cells, neutrophils, macrophages, and microglial cells. Most of the 2',5'-dihydroxychaclone derivatives exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Some chalcones showed potent inhibitory effects on superoxide anion generation in rat neutrophils in response to fMLP/CB. Compounds 1 and 5 exhibited potent inhibitory effects on NO production in macrophages and microglial cells. Compound 11 showed inhibitory effect on NO production and iNOS protein expression in RAW 264.7 cells. The present results demonstrated that most of the 2',5'-dihydroxychaclones have anti-inflammatory effects. The potent inhibitory effect of 2',5'-dihydroxy-dihydrochaclones on NO production in LPS-activated macrophage, probably through the suppression of iNOS protein expression, is proposed to be useful for the relief of septic shock. PMID:12467713

  20. Deoxygedunin, a natural product with potent neurotrophic activity in mice.

    PubMed

    Jang, Sung-Wuk; Liu, Xia; Chan, Chi Bun; France, Stefan A; Sayeed, Iqbal; Tang, Wenxue; Lin, Xi; Xiao, Ge; Andero, Raul; Chang, Qiang; Ressler, Kerry J; Ye, Keqiang

    2010-01-01

    Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF -/- pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases. PMID:20644624

  1. Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens

    PubMed Central

    Behroozian, Shekooh; Svensson, Sarah L.

    2016-01-01

    ABSTRACT The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. PMID:26814180

  2. Structure-activity relationship of triazafluorenone derivatives as potent and selective mGluR1 antagonists.

    PubMed

    Zheng, Guo Zhu; Bhatia, Pramila; Daanen, Jerome; Kolasa, Teodozyj; Patel, Meena; Latshaw, Steven; El Kouhen, Odile F; Chang, Renjie; Uchic, Marie E; Miller, Loan; Nakane, Masaki; Lehto, Sonya G; Honore, Marie P; Moreland, Robert B; Brioni, Jorge D; Stewart, Andrew O

    2005-11-17

    SAR (structure-activity relationship) studies of triazafluorenone derivatives as potent mGluR1 antagonists are described. The triazafluorenone derivatives are non-amino acid derivatives and noncompetitive mGluR1 antagonists that bind at a putative allosteric recognition site located within the seven-transmembrane domain of the receptor. These triazafluorenone derivatives are potent, selective, and systemically active mGluR1 antagonists. Compound 1n, for example, was a very potent mGluR1 antagonist (IC50 = 3 nM) and demonstrated full efficacy in various in vivo animal pain models. PMID:16279797

  3. Novel Amino-pyrazole Ureas with Potent In Vitro and In Vivo Antileishmanial Activity.

    PubMed

    Mowbray, Charles E; Braillard, Stéphanie; Speed, William; Glossop, Paul A; Whitlock, Gavin A; Gibson, Karl R; Mills, James E J; Brown, Alan D; Gardner, J Mark F; Cao, Yafeng; Hua, Wen; Morgans, Garreth L; Feijens, Pim-Bart; Matheeussen, An; Maes, Louis J

    2015-12-24

    Visceral leishmaniasis is a severe parasitic disease that is one of the most neglected tropical diseases. Treatment options are limited, and there is an urgent need for new therapeutic agents. Following an HTS campaign and hit optimization, a novel series of amino-pyrazole ureas has been identified with potent in vitro antileishmanial activity. Furthermore, compound 26 shows high levels of in vivo efficacy (>90%) against Leishmania infantum, thus demonstrating proof of concept for this series. PMID:26571076

  4. Guaiane sesquiterpenes from Biscogniauxia nummularia featuring potent antigerminative activity.

    PubMed

    Amand, Séverine; Langenfeld, Aude; Blond, Alain; Dupont, Joëlle; Nay, Bastien; Prado, Soizic

    2012-04-27

    Xylaranone, a previously unreported guaiane sesquiterpene along with the known terpenoid xylaranol B and the two mellein derivatives 3,5-dimethyl-8-methoxy-3,4-dihydroisocoumarin and 3,5-dimethyl-8-hydroxy-3,4-dihydroisocoumarin were isolated from Biscogniauxia nummularia. Pogostol was also isolated from this fungus, and in light of our spectroscopic data, its structure was revised and corrected. This fungus, which was isolated as an endophyte from the plum yew Cephalotaxus harringtonia, is also suspected of being a pathogen. Interestingly, we report here the potent antigerminative activity of xylaranone and xylaranol B against seeds of Raphanus sativus at concentrations comparable to glyphosate, a commonly used herbicide. This effect suggests a role for these metabolites in the latent fungal pathogenesis of B. nummularia. PMID:22486738

  5. Plants from Brazilian Cerrado with Potent Tyrosinase Inhibitory Activity

    PubMed Central

    Souza, Paula Monteiro; Elias, Silvia Taveira; Simeoni, Luiz Alberto; de Paula, José Elias; Gomes, Sueli Maria; Guerra, Eliete Neves Silva; Fonseca, Yris Maria; Silva, Elton Clementino; Silveira, Dâmaris; Magalhães, Pérola Oliveira

    2012-01-01

    The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05) tyrosinase inhibitory activity exhibiting the IC50 value of 11.88 µg/mL, compared to kojic acid (IC50 value of 13.14 µg/mL). Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC50 value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations. PMID:23173036

  6. Triazolophthalazines: Easily Accessible Compounds with Potent Antitubercular Activity.

    PubMed

    Veau, Damien; Krykun, Serhii; Mori, Giorgia; Orena, Beatrice S; Pasca, Maria R; Frongia, Céline; Lobjois, Valérie; Chassaing, Stefan; Lherbet, Christian; Baltas, Michel

    2016-05-19

    Tuberculosis (TB) remains one of the major causes of death worldwide, in particular because of the emergence of multidrug-resistant TB. Herein we explored the potential of an alternative class of molecules as anti-TB agents. Thus, a series of novel 3-substituted triazolophthalazines was quickly and easily prepared from commercial hydralazine hydrochloride as starting material and were further evaluated for their antimycobacterial activities and cytotoxicities. Four of the synthesized compounds were found to effectively inhibit the Mycobacterium tuberculosis (M.tb) H37 Rv strain with minimum inhibitory concentration (MIC) values <10 μg mL(-1) , whereas no compounds displayed cytotoxicity against HCT116 human cell lines (IC50 >100 μm). More remarkably, the most potent compounds proved to be active to a similar extent against various multidrug-resistant M.tb strains, thus uncovering a mode of action distinct from that of standard antitubercular agents. Overall, their ease of preparation, combined with their attractive antimycobacterial activities, make such triazolophthalazine-based derivatives promising leads for further development. PMID:27097919

  7. Novel Furin Inhibitors with Potent Anti-infectious Activity.

    PubMed

    Hardes, Kornelia; Becker, Gero L; Lu, Yinghui; Dahms, Sven O; Köhler, Susanne; Beyer, Wolfgang; Sandvig, Kirsten; Yamamoto, Hiroyuki; Lindberg, Iris; Walz, Lisa; von Messling, Veronika; Than, Manuel E; Garten, Wolfgang; Steinmetzer, Torsten

    2015-07-01

    New peptidomimetic furin inhibitors with unnatural amino acid residues in the P3 position were synthesized. The most potent compound 4-guanidinomethyl-phenylacteyl-Arg-Tle-Arg-4-amidinobenzylamide (MI-1148) inhibits furin with a Ki value of 5.5 pM. The derivatives also strongly inhibit PC1/3, whereas PC2 is less affected. Selected inhibitors were tested in cell culture for antibacterial and antiviral activity against infectious agents known to be dependent on furin activity. A significant protective effect against anthrax and diphtheria toxin was observed in the presence of the furin inhibitors. Furthermore, the spread of the highly pathogenic H5N1 and H7N1 avian influenza viruses and propagation of canine distemper virus was strongly inhibited. Inhibitor MI-1148 was crystallized in complex with human furin. Its N-terminal guanidinomethyl group in the para position of the P5 phenyl ring occupies the same position as that found previously for a structurally related inhibitor containing this substitution in the meta position, thereby maintaining all of the important P5 interactions. Our results confirm that the inhibition of furin is a promising strategy for a short-term treatment of acute infectious diseases. PMID:25974265

  8. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts**

    PubMed Central

    Liu, Zhe; Romero-Canelón, Isolda; Qamar, Bushra; Hearn, Jessica M; Habtemariam, Abraha; Barry, Nicolas P E; Pizarro, Ana M; Clarkson, Guy J; Sadler, Peter J

    2014-01-01

    Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. PMID:24616129

  9. Cucurbitacin E Potently Modulates the Activity of Encephalitogenic Cells.

    PubMed

    Jevtić, Bojan; Djedović, Neda; Stanisavljević, Suzana; Despotović, Jovana; Miljković, Djordje; Timotijević, Gordana

    2016-06-22

    Cucurbitacin E (CucE) is a highly oxidized steroid consisting of a tetracyclic triterpene. It is a member of a Cucurbitacin family of biomolecules that are predominantly found in Cucurbitaceae plants. CucE has already been identified as a potent anti-inflammatory compound. Here, its effects on CD4(+) T helper (Th) cells and macrophages, as the major encephalitogenic cells in the autoimmunity of the central nervous system, were investigated. Production of major pathogenic Th cell cytokines: interferon-gamma and interleukin-17 were inhibited under the influence of CucE. The effects of CucE on CD4(+) T cells were mediated through the modulation of aryl hydrocarbon receptor, STAT3, NFκB, p38 MAPK, and miR-146 signaling. Further, production of nitric oxide and reactive oxygen species, as well as phagocytic ability, were inhibited in macrophages treated with CucE. These results imply that CucE possesses powerful antiencephalitogenic activity. PMID:27225664

  10. Synthetic galactomannans with potent anti-HIV activity.

    PubMed

    Budragchaa, Davaanyam; Bai, Shiming; Kanamoto, Taisei; Nakashima, Hideki; Han, Shuqin; Yoshida, Takashi

    2015-10-01

    Ring-opening polymerization of a new 1,6-anhydro disaccharide monomer, 1, 6-anhydro-2, 3-di-O-benzyl-4-O-(2', 3', 4', 6'-tetra-O-benzyl-α-d-galactopyranosyl)-α-d-mannopyranose, was carried out using PF5 as a catalyst under high vacuum at -60°C to give galactose branched mannopyranan (synthetic galactomannan), 4-O-α-d-galactopyranosyl-(1→6)-α-d-mannopyranan, after debenzylation with Na in liquid NH3. The ring-opening copolymerization with 1, 6-anhydro-tri-O-benzyl-α-d-mannopyranose in various feeds was also performed to give synthetic galactomannans with various proportions of galactose branches. After sulfation, sulfated synthetic galactomannans were found to have anti-HIV activity and cytotoxicity as high and low as those of standard curdlan and dextran sulfates, respectively, which are potent anti-HIV sulfated polysaccharides with low cytotoxicity. The anti-HIV mechanism of sulfated synthetic galactomannans used by poly-l-lysine as a model peptide of the HIV surface protein was estimated by using SPR, DSL, and zeta potential measurements, revealing the electrostatic interaction between negatively charged sulfate groups and positively charged amino groups. PMID:26076622

  11. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells.

    PubMed

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T C; Imren, Suzan; Lam, Vivian; Poon, Grace F T; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William; Krystal, Gerald

    2016-05-26

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light-inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation-dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell-depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  12. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells

    PubMed Central

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T. C.; Imren, Suzan; Lam, Vivian; Poon, Grace F. T.; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William

    2016-01-01

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light–inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation–dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell–depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  13. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering

    PubMed Central

    Flynn, Andrea N.; Hoffman, Justin; Tillu, Dipti V.; Sherwood, Cara L.; Zhang, Zhenyu; Patek, Renata; Asiedu, Marina N. K.; Vagner, Josef; Price, Theodore J.; Boitano, Scott

    2013-01-01

    Protease-activated receptor-2 (PAR2) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR2 is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR2 is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR2 agonist (2-aminothiazol-4-yl-LIGRL-NH2) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC50 values as low as 1.47 nM, representing a ∼200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR2: EC50 for Ca2+ response as low as 3.95 nM; EC50 for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC50 of 14.4 pmol. STLs failed to elicit responses in PAR2−/− cells at agonist concentrations of >300-fold their EC50 values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR2 and represent opportunities for drug development at other protease activated receptors and across GPCRs.—Flynn, A. N., Hoffman, J., Tillu, D. V., Sherwood, C. L., Zhang, Z., Patek, R., Asiedu, M. N. K., Vagner, J., Price, T. J., Boitano, S. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering. PMID:23292071

  14. Aminoindoles, a novel scaffold with potent activity against Plasmodium falciparum.

    PubMed

    Barker, Robert H; Urgaonkar, Sameer; Mazitschek, Ralph; Celatka, Cassandra; Skerlj, Renato; Cortese, Joseph F; Tyndall, Erin; Liu, Hanlan; Cromwell, Mandy; Sidhu, Amar Bir; Guerrero-Bravo, Jose E; Crespo-Llado, Keila N; Serrano, Adelfa E; Lin, Jing-Wen; Janse, Chris J; Khan, Shahid M; Duraisingh, Manoj; Coleman, Bradley I; Angulo-Barturen, Inigo; Jiménez-Díaz, María Belén; Magán, Noemí; Gomez, Vanesa; Ferrer, Santiago; Martínez, María Santos; Wittlin, Sergio; Papastogiannidis, Petros; O'Shea, Thomas; Klinger, Jeffrey D; Bree, Mark; Lee, Edward; Levine, Mikaela; Wiegand, Roger C; Munoz, Benito; Wirth, Dyann F; Clardy, Jon; Bathurst, Ian; Sybertz, Edmund

    2011-06-01

    This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC₅₀s], 200 to 285 nM) and inhibits P. berghei in vivo with an efficacy of > 99% in an adapted version of Peters' 4-day suppressive test (W. Peters, Ann. Trop. Med. Parasitol. 69:155-171, 1975). Genz-644442 became the focus of medicinal chemistry optimization; 321 analogs were synthesized and were tested for in vitro potency against P. falciparum and for in vitro absorption, distribution, metabolism, and excretion (ADME) properties. This yielded compounds with IC₅₀s of approximately 30 nM. The lead compound, Genz-668764, has been characterized in more detail. It is a single enantiomer with IC₅₀s of 28 to 65 nM against P. falciparum in vitro. In the 4-day P. berghei model, when it was dosed at 100 mg/kg of body weight/day, no parasites were detected on day 4 postinfection. However, parasites recrudesced by day 9. Dosing at 200 mg/kg/day twice a day resulted in cures of 3/5 animals. The compound had comparable activity against P. falciparum blood stages in a human-engrafted NOD-scid mouse model. Genz-668764 had a terminal half-life of 2.8 h and plasma trough levels of 41 ng/ml when it was dosed twice a day orally at 55 mg/kg/day. Seven-day rat safety studies showed a no-observable-adverse-effect level (NOAEL) at 200 mg/kg/day; the compound was not mutagenic in Ames tests, did not inhibit the hERG channel, and did not have potent activity against a broad panel of receptors and enzymes. Employing allometric scaling and using in vitro ADME data, the predicted human minimum efficacious dose of Genz-668764 in a 3-day once-daily dosing regimen was 421 mg/day/70 kg, which would maintain plasma trough levels

  15. Synthesis, evaluation, and metabolism of novel [6]-shogaol derivatives as potent Nrf2 activators.

    PubMed

    Zhu, Yingdong; Wang, Pei; Zhao, Yantao; Yang, Chun; Clark, Anderson; Leung, TinChung; Chen, Xiaoxin; Sang, Shengmin

    2016-06-01

    Oxidative stress is a central component of many chronic diseases. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 p45-related factor 2 (Nrf2) system is a major regulatory pathway of cytoprotective genes against oxidative and electrophilic stress. Activation of the Nrf2 pathway plays crucial roles in the chemopreventive effects of various inducers. In this study, we developed a novel class of potent Nrf2 activators derived from ginger compound, [6]-shogaol (6S), using the Tg[glutathione S-transferase pi 1 (gstp1):green fluorescent protein (GFP)] transgenic zebrafish model. Investigation of structure-activity relationships of 6S derivatives indicates that the combination of an α,β-unsaturated carbonyl entity and a catechol moiety in one compound enhances the Tg(gstp1:GFP) fluorescence signal in zebrafish embryos. Chemical reaction and in vivo metabolism studies of the four most potent 6S derivatives showed that both α,β-unsaturated carbonyl entity and catechol moiety act as major active groups for conjugation with the sulfhydryl groups of the cysteine residues. In addition, we further demonstrated that 6S derivatives increased the expression of Nrf2 downstream target, heme oxygenase-1, in both a dose- and time-dependent manner. These results suggest that α,β-unsaturated carbonyl entity and catechol moiety of 6S derivatives may react with the cysteine residues of Keap1, disrupting the Keap1-Nrf2 complex, thereby liberating and activating Nrf2. Our findings of natural product-derived Nrf2 activators lead to design options of potent Nrf2 activators for further optimization. PMID:27021962

  16. Celastrol and an EGCG pro-drug exhibit potent chemosensitizing activity in human leukemia cells.

    PubMed

    Davenport, Andrew; Frezza, Michael; Shen, Min; Ge, Yubin; Huo, Congde; Chan, Tak Hang; Dou, Q Ping

    2010-03-01

    Chemotherapy remains the staple of treatment for many types of leukemia. Despite the positive impact on extending overall survival in patients with hematological malignancies, new treatment strategies are needed to reduce the nonspecific toxicity and improve the efficacy of treatment. Celastrol, derived from the 'Thunder God Vine' and Pro-EGCG, a pre-drug version of green tea polyphenol EGCG have shown potent biological activity in vitro and in vivo. Whether these natural products augment the efficacy of conventional chemotherapy in the treatment of leukemia cells has yet to be demonstrated. Here we demonstrate that these natural products could sensitize the effect of chemotherapy in both K-562 and Jurkat T human leukemia cells. Accordingly, this potent biological activity was associated with increased levels of leukemia cell killing, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, the higher levels of apoptotic indices were associated with decreased levels of Bcr-Abl oncoprotein in K-562 cells. Taken together, our findings present a compelling rationale for the development of combination strategies using natural products in the treatment of hematological malignancies. PMID:20127053

  17. Structure-Based Design of a Potent, Selective, and Brain Penetrating PDE2 Inhibitor with Demonstrated Target Engagement.

    PubMed

    Buijnsters, Peter; De Angelis, Meri; Langlois, Xavier; Rombouts, Frederik J R; Sanderson, Wendy; Tresadern, Gary; Ritchie, Alison; Trabanco, Andrés A; VanHoof, Greet; Roosbroeck, Yves Van; Andrés, José-Ignacio

    2014-09-11

    Structure-guided design led to the identification of the novel, potent, and selective phosphodiesterase 2 (PDE2) inhibitor 12. Compound 12 demonstrated a >210-fold selectivity versus PDE10 and PDE11 and was inactive against all other PDE family members up to 10 μM. In vivo evaluation of 12 provided evidence that it is able to engage the target and to increase cGMP levels in relevant brain regions. Hence, 12 is a valuable tool compound for the better understanding of the role of PDE2 in cognitive impairment and other central nervous system related disorders. PMID:25221665

  18. Structure-Based Design of a Potent, Selective, and Brain Penetrating PDE2 Inhibitor with Demonstrated Target Engagement

    PubMed Central

    2014-01-01

    Structure-guided design led to the identification of the novel, potent, and selective phosphodiesterase 2 (PDE2) inhibitor 12. Compound 12 demonstrated a >210-fold selectivity versus PDE10 and PDE11 and was inactive against all other PDE family members up to 10 μM. In vivo evaluation of 12 provided evidence that it is able to engage the target and to increase cGMP levels in relevant brain regions. Hence, 12 is a valuable tool compound for the better understanding of the role of PDE2 in cognitive impairment and other central nervous system related disorders. PMID:25221665

  19. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    SciTech Connect

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  20. Helicobacter pylori TlyA Forms Amyloid-like Aggregates with Potent Cytotoxic Activity.

    PubMed

    Lata, Kusum; Chattopadhyay, Kausik

    2015-06-16

    Helicobacter pylori is a potent human gastric pathogen. It is known to be associated with several gastroenteric disorders, including gastritis, peptic ulcer, and gastric cancer. The H. pylori genome encodes a gene product TlyA that has been shown to display potent membrane damaging properties and cytotoxic activity. On the basis of such properties, TlyA is considered as a potential virulence factor of H. pylori. In this study, we show that the H. pylori TlyA protein has a strong propensity to convert into the amyloid-like aggregated assemblies, upon exposure to elevated temperatures. Even at the physiological temperature of 37 °C, TlyA shows a strong amyloidogenic property. TlyA aggregates that are generated upon exposure at temperatures of ≥37 °C show prominent binding to dyes like thioflavin T and Nile Red. Transmission electron microscopy also demonstrates the presence of typical amyloid-like fibrils in the TlyA aggregates generated at 37 °C. Conversion of TlyA into the amyloid-like aggregates is found to be associated with major alterations in the secondary and tertiary structural organization of the protein. Finally, our study shows that the preformed amyloid-like aggregates of TlyA are capable of exhibiting potent cytotoxic activities against human gastric adenocarcinoma cells. Altogether, such a propensity of H. pylori TlyA to convert into the amyloid-like aggregated assemblies with cytotoxic activity suggests potential implications for the virulence functionality of the protein. PMID:26015064

  1. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants

    PubMed Central

    Galanis, Allison; Ma, Hayley; Rajkhowa, Trivikram; Ramachandran, Abhijit; Small, Donald; Cortes, Jorge

    2014-01-01

    Mutations of the type III receptor tyrosine kinase FLT3 occur in approximately 30% of acute myeloid leukemia patients and lead to constitutive activation. This has made FLT3-activating mutations an attractive drug target because they are probable driver mutations of this disease. As more potent FLT3 inhibitors are developed, a predictable development of resistance-conferring point mutations, commonly at residue D835, has been observed. Crenolanib is a highly selective and potent FLT3 tyrosine kinase inhibitor (TKI) with activity against the internal tandem duplication (FLT3/ITD) mutants and the FLT3/D835 point mutants. We tested crenolanib against a panel of D835 mutant cell lines and primary patient blasts and observed superior cytotoxic effects when compared with other available FLT3 TKIs such as quizartinib and sorafenib. Another potential advantage of crenolanib is its reduced inhibition of c-Kit compared with quizartinib. In progenitor cell assays, crenolanib was less disruptive of erythroid colony growth, which may result in relatively less myelosuppression than quizartinib. Finally, correlative data from an ongoing clinical trial demonstrate that acute myeloid leukemia patients can achieve sufficient levels of crenolanib to inhibit both FLT3/ITD and resistance-conferring FLT3/D835 mutants in vivo. Crenolanib is thus an important next-generation FLT3 TKI. This study is registered at clinicaltrials.gov (ID: NCT01657682). PMID:24227820

  2. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    NASA Astrophysics Data System (ADS)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  3. Potent In Vitro Antifungal Activities of Naturally Occurring Acetylenic Acids▿

    PubMed Central

    Li, Xing-Cong; Jacob, Melissa R.; Khan, Shabana I.; Ashfaq, M. Khalid; Babu, K. Suresh; Agarwal, Ameeta K.; ElSohly, Hala N.; Manly, Susan P.; Clark, Alice M.

    2008-01-01

    Our continuing effort in antifungal natural product discovery has led to the identification of five 6-acetylenic acids with chain lengths from C16 to C20: 6-hexadecynoic acid (compound 1), 6-heptadecynoic acid (compound 2), 6-octadecynoic acid (compound 3), 6-nonadecynoic acid (compound 4), and 6-icosynoic acid (compound 5) from the plant Sommera sabiceoides. Compounds 2 and 5 represent newly isolated fatty acids. The five acetylenic acids were evaluated for their in vitro antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes, and Trichophyton rubrum by comparison with the positive control drugs amphotericin B, fluconazole, ketoconazole, caspofungin, terbinafine, and undecylenic acid. The compounds showed various degrees of antifungal activity against the 21 tested strains. Compound 4 was the most active, in particular against the dermatophytes T. mentagrophytes and T. rubrum and the opportunistic pathogens C. albicans and A. fumigatus, with MICs comparable to several control drugs. Inclusion of two commercially available acetylenic acids, 9-octadecynoic acid (compound 6) and 5,8,11,14-eicosatetraynoic acid (compound 7), in the in vitro antifungal testing further demonstrated that the antifungal activities of the acetylenic acids were associated with their chain lengths and positional triple bonds. In vitro toxicity testing against mammalian cell lines indicated that compounds 1 to 5 were not toxic at concentrations up to 32 μM. Furthermore, compounds 3 and 4 did not produce obvious toxic effects in mice at a dose of 34 μmol/kg of body weight when administered intraperitoneally. Taking into account the low in vitro and in vivo toxicities and significant antifungal potencies, these 6-acetylenic acids may be excellent leads for further preclinical studies. PMID:18458131

  4. STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia.

    PubMed

    Curran, Emily; Chen, Xiufen; Corrales, Leticia; Kline, Douglas E; Dubensky, Thomas W; Duttagupta, Priyanka; Kortylewski, Marcin; Kline, Justin

    2016-06-14

    Type I interferon (IFN), essential for spontaneous T cell priming against solid tumors, is generated through recognition of tumor DNA by STING. Interestingly, we observe that type I IFN is not elicited in animals with disseminated acute myeloid leukemia (AML). Further, survival of leukemia-bearing animals is not diminished in the absence of type I IFN signaling, suggesting that STING may not be triggered by AML. However, the STING agonist, DMXAA, induces expression of IFN-β and other inflammatory cytokines, promotes dendritic cell (DC) maturation, and results in the striking expansion of leukemia-specific T cells. Systemic DMXAA administration significantly extends survival in two AML models. The therapeutic effect of DMXAA is only partially dependent on host type I IFN signaling, suggesting that other cytokines are important. A synthetic cyclic dinucleotide that also activates human STING provided a similar anti-leukemic effect. These data demonstrate that STING is a promising immunotherapeutic target in AML. PMID:27264175

  5. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity

    PubMed Central

    Tsai, James; Lee, John T.; Wang, Weiru; Zhang, Jiazhong; Cho, Hanna; Mamo, Shumeye; Bremer, Ryan; Gillette, Sam; Kong, Jun; Haass, Nikolas K.; Sproesser, Katrin; Li, Ling; Smalley, Keiran S. M.; Fong, Daniel; Zhu, Yong-Liang; Marimuthu, Adhirai; Nguyen, Hoa; Lam, Billy; Liu, Jennifer; Cheung, Ivana; Rice, Julie; Suzuki, Yoshihisa; Luu, Catherine; Settachatgul, Calvin; Shellooe, Rafe; Cantwell, John; Kim, Sung-Hou; Schlessinger, Joseph; Zhang, Kam Y. J.; West, Brian L.; Powell, Ben; Habets, Gaston; Zhang, Chao; Ibrahim, Prabha N.; Hirth, Peter; Artis, Dean R.; Herlyn, Meenhard; Bollag, Gideon

    2008-01-01

    BRAFV600E is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting “active” protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-RafV600E with an IC50 of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-RafV600E kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-RafV600E-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-RafV600E-positive cells. In B-RafV600E-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-RafV600E-driven tumors. PMID:18287029

  6. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    PubMed Central

    Badaboina, Srilatha; Bai, Hyoung-Woo; Na, Yun Hee; Park, Chul-Hong; Kim, Tae Hoon; Lee, Tae-Hoon; Chung, Byung Yeoup

    2015-01-01

    Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase) level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK) and p38 slightly up regulated and intracellular reactive oxygen species (ROS) increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone. PMID:26213921

  7. Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase.

    PubMed

    Poplawski, Sarah E; Lai, Jack H; Li, Youhua; Jin, Zhiping; Liu, Yuxin; Wu, Wengen; Wu, Yong; Zhou, Yuhong; Sudmeier, James L; Sanford, David G; Bachovchin, William W

    2013-05-01

    Fibroblast activation protein (FAP) is a serine protease selectively expressed on reactive stromal fibroblasts of epithelial carcinomas. It is widely believed to play a role in tumor invasion and metastasis and therefore to represent a potential new drug target for cancer. Investigation into its biological function, however, has been hampered by the current unavailability of selective inhibitors. The challenge has been in identifying inhibitors that are selective for FAP over both the dipeptidyl peptidases (DPPs), with which it shares exopeptidase specificity, and prolyl oligopeptidase (PREP), with which it shares endopeptidase specificity. Here, we report the first potent FAP inhibitor with selectivity over both the DPPs and PREP, N-(pyridine-4-carbonyl)-d-Ala-boroPro (ARI-3099, 6). We also report a similarly potent and selective PREP inhibitor, N-(pyridine-3-carbonyl)-Val-boroPro (ARI-3531, 22). Both are boronic acid based inhibitors, demonstrating that high selectivity can be achieved using this electrophile. The inhibitors are stable, easy to synthesize, and should prove to be useful in helping to elucidate the biological functions of these two unique and interesting enzymes, as well as their potential as drug targets. PMID:23594271

  8. Identification of Selective and Potent Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase

    PubMed Central

    Poplawski, Sarah E.; Lai, Jack H.; Li, Youhua; Jin, Zhiping; Liu, Yuxin; Wu, Wengen; Wu, Yong; Zhou, Yuhong; Sudmeier, James L.; Sanford, David G.; Bachovchin, William W.

    2014-01-01

    Fibroblast activation protein (FAP) is a serine protease selectively expressed on reactive stromal fibroblasts of epithelial carcinomas. It is widely believed to play a role in tumor invasion and metastasis and therefore to represent a potential new drug target for cancer. Investigation into its biological function, however, has been hampered by the current unavailability of selective inhibitors. The challenge has been in identifying inhibitors that are selective for FAP over both the dipeptidyl peptidases (DPPs), with which it shares exopeptidase specificity, and prolyl oligopeptidase (PREP), with which it shares endopeptidase specificity. Here, we report the first potent FAP inhibitor with selectivity over both the DPPs and PREP, N-(pyridine-4-carbonyl)-d-Ala-boroPro (ARI-3099, 6). We also report a similarly potent and selective PREP inhibitor, N-(pyridine-3-carbonyl)-Val-boroPro (ARI-3531, 22). Both are boronic acid based inhibitors, demonstrating that high selectivity can be achieved using this electrophile. The inhibitors are stable, easy to synthesize, and should prove to be useful in helping to elucidate the biological functions of these two unique and interesting enzymes, as well as their potential as drug targets. PMID:23594271

  9. Indole-3-ethylsulfamoylphenylacrylamides with Potent Anti-proliferative and Anti-angiogenic Activities.

    PubMed

    Mehndiratta, Samir; Pan, Shiow-Lin; Kumar, Sunil; Liou, Jing-Ping

    2016-01-01

    HDAC inhibition is emerging as a new strategy for cancer therapy. We previously reported that Nhydroxy- 3-{4-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide (9) demonstrated potent histone deacetylases (HDAC) inhibition and anti-inflammatory effects. This continuous study provides detailed structureactivity relationship (SAR) of novel indol-3-ethylsulfamoylphenylacrylamides as anti-cancer agents. These compounds are endowed with potent HDAC inhibitory activity, almost 2.5 folds to 42 folds better than suberanilohydroxamic acid (SAHA). Compounds 8, 10, 11 and 17 exhibited significant inhibitory effects on various cancer cell lines with GI50 values in the range of 0.02 to 0.35 μM which are 10-50 folds better than SAHA. In-vivo nude mice model indicated the anti-angiogenic potential of these acrylamides. This study has indicated the potential of 3-{4-[2-(1-Ethyl-2-methyl-1H-indol-3-yl)-ethyl-N-tert-butoxycarbonylsulfamoyl]-phenyl}-N-hydroxy-acrylamide (11, mean GI50 = 0.04 μM) as a lead molecule for further development as anti-cancer agent. PMID:26459769

  10. Salvicine, a novel topoisomerase II inhibitor, exerts its potent anticancer activity by ROS generation.

    PubMed

    Meng, Ling-hua; Ding, Jian

    2007-09-01

    Salvicine is a novel diterpenoid quinone compound obtained by structural modification of a natural product lead isolated from a Chinese herb with potent growth inhibitory activity against a wide spectrum of human tumor cells in vitro and in mice bearing human tumor xenografts. Salvicine has also been found to have a profound cytotoxic effect on multidrug-resisitant (MDR) cells. Moreover, Salvicine significantly reduced the lung metastatic foci of MDA-MB-435 orthotopic xenograft. Recent studies demonstrated that salvicine is a novel non-intercalative topoisomerase II (Topo II) poison by binding to the ATPase domain, promoting DNA-Topo II binding and inhibiting Topo II-mediated DNA relegation and ATP hydrolysis. Further studies have indicated that salcivine-elicited ROS plays a central role in salvicine-induced cellular response including Topo II inhibition, DNA damage, circumventing MDR and tumor cell adhesion inhibition. PMID:17723179

  11. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity

    PubMed Central

    Levikova, Maryna; Klaue, Daniel; Seidel, Ralf; Cejka, Petr

    2013-01-01

    Dna2 is a nuclease-helicase involved in several key pathways of eukaryotic DNA metabolism. The potent nuclease activity of Saccharomyces cerevisiae Dna2 was reported to be required for all its in vivo functions tested to date. In contrast, its helicase activity was shown to be weak, and its inactivation affected only a subset of Dna2 functions. We describe here a complex interplay of the two enzymatic activities. We show that the nuclease of Dna2 inhibits its helicase by cleaving 5′ flaps that are required by the helicase domain for loading onto its substrate. Mutational inactivation of Dna2 nuclease unleashes unexpectedly vigorous DNA unwinding activity, comparable with that of the most potent eukaryotic helicases. Thus, the ssDNA-specific nuclease activity of Dna2 limits and controls the enzyme's capacity to unwind dsDNA. We postulate that regulation of this interplay could modulate the biochemical properties of Dna2 and thus license it to carry out its distinct cellular functions. PMID:23671118

  12. Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors

    PubMed Central

    Urano, Emiko; Ablan, Sherimay D.; Mandt, Rebecca; Pauly, Gary T.; Sigano, Dina M.; Schneider, Joel P.; Martin, David E.; Nitz, Theodore J.; Wild, Carl T.

    2015-01-01

    Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1. PMID:26482309

  13. An Overhead Projection Demonstration of Optical Activity

    ERIC Educational Resources Information Center

    Hill, John W.

    1973-01-01

    Describes the use of two polarizing lenses, a yellow filter, an oatmeal bos, a piece of cardboard, a 1,000 ml beaker, and an overhead projector to demonstrate compound optical activity to large classes. Indicates the presence of an accuracy within 1-2 degrees of usually acceptable data. (CC)

  14. Honey shows potent inhibitory activity against the bovine testes hyaluronidase.

    PubMed

    Kolayli, Sevgi; Sahin, Huseyin; Can, Zehra; Yildiz, Oktay; Sahin, Kübra

    2016-08-01

    The purpose of this study was to investigate the anti-hyaluronidase activities of honeys from different botanical origins honeys in order to determine their anti-inflammatory properties. The total phenolic contents, total flavonoids and total tannin levels of six types of honey, chestnut, oak, heather, pine, buckwheat and mixed blossom, were determined. Concentration-related inhibition values were tested turbidimetrically on bovine testis hyaluronidase (BTHase) as IC50 (mg/mL). All honeys exhibited various concentration-dependent degrees of inhibition against BTHase. Inhibition values varied significantly depending on honeys' levels of phenolic contents, flavonoid and tannin. The honeys with the highest anti-hyaluronidase activity were oak, chestnut and heather. In conclusion, polyphenol-rich honeys have high anti-hyaluronidase activity, and these honeys have high protective and complementary potential against hyaluronidase-induced anti-inflammatory failures. PMID:26076195

  15. Fenugreek potent activity against nitrate-induced diabetes in young and adult male rats.

    PubMed

    El-Wakf, Azza M; Hassan, Hanaa A; Mahmoud, Ashraf Z; Habza, Marwa N

    2015-05-01

    Nitrate has described as an endocrine disruptor that promotes onset of diabetes. This study was undertaken to evaluate diabetic effect of high nitrate intake in young and adult male rats and its amelioration by fenugreek administration. The study revealed significant increase in serum glucose and blood glycosylated hemoglobin (HbA1c%), while serum insulin and liver glycogen were decreased among nitrate exposed animals, in particular the young group. A significant reduction in the body weight gain and serum thyroid hormones (T4 & T3) was also recorded. Further reduction in serum levels of urea and creatinine, as well as total protein in serum, liver and pancreas was demonstrated, with elevation in their levels in the urine of all nitrate exposed groups. Meanwhile, the activity of serum transaminases (ALT and AST) was increased, with decline in their activity in the liver tissue. In addition, an elevation in serum total bilirubin, tissues (liver and pancreas) nitric oxide and lipid profile, as well as liver activity of glucose-6-phosphatase was recorded. Fenugreek administration to nitrate exposed rats was found to be effective in alleviating hyperglycemia and other biochemical changes characterizing nitrate-induced diabetes. So, fenugreek can be considered to possess potent activity against onset of nitrate induced-diabetes. PMID:24615531

  16. EGR1 Functions as a Potent Repressor of MEF2 Transcriptional Activity

    PubMed Central

    Cooper, Olivia; Kontor, Akuah; Nocco, Sarah E.; Naya, Francisco J.

    2015-01-01

    The myocyte enhancer factor 2 (MEF2) transcription factor requires interactions with co-factors for precise regulation of its target genes. Our lab previously reported that the mammalian MEF2A isoform regulates the cardiomyocyte costamere, a critical muscle-specific focal adhesion complex involved in contractility, through its transcriptional control of genes encoding proteins localized to this cytoskeletal structure. To further dissect the transcriptional mechanisms of costamere gene regulation and identify potential co-regulators of MEF2A, a bioinformatics analysis of transcription factor binding sites was performed using the proximal promoter regions of selected costamere genes. One of these predicted sites belongs to the early growth response (EGR) transcription factor family. The EGR1 isoform has been shown to be involved in a number of pathways in cardiovascular homeostasis and disease, making it an intriguing candidate MEF2 coregulator to further characterize. Here, we demonstrate that EGR1 interacts with MEF2A and is a potent and specific repressor of MEF2 transcriptional activity. Furthermore, we show that costamere gene expression in cardiomyocytes is dependent on EGR1 transcriptional activity. This study identifies a mechanism by which MEF2 activity can be modulated to ensure that costamere gene expression is maintained at levels commensurate with cardiomyocyte contractile activity. PMID:26011708

  17. Synthesis and Biological Evaluation of 3-Alkyl-1,5-Diaryl-1H-Pyrazoles as Rigid Analogues of Combretastatin A-4 with Potent Antiproliferative Activity

    PubMed Central

    Xu, Qile; Qi, Huan; Sun, Maolin; Zuo, Daiying; Jiang, Xuewei; Wen, Zhiyong; Wang, Zhiwei; Wu, Yingliang; Zhang, Weige

    2015-01-01

    A series of novel 3-alkyl-1,5-diaryl-1H-pyrazoles were synthesized as combretastatin A-4 (CA-4) analogues and evaluated for antiproliferative activity against three human cancer cell lines (SGC-7901, A549 and HT-1080). Most of the target compounds displayed moderate to potent antiproliferative activity, and 7k was found to be the most potent compound. Structure-activity relationships indicated that compounds with a trimethoxyphenyl A-ring at the N-1 position of the pyrazole skeleton were more potent than those with the A-ring at the C-5 position. Tubulin polymerization and immunostaining experiments revealed that 7k potently inhibited tubulin polymerization and disrupted tubulin microtubule dynamics in a manner similar to CA-4. Computational modelling demonstrated that the binding of 7k to the colchicine binding site on microtubules may involve a similar mode as CA-4. PMID:26061410

  18. Putting copper into action: copper-impregnated products with potent biocidal activities.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2004-11-01

    Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria. PMID:15345689

  19. Potent Nematicidal Activity of Maleimide Derivatives on Meloidogyne incognita.

    PubMed

    Eloh, Kodjo; Demurtas, Monica; Mura, Manuel Giacomo; Deplano, Alessandro; Onnis, Valentina; Sasanelli, Nicola; Maxia, Andrea; Caboni, Pierluigi

    2016-06-22

    Different maleimide derivatives were synthesized and assayed for their in vitro activity on the soil inhabiting, plant-parasitic nematode Meloidogyne incognita, also known as root-knot nematode. The compounds maleimide, N-ethylmaleimide, N-isopropylmaleimide, and N-isobutylmaleimide showed the strongest nematicidal activity on the second stage juveniles of the root-knot nematode with EC50/72h values of 2.6 ± 1.3, 5.1 ± 3.4, 16.2 ± 5.4, and 19.0 ± 9.0 mg/L, respectively. We also determined the nematicidal activity of copper sulfate, finding an EC50 value of 48.6 ± 29.8 mg/L. When maleimide at 1 mg/L was tested in combination with copper sulfate at 50 mg/L, we observed 100% mortality of the nematodes. We performed a GC-MS metabolomics analysis after treating nematodes with maleimide at 8 mg/L for 24 h. This analysis revealed altered fatty acids and diglyceride metabolites such as oleic acid, palmitic acid, and 1-monopalmitin. Our results suggest that maleimide may be used as a new interesting building block for developing new nematicides in combination with copper salts. PMID:27249054

  20. Guidance manual for conducting technology demonstration activities

    SciTech Connect

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  1. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.

    PubMed

    Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L

    2001-02-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613

  2. IsoCombretaQuinazolines: Potent Cytotoxic Agents with Antitubulin Activity.

    PubMed

    Soussi, Mohamed Ali; Provot, Olivier; Bernadat, Guillaume; Bignon, Jérome; Desravines, Déborah; Dubois, Joëlle; Brion, Jean-Daniel; Messaoudi, Samir; Alami, Mouad

    2015-08-01

    A series of novel isocombretaquinazolines (isoCoQ) 4 were quickly prepared by coupling N-toluenesulfonylhydrazones with 4-chloroquinazolines under palladium catalysis. These compounds, which can be regarded as isocombretastatin A-4 (isoCA-4) analogues that lack the 3,4,5-trimethoxyphenyl ring, displayed nanomolar-level cytotoxicity against various human cancer cell lines and were observed to effectively inhibit tubulin polymerization. The isoCoQ compounds 2-methoxy-5-(1-(2-methylquinazolin-4-yl)vinyl)phenol (4 b), 4-[1-(3-fluoro-4-methoxyphenyl)vinyl]-2-methylquinazoline (4 c), and 2-methoxy-5-(1-(2-methylquinazolin-4-yl)vinyl)aniline (4 d), which respectively bear the greatest resemblance to isoCA-4, isoFCA-4, and isoNH2 CA-4, are able to arrest HCT116 cancer cells in the G2 /M cell-cycle phase at very low concentrations. Preliminary in vitro antivascular assay results show that 4 d is able to disrupt a network of capillary-like structures formed by human umbilical vein endothelial cells on Matrigel. All these results clearly demonstrate that replacement of the 3,4,5-trimethoxyphenyl ring of isoCA-4 with a quinazoline nucleus is a feasible approach toward new and highly promising derivatives with the potential for further development as antitubulin agents. PMID:26076053

  3. Potent KCNQ2/3-Specific Channel Activator Suppresses In Vivo Epileptic Activity and Prevents the Development of Tinnitus

    PubMed Central

    Kalappa, Bopanna I.; Soh, Heun; Duignan, Kevin M.; Furuya, Takeru; Edwards, Scott

    2015-01-01

    Voltage-gated Kv7 (KCNQ) channels are voltage-dependent potassium channels that are activated at resting membrane potentials and therefore provide a powerful brake on neuronal excitability. Genetic or experience-dependent reduction of KCNQ2/3 channel activity is linked with disorders that are characterized by neuronal hyperexcitability, such as epilepsy and tinnitus. Retigabine, a small molecule that activates KCNQ2–5 channels by shifting their voltage-dependent opening to more negative voltages, is an US Food and Drug Administration (FDA) approved anti-epileptic drug. However, recently identified side effects have limited its clinical use. As a result, the development of improved KCNQ2/3 channel activators is crucial for the treatment of hyperexcitability-related disorders. By incorporating a fluorine substituent in the 3-position of the tri-aminophenyl ring of retigabine, we synthesized a small-molecule activator (SF0034) with novel properties. Heterologous expression of KCNQ2/3 channels in HEK293T cells showed that SF0034 was five times more potent than retigabine at shifting the voltage dependence of KCNQ2/3 channels to more negative voltages. Moreover, unlike retigabine, SF0034 did not shift the voltage dependence of either KCNQ4 or KCNQ5 homomeric channels. Conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons showed that SF0034 requires the expression of KCNQ2/3 channels for reducing the excitability of CA1 hippocampal neurons. Behavioral studies demonstrated that SF0034 was a more potent and less toxic anticonvulsant than retigabine in rodents. Furthermore, SF0034 prevented the development of tinnitus in mice. We propose that SF0034 provides, not only a powerful tool for investigating ion channel properties, but, most importantly, it provides a clinical candidate for treating epilepsy and preventing tinnitus. PMID:26063916

  4. Potent Radical-Scavenging Activities of Thiamin and Thiamin Diphosphate

    PubMed Central

    Okai, Yasuji; Higashi-Okai, Kiyoka; F. Sato, Eisuke; Konaka, Ryusei; Inoue, Masayasu

    2007-01-01

    Various radical-scavenging activities of thiamin and thiamin diphosphate (TDP) were found in some in vitro experiments. Thiamin and TDP caused considerable suppressive effects on superoxide generation in hypoxanthine and xanthine oxidase system which was measured by a sensitive chemiluminescence method using 2-methyl-6-[p-methylphenyl]-3,7-dihydroimidazo[1,2-alpha]pyrazin-3-one (MCLA), and their 50% inhibition (IC50) values were estimated to be 158 and 56 µM, respectively. They also showed the significant suppression against hydroperoxide generation derived from oxidized linoleic acid which was estimated by aluminum chloride method and their IC50 values were calculated to be 260 and 46 µM. They further prevented the oxygen radical generation in opsonized zymosan-stimulated human blood neutrophils which was shown by chemiluminescence method using luminol, and their IC50 values were calculated to be 169 and 38 µM. In contrast, they caused weak but significantly suppressive effects on the hydroxyl radical generation by Fenton reaction which was measured by electric spin resonance (ESR) method, their IC50 values were calculated to be 8.45 and 1.46 mM respectively. These results strongly suggest a possibility that thiamin and TDP play as radical scavengers in cell-free and cellular systems. PMID:18437212

  5. A novel formulation of veggies with potent liver detoxifying activity.

    PubMed

    Jain, Mohit M; Kumari, Nirmala; Rai, Geeta

    2015-01-01

    LXR (encoded by NR1H2 and 3) and FXR (known as bile acid receptor) encoded by NR1H4 (nuclear receptor subfamily 1, group H and member 4) are nuclear receptors in humans and are important regulators of bile acid production, cholesterol, fatty acid and glucose homeostasis hence responsible for liver detoxification. Several strategies for drug design with numerous ligands for this target have failed owing to the inability of the ligand to access the target/receptor or their early metabolisation. In this work, we have evaluated FXR and LXR structure bound with agonist and compared the binding energy affinity of active ligands present in live green-real veggies with reference drugs (ligands) present in the market. A high throughput screening combined with molecular docking, absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions, log P values and percentage of human oral absorption value led to the identification of two compounds present in live green-real veggies with strong potential for liver detoxification. PMID:25869321

  6. Cerecidins, Novel Lantibiotics from Bacillus cereus with Potent Antimicrobial Activity

    PubMed Central

    Wang, Jian; Zhang, Li; Teng, Kunling; Sun, Shutao; Sun, Zhizeng

    2014-01-01

    Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are widely produced by Gram-positive bacteria, including many species of the Bacillus group. In the present study, one novel gene cluster coding lantibiotic cerecidins was unveiled in Bacillus cereus strain As 1.1846 through genomic mining and PCR screening. The designated cer locus is different from that of conventional class II lantibiotics in that it included seven tandem precursor cerA genes, one modification gene (cerM), two processing genes (cerT and cerP), one orphan regulator gene (cerR), and two immunity genes (cerF and cerE). In addition, one unprecedented quorum sensing component, comQXPA, was inserted between cerM and cerR. The expression of cerecidins was not detected in this strain of B. cereus, which might be due to repressed transcription of cerM. We constitutively coexpressed cerA genes and cerM in Escherichia coli, and purified precerecidins were proteolytically processed with the endoproteinase GluC and a truncated version of putative serine protease CerP. Thus, two natural variants of cerecidins A1 and A7 were obtained which contained two terminal nonoverlapping thioether rings rarely found in lantibiotics. Both cerecidins A1 and A7 were active against a broad spectrum of Gram-positive bacteria. Cerecidin A7, especially its mutant Dhb13A, showed remarkable efficacy against multidrug-resistant Staphylococcus aureus (MDRSA), vancomycin-resistant Enterococcus faecalis (VRE), and even Streptomyces. PMID:24532070

  7. Mirror-Image Organometallic Osmium Arene Iminopyridine Halido Complexes Exhibit Similar Potent Anticancer Activity

    PubMed Central

    Fu, Ying; Soni, Rina; Romero, María J; Pizarro, Ana M; Salassa, Luca; Clarkson, Guy J; Hearn, Jessica M; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J

    2013-01-01

    Four chiral OsII arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (SOs,SC)-[Os(η6-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (ROs,RC)-[Os(η6-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (SOs,SC)-[Os(η6-p-cym)(ImpyMe)Cl]PF6, 1, and (ROs,RC)-[Os(η6-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction. PMID:24114923

  8. Identification of ponatinib and other known kinase inhibitors with potent MEKK2 inhibitory activity.

    PubMed

    Ahmad, Syed; Johnson, Gary L; Scott, John E

    2015-08-01

    The kinase MEKK2 (MAP3K2) may play an important role in tumor growth and metastasis for several cancer types. Thus, targeting MEKK2 may represent a novel strategy for developing more effective therapies for cancer. In order to identify small molecules with MEKK2 inhibitory activity, we screened a collection of known kinase inhibitors using a high throughput MEKK2 intrinsic ATPase enzyme assay and confirmed activity of the most potent hits with this primary assay. We also confirmed activities of these known kinase inhibitors with an MEKK2 transphosphorylation slot blot assay using MKK6 as a substrate. We observed a good correlation in potencies between the two orthogonal MEKK2 kinase activity assay formats for this set of inhibitors. We report that ponatinib, AT9283, AZD7762, JNJ-7706621, PP121 and hesperadin had potent MEKK2 enzyme inhibitory activities ranging from 4.7 to 60 nM IC50. Ponatinib is an FDA-approved drug that potently inhibited MEKK2 enzyme activity with IC50 values of 10-16 nM. AT9283 is currently in clinical trials and produced MEKK2 IC50 values of 4.7-18 nM. This set of known kinase inhibitors represents some of the most potent in vitro MEKK2 inhibitors reported to date and may be useful as research tools. Although these compounds are not selective for MEKK2, the structures of these compounds give insight into pharmacophores that potently inhibit MEKK2 and could be used as initial leads to design highly selective inhibitors of MEKK2. PMID:26056008

  9. Experimental Demonstration of Active Electromagnetic Cloaking

    NASA Astrophysics Data System (ADS)

    Selvanayagam, Michael; Eleftheriades, George V.

    2013-10-01

    Active electromagnetic cloaking uses an array of elementary sources to cancel the scattered fields created by an object. An active interior cloak does this by placing the sources along the boundary of the object. This process can be thought of as introducing a discontinuity in the field to cancel out the scattered field by the object. Here, an experimental version of a thin active cloak at microwave frequencies is demonstrated for an aluminum cylinder with a radius of 0.56λ. The cloak consists of a 12-element magnetic-dipole array. By controlling the weights of the current on each element of the array, the scattering off of the cylinder is reduced in the backward and forward directions. The ability to disguise the aluminum cylinder as another object by varying the weights of the dipole array is also demonstrated. Finally, potential ways of overcoming the constraint of requiring a priori knowledge of the incident field leading to camouflaging-type behavior are discussed.

  10. Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor

    SciTech Connect

    Brone, Bert; Peeters, Pieter J.; Marrannes, Roger; Mercken, Marc; Nuydens, Ronny; Meert, Theo; Gijsen, Harrie J.M.

    2008-09-01

    The TRPA1 channel is activated by a number of pungent chemicals, such as allylisothiocyanate, present in mustard oil and thiosulfinates present in garlic. Most of the known activating compounds contain reactive, electrophilic chemical groups, reacting with cysteine residues in the active site of the TRPA1 channel. This covalent modification results in activation of the channel and has been shown to be reversible for several ligands. Commonly used tear gasses CN, CR and CS are also pungent chemicals, and in this study we show that they are extremely potent and selective activators of the human TRPA1 receptor. To our knowledge, these are the most potent TRPA1 agonists known to date. The identification of the molecular target for these tear gasses may open up possibilities to alleviate the effects of tear gasses via treatment with TRPA1 antagonists. In addition these results may contribute to the basic knowledge of the TRPA1 channel that is gaining importance as a pharmacological target.

  11. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    SciTech Connect

    Wu, Yang-Chang; Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu; Lan, Yu-Hsuan; Chang, Fang-Rong; Chang, Ya-Wen; Hwang, Tsong-Long

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  12. Novel 2-aminopyrimidine carbamates as potent and orally active inhibitors of Lck: synthesis, SAR, and in vivo antiinflammatory activity.

    PubMed

    Martin, Matthew W; Newcomb, John; Nunes, Joseph J; McGowan, David C; Armistead, David M; Boucher, Christina; Buchanan, John L; Buckner, William; Chai, Lilly; Elbaum, Daniel; Epstein, Linda F; Faust, Theodore; Flynn, Shaun; Gallant, Paul; Gore, Anu; Gu, Yan; Hsieh, Faye; Huang, Xin; Lee, Josie H; Metz, Daniela; Middleton, Scot; Mohn, Deanna; Morgenstern, Kurt; Morrison, Michael J; Novak, Perry M; Oliveira-dos-Santos, Antonio; Powers, David; Rose, Paul; Schneider, Stephen; Sell, Stephanie; Tudor, Yanyan; Turci, Susan M; Welcher, Andrew A; White, Ryan D; Zack, Debra; Zhao, Huilin; Zhu, Li; Zhu, Xiaotian; Ghiron, Chiara; Amouzegh, Patricia; Ermann, Monika; Jenkins, James; Johnston, David; Napier, Spencer; Power, Eoin

    2006-08-10

    The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. In this paper, we describe the synthesis, structure-activity relationships, and pharmacological characterization of 2-aminopyrimidine carbamates, a new class of compounds with potent and selective inhibition of Lck. The most promising compound of this series, 2,6-dimethylphenyl 2-((3,5-bis(methyloxy)-4-((3-(4-methyl-1-piperazinyl)propyl)oxy)phenyl)amino)-4-pyrimidinyl(2,4-bis(methyloxy)phenyl)carbamate (43) exhibits good activity when evaluated in in vitro assays and in an in vivo model of T cell activation. PMID:16884310

  13. Potent Plasmodium falciparum gametocytocidal activity of diaminonaphthoquinones, lead antimalarial chemotypes identified in an antimalarial compound screen.

    PubMed

    Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

    2015-03-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. PMID:25512421

  14. Potent Plasmodium falciparum Gametocytocidal Activity of Diaminonaphthoquinones, Lead Antimalarial Chemotypes Identified in an Antimalarial Compound Screen

    PubMed Central

    Tanaka, Takeshi Q; Guiguemde, W. Armand; Barnett, David S.; Maron, Maxim I.; Min, Jaeki; Connelly, Michele C.; Suryadevara, Praveen Kumar; Guy, R. Kiplin

    2014-01-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. PMID:25512421

  15. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities

    PubMed Central

    Jafari, Elham; Khajouei, Marzieh Rahmani; Hassanzadeh, Farshid; Hakimelahi, Gholam Hossein; Khodarahmi, Ghadam Ali

    2016-01-01

    The heterocyclic compounds have a great importance in medicinal chemistry. One of the most important heterocycles in medicinal chemistry are quinazolines possessing wide spectrum of biological properties like antibacterial, antifungal, anticonvulsant, anti-inflammatory, anti-HIV, anticancer and analgesic activities. This skeleton is an important pharmacophore considered as a privileged structure. This review highlights the recent advances in the synthesis of quinazolines and quinazolinone derivatives with potent antimicrobial and cytotoxic activities. PMID:27051427

  16. Novel 5-vinyl pyrimidine nucleosides with potent anti-hepatitis B virus activity.

    PubMed

    Kumar, R; Tyrrell, D L

    2001-11-19

    Synthesis and antiviral activities of novel N-1 alkyl substituted pyrimidines, 1-[(2-hydroxyethoxy)methyl]-5-vinyluracil (5), 1-[(2-hydroxy-1-(hydroxymethyl)ethoxy)methyl]-5-vinyluracil (6), and 1-[4-hydroxy-3-(hydroxymethyl)-1-butyl]-5-vinyluracil (7) are reported. Compounds 6 and 7 were potent inhibitors of DHBV in cell culture, in contrast, all of the compounds described were devoid of activity against TK(+) HSV-1 and TK(-) HSV-1. PMID:11677126

  17. Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate.

    PubMed Central

    Lazarowski, E. R.; Watt, W. C.; Stutts, M. J.; Boucher, R. C.; Harden, T. K.

    1995-01-01

    1. The human P2U-purinoceptor was stably expressed in 1321N1 human astrocytoma cells and the pharmacological selectivity of the expressed receptor was studied by measurement of inositol lipid hydrolysis. 2. High basal levels of inositol phosphates occurred in P2U-purinoceptor-expressing cells. This phenomenon was shown to be due to release of large amounts of ATP from 1321N1 cells, and could be circumvented by adoption of an assay protocol that did not involve medium changes. 3. UTP, ATP and ATP gamma S were full and potent agonists for activation of phospholipase C with EC50 values of 140 nM, 230 nM, and 1.72 microM, respectively. 5BrUTP, 2C1ATP and 8BrATP were also full agonists although less potent than their natural congeners. Little or no effect was observed with the selective P2Y-, P2X-, and P2T-purinoceptor agonists, 2MeSATP, alpha,beta-MeATP, and 2MeSADP, respectively. 4. Diadenosine tetraphosphate, Ap4A, was a surprisingly potent agonist at the expressed P2U-purinoceptor with an EC50 (720 nM) in the range of the most potent P2U-purinoceptor agonists. Ap4A may be a physiologically important activator of P2U-purinoceptors. PMID:8564228

  18. A cell penetrating peptide-integrated and enediyne-energized fusion protein shows potent antitumor activity.

    PubMed

    Ru, Qin; Shang, Bo-Yang; Miao, Qing-Fang; Li, Liang; Wu, Shu-Ying; Gao, Rui-Juan; Zhen, Yong-Su

    2012-11-20

    Arginine-rich peptides belong to a subclass of cell penetrating peptides that are taken up by living cells and can be detected freely diffusing inside the cytoplasm and nucleoplasm. This phenomenon has been attributed to either an endocytotic mode of uptake and a subsequent release from vesicles or a direct membrane penetration. Lidamycin is an antitumor antibiotic, which consists of an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). In the present study, a fusion protein (Arg)(9)-LDP composed of cell penetrating peptide (Arg)(9) and LDP was prepared by DNA recombination, and the enediyne-energized fusion protein (Arg)(9)-LDP-AE was prepared by molecular reconstitution. The data in fixed cells demonstrated that (Arg)(9)-LDP could rapidly enter cells, and the results based on fluorescence activated cell sorting indicated that the major route for (Arg)(9)-mediated cellular uptake of protein molecules was endocytosis. (Arg)(9)-LDP-AE demonstrated more potent cytotoxicity against different carcinoma cell lines than lidamycin in vitro. In the mouse hepatoma 22 model, (Arg)(9)-LDP-AE (0.3mg/kg) suppressed the tumor growth by 89.2%, whereas lidamycin (0.05 mg/kg) by 74.6%. Furthermore, in the glioma U87 xenograft model in nude mice, (Arg)(9)-LDP-AE at 0.2mg/kg suppressed tumor growth by 88.8%, compared with that of lidamycin by 62.9% at 0.05 mg/kg. No obvious toxic effects were observed in all groups during treatments. The results showed that energized fusion protein (Arg)(9)-LDP-AE was more effective than lidamycin and would be a promising candidate for glioma therapy. In addition, this approach to manufacturing fusion proteins might serve as a technology platform for the development of new cell penetrating peptides-based drugs. PMID:22982402

  19. Novel iodoacetamido benzoheterocyclic derivatives with potent antileukemic activity are inhibitors of STAT5 phosphorylation.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Prencipe, Filippo; Lopez-Cara, Carlota; Rondanin, Riccardo; Simoni, Daniele; Hamel, Ernest; Grimaudo, Stefania; Pipitone, Rosaria Maria; Meli, Maria; Tolomeo, Manlio

    2016-01-27

    Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT family of signaling proteins, is considered to be an attractive therapeutic target because of its involvement in the progression of acute myeloid leukemia. In an effort to discover potent molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were synthesized and evaluated on the basis of our knowledge of the activity of 2-(3',4',5'-trimethoxybenzoyl)-3-iodoacetamido-6-methoxy benzo[b]furan derivative 1 as a potent STAT5 inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the presence of a common 3',4',5'-trimethoxybenzoyl moiety at the 2-position of different benzoheterocycles such as benzo[b]furan, benzo[b]thiophene, indole and N-methylindole. Effects on biological activity of the iodoacetamido group and of different moieties (methyl and methoxy) at the C-3 to C-7 positions were examined. In the series of benzo[b]furan derivatives, moving the iodoacetylamino group from the C-4 to the C-5 or C-6 positions did not significantly affect antiproliferative activity. Compounds 4, 15, 20 and 23 blocked STAT5 signals and induced apoptosis of K562 BCR-ABL positive cells. For compound 23, the trimethoxybenzoyl moiety at the 2-position of the benzo[b]furan core was not essential for potent inhibition of STAT5 activation. PMID:26629859

  20. An Undergraduate Laboratory Activity Demonstrating Bacteriophage Specificity†

    PubMed Central

    Allen, Mary E.; Gyure, Ruth A.

    2013-01-01

    Bacteriophage are among the most diverse and numerous microbes inhabiting our planet. Yet many laboratory activities fail to engage students in meaningful exploration of their diversity, unique characteristics, and abundance. In this curriculum activity students use a standard plaque assay to enumerate bacteriophage particles from a natural sample and use the scientific method to address questions about host specificity and diversity. A raw primary sewage sample is enriched for bacteriophage using hosts in the family Enterobacteriaceae. Students hypothesize about host specificity and use quantitative data (serial dilution and plaque assay) to test their hypotheses. Combined class data also help them answer questions about phage diversity. The exercise was field tested with a class of 47 students using pre- and posttests. For all learning outcomes posttest scores were higher than pretest scores at or below p = 0.01. Average individualized learning gain (G) was also calculated for each learning outcome. Students’ use of scientific language in reference to bacteriophage and host interaction significantly improved (p = 0.002; G = 0.50). Improved means of expression helped students construct better hypotheses on phage host specificity (G = 0.31, p = 0.01) and to explain the plaque assay method (G = 0.33, p = 0.002). At the end of the exercise students also demonstrated improved knowledge and understanding of phage specificity as related to phage therapy in humans (p < 0.001; G = 51). PMID:23858357

  1. Structural analysis of proanthocyanidins isolated from fruit stone of Chinese hawthorn with potent antityrosinase and antioxidant activity.

    PubMed

    Chai, Wei-Ming; Chen, Chih-Min; Gao, Yu-Sen; Feng, Hui-Ling; Ding, Yu-Mei; Shi, Yan; Zhou, Han-Tao; Chen, Qing-Xi

    2014-01-01

    Proanthocyanidins were isolated from fruit stone of Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.). Their structures were analyzed and elucidated by methods of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS). The results demonstrated that these compounds are complicated mixtures of homo- and heteropolymers consisting of procyanidin/procyanidin gallate and prodelphinidin. They possessed structural heterogeneity in monomer units, polymer length, and interflavan linkage (A-type and B-type). Their antityrosinase and antioxidant activity were then investigated. The results revealed that they can inhibit tyrosinase activities, including the monophenolase activity and the diphenolase activity. In addition, proanthocyanidins possessed potent antioxidant activity. Our studies revealed that proanthocyanidins isolated from fruit stone of Chinese hawthorn may be applied in food, agriculture, pharmaceutical, and cosmetic industries. PMID:24313351

  2. Pyridazinone derivatives displaying highly potent and selective inhibitory activities against c-Met tyrosine kinase.

    PubMed

    Liu, Yang; Jin, Shiyu; Peng, Xia; Lu, Dong; Zeng, Limin; Sun, Yiming; Ai, Jing; Geng, Meiyu; Hu, Youhong

    2016-01-27

    Over activation of c-Met tyrosine kinase is known to promote tumorigenesis and metastasis, as well as to cause therapeutic resistance. Herein we describe the design, synthesis and biological activities of novel, ATP-competitive, c-Met tyrosine kinase inhibitors that are members of the 6-aryl-2-(3-(heteroarylamino)benzyl)pyridazinone family. A structure-activity relationship (SAR) study of these substances led to identification of pyridazinone 19 as a highly selective and potent c-Met tyrosine inhibitor, which displays favorable pharmacokinetic properties in mice and significant antitumor activity against a c-Met driven EBC-1 tumor xenograft. PMID:26698536

  3. Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives.

    PubMed

    Srivastava, Sanjay K; Jha, Amrita; Agarwal, Shiv K; Mukherjee, Rama; Burman, Anand C

    2007-11-01

    The disease of cancer has been ranked second after cardiovascular diseases and plant-derived molecules have played an important role for the treatment of cancer. Nine cytotoxic plant-derived molecules such as vinblastine, vincristine, navelbine, etoposide, teniposide, taxol, taxotere, topotecan and irinotecan have been approved as anticancer drugs. Recently, epothilones are being emerging as future potential anti-tumor agents. However, targeted cancer therapy has now been rapidly expanding and small organic molecules are being exploited for this purpose. Amongst target specific small organic molecules, quinazoline was found as one of the most successful chemical class in cancer chemotherapy as three drugs namely Gefitinib, Erlotinib and Canertinib belong to this series. Now, quinazoline related chemical classes such as quinolines and naphthyridines are being exploited in cancer chemotherapy and a number of molecules such as compounds EKB-569 (52), HKI-272 (78) and SNS-595 (127a) are in different phases of clinical trials. This review presents the synthesis of quinolines and naphthyridines derivatives, screened for anticancer activity since year 2000. The synthesis of most potent derivatives in each prototype has been delineated. A brief structure activity relationship for each prototype has also been discussed. It has been observed that aniline group at C-4, aminoacrylamide substituents at C-6, cyano group at C-3 and alkoxy groups at C-7 in the quinoline ring play an important role for optimal activity. While aminopyrrolidine functionality at C-7, 2'-thiazolyl at N-1 and carboxy group at C-3 in 1,8-naphthyridine ring are essential for eliciting the cytotoxicity. This review would help the medicinal chemist to design and synthesize molecules for targeted cancer chemotherapy. PMID:18045063

  4. Synthesis and neurite growth evaluation of new analogues of honokiol, a neolignan with potent neurotrophic activity.

    PubMed

    Praveen Kumar, Vemula; Gajendra Reddy, R; Vo, Duc Duy; Chakravarty, Sumana; Chandrasekhar, Srivari; Grée, René

    2012-02-01

    A versatile synthetic route is reported towards the preparation of new analogues for potent neurotrophic agent biaryl-type lignan honokiol. A focused 24-membered library of derivatives containing five different groups at 5'-position of honokiol has been prepared in fair to good overall yields. Compared to the natural product, or to analogues with a short alkyl chain in this position, these new derivatives have lost most of the neurotrophic activity. PMID:22209461

  5. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens.

    PubMed

    Zhanel, George G; Love, Riley; Adam, Heather; Golden, Alyssa; Zelenitsky, Sheryl; Schweizer, Frank; Gorityala, Bala; Lagacé-Wiens, Philippe R S; Rubinstein, Ethan; Walkty, Andrew; Gin, Alfred S; Gilmour, Matthew; Hoban, Daryl J; Lynch, Joseph P; Karlowsky, James A

    2015-02-01

    Tedizolid phosphate is a novel oxazolidinone prodrug (converted to the active form tedizolid by phosphatases in vivo) that has been developed and recently approved (June 2014) by the United States FDA for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) caused by susceptible Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Tedizolid is an oxazolidinone, but differs from other oxazolidinones by possessing a modified side chain at the C-5 position of the oxazolidinone nucleus which confers activity against certain linezolid-resistant pathogens and has an optimized C- and D-ring system that improves potency through additional binding site interactions. The mechanism of action of tedizolid is similar to other oxazolidinones and occurs through inhibition of bacterial protein synthesis by binding to 23S ribosomal RNA (rRNA) of the 50S subunit of the ribosome. As with other oxazolidinones, the spontaneous frequency of resistance development to tedizolid is low. Tedizolid is four- to eightfold more potent in vivo than linezolid against all species of staphylococci, enterococci, and streptococci, including drug-resistant phenotypes such as MRSA and vancomycin-resistant enterococci (VRE) and linezolid-resistant phenotypes. Importantly, tedizolid demonstrates activity against linezolid-resistant bacterial strains harboring the horizontally transmissible cfr gene, in the absence of certain ribosomal mutations conferring reduced oxazolidinone susceptibility. With its half-life of approximately 12 h, tedizolid is dosed once daily. It demonstrates linear pharmacokinetics, has a high oral bioavailability of approximately 90 %, and is primarily excreted by the liver as an inactive, non-circulating sulphate conjugate. Tedizolid does not require dosage adjustment in patients with any degree of renal dysfunction or hepatic dysfunction. Studies in animals have demonstrated that the pharmacodynamic parameter most closely

  6. Dimers of Melampomagnolide B Exhibit Potent Anticancer Activity against Hematological and Solid Tumor Cells.

    PubMed

    Janganati, Venumadhav; Ponder, Jessica; Jordan, Craig T; Borrelli, Michael J; Penthala, Narsimha Reddy; Crooks, Peter A

    2015-11-25

    Novel carbamate (7a-7h) and carbonate (7i, 7j, and 8) dimers of melampomagnolide B have been synthesized by reaction of the melampomagnolide-B-triazole carbamate synthon 6 with various terminal diamino- and dihydroxyalkanes. Dimeric carbamate products 7b, 7c, and 7f exhibited potent growth inhibition (GI50 = 0.16-0.99 μM) against the majority of cell lines in the NCI panel of 60 human hematological and solid tumor cell lines. Compound 7f and 8 exhibited anticancer activity that was 300-fold and 1 × 10(6)-fold more cytotoxic than DMAPT, respectively, at a concentration of 10 μM against rat 9L-SF gliosarcoma cells. Compounds 7a-7j and 8 were also screened against M9-ENL1 and acute myelogenous leukemia (AML) primary cell lines and exhibited 2- to 10-fold more potent antileukemic activity against M9-ENL1 cells (EC50 = 0.57-2.90 μM) when compared to parthenolide (EC50 = 6.0) and showed potent antileukemic activity against five primary AML cell lines (EC50 = 0.76-7.3 μM). PMID:26540463

  7. Pyridinium derivatives of histamine are potent activators of cytosolic carbonic anhydrase isoforms I, II and VII.

    PubMed

    Dave, Khyati; Scozzafava, Andrea; Vullo, Daniela; Supuran, Claudiu T; Ilies, Marc A

    2011-04-21

    A series of positively-charged derivatives has been prepared by reaction of histamine with substituted pyrylium salts. These pyridinium histamine derivatives were investigated as activators of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) and more precisely the human isoforms hCA I, II and VII. Activities from the subnanomolar to the micromolar range were detected for these compounds as activators of the three isoforms, confirming the validity of current and previous designs. The substitution pattern at the pyridinium ring was the main factor influencing activity, the three isoforms showing different structural requirements for good activity, related with the number of pyridinium substituting groups and their nature, among various alkyl, phenyl and para-substituted styryl moieties. We were successful in identifying nanomolar potent and selective activators for each isozyme and also activators with a relatively good activity against all isozymes tested--valuable lead compounds for physiology and pathology studies involving these isozymes. PMID:21369613

  8. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae

    PubMed Central

    Ayyad, Seif-Eldin N.; Abdel-Lateff, Ahmed; Basaif, Salim A.; Shier, Thomas

    2011-01-01

    Background: Higher plants are considered as a well-known source of the potent anticancer metabolites with diversity of chemical structures. For instance, taxol is an amazing diterpene alkaloid had been lunched since 1990. Objective: To isolate the major compounds from the fruit extract of Cucumis prophetarum, Cucurbitaceae, which are mainly responsible for the bioactivities as anticancer. Materials and Methods: Plant material was shady air dried, extracted with equal volume of chloroform/methanol, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques employing 1D (1H and 13C) and 2D (COSY, HMQC and HMBC) NMR (Nuclear Magnetic Resonance Spectrometry) and ESI-MS (Eelectrospray Ionization Mass Spectrometry) spectroscopy. The pure isolates were tested towards human cancer cell lines, mouse embryonic fibroblast (NIH3T3) and virally transformed form (KA3IT). Results: Two cucurbitacins derivatives, dihydocucurbitacin B (1) and cucurbitacin B (2), had been obtained. Compounds 1 and 2 showed (showed potent inhibitory activities toward NIH3T3 and KA31T with IC50 0.2, 0.15, 2.5 and 2.0 μg/ml, respectively. Conclusion: The naturally cucurbitacin derivatives (dihydocucurbitacin B and cucurbitacin B) showed potent activities towards NIH3T3 and KA31T, could be considered as a lead of discovering a new anticancer natural drug. PMID:22022168

  9. Quercetin, a potent suppressor of NF-κB and Smad activation in osteoblasts.

    PubMed

    Yamaguchi, Masayoshi; Weitzmann, M Neale

    2011-10-01

    Osteoclasts, the bone resorbing cells of the body, form when osteoclast precursors are exposed to the key osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL), a process requiring induction of NF-κB signaling. Quercetin is a ubiquitous plant-derived flavonoid with well documented anti-inflammatory properties, in part, a consequence of its capacity to downmodulate the NF-κB signal transduction pathway. Consistent with this mechanism of action quercetin is reported to suppress osteoclastogenesis in vitro and prevent bone loss in ovariectomized mice in vivo. By contrast, the effect of quercetin on osteoblasts, the cells responsible for bone formation, is contradictory with conflicting reports of inhibition as well as stimulation. Given our previous reports that NF-κB antagonists promote osteoblast differentiation and activity, we compared the effects of quercetin on osteoclast and osteoblast differentiation and on NF-κB signal transduction in vitro. As expected, quercetin potently suppressed osteoclastogenesis and NF-κB activation induced by RANKL in osteoclast precursors. However, the same doses of quercetin had no effect on osteoblast mineralization, and failed to significantly alleviate the inhibitory effect of NF-κB-induced by TNFα, even though quercetin potently suppressed NF-κB activation in these cells. This apparent contradiction was explained by the fact that addition to its anti-NF-κB activity, quercetin also potently antagonized both TGFβ and BMP-2-induced Smad activation in osteoblast precursors. Taken together our data suggest that multiple competing actions of quercetin mediate both stimulatory and inhibitory actions on osteoblasts with the final physiological effect likely a function of the net balance between these stimulatory and inhibitory effects. PMID:21769418

  10. Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo.

    PubMed

    Zhai, Lei; Sun, Nan; Han, Zhe; Jin, Hai-chao; Zhang, Bo

    Osteosarcoma (OS) remains one deadly disease for many affected patients. The search for novel and more efficient anti-OS agents is urgent. In the current study, we demonstrated that liposome-packed C6 ceramide exerted potent cytotoxic effect against established (U2OS and MG-63 lines) and primary human OS cells. Meanwhile, the liposomal C6 (ceramide) induced caspase-mediated apoptotic death in OS cells. Liposomal C6 was significantly more potent than conventional free C6 in inhibiting OS cells, yet it was safe to non-cancerous bone cells (primary murine osteoblasts or human MLO-Y4 osteocytic cells). At the signaling level, we showed that liposomal C6 potently inhibited Akt activation in OS cells. Further studies revealed that a low dose of liposomal C6 dramatically sensitized the in vitro anti-OS activity of two conventional chemodrugs: methotrexate (MTX) and doxorubicin. In vivo, intravenous injection of liposomal C6 inhibited Akt activation and suppressed U2OS xenograft growth in nude mice without causing apparent toxicities. Meanwhile, when given at a low-dose (5 mg/kg body weight), liposomal C6 dramatically sensitized MTX's anti-U2OS activity in vivo. Collectively, our data demonstrate that liposomal C6 exerts potent anti-tumor activity in preclinical OS models. PMID:26505795

  11. Horner-Wadsworth-Emmons approach to piperlongumine analogues with potent anti-cancer activity.

    PubMed

    Han, Li-Chen; Stanley, Paul A; Wood, Paul J; Sharma, Pallavi; Kuruppu, Anchala I; Bradshaw, Tracey D; Moses, John E

    2016-08-21

    Natural products with anti-cancer activity play a vital role in lead and target discovery. We report here the synthesis and biological evaluation of the plant-derived alkaloid, piperlongumine and analogues. Using a Horner-Wadsworth-Emmons coupling approach, a selection of piperlongumine-like compounds were prepared in good overall yield from a novel phosphonoacetamide reagent. A number of the compounds displayed potent anti-cancer activity against colorectal (HCT 116) and ovarian (IGROV-1) carcinoma cell lines, via a mechanism of action which may involve ROS generation. Contrary to previous reports, no selective action in cancer cell (MRC-5) was observed for piperlongumine analogues. PMID:27443386

  12. Isoquinoline derivatives as potent, selective, and orally active CRTH2 antagonists.

    PubMed

    Nishikawa-Shimono, Rie; Sekiguchi, Yoshinori; Kawamura, Madoka; Wakasugi, Daisuke; Kawanishi, Masahumi; Watanabe, Kazuhito; Asakura, Yumiko; Takaoka, Akiko; Takayama, Tetsuo

    2014-01-01

    Synthesis and structure-activity relationship of a novel series of isoquinoline CRTH2 antagonists bearing a methylene linker between the isoquinoline and benzamide moieties were described. Optimization focusing on the substituents of the benzamide portion in the right hand part of the molecule led to the identification of TASP0412098 (9l), which is a potent, selective CRTH2 antagonist (binding affinity: IC50=2.1 nM, functional activity: IC50=12 nM). Compound 9l, which was orally bioavailable in mice and guinea pigs, showed in vivo efficacy after oral administration in a bronchial asthma model of guinea pigs. PMID:24881658

  13. Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2.

    PubMed

    Verma, Sharad K; Tian, Xinrong; LaFrance, Louis V; Duquenne, Céline; Suarez, Dominic P; Newlander, Kenneth A; Romeril, Stuart P; Burgess, Joelle L; Grant, Seth W; Brackley, James A; Graves, Alan P; Scherzer, Daryl A; Shu, Art; Thompson, Christine; Ott, Heidi M; Aller, Glenn S Van; Machutta, Carl A; Diaz, Elsie; Jiang, Yong; Johnson, Neil W; Knight, Steven D; Kruger, Ryan G; McCabe, Michael T; Dhanak, Dashyant; Tummino, Peter J; Creasy, Caretha L; Miller, William H

    2012-12-13

    The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2. PMID:24900432

  14. Highly potent HCV NS4B inhibitors with activity against multiple genotypes.

    PubMed

    Phillips, Barton; Cai, Ruby; Delaney, William; Du, Zhimin; Ji, Mingzhe; Jin, Haolun; Lee, Johnny; Li, Jiayao; Niedziela-Majka, Anita; Mish, Michael; Pyun, Hyung-Jung; Saugier, Joe; Tirunagari, Neeraj; Wang, Jianhong; Yang, Huiling; Wu, Qiaoyin; Sheng, Chris; Zonte, Catalin

    2014-03-13

    The exploration of novel inhibitors of the HCV NS4B protein that are based on a 2-oxadiazoloquinoline scaffold is described. Optimization to incorporate activity across genotypes led to a potent new series with broad activity, of which inhibitor 1 displayed the following EC50 values: 1a, 0.08 nM; 1b, 0.10 nM; 2a, 3 nM; 2b, 0.6 nM, 3a, 3.7 nM; 4a, 0.9 nM; 6a, 3.1 nM. PMID:24512292

  15. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells.

    PubMed

    Zhao, Yinghua; Chu, Xiao; Chen, Jintong; Wang, Ying; Gao, Sujun; Jiang, Yuxue; Zhu, Xiaoqing; Tan, Guangyun; Zhao, Wenjie; Yi, Huanfa; Xu, Honglin; Ma, Xingzhe; Lu, Yong; Yi, Qing; Wang, Siqing

    2016-01-01

    Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4(+) T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications. PMID:27492902

  16. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells

    PubMed Central

    Zhao, Yinghua; Chu, Xiao; Chen, Jintong; Wang, Ying; Gao, Sujun; Jiang, Yuxue; Zhu, Xiaoqing; Tan, Guangyun; Zhao, Wenjie; Yi, Huanfa; Xu, Honglin; Ma, Xingzhe; Lu, Yong; Yi, Qing; Wang, Siqing

    2016-01-01

    Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4+ T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications. PMID:27492902

  17. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels.

    PubMed

    Knaus, H G; McManus, O B; Lee, S H; Schmalhofer, W A; Garcia-Calvo, M; Helms, L M; Sanchez, M; Giangiacomo, K; Reuben, J P; Smith, A B

    1994-05-17

    Tremorgenic indole alkaloids produce neurological disorders (e.g., staggers syndromes) in ruminants. The mode of action of these fungal mycotoxins is not understood but may be related to their known effects on neurotransmitter release. To determine whether these effects could be due to inhibition of K+ channels, the interaction of various indole diterpenes with high-conductance Ca(2+)-activated K+ (maxi-K) channels was examined. Paspalitrem A, paspalitrem C, aflatrem, penitrem A, and paspalinine inhibit binding of [125I]charybdotoxin (ChTX) to maxi-K channels in bovine aortic smooth muscle sarcolemmal membranes. In contrast, three structurally related compounds, paxilline, verruculogen, and paspalicine, enhanced toxin binding. As predicted from the binding studies, covalent incorporation of [125I]ChTX into the 31-kDa subunit of the maxi-K channel was blocked by compounds that inhibit [125I]ChTX binding and enhanced by compounds that stimulate [125I]ChTX binding. Modulation of [125I]ChTX binding was due to allosteric mechanisms. Despite their different effects on binding of [125I]ChTX to maxi-K channels, all compounds potently inhibited maxi-K channels in electrophysiological experiments. Other types of voltage-dependent or Ca(2+)-activated K+ channels examined were not affected. Chemical modifications of paxilline indicate a defined structure-activity relationship for channel inhibition. Paspalicine, a deshydroxy analog of paspalinine lacking tremorgenic activity, also potently blocked maxi-K channels. Taken together, these data suggest that indole diterpenes are the most potent nonpeptidyl inhibitors of maxi-K channels identified to date. Some of their pharmacological properties could be explained by inhibition of maxi-K channels, although tremorgenicity may be unrelated to channel block. PMID:7514038

  18. Demonstration of Zoospore Activities by Fungi.

    ERIC Educational Resources Information Center

    McCarter, States M.

    1978-01-01

    The demonstrations and experiments described in this article are appropriate for junior high school and older students, including beginning students in college biology or botany. Included are culture and observation of zoospores, zoospore attraction to plant roots, and other topics. (BB)

  19. Simple Activity Demonstrates Wind Energy Principles

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  20. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  1. A Potent Systemically Active N-Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation.

    PubMed

    Ribeiro, Alison; Pontis, Silvia; Mengatto, Luisa; Armirotti, Andrea; Chiurchiù, Valerio; Capurro, Valeria; Fiasella, Annalisa; Nuzzi, Andrea; Romeo, Elisa; Moreno-Sanz, Guillermo; Maccarrone, Mauro; Reggiani, Angelo; Tarzia, Giorgio; Mor, Marco; Bertozzi, Fabio; Bandiera, Tiziano; Piomelli, Daniele

    2015-08-21

    Fatty acid ethanolamides such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are lipid-derived mediators that potently inhibit pain and inflammation by ligating type-α peroxisome proliferator-activated receptors (PPAR-α). These bioactive substances are preferentially degraded by the cysteine hydrolase, N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages. Here, we describe a new class of β-lactam derivatives that are potent, selective, and systemically active inhibitors of intracellular NAAA activity. The prototype of this class deactivates NAAA by covalently binding the enzyme's catalytic cysteine and exerts profound anti-inflammatory effects in both mouse models and human macrophages. This agent may be used to probe the functions of NAAA in health and disease and as a starting point to discover better anti-inflammatory drugs. PMID:25874594

  2. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  3. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    SciTech Connect

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  4. Selected demonstration and educational products/activities

    SciTech Connect

    Williams, R.J.; Mann, H.C.

    1992-07-01

    The information in this paper was assembled for several informal presentations to a variety of visitor groups during the summer of 1992. A number of staff members at TVA`s National Fertilizer and Environmental Research Center (NFERC) found it useful as a quick overview for their use and for their sharing with external colleagues and customers. The paper is not meant to be an exhaustive list or explanation of all products and services available from NFERC. However, the authors believe it will give a flavor and tenor of some of the ongoing activities of the Center, especially those activities relating to the retail fertilizer dealer. Programs over the years have focused on key aspects of nutrient efficiency and management. TVA is uniquely positioned to assist the fertilizer industry and US agriculture in protecting the environment from potential adverse environmental impacts of agriculture, especially for fertilizer and the attendant agrichemicals. TVA has the technical base and an ongoing working relationship with the fertilizer industry in technology development and introduction. Dealer education is very important in TVA programs in two aspects: (1) education for the dealer in meeting new environmental stewardship challenges from an operational perspective; and (2) education for the dealer in meeting the site-specific information needs of the farmer.

  5. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins

    PubMed Central

    Rebensburg, Stephanie; Helfer, Markus; Schneider, Martha; Koppensteiner, Herwig; Eberle, Josef; Schindler, Michael; Gürtler, Lutz; Brack-Werner, Ruth

    2016-01-01

    Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles. PMID:26833261

  6. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins.

    PubMed

    Rebensburg, Stephanie; Helfer, Markus; Schneider, Martha; Koppensteiner, Herwig; Eberle, Josef; Schindler, Michael; Gürtler, Lutz; Brack-Werner, Ruth

    2016-01-01

    Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles. PMID:26833261

  7. Dimers of melampomagnolide B exhibit potent anticancer activity against hematological and solid tumor cells

    PubMed Central

    Janganati, Venumadhav; Ponder, Jessica; Jordan, Craig T.; Borrelli, Michael J.; Penthala, Narsimha Reddy; Crooks, Peter A.

    2016-01-01

    A series of novel carbamate and carbonate dimers of melampomagnolide B (MMB) have been synthesized by reaction of the MMB-triazole carbamate synthon 6 with various terminal diamino and dihydroxy alkanes. The resulting dimeric products 7b, 7c and 7f were selected and evaluated for anticancer activity against a panel of 60 human hematological and solid tumor cell lines. The most active compounds, 7b, 7c and 7f, exhibited GI50 values in the range 250-780 nM against the majority of leukemia cell lines in the tumor cell panel. Specifically, compounds 7b and 7f exhibited potent growth inhibition against non-small cell lung cancer cell lines NCI-H522 (GI50 = 160 nM) and HOP-92 (GI50 = 170 nM), respectively. Also, compound 7f also potently inhibited the growth of melanoma cell lines LOX IMVI, MALME-3M, and UACC-62 (GI50 values = 170, 190 and 190 nM, respectively); breast cancer cell line MDA-MB-468 (GI50 = 190 nM); colon cancer cell line HCT-116 (GI50 = 190 nM); and renal cancer cell line RXF 393 (GI50 = 160 nM). Compound 7f and the simple dicarbonate dimer of MMB (8) showed anticancer activity 300-fold and 1 × 106-fold, respectively, more cytotoxic than 7f and DMAPT at a concentration of 10 μM against rat 9L-SF gliosarcoma cells. The dimeric compounds 7a-7j & 8 were also screened for antileukemic activity against M9-ENL1 acute myelogenous leukemia (AML) cells and primary AML cell specimens. These compounds exhibited two to twelve-fold more potent antileukemic activity (EC50 = 0.5-2.9 μM) against the M9-ENL1 cell line when compared to parthenolide (EC50 = 6.0 μM). The dimeric analogues were also active against the primary AML cell specimens in the nanomolar to lower micromolar range and exhibited two to ten-fold more potent antileukemic activity (EC50 = 0.86-4.2 μM) when compared to parthenolide (EC50 = 2.5-16 μM). Thus, dimer 7f exhibited promising anticancer activity against a variety of both hematological and solid human tumor cell lines, while dimer 8 was

  8. Compound 13, an α1-selective small molecule activator of AMPK, potently inhibits melanoma cell proliferation.

    PubMed

    Hu, Xueqing; Jiang, Fangzhen; Bao, Qi; Qian, Huan; Fang, Quan; Shao, Zheren

    2016-01-01

    It is vital to develop new therapeutic agents for the treatment of melanoma. In the current study, we studied the potential effect of Compound 13 (C13), a novel α1-selective AMP-activated protein kinase (AMPK) activator, in melanoma cells. We showed that C13 exerted mainly cytostatic, but not cytotoxic activities in melanoma cells. C13 potently inhibited proliferation in melanoma cell lines (A375, OCM-1 and B16), but not in B10BR melanocytes. Meanwhile, the AMPK activator inhibited melanoma cell cycle progression by inducing G1-S arrest. Significantly, we failed to detect significant melanoma cell death or apoptosis after the C13 treatment. For the mechanism study, we showed that C13 activated AMPK and inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling in melanoma cells through interaction with the α1 subunit. Short hairpin RNA (shRNA)-mediated knockdown of AMPKα1 not only blocked C13-mediated AMPK activation but also abolished its antiproliferative activity against melanoma cells. Together, these results show that C13 inhibits melanoma cell proliferation through activating AMPK signaling. Our data suggest that C13 along with other small molecular AMPK activators may be beneficial for patients with melanoma. PMID:26271666

  9. Hexachlorophene Is a Potent KCNQ1/KCNE1 Potassium Channel Activator Which Rescues LQTs Mutants

    PubMed Central

    Zheng, Yueming; Zhu, Xuejing; Zhou, Pingzheng; Lan, Xi; Xu, Haiyan; Li, Min; Gao, Zhaobing

    2012-01-01

    The voltage-gated KCNQ1 potassium channel is expressed in cardiac tissues, and coassembly of KCNQ1 with an auxiliary KCNE1 subunit mediates a slowly activating current that accelerates the repolarization of action potential in cardiomyocytes. Mutations of KCNQ1 genes that result in reduction or loss of channel activity cause prolongation of repolarization during action potential, thereby causing long QT syndrome (LQTs). Small molecule activators of KCNQ1/KCNE1 are useful both for understanding the mechanism of the complex activity and for developing therapeutics for LQTs. In this study we report that hexachlorophene (HCP), the active component of the topical anti-infective prescription drug pHisoHex, is a KCNQ1/KCNE1 activator. HCP potently increases the current amplitude of KCNQ1/KCNE1 expressed by stabilizing the channel in an open state with an EC50 of 4.61±1.29 μM. Further studies in cardiomyocytes showed that HCP significantly shortens the action potential duration at 1 μM. In addition, HCP is capable of rescuing the loss of function of the LQTs mutants caused by either impaired activation gating or phosphatidylinositol-4,5-bisphosphate (PIP2) binding affinity. Our results indicate HCP is a novel KCNQ1/KCNE1 activator and may be a useful tool compound for the development of LQTs therapeutics. PMID:23251633

  10. Discovery of quinoline small molecules with potent dispersal activity against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a scaffold hopping strategy.

    PubMed

    Abouelhassan, Yasmeen; Garrison, Aaron T; Burch, Gena M; Wong, Wilson; Norwood, Verrill M; Huigens, Robert W

    2014-11-01

    Staphylococcus aureus and Staphylococcus epidermidis are recognized as the most frequent cause of biofilm-associated nosocomial and indwelling medical device infections. Biofilm-associated infections are known to be highly resistant to our current arsenal of clinically used antibiotics and antibacterial agents. To exacerbate this problem, no therapeutic option exists that targets biofilm-dependent machinery critical to Staphylococcal biofilm formation and maintenance. Here, we describe the discovery of a series of quinoline small molecules that demonstrate potent biofilm dispersal activity against methicillin-resistant S. aureus and S. epidermidis using a scaffold hopping strategy. This interesting class of quinolines also has select synthetic analogues that demonstrate potent antibacterial activity and biofilm inhibition against S. aureus and S. epidermidis. PMID:25264073

  11. Identification of Tetraazacyclic Compounds as Novel Potent Inhibitors Antagonizing RORγt Activity and Suppressing Th17 Cell Differentiation

    PubMed Central

    Ding, Qingfeng; Zhao, Mei; Yu, Bolan; Bai, Chuan; Huang, Zhaofeng

    2015-01-01

    CD4+ T-helper cells that produce interleukin-17 (Th17 cells) are characterized as pathological T-helper cells in autoimmune diseases. Differentiation of human and mouse Th17 cells requires a key transcription regulator, retinoic acid receptor-related orphan receptor γt (RORγt), which is a potential therapeutic target for autoimmune diseases. To develop a therapeutic agent for Th17-mediated autoimmune diseases, we have established a high-throughput screening (HTS) assay for candidate screening, in which the luciferase activity in RORγt-LBD positive and negative Jurkat cells were analyzed to evaluate induction of RORγt activity by compounds. This technique was applied to screen a commercially-available drug-like chemical compound library (Enamine) which contains 20155 compounds. The screening identified 17 compounds that can inhibit RORγt function in the HTS screen system. Of these, three tetraazacyclic compounds can potently inhibit RORγt activity, and suppress Th17 differentiation and IL-17 production. These three candidate compounds could significantly attenuate the expression of the Il17a by 65%- 90%, and inhibit IL-17A secretion by 47%, 63%, and 74%, respectively. These compounds also exhibited a potent anti-RORγt activity, with EC50 values of 0.25 μM, 0.67 μM and 2.6 μM, respectively. Our data demonstrated the feasibility of targeting the RORγt to inhibit Th17 cell differentiation and function with these tetraazacyclic compounds, and the potential to improve the structure of these compounds for autoimmune diseases therapeutics. PMID:26368822

  12. A Combined Pharmacodynamic Quantitative and Qualitative Model Reveals the Potent Activity of Daptomycin and Delafloxacin against Staphylococcus aureus Biofilms

    PubMed Central

    Bauer, Julia; Siala, Wafi; Tulkens, Paul M.

    2013-01-01

    Biofilms are associated with persistence of Staphylococcus aureus infections and therapeutic failures. Our aim was to set up a pharmacodynamic model comparing antibiotic activities against biofilms and examining in parallel their effects on viability and biofilm mass. Biofilms of S. aureus ATCC 25923 (methicillin-sensitive S. aureus [MSSA]) or ATCC 33591 (methicillin-resistant S. aureus [MRSA]) were obtained by culture in 96-well plates for 6 h/24 h. Antibiotic activities were assessed after 24/48 h of exposure to concentrations ranging from 0.5 to 512 times the MIC. Biofilm mass and bacterial viability were quantified using crystal violet and the redox indicator resazurin. Biofilms stained with Live/Dead probes were observed by using confocal microscopy. Concentration-effect curves fitted sigmoidal regressions, with a 50% reduction toward both matrix and viability obtained at sub-MIC or low multiples of MICs against young biofilms for all antibiotics tested. Against mature biofilms, maximal efficacies and potencies were reduced, with none of the antibiotics being able to completely destroy the matrix. Delafloxacin and daptomycin were the most potent, reducing viability by more than 50% at clinically achievable concentrations against both strains, as well as reducing biofilm depth, as observed in confocal microscopy. Rifampin, tigecycline, and moxifloxacin were effective against mature MRSA biofilms, while oxacillin demonstrated activity against MSSA. Fusidic acid, vancomycin, and linezolid were less potent overall. Antibiotic activity depends on biofilm maturity and bacterial strain. The pharmacodynamic model developed allows ranking of antibiotics with respect to efficacy and potency at clinically achievable concentrations and highlights the potential utility of daptomycin and delafloxacin for the treatment of biofilm-related infections. PMID:23571532

  13. Development of a potent inhibitor of 2-arachidonoylglycerol hydrolysis with antinociceptive activity in vivo.

    PubMed

    Bisogno, Tiziana; Ortar, Giorgio; Petrosino, Stefania; Morera, Enrico; Palazzo, Enza; Nalli, Marianna; Maione, Sabatino; Di Marzo, Vincenzo

    2009-01-01

    Although inhibitors of the enzymatic hydrolysis of the endocannabinoid 2-arachidonoylglycerol are available, they are either rather weak in vitro (IC(50)>30 microM) or their selectivity towards other proteins of the endocannabinoid system has not been tested. Here we describe the synthesis and activity in vitro and in vivo of a tetrahydrolipstatin analogue, OMDM169, as a potent inhibitor of 2-AG hydrolysis, capable of enhancing 2-AG levels and of exerting analgesic activity via indirect activation of cannabinoid receptors. OMDM169 exhibited 0.13 microMactivities in COS-7 cells and rat cerebellum, and inhibited (IC(50)=0.89 microM) the human recombinant MAGL, whilst being inactive (K(i)>10 microM) at human CB(1) and CB(2) receptors. However, OMDM169 shared with tetrahydrolipstatin the capability of inhibiting the human pancreatic lipase (IC(50)=0.6 microM). OMDM169 inhibited fatty acid amide hydrolase and diacylglycerol lipase only at higher concentrations (IC(50)=3.0 and 2.8 microM, respectively), and, accordingly, it increased by approximately 1.6-fold the levels of 2-AG, but not anandamide, in intact ionomycin-stimulated N18TG2 neuroblastoma cells. Acute intraperitoneal (i.p.) administration of OMDM169 to mice inhibited the second phase of the formalin-induced nocifensive response with an IC(50) of approximately 2.5 mg/kg, and concomitantly elevated 2-AG, but not anandamide, levels in the ipsilateral paw of formalin-treated mice. The antinociceptive effect of OMDM169 was antagonized by antagonists of CB(1) and CB(2) receptors, AM251 and AM630, respectively (1 mg/kg, i.p.). OMDM69 might represent a template for the development of selective and even more potent inhibitors of 2-AG hydrolysis. PMID:19027877

  14. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities.

    PubMed

    Mabou, Florence Déclaire; Tamokou, Jean-de-Dieu; Ngnokam, David; Voutquenne-Nazabadioko, Laurence; Kuiate, Jules-Roger; Bag, Prasanta Kumar

    2016-01-01

    Diarrhea continues to be one of the most common causes of morbidity and mortality among infants and children in developing countries. The aim of the present study was to evaluate the antibacterial and antioxidant activities of extracts and compounds from Ludwigia leptocarpa, a plant traditionally used for its vermifugal, anti-dysenteric, and antimicrobial properties. A methanol extract was prepared by maceration of the dried plant and this was successively extracted with ethyl acetate to obtain an EtOAc extract and with n-butanol to obtain an n-BuOH extract. Column chromatography of the EtOAc and n-BuOH extracts was followed by purification of different fractions, leading to the isolation of 10 known compounds. Structures of isolated compounds were assigned on the basis of spectral analysis and by comparison to structures of compounds described in the literature. Antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and gallic acid equivalent antioxidant capacity (GAEAC) assays. Antibacterial activity was assessed with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) with respect to strains of a Gram-positive bacterium, Staphylococcus aureus (a major cause of community and hospital-associated infection), and Gram-negative multi-drug-resistant bacteria, Vibrio cholerae (a cause of cholera) and Shigella flexneri (a cause of shigellosis). All of the extracts showed different degrees of antioxidant and antibacterial activities. 2β-hydroxyoleanolic acid, (2R,3S,2''S)-3''',4',4''',5,5'',7,7''-heptahydroxy-3,8"-biflavanone, and luteolin-8-C-glucoside displayed the most potent antibacterial and antioxidant properties, and these properties were in some cases equal to or more potent than those of reference drugs. Overall, the present results show that L. leptocarpa has the potential to be a natural source of anti-diarrheal and antioxidant products, so further investigation is warranted. PMID:27431270

  15. Targeting FGFR2 with alofanib (RPT835) shows potent activity in tumour models.

    PubMed

    Tsimafeyeu, Ilya; Ludes-Meyers, John; Stepanova, Evgenia; Daeyaert, Frits; Kochenkov, Dmitry; Joose, Jean-Baptiste; Solomko, Eliso; Van Akene, Koen; Peretolchina, Nina; Yin, Wei; Ryabaya, Oxana; Byakhov, Mikhail; Tjulandin, Sergei

    2016-07-01

    Alofanib (RPT835) is a novel selective allosteric inhibitor of fibroblast growth factor receptor 2 (FGFR2). We showed previously that alofanib could bind to the extracellular domain of FGFR2 and has an inhibitory effect on FGF2-induced phoshphorylation of FRS2α. In the present study, we further showed that alofanib inhibited phosphorylation of FRS2α with the half maximal inhibitory concentration (IC50) values of 7 and 9 nmol/l in cancer cells expressing different FGFR2 isoforms. In a panel of four cell lines representing several tumour types (triple-negative breast cancer, melanoma, and ovarian cancer), alofanib inhibited FGF-mediated proliferation with 50% growth inhibition (GI50) values of 16-370 nmol/l. Alofanib dose dependently inhibited the proliferation and migration of human and mouse endothelial cells (GI50 11-58 nmol/l) compared with brivanib and bevacizumab. Treatment with alofanib ablated experimental FGF-induced angiogenesis in vivo. In a FGFR-driven human tumour xenograft model, oral administration of alofanib was well tolerated and resulted in potent antitumour activity. Importantly, alofanib was effective in FGFR2-expressing models. These results show that alofanib is a potent FGFR2 inhibitor and provide strong rationale for its evaluation in patients with FGFR2-driven cancers. PMID:27136102

  16. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    SciTech Connect

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.

    2011-01-21

    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  17. A Potent Gelatinase Inhibitor with Anti-Tumor-Invasive Activity and its Metabolic Disposition

    PubMed Central

    Lee, Mijoon; Celenza, Giuseppe; Boggess, Bill; Blase, Jennifer; Shi, Qicun; Toth, Marta; Bernardo, M. Margarida; Wolter, William R.; Suckow, Mark A.; Hesek, Dusan; Noll, Bruce C.; Fridman, Rafael; Mobashery, Shahriar; Chang, Mayland

    2009-01-01

    Metastatic tumors lead to more than 90% fatality. Despite the importance of invasiveness of tumors to poor disease outcome, no anti-invasive compounds have been commercialized. We describe herein the synthesis and evaluation of 4-(4-(thiiranylmethylsulfonyl)phenoxy)-phenyl methane-sulfonate (compound 2) as a potent and selective inhibitor of gelatinases (matrix metalloproteinases-2 and -9), two enzymes implicated in invasiveness of tumors. It was demonstrated that compound 2 significantly attenuated the invasiveness of human fibrosarcoma cells (HT1080). The metabolism of compound 2 involved hydroxylation at the a-methylene, which generates sulfinic acid, thiirane ring-opening, followed by methylation and oxidation, and cysteine conjugation of both the thiirane and phenyl rings. PMID:19207421

  18. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro. PMID:15155547

  19. Novel Chalcone Derivatives as Potent Nrf2 Activators in Mice and Human Lung Epithelial Cells

    PubMed Central

    Kumar, Vineet; Kumar, Sarvesh; Hassan, Mohammad; Wu, Hailong; Thimmulappa, Rajesh K.; Kumar, Amit; Sharma, Sunil K.; Parmar, Virinder S.; Biswal, Shyam; Malhotra, Sanjay V.

    2011-01-01

    Nrf2-mediated activation of antioxidant response element is a central part of molecular mechanisms governing the protective function of phase II detoxification and antioxidant enzymes against carcinogenesis, oxidative stress and inflammation. Nrf2 is sequestered in the cytoplasm by its repressor, Keap1. We have designed and synthesized novel chalcone derivatives as Nrf2 activators. The potency of these compounds was measured by the expression of Nrf2 dependent antioxidant genes, GCLM, NQO1 and HO1, in human lung epithelial cells; while the cytotoxicity was analyzed using MTT assay. In vivo potency of identified lead compounds to activate Nrf2 was evaluated using mouse model. Our studies showed 2-trifluoromethyl-2’-methoxychalone (2b) to be a potent activator of Nrf2, both, in vitro and in mice. Additional experiments showed that the activation of Nrf2 by this compound is independent of reactive oxygen species or redox changes. We have discussed a quantitative structure-activity relationship and proposed a possible mechanism of Nrf2 activation. PMID:21539383

  20. Potent SIRT1 enzyme-stimulating and anti-glycation activities of polymethoxyflavonoids from Kaempferia parviflora.

    PubMed

    Nakata, Asami; Koike, Yuka; Matsui, Hirofumi; Shimadad, Tsutomu; Aburada, Masaki; Yang, Jinwei

    2014-09-01

    The SIRT1 enzyme-stimulating and anti-glycation activities of Kaempferia parviflora extract and its main polymethoxyflavonoids were evaluated in vitro. K. parviflora extract elevated SIRT1 catalytic activity by eight- and 17-fold at 20 μg/mL and 100 μg/mL, respectively, compared with vehicle only. Two major polymethoxyflavonoids, 3,5,7,3',4'-pentamethoxyflavone (4) and 5,7,4'-trimethoxyflavone (5), were isolated from this extract and are four- and fivefold more potent than resveratrol, hitherto the strongest known natural SIRT1 activator. In addition, the anti-glycation activity of K. parviflora extract was observed to be seven times more effective than aminoguanidine, a clinical anti-diabetes drug. 3,5,7,3',4'-Pentamethoxyflavone (4) and 5,7,4'-trimethoxyflavone (5) showed the strongest anti-glycation activity among the tested polymethoxyflavonoids. Further comparison of the activity of these structurally related polymethoxyflavonoids revealed a possible structure-activity relationship, in particular, for the contribution of methoxy moieties. PMID:25918795

  1. Potent antagonistic activity of Egyptian Lactobacillus plantarum against multiresistant and virulent food-associated pathogens

    PubMed Central

    Al-Madboly, Lamiaa A.; Abdullah, Abeer K.

    2015-01-01

    Recent years have shown a growing interest to replace the administration of antibiotics with the application of probiotics. The aim of our investigation was to screen for promising strains with broad antimicrobial activity and also more resistant to the challenges met in the gastrointestinal tract. In our study, only 32 out of 50 (64%) probiotic isolates showed antagonistic activity against certain major extensively and pandrug-resistant Gram-positive and -negative food-borne pathogens. Fifteen L. plantarum isolates had a broad antibacterial spectrum. Among these isolates, only five presented potent antibacterial activity relative to previous studies. The recorded inhibition zone diameter ranged from 25 to 44 mm. Pronounced cell-free supernatant activities (6400–25,600 AU/ml) were commonly detected at the end of the logarithmic phase at 37°C. A marked increase in the range of activity (12,800–51,200 AU/ml) was recorded after the addition of 0.9% Na Cl to the media. Moreover, subjecting these isolates to different stressors, including high temperature, low pH, and different concentrations of bile and Na Cl, revealed different responses, and only two out of the five L. plantarum isolates showed marked resistance to all of the stress factors. Accordingly, this study highlights the intense and broad antagonistic activity induced by L. plantarum against various food associated pathogens, and their ability to resist different stressors suggests that they can be used in the food and pharmaceutical industry. PMID:26029169

  2. Trametinib with and without pazopanib has potent preclinical activity in thyroid cancer.

    PubMed

    Ball, Douglas W; Jin, Ning; Xue, Ping; Bhan, Sheetal; Ahmed, Shabina R; Rosen, D Marc; Schayowitz, Adam; Clark, Douglas P; Nelkin, Barry D

    2015-11-01

    Multikinase inhibitors (MKIs) targeting VEGF receptors and other receptor tyrosine kinases have shown considerable activity in clinical trials of thyroid cancer. Thyroid cancer frequently exhibits activation of the RAS/RAF/MEK/ERK pathway. In other types of cancer, paradoxical ERK activation has emerged as a potential resistance mechanism to RAF-inhibiting drugs including MKIs such as sorafenib and pazopanib. We therefore queried whether the MEK inhibitor trametinib, could augment the activity of pazopanib in thyroid cancer cell lines. Trametinib potently inhibited growth in vitro (GI50 1.1-4.8 nM), whereas pazopanib had more limited in vitro activity, as anticipated (GI50 1.4-7.1 µM). We observed progressive upregulation of ERK activity with pazopanib treatment, an effect abrogated by trametinib. For xenografts (bearing either KRASG12R or BRAFV600E mutations), the combination of trametinib and pazopanib led to sustained shrinkage in tumor volume by 50% or more, compared to pre-treatment baseline. Trametinib also was highly effective as a single agent, compared to pazopanib alone. These preclinical findings support the evaluation of trametinib, alone or in combination with pazopanib or other kinase inhibitors, in thyroid cancer clinical trials. We highlight the importance of pharmacodynamic assessment of the ERK pathway for patients enrolled in trials involving MKIs. PMID:26324075

  3. Trametinib with and without pazopanib has potent preclinical activity in thyroid cancer

    PubMed Central

    BALL, DOUGLAS W.; JIN, NING; XUE, PING; BHAN, SHEETAL; AHMED, SHABINA R.; ROSEN, D. MARC; SCHAYOWITZ, ADAM; CLARK, DOUGLAS P.; NELKIN, BARRY D.

    2015-01-01

    Multikinase inhibitors (MKIs) targeting VEGF receptors and other receptor tyrosine kinases have shown considerable activity in clinical trials of thyroid cancer. Thyroid cancer frequently exhibits activation of the RAS/RAF/MEK/ERK pathway. In other types of cancer, paradoxical ERK activation has emerged as a potential resistance mechanism to RAF-inhibiting drugs including MKIs such as sorafenib and pazopanib. We therefore queried whether the MEK inhibitor trametinib, could augment the activity of pazopanib in thyroid cancer cell lines. Trametinib potently inhibited growth in vitro (GI50 1.1–4.8 nM), whereas pazopanib had more limited in vitro activity, as anticipated (GI50 1.4–7.1 µM). We observed progressive upregulation of ERK activity with pazopanib treatment, an effect abrogated by trametinib. For xenografts (bearing either KRASG12R or BRAFV600E mutations), the combination of trametinib and pazopanib led to sustained shrinkage in tumor volume by 50% or more, compared to pre-treatment baseline. Trametinib also was highly effective as a single agent, compared to pazopanib alone. These preclinical findings support the evaluation of trametinib, alone or in combination with pazopanib or other kinase inhibitors, in thyroid cancer clinical trials. We highlight the importance of pharmacodynamic assessment of the ERK pathway for patients enrolled in trials involving MKIs. PMID:26324075

  4. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo.

    PubMed

    Mitsiades, Constantine S; Ocio, Enrique M; Pandiella, Atanasio; Maiso, Patricia; Gajate, Consuelo; Garayoa, Mercedes; Vilanova, David; Montero, Juan Carlos; Mitsiades, Nicholas; McMullan, Ciaran J; Munshi, Nikhil C; Hideshima, Teru; Chauhan, Dharminder; Aviles, Pablo; Otero, Gabriel; Faircloth, Glynn; Mateos, M Victoria; Richardson, Paul G; Mollinedo, Faustino; San-Miguel, Jesus F; Anderson, Kenneth C

    2008-07-01

    Despite recent progress in its treatment, multiple myeloma (MM) remains incurable, thus necessitating identification of novel anti-MM agents. We report that the marine-derived cyclodepsipeptide Aplidin exhibits, at clinically achievable concentrations, potent in vitro activity against primary MM tumor cells and a broad spectrum of human MM cell lines, including cells resistant to conventional (e.g., dexamethasone, alkylating agents, and anthracyclines) or novel (e.g., thalidomide and bortezomib) anti-MM agents. Aplidin is active against MM cells in the presence of proliferative/antiapoptotic cytokines or bone marrow stromal cells and has additive or synergistic effects with some of the established anti-MM agents. Mechanistically, a short in vitro exposure to Aplidin induces MM cell death, which involves activation of p38 and c-jun NH(2)-terminal kinase signaling, Fas/CD95 translocation to lipid rafts, and caspase activation. The anti-MM effect of Aplidin is associated with suppression of a constellation of proliferative/antiapoptotic genes (e.g., MYC, MYBL2, BUB1, MCM2, MCM4, MCM5, and survivin) and up-regulation of several potential regulators of apoptosis (including c-JUN, TRAIL, CASP9, and Smac). Aplidin exhibited in vivo anti-MM activity in a mouse xenograft model. The profile of the anti-MM activity of Aplidin in our preclinical models provided the framework for its clinical testing in MM, which has already provided favorable preliminary results. PMID:18593922

  5. Isolation and Characterization of an Endophytic Fungal Strain with Potent Antimicrobial and Termiticidal Activities From Port-Orford-Cedar.

    PubMed

    Sun, Liqing; Hse, Chung-Yun; Shupe, Todd; Sun, Mingjing; Wang, Xiaohua; Zhao, Kai

    2015-06-01

    Termites are responsible for an estimated US$1 billion annually in property damage, repairs, pest control, and prevention. There is an urgent need of finding a better alternative way to control and prevent termites. Port-Orford-Cedar (POC) has been known to have significant levels of natural durability and termiticidal activities due to its extractive contents. In this study, 25 endophytes including 22 fungal and 3 bacterial strains were isolated from the POC. Four strains, namely, HDZK-BYF21, HDZK-BYF1, HDZK-BYF2, and HDZK-BYB11, were chosen to test their termiticidal activities. The fermentation broth of strain HDZK-BYF21 displayed the potent antimicrobial and termiticidal activities. Morphological examination and 18 S rDNA sequence analysis demonstrated that strain HDZK-BYF21 belonged to the genus Aspergillus. This finding indicates the existence of an interesting chemical symbiosis between an endophytic fungus and its host. This is also the first report on endophytes isolated from the POC that may have potential termiticidal activities. Endophytes with termiticidal activities can be grown in bioreactor to provide an inexhaustible supply of bioactive compounds and thus can be exploited commercially. PMID:26470217

  6. Potent and selective MAO-B inhibitory activity: amino- versus nitro-3-arylcoumarin derivatives.

    PubMed

    Matos, Maria João; Rodríguez-Enríquez, Fernanda; Vilar, Santiago; Santana, Lourdes; Uriarte, Eugenio; Hripcsak, George; Estrada, Martín; Rodríguez-Franco, María Isabel; Viña, Dolores

    2015-02-01

    In this study we synthesized and evaluated a new series of amino and nitro 3-arylcoumarins as hMAO-A and hMAO-B inhibitors. Compounds 2, 3, 5 and 6 presented a better activity and selectivity profile against the hMAO-B isoform (IC50 values between 2 and 6nM) than selegiline. In general, the amino derivatives (4-6) proved to be more selective against MAO-B than the nitro derivatives (1-3). Additionally, a theoretical study of some physicochemical properties, PAMPA and reversibility assays for the most potent derivative, and molecular docking simulations were carried out to further explain the pharmacological results, and to identify the hypothetical binding mode for the compounds inside the hMAO-B. PMID:25532905

  7. Galloylated proanthocyanidins from shea (Vitellaria paradoxa) meal have potent anthelmintic activity against Ascaris suum.

    PubMed

    Ramsay, A; Williams, A R; Thamsborg, S M; Mueller-Harvey, I

    2016-02-01

    Proanthocyanidins (PA) from shea (Vitellaria paradoxa) meal were investigated by thiolytic degradation with benzyl mercaptan and the reaction products were analysed by high performance liquid chromatography-mass spectrometry. These PA were galloylated (≈40%), contained only B-type linkages and had a high proportion of prodelphinidins (>70%). The mean degree of polymerisation was 8 (i.e. average molecular size was 2384Da) and epigallocatechin gallate (EGCg) was the major flavan-3-ol subunit in PA. Shea meal also proved to be a potentially valuable source for extracting free flavan-3-ol-O-gallates, especially EGCg (575mg/kg meal), which is known for its health and anti-parasitic benefits. Proanthocyanidins were isolated and tested for bioactivity against Ascaris suum, which is an important parasite of pigs. Migration and motility tests revealed that these PA have potent activity against this parasitic nematode. PMID:26708339

  8. Glycosynthase Mutants of Endoglycosidase S2 Show Potent Transglycosylation Activity and Remarkably Relaxed Substrate Specificity for Antibody Glycosylation Remodeling.

    PubMed

    Li, Tiezheng; Tong, Xin; Yang, Qiang; Giddens, John P; Wang, Lai-Xi

    2016-08-01

    Glycosylation can exert a profound impact on the structures and biological functions of antibodies. Glycosylation remodeling using the endoglycosidase-catalyzed deglycosylation and transglycosylation approach is emerging as a promising platform to produce homogeneous glycoforms of antibodies, but the broad application of this method will require the availability of highly efficient glycosynthase mutants. We describe in this paper a systematic site-directed mutagenesis of an endoglycosidase from Streptococcus pyogenes of serotype M49 (Endo-S2) and the evaluation of the resulting mutants for their hydrolysis and transglycosylation activities. We found that mutations at the Asp-184 residue gave mutants that demonstrated significantly different properties, some possessed potent transglycosylation activity with diminished hydrolysis activity but others did not, which would be otherwise difficult to predict without the comparative study. In contrast to the previously reported Endo-S mutants that are limited to action on complex type N-glycans, the Endo-S2 glycosynthases described here, including D184M and D184Q, were found to have remarkably relaxed substrate specificity and were capable of transferring three major types (complex, high-mannose, and hybrid type) of N-glycans for antibody glycosylation remodeling. In addition, the Endo-S2 glycosynthase mutants were found to be much more active in general than the Endo-S mutants for transglycosylation. The usefulness of these Endo-S2 glycosynthase mutants was exemplified by an efficient glycosylation remodeling of two therapeutic monoclonal antibodies, rituximab and trastuzumab (Herceptin). PMID:27288408

  9. A chalcone with potent inhibiting activity against biofilm formation by nontypeable Haemophilus influenzae.

    PubMed

    Kunthalert, Duangkamol; Baothong, Sudarat; Khetkam, Pichit; Chokchaisiri, Suwadee; Suksamrarn, Apichart

    2014-10-01

    Nontypeable Haemophilus influenzae (NTHi), an important human respiratory pathogen, frequently causes biofilm infections. Currently, resistance of bacteria within the biofilm to conventional antimicrobials poses a major obstacle to effective medical treatment on a global scale. Novel agents that are effective against NTHi biofilm are therefore urgently required. In this study, a series of natural and synthetic chalcones with various chemical substituents were evaluated in vitro for their antibiofilm activities against strong biofilm-forming strains of NTHi. Of the test chalcones, 3-hydroxychalcone (chalcone 8) exhibited the most potent inhibitory activity, its mean minimum biofilm inhibitory concentration (MBIC50 ) being 16 μg/mL (71.35 μM), or approximately sixfold more active than the reference drug, azithromycin (MBIC50 419.68 μM). The inhibitory activity of chalcone 8, which is a chemically modified chalcone, appeared to be superior to those of the natural chalcones tested. Significantly, chalcone 8 inhibited biofilm formation by all studied NTHi strains, indicating that the antibiofilm activities of this compound occur across multiple strong-biofilm forming NTHi isolates of different clinical origins. According to antimicrobial and growth curve assays, chalcone 8 at concentrations that decreased biofilm formation did not affect growth of NTHi, suggesting the biofilm inhibitory effect of chalcone 8 is non-antimicrobial. In terms of structure-activity relationship, the possible substituent on the chalcone backbone required for antibiofilm activity is discussed. These findings indicate that 3-hydroxychalcone (chalcone 8) has powerful antibiofilm activity and suggest the potential application of chalcone 8 as a new therapeutic agent for control of NTHi biofilm-associated infections. PMID:25154700

  10. 3-Amido-3-aryl-piperidines: A Novel Class of Potent, Selective, and Orally Active GlyT1 Inhibitors

    PubMed Central

    2014-01-01

    3-Amido-3-aryl-piperidines were discovered as a novel structural class of GlyT1 inhibitors. The structure–activity relationship, which was developed, led to the identification of highly potent compounds exhibiting excellent selectivity against the GlyT2 isoform, drug-like properties, and in vivo activity after oral administration. PMID:24900853

  11. Anti-hepatoma human single-chain Fv antibody and adriamycin conjugates with potent antitumor activity.

    PubMed

    Chen, Lin; Liu, Yan-Hong; Li, Yue-Hui; Jiang, Yan; Xie, Ping-Li; Zhou, Guo-Hua; Li, Guan-Cheng

    2014-01-01

    To construct an improved biological missile, an immunoconjugate ADM-Dex-ScFv-SA3 was synthesized, which was composed of a hepatocellular carcinoma-specific, single-chain Fv antibody (ScFv-SA3) and a highly potent cytotoxic drug, adriamycin (ADM), as the warhead. Oxidized Dextran T10 (Dex-T10) was used as a linker to connect these two moieties. The 40 KD soluble anti-hepatoma human Trx-ScFv-SA3 protein was expressed in E. coli BL21 (DE3), using a prokaryotic expression vector, pET21a (+)-Trx-ScFv-SA3-His. It was purified using a His-Tag Ni-Agarose column and identified by western blot. The activity of Trx-ScFv-SA3 was verified by enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry to confirm that it specifically binds to the hepatocellular carcinoma cell line HepG2. To prepare ADM-Dex-ScFv-SA3, ADM was conjugated to the antibody at a molar ratio of 14.21:1. The antitumor effect of the conjugate was tested by MTT assay, plate colony formation assay and xenografts in a nude mice experimental model. In vitro experiments revealed that ADM-Dex-ScFv-SA3 could bind to tumor cells selectively and inhibit the proliferation and the colony formation ability of HepG2 cells. In vivo experiments showed that ADM-Dex-ScFv-SA3 suppressed the tumor growth and prolonged the median survival time in tumor-bearing mice. Tumor histology slides indicated a significantly slower tumor tissue proliferation in the ADM-Dex-ScFv-SA3 group. These data indicate that the targeted drug, ADM-Dex-ScFv-SA3, may be a highly potent and selective therapy for the treatment of hepatoma. PMID:24239629

  12. CV-6209, a highly potent antagonist of platelet activating factor in vitro and in vivo.

    PubMed

    Terashita, Z; Imura, Y; Takatani, M; Tsushima, S; Nishikawa, K

    1987-07-01

    2-[N-acetyl-N-(2-methoxy-3-octadecylcarbamoyloxypropoxycarbonyl) aminomethyl]-1-ethylpyridinium chloride (CV-6209) inhibited aggregation of rabbit and human platelets induced by platelet activating factor (PAF) with the IC50 values of 7.5 X 10(-8) and 1.7 X 10(-7) M, respectively, and had little effects on the aggregation induced by arachidonic acid, ADP and collagen. The inhibitory effect of CV-6209 on the PAF-induced rabbit platelet aggregation was 104, 9, 8 and 3 times more potent than the PAF antagonists CV-3988, ONO-6240, Ginkgolide B and etizolam, respectively. CV-6209 inhibited [3H]serotonin release from rabbit platelets stimulated with PAF (3 X 10(-8) M) with a similar potency as the inhibition on the platelet aggregation. CV-6209 inhibited PAF (0.3 microgram/kg i.v.)-induced hypotension in rats (ED50, 0.009 mg/kg i.v.) with no effect on the hypotension induced by arachidonic acid, histamine, bradykinin and isoproterenol. CV-6209 (1 mg/kg) inhibited slightly the acetylcholine-induced hypotension. In rats, post-treatment with CV-6209 reversed the PAF (1 microgram/kg i.v.)-induced hypotension rapidly (ED50, 0.0046 mg/kg i.v.); CV-6209 was 74, 20, 185 and over 2100 times more potent than CV-3988, ONO-6240, Ginkgolide B and etizolam, respectively. Thus, the relative potency of the anti-PAF action of PAF analog (CV-6209, CV-3988 and ONO-6240) differed little between the inhibition of PAF-induced platelet aggregation and the reversal of PAF-induced hypotension, but that of nonPAF analogs (Ginkgolide B and etizolam) differed greatly with these assay systems, when standardized with CV-6209.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3612533

  13. A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases.

    PubMed

    Eram, Mohammad S; Shen, Yudao; Szewczyk, Magdalena M; Wu, Hong; Senisterra, Guillermo; Li, Fengling; Butler, Kyle V; Kaniskan, H Ümit; Speed, Brandon A; dela Seña, Carlo; Dong, Aiping; Zeng, Hong; Schapira, Matthieu; Brown, Peter J; Arrowsmith, Cheryl H; Barsyte-Lovejoy, Dalia; Liu, Jing; Vedadi, Masoud; Jin, Jian

    2016-03-18

    Protein arginine methyltransferases (PRMTs) play a crucial role in a variety of biological processes. Overexpression of PRMTs has been implicated in various human diseases including cancer. Consequently, selective small-molecule inhibitors of PRMTs have been pursued by both academia and the pharmaceutical industry as chemical tools for testing biological and therapeutic hypotheses. PRMTs are divided into three categories: type I PRMTs which catalyze mono- and asymmetric dimethylation of arginine residues, type II PRMTs which catalyze mono- and symmetric dimethylation of arginine residues, and type III PRMT which catalyzes only monomethylation of arginine residues. Here, we report the discovery of a potent, selective, and cell-active inhibitor of human type I PRMTs, MS023, and characterization of this inhibitor in a battery of biochemical, biophysical, and cellular assays. MS023 displayed high potency for type I PRMTs including PRMT1, -3, -4, -6, and -8 but was completely inactive against type II and type III PRMTs, protein lysine methyltransferases and DNA methyltransferases. A crystal structure of PRMT6 in complex with MS023 revealed that MS023 binds the substrate binding site. MS023 potently decreased cellular levels of histone arginine asymmetric dimethylation. It also reduced global levels of arginine asymmetric dimethylation and concurrently increased levels of arginine monomethylation and symmetric dimethylation in cells. We also developed MS094, a close analog of MS023, which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. MS023 and MS094 are useful chemical tools for investigating the role of type I PRMTs in health and disease. PMID:26598975

  14. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma

    PubMed Central

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  15. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma.

    PubMed

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  16. Development and Characterization of Potent Cyclic Acyldepsipeptide Analogues with Increased Antimicrobial Activity.

    PubMed

    Goodreid, Jordan D; Janetzko, John; Santa Maria, John P; Wong, Keith S; Leung, Elisa; Eger, Bryan T; Bryson, Steve; Pai, Emil F; Gray-Owen, Scott D; Walker, Suzanne; Houry, Walid A; Batey, Robert A

    2016-01-28

    The problem of antibiotic resistance has prompted the search for new antibiotics with novel mechanisms of action. Analogues of the A54556 cyclic acyldepsipeptides (ADEPs) represent an attractive class of antimicrobial agents that act through dysregulation of caseinolytic protease (ClpP). Previous studies have shown that ADEPs are active against Gram-positive bacteria (e.g., MRSA, VRE, PRSP (penicillin-resistant Streptococcus pneumoniae)); however, there are currently few studies examining Gram-negative bacteria. In this study, the synthesis and biological evaluation of 14 novel ADEPs against a variety of pathogenic Gram-negative and Gram-positive organisms is outlined. Optimization of the macrocyclic core residues and N-acyl side chain culminated in the development of 26, which shows potent activity against the Gram-negative species Neisseria meningitidis and Neisseria gonorrheae and improved activity against the Gram-positive organisms Staphylococcus aureus and Enterococcus faecalis in comparison with known analogues. In addition, the co-crystal structure of an ADEP-ClpP complex derived from N. meningitidis was solved. PMID:26818454

  17. Synthesis and Evaluation of Potent KCNQ2/3-Specific Channel Activators.

    PubMed

    Kumar, Manoj; Reed, Nicholas; Liu, Ruiting; Aizenman, Elias; Wipf, Peter; Tzounopoulos, Thanos

    2016-06-01

    KQT-like subfamily (KCNQ) channels are voltage-gated, noninactivating potassium ion channels, and their down-regulation has been implicated in several hyperexcitability-related disorders, including epilepsy, neuropathic pain, and tinnitus. Activators of these channels reduce the excitability of central and peripheral neurons, and, as such, have therapeutic utility. Here, we synthetically modified several moieties of the KCNQ2-5 channel activator retigabine, an anticonvulsant approved by the U.S. Food and Drug Administration. By introducing a CF3-group at the 4-position of the benzylamine moiety, combined with a fluorine atom at the 3-position of the aniline ring, we generated Ethyl (2-amino-3-fluoro-4-((4-(trifluoromethyl)benzyl)amino)phenyl)carbamate (RL648_81), a new KCNQ2/3-specific activator that is >15 times more potent and also more selective than retigabine. We suggest that RL648_81 is a promising clinical candidate for treating or preventing neurologic disorders associated with neuronal hyperexcitability. PMID:27005699

  18. Unique intracellular activation of the potent anti-human immunodeficiency virus agent 1592U89.

    PubMed

    Faletto, M B; Miller, W H; Garvey, E P; St Clair, M H; Daluge, S M; Good, S S

    1997-05-01

    The anabolism of 1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, a selective inhibitor of human immunodeficiency virus (HIV), was characterized in human T-lymphoblastoid CD4+ CEM cells. 1592U89 was ultimately anabolized to the triphosphate (TP) of the guanine analog (-)-carbovir (CBV), a potent inhibitor of HIV reverse transcriptase. However, less than 2% of intracellular 1592U89 was converted to CBV, an amount insufficient to account for the CBV-TP levels observed. 1592U89 was anabolized to its 5'-monophosphate (MP) by the recently characterized enzyme adenosine phosphotransferase, but neither its diphosphate (DP) nor its TP was detected. The MP, DP, and TP of CBV were found in cells incubated with either 1592U89 or CBV, with CBV-TP being the major phosphorylated species. We confirmed that CBV is phosphorylated by 5'-nucleotidase and that mycophenolic acid increased the formation of CBV-TP from CBV 75-fold. However, mycophenolic acid did not stimulate 1592U89 anabolism to CBV-TP. The adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) did not inhibit CBV-TP formation from CBV or 1592U89, whereas the adenylate deaminase inhibitor 2'-deoxycoformycin selectively inhibited 1592U89 anabolism to CBV-TP and reversed the antiviral activity of 1592U89. 1592U89-MP was not a substrate for adenylate deaminase but was a substrate for a distinct cytosolic deaminase that was inhibited by 2'-deoxycoformycin-5'-MP. Thus, 1592U89 is phosphorylated by adenosine phosphotransferase to 1592U89-MP, which is converted by a novel cytosolic enzyme to CBV-MP. CBV-MP is then further phosphorylated to CBV-TP by cellular kinases. This unique activation pathway enables 1592U89 to overcome the pharmacokinetic and toxicological deficiencies of CBV while maintaining potent and selective anti-HIV activity. PMID:9145876

  19. Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy

    PubMed Central

    Yu, Y; Rahmanto, Y Suryo; Richardson, DR

    2012-01-01

    BACKGROUND AND PURPOSE Our previous studies demonstrated that a thiosemicarbazone iron chelator (di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone; Dp44mT) possesses potent and selective anti-cancer activity but led to cardiotoxicity at non-optimal doses. In this study, we examined the in vivo anti-tumour efficacy and tolerability of a new-generation 2-benzoylpyridine thiosemicarbazone iron chelator (2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone; Bp44mT) administered via the oral or i.v. routes. EXPERIMENTAL APPROACH BpT chelators were tested in vitro against human lung cancer cells (DMS-53) and in vivo in DMS-53 tumour xenografts in mice. The toxicity of Bp44mT in vivo and its effects on the expression of iron-regulated molecules involved in growth and cell cycle control were investigated. KEY RESULTS Administration of Bp44mT by either route resulted in marked dose-dependent inhibition of tumour growth. When administered at 50 mg·kg−1 via oral gavage three times per week for 23 days, the net xenograft growth was inhibited by 75%, compared with vehicle-treated mice. Toxicological examination showed reversible alterations including slight reduction of RBC count, with a decrease of liver and splenic iron levels, which confirmed iron chelation in vivo. Importantly, in contrast to Dp44mT, the chelator-treated mice did not show cardiac histological abnormalities. There was also no significant weight loss in mice, suggesting oral administration of Bp44mT was well tolerated. CONCLUSIONS AND IMPLICATIONS This is the first study to show that Bp44mT can be given orally with potent anti-tumour efficacy. Oral administration of a novel and effective chemotherapeutic agent provides the benefits of convenience for chronic dosing regimens. PMID:21658021

  20. Potent activation of dopamine D3/D2 heterodimers by the antiparkinsonian agents, S32504, pramipexole and ropinirole.

    PubMed

    Maggio, Roberto; Scarselli, Marco; Novi, Francesca; Millan, Mark J; Corsini, Giovanni U

    2003-11-01

    Recombinant, human dopamine D3 and D2 receptors form functional heterodimers upon co-expression in COS-7 cells. Herein, actions of the antiparkinsonian agents, S32504, ropinirole and pramipexole, at D3/D2L heterodimers were compared to their effects at the respective monomers and at split, chimeric D3trunk/D2tail and D2trunk/D3tail receptors: the trunk incorporated transmembrane domains (TDs) I-V and the tail TDs VI and VII. In binding assays with the antagonist [3H]nemonapride, all agonists were potent ligands of D3 receptors showing, respectively, 100-, 18- and 56-fold lower affinity at D2L receptors, mimicking the selective D3 receptor antagonist, S33084 (100-fold). At D3trunk/D2tail receptors, except for ropinirole, all drugs showed lower affinities than at D3 sites, whereas for D2trunk/D3tail receptors, affinities of all drugs were higher than at D2L sites. The proportion of high affinity binding sites recognized by S32504, pramipexole and ropinirole in membranes derived from cells co-expressing D3 and D2L sites was higher than in an equivalent mixture of membranes from cells expressing D3 or D2L sites, consistent with the promotion of heterodimer formation. In contrast, the percentage of high and low affinity sites (biphasic isotherms) recognized by S33084 was identical. Functional actions were determined by co-transfection of a chimeric adenylyl cyclase (AC)-V/VI insensitive to D3 receptors. Accordingly, D3 receptor-transfected cells were irresponsive whereas, in D2L receptor-transfected cells, agonists suppressed forskolin-stimulated cAMP production with modest potencies. In cells co-transfected with D3 and D2L receptors, S32504, ropinirole and pramipexole potently suppressed AC-V/VI with EC50s 33-, 19- and 11-fold lower than at D2L receptors, respectively. S32504 also suppressed AC-V/VI activity at split D3trunk/D2tail and D2trunk/D3tail chimeras transfected into COS-7 cells. In conclusion, antiparkinson agents behave as potent agonists at D3/D2

  1. Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity.

    PubMed

    Gupta, Achla; Gomes, Ivone; Bobeck, Erin N; Fakira, Amanda K; Massaro, Nicholas P; Sharma, Indrajeet; Cavé, Adrien; Hamm, Heidi E; Parello, Joseph; Devi, Lakshmi A

    2016-05-24

    Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non-histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects. PMID:27162327

  2. Biflavonoids of Dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase.

    PubMed

    Coulerie, Paul; Eydoux, Cécilia; Hnawia, Edouard; Stuhl, Laetitia; Maciuk, Alexandre; Lebouvier, Nicolas; Canard, Bruno; Figadère, Bruno; Guillemot, Jean-Claude; Nour, Mohammed

    2012-05-01

    In order to find new molecules for antiviral drug design, we screened 102 ethyl acetate extracts from New-Caledonian flora for antiviral activity against the dengue 2 virus RNA-dependant RNA polymerase (DV-NS5 RdRp). The leaf extract of Dacrydium balansae, which strongly inhibited the DV-NS5, was submitted to bioguided fractionation. Four biflavonoids ( 1- 4), three sterols ( 5- 7), and two stilbene derivatives ( 8- 9) were identified and evaluated for their antiviral potential on the DV-NS5 RdRp. Biflavonoids appeared to be potent inhibitors of DV-NS5 RdRp with IC (50)s between 0.26 and 3.12 µM. Inhibitory activity evaluations against the RNA polymerase from other Flaviviridae viruses allowed us to conclude that these compounds are specific inhibitors of the DV RNA polymerase. The strongest inhibitions were observed with hinokiflavone ( 4), but podocarpusflavone A ( 2) is the strongest noncytotoxic inhibitor of the DV-NS5 and it also displayed polymerase inhibitory activity in a DV replicon. A preliminary structure-activity relationship study (SARs) revealed the necessity of the biflavonoid skeleton, the influence of number and position of methoxylations, and the importance of a free rotation of the linkage between the two apigenin monomers of the biflavonoids. To the best of our knowledge, podocarpusflavone A ( 2) is the strongest noncytotoxic non-nucleotide molecule exhibiting a specific inhibitory activity against the RNA polymerase domain of DV-NS5 and thus is promising for chemotherapy development against dengue fever. PMID:22411725

  3. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release

    PubMed Central

    Held, Katharina; Kichko, Tatjana; De Clercq, Katrien; Klaassen, Hugo; Van Bree, Rieta; Vanherck, Jean-Christophe; Marchand, Arnaud; Reeh, Peter W.; Chaltin, Patrick; Voets, Thomas; Vriens, Joris

    2015-01-01

    Transient receptor potential (TRP) cation channel subfamily M member 3 (TRPM3), a member of the TRP channel superfamily, was recently identified as a nociceptor channel in the somatosensory system, where it is involved in the detection of noxious heat; however, owing to the lack of potent and selective agonists, little is known about other potential physiological consequences of the opening of TRPM3. Here we identify and characterize a synthetic TRPM3 activator, CIM0216, whose potency and apparent affinity greatly exceeds that of the canonical TRPM3 agonist, pregnenolone sulfate (PS). In particular, a single application of CIM0216 causes opening of both the central calcium-conducting pore and the alternative cation permeation pathway in a membrane-delimited manner. CIM0216 evoked robust calcium influx in TRPM3-expressing somatosensory neurons, and intradermal injection of the compound induced a TRPM3-dependent nocifensive behavior. Moreover, CIM0216 elicited the release of the peptides calcitonin gene-related peptide (CGRP) from sensory nerve terminals and insulin from isolated pancreatic islets in a TRPM3-dependent manner. These experiments identify CIM0216 as a powerful tool for use in investigating the physiological roles of TRPM3, and indicate that TRPM3 activation in sensory nerve endings can contribute to neurogenic inflammation. PMID:25733887

  4. Structure-Based Tetravalent Zanamivir with Potent Inhibitory Activity against Drug-Resistant Influenza Viruses.

    PubMed

    Fu, Lifeng; Bi, Yuhai; Wu, Yan; Zhang, Shanshan; Qi, Jianxun; Li, Yan; Lu, Xuancheng; Zhang, Zhenning; Lv, Xun; Yan, Jinghua; Gao, George F; Li, Xuebing

    2016-07-14

    Zanamivir and oseltamivir are principal influenza antiviral drugs that target viral neuraminidase (NA), but resistant viruses containing mutant NAs with diminished drug affinity are increasingly emerging. Using the structural knowledge of both drug-binding sites and their spatial arrangement on the homotetrameric NA, we have developed a tetravalent zanamivir (TZ) molecule that exhibited marked increases in NA binding affinity, inhibition of NA enzyme activity, and in vitro plus in vivo antiviral efficacy over zanamivir. TZ functioned against both human seasonal H3N2 and avian H7N9 viruses, including drug-resistant mutants. Crystal structure of a resistant N9 NA in complex with TZ explained the function, which showed that four zanamivir residues simultaneously bound to all four monomers of NA. The design method of TZ described in this study may be useful to develop drugs or ligands that target proteins with multiple binding sites. The potent anti-influenza activity of TZ makes it attractive for further development. PMID:27341624

  5. Characterization of DicB by partially masking its potent inhibitory activity of cell division.

    PubMed

    Yang, Shaoyuan; Pei, Hairun; Zhang, Xiaoying; Wei, Qiang; Zhu, Jia; Zheng, Jimin; Jia, Zongchao

    2016-07-01

    DicB, a protein encoded by the Kim (Qin) prophage in Escherichia coli, inhibits cell division through interaction with MinC. Thus far, characterization of DicB has been severely hampered owing to its potent activity which ceases cell division and leads to cell death. In this work, through fusing maltose-binding protein to the N-terminus of DicB (MBP-DicB), we successfully expressed and purified recombinant DicB that enabled in vitro analysis for the first time. More importantly, taking advantage of the reduced inhibitory activity of MBP-DicB, we were able to study its effects on cell growth and morphology. Inhibition of cell growth by MBP-DicB was systematically evaluated using various DicB constructs, and their corresponding effects on cell morphology were also investigated. Our results revealed that the N-terminal segment of DicB plays an essential functional role, in contrast to its C-terminal tail. The N-terminus of DicB is of critical importance as even the first amino acid (following the initial Met) could not be removed, although it could be mutated. This study provides the first glimpse of the molecular determinants underlying DicB's function. PMID:27466443

  6. LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability.

    PubMed

    Green, L J; Marder, P; Mann, L L; Chio, L C; Current, W L

    1999-04-01

    LY303366 is a semisynthetic analog of the antifungal lipopeptide echinocandin B that inhibits (1,3)-beta-D-glucan synthase and exhibits efficacy in animal models of human fungal infections. In this study, we utilized flow cytometric analysis of propidium iodide uptake, single-cell sorting, and standard microbiological plating methods to study the antifungal effect of LY303366 on Saccharomyces cerevisiae and Candida albicans. Our data indicate that an initial 5-min pulse treatment with LY303366 caused yeasts to take up propidium iodide and lose their ability to grow. Amphotericin B and cilofungin required longer exposure periods (30 and 180 min, respectively) and higher concentrations to elicit these fungicidal effects. These two measurements of fungicidal activity by LY303366 were highly correlated (r > 0.99) in concentration response and time course experiments. As further validation, LY303366-treated yeasts that stained with propidium iodide were unable to grow in single-cell-sorted cultures. Our data indicate that LY303366 is potent and rapidly fungicidal for actively growing yeasts. The potency and rapid action of this new fungicidal compound suggest that LY303366 may be useful for antifungal therapy. PMID:10103187

  7. Gossypol enantiomers potently inhibit human placental 3β-hydroxysteroid dehydrogenase 1 and aromatase activities.

    PubMed

    Dong, Yaoyao; Mao, Baiping; Li, Linxi; Guan, Hongguo; Su, Ying; Li, Xiaoheng; Lian, Qingquan; Huang, Ping; Ge, Ren-Shan

    2016-03-01

    Gossypol is a chemical isolated from cotton seeds. It exists as (+) or (-) enantiomer and has been tested for anticancer, abortion-inducing, and male contraception. Progesterone formed from pregnenolone by 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) and estradiol from androgen by aromatase (CYP19A1) are critical for the maintenance of pregnancy or associated with some cancers. In this study we compared the potencies of (+)- and (-)-gossypol enantiomers in the inhibition of HSD3B1 and aromatase activities as well as progesterone and estradiol production in human placental JEG-3 cells. (+) Gossypol showed potent inhibition on human placental HSD3B1 with IC50 value of 2.3 μM, while (-) gossypol weakly inhibited it with IC50 over 100 μM. In contrast, (-) gossypol moderately inhibited CYP19A1 activity with IC50 of 23 μM, while (+) gossypol had no inhibition when the highest concentration (100 μM) was tested. (+) Gossypol enantiomer competitively inhibited HSD3B1 against substrate pregnenolone and showed mixed mode against NAD(+). (-) Gossypol competitively inhibited CYP19A1 against substrate testosterone. Gossypol enantiomers showed different potency related to their inhibition on human HSD3B1 and CYP19A1. Whether gossypol enantiomer is used alone or in combination relies on its application and beneficial effects. PMID:26709042

  8. Berberine is a potent agonist of peroxisome proliferator activated receptor alpha.

    PubMed

    Yu, Huarong; Li, Changqing; Yang, Junqing; Zhang, Tao; Zhou, Qixin

    2016-01-01

    Although berberine has hypolipidemic effects with a high affinity to nuclear proteins, the underlying molecular mechanism for this effect remains unclear. Here, we determine whether berberine is an agonist of peroxisome proliferator-activated receptor alpha (PPARalpha), with a lipid-lowering effect. The cell-based reporter gene analysis showed that berberine selectively activates PPARalpha (EC50 =0.58 mM, Emax =102.4). The radioligand binding assay shows that berberine binds directly to the ligand-binding domain of PPARalpha (Ki=0.73 mM) with similar affinity to fenofibrate. The mRNA and protein levels of CPT-Ialpha gene from HepG2 cells and hyperlipidemic rat liver are remarkably up-regulated by berberine, and this effect can be blocked by MK886, a non-competitive antagonist of PPARalpha. A comparison assay in which berberine and fenofibrate were used to treat hyperlipidaemic rats for three months shows that these drugs produce similar lipid-lowering effects, except that berberine increases high-density lipoprotein cholesterol more effectively than fenofibrate. These findings provide the first evidence that berberine is a potent agonist of PPARalpha and seems to be superior to fenofibrate for treating hyperlipidemia. PMID:27100490

  9. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice.

    PubMed

    Fang, Jinxu; Xiao, Liang; Joo, Kye-Il; Liu, Yarong; Zhang, Chupei; Liu, Shuanglong; Conti, Peter S; Li, Zibo; Wang, Pin

    2016-02-15

    Fibroblast activation protein (FAP) is highly expressed in the tumor-associated fibroblasts (TAFs) of most human epithelial cancers. FAP plays a critical role in tumorigenesis and cancer progression, which makes it a promising target for novel anticancer therapy. However, mere abrogation of FAP enzymatic activity by small molecules is not very effective in inhibiting tumor growth. In this study, we have evaluated a novel immune-based approach to specifically deplete FAP-expressing TAFs in a mouse 4T1 metastatic breast cancer model. Depletion of FAP-positive stromal cells by FAP-targeting immunotoxin αFAP-PE38 altered levels of various growth factors, cytokines, chemokines and matrix metalloproteinases, decreased the recruitment of tumor-infiltrating immune cells in the tumor microenvironment and suppressed tumor growth. In addition, combined treatment with αFAP-PE38 and paclitaxel potently inhibited tumor growth in vivo. Our findings highlight the potential use of immunotoxin αFAP-PE38 to deplete FAP-expressing TAFs and thus provide a rationale for the use of this immunotoxin in cancer therapy. PMID:26334777

  10. Characterization of DicB by partially masking its potent inhibitory activity of cell division

    PubMed Central

    Yang, Shaoyuan; Pei, Hairun; Zhang, Xiaoying; Wei, Qiang; Zhu, Jia; Zheng, Jimin; Jia, Zongchao

    2016-01-01

    DicB, a protein encoded by the Kim (Qin) prophage in Escherichia coli, inhibits cell division through interaction with MinC. Thus far, characterization of DicB has been severely hampered owing to its potent activity which ceases cell division and leads to cell death. In this work, through fusing maltose-binding protein to the N-terminus of DicB (MBP–DicB), we successfully expressed and purified recombinant DicB that enabled in vitro analysis for the first time. More importantly, taking advantage of the reduced inhibitory activity of MBP–DicB, we were able to study its effects on cell growth and morphology. Inhibition of cell growth by MBP–DicB was systematically evaluated using various DicB constructs, and their corresponding effects on cell morphology were also investigated. Our results revealed that the N-terminal segment of DicB plays an essential functional role, in contrast to its C-terminal tail. The N-terminus of DicB is of critical importance as even the first amino acid (following the initial Met) could not be removed, although it could be mutated. This study provides the first glimpse of the molecular determinants underlying DicB's function. PMID:27466443

  11. Demonstrating Enzyme Activation: Calcium/Calmodulin Activation of Phosphodiesterase

    ERIC Educational Resources Information Center

    Porta, Angela R.

    2004-01-01

    Demonstrating the steps of a signal transduction cascade usually involves radioactive materials and thus precludes its use in undergraduate teaching labs. Developing labs that allow the visual demonstration of these steps without the use of radioactivity is important for allowing students hands-on methods of illustrating each step of a signal…

  12. Trop-2-targeting tetrakis-ranpirnase has potent antitumor activity against triple-negative breast cancer

    PubMed Central

    2014-01-01

    Background Ranpirnase (Rap) is an amphibian ribonuclease with reported antitumor activity, minimal toxicity, and negligible immunogenicity in clinical studies, but the unfavorable pharmacokinetics and suboptimal efficacy hampered its further clinical development. To improve the potential of Rap-based therapeutics, we have used the DOCK-AND-LOCK™ (DNL™) method to construct a class of novel IgG-Rap immunoRNases. In the present study, a pair of these constructs, (Rap)2-E1-(Rap)2 and (Rap)2-E1*-(Rap)2, comprising four copies of Rap linked to the CH3 and CK termini of hRS7 (humanized anti-Trop-2), respectively, were evaluated as potential therapeutics for triple-negative breast cancer (TNBC). Methods The DNL-based immunoRNases, (Rap)2-E1-(Rap)2 and (Rap)2-E1*-(Rap)2, were characterized and tested for biological activities in vitro on a panel of breast cancer cell lines and in vivo in a MDA-MB-468 xenograft model. Results (Rap)2-E1-(Rap)2 was highly purified (>95%), exhibited specific cell binding and rapid internalization in MDA-MB-468, a Trop-2-expressing TNBC line, and displayed potent in vitro cytotoxicity (EC50 ≤ 1 nM) against diverse breast cancer cell lines with moderate to high expression of Trop-2, including MDA-MB-468, BT-20, HCC1806, SKBR-3, and MCF-7. In comparison, structural counterparts of (Rap)2-E1-(Rap)2, generated by substituting hRS7 with selective non-Trop-2-binding antibodies, such as epratuzumab (anti-CD22), were at least 50-fold less potent than (Rap)2-E1-(Rap)2 in MDA-MB-468 and BT-20 cells, both lacking the expression of the cognate antigen. Moreover, (Rap)2-E1-(Rap)2 was less effective (EC50 > 50 nM) in MDA-MB-231 (low Trop-2) or HCC1395 (no Trop-2), and did not show any toxicity to human peripheral blood mononuclear cells. In a mouse TNBC model, a significant survival benefit was achieved with (Rap)2-E1*-(Rap)2 when given the maximal tolerated dose. Conclusions A new class of immunoRNases was generated with enhanced potency for

  13. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation.

    PubMed

    McCaskill, Jana L; Marsh, Glenn A; Monaghan, Paul; Wang, Lin-Fa; Doran, Timothy; McMillan, Nigel A J

    2013-01-01

    Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi) based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs) targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen. PMID:23691205

  14. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    SciTech Connect

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J.

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  15. Potent AChE enzyme inhibition activity of Zizyphus oxyphylla: A new source of antioxidant compounds.

    PubMed

    Mazhar, Farhana; Khanum, Raisa; Ajaib, Muhammad; Jahangir, Muhammad

    2015-11-01

    The purpose of this study was to assess the antioxidant potential and enzyme inhibition of various fractions of Zizyphus oxyphylla. The plant metabolites were extracted in methanol and partitioned with n-hexane, chloroform, ethyl acetate and n-butanol successively. Phytochemical screening showed presence of alkaloids, terpenoids and flavonoids in ethyl acetate and n-butanol fractions. The antioxidant potential and acetylcholine esterase assay of all these fractions and remaining aqueous fraction was evaluated by using reported methods. The results revealed that chloroform soluble fraction exhibited highest percent inhibition of DPPH radical as compared to other fractions. It showed 95.01 ± 0.37% inhibition of DPPH radical at a concentration of 120 μg/mL. The IC₅₀ of this fraction was 13.20 ± 0.27 μg/mL, relative to butylated hydroxytoluene (BHT, a reference standard), having IC₅₀ of 12.10 ± 0.29 μg/mL. It also showed highest total antioxidant activity i.e. 1.723 ± 0.34 as well as highest FRAP value (339.5 ± 0.57 TE μm/mL) and highest total phenolic contents (142.65 ± 1.20 GAE mg/g) as compared to the other studied fractions. The fractions were also studied for Acetylcholine esterase enzyme (AChE) enzyme inhibition activity and n-butanol soluble fraction exhibited maximum inhibition (95.5 ± 0.13 mg/mL with IC50 =9.58 ± 0.08 mg/mL relative to galanthamine (13.26 ± 0.73 mg/mL), while n- hexane soluble fraction (165.15 ± 0.94 mg/mL) showed non-significant. We are still working to isolate pure compounds for active fractions targeting potent inhibition responsible for some activities. PMID:26639499

  16. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site.

    PubMed

    Kleinboelting, Silke; Ramos-Espiritu, Lavoisier; Buck, Hannes; Colis, Laureen; van den Heuvel, Joop; Glickman, J Fraser; Levin, Lonny R; Buck, Jochen; Steegborn, Clemens

    2016-04-29

    The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs. PMID:26961873

  17. Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits.

    PubMed

    Liu, Kun; Wang, Wei; Guo, Bing-Hua; Gao, Hua; Liu, Yang; Liu, Xiao-Hong; Yao, Hui-Li; Cheng, Kun

    2016-01-01

    Xanthine oxidase is a key enzyme which can catalyze hypoxanthine and xanthine to uric acid causing hyperuricemia in humans. Xanthine oxidase inhibitory activities of 24 organic extracts of four species belonging to Citrus genus of the family Rutaceae were assayed in vitro. Since the ethyl acetate extract of C. aurantium dried immature fruits showed the highest xanthine oxidase inhibitory activity, chemical evidence for the potent inhibitory activity was clarified on the basis of structure identification of the active constituents. Five flavanones and two polymethoxyflavones were isolated and evaluated for inhibitory activity against xanthine oxidase in vitro. Of the compounds, hesperetin showed more potent inhibitory activity with an IC50 value of 16.48 μM. For the first time, this study provides a rational basis for the use of C. aurantium dried immature fruits against hyperuricemia. PMID:26950105

  18. Enveloped Virus-Like Particle Expression of Human Cytomegalovirus Glycoprotein B Antigen Induces Antibodies with Potent and Broad Neutralizing Activity

    PubMed Central

    Kirchmeier, Marc; Fluckiger, Anne-Catherine; Soare, Catalina; Bozic, Jasminka; Ontsouka, Barthelemy; Ahmed, Tanvir; Diress, Abebaw; Pereira, Lenore; Schödel, Florian; Plotkin, Stanley; Dalba, Charlotte; Klatzmann, David

    2014-01-01

    A prophylactic vaccine to prevent the congenital transmission of human cytomegalovirus (HCMV) in newborns and to reduce life-threatening disease in immunosuppressed recipients of HCMV-infected solid organ transplants is highly desirable. Neutralizing antibodies against HCMV confer significant protection against infection, and glycoprotein B (gB) is a major target of such neutralizing antibodies. However, one shortcoming of past HCMV vaccines may have been their failure to induce high-titer persistent neutralizing antibody responses that prevent the infection of epithelial cells. We used enveloped virus-like particles (eVLPs), in which particles were produced in cells after the expression of murine leukemia virus (MLV) viral matrix protein Gag, to express either full-length CMV gB (gB eVLPs) or the full extracellular domain of CMV gB fused with the transmembrane and cytoplasmic domains from vesicular stomatitis virus (VSV)-G protein (gB-G eVLPs). gB-G-expressing eVLPs induced potent neutralizing antibodies in mice with a much greater propensity toward epithelial cell-neutralizing activity than that induced with soluble recombinant gB protein. An analysis of gB antibody binding titers and T-helper cell responses demonstrated that high neutralizing antibody titers were not simply due to enhanced immunogenicity of the gB-G eVLPs. The cells transiently transfected with gB-G but not gB plasmid formed syncytia, consistent with a prefusion gB conformation like those of infected cells and viral particles. Two of the five gB-G eVLP-induced monoclonal antibodies we examined in detail had neutralizing activities, one of which possessed particularly potent epithelial cell-neutralizing activity. These data differentiate gB-G eVLPs from gB antigens used in the past and support their use in a CMV vaccine candidate with improved neutralizing activity against epithelial cell infection. PMID:24334684

  19. Enveloped virus-like particle expression of human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neutralizing activity.

    PubMed

    Kirchmeier, Marc; Fluckiger, Anne-Catherine; Soare, Catalina; Bozic, Jasminka; Ontsouka, Barthelemy; Ahmed, Tanvir; Diress, Abebaw; Pereira, Lenore; Schödel, Florian; Plotkin, Stanley; Dalba, Charlotte; Klatzmann, David; Anderson, David E

    2014-02-01

    A prophylactic vaccine to prevent the congenital transmission of human cytomegalovirus (HCMV) in newborns and to reduce life-threatening disease in immunosuppressed recipients of HCMV-infected solid organ transplants is highly desirable. Neutralizing antibodies against HCMV confer significant protection against infection, and glycoprotein B (gB) is a major target of such neutralizing antibodies. However, one shortcoming of past HCMV vaccines may have been their failure to induce high-titer persistent neutralizing antibody responses that prevent the infection of epithelial cells. We used enveloped virus-like particles (eVLPs), in which particles were produced in cells after the expression of murine leukemia virus (MLV) viral matrix protein Gag, to express either full-length CMV gB (gB eVLPs) or the full extracellular domain of CMV gB fused with the transmembrane and cytoplasmic domains from vesicular stomatitis virus (VSV)-G protein (gB-G eVLPs). gB-G-expressing eVLPs induced potent neutralizing antibodies in mice with a much greater propensity toward epithelial cell-neutralizing activity than that induced with soluble recombinant gB protein. An analysis of gB antibody binding titers and T-helper cell responses demonstrated that high neutralizing antibody titers were not simply due to enhanced immunogenicity of the gB-G eVLPs. The cells transiently transfected with gB-G but not gB plasmid formed syncytia, consistent with a prefusion gB conformation like those of infected cells and viral particles. Two of the five gB-G eVLP-induced monoclonal antibodies we examined in detail had neutralizing activities, one of which possessed particularly potent epithelial cell-neutralizing activity. These data differentiate gB-G eVLPs from gB antigens used in the past and support their use in a CMV vaccine candidate with improved neutralizing activity against epithelial cell infection. PMID:24334684

  20. Protective effect of nectandrin B, a potent AMPK activator on neointima formation: inhibition of Pin1 expression through AMPK activation

    PubMed Central

    Ki, Sung Hwan; Lee, Jung-Woon; Lim, Sung Chul; Hien, Tran Thi; Im, Ji Hye; Oh, Won Keun; Lee, Moo Yeol; Ji, Young Hyun; Kim, Yoon Gyoon; Kang, Keon Wook

    2013-01-01

    Background and Purpose Neointima is considered a critical event in the development of vascular occlusive disease. Nectandrin B from nutmeg functions as a potent AMP-activated protein kinase (AMPK) activators. The present study addressed whether nectandrin B inhibits intimal hyperplasia in guide wire-injured arteries and examined its molecular mechanism. Experimental Approach Neointima was induced by guide wire injury in mouse femoral arteries. Cell proliferation and mechanism studies were performed in rat vascular smooth muscle cells (VSMC) culture model. Key Results Nectandrin B increased AMPK activity in VSMC. Nectandrin B inhibited the cell proliferation induced by PDGF and DNA synthesis. Moreover, treatment of nectandrin B suppressed neointima formation in femoral artery after guide wire injury. We have recently shown that Pin1 plays a critical role in VSMC proliferation and neointima formation. Nectandrin B potently blocked PDGF-induced Pin1 and cyclin D1 expression and nectandrin B‘s anti-proliferation effect was diminished in Pin1 overexpressed VSMC. PDGF-induced phosphorylation of ERK and Akt was marginally affected by nectandrin B. However, nectandrin B increased the levels of p53 and its downstream target p21 and, also reversibly decreased the expression of E2F1 and phosphorylated Rb in PDGF-treated VSMC. AMPK inhibition by dominant mutant form of adenovirus rescued nectandrin B-mediated down-regulation of Pin1 and E2F1. Conclusions and Implications Nectandrin B inhibited VSMC proliferation and neointima formation via inhibition of E2F1-dependent Pin1 gene transcription, which is mediated through the activation of an AMPK/p53-triggered pathway. PMID:23004677

  1. Discovery of BMS-846372, a Potent and Orally Active Human CGRP Receptor Antagonist for the Treatment of Migraine.

    PubMed

    Luo, Guanglin; Chen, Ling; Conway, Charles M; Denton, Rex; Keavy, Deborah; Gulianello, Michael; Huang, Yanling; Kostich, Walter; Lentz, Kimberley A; Mercer, Stephen E; Schartman, Richard; Signor, Laura; Browning, Marc; Macor, John E; Dubowchik, Gene M

    2012-04-12

    Calcitonin gene-related peptide (CGRP) receptor antagonists have been clinically shown to be effective in the treatment of migraine, but identification of potent and orally bioavailable compounds has been challenging. Herein, we describe the conceptualization, synthesis, and preclinical characterization of a potent, orally active CGRP receptor antagonist 5 (BMS-846372). Compound 5 has good oral bioavailability in rat, dog, and cynomolgus monkeys and overall attractive preclinical properties including strong (>50% inhibition) exposure-dependent in vivo efficacy in a marmoset migraine model. PMID:24900474

  2. Discovery of BMS-846372, a Potent and Orally Active Human CGRP Receptor Antagonist for the Treatment of Migraine

    PubMed Central

    2012-01-01

    Calcitonin gene-related peptide (CGRP) receptor antagonists have been clinically shown to be effective in the treatment of migraine, but identification of potent and orally bioavailable compounds has been challenging. Herein, we describe the conceptualization, synthesis, and preclinical characterization of a potent, orally active CGRP receptor antagonist 5 (BMS-846372). Compound 5 has good oral bioavailability in rat, dog, and cynomolgus monkeys and overall attractive preclinical properties including strong (>50% inhibition) exposure-dependent in vivo efficacy in a marmoset migraine model. PMID:24900474

  3. Design of potent and selective hybrid inhibitors of the mitotic kinase Nek2: SAR, structural biology and cellular activity

    PubMed Central

    Innocenti, Paolo; Cheung, Kwai-Ming J.; Solanki, Savade; Mas-Droux, Corine; Rowan, Fiona; Yeoh, Sharon; Boxall, Kathy; Westlake, Maura; Pickard, Lisa; Hardy, Tara; Baxter, Joanne E.; Aherne, G. Wynne; Bayliss, Richard; Fry, Andrew M.; Hoelder, Swen

    2013-01-01

    We report herein a series of Nek2 inhibitors based on an aminopyridine scaffold. These compounds have been designed by combining key elements of two previously discovered chemical series. Structure based design led to aminopyridine (R )-21, a potent and selective inhibitor able to modulate Nek2 activity in cells. PMID:22404346

  4. Structure-Based Design of Potent Nicotinamide Phosphoribosyltransferase Inhibitors with Promising in Vitro and in Vivo Antitumor Activities.

    PubMed

    Bai, Jinhong; Liao, Chenzhong; Liu, Yanghan; Qin, Xiaochu; Chen, Jiaxuan; Qiu, Yatao; Qin, Dongguang; Li, Zheng; Tu, Zheng-Chao; Jiang, Sheng

    2016-06-23

    Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) has the potential to directly limit NAD production in cancer cells and is an effective strategy for cancer treatment. Using a structure-based strategy, we have designed a new class of potent small-molecule inhibitors of NAMPT. Several designed compounds showed promising antiproliferative activities in vitro. (E)-N-(5-((4-(((2-(1H-Indol-3-yl)ethyl)(isopropyl)amino)methyl)phenyl)amino)pentyl)-3-(pyridin-3-yl)acrylamide, 30, bearing an indole moiety, has an IC50 of 25.3 nM for binding to the NAMPT protein and demonstrated promising inhibitory activities in the nanomolar range against several cancer cell lines (MCF-7 GI50 = 0.13 nM; MDA-MB-231 GI50 = 0.15 nM). Triple-negative breast cancer is the most malignant subtype of breast cancer with no effective targeted treatments currently available. Significant antitumor efficacy of compound 30 was achieved (TGI was 73.8%) in an orthotopic MDA-MB-231 triple-negative breast cancer xenograft tumor model. This paper reports promising lead molecules for the inhibition of NAMPT which could serve as a basis for further investigation. PMID:27224875

  5. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2

    SciTech Connect

    Miao, H.-Q. . E-mail: hua-quan.miao@imclone.com; Hu, Kun; Jimenez, Xenia; Navarro, Elizabeth; Zhang, Haifan; Lu Dan; Ludwig, Dale L.; Balderes, Paul; Zhu Zhenping . E-mail: zhenping.zhu@imclone.com

    2006-06-23

    Compelling evidence suggest that vascular endothelial growth factor (VEGF) and its receptors, especially receptor 2 (VEGFR2, or kinase insert domain-containing receptor, KDR), play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies such as age-related macular degeneration (AMD). To this end, inhibition of angiogenesis with antagonists to either VEGF or KDR has yielded significant therapeutic efficacy both in preclinical studies in animal models and in clinical trials in patients with cancer and AMD. We previously reported the identification of a high affinity, fully human anti-KDR antibody fragment, 1121B Fab, through a highly stringent affinity maturation process with a Fab originally isolated from a naive human antibody phage display library. In this study, we demonstrate that 1121B Fab is able to strongly block KDR/VEGF interaction, resulting in potent inhibition of an array of biological activities of VEGF, including activation of the receptor and its signaling pathway, intracellular calcium mobilization, and migration and proliferation of endothelial cells. Taken together, our data lend strong support to the further development of 1121B Fab fragment as an anti-angiogenesis agent in both cancer and angiogenic retinopathies.

  6. Novel spiropyrazolone antitumor scaffold with potent activity: Design, synthesis and structure-activity relationship.

    PubMed

    Wu, Shanchao; Li, Yu; Xu, Guixia; Chen, Shuqiang; Zhang, Yongqiang; Liu, Na; Dong, Guoqiang; Miao, Chaoyu; Su, Hua; Zhang, Wannian; Sheng, Chunquan

    2016-06-10

    Phenotypic screening of high quality compound library is an effective strategy to discover novel bioactive molecules. Previously, we developed the divergent organocatalytic cascade approach to efficiently construct a focused library with scaffold diversity and successfully identified a novel spiropyrazolone antitumor scaffold. Herein, a series of spiropyrazolone derivatives were designed, synthesized and assayed. Most of them showed good in vitro antitumor activity with a broad spectrum. Preliminary structure-activity relationship for the substitutions and the stereo configuration were obtained. Compound 5k showed good antitumor activity and could effectively induce cancer cell apoptosis, which represents a good starting point for the development of novel antitumor agents. PMID:27016707

  7. In vitro activity of a new carbapenem antibiotic, BO-2727, with potent antipseudomonal activity.

    PubMed Central

    Nakagawa, S; Hashizume, T; Matsuda, K; Sanada, M; Okamoto, O; Fukatsu, H; Tanaka, N

    1993-01-01

    BO-2727, a new 1-beta-methyl-carbapenem, was active at concentrations of 6.25 micrograms/ml or less against gram-positive and gram-negative bacteria, including some imipenem- and/or meropenem-resistant (MICs, > or = 12.5 micrograms/ml) Pseudomonas aeruginosa strains, against which it proved generally fourfold more active than imipenem and meropenem. BO-2727's antipseudomonal activity and its broad spectrum merit further investigation for clinical use by itself, since it was stable in the presence of renal dehydropeptidase I. PMID:8109950

  8. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity

    PubMed Central

    Payne, Jason N.; Waghwani, Hitesh K.; Connor, Michael G.; Hamilton, William; Tockstein, Sarah; Moolani, Harsh; Chavda, Fenil; Badwaik, Vivek; Lawrenz, Matthew B.; Dakshinamurthy, Rajalingam

    2016-01-01

    With a sharp increase in the cases of multi-drug resistant (MDR) bacteria all over the world, there is a huge demand to develop a new generation of antibiotic agents to fight them. As an alternative to the traditional drug discovery route, we have designed an effective antibacterial agent by modifying an existing commercial antibiotic, kanamycin, conjugated on the surface of gold nanoparticles (AuNPs). In this study, we report a single-step synthesis of kanamycin-capped AuNPs (Kan-AuNPs) utilizing the combined reducing and capping properties of kanamycin. While Kan-AuNPs have increased toxicity to a primate cell line (Vero 76), antibacterial assays showed dose-dependent broad spectrum activity of Kan-AuNPs against both Gram-positive and Gram-negative bacteria, including Kanamycin resistant bacteria. Further, a significant reduction in the minimum inhibitory concentration (MIC) of Kan-AuNPs was observed when compared to free kanamycin against all the bacterial strains tested. Mechanistic studies using transmission electron microscopy and fluorescence microscopy indicated that at least part of Kan-AuNPs increased efficacy may be through disrupting the bacterial envelope, resulting in the leakage of cytoplasmic content and the death of bacterial cells. Results of this study provide critical information about a novel method for the development of antibiotic capped AuNPs as potent next-generation antibacterial agents. PMID:27330535

  9. Identification and Structure-Activity Relationships of Diarylhydrazides as Novel Potent and Selective Human Enterovirus Inhibitors.

    PubMed

    Han, Xin; Sun, Ningyuan; Wu, Haoming; Guo, Deyin; Tien, Po; Dong, Chune; Wu, Shuwen; Zhou, Hai-Bing

    2016-03-10

    Enterovirus 71 (EV71) plays an important role in hand-foot-and-mouth disease. In this study, a series of diarylhydrazide analogues was synthesized, and the systematic exploration of SAR led to potent enterovirus inhibitors, of which compound 15 exhibits significant improvements in inhibition potency with an EC50 value of 0.02 μM against EV71. It is very interesting that this class of diarylhydrazides exhibits activities against a series of human enteroviruses at the picomolar level, including EV71 and Coxsackieviruses B1 (CVB1), CVB2, CVB3, CVB4, CVB5, and CVB6 (EC50 as low as 0.5 nM). Compared with the reference antienterovirus drug 1 (enviroxime) and known inhibitor 5 (WIN 51711), the four highly selective compounds 15, 27, 41 and 47 inhibited EV71 replication with EC50 values of 0.17-0.02 μM and SI values in a range of 978.4-12338. A preliminary mechanistic study indicated that VP1 might be the target site for this type of compound. PMID:26885567

  10. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Aramwit, Pornanong; Bang, Nipaporn; Ratanavaraporn, Juthamas; Ekgasit, Sanong

    2014-02-01

    In this study, a `green chemistry' approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO- and NH2 + groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications.

  11. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity.

    PubMed

    Payne, Jason N; Waghwani, Hitesh K; Connor, Michael G; Hamilton, William; Tockstein, Sarah; Moolani, Harsh; Chavda, Fenil; Badwaik, Vivek; Lawrenz, Matthew B; Dakshinamurthy, Rajalingam

    2016-01-01

    With a sharp increase in the cases of multi-drug resistant (MDR) bacteria all over the world, there is a huge demand to develop a new generation of antibiotic agents to fight them. As an alternative to the traditional drug discovery route, we have designed an effective antibacterial agent by modifying an existing commercial antibiotic, kanamycin, conjugated on the surface of gold nanoparticles (AuNPs). In this study, we report a single-step synthesis of kanamycin-capped AuNPs (Kan-AuNPs) utilizing the combined reducing and capping properties of kanamycin. While Kan-AuNPs have increased toxicity to a primate cell line (Vero 76), antibacterial assays showed dose-dependent broad spectrum activity of Kan-AuNPs against both Gram-positive and Gram-negative bacteria, including Kanamycin resistant bacteria. Further, a significant reduction in the minimum inhibitory concentration (MIC) of Kan-AuNPs was observed when compared to free kanamycin against all the bacterial strains tested. Mechanistic studies using transmission electron microscopy and fluorescence microscopy indicated that at least part of Kan-AuNPs increased efficacy may be through disrupting the bacterial envelope, resulting in the leakage of cytoplasmic content and the death of bacterial cells. Results of this study provide critical information about a novel method for the development of antibiotic capped AuNPs as potent next-generation antibacterial agents. PMID:27330535

  12. The reactive nitrogen species peroxynitrite is a potent inhibitor of renal Na-K-ATPase activity

    PubMed Central

    Reifenberger, Matthew S.; Arnett, Krista L.; Gatto, Craig; Milanick, Mark A.

    2008-01-01

    Peroxynitrite is a reactive nitrogen species produced when nitric oxide and superoxide react. In vivo studies suggest that reactive oxygen species and, perhaps, peroxynitrite can influence Na-K-ATPase function. However, the direct effects of peroxynitrite on Na-K-ATPase function remain unknown. We show that a single bolus addition of peroxynitrite inhibited purified renal Na-K-ATPase activity, with IC50 of 107 ± 9 μM. To mimic cellular/physiological production of peroxynitrite, a syringe pump was used to slowly release (∼0.85 μM/s) peroxynitrite. The inhibition of Na-K-ATPase activity induced by this treatment was similar to that induced by a single bolus addition of equal cumulative concentration. Peroxynitrite produced 3-nitrotyrosine residues on the α, β, and FXYD subunits of the Na pump. Interestingly, the flavonoid epicatechin, which prevented tyrosine nitration, was unable to blunt peroxynitrite-induced ATPase inhibition, suggesting that tyrosine nitration is not required for inhibition. Peroxynitrite led to a decrease in iodoacetamidofluorescein labeling, implying that cysteine modifications were induced. Glutathione was unable to reverse ATPase inhibition. The presence of Na+ and low MgATP during peroxynitrite treatment increased the IC50 to 145 ± 10 μM, while the presence of K+ and low MgATP increased the IC50 to 255 ± 13 μM. This result suggests that the EPNa conformation of the pump is slightly more sensitive to peroxynitrite than the E(K) conformation. Taken together, these results show that peroxynitrite is a potent inhibitor of Na-K-ATPase activity and that peroxynitrite can induce amino acid modifications to the pump. PMID:18701626

  13. MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity

    PubMed Central

    Yang, Wu; Guastella, John; Huang, Jin-Cheng; Wang, Yan; Zhang, Li; Xue, Dong; Tran, Minhtam; Woodward, Richard; Kasibhatla, Shailaja; Tseng, Ben; Drewe, John; Cai, Sui Xiong

    2003-01-01

    Caspases play a critical role in apoptosis, and are considered to be key targets for the design of cytoprotective drugs. As part of our antiapoptotic drug-discovery effort, we have synthesized and characterized Z-VD-fmk, MX1013, as a potent, irreversible dipeptide caspase inhibitor. MX1013 inhibits caspases 1, 3, 6, 7, 8, and 9, with IC50 values ranging from 5 to 20 nM. MX1013 is selective for caspases, and is a poor inhibitor of noncaspase proteases, such as cathepsin B, calpain I, or Factor Xa (IC50 values >10 μM). In several cell culture models of apoptosis, including caspase 3 processing, PARP cleavage, and DNA fragmentation, MX1013 is more active than tetrapeptide- and tripeptide-based caspase inhibitors, and blocked apoptosis at concentrations as low as 0.5 μM. MX1013 is more aqueous soluble than tripeptide-based caspase inhibitors such as Z-VAD-fmk. At a dose of 1 mg kg−1 i.v., MX1013 prevented liver damage and the lethality caused by Fas death receptor activation in the anti-Fas mouse-liver apoptosis model, a widely used model of liver failure. At a dose of 20 mg kg−1 (i.v. bolus) followed by i.v. infusion for 6 or 12 h, MX1013 reduced cortical damage by approximately 50% in a model of brain ischemia/reperfusion injury. At a dose of 20 mg kg−1 (i.v. bolus) followed by i.v. infusion for 12 h, MX1013 reduced heart damage by approximately 50% in a model of acute myocardial infarction. Based on these studies, we conclude that MX1013, a dipeptide pan-caspase inhibitor, has a good combination of in vitro and in vivo properties. It has the ability to protect cells from a variety of apoptotic insults, and is systemically active in three animal models of apoptosis, including brain ischemia. PMID:12970077

  14. Platelet-activating factor acetylhydrolase: selective inhibition by potent n-alkyl methylphosphonofluoridates.

    PubMed

    Quistad, Gary B; Fisher, Karl J; Owen, Sarah C; Klintenberg, Rebecka; Casida, John E

    2005-06-01

    Platelet-activating factor (PAF) is a potent endogenous phospholipid modulator of diverse biological activities, including inflammation and shock. PAF levels are primarily regulated by PAF acetylhydrolases (PAF-AHs). These enzymes are candidate secondary targets of organophosphorus (OP) pesticides and related toxicants. Previously known OP inhibitors of other serine hydrolases were tested with PAF-AH from mouse brain and testes of established functional importance compared with the structurally different human plasma enzyme. Several key OP pesticides and their oxon metabolites were very poor inhibitors of mouse brain and human plasma PAF-AH in vitro but moderately active for mouse brain and blood PAF-AH in vivo (e.g., tribufos defoliant and profenofos insecticide, presumably following oxidative bioactivation). OP compounds were then designed for maximum in vitro potency and selectivity for mouse brain PAF-AH vs. acetylcholinesterase (AChE). Lead compounds were found in a series of benzodioxaphosphorin 2-oxides. Ultrahigh potency and selectivity were achieved with n-alkyl methylphosphonofluoridates (long-chain sarin analogs): mouse brain and testes IC50 < or = 5 nM for C(8)-C(18) analogs and 0.1-0.6 nM for C(13) and C(14) compounds; human plasma IC50 < or = 2 nM for C(13)-C(18) analogs. AChE inhibitory potency decreased as chain length increased with maximum brain PAF-AH/AChE selectivity (>3000-fold) for C(13)-C(18) compounds. The toxicity of i.p.-administered PAF (LD50 ca. 0.5 mg/kg) was increased less than 2-fold by pretreatment with tribufos or the C(13)n-alkyl methylphosphonofluoridate. These studies with a mouse model indicate that PAF-AH is not a major secondary target of OP pesticide poisoning. The optimized PAF-AH inhibitors may facilitate investigations on other aspects of PAF metabolism and action. PMID:15893542

  15. Novel arylalkylamine compounds exhibits potent selective antiparasitic activity against Leishmania major

    PubMed Central

    Iniguez, Eva A.; Perez, Andrea; Maldonado, Rosa A.; Skouta, Rachid

    2015-01-01

    Leishmania major (L. major) is a protozoan parasite causal agent of Leishmaniasis. It is estimated that 12 million people are currently infected and around 2 million infections occur each year. Current treatments suffer of high toxicity for the patient, low efficacy toward the parasite, high cost, and are losing effectiveness due to parasite resistance. Discovering novel small molecule with high specificity/selectivity and drug-like properties for anti-leishmanial activity remains a significant challenge. The purpose of this study is to communicate the design and synthesis strategies of novel chemical compounds based of the arylalkylamine scaffold with selective toxicity towards L. major and less toxicity to human cells in vitro. Here, we have developed a structure activity relationship (SAR) study of arylalkylamine AA1 in order to study their anti-parasitic effect in L. major. Overall, 27 arylalkylamine compounds derived from AA1 were synthesized and purified by silica gel column chromatography. The purity of each analog was confirmed by spectroscopic methods (1H, 13C NMR and LC/MS). Among these analogs, the compound AA9 showed the best toxic activity on L. major (LD50 = 3.34 μM), which represents a 9 fold higher lethality as compared with its parental AA1 (Fer-1) compound (LD50 = 28.75 μM). In addition, AA9 showed no significant toxicity at 80 μM on U20S Human Osteoblasts, Raw 264.7 Macrophages or intraperitoneal macrophages. In summary, our combined SAR study and biological evaluation data of AA1-AA27 compounds allow the identification of novel arylalkylamine compound AA9 that exhibits potent cytotoxicity against L. major promastigote with minimum toxic effect on human cells. PMID:26410073

  16. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    PubMed Central

    Muid, Suhaila; Froemming, Gabriele R. Anisah; Rahman, Thuhairah; Ali, A. Manaf; Nawawi, Hapizah M.

    2016-01-01

    Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a

  17. Novel 3,5-bis(arylidene)-4-oxo-1-piperidinyl dimers: structure-activity relationships and potent antileukemic and antilymphoma cytotoxicity.

    PubMed

    Santiago-Vazquez, Yahaira; Das, Swagatika; Das, Umashankar; Robles-Escajeda, Elisa; Ortega, Nora M; Lema, Carolina; Varela-Ramírez, Armando; Aguilera, Renato J; Balzarini, Jan; De Clercq, Erik; Dimmock, Stephen G; Gorecki, Dennis K J; Dimmock, Jonathan R

    2014-04-22

    Novel clusters of 3,5-bis(benzylidene)-4-oxo-1-piperidinyl dimers 3-5 were evaluated against human Molt4/C8 and CEM T-lymphocytes and human HeLa cervix adenocarcinoma cells as well as murine L1210 leukemia neoplasms. Several of these compounds demonstrated IC50 values in the submicromolar and low micromolar range and compounds possessing 4-fluoro, 4-chloro and 3,4,5-trimethoxy substituents in the series 3 and 4 were identified as potent molecules. A heat map revealed the very high cytotoxic potencies of representative compounds against a number of additional leukemic and lymphoma cell lines and displayed greater toxicity to these cells than nonmalignant MCF10A and Hs-27 neoplasms. These dienones are more refractory to breast and prostate cancers. The evaluation of representative compounds in series 3-5 against a panel of human cancer cell lines revealed them to be potent cytotoxins with average IC50 values ranging from 0.05 to 8.51 μM. In particular, the most potent compound 4g demonstrated over 382-fold and 590-fold greater average cytotoxic potencies in this screen than the reference drugs, melphalan and 5-fluorouracil, respectively. A mode of action investigation of two representative compounds 3f and 4f indicated that they induce apoptosis which is due, at least in part, to the activation of caspase-3 and depolarization of the mitochondrial membrane potential. PMID:24657568

  18. Poly-lysine peptidomimetics having potent antimicrobial activity without hemolytic activity.

    PubMed

    Ahn, Mija; Jacob, Binu; Gunasekaran, Pethaiah; Murugan, Ravichandran N; Ryu, Eun Kyoung; Lee, Ga-hyang; Hyun, Jae-Kyung; Cheong, Chaejoon; Kim, Nam-Hyung; Shin, Song Yub; Bang, Jeong Kyu

    2014-09-01

    Diversity of sequence and structure in naturally occurring antimicrobial peptides (AMPs) limits their intensive structure-activity relationship (SAR) study. In contrast, peptidomimetics have several advantages compared to naturally occurring peptide in terms of simple structure, convenient to analog synthesis, rapid elucidation of optimal physiochemical properties and low-cost synthesis. In search of short antimicrobial peptides using peptidomimetics, which provide facile access to identify the key factors involving in the destruction of pathogens through SAR study, a series of simple and short peptidomimetics consisting of multi-Lys residues and lipophilic moiety have been prepared and found to be active against several Gram-negative and Gram-positive bacteria containing methicillin-resistant Staphylococcus aureus (MRSA) without hemolytic activity. Based on the SAR studies, we found that hydrophobicity, +5 charges of multiple Lys residues, hydrocarbon tail lengths and cyclohexyl group were crucial for antimicrobial activity. Furthermore, membrane depolarization, dye leakage, inner membrane permeability and time-killing kinetics revealed that bacterial-killing mechanism of our peptidomimetics is different from the membrane-targeting AMPs (e. g. melittin and SMAP-29) and implied our peptidomimetics might kill bacteria via the intracellular-targeting mechanism as done by buforin-2. PMID:24961649

  19. Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes

    PubMed Central

    Sood, Ruchi; Raut, Rajendra; Tyagi, Poornima; Pareek, Pawan Kumar; Barman, Tarani Kanta; Singhal, Smita; Shirumalla, Raj Kumar; Kanoje, Vijay; Subbarayan, Ramesh; Rajerethinam, Ravisankar; Sharma, Navin; Kanaujia, Anil; Shukla, Gyanesh; Gupta, Y. K.; Katiyar, Chandra K.; Bhatnagar, Pradip K.; Upadhyay, Dilip J.; Swaminathan, Sathyamangalam; Khanna, Navin

    2015-01-01

    Background Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs) and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need. Methodology/Principal findings Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract) was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week. Conclusions/Significance Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India. PMID:26709822

  20. Classroom Activities and Demonstrations for Use in Behavioral Science Courses.

    ERIC Educational Resources Information Center

    Cology, Lorry J.

    This compilation provides descriptions of and resource materials for 25 classroom activities or demonstrations for behavioral science courses. For each activity, the following information is provided: subject area, source, time required and materials needed. In addition, discussion questions and comments on the value and use of the activities are…

  1. Activity of a potent hepatitis C virus polymerase inhibitor in the chimpanzee model.

    PubMed

    Chen, Chih-Ming; He, Yupeng; Lu, Liangjun; Lim, Hock Ben; Tripathi, Rakesh L; Middleton, Tim; Hernandez, Lisa E; Beno, David W A; Long, Michelle A; Kati, Warren M; Bosse, Todd D; Larson, Daniel P; Wagner, Rolf; Lanford, Robert E; Kohlbrenner, William E; Kempf, Dale J; Pilot-Matias, Tami J; Molla, Akhteruzzaman

    2007-12-01

    A-837093 is a potent and specific nonnucleoside inhibitor of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase. It possesses nanomolar potencies in both enzymatic and replicon-based cell culture assays. In rats and dogs this compound demonstrated an oral plasma half-life of greater than 7 h, and its bioavailability was >60%. In monkeys it had a half-life of 1.9 h and 15% bioavailability. Its antiviral efficacy was evaluated in two chimpanzees infected with HCV in a proof-of-concept study. The design included oral dosing of 30 mg per kg of body weight twice a day for 14 days, followed by a 14-day posttreatment observation. Maximum viral load reductions of 1.4 and 2.5 log(10) copies RNA/ml for genotype 1a- and 1b-infected chimpanzees, respectively, were observed within 2 days after the initiation of treatment. After this initial drop in the viral load, a rebound of plasma HCV RNA was observed in the genotype 1b-infected chimpanzee, while the genotype 1a-infected chimpanzee experienced a partial rebound that lasted throughout the treatment period. Clonal analysis of NS5B gene sequences derived from the plasma of A-837093-treated chimpanzees revealed the presence of several mutations associated with resistance to A-837093, including Y448H, G554D, and D559G in the genotype 1a-infected chimpanzee and C316Y and G554D in the genotype 1b-infected chimpanzee. The identification of resistance-associated mutations in both chimpanzees is consistent with the findings of in vitro selection studies, in which many of the same mutations were selected. These findings validate the antiviral efficacy and resistance development of benzothiadiazine HCV polymerase inhibitors in vivo. PMID:17908950

  2. Structure-Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity.

    PubMed

    André, Sonia; Washington, Shannon K; Darby, Emily; Vega, Marvin M; Filip, Ari D; Ash, Nathaniel S; Muzikar, Katy A; Piesse, Christophe; Foulon, Thierry; O'Leary, Daniel J; Ladram, Ali

    2015-10-16

    Short antimicrobial peptides represent attractive compounds for the development of new antibiotic agents. Previously, we identified an ultrashort hydrophobic and phenylalanine-rich peptide, called temporin-SHf, representing the smallest natural amphibian antimicrobial peptide known to date. Here, we report on the first structure-activity relationship study of this peptide. A series of temporin-SHf derivatives containing insertion of a basic arginine residue as well as residues containing neutral hydrophilic (serine and α-hydroxymethylserine) and hydrophobic (α-methyl phenylalanine and p-(t)butyl phenylalanine) groups were designed to improve the antimicrobial activity, and their α-helical structure was investigated by circular dichroism and nuclear magnetic resonance spectroscopy. Three compounds were found to display higher antimicrobial activity with the ability to disrupt (permeabilization/depolarization) the bacterial membrane while retaining the nontoxic character of the parent peptide toward rat erythrocytes and human cells (THP-1 derived macrophages and HEK-293). Antimicrobial assays were carried out to explore the influence of serum and physiological salt concentration on peptide activity. Analogs containing d-amino acid residues were also tested. Our study revealed that [p-(t)BuF(2), R(5)]SHf is an attractive ultrashort candidate that is highly potent (bactericidal) against Gram-positive bacteria (including multidrug resistant S. aureus) and against a wider range of clinically interesting Gram-negative bacteria than temporin-SHf, and also active at physiological salt concentrations and in 30% serum. PMID:26181487

  3. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.

    PubMed

    Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami

    2016-02-26

    Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease. PMID:26849852

  4. Antitumor activity of a potent MEK inhibitor, TAK-733, against colorectal cancer cell lines and patient derived xenografts

    PubMed Central

    Lieu, Christopher H.; Klauck, Peter J.; Henthorn, Patrick K.; Tentler, John J.; Tan, Aik-Choon; Spreafico, Anna; Selby, Heather M.; Britt, Blair C.; Bagby, Stacey M.; Arcaroli, John J.; Messersmith, Wells A.; Pitts, Todd M.; Eckhardt, S. Gail

    2015-01-01

    Background CRC is a significant cause of cancer mortality, and new therapies are needed for patients with advanced disease. TAK-733 is a highly potent and selective investigational novel MEK allosteric site inhibitor. Materials and Methods In a preclinical study of TAK-733, a panel of CRC cell lines were exposed to varying concentrations of the agent for 72 hours followed by a sulforhodamine B assay. Twenty patient-derived colorectal cancer xenografts were then treated with TAK-733 in vivo. Tumor growth inhibition index (TGII) was assessed to evaluate the sensitivity of the CRC explants to TAK-733 while linear regression was utilized to investigate the predictive effects of genotype on the TGII of explants. Results Fifty-four CRC cell lines were exposed to TAK-733, while 42 cell lines were deemed sensitive across a broad range of mutations. Eighty-two percent of the cell lines within the sensitive subset were BRAF or KRAS/NRAS mutant, whereas 80% of the cell lines within the sensitive subset were PIK3CA WT. Twenty patient-derived human tumor CRC explants were then treated with TAK-733. In total, 15 primary human tumor explants were found to be sensitive to TAK-733 (TGII ≤ 20%), including 9 primary human tumor explants that exhibited tumor regression (TGII > 100%). Explants with a BRAF/KRAS/NRAS mutant and PIK3CA wild-type genotype demonstrated increased sensitivity to TAK-733 with a median TGII of −6%. MEK-response gene signatures also correlated with responsiveness to TAK-733 in KRAS-mutant CRC. Conclusions The MEK inhibitor TAK-733 demonstrated robust antitumor activity against CRC cell lines and patient-derived tumor explants. While the preclinical activity observed in this study was considerable, single-agent efficacy in the clinic has been limited in CRC, supporting the use of these models in an iterative manner to elucidate resistance mechanisms that can guide rational combination strategies. PMID:26439693

  5. Demonstrating Electrical Activity in Nerve and Muscle. Part II

    ERIC Educational Resources Information Center

    Robinson, D. J.

    1976-01-01

    Describes the construction of an amplifier and force transducer that can be used to demonstrate electrical activity in nerve and muscle using the gastrocnemius muscle and sciatic nerve of the frog. (MLH)

  6. Demonstrating Electrical Activity in Nerve and Muscle. Part I

    ERIC Educational Resources Information Center

    Robinson, D. J.

    1975-01-01

    Describes a demonstration for showing the electrical activity in nerve and muscle including action potentials, refractory period of a nerve, and fatigue. Presents instructions for constructing an amplifier, electronic stimulator, and force transducer. (GS)

  7. Glycodermorphins: opioid peptides with potent and prolonged analgesic activity and enhanced blood-brain barrier penetration.

    PubMed

    Negri, L; Lattanzi, R; Tabacco, F; Scolaro, B; Rocchi, R

    1998-08-01

    1. In order to improve the in vivo stability of the opioid peptide dermorphin we synthesized O-betaglucosylated analogs ([Ser7-O-betaGlc]dermorphin and [Ser7-O-betaGlc(Ac)4]-dermorphin) and C-alphagalactosylated analogs ([Ala7-C-alphaGal]dermorphin and [Ala7-C-alphaGal(Ac)4]-dermorphin). 2. O- and C-glycosylation of dermorphin halved the peptide affinity for brain mu-opioid receptors and the biological potency in guinea-pig ileum assay (GPI). Despite their lower opioid receptor affinity, when administered intracerebroventricularly (i.c.v., 8-40 pmol) and subcutaneously (s.c., 0.5-3 micromol kg(-1)) in rats, glycosylated analogs were two times more potent than dermorphin in reducing the nociceptive response to radiant heat. Acetylation of sugar hydroxyl groups reduces 5-10 times both biological activity on GPI and mu-receptor affinity, whereas the antinociceptive potency was equal to (i.c.v.) or only two-three times lower (s.c.) than dermorphin potency. 3. Blood-Brain Barrier Permeability Index (BBB-PI) of the glycodermorphins was significantly higher than that of dermorphin, indicating a facilitated entry into the brain: O-beta-linked glucoconiugates are expected to enter CNS by the glucose transporter GLUT-1 of the endothelial barrier. However the calculated BBB-PI for the C-alphagalactoside was about two times higher than that of the O-betaglucoside, excluding the implication of GLUT-1 that is known to be selective for O-beta-links and preferring for the exose glucose. 4. The enhanced brain permeability with the subsequent decrease in peripheral dosage of these opioid peptides did not result in lowering constipation. PMID:9723966

  8. The Importance of Engaging Pupils Actively in Demonstrations

    ERIC Educational Resources Information Center

    Suomela, Liisa; Juuti, Kalle; Ahtee, Maija

    2013-01-01

    Demonstrating is a traditional method in teaching science that can raise interest and encourage pupils to think about a topic. While demonstrating, the teacher can focus the pupils' attention on the relevant facts and introduce scientific principles and concepts. Through discussion and actively making observations and inferences, rather than…

  9. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 1.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Ohte, Satoshi; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Omura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-03-01

    In an effort to develop potent and selective inhibitors toward ACAT2, structure-activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). We have successfully developed novel PPPA derivatives with a 7-O-substituted benzoyl substituent that significantly exhibit more potent ACAT2 inhibitory activity and higher ACAT2 isozyme selectivity than 1. PMID:23369538

  10. A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible mushroom Volvariella volvacea.

    PubMed

    She, Q B; Ng, T B; Liu, W K

    1998-06-01

    A novel lectin has been purified from the fruiting bodies as well as cultured mycelia of the edible mushroom Volvariella volvacea. The lectin, designated as VVL, was a homodimeric protein with a molecular weight of 32 kDa as demonstrated by gel filtration and SDS-PAGE. VVL had no carbohydrate moiety, and its hemagglutinating activity was inhibited by thyroglobulin but not by simple carbohydrates such as monomeric or dimeric sugars. The immunomodulatory activity of VVL was demonstrated by its potent stimulatory activity toward murine splenic lymphocytes. VVL was also found to markedly enhance the transcriptional expression of interleukin-2 and interferon-gamma by reverse transcriptase-polymerase chain reaction. As revealed by its N-terminal amino acid sequence, VVL possessed a molecular structure distinct from other immunomodulatory proteins previously reported in the same fungus. PMID:9636663

  11. Cycloastragenol is a potent telomerase activator in neuronal cells: implications for depression management.

    PubMed

    Ip, Fanny C F; Ng, Yu Pong; An, H J; Dai, Ying; Pang, Hai Hong; Hu, Yue Qing; Chin, Allison C; Harley, Calvin B; Wong, Yung Hou; Ip, Nancy Y

    2014-01-01

    Cycloastragenol (CAG) is an aglycone of astragaloside IV. It was first identified when screening Astragalus membranaceus extracts for active ingredients with antiaging properties. The present study demonstrates that CAG stimulates telomerase activity and cell proliferation in human neonatal keratinocytes. In particular, CAG promotes scratch wound closure of human neonatal keratinocyte monolayers in vitro. The distinct telomerase-activating property of CAG prompted evaluation of its potential application in the treatment of neurological disorders. Accordingly, CAG induced telomerase activity and cAMP response element binding (CREB) activation in PC12 cells and primary neurons. Blockade of CREB expression in neuronal cells by RNA interference reduced basal telomerase activity, and CAG was no longer efficacious in increasing telomerase activity. CAG treatment not only induced the expression of bcl2, a CREB-regulated gene, but also the expression of telomerase reverse transcriptase in primary cortical neurons. Interestingly, oral administration of CAG for 7 days attenuated depression-like behavior in experimental mice. In conclusion, CAG stimulates telomerase activity in human neonatal keratinocytes and rat neuronal cells, and induces CREB activation followed by tert and bcl2 expression. Furthermore, CAG may have a novel therapeutic role in depression. PMID:25095809

  12. Novel "hybrid" iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells.

    PubMed

    Lovejoy, David B; Richardson, Des R

    2002-07-15

    We previously demonstrated that 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) and other aroylhydrazone chelators possess potent antineoplastic activity because of their ability to bind iron (Fe). From these studies, we identified structural components of the hydrazones that provide antineoplastic activity, namely the salicylaldehyde and 2-hydroxy-1-naphthylaldehyde moieties. A related group of chelators known as the thiosemicarbazones also show pronounced antitumor activity because of their ability to inhibit ribonucleotide reductase. Considering this, we designed a new series of "hybrid ligands" by condensation of the aldehydes described above with a range of thiosemicarbazides. The parent compound of these ligands is 2-hydroxy-1-naphthylaldehyde thiosemicarbazone (NT). Of 8 NT analogues, 3 chelators, namely NT, N4mT (2-hydroxy-1-naphthylaldehyde-4-methyl-3-thiosemicarbazone), and N44mT (2-hydroxy-1-naphthylaldehyde-4,4-dimethyl-3-thiosemicarbazone), showed high antiproliferative activity against SK-N-MC neuroepithelioma cells (50% inhibitory concentration [IC(50)] = 0.5-1.5 microM). Indeed, their activity was significantly (P <.0001) greater than that of desferrioxamine (DFO) (IC(50) = 22 microM). We demonstrate that 311, a 311 analogue (311m), and several NT-series chelators have significantly (P <.001) greater antiproliferative activity against tumor cells than against a range of normal cell types. For example, the IC(50) values of NT and N4mT in SK-N-MC neuroepithelioma cells were 0.5 microM, whereas for fibroblasts the IC(50) values were greater than 25 microM. Further, the effect of one of the most potent chelators (311m) on preventing the growth of bone marrow stem cell cultures was far less than that of doxorubicin and similar to that of cisplatin. These studies support the further development of these chelators as antiproliferative agents. PMID:12091363

  13. Potent Bivalent Smac Mimetics: Effect of the Linker on Binding to Inhibitor of Apoptosis Proteins (IAPs) and Anticancer Activity

    PubMed Central

    Sun, Haiying; Liu, Liu; Lu, Jianfeng; Bai, Longchuan; Li, Xiaoqin; Nikolovska-Coleska, Zaneta; McEachern, Donna; Yang, Chao-Yie; Qiu, Su; Yi, Han; Sun, Duxin; Wang, Shaomeng

    2011-01-01

    We have synthesized and evaluated a series of non-peptidic, bivalent Smac mimetics as antagonists of the inhibitor of apoptosis proteins and new anticancer agents. All these bivalent Smac mimetics bind to full-length XIAP with low nanomolar affinities and function as ultra-potent antagonists of XIAP. While these Smac mimetics bind to cIAP1/2 with similar low nanomolar affinities, their potencies to induce degradation of cIAP1/2 proteins in cells differ by more than 100-fold. The most potent bivalent Smac mimetics inhibit cell growth with IC50 values from 1–3 nM in the MDA-MB-231 breast cancer cell line and are 100-times more potent than the least potent compounds. Determination of intracellular concentrations for several representative compounds showed that the linkers in these bivalent Smac mimetics significantly affect their intracellular concentrations, hence the overall cellular activity. Compound 27 completely inhibits tumor growth in the MDA-MB-231 xenografts, while causing no signs of toxicity in the animals. PMID:21462933

  14. An Activity for Demonstrating the Concept of a Neural Circuit

    ERIC Educational Resources Information Center

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  15. Urolithins, Intestinal Microbial Metabolites of Pomegranate Ellagitannins, Exhibit Potent Antioxidant Activity in Cell-Based Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many health benefits of pomegranate products have been attributed to the potent antioxidant action of their tannin components, mainly punicalagins and ellagic acid. While moving through the intestines, ellagitannins are metabolized by gut bacteria into urolithins that readily enter systemic circulat...

  16. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents.

    PubMed

    Sestak, Vit; Stariat, Jan; Cermanova, Jolana; Potuckova, Eliska; Chladek, Jaroslav; Roh, Jaroslav; Bures, Jan; Jansova, Hana; Prusa, Petr; Sterba, Martin; Micuda, Stanislav; Simunek, Tomas; Kalinowski, Danuta S; Richardson, Des R; Kovarikova, Petra

    2015-12-15

    Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment. PMID:26623727

  17. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents

    PubMed Central

    Sestak, Vit; Stariat, Jan; Cermanova, Jolana; Potuckova, Eliska; Chladek, Jaroslav; Roh, Jaroslav; Bures, Jan; Jansova, Hana; Prusa, Petr; Sterba, Martin; Micuda, Stanislav; Simunek, Tomas; Kalinowski, Danuta S.; Richardson, Des R.; Kovarikova, Petra

    2015-01-01

    Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment. PMID:26623727

  18. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity.

    PubMed

    Daluge, S M; Good, S S; Faletto, M B; Miller, W H; St Clair, M H; Boone, L R; Tisdale, M; Parry, N R; Reardon, J E; Dornsife, R E; Averett, D R; Krenitsky, T A

    1997-05-01

    1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human

  19. A new peptide (Ruviprase) purified from the venom of Daboia russelii russelii shows potent anticoagulant activity via non-enzymatic inhibition of thrombin and factor Xa.

    PubMed

    Thakur, Rupamoni; Kumar, Ashok; Bose, Biplab; Panda, Dulal; Saikia, Debashree; Chattopadhyay, Pronobesh; Mukherjee, Ashis K

    2014-10-01

    Compounds showing dual inhibition of thrombin and factor Xa (FXa) are the subject of great interest owing to their broader specificity for effective anticoagulation therapy against cardiovascular disorders. This is the first report on the functional characterization and assessment of therapeutic potential of a 4423.6 Da inhibitory peptide (Ruviprase) purified from Daboia russelii russelii venom. The secondary structure of Ruviprase is composed of α-helices (61.9%) and random coils (38.1%). The partial N-terminal sequence (E(1)-V(2)-X(3)-W(4)-W(5)-W(6)-A(7)-Q(8)-L(9)-S(10)) of Ruviprase demonstrated significant similarity (80.0%) with an internal sequence of apoptosis-stimulating protein reported from the venom of Ophiophagus hannah and Python bivittatus; albeit Ruviprase did not show sequence similarity with existing thrombin/FXa inhibitors, suggesting its uniqueness. Ruviprase demonstrated a potent in vitro anticoagulant property and inhibited both thrombin and FXa following slow binding kinetics. Ruviprase inhibited thrombin by binding to its active site via an uncompetitive mechanism with a Ki value and dissociation constant (KD) of 0.42 μM and 0.46 μM, respectively. Conversely, Ruviprase demonstrated mixed inhibition (Ki = 0.16 μM) of FXa towards its physiological substrate prothrombin. Furthermore, the biological properties of Ruviprase could not be neutralized by commercial polyvalent or monovalent antivenom. Ruviprase at a dose of 2.0 mg/kg was non-toxic and showed potent in vivo anticoagulant activity after 6 h of intraperitoneal treatment in mice. Because of the potent anticoagulant property as well as non-toxic nature of Ruviprase, the possible application of the peptide as an antithrombotic agent for combating thrombosis-associated ailments appears promising. PMID:25038567

  20. A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune.

    PubMed

    Zhao, Yong-Chang; Zhang, Guo-Qing; Ng, Tzi-Bun; Wang, He-Xiang

    2011-10-01

    A 20-kDa ribonuclease (RNase) was purified from fresh fruiting bodies of cultured Schizophyllum commune mushrooms. The RNase was not adsorbed on Affi-gel blue gel but adsorbed on DEAE-cellulose and CM-cellulose. It exhibited maximal RNase activity at pH 6.0 and 70°C. It demonstrated the highest ribonucleolytic activity toward poly (U) (379.5 μ/mg), the second highest activity toward poly (C) (244.7 μ/mg), less activity toward poly (A) (167.4 μ/mg), and much weaker activity toward poly (G) (114.5 μ/mg). The RNase inhibited HIV-1 reverse transcriptase with an IC(50) of 65 μM. No effect on [(3)H-methyl]-thymidine uptake by lymphoma MBL2 cells and leukemia L1210 cells was observed at 100 μM concentration of the RNase. A comparison of RNases from S. commune and Volvariella volvacea revealed that they demonstrated some similarities in N-terminal amino acid sequence, optimum pH and polyhomoribonucleotide specificity. However, some differences in chromatographic behavior and molecular mass were observed. PMID:22068498

  1. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism*

    PubMed Central

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-01-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  2. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism.

    PubMed

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-07-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  3. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma

    SciTech Connect

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi; Xu, Jing-Wen; Li, Zeng-Qiang; Shen, Qi-Rong; Wang, Zhi-Wei; Zhang, Wei-Ge; Wu, Ying-Liang

    2014-12-12

    Highlights: • COH-203 exhibits anti-hepatoma effects in vitro and in vivo with low toxicity. • COH-203 inhibits tubulin polymerization. • COH-203 induces mitotic arrest followed by mitotic slippage in BEL-7402 cells. • COH-203 induces p53-dependent senescence in BEL-7402 cells. - Abstract: 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1, 2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal liver cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14{sup Arf}–p53–p21 and p16{sup INK4α}–Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.

  4. The angular structure of ONC201, a TRAIL pathway-inducing compound, determines its potent anti-cancer activity

    PubMed Central

    Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S.; Nallaganchu, Bhaskara Rao; Olson, Gary L.; Dicker, David T.; Allen, Joshua E.; El-Deiry, Wafik S.

    2014-01-01

    We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers. PMID:25587031

  5. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Mackenzie, Amanda E.; Butcher, Adrian J.; Pediani, John D.; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B.; Ulven, Trond

    2013-01-01

    TUG-891 [3-(4-((4-fluoro-4′-methyl-[1,1′-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein–coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca2+ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca2+ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  6. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism.

    PubMed

    Hudson, Brian D; Shimpukade, Bharat; Mackenzie, Amanda E; Butcher, Adrian J; Pediani, John D; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B; Ulven, Trond; Milligan, Graeme

    2013-11-01

    TUG-891 [3-(4-((4-fluoro-4'-methyl-[1,1'-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein-coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca²⁺ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca²⁺ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  7. Protolichesterinic acid derivatives: α-methylene-γ-lactones as potent dual activators of PPARγ and Nrf2 transcriptional factors.

    PubMed

    Le Lamer, Anne-Cécile; Authier, Hélène; Rouaud, Isabelle; Coste, Agnès; Boustie, Joël; Pipy, Bernard; Gouault, Nicolas

    2014-08-15

    PPARγ and Nrf2 are important transcriptional factors involved in many signaling pathways, especially in the anti-infectious response of macrophages. Compounds bearing a Michael acceptor moiety are well known to activate such transcriptional factors, we thus evaluated the potency of α,β-unsaturated lactones synthesized using fluorous phase organic synthesis. Compounds were first screened for their cytotoxicity in order to select lactones for PPARγ and Nrf2 activation evaluation. Among them, two α-methylene-γ-lactones were identified as potent dual activators of PPARγ and Nrf2 in macrophages. PMID:25027935

  8. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  9. Synthesis of the cyanobacterial metabolite nostodione A, structural studies and potent antiparasitic activity against Toxoplasma gondii.

    PubMed

    McNulty, James; Keskar, Kunal; Jenkins, Hilary A; Werstiuk, Nick H; Bordón, Claudia; Yolken, Robert; Jones-Brando, Lorraine

    2015-10-21

    A total synthesis of the cyanobacterial natural product nostodione A is reported involving a convergent, diversity-oriented route, enabling the assembly of a mini-library of structural analogues. The first single crystal X-ray structural determination on a member of this series is reported along with SAR studies identifying potent inhibitors of invasion and replication of the parasitic protozoan Toxoplasma gondii. PMID:26291306

  10. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation.

    PubMed

    Honda, Hiroe; Nagai, Yoshinori; Matsunaga, Takayuki; Okamoto, Naoki; Watanabe, Yasuharu; Tsuneyama, Koichi; Hayashi, Hiroaki; Fujii, Isao; Ikutani, Masashi; Hirai, Yoshikatsu; Muraguchi, Atsushi; Takatsu, Kiyoshi

    2014-12-01

    Inflammasome activation initiates the development of many inflammatory diseases, including obesity and type 2 diabetes. Therefore, agents that target discrete activation steps could represent very important drugs. We reported previously that ILG, a chalcone from Glycyrrhiza uralensis, inhibits LPS-induced NF-κB activation. Here, we show that ILG potently inhibits the activation of NLRP3 inflammasome, and the effect is independent of its inhibitory potency on TLR4. The inhibitory effect of ILG was stronger than that of parthenolide, a known inhibitor of the NLRP3 inflammasome. GL, a triterpenoid from G. uralensis, had similar inhibitory effects on NLRP3 activity, but high concentrations of GL were required. In contrast, activation of the AIM2 inflammasome was inhibited by GL but not by ILG. Moreover, GL inhibited NLRP3- and AIM2-activated ASC oligomerization, whereas ILG inhibited NLRP3-activated ASC oligomerization. Low concentrations of ILG were highly effective in IAPP-induced IL-1β production compared with the sulfonylurea drug glyburide. In vivo analyses revealed that ILG potently attenuated HFD-induced obesity, hypercholesterolemia, and insulin resistance. Furthermore, ILG treatment improved HFD-induced macrovesicular steatosis in the liver. Finally, ILG markedly inhibited diet-induced adipose tissue inflammation and IL-1β and caspase-1 production in white adipose tissue in ex vivo culture. These results suggest that ILG is a potential drug target for treatment of NLRP3 inflammasome-associated inflammatory diseases. PMID:25210146

  11. MIT(1), a black mamba toxin with a new and highly potent activity on intestinal contraction.

    PubMed

    Schweitz, H; Pacaud, P; Diochot, S; Moinier, D; Lazdunski, M

    1999-11-19

    Mamba intestinal toxin (MIT(1)) isolated from Dendroaspis polylepis venom is a 81 amino acid polypeptide cross-linked by five disulphide bridges. MIT(1) has a very potent action on guinea-pig intestinal contractility. MIT(1) (1 nM) potently contracts longitudinal ileal muscle and distal colon, and this contraction is equivalent to that of 40 mM K(+). Conversely MIT(1) relaxes proximal colon again as potently as 40 mM K(+). The MIT(1)-induced effects are antagonised by tetrodotoxin (1 microM) in proximal and distal colon but not in longitudinal ileum. The MIT(1)-induced relaxation of the proximal colon is reversibly inhibited by the NO synthase inhibitor L-NAME (200 microM). (125)I-labelled MIT(1) binds with a very high affinity to both ileum and brain membranes (K(d)=1.3 pM and 0.9 pM, and B(max)=30 fmol/mg and 26 fmol/mg, respectively). MIT(1) is a very highly selective toxin for a receptor present both in the CNS and in the smooth muscle and which might be an as yet unidentified K(+) channel. PMID:10567694

  12. Anticancer Activity of MPT0E028, a Novel Potent Histone Deacetylase Inhibitor, in Human Colorectal Cancer HCT116 Cells In Vitro and In Vivo

    PubMed Central

    Tsai, An-Chi; Peng, Chieh-Yu; Lai, Mei-Jung; Wang, Jing-Chi; Pan, Shiow-Lin; Teng, Che-Ming; Liou, Jing-Ping

    2012-01-01

    Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug. PMID:22928010

  13. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol.

    PubMed

    Sajish, Mathew; Schimmel, Paul

    2015-03-19

    Resveratrol is reported to extend lifespan and provide cardio-neuro-protective, anti-diabetic, and anti-cancer effects by initiating a stress response that induces survival genes. Because human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS) translocates to the nucleus under stress conditions, we considered the possibility that the tyrosine-like phenolic ring of resveratrol might fit into the active site pocket to effect a nuclear role. Here we present a 2.1 Å co-crystal structure of resveratrol bound to the active site of TyrRS. Resveratrol nullifies the catalytic activity and redirects TyrRS to a nuclear function, stimulating NAD(+)-dependent auto-poly-ADP-ribosylation of poly(ADP-ribose) polymerase 1 (PARP1). Downstream activation of key stress signalling pathways are causally connected to TyrRS-PARP1-NAD(+) collaboration. This collaboration is also demonstrated in the mouse, and is specifically blocked in vivo by a resveratrol-displacing tyrosyl adenylate analogue. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites, here a non-spliced TyrRS catalytic null reveals a new PARP1- and NAD(+)-dependent dimension to the physiological mechanism of resveratrol. PMID:25533949

  14. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators

    PubMed Central

    Flierl, Ulrike; Nero, Tracy L.; Lim, Bock; Arthur, Jane F.; Yao, Yu; Jung, Stephanie M.; Gitz, Eelo; Pollitt, Alice Y.; Zaldivia, Maria T.K.; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K.; Parker, Michael W.; Gardiner, Elizabeth E.

    2015-01-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  15. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators.

    PubMed

    Flierl, Ulrike; Nero, Tracy L; Lim, Bock; Arthur, Jane F; Yao, Yu; Jung, Stephanie M; Gitz, Eelo; Pollitt, Alice Y; Zaldivia, Maria T K; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K; Parker, Michael W; Gardiner, Elizabeth E; Peter, Karlheinz

    2015-02-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function-deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone-dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  16. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity

    PubMed Central

    Ohashi, Akihiro; Ohori, Momoko; Iwai, Kenichi; Nambu, Tadahiro; Miyamoto, Maki; Kawamoto, Tomohiro; Okaniwa, Masanori

    2015-01-01

    Centromere-associated protein E (CENP-E) regulates both chromosome congression and the spindle assembly checkpoint (SAC) during mitosis. The loss of CENP-E function causes chromosome misalignment, leading to SAC activation and apoptosis during prolonged mitotic arrest. Here, we describe the biological and antiproliferative activities of a novel small-molecule inhibitor of CENP-E, Compound-A (Cmpd-A). Cmpd-A inhibits the ATPase activity of the CENP-E motor domain, acting as a time-dependent inhibitor with an ATP-competitive-like behavior. Cmpd-A causes chromosome misalignment on the metaphase plate, leading to prolonged mitotic arrest. Treatment with Cmpd-A induces antiproliferation in multiple cancer cell lines. Furthermore, Cmpd-A exhibits antitumor activity in a nude mouse xenograft model, and this antitumor activity is accompanied by the elevation of phosphohistone H3 levels in tumors. These findings demonstrate the potency of the CENP-E inhibitor Cmpd-A and its potential as an anticancer therapeutic agent. PMID:26649895

  17. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  18. Anthelmintic properties of traditional African and Caribbean medicinal plants: identification of extracts with potent activity against Ascaris suum in vitro

    PubMed Central

    Williams, Andrew R.; Soelberg, Jens; Jäger, Anna K.

    2016-01-01

    Ascariasis affects more than 1 billion people worldwide, mainly in developing countries, causing substantial morbidity. Current treatments for Ascaris infection are based on mass drug administration (MDA) with synthetic anthelmintic drugs such as albendazole, however continual re-infection and the threat of drug resistance mean that complementary treatment options would be highly valuable. Here, we screened ethanolic extracts from 29 medicinal plants used in Africa (Ghana) and the Caribbean (US Virgin Islands) for in vitro anthelmintic properties against Ascaris suum, a swine parasite that is very closely related to the human A. lumbricoides. A wide variety of activities were seen in the extracts, from negligible to potent. Extracts from Clausena anisata, Zanthoxylum zanthoxyloides and Punica granatum were identified as the most potent with EC50 values of 74, 97 and 164 μg/mL, respectively. Our results encourage further investigation of their use as complementary treatment options for ascariasis, alongside MDA. PMID:27301442

  19. Structure-Activity Relationship of Amino Acid Tunable Lipidated Norspermidine Conjugates: Disrupting Biofilms with Potent Activity against Bacterial Persisters.

    PubMed

    Konai, Mohini M; Adhikary, Utsarga; Samaddar, Sandip; Ghosh, Chandradhish; Haldar, Jayanta

    2015-12-16

    The emergence of bacterial resistance and biofilm associated infections has created a challenging situation in global health. In this present state of affairs where conventional antibiotics are falling short of being able to provide a solution to these problems, development of novel antibacterial compounds possessing the twin prowess of antibacterial and antibiofilm efficacy is imperative. Herein, we report a library of amino acid tunable lipidated norspermidine conjugates that were prepared by conjugating both amino acids and fatty acids with the amine functionalities of norspermidine through amide bond formation. These lipidated conjugates displayed potent antibacterial activity against various planktonic Gram-positive and Gram-negative bacteria including drug-resistant superbugs such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and β-lactam-resistant Klebsiella pneumoniae. This class of nontoxic and fast-acting antibacterial molecules (capable of killing bacteria within 15 min) did not allow bacteria to develop resistance against them after several passages. Most importantly, an optimized compound in the series was also capable of killing metabolically inactive persisters and stationary phase bacteria. Additionally, this compound was capable of disrupting the preformed biofilms of S. aureus and E. coli. Therefore, this class of antibacterial conjugates have potential in tackling the challenging situation posed by both bacterial resistance as well as drug tolerance due to biofilm formation. PMID:26452096

  20. Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment.

    PubMed

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N; Allen, John A; Rogan, Sarah C; Hanson, Bonnie J; Revankar, Chetana; Robers, Matt; Doucette, Chris; Roth, Bryan L

    2009-10-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine(2B) (5-HT(2B)) receptor agonists. We have shown that activation of 5-HT(2B) receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT(2B) receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT(2B) receptor agonists (hits); 14 of these had previously been identified as 5-HT(2B) receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then "functionally profiled" (i.e., assayed in parallel for 5-HT(2B) receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC(50) data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT(2B) receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease. PMID:19570945

  1. The antimicrobial peptide pardaxin exerts potent anti-tumor activity against canine perianal gland adenoma

    PubMed Central

    Pan, Chieh-Yu; Lin, Chao-Nan; Chiou, Ming-Tang; Yu, Chao Yuan; Chen, Jyh-Yih; Chien, Chi-Hsien

    2015-01-01

    Pardaxin is an antimicrobial peptide of 33 amino acids, originally isolated from marine fish. We previously demonstrated that pardaxin has anti-tumor activity against murine fibrosarcoma, both in vitro and in vivo. In this study, we examined the anti-tumor activity, toxicity profile, and maximally-tolerated dose of pardaxin treatment in dogs with different types of refractory tumor. Local injection of pardaxin resulted in a significant reduction of perianal gland adenoma growth between 28 and 38 days post-treatment. Surgical resection of canine histiocytomas revealed large areas of ulceration, suggesting that pardaxin acts like a lytic peptide. Pardaxin treatment was not associated with significant variations in blood biochemical parameters or secretion of immune-related proteins. Our findings indicate that pardaxin has strong therapeutic potential for treating perianal gland adenomas in dogs. These data justify the veterinary application of pardaxin, and also provide invaluable information for veterinary medicine and future human clinical trials. PMID:25544775

  2. EVALUATION AND DEMONSTRATION OF THE CHEMICALLY ACTIVE FLUID BED

    EPA Science Inventory

    The report gives results of the operation of a 17-MW Chemically Active Fluid Bed (CAFB) demonstration unit, retrofitted to a natural gas boiler. The CAFB process gasifies high-sulfur, high-metals-content liquid and solid fuels. Residual oil, lignite, and bituminous coal were gasi...

  3. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  4. Oblongifolin M, an active compound isolated from a Chinese medical herb Garcinia oblongifolia, potently inhibits enterovirus 71 reproduction through downregulation of ERp57.

    PubMed

    Wang, Mengjie; Dong, Qi; Wang, Hua; He, Yaqing; Chen, Ying; Zhang, Hong; Wu, Rong; Chen, Xinchun; Zhou, Boping; He, Jason; Kung, Hsiang-Fu; Huang, Canhua; Wei, Yuquan; Huang, Jian-Dong; Xu, Hongxi; He, Ming-Liang

    2016-02-23

    There is no effective drug to treat EV71 infection yet. Traditional Chinese herbs are great resources for novel antiviral compounds. Here we showed that Oblongifolin M (OM), an active compound isolated from Garcinia oblongifolia, potently inhibited EV71 infection in a dose dependent manner. To identify its potential effectors in the host cells, we successfully identified 18 proteins from 52 differentially expressed spots by comparative proteomics studies. Further studies showed that knockdown of ERp57 inhibited viral replication through downregulating viral IRES (internal ribosome entry site) activities, whereas ectopic expression of ERp57 increased IRES activity and partly rescued the inhibitory effects of OM on viral replication. We demonstrated that OM is an effective antiviral agent; and that ERp57 is one of its cellular effectors against EV71 infection. PMID:26848777

  5. Oblongifolin M, an active compound isolated from a Chinese medical herb Garcinia oblongifolia, potently inhibits enterovirus 71 reproduction through downregulation of ERp57

    PubMed Central

    Wang, Hua; He, Yaqing; Chen, Ying; Zhang, Hong; Wu, Rong; Chen, Xinchun; Zhou, Boping; He, Jason; Kung, Hsiang-Fu; Huang, Canhua; Wei, Yuquan; Huang, Jian-dong; Xu, Hongxi; He, Ming-Liang

    2016-01-01

    There is no effective drug to treat EV71 infection yet. Traditional Chinese herbs are great resources for novel antiviral compounds. Here we showed that Oblongifolin M (OM), an active compound isolated from Garcinia oblongifolia, potently inhibited EV71 infection in a dose dependent manner. To identify its potential effectors in the host cells, we successfully identified 18 proteins from 52 differentially expressed spots by comparative proteomics studies. Further studies showed that knockdown of ERp57 inhibited viral replication through downregulating viral IRES (internal ribosome entry site) activities, whereas ectopic expression of ERp57 increased IRES activity and partly rescued the inhibitory effects of OM on viral replication. We demonstrated that OM is an effective antiviral agent; and that ERp57 is one of its cellular effectors against EV71 infection. PMID:26848777

  6. Orally available stilbene derivatives as potent HDAC inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts.

    PubMed

    Kachhadia, Virendra; Rajagopal, Sridharan; Ponpandian, Thanasekaran; Vignesh, Radhakrishnan; Anandhan, Karnambaram; Prabhu, Daivasigamani; Rajendran, Praveen; Nidhyanandan, Saranya; Roy, Anshu Mittal; Ahamed, Fakrudeen Ali; Surendran, Narayanan; Rajagopal, Sriram; Narayanan, Shridhar; Gopalan, Balasubramanian

    2016-01-27

    Herein we report the synthesis and activity of a novel class of HDAC inhibitors based on 2, 3-diphenyl acrylic acid derivatives. The compounds in this series have shown to be potent HDAC inhibitors possessing significant antiproliferative activity. Further compounds in this series were subjected to metabolic stability in human liver microsomes (HLM), mouse liver microsomes (MLM), and exhibits promising stability in both. These efforts culminated with the identification of a developmental candidate (5a), which displayed desirable PK/PD relationships, significant efficacy in the xenograft models and attractive ADME profiles. PMID:26689485

  7. Synthesis and structure-activity relationship study of benzofuran-based chalconoids bearing benzylpyridinium moiety as potent acetylcholinesterase inhibitors.

    PubMed

    Mostofi, Manizheh; Mohammadi Ziarani, Ghodsi; Mahdavi, Mohammad; Moradi, Alireza; Nadri, Hamid; Emami, Saeed; Alinezhad, Heshmatollah; Foroumadi, Alireza; Shafiee, Abbas

    2015-10-20

    A series of benzofuran-based chalconoids 6a-v were designed and synthesized as new potential AChE inhibitors. The in vitro assay of synthesized compounds 6a-v showed that most compounds had significant anti-AChE activity at micromolar or sub-micromolar levels. Among the tested compounds, 3-pyridinium derivative 6m bearing N-(2-bromobenzyl) moiety and 7-methoxy substituent on the benzofuran ring exhibited superior activity. This compound with IC₅₀ value of 0.027 μM was as potent as standard drug donepezil. PMID:26363872

  8. Identification of a novel boronic acid as a potent, selective, and orally active hormone sensitive lipase inhibitor.

    PubMed

    Ogiyama, Tomoko; Yamaguchi, Mitsuhiro; Kurikawa, Nobuya; Honzumi, Shoko; Yamamoto, Yuka; Sugiyama, Daisuke; Inoue, Shinichi

    2016-08-15

    Hormone sensitive lipase (HSL) is an attractive therapeutic target of dyslipidemia. We designed and synthesized several compounds as reversible HSL inhibitors with a focus on hydrophobic interactions, which was thought to be effective upon the HSL inhibitory activity. In these efforts, we identified boronated compound 12 showing a potent HSL inhibitory activity with an IC50 value of 7nM and a high selectivity against cholinesterases. Furthermore, compound 12 is the first boron containing HSL inhibitor that has shown an antilipolytic effect in rats after oral administration at 3mg/kg. PMID:27338659

  9. Novel triterpenoids isolated from raisins exert potent antiproliferative activities by targeting mitochondrial and Ras/Raf/ERK signaling in human breast cancer cells.

    PubMed

    Liu, Juan; Wang, Yihai; Liu, Rui Hai; He, Xiangjiu

    2016-07-13

    Raisins are produced in many regions of the world and may be eaten raw or used in cooking, baking and brewing. Bioactivity-guided fractionation of raisins was used to determine the chemical identity of bioactive constituents. Seven triterpenoids, including three novel triterpenoids, were isolated and identified. The novel triterpenoids were elucidated to be 3β,13β-dihydroxy-12,13-dihydrooleanolic acid (1), 3β,12β,13β-trihydroxy-12,13-dihydrooleanolic acid (2, TOA), and 3β,13β-dihydroxy-12,13-dihydroursolic acid (7), respectively. TOA showed the highest antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 3.60 ± 0.55 μM. Compounds 1, 3 and 7 also exhibited potent antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 7.10 ± 0.65, 10.22 ± 0.90 and 8.91 ± 1.12 μM. Compounds 1 and 2 also exhibited potent antioxidant activities. Moreover, the detailed cytotoxic mechanisms of TOA were investigated by targeting the mitochondrial and protein tyrosine kinase signaling (Ras/Raf/ERK). The results strongly demonstrated that the novel triterpenoids isolated from raisins could be promising candidates for therapy of breast cancer. PMID:27359376

  10. Identification of a Potent Inhibitor of CREB-Mediated Gene Transcription with Efficacious in Vivo Anticancer Activity

    PubMed Central

    2015-01-01

    Recent studies have shown that nuclear transcription factor cyclic adenosine monophosphate response element binding protein (CREB) is overexpressed in many different types of cancers. Therefore, CREB has been pursued as a novel cancer therapeutic target. Naphthol AS-E and its closely related derivatives have been shown to inhibit CREB-mediated gene transcription and cancer cell growth. Previously, we identified naphthamide 3a as a different chemotype to inhibit CREB’s transcription activity. In a continuing effort to discover more potent CREB inhibitors, a series of structural congeners of 3a was designed and synthesized. Biological evaluations of these compounds uncovered compound 3i (666-15) as a potent and selective inhibitor of CREB-mediated gene transcription (IC50 = 0.081 ± 0.04 μM). 666-15 also potently inhibited cancer cell growth without harming normal cells. In an in vivo MDA-MB-468 xenograft model, 666-15 completely suppressed the tumor growth without overt toxicity. These results further support the potential of CREB as a valuable cancer drug target. PMID:26023867

  11. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM).

    PubMed

    Elkamhawy, Ahmed; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Kim, Hyeon Young; Heo, Jin-Chul; Park, Woo-Kyu; Lee, Chong-Ock; Yang, Heekyoung; Kim, Kang Ho; Nam, Do-Hyun; Seol, Ho Jun; Cho, Heeyeong; Roh, Eun Joo

    2015-10-20

    Herein, we report new quinazoline-urea based compounds with potent cytotoxic activities against TMZ-resistant glioblastoma multiforme (GBM) cells. Low micromolar IC₅₀ values were exhibited over a panel of three primary GBM patient-derived cell cultures belonging to proneural (GBM-1), mesenchymal (GBM-2), and classical (GBM-3) subtypes. Eight compounds showed excellent selectivity indices for GBM cells comparing to a normal astrocyte cell line. In JC-1 assay, analogues 11, 12, 20, 22, and 24 exerted promising rates of mPTP opening induction towards proneural GBM subtype. Compounds 11, 20, and 24 bound to the translocator protein 18 kDa (TSPO) in submicromolar range using [(3)H] PK-11195 binding affinity assay. A homology model was built and docked models of 11, 12, 20, 22 and 24 were generated for describing their plausible binding modes in TSPO. In 3D clonogenic assay, compound 20 manifested potent tumoricidal effects on TMZ-resistant GBM cells even at submicromolar concentrations. In addition, CYP450 and hERG assays presented a safe toxicity profile of 20. Taken as a whole, this report presents compound 20 as a potent, selective and safe GBM cytotoxic agent which constitutes a promising direction against TMZ-resistant GBM. PMID:26355532

  12. Identification of CKD-516: a potent tubulin polymerization inhibitor with marked antitumor activity against murine and human solid tumors.

    PubMed

    Lee, Jaekwang; Kim, Soo Jin; Choi, Hojin; Kim, Young Hoon; Lim, In Taek; Yang, Hyun-mo; Lee, Chang Sik; Kang, Hee Ryong; Ahn, Soon Kil; Moon, Seung Kee; Kim, Dal-Hyun; Lee, Sungsook; Choi, Nam Song; Lee, Kyung Joo

    2010-09-01

    Tubulin polymerization inhibitors had emerged as one of promising anticancer therapeutics because of their dual mechanism of action, i.e. apoptosis by cell-cycle arrest and VDA, vascular disrupting agent. VDAs are believed to be more efficient, less toxic, and several of them are currently undergoing clinical trials. To identify novel tubulin inhibitors that possess potent cytotoxicity and strong inhibition of tubulin polymerization as well as potent in vivo antitumor efficacy, we have utilized benzophenone scaffold. Complete SAR analysis of newly synthesized analogues that were prepared by incorporation of small heterocycles (C2, C4, and C5 position) into B-ring along with the evaluation of their in vitro cytotoxicity, tubulin polymerization inhibition, and in vivo antitumor activity allowed us to identify 22 (S516). Compound 22 was found to have potent cytotoxicity against several cancer cells including P-gp overexpressing MDR positive cell line (HCT15). It also induced cell cycle arrest at G(2)/M phase, which is associated with strong inhibition of tubulin polymerization. Its in vivo efficacy was improved by preparing its (l)-valine prodrug, 65 (CKD-516), which together with greatly improved aqueous solubility has shown marked antitumor efficacy against both murine tumors (CT26 and 3LL) and human xenogratfs (HCT116 and HCT15) in mice. PMID:20690624

  13. Double point modified analogs of vitamin d as potent activators of vitamin D receptor.

    PubMed

    Nadkarni, Sharmin; Chodynski, Michal; Corcoran, Aoife; Marcinkowska, Ewa; Brown, Geoffrey; Kutner, Andrzej

    2015-01-01

    Rational design, chemical synthesis, structural analysis, molecular modeling and biological evaluation are reviewed for all the double point modified vitamin D analogs that have been developed as potential therapeutics over the last several years. The idea of double modifications was based on the 3D structure of the ligand binding domain of the model of the vitamin D receptor. It was recently proved that structural modifications in the two remote parts of the vitamin D molecule might have additive biological effects resulting in an increased functional activity and lowered calcemic side effect. Recent in vivo experiments clearly demonstrated the potential use of these analogs in new therapeutic areas such as autoimmune and hyper-proliferative diseases, including cancer and the systemic treatment of psoriasis. Although some of these analogs are already approaching clinical trials, the molecular mechanism of action and their improved efficiency still remain to be fully understood. In this review the key steps of the convergent synthetic strategies that combine the modified A-ring and the CD-ring fragment carrying the altered side-chain are presented. The advantages of using the natural alicyclic and acyclic precursors are demonstrated as well as all the modern synthetic methodologies used for combining structural fragments. The results of molecular mechanics modeling are critically examined as well as the advantages and limitations of the use of the models of vitamin D proteins for the docking experiments and the design of new analogs. The potential use of advanced structural approaches, including high resolution X-ray crystallography, is discussed as to the prospect of providing a better understanding of the observed activity of modified analogs. Biological profiles in vitro and in vivo for groups of analogs are presented in a new tabular form to illustrate structure activity relationships. PMID:25483861

  14. Identification of a series of compounds with potent antiviral activity for the treatment of enterovirus infections.

    PubMed

    MacLeod, Angus M; Mitchell, Dale R; Palmer, Nicholas J; Van de Poël, Hervé; Conrath, Katja; Andrews, Martin; Leyssen, Pieter; Neyts, Johan

    2013-07-11

    Rhinovirus (genus enterovirus) infections are responsible for many of the severe exacerbations of asthma and chronic obstructive pulmonary disease. Other members of the genus can cause life-threatening acute neurological infections. There is currently no antiviral drug approved for the treatment of such infections. We have identified a series of potent, broad-spectrum antiviral compounds that inhibit the replication of the human rhinovirus, Coxsackie virus, poliovirus, and enterovirus-71. The mechanism of action of the compounds has been established as inhibition of a lipid kinase, PI4KIIIβ. Inhibition of hepatitis C replication in a replicon assay correlated with enterovirus inhibition. PMID:24900715

  15. Bis-Arylidene Oxindole–Betulinic Acid Conjugate: A Fluorescent Cancer Cell Detector with Potent Anticancer Activity

    PubMed Central

    2015-01-01

    Molecules offering simultaneous detection and killing of cancer cells are advantageous. Hybrid of cancer cell-selective, ROS generator betulinic acid and bis-arylidene oxindole with amino propyl-linker is developed. With intrinsic fluorescence, the molecule exhibited cancer cell-specific residence. Further, it generated ROS, triggered apoptosis, and exhibited potent cytotoxicity in cancer cells selectively. We demonstrate the first example and use of isatins as betulinic acid conjugate for selective detection of cancer and subsequent killing of cancer cells via apoptosis. PMID:26005543

  16. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    SciTech Connect

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li; Madsen, Heather M.; Marrufo, Laura D.; Shieh, Huey; Messing, Dean M.; Yang, Jerry Z.; Morgan, Heidi M.; Anderson, Gary D.; Webb, Elizabeth G.; Zhang, Jian; Devraj, Rajesh V.; Monahan, Joseph B.

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  17. Central Limit Theorem: New SOCR Applet and Demonstration Activity

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas; Sanchez, Juana

    2011-01-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159

  18. Central Limit Theorem: New SOCR Applet and Demonstration Activity.

    PubMed

    Dinov, Ivo D; Christou, Nicolas; Sanchez, Juana

    2008-07-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159

  19. Novel oral histone deacetylase inhibitor, MPT0E028, displays potent growth-inhibitory activity against human B-cell lymphoma in vitro and in vivo

    PubMed Central

    Huang, Han-Li; Peng, Chieh-Yu; Lai, Mei-Jung; Chen, Chun-Han; Lee, Hsueh-Yun; Wang, Jing-Chi; Liou, Jing-Ping; Pan, Shiow-Lin; Teng, Che-Ming

    2015-01-01

    Histone deacetylase (HDAC) inhibitor has been a promising therapeutic option in cancer therapy due to its ability to induce growth arrest, differentiation, and apoptosis. In this study, we demonstrated that MPT0E028, a novel HDAC inhibitor, reduces the viability of B-cell lymphomas by inducing apoptosis and shows a more potent HDAC inhibitory effect compared to SAHA, the first HDAC inhibitor approved by the FDA. In addition to HDACs inhibition, MPT0E028 also possesses potent direct Akt targeting ability as measured by the kinome diversity screening assay. Also, MPT0E028 reduces Akt phosphorylation in B-cell lymphoma with an IC50 value lower than SAHA. Transient transfection assay revealed that both targeting HDACs and Akt contribute to the apoptosis induced by MPT0E028, with both mechanisms functioning independently. Microarray analysis also shows that MPT0E028 may regulate many oncogenes expression (e.g., TP53, MYC, STAT family). Furthermore, in vivo animal model experiments demonstrated that MPT0E028 (50–200 mg/kg, po, qd) prolongs the survival rate of mice bearing human B-cell lymphoma Ramos cells and inhibits tumor growth in BJAB xenograft model. In summary, MPT0E028 possesses strong in vitro and in vivo activity against malignant cells, representing a potential therapeutic approach for cancer therapy. PMID:25669976

  20. The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators.

    PubMed Central

    Lemaigre, F P; Ace, C I; Green, M R

    1993-01-01

    Cyclic AMP response element binding protein (CREB) activates transcription of cAMP response element (CRE)-containing promoters following an elevation of intracellular cAMP. Here we show that CREB and the highly related protein ATF-1 are also potent transcription inhibitors. Strikingly, CREB inhibits transcription of multiple activators, whose DNA-binding domains and activation regions are unrelated to one another. Inhibition requires that the CREB dimerization and DNA-binding domains are intact. However, inhibition is not dependent upon the presence of a CRE in the promoter, and does not involve heterodimer formation between CREB and the activator. The ability of an activator protein to inhibit transcription in such a promiscuous fashion has not been previously reported. Images PMID:8332500

  1. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1

    PubMed Central

    Borges, Andrew Rosa; Ptak, Roger G; Wang, Yanping; Dimitrov, Antony S; Alam, S. Munir; Wieczorek, Lindsay; Bouma, Peter; Fouts, Timothy; Jiang, Shibo; Polonis, Victoria R; Haynes, Barton F; Quinnan, Gerald V; Montefiori, David C; Dimitrov, Dimiter S

    2010-01-01

    Several human monoclonal antibodies (hmAbs) exhibit relatively potent and broad neutralizing activity against HIV-1, but there has not been much success in using them as potential therapeutics. We have previously hypothesized and demonstrated that small engineered antibodies can target highly conserved epitopes that are not accessible by full-size antibodies. However, their potency has not been comparatively evaluated with known HIV-1-neutralizing hmAbs against large panels of primary isolates. We report here the inhibitory activity of an engineered single chain antibody fragment (scFv), m9, against several panels of primary HIV-1 isolates from group M (clades A–G) using cell-free and cell-associated virus in cell line-based assays. M9 was much more potent than scFv 17b, and more potent than or comparable to the best-characterized broadly neutralizing hmAbs IgG1 b12, 2G12, 2F5 and 4e10. It also inhibited cell-to-cell transmission of HIV-1 with higher potency than enfuvirtide (t-20, Fuzeon). M9 competed with a sulfated CCR5 N-terminal peptide for binding to gp120-CD4 complex, suggesting an overlapping epitope with the coreceptor binding site. M9 did not react with phosphatidylserine (pS) and cardiolipin (CL), nor did it react with a panel of autoantigens in an antinuclear autoantibody (ANA) assay. We further found that escape mutants resistant to m9 did not emerge in an immune selection assay. these results suggest that m9 is a novel anti-HIV-1 candidate with potential therapeutic or prophylactic properties, and its epitope is a new target for drug or vaccine development. PMID:20305395

  2. Bacillus thuringiensis-derived Cry5B Has Potent Anthelmintic Activity against Ascaris suum

    PubMed Central

    Miller, Melanie M.; Scheib, Ulrike; Yiu, Ying Y.; Aroian, Raffi V.

    2013-01-01

    Ascaris suum and Ascaris lumbricoides are two closely related geo-helminth parasites that ubiquitously infect pigs and humans, respectively. Ascaris suum infection in pigs is considered a good model for A. lumbricoides infection in humans because of a similar biology and tissue migration to the intestines. Ascaris lumbricoides infections in children are associated with malnutrition, growth and cognitive stunting, immune defects, and, in extreme cases, life-threatening blockage of the digestive tract and aberrant migration into the bile duct and peritoneum. Similar effects can be seen with A. suum infections in pigs related to poor feed efficiency and performance. New strategies to control Ascaris infections are needed largely due to reduced treatment efficacies of current anthelmintics in the field, the threat of resistance development, and the general lack of new drug development for intestinal soil-transmitted helminths for humans and animals. Here we demonstrate for the first time that A. suum expresses the receptors for Bacillus thuringiensis crystal protein and novel anthelmintic Cry5B, which has been previously shown to intoxicate hookworms and which belongs to a class of proteins considered non-toxic to vertebrates. Cry5B is able to intoxicate A. suum larvae and adults and triggers the activation of the p38 mitogen-activated protein kinase pathway similar to that observed with other nematodes. Most importantly, two moderate doses of 20 mg/kg body weight (143 nM/kg) of Cry5B resulted in a near complete cure of intestinal A. suum infections in pigs. Taken together, these results demonstrate the excellent potential of Cry5B to treat Ascaris infections in pigs and in humans and for Cry5B to work effectively in the human gastrointestinal tract. PMID:23818995

  3. 6-Hydroxyflavone and Derivatives Exhibit Potent Anti-Inflammatory Activity among Mono-, Di- and Polyhydroxylated Flavones in Kidney Mesangial Cells

    PubMed Central

    Sidhu, Preetpal Singh; Desai, Umesh R.; Zhou, Qibing

    2015-01-01

    Inflammatory responses by kidney mesangial cells play a critical role in the glomerulonephritis. The anti-inflammatory potential of nineteen mono-, di- and polyhydroxylated flavones including fisetin, quercetin, morin, tricetin, gossypetin, apigenin and myricetin were investigated on rat mesangial cells with lipopolysaccharide (LPS) as the inflammatory stimuli. 6-Hydroxyflavone and 4′,6-dihydroxyflavone exhibited high activity with IC50 in the range of 2.0 μM, a much better inhibition potential in comparison to the well-studied polyhydroxylated flavones. Interestingly, the anti-inflammatory activity was not due to direct quenching of NO radicals. Investigation on derivatives with methylation, acetylation or sulfation of 6-hydroxyl group revealed that 6-methoxyflavone was the most potent with an IC50 of 192 nM. Mechanistic study indicated that the anti-inflammatory activity of 6-methoxyflavone arose via the inhibition of LPS-induced downstream inducible NO synthase in mesangial cells. The identification of 6-hydroxyflavone and 6-methoxyflavone with potent anti-inflammatory activity in kidney mesangial cells provides a new flavone scaffold and direction to develop naturally derived products for potential nephritis prevention and treatment. PMID:25790236

  4. Demonstrating Optical Activity Using an iPad

    ERIC Educational Resources Information Center

    Schwartz, Pauline M.; Lepore, Dante M.; Morneau, Brandy N.; Barratt, Carl

    2011-01-01

    Optical activity using an iPad as a source of polarized light is demonstrated. A sample crystal or solution can be placed on the iPad running a white screen app. The sample is viewed through a polarized filter that can be rotated. This setup can be used in the laboratory or with a document camera to easily project in a large lecture hall.…

  5. Structure-activity studies and analgesic efficacy of N-(3-pyridinyl)-bridged bicyclic diamines, exceptionally potent agonists at nicotinic acetylcholine receptors.

    PubMed

    Bunnelle, William H; Daanen, Jerome F; Ryther, Keith B; Schrimpf, Michael R; Dart, Michael J; Gelain, Arianna; Meyer, Michael D; Frost, Jennifer M; Anderson, David J; Buckley, Michael; Curzon, Peter; Cao, Ying-Jun; Puttfarcken, Pamela; Searle, Xenia; Ji, Jianguo; Putman, C Brent; Surowy, Carol; Toma, Lucio; Barlocco, Daniela

    2007-07-26

    A series of exceptionally potent agonists at neuronal nicotinic acetylcholine receptors (nAChRs) has been investigated. Several N-(3-pyridinyl) derivatives of bridged bicyclic diamines exhibit double-digit-picomolar binding affinities for the alpha 4 beta 2 subtype, placing them with epibatidine among the most potent nAChR ligands described to date. Structure-activity studies have revealed that substitutions, particularly hydrophilic groups in the pyridine 5-position, differentially modulate the agonist activity at ganglionic vs central nAChR subtypes, so that improved subtype selectivity can be demonstrated in vitro. Analgesic efficacy has been achieved across a broad range of pain states, including rodent models of acute thermal nociception, persistent pain, and neuropathic allodynia. Unfortunately, the hydrophilic pyridine substituents that were shown to enhance agonist selectivity for central nAChRs in vitro tend to limit CNS penetration in vivo, so that analgesic efficacy with an improved therapeutic window was not realized with those compounds. PMID:17585748

  6. Structure-Activity Study of Dihydrocinnamic Acids and Discovery of the Potent FFA1 (GPR40) Agonist TUG-469.

    PubMed

    Christiansen, Elisabeth; Due-Hansen, Maria E; Urban, Christian; Merten, Nicole; Pfleiderer, Michael; Karlsen, Kasper K; Rasmussen, Sanne S; Steensgaard, Mette; Hamacher, Alexandra; Schmidt, Johannes; Drewke, Christel; Petersen, Rasmus Koefoed; Kristiansen, Karsten; Ullrich, Susanne; Kostenis, Evi; Kassack, Matthias U; Ulven, Trond

    2010-10-14

    The free fatty acid 1 receptor (FFA1 or GPR40), which is highly expressed on pancreatic β-cells and amplifies glucose-stimulated insulin secretion, has emerged as an attractive target for the treatment of type 2 diabetes. Several FFA1 agonists containing the para-substituted dihydrocinnamic acid moiety are known. We here present a structure-activity relationship study of this compound family suggesting that the central methyleneoxy linker is preferable for the smaller compounds, whereas the central methyleneamine linker gives higher potency to the larger compounds. The study resulted in the discovery of the potent and selective full FFA1 agonist TUG-469 (29). PMID:24900217

  7. Discovery of potent CCR4 antagonists: Synthesis and structure-activity relationship study of 2,4-diaminoquinazolines.

    PubMed

    Yokoyama, Kazuhiro; Ishikawa, Noriko; Igarashi, Susumu; Kawano, Noriyuki; Hattori, Kazuyuki; Miyazaki, Takahiro; Ogino, Shin-ichi; Matsumoto, Yuzo; Takeuchi, Makoto; Ohta, Mitsuaki

    2008-07-15

    A new series of quinazolines that function as CCR4 antagonists were discovered during the screening of our corporate compound libraries. Subsequent compound optimization elucidated the structure-activity relationships and led the identification of 2-(1,4'-bipiperidine-1'-yl)-N-cycloheptyl-6,7-dimethoxyquinazolin-4-amine 14a, which showed potent inhibition in the [(35)S]GTPgammaS-binding assay (IC(50)=18nM). This compound also inhibited the chemotaxis of human and mouse CCR4-expressing cells (IC(50)=140nM, 39nM). PMID:18539035

  8. Novel STAT3 phosphorylation inhibitors exhibit potent growth suppressive activity in pancreatic and breast cancer cells

    PubMed Central

    Lin, Li; Hutzen, Brian; Zuo, Mingxin; Ball, Sarah; Deangelis, Stephanie; Foust, Elizabeth; Pandit, Bulbul; Ihnat, Michael A.; Shenoy, Satyendra S.; Kulp, Samuel; Li, Pui-Kai; Li, Chenglong; Fuchs, James; Lin, Jiayuh

    2010-01-01

    The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is frequently detected in most types of human cancer where it plays important roles in survival, drug-resistance, angiogenesis, and other functions. Targeting constitutive STAT3 signaling is thus an attractive therapeutic approach for these cancers. We have recently developed novel small molecule STAT3 inhibitors known as FLLL31 and FLLL32, which are derived from curcumin (the primary bioactive compound of turmeric). These compounds are designed to bind selectively to Janus Kinase 2 (JAK2) and the STAT3 SH2 domain, which serves crucial roles in STAT3 dimerization and signal transduction. Here we show that FLLL31 and FLLL32 are effective inhibitors of STAT3 phosphorylation, DNA binding activity, and transactivation in vitro, leading to the impediment of multiple oncogenic processes and the induction of apoptosis in pancreatic and breast cancer cell lines. FLLL31 and FLLL32 also inhibit colony formation in soft agar, cell invasion, and exhibit synergy with the anti-cancer drug doxorubicin against breast cancer cells. In addition, we show that FLLL32 can inhibit the induction of STAT3 phosphorylation by Interferon-α (IFNα) and Interleukin-6 (IL-6) in breast cancer cells. We also demonstrate that administration of FLLL32 can inhibit tumor growth and vascularity in chicken embryo xenografts as well as substantially reduce tumor volumes in mouse xenografts. Our findings highlight the potential of these new compounds and their efficacy in targeting pancreatic and breast cancers that exhibit constitutive STAT3 signaling. PMID:20215512

  9. Memory T Cell-Derived interferon-γ Instructs Potent Innate Cell Activation For Protective Immunity

    PubMed Central

    Soudja, Saidi M’Homa; Chandrabos, Ceena; Yakob, Ernest; Veenstra, Mike; Palliser, Deborah; Lauvau, Grégoire

    2014-01-01

    SUMMARY Cells of the innate immune system are essential for host defenses against primary microbial pathogen infections, yet their involvement in effective memory responses of vaccinated individuals has been poorly investigated. Here we show that memory T cells instruct innate cells to become potent effector cells in a systemic and a mucosal model of infection. Memory T cells controlled phagocyte, dendritic cell and NK or NK T cell mobilization and induction of a strong program of differentiation, which included their expression of effector cytokines and microbicidal pathways, all of which were delayed in non-vaccinated hosts. Disruption of IFN-γ-signaling in Ly6C+ monocytes, dendritic cells and macrophages impaired these processes and the control of pathogen growth. These results reveal how memory T cells, through rapid secretion of IFN-γ, orchestrate extensive modifications of host innate immune responses that are essential for effective protection of vaccinated hosts. PMID:24931122

  10. Synthesis and structure-activity relationships of novel arylpiperazines as potent antagonists of α1-adrenoceptor.

    PubMed

    Silva, Renata Oliveira; de Oliveira, Andressa Souza; Nunes Lemes, Laís Flávia; de Camargo Nascente, Luciana; Coelho do Nascimento Nogueira, Patrícia; Silveira, Edilberto R; Brand, Guilherme D; Vistoli, Giulio; Cilia, Antonio; Poggesi, Elena; Buccioni, Michela; Marucci, Gabriella; Bolognesi, Maria Laura; Romeiro, Luiz Antonio Soares

    2016-10-21

    Arylpiperazines 2-11 were synthesized, and their biological profiles at α1-adrenergic receptors (α1-ARs) assessed by binding assays in CHO cells expressing human cloned subtypes and by functional experiments in isolated rat vas deferens (α1A), spleen (α1B), and aorta (α1D). Modifications at the 1,3-benzodioxole and phenyl phamacophoric units resulted in the identification of a number of potent compounds (moderately selective with respect to the α1b-AR), in binding experiments. Notably, compound 7 (LDT451) showed a subnanomolar pKi of 9.41 towards α1a-AR. An encouragingly lower α1B-potency was a general trend for all the series of compounds, which showed α1A/D over α1B selectivity in functional assays. If adequately optimized, such peculiar selectivity could have relevance for a potential LUTS/BPH therapeutic application. PMID:27448917

  11. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo.

    PubMed

    Ranganath, Sheila; Bhandari, Ashok; Avitahl-Curtis, Nicole; McMahon, Jaimee; Wachtel, Derek; Zhang, Jenny; Leitheiser, Christopher; Bernier, Sylvie G; Liu, Guang; Tran, Tran T; Celino, Herodion; Tobin, Jenny; Jung, Joon; Zhao, Hong; Glen, Katie E; Graul, Chris; Griffin, Aliesha; Schairer, Wayne C; Higgins, Carolyn; Reza, Tammi L; Mowe, Eva; Rivers, Sam; Scott, Sonya; Monreal, Alex; Shea, Courtney; Bourne, Greg; Coons, Casey; Smith, Adaline; Tang, Kim; Mandyam, Ramya A; Masferrer, Jaime; Liu, David; Patel, Dinesh V; Fretzen, Angelika; Murphy, Craig A; Milne, G Todd; Smythe, Mark L; Carlson, Kenneth E

    2015-01-01

    Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology. PMID:26555695

  12. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo

    PubMed Central

    Ranganath, Sheila; Bhandari, Ashok; Avitahl-Curtis, Nicole; McMahon, Jaimee; Wachtel, Derek; Zhang, Jenny; Leitheiser, Christopher; Bernier, Sylvie G.; Liu, Guang; Tran, Tran T.; Celino, Herodion; Tobin, Jenny; Jung, Joon; Zhao, Hong; Glen, Katie E.; Graul, Chris; Griffin, Aliesha; Schairer, Wayne C.; Higgins, Carolyn; Reza, Tammi L.; Mowe, Eva; Rivers, Sam; Scott, Sonya; Monreal, Alex; Shea, Courtney; Bourne, Greg; Coons, Casey; Smith, Adaline; Tang, Kim; Mandyam, Ramya A.; Masferrer, Jaime; Liu, David; Patel, Dinesh V.; Fretzen, Angelika; Murphy, Craig A.; Milne, G. Todd; Smythe, Mark L.; Carlson, Kenneth E.

    2015-01-01

    Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman’s Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology. PMID:26555695

  13. Discovery of the First N-Hydroxycinnamamide-Based Histone Deacetylase 1/3 Dual Inhibitors with Potent Oral Antitumor Activity

    PubMed Central

    2015-01-01

    In our previous study, we designed and synthesized a novel series of N-hydroxycinnamamide-based HDAC inhibitors (HDACIs), among which the representative compound 14a exhibited promising HDACs inhibition and antitumor activity. In this current study, we report the development of a more potent class of N-hydroxycinnamamide-based HDACIs, using 14a as lead, among which, compound 11r gave IC50 values of 11.8, 498.1, 3.9, 2000.8, 5700.4, 308.2, and 900.4 nM for the inhibition of HDAC1, HDAC2, HDAC3, HDAC8, HDAC4, HDAC6, and HDAC11, exhibiting dual HDAC1/3 selectivity. Compounds 11e, 11r, 11w, and 11y showed excellent growth inhibition in multiple tumor cell lines. In vivo antitumor assay in U937 xenograft model identified compound 11r as a potent, orally active HDACI. To the best of our knowledge, this work constitutes the first report of oral active N-hydroxycinnamamide-based HDACIs with dual HDAC1/3 selectivity. PMID:24694055

  14. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia.

    PubMed

    Kenderian, S S; Ruella, M; Shestova, O; Klichinsky, M; Aikawa, V; Morrissette, J J D; Scholler, J; Song, D; Porter, D L; Carroll, M; June, C H; Gill, S

    2015-08-01

    Patients with chemo-refractory acute myeloid leukemia (AML) have a dismal prognosis. Chimeric antigen receptor T (CART) cell therapy has produced exciting results in CD19+ malignancies and may overcome many of the limitations of conventional leukemia therapies. We developed CART cells to target CD33 (CART33) using the anti-CD33 single chain variable fragment used in gemtuzumab ozogamicin (clone My96) and tested the activity and toxicity of these cells. CART33 exhibited significant effector functions in vitro and resulted in eradication of leukemia and prolonged survival in AML xenografts. CART33 also resulted in human lineage cytopenias and reduction of myeloid progenitors in xenograft models of hematopoietic toxicity, suggesting that permanently expressed CD33-specific CART cells would have unacceptable toxicity. To enhance the viability of CART33 as an option for AML, we designed a transiently expressed mRNA anti-CD33 CAR. Gene transfer was carried out by electroporation into T cells and resulted in high-level expression with potent but self-limited activity against AML. Thus our preclinical studies show potent activity of CART33 and indicate that transient expression of anti-CD33 CAR by RNA modification could be used in patients to avoid long-term myelosuppression. CART33 therapy could be used alone or as part of a preparative regimen prior to allogeneic transplantation in refractory AML. PMID:25721896

  15. Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania.

    PubMed Central

    Chen, M; Christensen, S B; Blom, J; Lemmich, E; Nadelmann, L; Fich, K; Theander, T G; Kharazmi, A

    1993-01-01

    Licochalcone A, an oxygenated chalcone isolated from the roots of Chinese licorice plant, inhibited the growth of both Leishmania major and Leishmania donovani promastigotes and amastigotes. The structure of the licochalcone A was established by mass and nuclear magnetic resonance spectroscopies and by synthesis, and its purity was verified by high-pressure liquid chromatography. The 50% inhibition of growth of logarithmic- and stationary-phase promastigotes of L. major, as measured by [3H]thymidine uptake, were 4 and 2.5 micrograms/ml, respectively. The growth of L. major promastigotes was totally inhibited after a 20-h incubation period with licochalcone A at 5 micrograms/ml. At a concentration of 0.5 microgram/ml, licochalcone A markedly reduced the infection rate of human peripheral blood monocyte-derived macrophages and U937 cells with L. major promastigotes and exhibited a strong intracellular killing of the parasite. These data show that intracellular Leishmania amastigotes are more susceptible than promastigotes to licochalcone A. Results of studies on the site of action of licochalcone A indicate that the target organelle appears to be the parasite mitochondria. These findings demonstrate that licochalcone A in concentrations that are nontoxic to host cells exhibits a strong antileishmanial activity and that appropriate substituted chalcones might be a new class of antileishmanial drugs. Images PMID:8109916

  16. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship

    NASA Astrophysics Data System (ADS)

    Akhtar, Muhammad Nadeem; Sakeh, Nurshafika M.; Zareen, Seema; Gul, Sana; Lo, Kong Mun; Ul-Haq, Zaheer; Shah, Syed Adnan Ali; Ahmad, Syahida

    2015-04-01

    Browning of fruits and vegetables is a serious issue in the food industry, as it damages the organoleptic properties of the final products. Overproduction of melanin causes aesthetic problems such as melisma, freckles and lentigo. In this study, a series of chalcones (1-10) have been synthesized and examined for their tryrosinase inhibitory activity. The results showed that flavokawain B (1), flavokawain A (2) and compound 3 were found to be potential tyrosinase inhibitors, indicating IC50 14.20-14.38 μM values. This demonstrates that 4-substituted phenolic compound especially at ring A exhibited significant tyrosinase inhibition. Additionally, molecular docking results showed a strong binding affinity for compounds 1-3 through chelation between copper metal and ligands. The detailed molecular docking and SARs studies correlate well with the tyrosinase inhibition studies in vitro. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and single X-ray crystallographic techniques. These findings could lead to design and discover of new tyrosinase inhibitors to control the melanine overproduction and overcome the economic loss of food industry.

  17. A Novel Affibody-Auristatin E Conjugate With a Potent and Selective Activity Against HER2+ Cell Lines.

    PubMed

    Sochaj-Gregorczyk, Alicja M; Serwotka-Suszczak, Anna M; Otlewski, Jacek

    2016-01-01

    Targeted therapy is a new type of cancer treatment that most often uses biologically active drugs attached to a monoclonal antibody. This so called antibody-drug conjugate strategy allows the use of highly toxic substances that target tumor cells specifically, leaving healthy tissues largely unaffected. Over the last few years, antibody-drug conjugates have become a powerful tool in cancer treatment. We developed and characterized a novel cytotoxic conjugate against HER2 tumors in which the antibody has been substituted with a much smaller molecule: the affibody. The conjugate is composed of the ZHER2:2891 affibody that recognizes HER2 and a highly potent cytotoxic drug auristatin E. The ZHER2:2891 molecule does not contain cysteine(s) in its amino acid sequence. We generated 3 variants of ZHER2:2891, each containing a single cysteine to allow conjugation through the maleimide group that is present in the cytotoxic component. In 2 variants, we introduced single S46C and D53C substitutions. In the third variant, a short Drug Conjugation Sequence (DCS) containing a single cysteine was introduced at the C-terminus of ZHER2:2891, resulting in ZHER2:2891-DCS. The latter variant exhibited a significantly higher conjugation yield, and therefore its cytotoxicity has been studied more thoroughly. The ZHER2:2891-DCS-MMAE conjugate killed the HER2-overexpressing SK-BR-3 and MDA-MB-453 cells efficiently (IC50 values of 5.2 and 24.8 nM, respectively). The T-47-D and MDA-MB-231 cells that express normal levels of HER2 were significantly less sensitive to the conjugate (IC50 values of 135.6 and 161.5 nM, respectively). Overall, we have demonstrated for the first time that proteins other than antibodies/antibody fragments can be successfully combined with a linker-drug module, resulting in conjugates that eliminate cancer cells selectively. PMID:27227324

  18. Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice.

    PubMed

    Kaur, Gurpreet; Jabbar, Zoobi; Athar, Mohammad; Alam, M Sarwar

    2006-07-01

    Most pomegranate (Punica granatum Linn., Punicaceae) fruit parts are known to possess enormous antioxidant activity. The present study evaluated antioxidant and hepatoprotective activity of pomegranate flowers. Alcoholic (ethanolic) extract of flowers was prepared and used in the present study. The extract was found to contain a large amount of polyphenols and exhibit enormous reducing ability, both indicative of potent antioxidant ability. The extract showed 81.6% antioxidant activity in DPPH model system. The ability of extract to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) was tested and it was found to significantly scavenge superoxide (O(2)(.-)) (by up to 53.3%), hydrogen peroxide (H(2)O(2)) (by up to 30%), hydroxyl radicals (()OH) (by up to 37%) and nitric oxide (NO) (by up to 74.5%). The extract also inhibited (.)OH induced oxidation of lipids and proteins in vitro. These results indicated pomegranate flower extract to exert a significant antioxidant activity in vitro. The efficacy of extract was tested in vivo and it was found to exhibit a potent protective activity in acute oxidative tissue injury animal model: ferric nitrilotriacetate (Fe-NTA) induced hepatotoxicity in mice. Intraperitoneal administration of 9 mg/kg body wt. Fe-NTA to mice induced oxidative stress and liver injury. Pretreatment with pomegranate flower extract at a dose regimen of 50-150 mg/kg body wt. for a week significantly and dose dependently protected against Fe-NTA induced oxidative stress as well as hepatic injury. The extract afforded up to 60% protection against hepatic lipid peroxidation and preserved glutathione (GSH) levels and activities of antioxidant enzymes viz., catalase (CAT), glutathione peroxidase (GPX) glutathione reductase (GR) and glutathione-S-transferase (GST) by up to 36%, 28.5%, 28.7%, 40.2% and 42.5% respectively. A protection against Fe-NTA induced liver injury was apparent as inhibition in the modulation of liver markers viz

  19. Design, synthesis and biological activity of new neurohypophyseal hormones analogues conformationally restricted in the N-terminal part of the molecule. Highly potent OT receptor antagonists.

    PubMed

    Kwiatkowska, Anna; Ptach, Monika; Borovičková, Lenka; Slaninová, Jiřina; Lammek, Bernard; Prahl, Adam

    2012-08-01

    In this study we present the synthesis and some pharmacological properties of fourteen new analogues of neurohypophyseal hormones conformationally restricted in the N-terminal part of the molecule. All new peptides were substituted at position 2 with cis-1-amino-4-phenylcyclohexane-1-carboxylic acid (cis-Apc). Moreover, one of the new analogues: [cis-Apc(2), Val(4)]AVP was also prepared in N-acylated forms with various bulky acyl groups. All the peptides were tested for pressor, antidiuretic, and in vitro uterotonic activities. We also determined the binding affinity of the selected compounds to human OT receptor. Our results showed that introduction of cis -Apc(2) in position 2 of either AVP or OT resulted in analogues with high antioxytocin potency. Two of the new compounds, [Mpa(1),cis-Apc(2)]AVP and [Mpa(1),cis-Apc(2),Val(4)]AVP, were exceptionally potent antiuterotonic agents (pA(2) = 8.46 and 8.40, respectively) and exhibited higher affinities for the human OT receptor than Atosiban (K (i) values 5.4 and 9.1 nM). Moreover, we have demonstrated for the first time that N -terminal acylation of AVP analogue can improve its selectivity. Using this approach, we obtained compound Aba[cis-Apc(2),Val(4)]AVP (XI) which turned out to be a moderately potent and exceptionally selective OT antagonist (pA(2) = 7.26). PMID:22038179

  20. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition

    PubMed Central

    Mimura, Naoya; Hideshima, Teru; Shimomura, Toshiyasu; Suzuki, Rikio; Ohguchi, Hiroto; Rizq, Ola; Kikuchi, Shohei; Yoshida, Yasuhiro; Cottini, Francesca; Jakubikova, Jana; Cirstea, Diana; Gorgun, Gullu; Minami, Jiro; Tai, Yu-Tzu; Richardson, Paul G.; Utsugi, Teruhiro; Iwama, Atsushi; Anderson, Kenneth C.

    2014-01-01

    The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we therefore examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, associated with downregulation of phosphorylated Akt (p-Akt), selectively in MM cell lines with high baseline p-Akt. Cytotoxicity of TAS-117 was also observed in patients MM cells, but not in normal peripheral blood mononuclear cells. Importantly, TAS-117 induced significant cytotoxicity in MM cells even in the presence of BM stromal cells, associated with inhibition of IL-6 secretion. Oral administration of TAS-117 significantly inhibited human MM cell growth in murine xenograft models. TAS-117 triggered apoptosis and autophagy, as well as induction of endoplasmic reticulum (ER) stress response with minimal expression of CHOP, a fatal ER-stress marker. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity, associated with increased CHOP and PARP cleavage and blockade of bortezomib-induced p-Akt, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. Carfilzomib-induced cytotoxicity was similarly enhanced by TAS-117. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity in vivo, associated with prolonged host survival. Our results show that selective and potent Akt inhibition by TAS-117 triggers anti-MM activities in vitro and in vivo, as well as enhances cytotoxicity of proteasome inhibition, providing the preclinical framework for clinical evaluation of selective Akt inhibitors, alone and in combination with proteasome inhibitors in MM. PMID:24934808

  1. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition.

    PubMed

    Mimura, Naoya; Hideshima, Teru; Shimomura, Toshiyasu; Suzuki, Rikio; Ohguchi, Hiroto; Rizq, Ola; Kikuchi, Shohei; Yoshida, Yasuhiro; Cottini, Francesca; Jakubikova, Jana; Cirstea, Diana; Gorgun, Gullu; Minami, Jiro; Tai, Yu-Tzu; Richardson, Paul G; Utsugi, Teruhiro; Iwama, Atsushi; Anderson, Kenneth C

    2014-08-15

    The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we, therefore, examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, associated with downregulation of phosphorylated Akt (p-Akt), selectively in MM cell lines with high baseline p-Akt. Cytotoxicity of TAS-117 was also observed in patient MM cells, but not in normal peripheral blood mononuclear cells. Importantly, TAS-117 induced significant cytotoxicity in MM cells even in the presence of BM stromal cells, associated with inhibition of IL6 secretion. Oral administration of TAS-117 significantly inhibited human MM cell growth in murine xenograft models. TAS-117 triggered apoptosis and autophagy, as well as induction of endoplasmic reticulum (ER) stress response with minimal expression of C/EBP homologous protein (CHOP), a fatal ER stress marker. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity, associated with increased CHOP and PARP cleavage and blockade of bortezomib-induced p-Akt, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. Carfilzomib-induced cytotoxicity was similarly enhanced by TAS-117. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity in vivo, associated with prolonged host survival. Our results show that selective and potent Akt inhibition by TAS-117 triggers anti-MM activities in vitro and in vivo, as well as enhances cytotoxicity of proteasome inhibition, providing the preclinical framework for clinical evaluation of selective Akt inhibitors, alone and in combination with proteasome inhibitors in MM. PMID:24934808

  2. Preclinical evaluation of novel imidazoacridinone derivatives with potent activity against experimental colorectal cancer.

    PubMed Central

    Burger, A. M.; Double, J. A.; Konopa, J.; Bibby, M. C.

    1996-01-01

    Novel imidazoacridinone derivatives, C1310 and C1311, have been evaluated for their potential to inhibit tumour cell growth in vitro and in vivo. A cell line panel, including seven human and murine colon carcinoma cell lines and three in vivo models, was used. The compounds were found to be potent inhibitors of tumour cell growth with IC50 values ranging between 10 nM and 2 microM in human colon cancer cell lines. Statistically significant tumour growth delay (P < 0.01) was observed after a single intraperitoneal (i.p.) dose of C1311 (100 mg kg-1 body weight) in MAC15A, MAC29 murine and HT29 human adenocarcinomas of the colon. Rapid accumulation of fluorescence of both C1310 and C1311 was seen in the nuclei of HT29 human colon tumour cells in culture. C1311 was also found to bind into calf thymus DNA as shown by spectrophotometric titration and thermal denaturation and to cause early inhibition of thymidine incorporation in HT29 cells in vitro. The results of this study suggest that C1311 should be considered as a candidate for clinical development. Images Figure 3 PMID:8912531

  3. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria.

    PubMed

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg(2+) could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  4. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    PubMed Central

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  5. Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents.

    PubMed

    Tiwari, Rohit; Moraski, Garrett C; Krchňák, Viktor; Miller, Patricia A; Colon-Martinez, Mariangelli; Herrero, Eliza; Oliver, Allen G; Miller, Marvin J

    2013-03-01

    The development of multidrug resistant (MDR) and extensively drug resistant (XDR) forms of tuberculosis (TB) has stimulated research efforts globally to expand the new drug pipeline. Nitroaromatic compounds, including 1,3-benzothiazin-4-ones (BTZs) and related agents, are a promising new class for the treatment of TB. Research has shown that the nitroso intermediates of BTZs that are generated in vivo cause suicide inhibition of decaprenylphosphoryl-β-D-ribose 2' oxidase (DprE1), which is responsible for cell wall arabinogalactan biosynthesis. We have designed and synthesized novel anti-TB agents inspired from BTZs and other nitroaromatic compounds. Computational studies indicated that the unsubstituted aromatic carbons of BTZ043 and related nitroaromatic compounds are the most electron-deficient and might be prone to nucleophilic attack. Our chemical studies on BTZ043 and the additional nitroaromatic compounds synthesized by us and others confirmed the postulated reactivity. The results indicate that nucleophiles such as thiolates, cyanide, and hydride induce nonenzymatic reduction of the nitro groups present in these compounds to the corresponding nitroso intermediates by addition at the unsubstituted electron-deficient aromatic carbon present in these compounds. Furthermore, we demonstrate here that these compounds are good candidates for the classical von Richter reaction. These chemical studies offer an alternate hypothesis for the mechanism of action of nitroaromatic anti-TB agents, in that the cysteine thiol(ate) or a hydride source at the active site of DprE1 may trigger the reduction of the nitro groups in a manner similar to the von Richter reaction to the nitroso intermediates, to initiate the inhibition of DprE1. PMID:23402278

  6. TOPICAL ANTIHISTAMINES DISPLAY POTENT ANTI-INFLAMMATORY ACTIVITY LINKED IN PART TO ENHANCED PERMEABILITY BARRIER FUNCTION

    PubMed Central

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis; Park, Kyungho; Roelandt, Truus; Oda, Yuko; Hupe, Melanie; Crumrine, Debra; Lee, Hae-Jin; Gschwandtner, Maria; Thyssen, Jacob P.; Trullas, Carles; Tschachler, Erwin; Feingold, Kenneth R.; Elias, Peter M.

    2012-01-01

    Systemic antagonists of the histamine type 1 and 2 receptors (H1/2r) are widely used as anti-pruritics and central sedatives, but demonstrate only modest anti-inflammatory activity. Because many inflammatory dermatoses result from defects in cutaneous barrier function, and because keratinocytes express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective, if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by: i) stimulation of epidermal differentiation, leading to thickened cornified envelopes; and ii) enhanced epidermal lipid synthesis and secretion. Since barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r antagonists likely oppose mast cell-derived histamine. In four immunologically-diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis), or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic dermatitis), topical H1/2r agonists aggravated, while H1/2r antagonists improved inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased inflammation and enhanced barrier function. These results could shift current paradigms of antihistamine utilization from a predominantly-systemic to a topical approach. PMID:23014339

  7. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells

    PubMed Central

    2010-01-01

    Background Targeting Signal Transducer and Activator of Transcription 3 (STAT3) signaling is an attractive therapeutic approach for most types of human cancers with constitutively activated STAT3. A novel small molecular STAT3 inhibitor, FLLL32 was specifically designed from dietary agent, curcumin to inhibit constitutive STAT3 signaling in multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells. Results FLLL32 was found to be a potent inhibitor of STAT3 phosphorylation, STAT3 DNA binding activity, and the expression of STAT3 downstream target genes in vitro, leading to the inhibition of cell proliferation as well as the induction of Caspase-3 and PARP cleavages in human multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cell lines. However, FLLL32 exhibited little inhibition on some tyrosine kinases containing SH2 or both SH2 and SH3 domains, and other protein and lipid kinases using a kinase profile assay. FLLL32 was also more potent than four previously reported JAK2 and STAT3 inhibitors as well as curcumin to inhibit cell viability in these cancer cells. Furthermore, FLLL32 selectively inhibited the induction of STAT3 phosphorylation by Interleukin-6 but not STAT1 phosphorylation by IFN-γ. Conclusion Our findings indicate that FLLL32 exhibits potent inhibitory activity to STAT3 and has potential for targeting multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells expressing constitutive STAT3 signaling. PMID:20712901

  8. A Newly Emerged Swine-Origin Influenza A(H3N2) Variant Dampens Host Antiviral Immunity but Induces Potent Inflammasome Activation.

    PubMed

    Cao, Weiping; Mishina, Margarita; Ranjan, Priya; De La Cruz, Juan A; Kim, Jin Hyang; Garten, Rebecca; Kumar, Amrita; García-Sastre, Adolfo; Katz, Jacqueline M; Gangappa, Shivaprakash; Sambhara, Suryaprakash

    2015-12-15

    We compared the innate immune response to a newly emerged swine-origin influenza A(H3N2) variant containing the M gene from 2009 pandemic influenza A(H1N1), termed "A(H3N2)vpM," to the immune responses to the 2010 swine-origin influenza A(H3N2) variant and seasonal influenza A(H3N2). Our results demonstrated that A(H3N2)vpM-induced myeloid dendritic cells secreted significantly lower levels of type I interferon (IFN) but produced significantly higher levels of proinflammatory cytokines and induced potent inflammasome activation. The reduction in antiviral immunity with increased inflammatory responses upon A(H3N2)vpM infection suggest that these viruses have the potential for increased disease severity in susceptible hosts. PMID:26068782

  9. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo

    PubMed Central

    Hackler, László; Ózsvári, Béla; Gyuris, Márió; Sipos, Péter; Fábián, Gabriella; Molnár, Eszter; Marton, Annamária; Faragó, Nóra; Mihály, József; Nagy, Lajos István; Szénási, Tibor; Diron, Andrea; Párducz, Árpád; Kanizsai, Iván; Puskás, László G.

    2016-01-01

    C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma. PMID:26943907

  10. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo.

    PubMed

    Hackler, László; Ózsvári, Béla; Gyuris, Márió; Sipos, Péter; Fábián, Gabriella; Molnár, Eszter; Marton, Annamária; Faragó, Nóra; Mihály, József; Nagy, Lajos István; Szénási, Tibor; Diron, Andrea; Párducz, Árpád; Kanizsai, Iván; Puskás, László G

    2016-01-01

    C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma. PMID:26943907

  11. Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.

    PubMed

    Chen, Yong; Wang, Xiaoyan; Xiang, Wei; He, Lin; Tang, Minghai; Wang, Fang; Wang, Taijin; Yang, Zhuang; Yi, Yuyao; Wang, Hairong; Niu, Ting; Zheng, Li; Lei, Lei; Li, Xiaobin; Song, Hang; Chen, Lijuan

    2016-06-01

    In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer. PMID:27186676

  12. Inhibitory activity to protein prenylation and antifungal activity of zaragozic acid D3, a potent inhibitor of squalene synthase produced by the fungus, Mollisia sp. SANK 10294.

    PubMed

    Tanimoto, T; Ohya, S; Tsujita, Y

    1998-04-01

    Recently we found novel zaragozic acids (ZAs), F-10863A (zaragozic acid D3, ZAD3), B, C and D in the culture broth of the fungus Mollisia sp. SANK 10294 as potent inhibitors of squalene synthase. There are several other enzymes that use farnesylpyrophosphate as their substrate. Among them we chose farnesyl-protein transferase and examined whether ZAD3 and F-10863B inhibit this enzyme's activity. ZAD3 and F-10863B inhibited farnesyl-protein transferase with IC50 values of 0.60 and 3.7 microM, respectively. They also inhibited geranylgeranyl-protein transferase at similar concentrations. In addition, they exhibited potent antifungal activity. PMID:9630865

  13. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver.

    PubMed Central

    Sardana, M K; Kappas, A

    1987-01-01

    Tin(IV)-protoporphyrin (Sn-protoporphyrin) potently inhibits heme degradation to bile pigments in vitro and in vivo, a property that confers upon this synthetic compound the ability to suppress a variety of experimentally induced and naturally occurring forms of jaundice in animals and humans. Utilizing rat liver heme oxygenase purified to homogeneity together with appropriate immunoquantitation techniques, we have demonstrated that Sn-protoporphyrin possesses the additional property of potently inducing the synthesis of heme oxygenase protein in liver cells while, concurrently, completely inhibiting the activity of the newly formed enzyme. Substitution of tin for the central iron atom of heme thus leads to the formation of a synthetic heme analogue that regulates heme oxygenase by a dual mechanism, which involves competitive inhibition of the enzyme for the natural substrate heme and simultaneous enhancement of new enzyme synthesis. Cobaltic(III)-protoporphyrin (Co-protoporphyrin) also inhibits heme oxygenase activity in vitro, but unlike Sn-protoporphyrin it greatly enhances the activity of the enzyme in the whole animal. Co-protoporphyrin also acts as an in vivo inhibitor of heme oxygenase; however, its inducing effect on heme oxygenase synthesis is so pronounced as to prevail in vivo over its inhibitory effect on the enzyme. These studies show that certain synthetic heme analogues possess the ability to simultaneously inhibit as well as induce the enzyme heme oxygenase in liver. The net balance between these two actions, as reflected in the rate of heme oxidation activity in the whole animal, appears to be influenced by the nature of the central metal atom of the synthetic metalloporphyrin. Images PMID:3470805

  14. Sulfonic acid polymers: Highly potent inhibition of HIV-1 and HIV-2 reverse transcriptase and antiviral activity

    SciTech Connect

    Mohan, P.; Verma, S.; Tan, G.T.; Wickramasinghe, A.; Pezzuto, J.M.; Huges, S.H.; Baba, M.

    1993-12-31

    In an extension of the authors` work in the sulfonic acid polymer area they have evaluated the reverse transcriptase (RT) inhibitory activity of several varying molecular weight aromatic and aliphatic derivatives. All the polymers possess anti-HIV activity at doses that are non-toxic to the host cells and act by inhibiting viral adsorption. In the RT assay, poly(4-styrenesulfonic acid) exhibited highly potent inhibition with IC{sub 50} values of 0.0008 {mu}M and 0.0007 {mu}M for HIV-1 and HIV-2 RT respectively. The discovery of the anti-RT potential of these derivatives provides the impetus to investigate additional intervention strategies that are coupled with the facilitated cellular penetration of these agents.

  15. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    PubMed

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-01

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. PMID:27123900

  16. Total Synthesis and Structure-Activity Relationship Study of the Potent cAMP Signaling Agonist (-)-Alotaketal A

    PubMed Central

    Huang, Jinhua; Yang, Jessica R.

    2013-01-01

    A detailed account of the first total synthesis of alotaketal A, a tricyclic spiroketal sesterterpenoid that potently activates the cAMP signaling pathway, is provided. The synthesis employs both intra- and intermolecular reductive allylation of esters for assembling one of the fragments and their coupling. A Hg(OAc)2-mediated allylic mercuration is used to introduce the C22-hydroxyl group. The subtle influence of substituents over the course of the spiroketalization process is revealed. The synthesis confirms the relative and absolute stereochemistry of (-)-alotaketal A and allows verification of alotaketal A’s effect over cAMP signaling using reporter-based FRET imaging assays with HEK 293T cells. Our studies also revealed alotaketal A’s unique activity in selectively targeting nuclear PKA signaling in living cells. PMID:23584129

  17. Identification of potent orally active factor Xa inhibitors based on conjugation strategy and application of predictable fragment recommender system.

    PubMed

    Ishihara, Tsukasa; Koga, Yuji; Iwatsuki, Yoshiyuki; Hirayama, Fukushi

    2015-01-15

    Anticoagulant agents have emerged as a promising class of therapeutic drugs for the treatment and prevention of arterial and venous thrombosis. We investigated a series of novel orally active factor Xa inhibitors designed using our previously reported conjugation strategy to boost oral anticoagulant effect. Structural optimization of anthranilamide derivative 3 as a lead compound with installation of phenolic hydroxyl group and extensive exploration of the P1 binding element led to the identification of 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzamide (33, AS1468240) as a potent factor Xa inhibitor with significant oral anticoagulant activity. We also reported a newly developed Free-Wilson-like fragment recommender system based on the integration of R-group decomposition with collaborative filtering for the structural optimization process. PMID:25523211

  18. Discovery of Potent and Orally Active p53-MDM2 Inhibitors RO5353 and RO2468 for Potential Clinical Development

    PubMed Central

    2013-01-01

    The development of small-molecule MDM2 inhibitors to restore dysfunctional p53 activities represents a novel approach for cancer treatment. In a previous communication, the efforts leading to the identification of a non-imidazoline MDM2 inhibitor, RG7388, was disclosed and revealed the desirable in vitro and in vivo pharmacological properties that this class of pyrrolidine-based inhibitors possesses. Given this richness and the critical need for a wide variety of chemical structures to ensure success in the clinic, research was expanded to evaluate additional derivatives. Here we report two new potent, selective, and orally active p53-MDM2 antagonists, RO5353 and RO2468, as follow-ups with promising potential for clinical development. PMID:24900784

  19. Discovery of Potent and Orally Active p53-MDM2 Inhibitors RO5353 and RO2468 for Potential Clinical Development.

    PubMed

    Zhang, Zhuming; Chu, Xin-Jie; Liu, Jin-Jun; Ding, Qingjie; Zhang, Jing; Bartkovitz, David; Jiang, Nan; Karnachi, Prabha; So, Sung-Sau; Tovar, Christian; Filipovic, Zoran M; Higgins, Brian; Glenn, Kelli; Packman, Kathryn; Vassilev, Lyubomir; Graves, Bradford

    2014-02-13

    The development of small-molecule MDM2 inhibitors to restore dysfunctional p53 activities represents a novel approach for cancer treatment. In a previous communication, the efforts leading to the identification of a non-imidazoline MDM2 inhibitor, RG7388, was disclosed and revealed the desirable in vitro and in vivo pharmacological properties that this class of pyrrolidine-based inhibitors possesses. Given this richness and the critical need for a wide variety of chemical structures to ensure success in the clinic, research was expanded to evaluate additional derivatives. Here we report two new potent, selective, and orally active p53-MDM2 antagonists, RO5353 and RO2468, as follow-ups with promising potential for clinical development. PMID:24900784

  20. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    SciTech Connect

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  1. Preclinical pharmacology, antitumor activity and development of pharmacodynamic markers for the novel, potent AKT inhibitor CCT128930

    PubMed Central

    Yap, Timothy A.; Walton, Mike I.; Hunter, Lisa-Jane K.; Valenti, Melanie; de Haven Brandon, Alexis; Eve, Paul D.; Ruddle, Ruth; Heaton, Simon P.; Henley, Alan; Pickard, Lisa; Vijayaraghavan, Gowri; Caldwell, John J.; Thompson, Neil T.; Aherne, Wynne; Raynaud, Florence I.; Eccles, Suzanne A.; Workman, Paul; Collins, Ian; Garrett, Michelle D.

    2016-01-01

    AKT is frequently deregulated in cancer, making it an attractive anticancer drug target. CCT128930 is a novel ATP-competitive AKT inhibitor discovered using fragment and structure-based approaches. It is a potent, advanced lead pyrrolopyrimidine compound exhibiting selectivity for AKT over PKA, achieved by targeting a single amino acid difference. CCT128930 exhibited marked antiproliferative activity and inhibited the phosphorylation of a range of AKT substrates in multiple tumor cell lines in vitro, consistent with AKT inhibition. CCT128930 caused a G1 arrest in PTEN-null U87MG human glioblastoma cells, consistent with AKT pathway blockade. Pharmacokinetic studies established that potentially active concentrations of CCT128930 could be achieved in human tumor xenografts. Furthermore, CCT128930 also blocked the phosphorylation of several downstream AKT biomarkers in U87MG tumor xenografts, indicating AKT inhibition in vivo. Antitumor activity was observed with CCT128930 in U87MG and HER2-positive, PIK3CA-mutant BT474 human breast cancer xenografts, consistent with its pharmacokinetic and pharmacodynamic properties. A quantitative immunofluorescence assay to measure the phosphorylation and total protein expression of the AKT substrate PRAS40 in hair follicles is presented. Significant decreases in pThr246 PRAS40 occurred in CCT128930-treated mouse whisker follicles in vivo and human hair follicles treated ex vivo, with minimal changes in total PRAS40. In conclusion, CCT128930 is a novel, selective and potent AKT inhibitor, which blocks AKT activity in vitro and in vivo and induces marked antitumor responses. We have also developed a novel biomarker assay for the inhibition of AKT in human hair follicles, which is currently being employed in clinical trials. PMID:21191045

  2. Thusin, a Novel Two-Component Lantibiotic with Potent Antimicrobial Activity against Several Gram-Positive Pathogens

    PubMed Central

    Xin, Bingyue; Zheng, Jinshui; Liu, Hualin; Li, Junhua; Ruan, Lifang; Peng, Donghai; Sajid, Muhammad; Sun, Ming

    2016-01-01

    Due to the rapidly increasing prevalence of multidrug-resistant bacterial strains, the need for new antimicrobial drugs to treat infections has become urgent. Bacteriocins, which are antimicrobial peptides of bacterial origin, are considered potential alternatives to conventional antibiotics and have attracted widespread attention in recent years. Among these bacteriocins, lantibiotics, especially two-component lantibiotics, exhibit potent antimicrobial activity against some clinically relevant Gram-positive pathogens and have potential applications in the pharmaceutical industry. In this study, we characterized a novel two-component lantibiotic termed thusin that consists of Thsα, Thsβ, and Thsβ' (mutation of Thsβ, A14G) and that was isolated from a B. thuringiensis strain BGSC 4BT1. Thsα and Thsβ (or Thsβ') exhibit optimal antimicrobial activity at a 1:1 ratio and act sequentially to affect target cells, and they are all highly thermostable (100°C for 30 min) and pH tolerant (pH 2.0 to 9.0). Thusin shows remarkable efficacy against all tested Gram-positive bacteria and greater activities than two known lantibiotics thuricin 4A-4 and ticin A4, and one antibiotic vancomycin against various bacterial pathogens (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus (MRSA), Staphylococcus sciuri, Enterococcus faecalis, and Streptococcus pneumoniae). Moreover, thusin is also able to inhibit the outgrowth of B. cereus spores. The potent antimicrobial activity of thusin against some Gram-positive pathogens indicates that it has potential for the development of new drugs. PMID:27486447

  3. Thusin, a Novel Two-Component Lantibiotic with Potent Antimicrobial Activity against Several Gram-Positive Pathogens.

    PubMed

    Xin, Bingyue; Zheng, Jinshui; Liu, Hualin; Li, Junhua; Ruan, Lifang; Peng, Donghai; Sajid, Muhammad; Sun, Ming

    2016-01-01

    Due to the rapidly increasing prevalence of multidrug-resistant bacterial strains, the need for new antimicrobial drugs to treat infections has become urgent. Bacteriocins, which are antimicrobial peptides of bacterial origin, are considered potential alternatives to conventional antibiotics and have attracted widespread attention in recent years. Among these bacteriocins, lantibiotics, especially two-component lantibiotics, exhibit potent antimicrobial activity against some clinically relevant Gram-positive pathogens and have potential applications in the pharmaceutical industry. In this study, we characterized a novel two-component lantibiotic termed thusin that consists of Thsα, Thsβ, and Thsβ' (mutation of Thsβ, A14G) and that was isolated from a B. thuringiensis strain BGSC 4BT1. Thsα and Thsβ (or Thsβ') exhibit optimal antimicrobial activity at a 1:1 ratio and act sequentially to affect target cells, and they are all highly thermostable (100°C for 30 min) and pH tolerant (pH 2.0 to 9.0). Thusin shows remarkable efficacy against all tested Gram-positive bacteria and greater activities than two known lantibiotics thuricin 4A-4 and ticin A4, and one antibiotic vancomycin against various bacterial pathogens (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus (MRSA), Staphylococcus sciuri, Enterococcus faecalis, and Streptococcus pneumoniae). Moreover, thusin is also able to inhibit the outgrowth of B. cereus spores. The potent antimicrobial activity of thusin against some Gram-positive pathogens indicates that it has potential for the development of new drugs. PMID:27486447

  4. Preclinical pharmacology, antitumor activity, and development of pharmacodynamic markers for the novel, potent AKT inhibitor CCT128930.

    PubMed

    Yap, Timothy A; Walton, Mike I; Hunter, Lisa-Jane K; Valenti, Melanie; de Haven Brandon, Alexis; Eve, Paul D; Ruddle, Ruth; Heaton, Simon P; Henley, Alan; Pickard, Lisa; Vijayaraghavan, Gowri; Caldwell, John J; Thompson, Neil T; Aherne, Wynne; Raynaud, Florence I; Eccles, Suzanne A; Workman, Paul; Collins, Ian; Garrett, Michelle D

    2011-02-01

    AKT is frequently deregulated in cancer, making it an attractive anticancer drug target. CCT128930 is a novel ATP-competitive AKT inhibitor discovered using fragment- and structure-based approaches. It is a potent, advanced lead pyrrolopyrimidine compound exhibiting selectivity for AKT over PKA, achieved by targeting a single amino acid difference. CCT128930 exhibited marked antiproliferative activity and inhibited the phosphorylation of a range of AKT substrates in multiple tumor cell lines in vitro, consistent with AKT inhibition. CCT128930 caused a G(1) arrest in PTEN-null U87MG human glioblastoma cells, consistent with AKT pathway blockade. Pharmacokinetic studies established that potentially active concentrations of CCT128930 could be achieved in human tumor xenografts. Furthermore, CCT128930 also blocked the phosphorylation of several downstream AKT biomarkers in U87MG tumor xenografts, indicating AKT inhibition in vivo. Antitumor activity was observed with CCT128930 in U87MG and HER2-positive, PIK3CA-mutant BT474 human breast cancer xenografts, consistent with its pharmacokinetic and pharmacodynamic properties. A quantitative immunofluorescence assay to measure the phosphorylation and total protein expression of the AKT substrate PRAS40 in hair follicles is presented. Significant decreases in pThr246 PRAS40 occurred in CCT128930-treated mouse whisker follicles in vivo and human hair follicles treated ex vivo, with minimal changes in total PRAS40. In conclusion, CCT128930 is a novel, selective, and potent AKT inhibitor that blocks AKT activity in vitro and in vivo and induces marked antitumor responses. We have also developed a novel biomarker assay for the inhibition of AKT in human hair follicles, which is currently being used in clinical trials. PMID:21191045

  5. Structure-Based Design of Potent Bcl-2/Bcl-xL Inhibitors with Strong in Vivo Antitumor Activity

    SciTech Connect

    Zhou, Haibin; Aguilar, Angelo; Chen, Jianfang; Bai, Longchuan; Liu, Liu; Meagher, Jennifer L.; Yang, Chao-Yie; McEachern, Donna; Cong, Xin; Stuckey, Jeanne A.; Wang, Shaomeng

    2012-08-21

    Bcl-2 and Bcl-xL are key apoptosis regulators and attractive cancer therapeutic targets. We have designed and optimized a class of small-molecule inhibitors of Bcl-2 and Bcl-xL containing a 4,5-diphenyl-1H-pyrrole-3-carboxylic acid core structure. A 1.4 {angstrom} resolution crystal structure of a lead compound, 12, complexed with Bcl-xL has provided a basis for our optimization. The most potent compounds, 14 and 15, bind to Bcl-2 and Bcl-xL with subnanomolar K{sub i} values and are potent antagonists of Bcl-2 and Bcl-xL in functional assays. Compounds 14 and 15 inhibit cell growth with low nanomolar IC{sub 50} values in multiple small-cell lung cancer cell lines and induce robust apoptosis in cancer cells at concentrations as low as 10 nM. Compound 14 also achieves strong antitumor activity in an animal model of human cancer.

  6. Design, synthesis, and structure-activity relationship studies of novel 3-alkylindole derivatives as selective and highly potent myeloperoxidase inhibitors.

    PubMed

    Soubhye, Jalal; Aldib, Iyas; Elfving, Betina; Gelbcke, Michel; Furtmüller, Paul G; Podrecca, Manuel; Conotte, Raphaël; Colet, Jean-Marie; Rousseau, Alexandre; Reye, Florence; Sarakbi, Ahmad; Vanhaeverbeek, Michel; Kauffmann, Jean-Michel; Obinger, Christian; Nève, Jean; Prévost, Martine; Zouaoui Boudjeltia, Karim; Dufrasne, Francois; Van Antwerpen, Pierre

    2013-05-23

    Due to its production of potent antimicrobial oxidants including hypochlorous acid, human myeloperoxidase (MPO) plays a critical role in innate immunity and inflammatory diseases. Thus MPO is an attractive target in drug design. (Aminoalkyl)fluoroindole derivatives were detected to be very potent MPO inhibitors; however, they also promote inhibition of the serotonin reuptake transporter (SERT) at the same concentration range. Via structure-based drug design, a new series of MPO inhibitors derived from 3-alkylindole were synthesized and their effects were assessed on MPO-mediated taurine chlorination and low-density lipoprotein oxidation as well as on inhibition of SERT. The fluoroindole compound with three carbons in the side chain and one amide group exhibited a selectivity index of 35 (Ki/IC50) with high inhibition of MPO activity (IC50 = 18 nM), whereas its effect on SERT was in the micromolar range. Structure-function relationships, mechanism of action, and safety of the molecule are discussed. PMID:23581551

  7. Novel tricyclic indeno[2, 1-d]pyrimidines with dual antiangiogenic and cytotoxic activities as potent antitumor agents

    PubMed Central

    Gangjee, Aleem; Zhao, Ying; Ihnat, Michael A.; Thorpe, Jessica E.; Bailey-Downs, Lora C.; Kisliuk, Roy L.

    2012-01-01

    We designed, synthesized and evaluated thirteen novel tricyclic indeno[2,1-d]pyrimidines as RTK inhibitors. These analogues were synthesized via a Dieckmann condensation of 1,2-phenylenediacetonitrile followed by cyclocondensation with guanidine carbonate to afford the 2-amino-3,9-dihydro-indeno[2,1-d]pyrimidin-4-one. Sulfonation of the 4-position followed by displacement with appropriately substituted anilines afforded the target compounds. These compounds were potent inhibitors of platelet-derived growth factor receptor β (PDGFRβ) and inhibited angiogenesis in the chicken embryo chorioallantonic membrane (CAM) assay compared to standards. In addition, compound 7 had a two digit nanomolar GI50 against nine tumor cell lines, a submicromolar GI50 against twenty nine of other tumor cell lines in the preclinical NCI 60 tumor cell line panel. Compound 7 also demonstrated significant in vivo inhibition of tumor growth and angiogenesis in a B16-F10 syngeneic mouse melanoma model. PMID:22739090

  8. The Antipancreatic Cancer Activity of OSI-027, a Potent and Selective Inhibitor of mTORC1 and mTORC2.

    PubMed

    Chen, Bo; Xu, Ming; Zhang, Hui; Xu, Ming-zheng; Wang, Xu-jing; Tang, Qing-he; Tang, Jian-ying

    2015-10-01

    In the present study, we investigated the potential activity of OSI-027, a potent and selective mammalian target of rapamycin (mTOR) complex 1/2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells both in vitro and in vivo. We demonstrated that OSI-027 inhibited survival and growth of both primary and transformed (PANC-1 and MIA PaCa-2 lines) human pancreatic cancer cells. Meanwhile, OSI-027 induced caspase-dependent apoptotic death of the pancreatic cancer cells. On the other hand, caspase inhibitors alleviated cytotoxicity by OSI-027. At the molecular level, OSI-027 treatment blocked mTORC1 and mTORC2 activation simultaneously, without affecting ERK-mitogen-activated protein kinase activation. Importantly, OSI-027 activated cytoprotective autophagy in the above cancer cells. Whereas pharmacological blockage of autophagy or siRNA knockdown of Beclin-1 significantly enhanced the OSI-027-induced activity against pancreatic cancer cells. Specifically, a relatively low dose of OSI-027 sensitized gemcitabine-induced pancreatic cancer cell death in vitro. Further, administration of OSI-027 or together with gemcitabine dramatically inhibited PANC-1 xenograft growth in severe combined immunodeficiency mice, leading to significant mice survival improvement. In summary, the preclinical results of this study suggest that targeting mTORC1/2 synchronously by OSI-027 could be further investigated as a valuable treatment for pancreatic cancer. PMID:26284306

  9. Residential construction demonstration project, Cycle II: Active ventilation

    SciTech Connect

    Not Available

    1991-01-01

    This report documents the analysis of the performance of natural and mechanical ventilation in Pacific Northwest homes. The analysis was part of Cycle II of the Residential Construction Demonstration Project, sponsored by Bonneville Power Administration (BPA). Since 1986, the Residential Construction Demonstration Project (RCDP) has sponsored the collection of data on energy efficient homes in the Pacific Northwest that comply with these new standards and requirements. Cycle II of RCDP was conducted between September 1987 and April 1990. It concentrated on energy innovations in homes built to the Super Good Cents specification. All of the test homes have electric heat and mechanical ventilation systems. Seven different types of active ventilation systems are represented in the homes. Three of these system types are equipped with heat recovery devices, and are represented in approximately a quarter of the test homes. The potential for both natural and mechanical ventilation was measured. Potential structural leakage was measured by blower door testing. Flow rate and operating time of mechanical ventilation systems were measured with flow hoods and hour meters. Actual ventilation was measured by using a passive tracer gas technique for several weeks during the heating season and at times of normal occupancy.

  10. Residential construction demonstration project, Cycle II: Active ventilation

    SciTech Connect

    Not Available

    1991-12-31

    This report documents the analysis of the performance of natural and mechanical ventilation in Pacific Northwest homes. The analysis was part of Cycle II of the Residential Construction Demonstration Project, sponsored by Bonneville Power Administration (BPA). Since 1986, the Residential Construction Demonstration Project (RCDP) has sponsored the collection of data on energy efficient homes in the Pacific Northwest that comply with these new standards and requirements. Cycle II of RCDP was conducted between September 1987 and April 1990. It concentrated on energy innovations in homes built to the Super Good Cents specification. All of the test homes have electric heat and mechanical ventilation systems. Seven different types of active ventilation systems are represented in the homes. Three of these system types are equipped with heat recovery devices, and are represented in approximately a quarter of the test homes. The potential for both natural and mechanical ventilation was measured. Potential structural leakage was measured by blower door testing. Flow rate and operating time of mechanical ventilation systems were measured with flow hoods and hour meters. Actual ventilation was measured by using a passive tracer gas technique for several weeks during the heating season and at times of normal occupancy.

  11. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  12. Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish.

    PubMed

    Jin, Seori; Cho, Kyung-Hyun

    2011-07-01

    Advanced glycation end products contribute to the pathogenesis of diabetic complications and atherosclerosis. Aqueous extracts of ground pepper, cinnamon, rosemary, ginger, and clove were analyzed and tested for anti-atherosclerotic activity in vitro and in vivo using hypercholesterolemic zebrafish. Cinnamon and clove extracts (at final 10 μg/mL) had the strongest anti-glycation and antioxidant activity in this study. Cinnamon and clove had the strongest inhibition of activity against copper-mediated low-density lipoprotein (LDL) oxidation and LDL phagocytosis by macrophages. Cinnamon or clove extracts had potent cholesteryl ester transfer protein (CETP) inhibitory activity in a concentration-dependent manner. They exhibited hypolipidemic activity in a hypercholesterolemic zebrafish model; the clove extract-treated group had a 68% and 80% decrease in serum cholesterol and TG levels, respectively. The clove extract-fed group had the smallest increase in body weight and height and the strongest antioxidant activity following a 5-week high cholesterol diet. Hydrophilic ingredients of cinnamon and clove showed potent activities to suppress the incidence of atherosclerosis and diabetes via strong antioxidant potential, prevention of apoA-I glycation and LDL-phagocytosis, inhibition of CETP, and hypolipidemic activity. These results suggest the potential to develop a new functional dietary agent to treat chronic metabolic diseases, such as hyperlipidemia and diabetes. PMID:21443916

  13. Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator.

    PubMed Central

    Kato, N; Lan, K H; Ono-Nita, S K; Shiratori, Y; Omata, M

    1997-01-01

    The hepatitis C virus (HCV) nonstructural region 5A (NS5A) protein, without its 146 amino-terminal amino acids and fused to the DNA-binding domain of GAL4, strongly activates transcription in yeast and human hepatoma cells. Transcriptional activation by the HCV NS5A protein may play a role in viral replication and hepatocarcinogenesis. PMID:9343247

  14. Biological activities of novel zaragozic acids, the potent inhibitors of squalene synthase, produced by the fungus, Mollisia sp. SANK 10294.

    PubMed

    Tanimoto, T; Hamano, K; Onodera, K; Hosoya, T; Kakusaka, M; Hirayama, T; Shimada, Y; Koga, T; Tsujita, Y

    1997-05-01

    Four novel zaragozic acids, F-10863A, B, C and D, were isolated from a culture broth of the fungus Mollisia sp. SANK 10294. F-10863 compounds contain a 4,6,7-trihydroxy-2,8-dioxyobicyclo-[3.2.1]octane-3,4,5-tricarboxyl ic acid core like previously reported zaragozic acids, but the structures of the side chains are different. Recently, it was found that F-10863A is identical to zaragozic acid D3, while the other three are novel compounds. F-10863 compounds are potent inhibitors of squalene synthase like previously reported zaragozic acids, and, furthermore, they exhibit serum cholesterol-lowering activity in vivo. PMID:9207908

  15. Halichoblelide D, a New Elaiophylin Derivative with Potent Cytotoxic Activity from Mangrove-Derived Streptomyces sp. 219807.

    PubMed

    Han, Ying; Tian, Erli; Xu, Dongbo; Ma, Min; Deng, Zixin; Hong, Kui

    2016-01-01

    During our search for interesting bioactive secondary metabolites from mangrove actinomycetes, the strain Streptomyces sp. 219807 which produced a high elaiophylin yield of 4486 mg/L was obtained. A new elaiophylin derivative, halichoblelide D (1), along with seven known analogues 2-8 was isolated and identified from the culture broth. Their chemical structures were determined by detailed analysis of 1D and 2D NMR and HRMS data. The absolute configuration of halichoblelide D (1) was confirmed by comparing the CD spectrum with those of the reported analogues. Compounds 1-7 exhibited potent cytotoxic activities against HeLa and MCF-7 cells with IC50 values ranging from 0.19 to 2.12 μM. PMID:27463707

  16. Triggering through NOD-2 Differentiates Bone Marrow Precursors to Dendritic Cells with Potent Bactericidal activity

    PubMed Central

    Khan, Nargis; Aqdas, Mohammad; Vidyarthi, Aurobind; Negi, Shikha; Pahari, Susanta; Agnihotri, Tapan; Agrewala, Javed N.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in bridging innate and adaptive immunity by activating naïve T cells. The role of pattern recognition receptors like Toll-Like Receptors and Nod-Like Receptors expressed on DCs is well-defined in the recognition of the pathogens. However, nothing is precisely studied regarding the impact of NOD-2 signaling during the differentiation of DCs. Consequently, we explored the role of NOD-2 signaling in the differentiation of DCs and therefore their capability to activate innate and adaptive immunity. Intriguingly, we observed that NOD-2 stimulated DCs (nDCs) acquired highly activated and matured phenotype and exhibited substantially greater bactericidal activity by robust production of nitric oxide. The mechanism involved in improving the functionality of nDCs was dependent on IFN-αβ signaling, leading to the activation of STAT pathways. Furthermore, we also observed that STAT-1 and STAT-4 dependent maturation and activation of DCs was under the feedback mechanism of SOCS-1 and SOCS-3 proteins. nDCs acquired enhanced potential to activate chiefly Th1 and Th17 immunity. Taken together, these results suggest that nDCs can be exploited as an immunotherapeutic agent in bolstering host immunity and imparting protection against the pathogens. PMID:27265209

  17. Activity-guided fractionation and evaluation of potent antioxidants from extract of angel wings mushroom, Pleurotus porrigens (higher Basidiomycetes).

    PubMed

    Yim, Hip Seng; Chye, Fook Yee; Mah, Sook Yee; Sia, Chiaw Mei; Samuagam, Loshnie; Ho, Chun Wai

    2013-01-01

    Pleurotus porrigens is a well-known edible, wild mushroom enjoyed as a delicacy by aborigines in Sabah and as source of income for the aborigines who collect and sell them at tamu (local market). This study aimed to evaluate the antioxidant activity in vitro and identify potent antioxidative components of aqueous extracts of P. porrigens. The antioxidant activities were evaluated using DPPH radical scavenging ability, ABTS radical cation inhibition activity, ferric reducing/antioxidant power, and total phenolic content. Activity-guided purifications based on DPPH radical scavenging ability resulted in 5 subfractions (SF). The highest DPPH radical scavenging ability was found in SF-III and SF-IV, but all were lower than butylated hydroxyanisole (BHA) and α-tocopherol. Analysis with high-performance liquid chromatography-diode array detectors found presence of ascorbic acid and (+)-catechin in SFs of P. porrigens, as well as some unidentified components that may have contributed to the radical scavenging ability. In conclusion, aqueous extract of P. porrigens possesses promising antioxidant activities, although they are lesser in their partially purified SFs. Nonetheless, P. porrigens could be promoted as an antioxidant-rich food as part of a normal diet that provides antioxidative benefit. PMID:23510280

  18. Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV.

    PubMed

    Vamvaka, Evangelia; Arcalis, Elsa; Ramessar, Koreen; Evans, Abbey; O'Keefe, Barry R; Shattock, Robin J; Medina, Vicente; Stöger, Eva; Christou, Paul; Capell, Teresa

    2016-06-01

    Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV-endemic regions such as sub-Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of (OS) GRFT in the best-performing plants was 223 μg/g dry seed weight. We also established a one-step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger-scale process to facilitate inexpensive downstream processing. (OS) GRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole-cell assays using purified (OS) GRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure (OS) GRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom-to-operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component. PMID:26800650

  19. Exploring pharmacological activities and signaling of morphinans substituted in position 6 as potent agonists interacting with the μ opioid receptor

    PubMed Central

    2014-01-01

    Background Opioid analgesics are the most effective drugs for the treatment of moderate to severe pain. However, they also produce several adverse effects that can complicate pain management. The μ opioid (MOP) receptor, a G protein-coupled receptor, is recognized as the opioid receptor type which primarily mediates the pharmacological actions of clinically used opioid agonists. The morphinan class of analgesics including morphine and oxycodone are of main importance as therapeutically valuable drugs. Though the natural alkaloid morphine contains a C-6-hydroxyl group and the semisynthetic derivative oxycodone has a 6-carbonyl function, chemical approaches have uncovered that functionalizing position 6 gives rise to a range of diverse activities. Hence, position 6 of N-methylmorphinans is one of the most manipulated sites, and is established to play a key role in ligand binding at the MOP receptor, efficacy, signaling, and analgesic potency. We have earlier reported on a chemically innovative modification in oxycodone resulting in novel morphinans with 6-acrylonitrile incorporated substructures. Results This study describes in vitro and in vivo pharmacological activities and signaling of new morphinans substituted in position 6 with acrylonitrile and amido functions as potent agonists and antinociceptive agents interacting with MOP receptors. We show that the presence of a 6-cyano group in N-methylmorphinans has a strong influence on the binding to the opioid receptors and post-receptor signaling. One 6-cyano-N-methylmorphinan of the series was identified as the highest affinity and most selective MOP agonist, and very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, this MOP agonist showed to be greatly effective against thermal and chemical nociception in mice with marked increased antinociceptive potency than the lead molecule oxycodone. Conclusion Development of such novel chemotypes by targeting

  20. Bacterial Riboswitches and Ribozymes Potently Activate the Human Innate Immune Sensor PKR.

    PubMed

    Hull, Chelsea M; Anmangandla, Ananya; Bevilacqua, Philip C

    2016-04-15

    The innate immune system provides the first line of defense against pathogens through the recognition of nonspecific patterns in RNA to protect the cell in a generalized way. The human RNA-activated protein kinase, PKR, is a dsRNA binding protein and an essential sensor in the innate immune response, which recognizes viral and bacterial pathogens through their RNAs. Upon activation via RNA-dependent autophosphorylation, PKR phosphorylates the eukaryotic initiation factor eIF2α, leading to termination of translation. PKR has a well-characterized role in recognizing viral RNA, where it binds long stretches of double-stranded RNA nonsequence specifically to promote activation; however, the mechanism by which bacterial RNA activates PKR and the mode by which self RNA avoids activating PKR are unknown. We characterized activation of PKR by three functional bacterial RNAs with pseudoknots and extensive tertiary structure: the cyclic di-GMP riboswitch, the glmS riboswitch-ribozyme, and the twister ribozyme, two of which are ligand-activated. These RNAs were found to activate PKR with comparable potency to long dsRNA. Enzymatic structure mapping in the absence and presence of PKR reveals a clear PKR footprint and provides a structural basis for how these bacterial RNAs activate PKR. In the case of the cyclic di-GMP riboswitch and the glmS riboswitch-ribozyme, PKR appears to dimerize on the peripheral double-stranded regions of the native RNA tertiary structure. Overall, these results provide new insights into how PKR acts as an innate immune signaling protein for the presence of bacteria and suggest a reason for the apparent absence of protein-free riboswitches and ribozymes in the human genome. PMID:27011290

  1. Benzoxazolone Carboxamides as Potent Acid Ceramidase Inhibitors: Synthesis and Structure-Activity Relationship (SAR) Studies.

    PubMed

    Bach, Anders; Pizzirani, Daniela; Realini, Natalia; Vozella, Valentina; Russo, Debora; Penna, Ilaria; Melzig, Laurin; Scarpelli, Rita; Piomelli, Daniele

    2015-12-10

    Ceramides are lipid-derived intracellular messengers involved in the control of senescence, inflammation, and apoptosis. The cysteine amidase, acid ceramidase (AC), hydrolyzes these substances into sphingosine and fatty acid and, by doing so, regulates their signaling activity. AC inhibitors may be useful in the treatment of pathological conditions, such as cancer, in which ceramide levels are abnormally reduced. Here, we present a systematic SAR investigation of the benzoxazolone carboxamides, a recently described class of AC inhibitors that display high potency and systemic activity in mice. We examined a diverse series of substitutions on both benzoxazolone ring and carboxamide side chain. Several modifications enhanced potency and stability, and one key compound with a balanced activity-stability profile (14) was found to inhibit AC activity in mouse lungs and cerebral cortex after systemic administration. The results expand our arsenal of AC inhibitors, thereby facilitating the use of these compounds as pharmacological tools and their potential development as drug leads. PMID:26560855

  2. Identification of potent anticancer activity in Ximenia americana aqueous extracts used by African traditional medicine

    SciTech Connect

    Voss, Cristina; Eyol, Erguel; Berger, Martin R. . E-mail: m.berger@dkfz.de

    2006-03-15

    The antineoplastic activity of a plant powder used in African traditional medicine for treating cancer was investigated by analyzing the activity of various extracts in vitro. The most active, aqueous extract was subsequently subjected to a detailed investigation in a panel of 17 tumor cell lines, showing an average IC{sub 5} of 49 mg raw powder/ml medium. The sensitivity of the cell lines varied by two orders of magnitude, from 1.7 mg/ml in MCF7 breast cancer cells to 170 mg/ml in AR230 chronic-myeloid leukemia cells. Immortalized, non-tumorigenic cell lines showed a marginal sensitivity. In addition, kinetic and recovery experiments performed in MCF7 and U87-MG cells and a comparison with the antineoplastic activity of miltefosine, gemcitabine, and cisplatinum in MCF7, U87-MG, HEp2, and SAOS2 cells revealed no obvious similarity between the sensitivity profiles of the extract and the three standard agents, suggesting a different mechanism of cytotoxicity. The in vivo antitumor activity was determined in the CC531 colorectal cancer rat model. Significant anticancer activity was found following administration of equitoxic doses of 100 (perorally) and 5 (intraperitoneally) mg raw powder/kg, indicating a 95% reduced activity following intestinal absorption. By sequencing the mitochondrial gene for the large subunit of the ribulose bis-phosphate carboxylase (rbcL) in DNA from the plant material, the source plant was identified as Ximenia americana. A physicochemical characterization showed that the active antineoplastic component(s) of the plant material are proteins with galactose affinity. Moreover, by mass spectrometry, one of these proteins was shown to contain a stretch of 11 amino acids identical to a tryptic peptide from the ribosome-inactivating protein ricin.

  3. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    SciTech Connect

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  4. Activity of Debio1452, a FabI Inhibitor with Potent Activity against Staphylococcus aureus and Coagulase-Negative Staphylococcus spp., Including Multidrug-Resistant Strains

    PubMed Central

    Rhomberg, Paul R.; Kaplan, Nachum; Jones, Ronald N.; Farrell, David J.

    2015-01-01

    Staphylococcus aureus and coagulase-negative staphylococci (CoNS) are responsible for a wide variety of human infections. The investigational antibacterial Debio1450 (previously AFN-1720), a prodrug of Debio1452 (previously AFN-1252), specifically targets staphylococci without significant activity against other Gram-positive or Gram-negative species. Debio1452 inhibits FabI, an enzyme critical to fatty acid biosynthesis in staphylococci. The activity of Debio1452 against CoNS, methicillin-susceptible S. aureus (MSSA), and methicillin-resistant S. aureus (MRSA), including significant clones, was determined. A globally diverse collection of 574 patient isolates from 35 countries was tested that included CoNS (6 species, 103 strains), MSSA (154 strains), MRSA (163 strains), and molecularly characterized strains (including spa-typed MRSA clones; 154 strains). The isolates were tested for susceptibility by CLSI broth microdilution methods against Debio1452 and 10 comparators. The susceptibility rates for the comparators were determined using CLSI and EUCAST breakpoint criteria. All S. aureus and CoNS strains were inhibited by Debio1452 concentrations of ≤0.12 and ≤0.5 μg/ml, respectively. The MIC50s for MSSA, MRSA, and molecularly characterized MRSA strains were 0.004 μg/ml, and the MIC90s ranged from 0.008 to 0.03 μg/ml. The MICs were higher for the CoNS isolates (MIC50/90, 0.015/0.12 μg/ml). Among S. aureus strains, resistance was common for erythromycin (61.6%), levofloxacin (49.0%), clindamycin (27.6%), tetracycline (15.7%), and trimethoprim-sulfamethoxazole (7.0%). Debio1452 demonstrated potent activity against MSSA, MRSA, and CoNS. Debio1452 showed significantly greater activity overall (MIC50, 0.004 μg/ml) than the other agents tested against these staphylococcal species, which included dominant MRSA clones and strains resistant to currently utilized antimicrobial agents. PMID:25691627

  5. MLi-2, a Potent, Selective, and Centrally Active Compound for Exploring the Therapeutic Potential and Safety of LRRK2 Kinase Inhibition.

    PubMed

    Fell, Matthew J; Mirescu, Christian; Basu, Kallol; Cheewatrakoolpong, Boonlert; DeMong, Duane E; Ellis, J Michael; Hyde, Lynn A; Lin, Yinghui; Markgraf, Carrie G; Mei, Hong; Miller, Michael; Poulet, Frederique M; Scott, Jack D; Smith, Michelle D; Yin, Zhizhang; Zhou, Xiaoping; Parker, Eric M; Kennedy, Matthew E; Morrow, John A

    2015-12-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of familial and sporadic Parkinson's disease (PD). That the most prevalent mutation, G2019S, leads to increased kinase activity has led to a concerted effort to identify LRRK2 kinase inhibitors as a potential disease-modifying therapy for PD. An internal medicinal chemistry effort identified several potent and highly selective compounds with favorable drug-like properties. Here, we characterize the pharmacological properties of cis-2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine (MLi-2), a structurally novel, highly potent, and selective LRRK2 kinase inhibitor with central nervous system activity. MLi-2 exhibits exceptional potency in a purified LRRK2 kinase assay in vitro (IC50 = 0.76 nM), a cellular assay monitoring dephosphorylation of LRRK2 pSer935 LRRK2 (IC50 = 1.4 nM), and a radioligand competition binding assay (IC50 = 3.4 nM). MLi-2 has greater than 295-fold selectivity for over 300 kinases in addition to a diverse panel of receptors and ion channels. Acute oral and subchronic dosing in MLi-2 mice resulted in dose-dependent central and peripheral target inhibition over a 24-hour period as measured by dephosphorylation of pSer935 LRRK2. Treatment of MitoPark mice with MLi-2 was well tolerated over a 15-week period at brain and plasma exposures >100× the in vivo plasma IC50 for LRRK2 kinase inhibition as measured by pSer935 dephosphorylation. Morphologic changes in the lung, consistent with enlarged type II pneumocytes, were observed in MLi-2-treated MitoPark mice. These data demonstrate the suitability of MLi-2 as a compound to explore LRRK2 biology in cellular and animal models. PMID:26407721

  6. Structure-activity relationship for Fe(III)-salen-like complexes as potent anticancer agents.

    PubMed

    Ghanbari, Zahra; Housaindokht, Mohammad R; Izadyar, Mohammad; Bozorgmehr, Mohammad R; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R; Matin, Maryam M; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R (2) train = 0.99, RMSE = 0.138, and Q (2) LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  7. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity.

    PubMed

    Locock, Katherine E S; Michl, Thomas D; Valentin, Jules D P; Vasilev, Krasimir; Hayball, John D; Qu, Yue; Traven, Ana; Griesser, Hans J; Meagher, Laurence; Haeussler, Matthias

    2013-11-11

    We have synthesized a series of copolymers containing both positively charged (amine, guanidine) and hydrophobic side chains (amphiphilic antimicrobial peptide mimics). To investigate the structure-activity relationships of these polymers, low polydispersity polymethacrylates of varying but uniform molecular weight and composition were synthesized, using a reversible addition-fragmentation chain transfer (RAFT) approach. In a facile second reaction, pendant amine groups were converted to guanidines, allowing for direct comparison of cation structure on activity and toxicity. The guanidine copolymers were much more active against Staphylococcus epidermidis and Candida albicans compared to the amine analogues. Activity against Staphylococcus epidermidis in the presence of fetal bovine serum was only maintained for guanidine copolymers. Selectivity for bacterial over mammalian cells was assessed using hemolytic and hemagglutination toxicity assays. Guanidine copolymers of low to moderate molecular weight and hydrophobicity had high antimicrobial activity with low toxicity. Optimum properties appear to be a balance between charge density, hydrophobic character, and polymer chain length. In conclusion, a suite of guanidine copolymers has been identified that represent a new class of antimicrobial polymers with high potency and low toxicity. PMID:24099527

  8. Structure-Activity Relationship for Fe(III)-Salen-Like Complexes as Potent Anticancer Agents

    PubMed Central

    Ghanbari, Zahra; Housaindokht, Mohammad R.; Izadyar, Mohammad; Bozorgmehr, Mohammad R.; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R.; Matin, Maryam M.; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R2train = 0.99, RMSE = 0.138, and Q2LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  9. Omega-pyridiniumalkylethers of steroidal phenols: new compounds with potent antibacterial and antiproliferative activities.

    PubMed

    Lange, C; Holzhey, N; Schönecker, B; Beckert, R; Möllmann, U; Dahse, H-M

    2004-06-15

    Novel omega-pyridiniumalkylethers of two steroidal phenols were synthesized as compounds with potential antimicrobial activity. 3-Hydroxy-estra-1,3,5(10)-triene-17-one and 1-hydroxy-4-methyl-estra-1,3,5(10)-triene-17-one were reacted with omega,omega'-dibromoalkanes to omega-bromoalkoxy-estra-1,3,5(10)-trienes followed by reaction with pyridine to obtain the desired steroidal omega-pyridiniumalkoxy compounds as bromides. Their antimicrobial activity against strains of multiresistant Staphylococcus aureus (MRSA), a vancomycin resistant Enterococcus faecalis and fast growing mycobacteria depends clearly on the length of the alkyl chain. A strong broadband activity has been found for the compounds with eight or 10 C-atoms; in some cases better than ciprofloxacin or cetylpyridinium salts. In addition, the antiproliferative and cytotoxic activity depends on the chain length, too. The differentiation between antibacterial and cytotoxic activity is better for the steroid hybrid molecules than the cetylpyridinium salts. These new compounds can serve as lead compounds for further optimization. PMID:15158804

  10. Synthesis and pharmacological evaluation of a potent and selective σ1 receptor antagonist with high antiallodynic activity.

    PubMed

    Utech, Tina; Köhler, Jens; Buschmann, Helmut; Holenz, Jörg; Vela, Jose Miguel; Wünsch, Bernhard

    2011-07-01

    Based on the pharmacophore model of Glennon the conformationally restricted σ(1) receptor ligand 2 with a 1,3-dioxane moiety has been designed and synthesized. The three step synthesis (transacetalization with pentane-1,3,5-triol, tosylation, and nucleophilic substitution with benzylamine) provided diastereoselectively the cis-configured 1,3-dioxane 2 in good yields. The 1,3-dioxane 2 represents a potent σ(1) receptor ligand (K(i) = 19 nM) with moderate selectivity over the σ(2) subtype (K(i) = 92 nM) and excellent selectivity against more than 60 other targets. Additionally the hERG K(+) channel is not affected by 2. In the capsaicin assay 2 showed extraordinarily high analgesic activity with more than 70% analgesia at the very low dose of 0.25 mg/kg body weight, which indicates σ(1) antagonistic activity. Since 2 does only interact with σ(1) receptors, the in-vivo antiallodynic activity of 2 must be attributed to the σ(1) antagonistic activity. PMID:21598296

  11. Mutagenic activity in disinfected waters and recovery of the potent bacterial mutagen "MX" from water by XAD resin adsorption

    NASA Astrophysics Data System (ADS)

    Backlund, Peter; Wondergem, Erik; Kronberg, Leif

    Chlorination of humic water generated mutagenic activity in the Ames test. The formation of the potent bacterial mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and mutagenic activity were favoured by acidic chlorination conditions and high chlorine doses. Chlorinated humic waters from different locations differed slightly in the level of mutagenicity as well as in the proportion of activity derived from MX. Chlorination of an industrially polluted surface water with a low content of humic material generated an approximately equal level of mutagenicity (per mg of DOC) as that of chlorinated humic water, but only a minor part (26%) of the activity could be explained by the presence of MX. The mutagenicity and the amount of MX generated were substantially lower when using combined treatment methods (ClO2+Cl2, O3+Cl2) or when substituting chlorine by monochloramine or chlorine dioxide. The recovery of MX by XAD adsorption from water acidified to pH 2 was found to be quantitative.

  12. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo

    PubMed Central

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843

  13. Novel Series of Potent Glucokinase Activators Leading to the Discovery of AM-2394.

    PubMed

    Dransfield, Paul J; Pattaropong, Vatee; Lai, Sujen; Fu, Zice; Kohn, Todd J; Du, Xiaohui; Cheng, Alan; Xiong, Yumei; Komorowski, Renee; Jin, Lixia; Conn, Marion; Tien, Eric; DeWolf, Walter E; Hinklin, Ronald J; Aicher, Thomas D; Kraser, Christopher F; Boyd, Steven A; Voegtli, Walter C; Condroski, Kevin R; Veniant-Ellison, Murielle; Medina, Julio C; Houze, Jonathan; Coward, Peter

    2016-07-14

    Glucokinase (GK) catalyzes the phosphorylation of glucose to glucose-6-phosphate. We present the structure-activity relationships leading to the discovery of AM-2394, a structurally distinct GKA. AM-2394 activates GK with an EC50 of 60 nM, increases the affinity of GK for glucose by approximately 10-fold, exhibits moderate clearance and good oral bioavailability in multiple animal models, and lowers glucose excursion following an oral glucose tolerance test in an ob/ob mouse model of diabetes. PMID:27437083

  14. Synthesis and Biological Activity of Isoflavone Derivatives from Chickpea as Potent Anti-Diabetic Agents.

    PubMed

    Li, Pengshou; Shi, Xiaojuan; Wei, Ying; Qin, Lingling; Sun, Wen; Xu, Guangyuan; Xu, Tunhai; Liu, Tonghua

    2015-01-01

    A set of novel isoflavone derivatives from chickpea were synthesized. The structures of derivatives were identified by proton nuclear magnetic resonance (¹H-NMR), carbon-13 ((13)C)-NMR and mass spectrometry (MS) spectral analyses. Their anti-diabetic activities were evaluated using an insulin-resistant (IR) HepG2 cell model. Additionally, the structure-activity relationships of these derivatives were briefly discussed. Compounds 1c, 2h, 3b, and 5 and genistein exhibited significant glucose consumption-enhancing effects in IR-HepG2 cells. In addition, the combinations of genistein, 2h, and 3b (combination 6) and of 3b, genistein, and 1c (combination 10) exhibited better anti-diabetic activity than the individual compounds. At the same dosage, there was no difference in effect between the combination 10 and the positive control (p > 0.05). Aditionally, we found the differences between the combination 10 and combination 6 for the protective effect of HUVEC (human umbilical vein endothelial cells) under high glucose concentration. The protective effects of combination 10 was stronger than combination 6, which suggested that combination 10 may have a better hypoglycemic activity in future studies. This study provides useful clues for the further design and discovery of anti-diabetic agents. PMID:26393547

  15. Biological Clues to Potent DNA-Damaging Activities in Food and Flavoring

    PubMed Central

    Hossain, M. Zulfiquer; Gilbert, Samuel F.; Patel, Kalpesh; Ghosh, Soma; Bhunia, Anil K.; Kern, Scott E.

    2013-01-01

    Population differences in age-related diseases and cancer could stem from differences in diet. To characterize DNA strand-breaking activities in selected foods/beverages, flavorings, and some of their constituent chemicals, we used p53R cells, a cellular assay sensitive to such breaks. Substances testing positive included reference chemicals: quinacrine (peak response, 51X) and etoposide (33X); flavonoids: EGCG (19X), curcumin (12X), apigenin (9X), and quercetin (7X); beverages: chamomile (11X), green (21X), and black tea (26X) and coffee (3 to 29X); and liquid smoke (4 to 28X). Damage occurred at dietary concentrations: etoposide near 5 μg/ml produced responses similar to a 1:1000 dilution of liquid smoke, a 1:20 dilution of coffee, and a 1:5 dilution of tea. Pyrogallol-related chemicals and tannins are present in dietary sources and individually produced strong activity: pyrogallol (30X), 3-methoxycatechol (25X), gallic acid (21X), and 1,2,4-benzenetriol (21X). From structure-activity relationships, high activities depended on specific orientations of hydroxyls on the benzene ring. Responses accompanied cellular signals characteristic of DNA breaks such as H2AX phosphorylation. Breaks were also directly detected by comet assay. Cellular toxicological effects of foods and flavorings could guide epidemiologic and experimental studies of potential disease risks from DNA strand-breaking chemicals in diets. PMID:23402862

  16. Potent chemopreventive/antioxidant activity detected in common spices of the Apiaceae family

    PubMed Central

    Jeyabalan, Jeyaprakash; Aqil, Farrukh; Soper, Lisa; Schultz, David J.; Gupta, Ramesh C.

    2015-01-01

    Spices are used worldwide, particularly, in the Asian and Middle-Eastern countries and considered protective against degenerative diseases, including cancer. Here, we report the efficacy of aqueous and non-aqueous extracts of eleven Apiaceae spices for free radical-scavenging activity and to inhibit cytochrome P450s in two separate reactions involving: i) 4-hydroxy-17β-estradiol (4E2), DNA and CuCl2 and ii) 17β-estradiol, rat liver microsomes, co-factors, DNA and CuCl2. Oxidative DNA adducts resulting from redox cycling of 4E2 were analyzed by 32P-postlabeling. Aqueous (5 mg/ml) and non-aqueous extracts (6 mg/ml) substantially inhibited (83% – 98%) formation of DNA adducts in the microsomal reaction. However, in non-microsomal reaction, only aqueous extracts showed the inhibitory activity (83% – 96%). Adduct inhibition was also observed at 5-fold lower concentrations of aqueous extracts of cumin (60%) and caraway (90%), and 10-fold lower concentrations of carrot seeds (76%) and ajowan (90%). These results suggests the presence of two groups of phytochemicals - polar compounds that have free radical-scavenging activity, and lipophilic compounds that selectively inhibit P450 activity associated with estrogen metabolism. Because most of these Apiaceae spices are used widely with no known toxicity, the phytochemicals from the Apiaceae spices used in foods may be potentially protective against estrogen-mediated breast cancer. PMID:26381237

  17. Potent Chemopreventive/Antioxidant Activity Detected in Common Spices of the Apiaceae Family.

    PubMed

    Jeyabalan, Jeyaprakash; Aqil, Farrukh; Soper, Lisa; Schultz, David J; Gupta, Ramesh C

    2015-01-01

    Spices are used worldwide, particularly in the Asian and Middle Eastern countries, and considered protective against degenerative diseases, including cancer. Here, we report the efficacy of aqueous and non-aqueous extracts of 11 Apiaceae spices for free radical-scavenging activity and to inhibit cytochrome P450s in two separate reactions involving: 1) 4-hydroxy-17ß-estradiol (4E2), DNA, and CuCl2 and 2) 17ß-estradiol, rat liver microsomes, cofactors, DNA and CuCl2. Oxidative DNA adducts resulting from redox cycling of 4E2 were analyzed by (32)P-postlabeling. Aqueous (5 mg/ml) and non-aqueous extracts (6 mg/ml) substantially inhibited (83-98%) formation of DNA adducts in the microsomal reaction. However, in nonmicrosomal reaction, only aqueous extracts showed the inhibitory activity (83-96%). Adduct inhibition was also observed at five-fold lower concentrations of aqueous extracts of cumin (60%) and caraway (90%), and 10-fold lower concentrations of carrot seeds (76%) and ajowan (90%). These results suggests the presence of 2 groups of phytochemicals: polar compounds that have free radical-scavenging activity and lipophilic compounds that selectively inhibit P450 activity associated with estrogen metabolism. Because most of these Apiaceae spices are used widely with no known toxicity, the phytochemicals from the Apiaceae spices used in foods may be potentially protective against estrogen-mediated breast cancer. PMID:26381237

  18. Broad and potent antiviral activity of the NAE inhibitor MLN4924

    PubMed Central

    Le-Trilling, Vu Thuy Khanh; Megger, Dominik A.; Katschinski, Benjamin; Landsberg, Christine D.; Rückborn, Meike U.; Tao, Sha; Krawczyk, Adalbert; Bayer, Wibke; Drexler, Ingo; Tenbusch, Matthias; Sitek, Barbara; Trilling, Mirko

    2016-01-01

    In terms of infected human individuals, herpesviruses range among the most successful virus families. Subclinical herpesviral infections in healthy individuals contrast with life-threatening syndromes under immunocompromising and immunoimmature conditions. Based on our finding that cytomegaloviruses interact with Cullin Roc ubiquitin ligases (CRLs) in the context of interferon antagonism, we systematically assessed viral dependency on CRLs by utilizing the drug MLN4924. CRL activity is regulated through the conjugation of Cullins with the ubiquitin-like molecule Nedd8. By inhibiting the Nedd8-activating Enzyme (NAE), MLN4924 interferes with Nedd8 conjugation and CRL activity. MLN4924 exhibited pronounced antiviral activity against mouse and human cytomegalovirus, herpes simplex virus (HSV)- 1 (including multi-drug resistant clinical isolates), HSV-2, adeno and influenza viruses. Human cytomegalovirus genome amplification was blocked at nanomolar MLN4924 concentrations. Global proteome analyses revealed that MLN4924 blocks cytomegaloviral replication despite increased IE1 amounts. Expression of dominant negative Cullins assigned this IE regulation to defined Cullin molecules and phenocopied the antiviral effect of MLN4924. PMID:26829401

  19. Chemical constituents of Phragmanthera austroarabica A. G. Mill and J. A. Nyberg with potent antioxidant activity

    PubMed Central

    Badr, Jihan M.

    2015-01-01

    Background: Phragmanthera austroarabica A.G. Mill. and J. A. Nyberg is a semi parasitic plant belonging to family Loranthaceae. It was collected from Saudi Arabia. It is widely used in folk medicine among the kingdom in treatment of various diseases including diabetes mellitus. Objective: The total alcoholic extract of P. austroarabica collected from Saudi Arabia was investigated for the chemical structure and prominent biological activity of the main constituents. Materials and Methods: Isolation of the active constituents was performed using different chromatographic techniques including column chromatography packed with silica or sephadex and preparative thin layer chromatography. The structures of the isolated compounds were established based on different spectroscopic data as mass spectrum, one-dimensional and two-dimensional nuclear magnetic resonance (correlation spectroscopy, heteronuclear single quantum coherence, and heteronuclear multiple-bond correlation). Results: Phytochemical investigation of the plant resulted in isolation of 12 compounds. The isolated compounds were identified as chrysophanic acid, emodin, chrysophanic acid-8-O-glucoside, emodin-8-O-glucoside, pectolinarigenin, quercetin, dillenetin-3-O-glucoside, catechin, catechin-4’-O-gallate, methyl gallate, lupeol and ursolic acid. All the isolated phenolic compounds revealed significant free radical scavenging activities when tested using 2,2-diphenyl-1-picrylhydrazyl reagent. Conclusion: The antioxidant activities of the isolated compounds can justify the use of P. austroarabica in traditional medicine for treatment of diabetes and verify its possible application as an antihyperglycemic drug. PMID:26692747

  20. Anti-myeloma activity of a multi targeted kinase inhibitor, AT9283, via potent Aurora Kinase and STAT3 inhibition either alone or in combination with lenalidomide

    PubMed Central

    Santo, Loredana; Hideshima, Teru; Cirstea, Diana; Bandi, Madhavi; Nelson, Erik A.; Gorgun, Gullu; Rodig, Scott; Vallet, Sonia; Pozzi, Samantha; Patel, Kishan; Unitt, Christine; Squires, Matt; Hu, Yiguo; Chauhan, Dharminder; Mahindra, Anuj; Munshi, Nikhil C.; Anderson, Kenneth C.; Raje, Noopur

    2014-01-01

    Purpose Aurora Kinases, whose expression is linked to genetic instability and cellular proliferation, are under investigation as novel therapeutic targets in multiple myeloma (MM). Here, we investigated the preclinical activity of a small molecule–multi-targeted kinase inhibitor, AT9283, with potent activity against Aurora kinase A (AURKA), Aurora kinase B (AURKB) and Janus Kinase 2/3. Experimental design We evaluated the in vitro anti myeloma activity of AT9283 alone and in combination with lenalidomide and the in vivo efficacy by using a Xenograft mouse model of human MM. Results Our data demonstrated AT9283 induced cell growth inhibition and apoptosis in MM. Studying the apoptosis mechanism of AT9283 in MM, we observed features consistent with both AURKA and AURKB inhibition, e.g increase of cells with polyploid DNA content, decrease in phospho-Histone H3, and decrease of phospho-Aurora A. Importantly, AT9283 also inhibited STAT3 tyrosine phosphorylation in MM cells. Genetic depletion of STAT3, AURKA or AURKB showed growth inhibition of MM cells, suggesting a role of AT9283-induced inhibition of these molecules in the underlying mechanism of MM cell death. In vivo studies demonstrated decreased MM cell growth and prolonged survival in AT9283-treated mice compared to controls. Importantly, combination studies of AT9283 with lenalidomide showed significant synergistic cytotoxicity in MM cells, even in the presence of bone marrow stromal cells (BMSCs). Enhanced cytotoxicity was associated with increased inhibition of pSTAT3 and pERK. Conclusions Demonstration of in vitro and in vivo anti-MM activity of AT9283 provides the rationale for the clinical evaluation of AT9283 as monotherapy and in combination in patients with MM. PMID:21430070

  1. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity.

    PubMed

    Andreu, D; Ubach, J; Boman, A; Wåhlin, B; Wade, D; Merrifield, R B; Boman, H G

    1992-01-20

    We have earlier reported two 26-residue antibacterial peptides made up from different segments of cecropin A (CA) and melittin (M). We now report a substantial reduction in size at the C-terminal section of the highly active hybrid CA(1-8)M(1-18), leading to a series of 20-, 18- and 15-residue analogs with antibiotic properties similar to the larger molecule. In particular, the 15-residue hybrids CA(1-7)M(2-9), CA(1-7)M(4-11) and CA(1-7)M(5-12) are the shortest cecropin-based peptide antibiotics described so far, with antibacterial activity and spectra similar or better than cecropin A and a 60% reduction in size. Their reduced size and highly alpha-helical structure require an alternative mechanism for their interaction with bacterial membranes. PMID:1733777

  2. Novel aryloxy azolyl chalcones with potent activity against Mycobacterium tuberculosis H37Rv.

    PubMed

    Marrapu, Vijay K; Chaturvedi, Vinita; Singh, Shubhra; Singh, Shyam; Sinha, Sudhir; Bhandari, Kalpana

    2011-09-01

    A series of twenty seven novel aryloxy azolyl chalcones were synthesized and evaluated in vitro for the growth inhibition of Mycobacterium tuberculosis H37Rv. Ten compounds from this series exhibited good activity with MIC in the range of 3.12-0.78 μg/mL and six of them were found non-toxic against VERO cells and MBMDMøs (mouse bone-marrow derived macrophages), were further evaluated ex-vivo for their potential to kill intracellular bacilli. Two compounds 4 and 19 showed 99% and 71% killing respectively, of intracellular bacilli in MBMDMøs infection model. Further, compound 19, an imidazolyl chalcone with a 2,4-difluorobenzyloxy moiety also exhibited moderate in vivo activity in mice against virulent M. tuberculosis, thus providing a new structural lead towards TB drug development. PMID:21764184

  3. Symphonia globulifera, a widespread source of complex metabolites with potent biological activities.

    PubMed

    Fromentin, Yann; Cottet, Kevin; Kritsanida, Marina; Michel, Sylvie; Gaboriaud-Kolar, Nicolas; Lallemand, Marie-Christine

    2015-01-01

    Symphonia globulifera has been widely used in traditional medicine and has therefore been subjected to several phytochemical studies in the American and African continents. Interestingly, some disparities have been observed concerning its metabolic profile. Several phytochemical studies of S. globulifera have led to the identification of more than 40 compounds, including several polycyclic polyprenylated acylphloroglucinols. Biological evaluations have pointed out the promising biological activities of these secondary metabolites, mostly as antiparasitic or antimicrobial, confirming the traditional use of this plant. The purpose of this review is to describe the natural occurrence, botanical aspects, ethnomedicinal use, structure, and biogenesis, as well as biological activities of compounds isolated from this species according to their provenance. PMID:25590372

  4. Synthesis and characterization of tritylthioethanamine derivatives with potent KSP inhibitory activity.

    PubMed

    Rodriguez, Delany; Ramesh, Chinnasamy; Henson, Lauren H; Wilmeth, Lori; Bryant, Bj K; Kadavakollu, Samuel; Hirsch, Rebecca; Montoya, Johnelle; Howell, Porsha R; George, Jon M; Alexander, David; Johnson, Dennis L; Arterburn, Jeffrey B; Shuster, Charles B

    2011-09-15

    Assembly of a bipolar mitotic spindle requires the action of class 5 kinesins, and inhibition or depletion of this motor results in mitotic arrest and apoptosis. S-Trityl-l-cysteine is an allosteric inhibitor of vertebrate Kinesin Spindle Protein (KSP) that has generated considerable interest due to its anti-cancer properties, however, poor pharmacological properties have limited the use of this compound. We have modified the triphenylmethyl and cysteine groups, guided by biochemical and cell-based assays, to yield new cysteinol and cysteamine derivatives with increased inhibitory activity, greater efficacy in model systems, and significantly enhanced potency against the NCI60 tumor panel. These results reveal a promising new class of conformationally-flexible small molecules as allosteric KSP inhibitors for use as research tools, with activities that provide impetus for further development as anti-tumor agents. PMID:21855351

  5. Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds.

    PubMed Central

    Gumila, C; Ancelin, M L; Delort, A M; Jeminet, G; Vial, H J

    1997-01-01

    Large-scale in vitro screening of different types of ionophores previously pinpointed nine compounds that were very active and selective in vitro against Plasmodium falciparum; their in vitro and in vivo antimalarial effects were further studied. Addition of the ionophores to synchronized P. falciparum suspensions revealed that all P. falciparum stages were sensitive to the drugs. However, the schizont stages were three- to ninefold more sensitive, and 12 h was required for complete parasite clearance. Pretreatment of healthy erythrocytes with toxic doses of ionophores for 24 to 48 h showed that the activity was not due to an irreversible effect on the host erythrocyte. No preferential ionophore adsorption in infected or uninfected erythrocytes occurred. On the other hand, ionophore molecules strongly bound to serum proteins since increasing the serum concentration from 2 to 50% led to almost a 25-fold parallel increase in the ionophore 50% inhibitory concentration. Mice infected with the malaria parasites Plasmodium vinckei petteri or Plasmodium chabaudi were successfully treated with eight ionophores in a 4-day suppressive test. The 50% effective dose after intraperitoneal administration ranged from 0.4 to 4.1 mg/kg of body weight, and the therapeutic indices were about 5 for all ionophores except monensin A methyl ether, 5-bromo lasalocid A, and gramicidin D, whose therapeutic indices were 12, 18, and 344, respectively. These three compounds were found to be curative, with no recrudescence. Gramicidin D, which presented impressive antimalarial activity, requires parenteral administration, while 5-bromo lasalocid A has the major advantage of being active after oral administration. Overall, the acceptable levels of toxicity and the good in vivo therapeutic indices in the rodent model highlight the interesting potential of these ionophores for the treatment of malaria in higher animals. PMID:9055986

  6. Alkylidene Oxapenem β-Lactamase Inhibitors Revisited: Potent Broad Spectrum Activity but New Stability Challenges

    PubMed Central

    2014-01-01

    We present a comprehensive study of C6-alkylidene containing oxapenems. We show that this class of β-lactamase inhibitors possesses an unprecedented spectrum with activity against class A, C, and D enzymes. Surprisingly, this class of compounds displayed significant photolytic instability in addition to the known hydrolytic instability. Quantum mechanical calculations were used to develop models to predict the stability of new analogues. PMID:25147614

  7. Ldl modified by hypochlorous acid is a potent inhibitor of lecithin-cholesterol acyltransferase activity.

    PubMed

    McCall, M R; Carr, A C; Forte, T M; Frei, B

    2001-06-01

    Modification of low density lipoprotein (LDL) by myeloperoxidase-generated HOCl has been implicated in human atherosclerosis. Incubation of LDL with HOCl generates several reactive intermediates, primarily N-chloramines, which may react with other biomolecules. In this study, we investigated the effects of HOCl-modified LDL on the activity of lecithin-cholesterol acyltransferase (LCAT), an enzyme essential for high density lipoprotein maturation and the antiatherogenic reverse cholesterol transport pathway. We exposed human LDL (0.5 mg protein/mL) to physiological concentrations of HOCl (25 to 200 micromol/L) and characterized the resulting LDL modifications to apolipoprotein B and lipids; the modified LDL was subsequently incubated with apolipoprotein B-depleted plasma (density >1.063 g/mL fraction), which contains functional LCAT. Increasing concentrations of HOCl caused various modifications to LDL, primarily, loss of lysine residues and increases in N-chloramines and electrophoretic mobility, whereas lipid hydroperoxides were only minor products. LCAT activity was extremely sensitive to HOCl-modified LDL and was reduced by 23% and 93% by LDL preincubated with 25 and 100 micromol/L HOCl, respectively. Addition of 200 micromol/L ascorbate or N-acetyl derivatives of cysteine or methionine completely prevented LCAT inactivation by LDL preincubated with activity. Our data indicate that N-chloramines from HOCl-modified LDL mediate the loss of plasma LCAT activity and provide a novel mechanism by which myeloperoxidase-generated HOCl may promote atherogenesis. PMID:11397717

  8. Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients.

    PubMed

    Carlsson, Carina; Johansson, Anna-Karin; Alvan, Gunnar; Bergman, Kerstin; Kühler, Thomas

    2006-07-01

    As part of achieving national environmental goals, the Swedish Government commissioned an official report from the Swedish Medical Products Agency on environmental effects of pharmaceuticals. Considering half-lives/biodegradability, environmental occurrence, and Swedish sales statistics, 27 active pharmaceutical ingredients were selected for environmental hazard and risk assessments. Although there were large data gaps for many of the compounds, nine ingredients were identified as dangerous for the aquatic environment. Only the sex hormones oestradiol and ethinyloestradiol were considered to be associated with possible aquatic environmental risks. We conclude that risk for acute toxic effects in the environment with the current use of active pharmaceutical ingredients is unlikely. Chronic environmental toxic effects, however, cannot be excluded due to lack of chronic ecotoxicity data. Measures to reduce potential environmental impact posed by pharmaceutical products must be based on knowledge on chronic ecotoxic effects of both active pharmaceutical ingredients as well as excipients. We believe that the impact pharmaceuticals have on the environment should be further studied and be given greater attention such that informed assessments of hazards as well as risks can be done. PMID:16257037

  9. Potent Antitrypanosomal Activities of Heat Shock Protein 90 Inhibitors In Vitro and In Vivo

    PubMed Central

    Meyer, Kirsten J.; Shapiro, Theresa A.

    2013-01-01

    African sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is universally fatal if untreated, and current drugs are limited by severe toxicities and difficult administration. New antitrypanosomals are greatly needed. Heat shock protein 90 (Hsp90) is a conserved and ubiquitously expressed molecular chaperone essential for stress responses and cellular signaling. We investigated Hsp90 inhibitors for their antitrypanosomal activity. Geldanamycin and radicicol had nanomolar potency in vitro against bloodstream-form T. brucei; novobiocin had micromolar activity. In structure-activity studies of geldanamycin analogs, 17-AAG and 17-DMAG were most selective against T. brucei as compared to mammalian cells. 17-AAG treatment sensitized trypanosomes to heat shock and caused severe morphological abnormalities and cell cycle disruption. Both oral and parenteral 17-DMAG cured mice of a normally lethal infection of T. brucei. These promising results support the use of inhibitors to study Hsp90 function in trypanosomes and to expand current clinical development of Hsp90 inhibitors to include T. brucei. PMID:23630365

  10. Structural basis of binding and rationale for the potent urease inhibitory activity of biscoumarins.

    PubMed

    Lodhi, Muhammad Arif; Shams, Sulaiman; Choudhary, Muhammad Iqbal; Lodhi, Atif; Ul-Haq, Zaheer; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Iqbal, Sajid; Rahman, Atta-ur

    2014-01-01

    Urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and reactive cysteine residue in the active sites. In the current study we examined a series of biscoumarins 1-10 for their mechanisms of inhibition with the nickel containing active sites of Jack bean and Bacillus pasteurii ureases. All these compounds competitively inhibited Jack bean urease through interaction with the nickel metallocentre, as deduced from Michaelis-Menten kinetics, UV-visible absorbance spectroscopic, and molecular docking simulation studies. Some of the compounds behaved differently in case of Bacillus pasteurii urease. We conducted the enzyme kinetics, UV-visible spectroscopy, and molecular docking results in terms of the known protein structure of the enzyme. We also evaluated possible molecular interpretations for the site of biscoumarins binding and found that phenyl ring is the major active pharmacophore. The excellent in vitro potency and selectivity profile of the several compounds described combined with their nontoxicity against the human cells and plants suggest that these compounds may represent a viable lead series for the treatment of urease associated problems. PMID:25295281

  11. Structural Basis of Binding and Rationale for the Potent Urease Inhibitory Activity of Biscoumarins

    PubMed Central

    Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal; Lodhi, Atif; Ul-Haq, Zaheer; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Iqbal, Sajid; Rahman, Atta-ur

    2014-01-01

    Urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and reactive cysteine residue in the active sites. In the current study we examined a series of biscoumarins 1–10 for their mechanisms of inhibition with the nickel containing active sites of Jack bean and Bacillus pasteurii ureases. All these compounds competitively inhibited Jack bean urease through interaction with the nickel metallocentre, as deduced from Michaelis-Menten kinetics, UV-visible absorbance spectroscopic, and molecular docking simulation studies. Some of the compounds behaved differently in case of Bacillus pasteurii urease. We conducted the enzyme kinetics, UV-visible spectroscopy, and molecular docking results in terms of the known protein structure of the enzyme. We also evaluated possible molecular interpretations for the site of biscoumarins binding and found that phenyl ring is the major active pharmacophore. The excellent in vitro potency and selectivity profile of the several compounds described combined with their nontoxicity against the human cells and plants suggest that these compounds may represent a viable lead series for the treatment of urease associated problems. PMID:25295281

  12. In vitro properties of designed antimicrobial peptides that exhibit potent antipneumococcal activity and produces synergism in combination with penicillin

    PubMed Central

    Le, Cheng-Foh; Yusof, Mohd Yasim Mohd; Hassan, Hamimah; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent a promising class of novel antimicrobial agents owing to their potent antimicrobial activity. In this study, two lead peptides from unrelated classes of AMPs were systematically hybridized into a series of five hybrid peptides (DM1- DM5) with conserved N- and C-termini. This approach allows sequence bridging of two highly dissimilar AMPs and enables sequence-activity relationship be detailed down to single amino acid level. Presence of specific amino acids and physicochemical properties were used to describe the antipneumococcal activity of these hybrids. Results obtained suggested that cell wall and/or membrane targeting could be the principal mechanism exerted by the hybrids leading to microbial cell killing. Moreover, the pneumocidal rate was greater than penicillin (PEN). Combination treatment with both DMs and PEN produced synergism. The hybrids were also broad spectrum against multiple common clinical bacteria. Sequence analysis showed that presence of specific residues has a major role in affecting the antimicrobial and cell toxicity of the hybrids than physicochemical properties. Future studies should continue to investigate the mechanisms of actions, in vivo therapeutic potential, and improve rational peptide design based on the current strategy. PMID:25985150

  13. Discovery of novel heteroarylmethylcarbamodithioates as potent anticancer agents: Synthesis, structure-activity relationship analysis and biological evaluation.

    PubMed

    Li, Ying-Bo; Yan, Xu; Li, Ri-Dong; Liu, Peng; Sun, Shao-Qian; Wang, Xin; Cui, Jing-Rong; Zhou, De-Min; Ge, Ze-Mei; Li, Run-Tao

    2016-04-13

    A series of new analogs based on the structure of lead compound 10 were designed, synthesized and evaluated for their in vitro anti-cancer activities against four selected human cancer cell lines (HL-60, Bel-7402, SK-BR-3 and MDA-MB-468). Several synthesized compounds exhibited improved anti-cancer activities comparing with lead compound 10. Among them, 1,3,4-oxadiazole analogs 17o showed highest bioactivity with IC50 values of 1.23, 0.58 and 4.29 μM against Bel-7402, SK-BR-3 and MDA-MB-468 cells, respectively. It is noteworthy that 17o has potent anti-proliferation activity toward a panel of cancer cells with relatively less cytotoxicity to nonmalignant cells. The further mechanistic study showed that it induced apoptosis and cell cycle arrest through disrupting spindle assembly in mitotic progression, indicating these synthesized dithiocarbamates represented a novel series of anti-cancer compounds targeting mitosis. PMID:26900655

  14. Novel Quinazoline Derivatives Bearing Various 4-Aniline Moieties as Potent EGFR Inhibitors with Enhanced Activity Against NSCLC Cell Lines.

    PubMed

    Wang, Changyan; Sun, Yajun; Zhu, Xingqi; Wu, Bin; Wang, Qiao; Zhen, Yuhong; Shu, Xiaohong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-04-01

    A class of novel quinazoline derivatives bearing various C-4 aniline moieties was synthesized and biologically evaluated as potent epidermal growth factor receptor (EGFR) inhibitors for intervention of non-small-cell lung cancer (NSCLC). Most of these inhibitors are comparable to gefitinib in inhibiting these cancer cell lines, and several of them even displayed superior inhibitory activity. In particular, analogue 5b with an IC50 of 0.10 μm against the EGFR wild-type A431 cells and 5c with an IC50 of 0.001 μm against the gefitinib-sensitive HCC827 cells (EGFR del E746-A750) was identified as highly active EGFR inhibitors. It was also significant that the discovered analogue 2f, not only has high potency against the gefitinib-sensitive cells (IC50 = 0.031 μm), but also possesses remarkably improved activity against the gefitinib-resistant cells. In addition, the enzymatic assays and the Western blot analysis for evaluating the effects of the typical inhibitors indicated that these molecules strongly interfere with the EGFR target. PMID:26613384

  15. N'-Alkylaminosulfonyl Analogues of 6-Fluorobenzylideneindolinones with Desirable Physicochemical Profiles and Potent Growth Inhibitory Activities on Hepatocellular Carcinoma.

    PubMed

    Chen, Xiao; Yang, Tianming; Deivasigamani, Amudha; Shanmugam, Muthu K; Hui, Kam-Man; Sethi, Gautam; Go, Mei-Lin

    2015-09-01

    The benzylideneindolinone 6-chloro-3-(3'-trifluoromethylbenzylidene)-1,3-dihydroindol-2-one (4) was reported to exhibit potent and selective growth inhibitory effects on hepatocellular carcinoma (HCC). Corroborative evidence supported multi-receptor tyrosine kinase (RTK) inhibition as a possible mode of action. However, the poor physicochemical properties of 4 limited its furtherance as a lead compound. In this study, the modification of 4 was investigated with the aim of improving its potency and physicochemical profile. The 6-fluorobenzylideneindolinone 3-12 bearing a 3'-N-propylaminosulfonyl substituent was found to be a promising substitute. Compound 3-12 [6-fluoro-3-(3'-N-propylaminosulfonylbenzylidene)-1,3-dihydroindol-2-one] was found to be tenfold more soluble than 4 and to have sub-micromolar growth inhibitory activities on HCC cells. It is apoptogenic and inhibits the phosphorylation of several RTKs in HuH7, of which the inhibition of FGFR4 and HER3 are prominent. Compound 3-12 decreased the tumor load in a physiologically relevant orthotopic HCC xenograft murine model. Structure-activity relationships support pivotal roles for the fluoro and N'-propylaminosulfonyl moieties in enhancing cell-based activity and moderating the physicochemical profile (solubility, permeability) of 3-12. PMID:26214403

  16. Potent α-amino-β-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure-activity relationship (SAR) studies.

    PubMed

    Nuzzi, Andrea; Fiasella, Annalisa; Ortega, Jose Antonio; Pagliuca, Chiara; Ponzano, Stefano; Pizzirani, Daniela; Bertozzi, Sine Mandrup; Ottonello, Giuliana; Tarozzo, Glauco; Reggiani, Angelo; Bandiera, Tiziano; Bertozzi, Fabio; Piomelli, Daniele

    2016-03-23

    4-Cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate (3b) is a potent, selective and systemically active inhibitor of intracellular NAAA activity, which produces profound anti-inflammatory effects in animal models. In the present work, we describe structure-activity relationship (SAR) studies on 3-aminoazetidin-2-one derivatives, which have led to the identification of 3b, and expand these studies to elucidate the principal structural and stereochemical features needed to achieve effective NAAA inhibition. Investigations on the influence of the substitution at the β-position of the 2-oxo-3-azetidinyl ring as well as on the effect of size and shape of the carbamic acid ester side chain led to the discovery of 3ak, a novel inhibitor of human NAAA that shows an improved physicochemical and drug-like profile relative to 3b. This favourable profile, along with the structural diversity of the carbamic acid chain of 3b, identify this compound as a promising new tool to investigate the potential of NAAA inhibitors as therapeutic agents for the treatment of pain and inflammation. PMID:26866968

  17. Piperlongumine is a novel nuclear export inhibitor with potent anticancer activity.

    PubMed

    Niu, Mingshan; Xu, Xiaoyu; Shen, Yangling; Yao, Yao; Qiao, Jianlin; Zhu, Feng; Zeng, Lingyu; Liu, Xuejiao; Xu, Kailin

    2015-07-25

    Piperlongumine is a natural compound recently identified to be toxic selectively to tumor cells in vitro and in vivo. However, the molecular mechanism underlying its anti-tumor action still remains unclear. In this report, we describe another novel mechanism by which piperlongumine mediates its anti-tumor effects. We found that piperlongumine is a novel nuclear export inhibitor. Piperlongumine could induce nuclear retention of tumor suppressor proteins and inhibit the interactions between CRM1 and these proteins. Piperlongumine could directly bind to the conserved Cys528 of CRM1 but not to a Cys528 mutant peptide. More importantly, cancer cells expressing mutant CRM1 (C528S) are resistant to piperlongumine, demonstrating the nuclear export inhibition via direct interaction with Cys528 of CRM1. The inhibition of nuclear export by piperlongumine may account for its therapeutic properties in cancer diseases. Our findings provide a good starting point for development of novel CRM1 inhibitors. PMID:26026911

  18. Development and Demonstration of Active Noise Control Concepts

    NASA Technical Reports Server (NTRS)

    Kraft, R.; Hu, Z.; Sommerfeldt, S.; Walker, B.; Hersh, A.; Luo, H.; Spencer, M.; Hallman, D.; Mitchell, C.; Sutliff, D.

    2000-01-01

    This report details design methods for and feasibility of an Active Noise Control (ANC) system using flush-wall-mounted sensors and actuators to reduce turbofan engine rotor-stator interaction noise. ANC concepts capable of suppressing discrete-tone spinning modes containing several cut-on radial mode were identified, developed analytically, and evaluated. Separate ANC systems that suppressed at least three radial modes in a cylindrical inlet duct and three radial modes in an exhaust annulus were developed. These designs resulted in inlet duct and exhaust duct tests that were performed at NASA on the 4-ft ANC Fan in the NASA Glenn AAPL facility. Effective suppression of 2-BPF spinning mode m = 2 tone noise was achieved over a range of fan speeds 1800 to 2450 rpm, where up to 4 radials were present. In the inlet duct, up to 12 dB reduction was obtained for 3 radial modes, and up to 4 dB was obtained with 4 radial modes. In the exhaust duct, up to 15 dB PWL reduction was obtained with either two or three radial modes present. Thus, the ability to suppress multiple radial modes for tones in both the inlet and exhaust ducts has been successfully demonstrated. Implications of ANC system design requirements on installation and system integration issues for ANC systems capable of suppressing higher order radial mode content when applied to a 767 using twin CF6 engines were evaluated analytically. The analytical results indicated an ANC system must be part of an integrated design to be effective.

  19. Potent Antidiabetic Activity and Metabolite Profiling of Melicope Lunu-ankenda Leaves.

    PubMed

    Al-Zuaidy, Mizher Hezam; Hamid, Azizah Abdul; Ismail, Amin; Mohamed, Suhaila; Abdul Razis, Ahmad Faizal; Mumtaz, Muhammad Waseem; Salleh, Syafiq Zikri

    2016-05-01

    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in

  20. A New Octadecenoic Acid Derivative from Caesalpinia gilliesii Flowers with Potent Hepatoprotective Activity

    PubMed Central

    Osman, Samir M.; El-Haddad, Alaadin E.; El-Raey, Mohamed A.; Abd El-Khalik, Soad M.; Koheil, Mahmoud A.; Wink, Michael

    2016-01-01

    Background: Caesalpinia gilliesii Hook is an ornamental shrub with showy yellow flowers. It was used in folk medicine due to its contents of different classes of secondary metabolites. In our previous study, dichloromethane extract of C. gilliesii flowers showed a good antioxidant activity. Aim of the Study: Isolation and identification of bioactive hepatoprotective compounds from C. gilliesii flowers dichloromethane fraction. Materials and Methods: The hepatoprotective activity of dichloromethane fraction and isolated compounds were studied in CCl4-intoxicated rat liver slices by measuring liver injury markers (alanine aminotransferase, aspartate aminotransferase and glutathione [GSH]). All compounds were structurally elucidated on the basis of electron ionization-mass spectrometry, one- and two-dimensional nuclear magnetic resonance. Results: A new 12,13,16-trihydroxy-14(Z)-octadecenoic acid was identified in addition to the known β-sitosterol-3-O-butyl, daucosterol, isorhamnetin, isorhamnetin-3-O-rhamnoside, luteolin-7,4’-dimethyl ether, genistein-5-methyl ether, luteolin-7-O-rhamnoside, isovanillic acid, and p-methoxybenzoic acid. Dichloromethane fraction and isorhamnetin were able to significantly protect the liver against intoxication. Moreover, the dichloromethane fraction and the isolated phytosterols induced GSH above the normal level. Conclusion: The hepatoprotective activity of C. gilliesii may be attributed to its high content of phytosterols and phenolic compounds. SUMMARY Bioactive Hepatoprotective phytosterols and phenolics from chloroform extract of Caesalpinia gilliesii Abbreviations used: ALT: Alanine Aminotransferase; AST: Aspartate aminotransferase; GSH: Glutathione; SC50: Scavenging Capacity 50 (SC 50); COSY: Correlation spectroscopy; NMR: Nuclear Magnetic Resonance; CC: Column chromatography; EI-MS: Electron-impact mass spectrometry; HSQC: Heteronuclear single-quantum correlation.

  1. Potent Anti-Inflammatory Activity of Tetramethylpyrazine Is Mediated through Suppression of NF-k

    PubMed Central

    Chen, Wei; Chen, Weixiong; Zhu, Jinshui; Chen, Niwei; Lu, Yunmin

    2016-01-01

    The purpose of the current study was to evaluate the anti-inflammatory activity of tetramethlpyrazine on oxazolone-induced colitis mice. Spleen mononuclear cells (SMC), lamina propria mononuclear cells (LPMC) and peripheral blood mononuclear cells (PBMC) were isolated from oxazolone-induced colitis and normal mice. The colitis cells treated by oxazolone were randomly divided into model, low dose, middle dose and high dose groups treated with 0, 0.5, 1.0 and 2.0 g/L tetramethlpyrazine, respectively. The apoptotic rate of SMC and LPMC in the oxazolone-induced group was lower than that in the normal group. Compared with model group, apoptotic rate of SMC was significantly increased in the high dose group, while the apoptotic rate of LPMC in the middle dose group was increased. Compared with SMC, LPMC and PBMC of normal group, the mRNA level of nuclear factor kappa B (NF-kB), transcription factor-activated protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT) were higher in model group. Tetramethylpyrazine inhibited the increase of NF-kB, AP-1 and NF-AT mRNA induced by oxazolone. For SMC, LPMC and PBMC there was significant difference in the mRNA level of AP-1 among the three different doses of tetramethylpyrazine treated groups. However, no significant difference was observed in the mRNA levels of NF-AT and NF-κB between normal and middle groups. Tetramethylpyrazine promoted the apoptotic rate of SMC and LPMC in-vitro, and suppressed the expression of transcription factors in SMC, LPMC and PBMC isolated from oxazolone-induced colitis mice. The study provides a novel insight into the mechanism behind the effect of etramethylpyrazine on colitis. PMID:27610159

  2. Potent Anti-Inflammatory Activity of Tetramethylpyrazine Is Mediated through Suppression of NF-k.

    PubMed

    Chen, Wei; Chen, Weixiong; Zhu, Jinshui; Chen, Niwei; Lu, Yunmin

    2016-01-01

    The purpose of the current study was to evaluate the anti-inflammatory activity of tetramethlpyrazine on oxazolone-induced colitis mice. Spleen mononuclear cells (SMC), lamina propria mononuclear cells (LPMC) and peripheral blood mononuclear cells (PBMC) were isolated from oxazolone-induced colitis and normal mice. The colitis cells treated by oxazolone were randomly divided into model, low dose, middle dose and high dose groups treated with 0, 0.5, 1.0 and 2.0 g/L tetramethlpyrazine, respectively. The apoptotic rate of SMC and LPMC in the oxazolone-induced group was lower than that in the normal group. Compared with model group, apoptotic rate of SMC was significantly increased in the high dose group, while the apoptotic rate of LPMC in the middle dose group was increased. Compared with SMC, LPMC and PBMC of normal group, the mRNA level of nuclear factor kappa B (NF-kB), transcription factor-activated protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT) were higher in model group. Tetramethylpyrazine inhibited the increase of NF-kB, AP-1 and NF-AT mRNA induced by oxazolone. For SMC, LPMC and PBMC there was significant difference in the mRNA level of AP-1 among the three different doses of tetramethylpyrazine treated groups. However, no significant difference was observed in the mRNA levels of NF-AT and NF-κB between normal and middle groups. Tetramethylpyrazine promoted the apoptotic rate of SMC and LPMC in-vitro, and suppressed the expression of transcription factors in SMC, LPMC and PBMC isolated from oxazolone-induced colitis mice. The study provides a novel insight into the mechanism behind the effect of etramethylpyrazine on colitis. PMID:27610159

  3. Optimization of a Potent, Orally Active S1P1 Agonist Containing a Quinolinone Core

    PubMed Central

    2011-01-01

    The optimization of a series of S1P1 agonists with limited activity against S1P3 is reported. A polar headgroup was used to improve the physicochemical and pharmacokinetic parameters of lead quinolinone 6. When dosed orally at 1 and 3 mg/kg, the azahydroxymethyl analogue 22 achieved statistically significant lowering of circulating blood lymphocytes 24 h postdose. In rats, a dose-proportional increase in exposure was measured when 22 was dosed orally at 2 and 100 mg/kg. PMID:24900374

  4. Highly Potent, Water Soluble Benzimidazole Antagonist for Activated (alpha)4(beta)1 Integrin

    SciTech Connect

    Carpenter, R D; Andrei, M; Lau, E Y; Lightstone, F C; Liu, R; Lam, K S; Kurth, M J

    2007-08-29

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin, activated constitutively in lymphoma, can be targeted with the bisaryl urea peptidomimetic antagonist 1 (LLP2A). However, concerns on its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzimidazole moiety resulting in improved solubility while maintaining picomolar potency [5 (KLCA4); IC{sub 50} = 305 pM]. With exceptional solubility, this finding has potential for improving PK to help diagnose and treat lymphomas.

  5. Identification of an orally available compound with potent and broad FLT3 inhibition activity.

    PubMed

    Chen, Y; Guo, Y; Zhao, W; Tina Ho, W-T; Fu, X; Zhao, Z J

    2016-06-01

    FLT3 internal tandem duplication (FLT3-ITD) is an activating mutation found in 20-30% of patients with acute myeloid leukemia (AML), which makes FLT3 an attractive target for the treatment of AML. Although FLT3-mutant patients respond to current FLT3 inhibitors, relapse usually happens because of the acquisition of resistant secondary mutations at the FLT3 catalytic domain, which is mainly on D835. In the search for compounds with broad FLT3 inhibition activities, we screened a kinase inhibitor library by using our unique FLT3 substrate and identified JAK3 inhibitor VI (designated JI6 hereafter) as a novel FLT3 inhibitor, which selectively targets FLT3 D835 mutants as well as FLT3-ITD. JI6 effectively inhibited FLT3-ITD-containing MV4-11 cells and HCD-57 cells transformed with FLT3-ITD and D835 mutants. Furthermore, administration of JI6 effectively targeted FLT3 signaling in vivo and suppressed the myeloproliferative phenotypes in FLT3-ITD knock-in mice, and significantly prolonged the survival of immunodeficient mice implanted with the transformed HCD-57 cells. Therefore, JI6 is a promising candidate for the development of next-generation anti-AML drugs. PMID:26411368

  6. Dithiocarbamates with potent inhibitory activity against the Saccharomyces cerevisiae β-carbonic anhydrase.

    PubMed

    Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Isik, Semra; AlOthman, Zeid; Osman, Sameh M; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-01

    Dithiocarbamates (DTCs) prepared from primary or secondary amines, which incorporated amino/hydroxyl-alkyl, mono-/bicyclic aliphatic/heterocyclic rings based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, were investigated for the inhibition of α- and β-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, such as the human (h) isoform hCA I and II, as well as the Saccharomyces cerevisiae β-CA, scCA. The yeast and its β-CA were shown earlier to be useful models of pathogenic fungal infections. The DTCs investigated here were medium potency hCA I inhibitors (K(I)s of 66.5-910 nM), were more effective as hCA II inhibitors (K(I)s of 8.9-107 nM) and some of them showed excellent, low nanomolar activity against the yeast enzyme, with inhibition constants ranging between 6.4 and 259 nM. The detailed structure activity relationship for inhibition of the yeast and human enzymes is discussed. Several of the investigated DTCs showed excellent selectivity ratios for inhibiting the yeast over the human cytosolic CA isoforms. PMID:25669351

  7. Identification of an orally available compound with potent and broad FLT3 inhibition activity

    PubMed Central

    Chen, Yun; Guo, Yao; Zhao, Wanke; Tina Ho, Wan-Ting; Fu, Xueqi; Joe Zhao, Zhizhuang

    2015-01-01

    FLT3 internal tandem duplication (FLT3-ITD) is an activating mutation found in 20%-30% of patients with acute myeloid leukemia (AML), which makes FLT3 an attractive target for the treatment of AML. Although FLT3-mutant patients respond to current FLT3 inhibitors, relapse usually happens due to the acquisition of resistant secondary mutations at the FLT3 catalytic domain, which is mainly on D835. In the search for compounds with broad FLT3 inhibition activities, we screened a kinase inhibitor library by using our unique FLT3 substrate and identified JAK3 inhibitor VI (designated JI6 hereafter) as a novel FLT3 inhibitor, which selectively targets FLT3 D835 mutants as well as FLT3-ITD. JI6 effectively inhibited FLT3-ITD-containing MV4-11 cells and HCD-57 cells transformed with FLT3-ITD and D835 mutants. Furthermore, administration of JI6 effectively targeted FLT3 signaling in vivo and suppressed the myeloproliferative phenotypes in FLT3-ITD knock-in mice and significantly prolonged the survival of immunodeficient mice implanted with the transformed HCD-57 cells. Therefore, JI6 is a promising candidate for development of next generation anti-AML drugs. PMID:26411368

  8. Synthesis, Docking and Biological Activities of Novel Hybrids Celecoxib and Anthraquinone Analogs as Potent Cytotoxic Agents

    PubMed Central

    Almutairi, Maha S.; Hegazy, Gehan H.; Haiba, Mogedda E.; Ali, Hamed I.; Khalifa, Nagy M.; Soliman, Abd El-mohsen M.

    2014-01-01

    Herein, novel hybrid compounds of celecoxib and 2-aminoanthraquinone derivatives have been synthesized using condensation reactions of celecoxib with 2-aminoanthraquinone derivatives or 2-aminoanthraquinon with celecoxib derivatives. Celecoxib was reacted with different acid chlorides, 2-chloroethylisocyanate and bis (2-chloroethyl) amine hydrochloride. These intermediates were then reacted with 2-aminoanthraquinone. Also the same different acid chlorides and 2-chloroethylisocyanate were reacted with 2-aminoanthraquinone and the resulting intermediates were reacted with celecoxib to give isomers for the previous compounds. The antitumor activities against hepatic carcinoma tumor cell line (HEPG2) have been investigated in vitro, and all these compounds showed promising activities, especially compound 3c, 7, and 12. Flexible docking studies involving AutoDock 4.2 was investigated to identify the potential binding affinities and the mode of interaction of the hybrid compounds into two protein tyrosine kinases namely, SRC (Pp60v-src) and platelet-derived growth factor receptor, PDGFR (c-Kit). The compounds in this study have a preferential affinity for the c-Kit PDGFR PTK over the non-receptor tyrosine kinase SRC (Pp60v-src). PMID:25490139

  9. Anti-HIV-1 Activity of Elafin Is More Potent than Its Precursor's, Trappin-2, in Genital Epithelial Cells

    PubMed Central

    Drannik, Anna G.; Nag, Kakon; Yao, Xiao-Dan; Henrick, Bethany M.; Jain, Sumiti; Ball, T. Blake; Plummer, Francis A.; Wachihi, Charles; Kimani, Joshua

    2012-01-01

    Cervicovaginal lavage fluid (CVL) is a natural source of anti-HIV-1 factors; however, molecular characterization of the anti-HIV-1 activity of CVL remains elusive. In this study, we confirmed that CVLs from HIV-1-resistant (HIV-R) compared to HIV-1-susceptible (HIV-S) commercial sex workers (CSWs) contain significantly larger amounts of serine antiprotease trappin-2 (Tr) and its processed form, elafin (E). We assessed anti-HIV-1 activity of CVLs of CSWs and recombinant E and Tr on genital epithelial cells (ECs) that possess (TZM-bl) or lack (HEC-1A) canonical HIV-1 receptors. Our results showed that immunodepletion of 30% of Tr/E from CVL accounted for up to 60% of total anti-HIV-1 activity of CVL. Knockdown of endogenous Tr/E in HEC-1A cells resulted in significantly increased shedding of infectious R5 and X4 HIV-1. Pretreatment of R5, but not X4 HIV-1, with either Tr or E led to inhibition of HIV-1 infection of TZM-bl cells. Interestingly, when either HIV-1 or cells lacking canonical HIV-1 receptors were pretreated with Tr or E, HIV-1 attachment and transcytosis were significantly reduced, and decreased attachment was not associated with altered expression of syndecan-1 or CXCR4. Determination of 50% inhibitory concentrations (IC50) of Tr and E anti-HIV-1 activity indicated that E is ∼130 times more potent than its precursor, Tr, despite their equipotent antiprotease activities. This study provides the first experimental evidence that (i) Tr and E are among the principal anti-HIV-1 molecules of CVL; (ii) Tr and E affect cell attachment and transcytosis of HIV-1; (iii) E is more efficient than Tr regarding anti-HIV-1 activity; and (iv) the anti-HIV-1 effect of Tr and E is contextual. PMID:22345469

  10. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics

    PubMed Central

    Whitnall, Megan; Howard, Jonathan; Ponka, Prem; Richardson, Des R.

    2006-01-01

    Novel chemotherapeutics with marked and selective antitumor activity are essential to develop, particularly those that can overcome resistance to established therapies. Iron (Fe) is critical for cell-cycle progression and DNA synthesis and potentially represents a novel molecular target for the design of new anticancer agents. The aim of this study was to evaluate the antitumor activity and Fe chelation efficacy of a new class of Fe chelators using human tumors. In this investigation, the ligands showed broad antitumor activity and could overcome resistance to established antitumor agents. The in vivo efficacy of the most effective chelator identified, di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT), was assessed by using a panel of human xenografts in nude mice. After 7 weeks, net growth of a melanoma xenograft in Dp44mT-treated mice was only 8% of that in mice treated with vehicle. In addition, no differences in these latter animals were found in hematological indices between Dp44mT-treated mice and controls. No marked systemic Fe depletion was observed comparing Dp44mT- and vehicle-treated mice, probably because of the very low doses required to induce anticancer activity. Dp44mT caused up-regulation of the Fe-responsive tumor growth and metastasis suppressor Ndrg1 in the tumor but not in the liver, indicating a potential mechanism of selective anticancer activity. These results indicate that the novel Fe chelators have potent and broad antitumor activity and can overcome resistance to established chemotherapeutics because of their unique mechanism of action. PMID:17003122

  11. PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2.

    PubMed

    Schröder, Ralf; Xue, Luzheng; Konya, Viktoria; Martini, Lene; Kampitsch, Nora; Whistler, Jennifer L; Ulven, Trond; Heinemann, Akos; Pettipher, Roy; Kostenis, Evi

    2012-01-01

    Prostaglandin H(1) (PGH(1)) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as "anti-inflammatory". Herein we present evidence that PGH(1) is a potent activator of the pro-inflammatory PGD(2) receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca(2+) flux studies reveal that PGH(1) activates CRTH2 as PGH(2), PGD(2) or PGD(1) do. The PGH(1) precursor DGLA and the other PGH(1) metabolites did not display such effect. PGH(1) specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH(1) is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH(1) mediates migration of and Ca(2+) flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH(1) as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase. PMID:22442685

  12. Potent and broad-spectrum antibacterial activity of indole-based bisamidine antibiotics: synthesis and SAR of novel analogs of MBX 1066 and MBX 1090

    PubMed Central

    Williams, John D.; Nguyen, Son T.; Gu, Shen; Ding, Xiaoyuan; Butler, Michelle M.; Tashjian, Tommy F.; Opperman, Timothy J.; Panchal, Rekha G.; Bavari, Sina; Peet, Norton P.; Moir, Donald T.; Bowlin, Terry L.

    2013-01-01

    The prevalence of drug-resistant bacteria in the clinic has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We have previously described a set of bisamidine antibiotics that contains a core composed of two indoles and a central linker. The first compounds of the series, MBX 1066 and MBX 1090, have potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria. We have conducted a systematic exploration of the amidine functionalities, the central linker, and substituents at the indole 3-position to determine the factors involved in potent antibacterial activity. Some of the newly synthesized compounds have even more potent and broad-spectrum activity than MBX 1066 and MBX 1090. PMID:24239389

  13. Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT3 Receptor Ligands

    PubMed Central

    2012-01-01

    The 5-HT3 receptor, a pentameric ligand-gated ion channel (pLGIC), is an important therapeutic target. During a recent fragment screen, 6-chloro-N-methyl-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-amine (1) was identified as a 5-HT3R hit fragment. Here we describe the synthesis and structure–activity relationships (SAR) of a series of (iso)quinoline and quinazoline compounds that were synthesized and screened for 5-HT3R affinity using a [3H]granisetron displacement assay. These studies resulted in the discovery of several high affinity ligands of which compound 22 showed the highest affinity (pKi > 10) for the 5-HT3 receptor. The observed SAR is in agreement with established pharmacophore models for 5-HT3 ligands and is used for ligand–receptor binding mode prediction using homology modeling and in silico docking approaches. PMID:23006041

  14. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes

    PubMed Central

    Seidlmayer, Lea K.; Gomez-Garcia, Maria R.; Blatter, Lothar A.; Pavlov, Evgeny

    2012-01-01

    Mitochondrial dysfunction caused by excessive Ca2+ accumulation is a major contributor to cardiac cell and tissue damage during myocardial infarction and ischemia–reperfusion injury (IRI). At the molecular level, mitochondrial dysfunction is induced by Ca2+-dependent opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane, which leads to the dissipation of mitochondrial membrane potential (ΔΨm), disruption of adenosine triphosphate production, and ultimately cell death. Although the role of Ca2+ for induction of mPTP opening is established, the exact molecular mechanism of this process is not understood. The aim of the present study was to test the hypothesis that the adverse effect of mitochondrial Ca2+ accumulation is mediated by its interaction with inorganic polyphosphate (polyP), a polymer of orthophosphates linked by phosphoanhydride bonds. We found that cardiac mitochondria contained significant amounts (280 ± 60 pmol/mg of protein) of short-chain polyP with an average length of 25 orthophosphates. To test the role of polyP for mPTP activity, we investigated kinetics of Ca2+ uptake and release, ΔΨm and Ca2+-induced mPTP opening in polyP-depleted mitochondria. polyP depletion was achieved by mitochondria-targeted expression of a polyP-hydrolyzing enzyme. Depletion of polyP in mitochondria of rabbit ventricular myocytes led to significant inhibition of mPTP opening without affecting mitochondrial Ca2+ concentration by itself. This effect was observed when mitochondrial Ca2+ uptake was stimulated by increasing cytosolic [Ca2+] in permeabilized myocytes mimicking mitochondrial Ca2+ overload observed during IRI. Our findings suggest that inorganic polyP is a previously unrecognized major activator of mPTP. We propose that the adverse effect of polyphosphate might be caused by its ability to form stable complexes with Ca2+ and directly contribute to inner mitochondrial membrane permeabilization. PMID:22547663

  15. A Novel Oncolytic Herpes Simplex Virus Type 2 Has Potent Anti-Tumor Activity

    PubMed Central

    Zhuang, Xiufen; Lu, Haizhen; Liang, Jing; Li, Jie; Zhang, Yu; Dong, Ying; Zhang, Youhui; Zhang, Shuren; Liu, Shangmei; Liu, Binlei

    2014-01-01

    Oncolytic viruses are promising treatments for many kinds of solid tumors. In this study, we constructed a novel oncolytic herpes simplex virus type 2: oHSV2. We investigated the cytopathic effects of oHSV2 in vitro and tested its antitumor efficacy in a 4T1 breast cancer model. We compared its effect on the cell cycle and its immunologic impact with the traditional chemotherapeutic agent doxorubicin. In vitro data showed that oHSV2 infected most of the human and murine tumor cell lines and was highly oncolytic. oHSV2 infected and killed 4T1 tumor cells independent of their cell cycle phase, whereas doxorubicin mainly blocked cells that were in S and G2/M phase. In vivo study showed that both oHSV2 and doxorubicin had an antitumor effect, though the former was less toxic. oHSV2 treatment alone not only slowed down the growth of tumors without causing weight loss but also induced an elevation of NK cells and mild decrease of Tregs in spleen. In addition, combination therapy of doxorubicin followed by oHSV2 increased survival with weight loss than oHSV2 alone. The data showed that the oncolytic activity of oHSV2 was similar to oHSV1 in cell lines examined and in vivo. Therefore, we concluded that our virus is a safe and effective therapeutic agent for 4T1 breast cancer and that the sequential use of doxorubicin followed by oHSV2 could improve antitumor activity without enhancing doxorubicin’s toxicity. PMID:24671154

  16. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract from P. fruticosa.

    PubMed

    Thelingwani, Roslyn S; Dhansay, Kariema; Smith, Peter; Chibale, Kelly; Masimirembwa, Collen M

    2012-10-01

    1. Frutinone is an active ingredient extracted from the lipophilic fraction of the Polygala Fruticosa demonstrating various antibacterial and fungal properties. The aim of this study was to characterize its metabolism in an effort to understand metabolism based drug-herb interactions. 2. In vitro metabolic clearance and metabolite identification studies were done using cryopreserved hepatocytes. Reaction phenotyping and inhibition studies were done using human liver microsomes and recombinant cytochrome P450s (CYPs). Frutinone A-CYP1A2 interactions were rationalized using docking simulations. 3. Hepatic clearance was predicted to be low (7.17 mL/min/kg), with reaction phenotyping studies indicating no clearance by the enzymes tested. Frutinone was identified as a potent inhibitor of CYP1A2 with moderate effects on CYP2C19, 2C9, 2D6 and 3A4. CYP1A2 inhibition was reversible and characterised by an IC(50) of 0.56 µM. Inhibition was differential showing mixed (K(i) = 0.48 µM) and competitive (K(i) = 0.31 µM) inhibition with 3-cyano-7-ethoxycoumarin and ethoxyresorufin, respectively. Two binding sites, one for inhibitors and the other for substrates were identified in silico. 4. The potent CYP1A2 inhibition by Frutinone A could be predictive of the potential drug-herb interaction risk in the use of herbal extracts from P. fruticosa. The data suggest future pharmacological research on this chromocoumarin should take metabolic properties into account. PMID:22533317

  17. Dual Metronomic Chemotherapy with Nab-Paclitaxel and Topotecan Has Potent Antiangiogenic Activity in Ovarian Cancer.

    PubMed

    Previs, Rebecca A; Armaiz-Pena, Guillermo N; Lin, Yvonne G; Davis, Ashley N; Pradeep, Sunila; Dalton, Heather J; Hansen, Jean M; Merritt, William M; Nick, Alpa M; Langley, Robert R; Coleman, Robert L; Sood, Anil K

    2015-12-01

    There is growing recognition of the important role of metronomic chemotherapy in cancer treatment. On the basis of their unique antiangiogenic effects, we tested the efficacy of nab-paclitaxel, which stimulates thrombospondin-1, and topotecan, which inhibits hypoxia-inducible factor 1-α, at metronomic dosing for the treatment of ovarian carcinoma. In vitro and in vivo SKOV3ip1, HeyA8, and HeyA8-MDR (taxane-resistant) orthotopic models were used to examine the effects of metronomic nab-paclitaxel and metronomic topotecan. We examined cell proliferation (Ki-67), apoptosis (cleaved caspase-3), and angiogenesis (microvessel density, MVD) in tumors obtained at necropsy. In vivo therapy experiments demonstrated treatment with metronomic nab-paclitaxel alone and in combination with metronomic topotecan resulted in significant reductions in tumor weight (62% in the SKOV3ip1 model, P < 0.01 and 96% in the HeyA8 model, P < 0.03) compared with vehicle (P < 0.01). In the HeyA8-MDR model, metronomic monotherapy with either cytotoxic agent had modest effects on tumor growth, but combination therapy decreased tumor burden by 61% compared with vehicle (P < 0.03). The greatest reduction in MVD (P < 0.05) and proliferation was seen in combination metronomic therapy groups. Combination metronomic therapy resulted in prolonged overall survival in vivo compared with other groups (P < 0.001). Tube formation was significantly inhibited in RF-24 endothelial cells exposed to media conditioned with metronomic nab-paclitaxel alone and media conditioned with combination metronomic nab-paclitaxel and metronomic topotecan. The combination of metronomic nab-paclitaxel and metronomic topotecan offers a novel, highly effective therapeutic approach for ovarian carcinoma that merits further clinical development. PMID:26516159

  18. Development of novel potent orally bioavailable oseltamivir derivatives active against resistant influenza A.

    PubMed

    Schade, Dennis; Kotthaus, Joscha; Riebling, Lukas; Kotthaus, Jürke; Müller-Fielitz, Helge; Raasch, Walter; Koch, Oliver; Seidel, Nora; Schmidtke, Michaela; Clement, Bernd

    2014-02-13

    With the emergence of oseltamivir-resistant influenza viruses and in view of a highly pathogenic flu pandemic, it is important to develop new anti-influenza agents. Here, the development of neuraminidase (NA) inhibitors that were designed to overcome resistance mechanisms along with unfavorable pharmacokinetic (PK) properties is described. Several 5-guanidino- and 5-amidino-based oseltamivir derivatives were synthesized and profiled for their anti-influenza activity and in vitro and in vivo PK properties. Amidine 6 and guanidine 7 were comparably effective against a panel of different A/H1N1 and A/H3N2 strains and also inhibited mutant A/H1N1 neuraminidase. Among different prodrug strategies pursued, a simple amidoxime ethyl ester (9) exhibited a superior PK profile with an oral bioavailability of 31% (rats), which is comparable to oseltamivir (36%). Thus, bioisosteric replacement of the 5-guanidine with an acetamidine-in the form of its N-hydroxy prodrug-successfully tackled the two key limitations of currently used NA inhibitors, as exemplified with oseltamivir. PMID:24422530

  19. Actinomycin D binding mode reveals the basis for its potent HIV-1 and cancer activity

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan; Vladescu, Ioana D.; McCauley, Micah J.; Rouzina, Ioulia; Williams, Mark C.

    2011-03-01

    Actinomycin D (ActD) is one of the most studied antibiotics, which has been used as an anti-cancer agent and also shown to inhibit HIV reverse transcription. Initial studies with ActD established that it intercalates double stranded DNA (dsDNA). However, recent studies have shown that ActD binds with even higher affinity to single stranded DNA (ssDNA). In our studies we use optical tweezers to stretch and hold single dsDNA molecule at constant force in the presence of varying ActD concentrations until the binding reaches equilibrium. The change in dsDNA length upon ActD binding measured as a function of time yields the rate of binding in addition to the equilibrium lengthening of DNA. The results suggest extremely slow kinetics, on the order of several minutes and 0.52 +/- 0.06 μ M binding affinity. Holding DNA at constant force while stretching and relaxing suggests that ActD binds to two single strands that are close to each other rather than to pure dsDNA or ssDNA. This suggests that biological activity of ActD that contributes towards the inhibition of cellular replication is due to its ability to bind at DNA bubbles during RNA transcription, thereby stalling the transcription process.

  20. Benzenesulfonamides incorporating bulky aromatic/heterocyclic tails with potent carbonic anhydrase inhibitory activity.

    PubMed

    Bozdag, Murat; Alafeefy, Ahmed M; Vullo, Daniela; Carta, Fabrizio; Dedeoglu, Nurcan; Al-Tamimi, Abdul-Malek S; Al-Jaber, Nabila A; Scozzafava, Andrea; Supuran, Claudiu T

    2015-12-15

    Three series of sulfonamides incorporating long, bulky tails were obtained by applying synthetic strategies in which substituted anthranilic acids, quinazolines and aromatic sulfonamides have been used as starting materials. They incorporate long, bulky diamide-, 4-oxoquinazoline-3-yl- or quinazoline-4-yl moieties in their molecules, and were investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides showed excellent inhibitory effects against the four isoforms, with KIs of 7.6-322nM against hCA I, of 0.06-85.4nM against hCA II; of 6.7-152nM against hCA IX and of 0.49-237nM against hCA XII; respectively. However no relevant isoform-selective behavior has been observed for any of them, although hCA II and XII, isoforms involved in glaucoma-genesis were the most inhibited ones. The structure-activity relationship for inhibiting the four CAs with these derivatives is discussed in detail. PMID:26639945

  1. Novel spirohydantoin derivative as a potent multireceptor-active antipsychotic and antidepressant agent.

    PubMed

    Czopek, Anna; Kołaczkowski, Marcin; Bucki, Adam; Byrtus, Hanna; Pawłowski, Maciej; Kazek, Grzegorz; Bojarski, Andrzej J; Piaskowska, Agata; Kalinowska-Tłuścik, Justyna; Partyka, Anna; Wesołowska, Anna

    2015-07-01

    A series of novel spirohydantoin derivatives with arylpiperazinylbutyl moiety were synthesized and evaluated for serotonin 5-HT1A, 5-HT2A, 5-HT7 and dopamine D2 receptors. Based on these data, four compounds were selected for further binding affinity assays on dopamine D1, D3, D4, and 5-HT2C, 5-HT6 as well as adrenergic α1 and α2C receptors, which are involved in various CNS diseases such as schizophrenia, anxiety and/or depression. The compound 14, 1-{4-[4-(2-metoxyphe-nyl)piperazin-1-yl]butyl}-3',4'-dihydro-2H,2'H,5H-spiro[imidazolidine-4,1'-naphthalene]-2,5-dione, with the most promising functional profile, mixed 5-HT2A/D2 antagonist and 5-HT1A partial agonist, was selected. In the mouse d-amphetamine-induced locomotor hyperactivity model, compound 14 produced antipsychotic-like activity, which is devoid of cataleptogenic effects and in the forced swim test in mice, it showed a significant antidepressant-like effect unlike the reference drug aripiprazole. PMID:25936259

  2. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy

    SciTech Connect

    Yu, Yao; Cai, Wei; Pei, Chong-gang; Shao, Yi

    2015-03-20

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation of breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo.

  3. Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid

    PubMed Central

    Prokopovich, Polina; Köbrick, Mathias; Brousseau, Emmanuel; Perni, Stefano

    2015-01-01

    Bone cement is widely used in surgical treatments for the fixation for orthopaedic devices. Subsequently, 2–3% of patients undergoing these procedures develop infections that are both a major health risk for patients and a cost for the health service providers; this is also aggravated by the fact that antibiotics are losing efficacy because of the rising resistance of microorganisms to these substances. In this study, oleic acid capped silver nanoparticles (NP) were encapsulated into Poly(methyl methacrylate) (PMMA)-based bone cement samples at various ratios. Antimicrobial activity against Methicillin Resistant Staphylococcus aureus, S. aureus, Staphylococcus epidermidis, Acinetobacter baumannii was exhibited at NP concentrations as low as 0.05% (w/w). Furthermore, the mechanical properties and cytotoxicity of the bone cement containing these NP were assessed to guarantee that such material is safe to be used in orthopaedic surgical practice. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 273–281, 2015. PMID:24819471

  4. Multifunctional oligomer incorporation: a potent strategy to enhance the transfection activity of poly(l-lysine).

    PubMed

    Liu, Shuai; Yang, Jixiang; Ren, Hongqi; O'Keeffe-Ahern, Jonathan; Zhou, Dezhong; Zhou, Hao; Chen, Jiatong; Guo, Tianying

    2016-03-01

    Natural polycations, such as poly(l-lysine) (PLL) and chitosan (CS), have inherent superiority as non-viral vectors due to their unparalleled biocompatibility and biodegradability. However, the application was constrained by poor transfection efficiency and safety concerns. Since previous modification strategies greatly weakened the inherent advantages of natural polycations, developing a strategy for functional group introduction with broad applicability to enhance the transfection efficiency of natural polycations without compromising their cationic properties is imperative. Herein, two uncharged functional diblock oligomers P(DMAEL-b-NIPAM) and P(DMAEL-b-Vlm) were prepared from a lactose derivative, N-iso-propyl acrylamide (NIPAM) as well as 1-vinylimidazole (Vlm) and further functionalized with four small ligands folate, glutathione, cysteine and arginine, respectively, aiming to enhance the interactions of complexes with cells, which were quantified utilizing a quartz crystal microbalance (QCM) biosensor, circumventing the tedious material screening process of cell transfection. Upon incorporation with PLL and DNA, the multifunctional oligomers endow the formulated ternary complexes with great properties suitable for transfection, such as anti-aggregation in serum, destabilized endosome membrane, numerous functional sites for promoted endocytosis and therefore robust transfection activity. Furthermore, different from the conventional strategy of decreasing cytotoxicity by reducing the charge density, the multifunctional oligomer incorporation strategy maintains the highly positive charge density, which is essential for efficient cellular uptake. This system develops a new platform to modify natural polycations towards clinical gene therapy. PMID:26797493

  5. A novel small molecule agent displays potent anti-myeloma activity by inhibiting the JAK2-STAT3 signaling pathway

    PubMed Central

    Zhu, Jingyu; Xu, Yujia; Wang, Siyu; Xu, Xin; Ji, Peng; Yu, Yang; Cao, Biyin; Han, Kunkun; Hou, Tingjun; Xu, Zhuan; Kong, Yan; Jiang, Gaofeng; Tang, Xiaowen; Qiao, Chunhua; Mao, Xinliang

    2016-01-01

    The oncogenic STAT3 signaling pathway is emerging as a promising target for the treatment of multiple myeloma (MM). In the present study, we identified a novel STAT3 inhibitor SC99 in a target-based high throughput screen. SC99 inhibited JAK2-STAT3 activation but had no effects on other transcription factors such as NF-κB, and kinases such as AKT, ERK, and c-Src that are in association with STAT3 signaling pathway. Furthermore, SC99 downregulated the expression of STAT3-modulated genes, including Bcl-2, Bcl-xL, VEGF, cyclin D2, and E2F-1. By inhibiting the STAT3 signaling, SC99 induced MM cell apoptosis which could be partly abolished by the ectopic expression of STAT3. Furthermore, SC99 displayed potent anti-MM activity in two independent MM xenograft models in nude mice. Oral administration of SC99 led to marked decrease of tumor growth within 10 days at a daily dosage of 30 mg/kg, but did not raise toxic effects. Taken together, this study identified a novel oral JAK2/STAT3 inhibitor that could be developed as an anti-myeloma agent. PMID:26814430

  6. Enabling the Discovery and Virtual Screening of Potent and Safe Antimicrobial Peptides. Simultaneous Prediction of Antibacterial Activity and Cytotoxicity.

    PubMed

    Kleandrova, Valeria V; Ruso, Juan M; Speck-Planche, Alejandro; Dias Soeiro Cordeiro, M Natália

    2016-08-01

    Antimicrobial peptides (AMPs) represent promising alternatives to fight against bacterial pathogens. However, cellular toxicity remains one of the main concerns in the early development of peptide-based drugs. This work introduces the first multitasking (mtk) computational model focused on performing simultaneous predictions of antibacterial activities, and cytotoxicities of peptides. The model was created from a data set containing 3592 cases, and it displayed accuracy higher than 96% for classifying/predicting peptides in both training and prediction (test) sets. The technique known as alanine scanning was computationally applied to illustrate the calculation of the quantitative contributions of the amino acids (in their respective positions of the sequence) to the biological effects of a defined peptide. A small library formed by 10 peptides was generated, where peptides were designed by considering the interpretations of the different descriptors in the mtk-computational model. All the peptides were predicted to exhibit high antibacterial activities against multiple bacterial strains, and low cytotoxicity against various cell types. The present mtk-computational model can be considered a very useful tool to support high throughput research for the discovery of potent and safe AMPs. PMID:27280735

  7. Potent Antiviral Activities of the Direct-Acting Antivirals ABT-493 and ABT-530 with Three-Day Monotherapy for Hepatitis C Virus Genotype 1 Infection

    PubMed Central

    O'Riordan, William D.; Asatryan, Armen; Freilich, Bradley L.; Box, Terry D.; Overcash, J. Scott; Lovell, Sandra; Ng, Teresa I.; Liu, Wei; Campbell, Andrew; Lin, Chih-Wei; Yao, Betty; Kort, Jens

    2015-01-01

    ABT-493 is a hepatitis C virus (HCV) nonstructural (NS) protein 3/4A protease inhibitor, and ABT-530 is an HCV NS5A inhibitor. These direct-acting antivirals (DAAs) demonstrated potent antiviral activity against major HCV genotypes and high barriers to resistance in vitro. In this open-label dose-ranging trial, antiviral activity and safety were assessed during 3 days of monotherapy with ABT-493 or ABT-530 in treatment-naive adults with HCV genotype 1 infection, with or without compensated cirrhosis. The presence of baseline resistance-associated variants (RAVs) was also evaluated. The mean maximal decreases in HCV RNA levels from baseline were approximately 4 log10 IU/ml for all ABT-493 doses ranging from 100 mg to 700 mg and for ABT-530 doses of ≥40 mg. There were no meaningful differences in viral load declines for patients with versus without compensated cirrhosis. Twenty-four (50%) of the baseline samples from patients treated with ABT-493 had RAVs to NS3/4A protease inhibitors. Among 40 patients treated with ABT-530, 6 (15%) carried baseline RAVs to NS5A inhibitors. Viral load declines in patients with single baseline NS5A RAVs were similar to those in patients without RAVs. One patient harbored baseline RAVs at 3 NS5A positions and appeared to have a slightly less robust viral load decline on day 3 of monotherapy. No serious or grade 3 (severe) or higher adverse events and no clinically relevant laboratory abnormalities were observed with either compound. ABT-493 and ABT-530 demonstrated potent antiviral activity and acceptable safety during 3-day monotherapy in patients with HCV genotype 1 infection, with or without compensated cirrhosis. Based on these results, phase II studies assessing the combination of these DAAs for the treatment of chronic HCV infection in patients with or without compensated cirrhosis have been initiated. (This study has been registered at ClinicalTrials.gov under registration no. NCT01995071.) PMID:26711747

  8. Potent In Vitro and In Vivo Activity of Plantibody Specific for Porphyromonas gingivalis FimA.

    PubMed

    Choi, Young-Suk; Moon, Ji-Hoi; Kim, Tae-Geum; Lee, Jin-Yong

    2016-04-01

    Fimbrial protein fimbrillin (FimA), a major structural subunit of Porphyromonas gingivalis, has been suggested as a vaccine candidate to control P. gingivalis-induced periodontal disease. Previously, cDNAs encoding IgG monoclonal antibodies (MAbs) against purified FimA from P. gingivalis 2561 have been cloned, and the MAbs have been produced in rice cell suspension. Here we examined the biological activities of the plant-produced MAb specific for FimA (anti-FimA plantibody) of P. gingivalis in vitro and in vivo. The anti-FimA plantibody recognized oligomeric/polymeric forms of native FimA in immunoblot analysis and showed high affinity for native FimA (KD = 0.11 nM). Binding of P. gingivalis (10(8) cells) to 2 mg of saliva-coated hydroxyapatite beads was reduced by 53.8% in the presence of 1 μg/ml plantibody. Anti-FimA plantibody (10 μg/ml) reduced invasion of periodontal ligament cells by P. gingivalis (multiplicity of infection, 100) by 68.3%. Intracellular killing of P. gingivalis opsonized with the anti-FimA plantibody by mouse macrophages was significantly increased (77.1%) compared to killing of bacterial cells with irrelevant IgG (36.7%). In a mouse subcutaneous chamber model, the number of recoverable P. gingivalis cells from the chamber fluid was significantly reduced when the numbers of bacterial cells opsonized with anti-FimA plantibody were compared with the numbers of bacterial cells with irrelevant IgG, 66.7% and 37.1%, respectively. These in vitro and in vivo effects of anti-FimA plantibody were comparable to those of the parental MAb. Further studies with P. gingivalis strains with different types of fimbriae are needed to investigate the usefulness of anti-FimA plantibody for passive immunization to control P. gingivalis-induced periodontal disease. PMID:26865596

  9. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants

    PubMed Central

    2011-01-01

    Background Indian medicinal plants used in the Ayurvedic traditional system to treat diabetes are a valuable source of novel anti-diabetic agents. Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post-prandial hyperglycemia via control of starch breakdown. In this study, seventeen Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on PPA (porcine pancreatic α-amylase). Preliminary phytochemical analysis of the lead extracts was performed in order to determine the probable constituents. Methods Analysis of the 126 extracts, obtained from 17 plants (Aloe vera (L.) Burm.f., Adansonia digitata L., Allium sativum L., Casia fistula L., Catharanthus roseus (L.) G. Don., Cinnamomum verum Persl., Coccinia grandis (L.) Voigt., Linum usitatisumum L., Mangifera indica L., Morus alba L., Nerium oleander L., Ocimum tenuiflorum L., Piper nigrum L., Terminalia chebula Retz., Tinospora cordifolia (Willd.) Miers., Trigonella foenum-graceum L., Zingiber officinale Rosc.) for PPA inhibition was initially performed qualitatively by starch-iodine colour assay. The lead extracts were further quantified with respect to PPA inhibition using the chromogenic DNSA (3, 5-dinitrosalicylic acid) method. Phytochemical constituents of the extracts exhibiting≥ 50% inhibition were analysed qualitatively as well as by GC-MS (Gas chromatography-Mass spectrometry). Results Of the 126 extracts obtained from 17 plants, 17 extracts exhibited PPA inhibitory potential to varying degrees (10%-60.5%) while 4 extracts showed low inhibition (< 10%). However, strong porcine pancreatic amylase inhibitory activity (> 50%) was obtained with 3 isopropanol extracts. All these 3 extracts exhibited concentration dependent inhibition with IC50 values, viz., seeds of Linum usitatisumum (540 μgml-1), leaves of Morus alba (1440

  10. GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms

    PubMed Central

    Xie, Hua; Qin, Yu-xin; Zhou, Yun-long; Tong, Lin-jiang; Lin, Li-ping; Geng, Mei-yu; Duan, Wen-hu; Ding, Jian

    2009-01-01

    Aim: Gambogic acid (GA) is the major active ingredient of gamboge, which is secreted from a Chinese traditional medicine, Garcinia hanburyi, which possesses potent antitumor activity. GA3, a new GA derivative, has been shown to possess better water solubility than GA. The aim of the present study was to examine the antitumor activity of GA3 and the mechanism underlying it. Methods: The growth inhibition of cancer cell lines induced by GA3 was assessed using the SRB assay. DAPI staining, flow cytometry, a DNA fragment assay, and Western blot analysis were used to study the apoptotic mechanisms of GA3. Results: GA3 displayed wide cytotoxicity in diversified human cancer cell lines with a mean IC50 value of 2.15 μmol/L. GA3 was also effective against multidrug resistant cells, with an average resistance factor (RF) that was much lower than that of the reference drug, doxorubicin. Mechanistic studies revealed that GA3-induced apoptosis in HL-60 cells proceeded via both extrinsic and intrinsic pathways, with caspase-8 functioning upstream of caspase-9. In addition, GA3-driven apoptotic events were associated with up-regulation of Bax, down-regulation of Bcl-2 and cleavage of Bid. Moreover, GA3 triggered cytochrome c release from the mitochondria, in particular bypassing the involvement of the mitochondrial membrane potential. Conclusion: Better solubility and a potential anti-MDR activity, combined with a comparable antitumor efficacy, make GA3 a potential drug candidate in cancer therapy that deserves further investigation. PMID:19262558

  11. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Part 2.

    PubMed

    Tanabe, Genzoh; Matsuoka, Kanjyun; Yoshinaga, Masahiro; Xie, Weijia; Tsutsui, Nozomi; A Amer, Mumen F; Nakamura, Shinya; Nakanishi, Isao; Wu, Xiaoming; Yoshikawa, Masayuki; Muraoka, Osamu

    2012-11-01

    To examine the role of the side chain of kotalanol (2), a potent natural α-glucosidase inhibitor isolated from Salacia reticulata, on inhibitory activity, four diastereomers (11a-11d) with reversed configuration (S) at the C-4' position in the side chain were synthesized and evaluated. Two of the four (11b and 11d) significantly lost their inhibitory activity against both maltase and sucrase, while the other two (11a and 11c) sustained the inhibitory activity to a considerable extent, showing distinct activity in response to the change of stereochemistry of the hydroxyls at the 5'and 6' positions. Different activities were rationalized with reference to in silico docking studies on these inhibitors with hNtMGAM. Against isomaltase, all four analogs showed potent inhibitory activity as well as 2, and 11b and 11d exhibited enzyme selectivity. PMID:23031648

  12. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue

    PubMed Central

    Atamna, Hani; Atamna, Wafa; Al-Eyd, Ghaith; Shanower, Gregory; Dhahbi, Joseph M.

    2015-01-01

    Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity. PMID:26386875

  13. Adult Basic Learning in an Activity Center: A Demonstration Approach.

    ERIC Educational Resources Information Center

    Metropolitan Adult Education Program, San Jose, CA.

    Escuela Amistad, an activity center in San Jose, California, is now operating at capacity, five months after its origin. Average daily attendance has been 125 adult students, 18-65, most of whom are females of Mexican-American background. Activities and services provided by the center are: instruction in English as a second language, home…

  14. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action

    SciTech Connect

    Kostov, Rumen V.; Knatko, Elena V.; McLaughlin, Lesley A.; Henderson, Colin J.; Zheng, Suqing; Huang, Jeffrey T.-J.; Honda, Tadashi; Dinkova-Kostova, Albena T.

    2015-09-25

    The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 min and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC{sub 0–24h} was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the k{sub el} was 0.068 h{sup −1}. To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H:quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs. - Highlights: • TBE-31 is a cysteine targeting compound with a reversible covalent mode of action. • After a single oral dose, the blood concentration of TBE-31 exhibits two peaks. • Oral TBE-31 is a potent activator of Nrf2-dependent enzymes in

  15. Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia.

    PubMed

    Honore, Prisca; Chandran, Prasant; Hernandez, Gricelda; Gauvin, Donna M; Mikusa, Joseph P; Zhong, Chengmin; Joshi, Shailen K; Ghilardi, Joseph R; Sevcik, Molly A; Fryer, Ryan M; Segreti, Jason A; Banfor, Patricia N; Marsh, Kennan; Neelands, Torben; Bayburt, Erol; Daanen, Jerome F; Gomtsyan, Arthur; Lee, Chih-Hung; Kort, Michael E; Reilly, Regina M; Surowy, Carol S; Kym, Philip R; Mantyh, Patrick W; Sullivan, James P; Jarvis, Michael F; Faltynek, Connie R

    2009-03-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel that functions as an integrator of multiple pain stimuli including heat, acid, capsaicin and a variety of putative endogenous lipid ligands. TRPV1 antagonists have been shown to decrease inflammatory pain in animal models and to produce limited hyperthermia at analgesic doses. Here, we report that ABT-102, which is a potent and selective TRPV1 antagonist, is effective in blocking nociception in rodent models of inflammatory, post-operative, osteoarthritic, and bone cancer pain. ABT-102 decreased both spontaneous pain behaviors and those evoked by thermal and mechanical stimuli in these models. Moreover, we have found that repeated administration of ABT-102 for 5-12 days increased its analgesic activity in models of post-operative, osteoarthritic, and bone cancer pain without an associated accumulation of ABT-102 concentration in plasma or brain. Similar effects were also observed with a structurally distinct TRPV1 antagonist, A-993610. Although a single dose of ABT-102 produced a self-limiting increase in core body temperature that remained in the normal range, the hyperthermic effects of ABT-102 effectively tolerated following twice-daily dosing for 2 days. Therefore, the present data demonstrate that, following repeated administration, the analgesic activity of TRPV1 receptor antagonists is enhanced, while the associated hyperthermic effects are attenuated. The analgesic efficacy of ABT-102 supports its advancement into clinical studies. PMID:19135797

  16. Novel 4-anilinoquinazoline derivatives featuring an 1-adamantyl moiety as potent EGFR inhibitors with enhanced activity against NSCLC cell lines.

    PubMed

    Yu, Haiqing; Li, Yanxia; Ge, Yang; Song, Zhendong; Wang, Changyuan; Huang, Shanshan; Jin, Yue; Han, Xu; Zhen, Yuhong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-03-01

    With the aim of overcoming gefitinib resistance, a series of novel quinazoline derivatives bearing an adamantyl group on the aniline ring were synthesized as potent epidermal growth factor receptor (EGFR) inhibitors. Most of these analogues are comparable to gefitinib in their ability to inhibit non-small cell lung cancer (NSCLC) cell lines, and several also exhibited significantly enhanced anti-tumor potency. Specifically, compound 3d, with an IC50 value of 2.06 μM against A431 cells with the wild-type EGFR and of 0.009 μM against the gefitinib-sensitive cells, displayed approximately 5-fold higher potency than the lead compound to inhibit the cells harboring the EGFR(T790M) mutant. In addition, the molecular simulation and Western blot analysis results also indicated that these compounds effectively interfered with the EGFR(T790M) activity, and may serve as a new alternative structure to develop more effective antitumor agents. PMID:26829280

  17. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity

    NASA Astrophysics Data System (ADS)

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-10-01

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.

  18. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity

    PubMed Central

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-01-01

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency. PMID:26508306

  19. Air Pollution and Weather: Activities and Demonstrations for Science Classes

    ERIC Educational Resources Information Center

    Cole, Henry S.

    1973-01-01

    Discusses a number of concepts (turbulence, dispersion, vertical temperature distribution, atmospheric stability and instability, and inversions) which are prerequisite to understanding how weather affects air quality. Describes classroom demonstrations effective in introducing these concepts to students at the elementary, secondary and college…

  20. Knockdown of the small conductance Ca2+‐activated K+ channels is potently cytotoxic in breast cancer cell lines

    PubMed Central

    Abdulkareem, Zana Azeez; Gee, Julia MW

    2015-01-01

    Background and Purpose Small conductance calcium‐activated potassium (KCa2.x) channels have a widely accepted canonical function in regulating cellular excitability. In this study, we address a potential non‐canonical function of KCa2.x channels in breast cancer cell survival, using in vitro models. Experimental Approach The expression of all KCa2.x channel isoforms was initially probed using RT‐PCR, Western blotting and microarray analysis in five widely studied breast cancer cell lines. In order to assess the effect of pharmacological blockade and siRNA‐mediated knockdown of KCa2.x channels on these cell lines, we utilized MTS proliferation assays and also followed the corresponding expression of apoptotic markers. Key Results All of the breast cancer cell lines, regardless of their lineage or endocrine responsiveness, were highly sensitive to KCa2.x channel blockade. UCL1684 caused cytotoxicity, with LD50 values in the low nanomolar range, in all cell lines. The role of KCa2.x channels was confirmed using pharmacological inhibition and siRNA‐mediated knockdown. This reduced cell viability and also reduced expression of Bcl‐2 but increased expression of active caspase‐7 and caspase‐9. Complementary to these results, a variety of cell lines can be protected from apoptosis induced by staurosporine using the KCa2.x channel activator CyPPA. Conclusions and Implications In addition to a well‐established role for KCa2.x channels in migration, blockade of these channels was potently cytotoxic in breast cancer cell lines, pointing to modulation of KCa2.x channels as a potential therapeutic approach to breast cancer. PMID:26454020

  1. ACTIVE SOIL DEPRESSURIZATION (ASD) DEMONSTRATION IN A LARGE BUILDING

    EPA Science Inventory

    The report gives results of an evaluation of the feasibility of implementing radon resistant construction techniques -- especially active soil depressurization (ASD) -- in new large buildings in Florida. Indoor radon concentrations and radon entry were monitored in a finished bui...

  2. Structure-based modification of 3-/4-aminoacetophenones giving a profound change of activity on tyrosinase: from potent activators to highly efficient inhibitors.

    PubMed

    You, Ao; Zhou, Jie; Song, Senchuan; Zhu, Guoxun; Song, Huacan; Yi, Wei

    2015-03-26

    In this study, we developed 3-/4-aminoacetophenones and their structure-based 3-/4-aminophenylethylidenethiosemicarbazide derivatives, respectively, as novel tyrosinase activators and inhibitors. Notably, all the obtained thiosemicarbazones displayed more potent tyrosinase inhibitory activities than kojic acid. Especially, compound 7k was found to be the most active tyrosinase inhibitor with IC50 value of 0.291 μM. The structure-activity relationships (SARs) analysis showed that: (1) the amine group was absolutely necessarily for determining the tyrosinase activation activity; (2) the introduction of thiosemicarbazide group played a very vital role in transforming tyrosinase activators into tyrosinase inhibitors; (3) the phenylethylenethiosemicarbazide moiety was crucial for determining the tyrosinase inhibitory activity; (4) the type of acyl group had no obvious effect on the inhibitory activity; (5) the position of amide substituent on the phenyl ring influenced the tyrosinase inhibitory potency. Moreover, the inhibition mechanism and inhibition kinetics study revealed that compound 7k was reversible and non-competitive inhibitor, and compound 8h was reversible and competitive-uncompetitive mixed-II type inhibitor. PMID:25686594

  3. Identification of peptides in wheat germ hydrolysate that demonstrate calmodulin-dependent protein kinase II inhibitory activity.

    PubMed

    Kumrungsee, Thanutchaporn; Akiyama, Sayaka; Guo, Jian; Tanaka, Mitsuru; Matsui, Toshiro

    2016-12-15

    Hydrolysis of wheat germ by proteases resulted in bioactive peptides that demonstrated an inhibitory effect against the vasoconstrictive Ca(2+)-calmodulin (CaM)-dependent protein kinase II (CaMK II). The hydrolysate by thermolysin (1.0wt%, 5h) showed a particularly potent CaMK II inhibition. As a result of mixed mode high-performance liquid chromatography of thermolysin hydrolysate with pH elution gradient ranging between 4.8 and 8.9, the fraction eluted at pH 8.9 was the most potent CaMK II inhibitor. From this fraction, Trp-Val and Trp-Ile were identified as CaMK II inhibitors. In Sprague-Dawley rats, an enhanced aortic CaMK II activity by 1μM phenylephrine was significantly (p<0.05) suppressed by 15-min incubation with 300μM Trp-Val or Trp-Ile. On the basis of Ca(2+)-chelating fluorescence and CaMK II activity assays, it was concluded that Trp-Val and Trp-Ile competed with Ca(2+)-CaM complex to bind to CaMK II with Ki values of 5.4 and 3.6μM, respectively. PMID:27451188

  4. Potent antioxidative and antigenotoxic activity in aqueous extract of Japanese rice bran--association with peroxidase activity.

    PubMed

    Higashi-Okai, Kiyoka; Kanbara, Keiko; Amano, Kanako; Hagiwara, Akiko; Sugita, Chie; Matsumoto, Norie; Okai, Yasuji

    2004-08-01

    To estimate the preventive potential of Japanese rice bran (Oryza sativa japonica) against the oxygen radical-related chronic diseases such as cardio-vascular diseases and cancer, antioxidative and antigenotoxic activities of the rice bran extracts were analyzed by using assay systems for lipid peroxidation and genotoxin-induced umu gene expression. When effects of the rice bran extracts under different extraction conditions on hydroperoxide generation from auto-oxidized linoleic acid were examined using aluminum chloride method, the water extract showed strong antioxidant activity, but the methanol and acetone extracts did not exhibit significant activity. The water extract of rice bran was divided into the ethanol-precipitable (EP) and supernatant fractions, and EP fraction showed the dominant antioxidant activity, but the supernatant fraction did not exhibit significant antioxidant activity. When the effect of EP fraction on umu C gene expression in SOS response associated with DNA damage in Salmonella typhimurium (TA 1535/pSK 1002) induced by 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) was analyzed, it showed a dose-dependent suppressive activity against Trp-P-1-induced umu C gene expression. The bio-chemical analysis of EP fraction indicates that the major antioxidative and antigenotoxic activity of EP fraction is associated with a proteinous component with the molecular weight of more than 30 KDa. As a possible active principle for the antioxidative and antigenotoxic activity in EP fraction, the strong activity of an oxygen radical-scavenging enzyme, peroxidase was detected, and the purified horseradish peroxidase also caused the similar antioxidative and antigenotoxic activities. The significance of this finding is discussed from the viewpoint of the preventive role of rice bran against oxygen radical-related chronic diseases. PMID:15476307

  5. LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2.

    PubMed

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen; Chang, Shawn; Chen, Lisa Hong; Curtis, Carmen; Emtage, Spencer; Fan, Li; Gheyi, Tarun; Li, Fengling; Liu, Shichong; Martin, Joseph R; Mendel, David; Olsen, Jonathan B; Pelletier, Laura; Shatseva, Tatiana; Wu, Song; Zhang, Feiyu Fred; Arrowsmith, Cheryl H; Brown, Peter J; Campbell, Robert M; Garcia, Benjamin A; Barsyte-Lovejoy, Dalia; Mader, Mary; Vedadi, Masoud

    2015-05-29

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes. PMID:25825497

  6. The Epithelial Danger Signal IL-1α Is a Potent Activator of Fibroblasts and Reactivator of Intestinal Inflammation

    PubMed Central

    Scarpa, Melania; Kessler, Sean; Sadler, Tammy; West, Gail; Homer, Craig; McDonald, Christine; de la Motte, Carol; Fiocchi, Claudio; Stylianou, Eleni

    2016-01-01

    Intestinal epithelial cell (IEC) death is typical of inflammatory bowel disease (IBD). We investigated: i) whether IEC–released necrotic cell products (proinflammatory mediators) amplify mucosal inflammation, ii) the capacity of necrotic cell lysates from HT29 cells or human IECs to induce human intestinal fibroblasts' (HIF) production of IL-6 and IL-8, and iii) whether IL-1α, released by injured colonocytes, exacerbated experimental IBD. Necrotic cell lysates potently induced HIF IL-6 and IL-8 production independent of Toll-like receptors 2 and 4, receptor for advanced glycation end-products, high-mobility group box 1, uric acid, IL-33, or inflammasome activation. IL-1α was the key IEC-derived necrotic cell product involved in HIF cytokine production. IL-1α–positive cells were identified in the epithelium in human IBD and dextran sulfate sodium (DSS)-induced colitis. IL-1α was detected in the stool of colitic mice before IL-1β. IL-1α enemas reactivated inflammation after DSS colitis recovery, induced IL-1 receptor expression in subepithelial fibroblasts, and activated de novo inflammation even in mice without overt colitis, after the administration of low-dose DSS. IL-1α amplifies gut inflammation by inducing cytokine production by mesenchymal cells. IL-1α–mediated IEC–fibroblast interaction may be involved in amplifying and perpetuating inflammation, even without obvious intestinal damage. IL-1α may be a target for treating early IBD or preventing the reactivation of IBD. PMID:25864926

  7. 4-Diazinyl- and 4-pyridinylimidazoles: potent angiotensin II antagonists. A study of their activity and computational characterization.

    PubMed

    Harmat, N J; Giorgi, R; Bonaccorsi, F; Cerbai, G; Colombani, S M; Renzetti, A R; Cirillo, R; Subissi, A; Alagona, G; Ghio, C

    1995-07-21

    A series of N-[biphenylyl(tetrazolyl)methyl]-2-butylimidazoles containing variously substituted diazine or pyridine moieties either as their free bases or N-oxide derivatives attached to the 4-position of the imidazole ring was synthesized and tested for interaction with the AT1 receptors of rat adrenal cortex membranes (receptor binding assay). Some compounds were then chosen for further evaluation in vivo in the A II-induced pressor response in conscious normotensive rats. The most potent in the AT1 binding assay were found to be compounds in which the diazine or pyridine ring nitrogen is adjacent to the point of attachment between the two heteroaromatic rings such as 2-butyl-4-(3,6-dimethylpyrazin-2-yl)-1-[[2'-(1H-tetrazol-5-y l)-biphenyl-4- yl]methyl]-1H-imidazole (3b) or 2-butyl-4-[5-(methoxycarbonyl)pyrid-2-yl]-1-[[2'-(1H-tetrazol++ +-5- yl)biphenyl-4-yl]methyl]-1H-imidazole (6c). The binding affinities and oral activities of the pyridine N-oxide imidazoles in which a stabilizing group ortho to the pyridine ring nitrogen is present were markedly improved as in 2-butyl-4-[(3-methoxycarbonyl)-6-methyl-N-oxopyridin-2-yl]-1-[[2'- (1H- tetrazol-5-yl)biphenyl-4-yl]methyl]-1H-imidazole 31b. Molecular modeling studies were carried out to determine the molecular electrostatic potential values of related model systems and to correlate their receptor interaction energies with the observed activities of our compounds. PMID:7636853

  8. An Experiential Learning Activity Demonstrating Normal and Phobic Anxiety

    ERIC Educational Resources Information Center

    Canu, Will H.

    2008-01-01

    This article describes an activity for an undergraduate abnormal psychology course that used student-generated data to illustrate normal versus clinically significant anxiety responses related to specific phobias. Students (N = 37) viewed 14 images of low- or high-anxiety valence and rated their subjective response to each. Discussion in a…

  9. Synthesis and Evaluation of 1,5-Disubstituted Tetrazoles as Rigid Analogues of Combretastatin A-4 with Potent Antiproliferative and Antitumor Activity

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Preti, Delia; Tabrizi, Mojgan Aghazadeh; Brancale, Andrea; Fu, Xian-Hua; Li, Jun; Zhang, Su-Zhan; Hamel, Ernest; Bortolozzi, Roberta; Basso, Giuseppe; Viola, Giampietro

    2012-01-01

    Tubulin, the major structural component of microtubules, is a target for the development of anticancer agents. Two series of 1,5-diaryl substituted 1,2,3,4-tetrazoles were concisely synthesized, using a palladium-catalyzed cross-coupling reaction, and identified as potent antiproliferative agents and novel tubulin polymerization inhibitors that act at the colchicine site. SAR analysis indicated that compounds with a 4-ethoxyphenyl group at the N-1 or C-5 position of the 1,2,3,4-tetrazole ring exhibited maximal activity. Several of these compounds also had potent activity in inhibiting the growth of multidrug resistant cells overexpressing P-glycoprotein. Active compounds induced apoptosis through the mitochondrial pathway with activation of caspase-9 and caspase-3. Furthermore, compound 4l significantly reduced in vivo the growth of the HT-29 xenograft in a nude mouse model, suggesting that 4l is a promising new antimitotic agent with clinical potential. PMID:22136312

  10. A Potent and Selective C-11 Labeled PET Tracer for Imaging Sphingosine-1-phosphate Receptor 2 in the CNS Demonstrates Sexually Dimorphic Expression

    PubMed Central

    Yue, Xuyi; Jin, Hongjun; Liu, Hui; Rosenberg, Adam J.; Klein, Robyn S.; Tu, Zhude

    2015-01-01

    Sphingosine-1-phosphate receptor 2 (S1PR2) plays an essential role in regulating blood-brain barrier (BBB) function during demyelinating central nervous system (CNS) disease. Increased expression of S1PR2 occurs in disease-susceptible CNS regions of female versus male SJL mice and in female multiple sclerosis (MS) patients. Here we reported a novel sensitive and noninvasive method to quantitatively assess S1PR2 expression using a C-1l labeled positron emission tomography (PET) radioligand [11C]5a for in vivo imaging of S1PR2. Compounds 5a exhibited promising binding potency with IC50 value of 9.52 ± 0.70 nM for S1PR2 and high selectivity over S1PR1 and S1PR3 (both IC50 > 1000 nM). [11C]5a was synthesized in ~40 min withradiochemistry yield of 20 ± 5% (decayed to the end of bombardment (EOB), n > 10), specific activity of 6 – 10 Ci/μmol (decayed to EOB). The biodistribution study in female SJL mice showed the cerebellar uptake of radioactivity at 30 min of post-injection of [11C]5a was increased by Cyclosporin A (CsA) pretreatment (from 0.84 ± 0.04 ID%/g to 2.21 ± 0.21 ID%/g, n = 4, p < 0.01). MicroPET data revealed that naive female SJL mice exhibited higher cerebellar uptake compared with males following CsA pretreatment (standardized uptake values (SUV) 0.58 ± 0.16 vs 0.48 ± 0.12 at 30 min of post-injection, n = 4, p < 0.05), which was consistent with the autoradiographic results. These data suggested that [11C]5a has the capability in assessing the sexual dimorphism of S1PR2 expression in the cerebellum of the SJL mice. The development of radioligands for S1PR2 to identify a clinical suitable S1PR2 PET radiotracer, may greatly contribute to investigating sex differences in S1PR2 expression that contribute to MS subtype and disease progression and it will be very useful for detecting MS in early state and differentiating MS with other patients with neuroinflammatory diseases, and monitoring the efficacy of treating diseases using S1PR2 antagonism. PMID

  11. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor.

    PubMed

    Xie, Weijia; Tanabe, Genzoh; Matsuoka, Kanjyun; Amer, Mumen F A; Minematsu, Toshie; Wu, Xiaoming; Yoshikawa, Masayuki; Muraoka, Osamu

    2011-04-01

    Synthesis and evaluation of four diastereomers (9a, 9b, 9c and 9d) of kotalanol, a potent α-glucosidase inhibitor isolated from an Ayurvedic medicinal plant Salacia species, are described. Stereo-inversion at C-3' and C-4' of kotalanol (2) caused significant decrease of the inhibitory activities against maltase and sucrase, whereas inhibitory activity against isomaltase sustained, thus resulted in exerting selectivity against isomaltase. PMID:21420866

  12. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity.

    PubMed

    Selby, Thomas P; Lahm, George P; Stevenson, Thomas M; Hughes, Kenneth A; Cordova, Daniel; Annan, I Billy; Barry, James D; Benner, Eric A; Currie, Martin J; Pahutski, Thomas F

    2013-12-01

    Anthranilic diamides are an exceptionally active class of insect control chemistry that selectively activates insect ryanodine receptors causing mortality from uncontrolled release of calcium ion stores in muscle cells. Work in this area led to the successful commercialization of chlorantraniliprole for control of Lepidoptera and other insect pests at very low application rates. In search of lower logP analogs with improved plant systemic properties, exploration of cyano-substituted anthranilic diamides culminated in the discovery of a second product candidate, cyantraniliprole, having excellent activity against a wide range of pests from multiple insect orders. Here we report on the chemistry, biology and structure-activity trends for a series of cyanoanthranilic diamides from which cyantraniliprole was selected for commercial development. PMID:24135728

  13. Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex

    PubMed Central

    Saayman, Sheena M; Lazar, Daniel C; Scott, Tristan A; Hart, Jonathan R; Takahashi, Mayumi; Burnett, John C; Planelles, Vicente; Morris, Kevin V; Weinberg, Marc S

    2016-01-01

    HIV-1 provirus integration results in a persistent latently infected reservoir that is recalcitrant to combined antiretroviral therapy (cART) with lifelong treatment being the only option. The “shock and kill” strategy aims to eradicate latent HIV by reactivating proviral gene expression in the context of cART treatment. Gene-specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising single guide RNAs (sgRNAs) with a nuclease-deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64). We engineered this system to target 23 sites within the long terminal repeat promoter of HIV-1 and identified a “hotspot” for activation within the viral enhancer sequence. Activating sgRNAs transcriptionally modulated the latent proviral genome across multiple different in vitro latency cell models including T cells comprising a clonally integrated mCherry-IRES-Tat (LChIT) latency system. We detected consistent and effective activation of latent virus mediated by activator sgRNAs, whereas latency reversal agents produced variable activation responses. Transcriptomic analysis revealed dCas9-VP64/sgRNAs to be highly specific, while the well-characterized chemical activator TNFα induced widespread gene dysregulation. CRISPR-mediated gene activation represents a novel system which provides enhanced efficiency and specificity in a targeted latency reactivation strategy and represents a promising approach to a “functional cure” of HIV/AIDS. PMID:26581162

  14. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity.

    PubMed

    Castoldi, R; Ecker, V; Wiehle, L; Majety, M; Busl-Schuller, R; Asmussen, M; Nopora, A; Jucknischke, U; Osl, F; Kobold, S; Scheuer, W; Venturi, M; Klein, C; Niederfellner, G; Sustmann, C

    2013-12-12

    Simultaneous targeting of epidermal growth factor receptor (EGFR) and Met in cancer therapy is under pre-clinical and clinical evaluation. Here, we report the finding that treatment with EGFR inhibitors of various tumor cells, when stimulated with hepatocyte growth factor (HGF) and EGF, results in transient upregulation of phosphorylated AKT. Furthermore, EGFR inhibition in this setting stimulates a pro-invasive phenotype as assessed in Matrigel-based assays. Simultaneous treatment with AKT and EGFR inhibitors abrogates this invasive growth, hence functionally linking signaling and phenotype. This observation implies that during treatment of tumors a balanced ratio of EGFR and Met inhibition is required. To address this, we designed a bispecific antibody targeting EGFR and Met, which has the advantage of a fixed 2:1 stoichiometry. This bispecific antibody inhibits proliferation in tumor cell cultures and co-cultures with fibroblasts in an additive manner compared with treatment with both single agents. In addition, cell migration assays reveal a higher potency of the bispecific antibody in comparison with the antibodies' combination at low doses. We demonstrate that the bispecific antibody inhibits invasive growth, which is specifically observed with cetuximab. Finally, the bispecific antibody potently inhibits tumor growth in a non-small cell lung cancer xenograft model bearing a strong autocrine HGF-loop. Together, our findings strongly support a combination treatment of EGFR and Met inhibitors and further evaluation of resistance mechanisms to EGFR inhibition in the context of active Met signaling. PMID:23812422

  15. DSR-98776, a novel selective mGlu5 receptor negative allosteric modulator with potent antidepressant and antimanic activity.

    PubMed

    Kato, Taro; Takata, Makoto; Kitaichi, Maiko; Kassai, Momoe; Inoue, Mitsuhiro; Ishikawa, Chihiro; Hirose, Wataru; Yoshida, Kozo; Shimizu, Isao

    2015-06-15

    Modulation of monoaminergic systems has been the main stream of treatment for patients with mood disorders. However, recent evidence suggests that the glutamatergic system plays an important role in the pathophysiology of these disorders. This study pharmacologically characterized a structurally novel metabotropic glutamate 5 (mGlu5) receptor negative allosteric modulator, DSR-98776, and evaluated its effect on rodent models of depression and mania. First, DSR-98776 in vitro profile was assessed using intracellular calcium and radioligand binding assays. This compound showed dose-dependent inhibitory activity for mGlu5 receptors by binding to the same allosteric site as 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a known mGlu5 inhibitor. The in vivo therapeutic benefits of DSR-98776 were evaluated in common rodent models of depression and mania. In the rat forced swimming test, DSR-98776 (1-3mg/kg) significantly reduced rats immobility time after treatment for 7 consecutive days, while paroxetine (3 and 10mg/kg) required administration for 2 consecutive weeks to reduce rats immobility time. In the mouse forced swimming test, acute administration of DSR-98776 (10-30 mg/kg) significantly reduced immobility time. This effect was not influenced by 4-chloro-DL-phenylalanine methyl ester hydrochloride-induced 5-HT depletion. Finally, DSR-98776 (30 mg/kg) significantly decreased methamphetamine/chlordiazepoxide-induced hyperactivity in mice, which reflects this compound antimanic-like effect. These results indicate that DSR-98776 acts as an orally potent antidepressant and antimanic in rodent models and can be a promising therapeutic option for the treatment of a broad range of mood disorders with depressive and manic states. PMID:25823809

  16. Platelet-activating factor is a potent pyrogen and cryogen, but it does not mediate lipopolysaccharide fever or hypothermia.

    PubMed

    Steiner, Alexandre A; Romanovsky, Andrej A

    2015-01-01

    We examined whether platelet-activating factor (PAF) and its receptor mediate lipopolysaccharide (LPS)-induced fever and hypothermia in rats. Two highly potent, structurally distinct antagonists of the PAF receptor, CV6209 and WEB2086, were used. At a neutral ambient temperature (Ta) of 30ºC, administration of LPS at a low (10 μg/kg, i.v.) or high (1,000 μg/kg, i.v.) dose resulted in fever. The response to the high dose was turned into hypothermia at a subneutral Ta of 22ºC. Neither LPS-induced fever nor hypothermia was affected by pretreatment with CV6209 (5 mg/kg, i.v.) or WEB2086 (5 mg/kg, i.v.). However, both PAF antagonists were efficacious in blocking the thermoregulatory response caused by PAF (334 pmol/kg/min, 1 h, i.v.), regardless of whether the response was a fever (at 30ºC) or hypothermia (at 22ºC). Additional experiments showed that the thermoregulatory responses to LPS and PAF are also distinct in terms of their mediation by prostaglandins. Neither PAF fever nor PAF hypothermia was affected by pretreatment with the cyclooxygenase-2 inhibitor SC236 (5 mg/kg, i.p.), which is known to abrogate LPS fever. The responses to PAF were also unaffected by pretreatment with the cyclooxygenase-1 inhibitor SC560 (5 mg/kg, i.p.), which is known to attenuate LPS hypothermia. In conclusion, PAF infusion at a picomolar dose causes fever at thermoneutrality but hypothermia in a subthermoneutral environment, both responses being dependent on the PAF receptor and independent of prostaglandins. However, the PAF receptor does not mediate LPS-induced fever or hypothermia, thus challenging the dogma that PAF is an upstream mediator of responses to LPS. PMID:27227073

  17. Platelet-activating factor is a potent pyrogen and cryogen, but it does not mediate lipopolysaccharide fever or hypothermia

    PubMed Central

    Steiner, Alexandre A; Romanovsky, Andrej A

    2015-01-01

    We examined whether platelet-activating factor (PAF) and its receptor mediate lipopolysaccharide (LPS)-induced fever and hypothermia in rats. Two highly potent, structurally distinct antagonists of the PAF receptor, CV6209 and WEB2086, were used. At a neutral ambient temperature (Ta) of 30ºC, administration of LPS at a low (10 μg/kg, i.v.) or high (1,000 μg/kg, i.v.) dose resulted in fever. The response to the high dose was turned into hypothermia at a subneutral Ta of 22ºC. Neither LPS-induced fever nor hypothermia was affected by pretreatment with CV6209 (5 mg/kg, i.v.) or WEB2086 (5 mg/kg, i.v.). However, both PAF antagonists were efficacious in blocking the thermoregulatory response caused by PAF (334 pmol/kg/min, 1 h, i.v.), regardless of whether the response was a fever (at 30ºC) or hypothermia (at 22ºC). Additional experiments showed that the thermoregulatory responses to LPS and PAF are also distinct in terms of their mediation by prostaglandins. Neither PAF fever nor PAF hypothermia was affected by pretreatment with the cyclooxygenase-2 inhibitor SC236 (5 mg/kg, i.p.), which is known to abrogate LPS fever. The responses to PAF were also unaffected by pretreatment with the cyclooxygenase-1 inhibitor SC560 (5 mg/kg, i.p.), which is known to attenuate LPS hypothermia. In conclusion, PAF infusion at a picomolar dose causes fever at thermoneutrality but hypothermia in a subthermoneutral environment, both responses being dependent on the PAF receptor and independent of prostaglandins. However, the PAF receptor does not mediate LPS-induced fever or hypothermia, thus challenging the dogma that PAF is an upstream mediator of responses to LPS. PMID:27227073

  18. Active Control of High-Frequency Combustor Instability Demonstrated

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  19. Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors.

    PubMed

    Prince, H Miles; Bishton, Mark J; Johnstone, Ricky W

    2009-06-01

    The deacetylase inhibitors are a structurally diverse class of targeted antineoplastic agents that have demonstrated in vitro and in vivo preclinical activity in a wide range of malignancies. Based on this preclinical activity, several deacetylase inhibitors have undergone rapid clinical development in recent years. Among these, the deacetylase inhibitor panobinostat is one of the most widely studied, with extensive pharmacokinetic, pharmacodynamic and dose-finding data available across a wide variety of hematologic and solid tumors. Furthermore, panobinostat has demonstrated favorable clinical activity against various hematologic malignancies, most notably lymphomas and myeloid malignancies in Phase I and II studies. In this article, we discuss the preclinical data on panobinostat and emerging data from Phase I and II studies in cancer patients. PMID:19519200

  20. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action

    PubMed Central

    Kostov, Rumen V.; Knatko, Elena V.; McLaughlin, Lesley A.; Henderson, Colin J.; Zheng, Suqing; Huang, Jeffrey T.-J.; Honda, Tadashi; Dinkova-Kostova, Albena T.

    2015-01-01

    The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 min and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC0–24h was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the kel was 0.068 h−1. To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H:quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs. PMID:26265043

  1. In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-Negative, and atypical bacteria.

    PubMed

    Huband, Michael D; Bradford, Patricia A; Otterson, Linda G; Basarab, Gregory S; Kutschke, Amy C; Giacobbe, Robert A; Patey, Sara A; Alm, Richard A; Johnstone, Michele R; Potter, Marie E; Miller, Paul F; Mueller, John P

    2015-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  2. In Vitro Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

    PubMed Central

    Bradford, Patricia A.; Otterson, Linda G.; Basarab, Gregory S.; Kutschke, Amy C.; Giacobbe, Robert A.; Patey, Sara A.; Alm, Richard A.; Johnstone, Michele R.; Potter, Marie E.; Miller, Paul F.; Mueller, John P.

    2014-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  3. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. PMID:9070663

  4. Leiodermatolide, a novel marine natural product, has potent cytotoxic and antimitotic activity against cancer cells, appears to affect microtubule dynamics, and exhibits antitumor activity.

    PubMed

    Guzmán, Esther A; Xu, Qunli; Pitts, Tara P; Mitsuhashi, Kaoru Ogawa; Baker, Cheryl; Linley, Patricia A; Oestreicher, Judy; Tendyke, Karen; Winder, Priscilla L; Suh, Edward M; Wright, Amy E

    2016-11-01

    Pancreatic cancer, the fourth leading cause of cancer death in the United States, has a negative prognosis because metastasis occurs before symptoms manifest. Leiodermatolide, a polyketide macrolide with antimitotic activity isolated from a deep water sponge of the genus Leiodermatium, exhibits potent and selective cytotoxicity toward the pancreatic cancer cell lines AsPC-1, PANC-1, BxPC-3, and MIA PaCa-2, and potent cytotoxicity against skin, breast and colon cancer cell lines. Induction of apoptosis by leiodermatolide was confirmed in the AsPC-1, BxPC-3 and MIA PaCa-2 cells. Leiodermatolide induces cell cycle arrest but has no effects on in vitro polymerization or depolymerization of tubulin alone, while it enhances polymerization of tubulin containing microtubule associated proteins (MAPs). Observations through confocal microscopy show that leiodermatolide, at low concentrations, causes minimal effects on polymerization or depolymerization of the microtubule network in interphase cells, but disruption of spindle formation in mitotic cells. At higher concentrations, depolymerization of the microtubule network is observed. Visualization of the growing microtubule in HeLa cells expressing GFP-tagged plus end binding protein EB-1 showed that leiodermatolide stopped the polymerization of tubulin. These results suggest that leiodermatolide may affect tubulin dynamics without directly interacting with tubulin and hint at a unique mechanism of action. In a mouse model of metastatic pancreatic cancer, leiodermatolide exhibited significant tumor reduction when compared to gemcitabine and controls. The antitumor activities of leiodermatolide, as well as the proven utility of antimitotic compounds against cancer, make leiodermatolide an interesting compound with potential chemotherapeutic effects that may merit further research. PMID:27376928

  5. Discovery of a potent class I selective ketone histone deacetylase inhibitor with antitumor activity in vivo and optimized pharmacokinetic properties.

    PubMed

    Kinzel, Olaf; Llauger-Bufi, Laura; Pescatore, Giovanna; Rowley, Michael; Schultz-Fademrecht, Carsten; Monteagudo, Edith; Fonsi, Massimiliano; Gonzalez Paz, Odalys; Fiore, Fabrizio; Steinkühler, Christian; Jones, Philip

    2009-06-11

    The optimization of a potent, class I selective ketone HDAC inhibitor is shown. It possesses optimized pharmacokinetic properties in preclinical species, has a clean off-target profile, and is negative in a microbial mutagenicity (Ames) test. In a mouse xenograft model it shows efficacy comparable to that of vorinostat at a 10-fold reduced dose. PMID:19441846

  6. Elimination of IL-10 inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent anti-tumor activity

    PubMed Central

    Cecil, Denise L.; Holt, Gregory E.; Park, Kyong Hwa; Gad, Ekram; Rastetter, Lauren; Childs, Jennifer; Higgins, Doreen; Disis, Mary L.

    2014-01-01

    Immunization against self-tumor antigens can induce T-regulatory cells which inhibit proliferation of Type I CD4+ T-helper (Th1) and CD8+ cytotoxic T-cells. Type I T-cells are required for potent anti-tumor immunity. We questioned whether immunosuppressive epitopes could be identified and deleted from a cancer vaccine targeting IGFBP-2 and enhance vaccine efficacy. Screening breast cancer patient lymphocytes with IFN-γ and IL-10 ELISPOT, we found epitopes in the N-terminus of IGFBP-2 that elicited predominantly Th1 while the C-terminus stimulated Th2 and mixed Th1/Th2 responses. Epitope-specific Th2 demonstrated a higher functional avidity for antigen than epitopes which induced IFN-γ (p=0.014). We immunized TgMMTV-neu mice with DNA constructs encoding IGFBP-2 N-and C-termini. T-cell lines expanded from the C-terminus vaccinated animals secreted significantly more Type II cytokines than those vaccinated with the N-terminus and could not control tumor growth when infused into tumor-bearing animals. In contrast, N-terminus epitope-specific T-cells secreted Th1 cytokines and significantly inhibited tumor growth, as compared with naïve T-cells, when adoptively transferred (p=0.005). To determine whether removal of Th2 inducing epitopes had any effect on the vaccinated anti-tumor response, we immunized mice with the N-terminus, C-terminus and a mix of equivalent concentrations of both vaccines. The N-terminus vaccine significantly inhibited tumor growth (p<0.001) as compared to the C-terminus vaccine which had no anti-tumor effect. Mixing the C-terminus with the N-terminus vaccine abrogated the anti-tumor response of the N-terminus vaccine alone. The clinical efficacy of cancer vaccines targeting self-tumor antigens may be greatly improved by identification and removal of immunosuppressive epitopes. PMID:24778415

  7. Structure-activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 3: role of the length of alditol side chain.

    PubMed

    Tsutsui, Nozomi; Tanabe, Genzoh; Morita, Nao; Okayama, Yoshitomo; Kita, Ayako; Sugiura, Reiko; Muraoka, Osamu

    2015-07-01

    Five homologs of a novel glycolipid acremomannolipin A (1a), the potential Ca(2+) signal modulator isolated from Acremonium strictum, bearing alditols of different length (1g-1k) were synthesized by a stereoselective β-mannosylation of appropriately protected mannosyl sulfoxide (2) with five alditols (1g: C2, 1h: C3, 1i: C4, 1j: C5 and 1k: C7 units), and their potential in modulating Ca(2+) signaling were evaluated. Homologs with alditols of more than 4 carbons (1i, 1j and 1k) were equally or more potent than the parent compound (1a) regardless of the length of the alditol chain. Whereas activities of two homologs with shorter chains (1g and 1h) decreased to a considerable extent. The results indicated that the length of the alditol side chain was a crucial determinant for the potent calcium signal modulating activity. PMID:25910586

  8. Structure-activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 4: Role of acyl side chains on d-mannose.

    PubMed

    Tsutsui, Nozomi; Tanabe, Genzoh; Ikeda, Nami; Okamura, Saika; Ogawa, Marika; Miyazaki, Kuniko; Kita, Ayako; Sugiura, Reiko; Muraoka, Osamu

    2016-10-01

    As part of an ongoing study on the structure-activity relationship of acremomannolipin A (1)-the novel glycolipid isolated from Acremonium strictum possessing potent calcium signal-modulating activity-the role of acyl substituents on the d-mannose moiety was examined. Three partially deacylated homologs (2a-2c) and 20 homologs (2d-2w) bearing different acyloxy side chains were synthesized via the stereoselective β-mannosylation of appropriately protected mannosyl sulfoxides (3) with d-mannitol derivatives (4), and their calcium signal-modulating activities were examined. The activities of 2a-2c were completely lost. Homologs bearing relatively short acyloxy groups at C-3, C-4, and C-6 positions (2t-2v) exhibited less activity than 1, whereas a heptanoyl homolog (2w: C7) maintained activity nearly equal to that of 1. When the acyl groups at these three positions were substituted by an octanoyl group (2i: C8), the activity was completely lost. On the other hand, of the 10 homologs in which the octanoyl at C-2 was substituted by other acyloxy moieties (2j-2s), three (2m: C7, 2n: C9, 2o: C10) maintained potent activity. These results suggested that peracylated mannose structure is critical for calcium signal-modulating activity, and this activity is precisely dependent on the length of four acyl side chains on d-mannose. PMID:27243802

  9. Potent antimycobacterial activity of the pyridoxal isonicotinoyl hydrazone analog 2-pyridylcarboxaldehyde isonicotinoyl hydrazone: a lipophilic transport vehicle for isonicotinic acid hydrazide.

    PubMed

    Ellis, Samantha; Kalinowski, Danuta S; Leotta, Lisa; Huang, Michael L H; Jelfs, Peter; Sintchenko, Vitali; Richardson, Des R; Triccas, James A

    2014-02-01

    The rise in drug-resistant strains of Mycobacterium tuberculosis is a major threat to human health and highlights the need for new therapeutic strategies. In this study, we have assessed whether high-affinity iron chelators of the pyridoxal isonicotinoyl hydrazone (PIH) class can restrict the growth of clinically significant mycobacteria. Screening a library of PIH derivatives revealed that one compound, namely, 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH), exhibited nanomolar in vitro activity against Mycobacterium bovis bacille Calmette-Guérin and virulent M. tuberculosis. Interestingly, PCIH is derived from the condensation of 2-pyridylcarboxaldehyde with the first-line antituberculosis drug isoniazid [i.e., isonicotinic acid hydrazide (INH)]. PCIH displayed minimal host cell toxicity and was effective at inhibiting growth of M. tuberculosis within cultured macrophages and also in vivo in mice. Further, PCIH restricted mycobacterial growth at high bacterial loads in culture, a property not observed with INH, which shares the isonicotinoyl hydrazide moiety with PCIH. When tested against Mycobacterium avium, PCIH was more effective than INH at inhibiting bacterial growth in broth culture and in macrophages, and also reduced bacterial loads in vivo. Complexation of PCIH with iron decreased its effectiveness, suggesting that iron chelation may play some role in its antimycobacterial efficacy. However, this could not totally account for its potent efficacy, and structure-activity relationship studies suggest that PCIH acts as a lipophilic vehicle for the transport of its intact INH moiety into the mammalian cell and the mycobacterium. These results demonstrate that iron-chelating agents such as PCIH may be of benefit in the treatment and control of mycobacterial infection. PMID:24243647

  10. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3.

    PubMed Central

    Fredericks, W J; Galili, N; Mukhopadhyay, S; Rovera, G; Bennicelli, J; Barr, F G; Rauscher, F J

    1995-01-01

    Alveolar rhabdomyosarcomas are pediatric solid tumors with a hallmark cytogenetic abnormality: translocation of chromosomes 2 and 13 [t(2;13) (q35;q14)]. The genes on each chromosome involved in this translocation have been identified as the transcription factor-encoding genes PAX3 and FKHR. The NH2-terminal paired box and homeodomain DNA-binding domains of PAX3 are fused in frame to COOH-terminal regions of the chromosome 13-derived FKHR gene, a novel member of the forkhead DNA-binding domain family. To determine the role of the fusion protein in transcriptional regulation and oncogenesis, we identified the PAX3-FKHR fusion protein and characterized its function(s) as a transcription factor relative to wild-type PAX3. Antisera specific to PAX3 and FKHR were developed and used to examine PAX3 and PAX3-FKHR expression in tumor cell lines. Sequential immunoprecipitations with anti-PAX3 and anti-FKHR sera demonstrated expression of a 97-kDa PAX3-FKHR fusion protein in the t(2;13)-positive rhabdomyosarcoma Rh30 cell line and verified that a single polypeptide contains epitopes derived from each protein. The PAX3-FKHR protein was localized to the nucleus in Rh30 cells, as was wild-type PAX3, in t(2;13)-negative A673 cells. In gel shift assays using a canonical PAX binding site (e5 sequence), we found that DNA binding of PAX3-FKHR was significantly impaired relative to that of PAX3 despite the two proteins having identical PAX DNA-binding domains. However, the PAX3-FKHR fusion protein was a much more potent transcriptional activator than PAX3 as determined by transient cotransfection assays using e5-CAT reporter plasmids. The PAX3-FKHR protein may function as an oncogenic transcription factor by enhanced activation of normal PAX3 target genes. PMID:7862145

  11. The adipokine adiponectin has potent anti-fibrotic effects mediated via adenosine monophosphate-activated protein kinase: novel target for fibrosis therapy

    PubMed Central

    2012-01-01

    Introduction Fibrosis in scleroderma is associated with collagen deposition and myofibroblast accumulation. Peroxisome proliferator activated receptor gamma (PPAR-γ), a master regulator of adipogenesis, inhibits profibrotic responses induced by transforming growth factor-ß (TGF-β), and its expression is impaired in scleroderma. The roles of adiponectin, a PPAR-γ regulated pleiotropic adipokine, in regulating the response of fibroblasts and in mediating the effects of PPAR-γ are unknown. Methods Regulation of fibrotic gene expression and TGF-ß signaling by adiponectin and adenosine monophosphate protein-activated (AMP) kinase agonists were examined in normal fibroblasts in monolayer cultures and in three-dimensional skin equivalents. AdipoR1/2 expression on skin fibroblasts was determined by real-time quantitative PCR. Results Adiponectin, an adipokine directly regulated by PPAR-γ, acts as a potent anti-fibrotic signal in normal and scleroderma fibroblasts that abrogates the stimulatory effects of diverse fibrotic stimuli and reduces elevated collagen gene expression in scleroderma fibroblasts. Adiponectin responses are mediated via AMP kinase, a fuel-sensing cellular enzyme that is necessary and sufficient for down-regulation of fibrotic genes by blocking canonical Smad signaling. Moreover, we demonstrate that endogenous adiponectin accounts, at least in part, for the anti-fibrotic effects exerted by ligands of PPAR-γ. Conclusions These findings reveal a novel link between cellular energy metabolism and extracellular matrix homeostasis converging on AMP kinase. Since the levels of adiponectin as well as its receptor are impaired in scleroderma patients with progressive fibrosis, the present results suggest a potential role for defective adiponectin expression or function in progressive fibrogenesis in scleroderma and other chronic fibrosing conditions. Restoring the adiponectin signaling axis in fibroblasts might, therefore, represent a novel

  12. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. PMID:24365491

  13. Radiosynthesis and pharmacokinetics of high specific activity /sup 75,77/Br-bromperidol, a potent butyrophenone neuroleptic

    SciTech Connect

    Moerlein, S.M.; Stocklin, G.

    1984-01-01

    Bromperidol, 4-(4-(4-bromophenyl)-4-hydroxypiperidino)-4'- fluorobutyrophenone, is a potent neuroleptic which has found clinical use in the treatment of schizophrenia. Of the major dopaminergic receptor-binding ligands, bromperidol has the greatest specificity for binding to cerebral dopamine receptors (K/sub i/ = 3.7 nM) relative to competitive cerebral serotonin (K/sub i/ = 26 nM), ..cap alpha..-adrenergic (K/sub i/ = 100 nM) or histamine (K/sub i/ = 700 nM) receptors. The authors have therefore prepared bromperidol labelled with no-carrier-added (n.c.a.) /sup 75/Br (t/sub 1/2/ = 1.6 hr ..beta../sup +/) or /sup 77/Br (t/sub 1/2/ = 52 hr EC) for evaluation as a radiopharmaceutical for mapping cerebral dopamine receptor areas with PECT technology, as well as for non-invasive pharmacodynamic studies in man with conventional nuclear medicine equipment. 4-(4-(4-trimethylstannylphenyl)-4-hydroxypiperidino)-4'- fluorobutyrophenone, TMSn-P, was synthesized in 40% chemical yield by reaction of trimethylstannyl sodium with bromperidol. TMSn-P was purified by preparative HPLC and characterized by /sup 1/H-NMR and GC-MS. TMSn-P was radiobrominated in methanol using n.c.a. /sup 75/Br/sup -/ or /sup 77/Br/sup -/ and dichloramine-T as oxidizing agent. Product /sup 75,77/Br-bromperidol was separated from impurities, including chlorinated side-product halo-peridol, using HPLC (RP-18; MeOH/H/sub 2/O/Et/sub 3/N = 70/30/0.3). For a reaction time of 5 minutes, and an overall radiopharmaceutical production time of 30 minutes, /sup 75,77/Br-bromperidol was obtained in physiological saline solution with 40% radiochemical yield and a specific activity > 10,000 Ci/mmole. The pharmacokinetics in rodents and PECT studies in primates using /sup 75,77/Br-bromperidol are compared with that of previously-reported /sup 75,77/Br-brombenperidol.

  14. Neutron Activation Analysis for the Demonstration of Amphibolite Rock-Weathering Activity of a Yeast

    PubMed Central

    Rades-Rohkohl, E.; Hirsch, P.; Fränzle, O.

    1979-01-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 μm) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components. PMID:16345472

  15. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  16. Sj7170, a unique dual-function peptide with a specific α-chymotrypsin inhibitory activity and a potent tumor-activating effect from scorpion venom.

    PubMed

    Song, Yu; Gong, Ke; Yan, Hong; Hong, Wei; Wang, Le; Wu, Yingliang; Li, Wenhua; Li, Wenxin; Cao, Zhijian

    2014-04-25

    A new peptide precursor, termed Sj7170, was characterized from the venomous gland cDNA library of the scorpion Scorpiops jendeki. Sj7170 was deduced to be a 62-amino acid peptide cross-linked by five disulfide bridges. The recombinant Sj7170 peptide (rSj7170) with chromatographic purity was produced by a prokaryotic expression system. Enzyme inhibition assay in vitro and in vivo showed that rSj7170 specifically inhibited the activity of α-chymotrypsin at micromole concentrations. In addition, Sj7170 not only promoted cell proliferation and colony formation by up-regulating the expression of cyclin D1 in vitro but also enhanced tumor growth in nude mice. Finally, Sj7170 accelerated cellular migration and invasion by increasing the expression of the transcription factor Snail and then inducing the epithelial-mesenchymal transition. Moreover, Sj7170 changed cell morphology and cytoskeleton of U87 cells by the GTPase pathway. Taken together, Sj7170 is a unique dual-function peptide, i.e. a specific α-chymotrypsin inhibitor and a potent tumorigenesis/metastasis activator. Our work not only opens an avenue of developing new modulators of tumorigenesis/metastasis from serine protease inhibitors but also strengthens the functional link between protease inhibitors and tumor activators. PMID:24584937

  17. Sj7170, a Unique Dual-function Peptide with a Specific α-Chymotrypsin Inhibitory Activity and a Potent Tumor-activating Effect from Scorpion Venom*

    PubMed Central

    Song, Yu; Gong, Ke; Yan, Hong; Hong, Wei; Wang, Le; Wu, Yingliang; Li, Wenhua; Li, Wenxin; Cao, Zhijian

    2014-01-01

    A new peptide precursor, termed Sj7170, was characterized from the venomous gland cDNA library of the scorpion Scorpiops jendeki. Sj7170 was deduced to be a 62-amino acid peptide cross-linked by five disulfide bridges. The recombinant Sj7170 peptide (rSj7170) with chromatographic purity was produced by a prokaryotic expression system. Enzyme inhibition assay in vitro and in vivo showed that rSj7170 specifically inhibited the activity of α-chymotrypsin at micromole concentrations. In addition, Sj7170 not only promoted cell proliferation and colony formation by up-regulating the expression of cyclin D1 in vitro but also enhanced tumor growth in nude mice. Finally, Sj7170 accelerated cellular migration and invasion by increasing the expression of the transcription factor Snail and then inducing the epithelial-mesenchymal transition. Moreover, Sj7170 changed cell morphology and cytoskeleton of U87 cells by the GTPase pathway. Taken together, Sj7170 is a unique dual-function peptide, i.e. a specific α-chymotrypsin inhibitor and a potent tumorigenesis/metastasis activator. Our work not only opens an avenue of developing new modulators of tumorigenesis/metastasis from serine protease inhibitors but also strengthens the functional link between protease inhibitors and tumor activators. PMID:24584937

  18. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models.

    PubMed

    Yan, S Betty; Peek, Victoria L; Ajamie, Rose; Buchanan, Sean G; Graff, Jeremy R; Heidler, Steven A; Hui, Yu-Hua; Huss, Karen L; Konicek, Bruce W; Manro, Jason R; Shih, Chuan; Stewart, Julie A; Stewart, Trent R; Stout, Stephanie L; Uhlik, Mark T; Um, Suzane L; Wang, Yong; Wu, Wenjuan; Yan, Lei; Yang, Wei J; Zhong, Boyu; Walgren, Richard A

    2013-08-01

    The HGF/MET signaling pathway regulates a wide variety of normal cellular functions that can be subverted to support neoplasia, including cell proliferation, survival, apoptosis, scattering and motility, invasion, and angiogenesis. MET over-expression (with or without gene amplification), aberrant autocrine or paracrine ligand production, and missense MET mutations are mechanisms that lead to activation of the MET pathway in tumors and are associated with poor prognostic outcome. We report here preclinical development of a potent, orally bioavailable, small-molecule inhibitor LY2801653 targeting MET kinase. LY2801653 is a type-II ATP competitive, slow-off inhibitor of MET tyrosine kinase with a dissociation constant (Ki) of 2 nM, a pharmacodynamic residence time (Koff) of 0.00132 min(-1) and t1/2 of 525 min. LY2801653 demonstrated in vitro effects on MET pathway-dependent cell scattering and cell proliferation; in vivo anti-tumor effects in MET amplified (MKN45), MET autocrine (U-87MG, and KP4) and MET over-expressed (H441) xenograft models; and in vivo vessel normalization effects. LY2801653 also maintained potency against 13 MET variants, each bearing a single-point mutation. In subsequent nonclinical characterization, LY2801653 was found to have potent activity against several other receptor tyrosine oncokinases including MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2 and against the serine/threonine kinases MKNK1/2. The potential value of MET and other inhibited targets within a number of malignancies (such as colon, bile ducts, and lung) is discussed. LY2801653 is currently in phase 1 clinical testing in patients with advanced cancer (trial I3O-MC-JSBA, NCT01285037). PMID:23275061

  19. Two small molecule compounds, LLL12 and FLLL32, exhibit potent inhibitory activity on STAT3 in human rhabdomyosarcoma cells.

    PubMed

    Wei, Chang-Ching; Ball, Sarah; Lin, Li; Liu, Aiguo; Fuchs, James R; Li, Pui-Kai; Li, Chenglong; Lin, Jiayuh

    2011-01-01

    Signal transducers and activators of transcription 3 (STAT3) signaling is persistently activated in many types of cancer cells, and represents a valid target for anticancer drug design. However, few reports have described the constitutive activation of STAT3 in human sarcoma cells. In this study, we demonstrate that the STAT3 signaling pathway is constitutively activated in human rhabodomyosarcoma cells (RH28, RH30, and RD2). We also investigated the inhibitory effects of two newly developed small molecules, LLL12 and FLLL32, on the STAT3 signaling pathway in human rhabodomyosarcoma cells. Both LLL12 and FLLL32 downregulated STAT3 constitutively and interleukin-6 (IL-6) stimulated phosphorylated STAT3 (p-STAT3). The inhibition of STAT3 via LLL12 and FLLL32 was confirmed by the inhibition of STAT3 DNA binding activity. The downstream targets of STAT3, cyclin D1, Bcl-xL, and survivin were also downregulated by LLL12 and FLLL 32 at both messenger RNA and protein levels. The potency of LLL12 and FLLL32 to inhibit proliferation/viability in human rhabodomyosarcoma cells (RH28, RH30, and RD2) was higher than that of the 5 previously reported Janus kinase 2 (JAK2)/STAT3 inhibitors (LLL3, WP1066, Stattic, S3I-201, and AG490) and curcumin. Thus, in this study, we investigated the inhibitory effects of two STAT3 inhibitors, LLL12 and FLLL32, on the STAT3 signaling pathway in human rhabodomyosarcoma cells; we also demonstrated their higher potency in inhibiting proliferation on human rhabodomyosarcoma cells as compared to other five JAK2/STAT3 inhibitors and curcumin. PMID:21109950

  20. Significant decrease of ADP release rate underlies the potent activity of dimethylenastron to inhibit mitotic kinesin Eg5 and cancer cell proliferation

    SciTech Connect

    Sun, Linlin; Sun, Xiaodong; Xie, Songbo; Yu, Haiyang; Zhong, Diansheng

    2014-05-09

    Highlights: • DIMEN displays higher anti-proliferative activity than enastron. • DIMEN induced mitotic arrest and apoptosis more significantly than enastron. • DIMEN blocked the conformational change of ADP-binding pocket more effectively. • DIMEN hindered ADP release more potently than enastron. - Abstract: Eg5 is a mitotic kinesin that plays a crucial role in the formation of bipolar mitotic spindles, by hydrolyzing ATP to push apart anti-parallel microtubules. Dimethylenastron is potent specific small molecule inhibitor of Eg5. The mechanism by which dimethylenastron inhibits Eg5 function remains unclear. By comparing with enastron, here we report that dimethylenastron prevents the growth of pancreatic and lung cancer cells more effectively, by halting mitotic progression and triggering apoptosis. We analyze their interactions with ADP-bound Eg5 crystal structure, and find that dimethylenastron binds Eg5 motor domain with higher affinity. In addition, dimethylenastron allosterically blocks the conformational change of the “sandwich”-like ADP-binding pocket more effectively. We subsequently use biochemical approach to reveal that dimethylenastron slows ADP release more significantly than enastron. These data thus provide biological, structural and mechanistic insights into the potent inhibitory activity of dimethylenastron.

  1. Synthesis and Structure-Activity Relationships of Tambjamines and B-Ring Functionalized Prodiginines as Potent Antimalarials.

    PubMed

    Kancharla, Papireddy; Kelly, Jane Xu; Reynolds, Kevin A

    2015-09-24

    Synthesis and antimalarial activity of 94 novel bipyrrole tambjamines (TAs) and a library of B-ring functionalized tripyrrole prodiginines (PGs) against a panel of Plasmodium falciparum strains are described. The activity and structure-activity relationships demonstrate that the ring-C of PGs can be replaced by an alkylamine, providing for TAs with retained/enhanced potency. Furthermore, ring-B of PGs/TAs can be substituted with short alkyl substitutions at either 4-position (replacement of OMe) or 3- and 4-positions without impacting potency. Eight representative TAs and two PGs have been evaluated for antimalarial activity against multidrug-resistant P. yoelii in mice in the dose range of 5-100 mg/kg × 4 days by oral administration. The KAR425 TA offered greater efficacy than previously observed for any PG, providing 100% protection to malaria-infected mice until day 28 at doses of 25 and 50 mg/kg × 4 days, and was also curative in this model in a single oral dose (80 mg/kg). This study presents the first account of antimalarial activity in tambjamines. PMID:26305125

  2. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 3.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Ohte, Satoshi; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Ōmura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-07-01

    In an effort to develop potent and selective inhibitors toward ACAT2, structure-activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). In particular, we investigated the possibility of introducing appropriate 1,11-O-benzylidene and 7-O-substituted benzoyl moieties into PPPA (1). The new o-substituted benzylidene derivatives showed higher selectivity for ACAT2 than PPPA (1). Among them, 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7q and 1,11-O-o,o-dimethylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7z proved to be potent ACAT2 inhibitors with unprecedented high isozyme selectivity. PMID:23711919

  3. Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators ofsmall conductance Ca2+-activated K+ channels.

    PubMed

    Sørensen, Ulrik S; Strøbaek, Dorte; Christophersen, Palle; Hougaard, Charlotte; Jensen, Marianne L; Nielsen, Elsebet Ø; Peters, Dan; Teuber, Lene

    2008-12-11

    Small conductance Ca2+-activated K+ channels (SK channels) participate in the control of neuronal excitability, in the shaping of action potential firing patterns, and in the regulation of synaptic transmission.SK channel inhibitors have the potential of becoming new drugs for treatment of various psychiatric and neurological diseases such as depression, cognition impairment, and Parkinson's disease. In the present study we describe the structure-activity relationship (SAR) of a class of 2-(N-substituted)-2-aminobenzimidazoles that constitute a novel class of selective SK channel inhibitors that, in contrast to classical SK inhibitors, do not block the pore of the channel. The pore blocker apamin is not displaced by these compounds in binding studies, and they still inhibit SK channels in which the apamin binding site has been abolished by point mutations. These novel SK inhibitors shift the concentration-response curve for Ca2+ toward higher values and represent the first example of negative gating modulation as a mode-of-action for inhibition of SK channels. The first described compound in this class is NS8593 (14), and the most potent analogue identified in this study is the racemic compound 39 (NS11757), which reversibly inhibits SK3-mediated currents with a K(d) value of 9 nM. PMID:18998663

  4. GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade.

    PubMed

    Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro; Yvon, Eric S; Christo, Susan N; Hayball, John D; Lewis, Ian D; Brenner, Malcolm K; Brown, Michael P

    2016-06-01

    Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment of hematologic malignancies but more variable results in the treatment of solid tumors and the persistence and expansion of CAR T cells within patients has been identified as a key correlate of antitumor efficacy. Lack of immunological "space", functional exhaustion, and deletion have all been proposed as mechanisms that hamper CAR T-cell persistence. Here we describe the events following activation of third-generation CAR T cells specific for GD2. CAR T cells had highly potent immediate effector functions without evidence of functional exhaustion in vitro, although reduced cytokine production reversible by PD-1 blockade was observed after longer-term culture. Significant activation-induced cell death (AICD) of CAR T cells was observed after repeated antigen stimulation, and PD-1 blockade enhanced both CAR T-cell survival and promoted killing of PD-L1(+) tumor cell lines. Finally, we assessed CAR T-cell persistence in patients enrolled in the CARPETS phase 1 clinical trial of GD2-specific CAR T cells in the treatment of metastatic melanoma. Together, these data suggest that deletion also occurs in vivo and that PD-1-targeted combination therapy approaches may be useful to augment CAR T-cell efficacy and persistence in patients. PMID:27019998

  5. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells

    PubMed Central

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455

  6. Sulfonamide derivatives containing dihydropyrazole moieties selectively and potently inhibit MMP-2/MMP-9: Design, synthesis, inhibitory activity and 3D-QSAR analysis.

    PubMed

    Yan, Xiao-Qiang; Wang, Zhong-Chang; Li, Zhen; Wang, Peng-Fei; Qiu, Han-Yue; Chen, Long-Wang; Lu, Xiao-Yuan; Lv, Peng-Cheng; Zhu, Hai-Liang

    2015-10-15

    New series of sulfonamide derivatives containing a dihydropyrazole moieties inhibitors of MMP-2/MMP-9 were discovered using structure-based drug design. Synthesis, antitumor activity, structure-activity relationship and optimization of physicochemical properties were described. In vitro the bioassay results revealed that most target compounds showed potent inhibitory activity in the enzymatic and cellular assays. Among the compounds, compound 3i exhibited the most potent inhibitory activity with IC50 values of 0.21 μM inhibiting MMP-2 and 1.87 μM inhibiting MMP-9, comparable to the control positive compound CMT-1 (1.26 μM, 2.52 μM). Docking simulation was performed to position compound 3i into the MMP-2 active site to determine the probable binding pose. Docking simulation was further performed to position compound 3i into the MMP-2 active site to determine the probable binding model the 3D-QSAR models were built for reasonable design of MMP-2/MMP-9 inhibitors at present and in future. PMID:26346367

  7. A novel PI3K inhibitor PIK-C98 displays potent preclinical activity against multiple myeloma

    PubMed Central

    Yu, Yang; Qi, Huixin; Han, Kunkun; Tang, Juan; Zhang, Zubin; Zeng, Yuanying; Cao, Biyin; Qiao, Chunhua; Zhang, Hongjian; Hou, Tingjun; Mao, Xinliang

    2015-01-01

    Recent clinical trials have demonstrated targeting PI3K pathway is a promising strategy for the treatment of blood cancers. To identify novel PI3K inhibitors, we performed a high throughput virtual screen and identified several novel small molecule compounds, including PIK-C98 (C98). The cell-free enzymatic studies showed that C98 inhibited all class I PI3Ks at nano- or low micromolar concentrations but had no effects on AKT or mTOR activity. Molecular docking analysis revealed that C98 interfered with the ATP-binding pockets of PI3Ks by forming H-bonds and arene-H interactions with specific amino acid residues. The cellular assays demonstrated that C98 specifically inhibited PI3K/AKT/mTOR signaling pathway, but had no effects on other kinases and proteins including IGF-1R, ERK, p38, c-Src, PTEN, and STAT3. Inhibition of PI3K by C98 led to myeloma cell apoptosis. Furthermore, oral administration of C98 delayed tumor growth in two independent human myeloma xenograft models in nude mice but did not show overt toxicity. Pharmacokinetic analyses showed that C98 was well penetrated into myeloma tumors. Therefore, through a high throughput virtual screen we identified a novel PI3K inhibitor that is orally active against multiple myeloma with great potential for further development. PMID:25474140

  8. Synthesis and in vitro Evaluation of 3H-Pyrrolo[3,2-f]-quinolin-9-one Derivatives That Show Potent and Selective Anti-leukemic Activity

    PubMed Central

    Bortolozzi, Roberta; Brun, Paola; Castagliuolo, Ignazio; Hamel, Ernest; Basso, Giuseppe; Viola, Giampietro

    2010-01-01

    A series of new substituted 7-phenyl-3H-pyrrolo[3,2-f]quinolin-9-ones were synthesized and evaluated for their antiproliferative activity. The most active derivatives showed high selectivity against human leukemia cell lines and potently inhibited their growth, with GI50 values in the nanomolar range. The active compounds strongly blocked tubulin assembly and colchicine binding to tubulin. Their activities were equal to or greater than that of the reference compound combretastatin A-4. Flow cytometry studies showed that the two most active compounds arrested Jurkat cells in the G2/M cell-cycle phase in a concentration-dependent manner. This effect was associated with apoptosis, mitochondrial depolarization, generation of reactive oxygen species, activation of caspase-3, and cleavage of the enzyme poly(ADP-ribose) polymerase. PMID:20629070

  9. Eupolyphaga sinensis Walker demonstrates angiogenic activity and inhibits A549 cell growth by targeting the KDR signaling pathway.

    PubMed

    Dai, Bingling; Qi, Junpeng; Liu, Rui; Zhang, Yanmin

    2014-09-01

    Eupolyphaga sinensis Walker has been reported to have anticoagulation, antithrombotic, liver protective and antitumor effects. In the present study, the inhibitory effects on proliferation of A549 human non‑small cell lung cancer cells and the underlying mechanisms were examined. Firstly, three solvents, 70% ethanol, distilled water and 95% ethanol, were used to extract Eupolyphaga sinensis Walker. The MTT assay results demonstrated that the 70% ethanol extract more potently reduced the growth of A549 cells and it was therefore adopted in the subsequent experiments. Eupolyphaga sinensis Walker 70% ethanol extract significantly inhibited A549 cell migration in a time‑ and dose‑dependent manner and inhibited human umbilical vein endothelial cell proliferation, migration and tube formation. Furthermore, Eupolyphaga sinensis Walker 70% ethanol extract effectively inhibited blood vessel formation in the established tissue model for angiogenesis. In addition, Eupolyphaga sinensis Walker 70% ethanol extract was demonstrated to inhibit the autophosphorylation of KDR, and downregulate the subsequent activation of AKT and extracellular signal regulated kinase (ERK)1/2 in A549 cells. In conclusion, these findings demonstrated that the antitumor mechanism of Eupolyphaga sinensis Walker 70% ethanol extract was through inhibiting angiogenesis. It functioned by interrupting the autophosphorylation of KDR and subsequently, AKT and ERK1/2. PMID:25059654

  10. Discovery of EBI-907: A highly potent and orally active B-Raf(V600E) inhibitor for the treatment of melanoma and associated cancers.

    PubMed

    Lu, Biao; Cao, Hu; Cao, Jingsong; Huang, Song; Hu, Qiyue; Liu, Dong; Shen, Ru; Shen, Xiaodong; Tao, Weikang; Wan, Hong; Wang, Dan; Yan, Yinfa; Yang, Liuqing; Zhang, Jiayin; Zhang, Lei; Zhang, Lianshan; Zhang, Minsheng

    2016-02-01

    A novel series of pyrazolo[3,4-c]isoquinoline derivatives was discovered as B-Raf(V600E) inhibitors through scaffold hopping based on a literature lead PLX4720. Further SAR exploration and optimization led to the discovery of potent B-Raf(V600E) inhibitors with good oral bioavailability in rats and dogs. One of the compounds EBI-907 (13g) demonstrated excellent in vivo efficacy in B-Raf(V600E) dependent Colo-205 tumor xenograft models in mouse and is under preclinical studies for the treatment of melanoma and B-Raf(V600E) associated cancers. PMID:26739779

  11. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections.

    PubMed

    Chung, Yi-Ching; Hsieh, Feng-Chia; Lin, Ying-Ju; Wu, Tzong-Yuan; Lin, Cheng-Wen; Lin, Ching-Ting; Tang, Nou-Ying; Jinn, Tzyy-Rong

    2015-05-15

    The aim of this study was to identify the active ingredients responsible for the anti-EV71 activity produced by Salvia miltiorrhiza extracts. A pGS-EV71 IRES-based bicistronic reporter assay platform was used for rapid analysis of compounds that could specifically inhibit EV71 viral IRES-mediated translation. The analysis identified 2 caffeic acid derivatives, magnesium lithospermate B (MLB) and rosmarinic acid (RA), which suppressed EV71 IRES-mediated translation at concentrations of 30μg/ml. We also found that MLB and RA inhibited EV71 infection when they were added to RD cells during the viral absorption stage. MLB had a low IC50 value of 0.09mM and a high TI value of 10.52. In contrast, RA had an IC50 value of 0.50mM with a TI value of 2.97. MLB and RA (100µg/ml) also reduced EV71 viral particle production and significantly decreased VP1 protein production. We propose that these two derivatives inhibit EV71 viral entry into cells and viral IRES activity, thereby reducing viral particle production and viral RNA expression and blocking viral VP1 protein translation. This study provides useful information for the development of anti-EV71 assays and reagents by demonstrating a convenient EV71 IRES-based bicistronic assay platform to screen for anti-EV71 IRES activity, and also reports 2 compounds, MLB and RA, which are responsible for the anti-EV71 activity of S. miltiorrhiza. PMID:25773498

  12. LY2456302 is a novel, potent, orally-bioavailable small molecule kappa-selective antagonist with activity in animal models predictive of efficacy in mood and addictive disorders.

    PubMed

    Rorick-Kehn, Linda M; Witkin, Jeffrey M; Statnick, Michael A; Eberle, Elizabeth L; McKinzie, Jamie H; Kahl, Steven D; Forster, Beth M; Wong, Conrad J; Li, Xia; Crile, Robert S; Shaw, David B; Sahr, Allison E; Adams, Benjamin L; Quimby, Steven J; Diaz, Nuria; Jimenez, Alma; Pedregal, Concepcion; Mitch, Charles H; Knopp, Kelly L; Anderson, Wesley H; Cramer, Jeffrey W; McKinzie, David L

    2014-02-01

    Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders. However, existing literature on kappa receptor antagonists has used extensively JDTic and nor-BNI which exhibit long-lasting pharmacokinetic properties that complicate experimental design and interpretation of results. Herein, we report for the first time the in vitro and in vivo pharmacological profile of a novel, potent kappa opioid receptor antagonist with excellent selectivity over other receptors and markedly improved drug-like properties over existing research tools. LY2456302 exhibits canonical pharmacokinetic properties that are favorable for clinical development, with rapid absorption (t(max): 1-2 h) and good oral bioavailability (F = 25%). Oral LY2456302 administration selectively and potently occupied central kappa opioid receptors in vivo (ED₅₀ = 0.33 mg/kg), without evidence of mu or delta receptor occupancy at doses up to 30 mg/kg. LY2456302 potently blocked kappa-agonist-mediated analgesia and disruption of prepulse inhibition, without affecting mu-agonist-mediated effects at doses >30-fold higher. Importantly, LY2456302 did not block kappa-agonist-induced analgesia one week after administration, indicating lack of long-lasting pharmacodynamic effects. In contrast to the nonselective opioid antagonist naltrexone, LY2456302 produced antidepressant-like effects in the mouse forced swim test and enhanced the effects of imipramine and citalopram. LY2456302 reduced ethanol self-administration in alcohol-preferring (P) rats and, unlike naltrexone, did not exhibit significant tolerance upon 4 days of repeated dosing. LY2456302 is a centrally-penetrant, potent, kappa-selective antagonist with

  13. Potent inhibitory action of the gastric proton pump inhibitor lansoprazole against urease activity of Helicobacter pylori: unique action selective for H. pylori cells.

    PubMed Central

    Nagata, K; Satoh, H; Iwahi, T; Shimoyama, T; Tamura, T

    1993-01-01

    The gastric proton pump inhibitor lansoprazole, its active analog AG-2000, and omeprazole dose dependently inhibited urease activity extracted with distilled water from Helicobacter pylori cells; the 50% inhibitory concentrations were between 3.6 and 9.5 microM, which were more potent than those of urease inhibitors, such as acetohydroxamic acid, hydroxyurea, and thiourea. These compounds also inhibited urease activity in intact cells of H. pylori and Helicobacter mustelae but did not inhibit ureases from other bacteria, such as Proteus vulgaris, Proteus mirabilis, and Providencia rettgeri. The mechanism of urease inhibition was considered to be blockage of the SH groups of H. pylori urease, since SH residues in the enzyme decreased after preincubation with lansoprazole and glutathione or dithiothreitol completely abolished the inhibitory action. The SH-blocking reagents N-ethylmaleimide and idoacetamide were also examined for their inhibition of the urease activity; their 50% inhibitory concentrations were 100- to 1,000-fold higher than those of lansoprazole. These results suggest that lansoprazole and omeprazole can potently and selectively inhibit H. pylori urease and that inhibition may be related to earlier findings indicating that these compounds have selective activity against HP growth. PMID:8494373

  14. Potent inhibitory action of the gastric proton pump inhibitor lansoprazole against urease activity of Helicobacter pylori: unique action selective for H. pylori cells.

    PubMed

    Nagata, K; Satoh, H; Iwahi, T; Shimoyama, T; Tamura, T

    1993-04-01

    The gastric proton pump inhibitor lansoprazole, its active analog AG-2000, and omeprazole dose dependently inhibited urease activity extracted with distilled water from Helicobacter pylori cells; the 50% inhibitory concentrations were between 3.6 and 9.5 microM, which were more potent than those of urease inhibitors, such as acetohydroxamic acid, hydroxyurea, and thiourea. These compounds also inhibited urease activity in intact cells of H. pylori and Helicobacter mustelae but did not inhibit ureases from other bacteria, such as Proteus vulgaris, Proteus mirabilis, and Providencia rettgeri. The mechanism of urease inhibition was considered to be blockage of the SH groups of H. pylori urease, since SH residues in the enzyme decreased after preincubation with lansoprazole and glutathione or dithiothreitol completely abolished the inhibitory action. The SH-blocking reagents N-ethylmaleimide and idoacetamide were also examined for their inhibition of the urease activity; their 50% inhibitory concentrations were 100- to 1,000-fold higher than those of lansoprazole. These results suggest that lansoprazole and omeprazole can potently and selectively inhibit H. pylori urease and that inhibition may be related to earlier findings indicating that these compounds have selective activity against HP growth. PMID:8494373

  15. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays.

    PubMed

    Djakpa, Helene; Kulkarni, Aditya; Barrows-Murphy, Scheneque; Miller, Greg; Zhou, Weihong; Cho, Hyejin; Török, Béla; Stieglitz, Kimberly

    2016-05-01

    Phospholipase D enzymes cleave phospholipid substrates generating choline and phosphatidic acid. Phospholipase D from Streptomyces chromofuscus is a non-HKD (histidine, lysine, and aspartic acid) phospholipase D as the enzyme is more similar to members of the diverse family of metallo-phosphodiesterase/phosphatase enzymes than phospholipase D enzymes with active site HKD repeats. A highly efficient library of phospholipase D inhibitors based on 1,3-disubstituted-4-amino-pyrazolopyrimidine core structure was utilized to evaluate the inhibition of purified S. chromofuscus phospholipase D. The molecules exhibited inhibition of phospholipase D activity (IC50 ) in the nanomolar range with monomeric substrate diC4 PC and micromolar range with phospholipid micelles and vesicles. Binding studies with vesicle substrate and phospholipase D strongly indicate that these inhibitors directly block enzyme vesicle binding. Following these compelling results as a starting point, sequence searches and alignments with S. chromofuscus phospholipase D have identified potential new drug targets. Using AutoDock, inhibitors were docked into the enzymes selected from sequence searches and alignments (when 3D co-ordinates were available) and results analyzed to develop next-generation inhibitors for new targets. In vitro enzyme activity assays with several human phosphatases demonstrated that the predictive protocol was accurate. The strategy of combining sequence comparison, docking, and high-throughput screening assays has helped to identify new drug targets and provided some insight into how to make potential inhibitors more specific to desired targets. PMID:26691755

  16. Ethyl acetate extract from marine sponge Hyattella cribriformis exhibit potent anticancer activity by promoting tubulin polymerization as evidenced mitotic arrest and induction of apoptosis

    PubMed Central

    Annamalai, Pazhanimuthu; Thayman, Malini; Rajan, Sowmiya; Raman, Lakshmi Sundaram; Ramasubbu, Sankar; Perumal, Pachiappan

    2015-01-01

    Background: Marine sponges are important sources of bioactive compounds. Objective: This study investigated the anticancer properties of Hyattella cribriformis ethyl acetate (EA) fraction in various cancer and normal cell lines. Materials and Methods: anticancer assay was carried out in 15 cell lines to evaluate the anticancer potential of the EA fraction. Impact on cell cycle distribution was determined using flow cytometry. The fraction was investigated for interfering microtubules assembly in both in vitro and cellular assay. Further studies were conducted to determine the fraction induced cell death (apoptosis) using calcein/propidium iodide dual staining, activated caspase-3 and phosphorylation of Bcl-2 protein at Ser70. DNA fragmentation assay was performed to confirm the apoptosis. Results: EA fraction exhibited potent inhibition of cancer cell growth and resulted in 50% growth inhibition (GI50) of 0.27 μg/mL in A673 cell line. Sarcoma (MG-63, Saos-2) and ovarian (SK-OV-3 and OVCAR-3) cancer cell lines also showed superior anticancer activity GI50 of 1.0 μg/mL. Colon and breast cancer cell lines exhibited moderate GI compare other cancer cell lines and normal human lung fibroblast showed GI50 of 15.6 μg/mL. EA fraction showed potent G2/M phase arrest in A673 cell line and induced apoptosis at 48 h exposure. EA fraction promoted microtubule polymerization in tubulin polymerization assay and increased level of polymerized tubulin in the HeLa cells. Fraction induced the activation of caspase-3 and phosphorylation of Bcl-2 anti-apoptotic protein. Fraction induced DNA fragmentation in HeLa cells as evidence of apoptosis. Conclusion: Marine sponge H. cribriformis EA fraction exhibited potent anticancer activity through tubulin polymerization and induction of apoptosis. PMID:25829774

  17. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    SciTech Connect

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-05-28

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  18. New phenylglycine derivatives with potent and selective antagonist activity at presynaptic glutamate receptors in neonatal rat spinal cord.

    PubMed

    Jane, D E; Pittaway, K; Sunter, D C; Thomas, N K; Watkins, J C

    1995-08-01

    The depression of the monosynaptic excitation of neonatal rat motoneurones produced by the metabotropic glutamate receptor (mGluR) agonists (1S,3S)-1-aminocyclopentane-1, 3-dicarboxylate (ACPD) or L-2-amino-4-phosphonobutyrate (L-AP4) was antagonized by three novel phenylglycine analogues: (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) and (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG). The potencies of all the new compounds were greater than that of the previously reported (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG). For L-AP4-sensitive presynaptic mGluRs, the order of antagonist potency found was MPPG > MSPG > MTPG > MCPG. In contrast, the order of antagonist potency found for (1S,3S)-ACPD-sensitive presynaptic mGluRs was MTPG > MPPG > MSPG > MCPG. To date, MPPG (KD 9.2 microM) is the most potent L-AP4-sensitive receptor antagonist yet tested on the neonatal rat spinal cord. In addition, MTPG (KD 77 microM) is the most potent antagonist yet tested for (1S,3S)-ACPD-sensitive receptors in this preparation. PMID:8532166

  19. MK-4101, a Potent Inhibitor of the Hedgehog Pathway, Is Highly Active against Medulloblastoma and Basal Cell Carcinoma.

    PubMed

    Filocamo, Gessica; Brunetti, Mirko; Colaceci, Fabrizio; Sasso, Romina; Tanori, Mirella; Pasquali, Emanuela; Alfonsi, Romina; Mancuso, Mariateresa; Saran, Anna; Lahm, Armin; Di Marcotullio, Lucia; Steinkühler, Christian; Pazzaglia, Simonetta

    2016-06-01

    Aberrant activation of the Hedgehog (Hh) signaling pathway is implicated in the pathogenesis of many cancers, including medulloblastoma and basal cell carcinoma (BCC). In this study, using neonatally irradiated Ptch1(+/-) mice as a model of Hh-dependent tumors, we investigated the in vivo effects of MK-4101, a novel SMO antagonist, for the treatment of medulloblastoma and BCC. Results clearly demonstrated a robust antitumor activity of MK-4101, achieved through the inhibition of proliferation and induction of extensive apoptosis in tumor cells. Of note, beside antitumor activity on transplanted tumors, MK-4101 was highly efficacious against primary medulloblastoma and BCC developing in the cerebellum and skin of Ptch1(+/-) mice. By identifying the changes induced by MK-4101 in gene expression profiles in tumors, we also elucidated the mechanism of action of this novel, orally administrable compound. MK-4101 targets the Hh pathway in tumor cells, showing the maximum inhibitory effect on Gli1 MK-4101 also induced deregulation of cell cycle and block of DNA replication in tumors. Members of the IGF and Wnt signaling pathways were among the most highly deregulated genes by MK-4101, suggesting that the interplay among Hh, IGF, and Wnt is crucial in Hh-dependent tumorigenesis. Altogether, the results of this preclinical study support a therapeutic opportunity for MK-4101 in the treatment of Hh-driven cancers, also providing useful information for combination therapy with drugs targeting pathways cooperating with Hh oncogenic activity. Mol Cancer Ther; 15(6); 1177-89. ©2016 AACR. PMID:26960983

  20. Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD.

    PubMed

    Jacoby, Elad; Yang, Yinmeng; Qin, Haiying; Chien, Christopher D; Kochenderfer, James N; Fry, Terry J

    2016-03-10

    Acute lymphoblastic leukemia (ALL) persisting or relapsing following bone marrow transplantation (BMT) has a dismal prognosis. Success with chimeric antigen receptor (CAR) T cells offers an opportunity to treat these patients with leukemia-redirected donor-derived T cells, which may be more functional than T cells derived from patients with leukemia but have the potential to mediate graft-versus-host disease (GVHD). We, together with others, have previously demonstrated tumor-specific T-cell dysfunction in the allogeneic environment. Here, we studied CAR T-cell function following BMT using an immunocompetent murine model of minor mismatched allogeneic transplantation followed by donor-derived CD19-CAR T cells. Allogeneic donor-derived CD19-CAR T cells eliminated residual ALL with equal potency to those administered after syngeneic BMT. Surprisingly, allogeneic CAR T cells mediated lethal acute GVHD with early mortality, which is atypical for this minor mismatch model. We demonstrated that both allogeneic and syngeneic CAR T cells show initial expansion as effector T cells, with a higher peak but rapid deletion of allogeneic CAR T cells. Interestingly, CAR-mediated acute GVHD was only seen in the presence of leukemia, suggesting CAR-target interactions induced GVHD. Indeed, serum interleukin (IL)-6 was elevated only in the presence of both leukemia and CAR T cells, and IL-6 neutralization ameliorated the severity of GVHD in a delayed donor lymphocyte infusion model. Finally, allogeneic CD4(+) CAR T cells were responsible for GVHD, which correlated with their ability to produce IL-6 upon CAR stimulation. Altogether, we demonstrate that donor-derived allogeneic CAR T cells are active but have the capacity to drive GVHD. PMID:26660684

  1. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria

    PubMed Central

    Pallister, Kyler B.; Mason, Sara; Nygaard, Tyler K.; Liu, Bin; Griffith, Shannon; Jones, Jennifer; Linderman, Susanne; Hughes, Melissa; Erickson, David; Voyich, Jovanka M.; Davis, Mary F.; Wilson, Eric

    2015-01-01

    In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis. PMID:26359669

  2. Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Elo, Hannu; Matikainen, Jorma; Pelttari, Eila

    2007-06-01

    Vancomycin-resistant enterococci (VRE) and methicillin-resistant staphylococci, most notably methicillin-resistant Staphylococcus aureus (MRSA), are serious clinical problems. The antibiotic arsenal available against them is limited, and new mutants worsen the situation. We studied the activity of (+)-usnic acid, an old lichen-derived drug, and its sodium salt against clinical isolates of VRE and MRSA using the agar diffusion and minimal inhibitory concentration (MIC) methods. The acid and, especially, the sodium salt had potent antimicrobial activity against all clinical isolates of VRE and MRSA studied. The MIC values of the sodium salt against VRE strains ranged between 4 and 16 μg/ml (1-day test) and between 4 and 31 μg/ml (2-day test), being below 8 μg/ml for most strains. The salt had potent activity even against those strains that were not inhibited by ampicillin (125 μg/ml), and it never lost its activity after 24 h, in contrast to ampicillin. Thus, in spite of the fact that usnic acid can in some cases cause serious toxicity, it and its salts may be worth considering in clinical practice in cases where other therapies have failed or the microbe is resistant toward other agents.

  3. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality.

    PubMed

    Mottershead, David G; Sugimura, Satoshi; Al-Musawi, Sara L; Li, Jing-Jie; Richani, Dulama; White, Melissa A; Martin, Georgia A; Trotta, Andrew P; Ritter, Lesley J; Shi, Junyan; Mueller, Thomas D; Harrison, Craig A; Gilchrist, Robert B

    2015-09-25

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals. PMID:26254468

  4. Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells

    PubMed Central

    Valero, Juan Garcia; Sancey, Lucie; Kucharczak, Jérôme; Guillemin, Yannis; Gimenez, Diana; Prudent, Julien; Gillet, Germain; Salgado, Jesús; Coll, Jean-Luc; Aouacheria, Abdel

    2011-01-01

    SUMMARY Although many cancer cells are primed for apoptosis, they usually develop resistance to cell death at multiple levels. Permeabilization of the outer mitochondrial membrane, which is mediated by proapoptotic Bcl-2 family members like Bax, is considered as a point-of-no-return for initiating apoptotic cell death. This crucial role has placed Bcl-2 family proteins as recurrent targets for anticancer drug development. Here, we propose and demonstrate a new concept based on using minimal active version of Bax to induce cell death independently of endogenous Bcl-2 proteins. We show that membrane-active segments of Bax can directly induce the release of mitochondria-residing apoptogenic factors and commit tumor cells promptly and irreversibly to caspase-dependent apoptosis. On this basis, we designed a peptide encompassing part of the Bax pore-forming domain, able to target mitochondria, induce cytochrome c release and trigger caspase-dependent apoptosis. Moreover, this Bax-derived poropeptide produced effective tumor regression after peritumoral injection in a nude mouse xenograft model. Thus, peptides derived from proteins evolutionary functionalized to form pores in the mitochondrial outer membrane represent novel templates for anticancer agents. PMID:21245196

  5. Design, Synthesis and Structure-Activity Relationship Studies of Novel Survivin Inhibitors with Potent Anti-Proliferative Properties

    PubMed Central

    Xiao, Min; Wang, Jin; Lin, Zongtao; Lu, Yan; Li, Zhenmei; White, Stephen W.; Miller, Duane D.; Li, Wei

    2015-01-01

    The anti-apoptotic protein survivin is highly expressed in most human cancer cells, but has very low expression in normal differentiated cells. Thus survivin is considered as an attractive cancer drug target. Herein we report the design and synthesis of a series of novel survivin inhibitors based on the oxyquinoline scaffold from our recently identified hit compound UC-112. These new analogs were tested against a panel of cancer cell lines including one with multidrug-resistant phenotype. Eight of these new UC-112 analogs showed IC50 values in the nanomole range in anti-proliferative assays. The best three compounds among them along with UC-112 were submitted for NCI-60 cancer cell line screening. The results indicated that structural modification from UC-112 to our best compound 4g has improved activity by four folds (2.2 μM for UC-112 vs. 0.5 μM for 4g, average GI50 values over all cancer cell lines in the NCI-60 panel).Western blot analyses demonstrated the new compounds maintained high selectivity for survivin inhibition over other members in the inhibition of apoptosis protein family. When tested in an A375 human melanoma xenograft model, the most active compound 4g effectively suppressed tumor growth and strongly induced cancer cell apoptosis in tumor tissues. This novel scaffold is promising for the development of selective survivin inhibitors as potential anticancer agents. PMID:26070194

  6. Synthesis, antibacterial activity, and biological evaluation of formyl hydroxyamino derivatives as novel potent peptide deformylase inhibitors against drug-resistant bacteria.

    PubMed

    Yang, Shouning; Shi, Wei; Xing, Dong; Zhao, Zheng; Lv, Fengping; Yang, Liping; Yang, Yushe; Hu, Wenhao

    2014-10-30

    Peptide deformylase (PDF) has been identified as a promising target for novel antibacterial agents. In this study, a series of novel formyl hydroxyamino derivatives were designed and synthesized as PDF inhibitors and their antibacterial activities were evaluated. Among the potent PDF inhibitors (1o, 1q, 1o', 1q', and 1x), in vivo studies showed that compound 1q possesses mild toxicity, a good pharmacokinetic profile and protective effects. The good in vivo efficacy and low toxicity suggest that this class of compounds has potential for development and use in future antibacterial drugs. PMID:25151577

  7. Molecular, genomic, and expressional delineation of a piscidin from rock bream (Oplegnathus fasciatus) with evidence for the potent antimicrobial activities of Of-Pis1 peptide.

    PubMed

    Umasuthan, Navaneethaiyer; Mothishri, M S; Thulasitha, William Shanthakumar; Nam, Bo-Hye; Lee, Jehee

    2016-01-01

    The piscidin family comprises a group of antimicrobial peptides (AMPs) that are vital components of teleost innate immunity. Piscidins protect the host from pathogens, through multifaceted roles as immunomodulators and anti-infective peptides. The present study reports the identification, and characterization of a putative piscidin homolog, Of-Pis1, from rock bream (Oplegnathus fasciatus). A combined genomic and transcriptomic approach revealed that the Of-Pis1 gene comprises 1396 nucleotides (nt), four exons, and three introns. The cDNA with the 213 nt open reading frame encoded a 70-amino acid preprotein consisting of a signal peptide, a mature peptide, and a prodomain. Predicted mature Of-Pis1 was assumed to be a membrane-active AMP, based on the prediction of an amphipathic α-helical conformation with a net charge of +4. In addition, Of-Pis1 demonstrated significant similarities with other piscidin family members in terms of gene structure, sequence homology, and evolutionary relationship. Examination by quantitative real-time PCR (qPCR) of basal transcription of Of-Pis1 in the tissues of naïve rock bream, revealed predominant transcript levels in the gills, followed by the spleen, intestine, skin, and head kidney. In gill tissues, the temporally induced mRNA expression of Of-Pis1, upon in vivo injection trials with lipopolysaccharide (LPS); polyinosinic:polycytidylic acid (poly I:C); and pathogens, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus (RBIV), was weak. In contrast, in vivo flagellin administration led to a robust upregulation of Of-Pis1 in different tissues. Antimicrobial potency was determined by employing recombinant (rOf-Pis1), and synthetic (pOf-Pis1) peptides, in in vitro assays. Recombinant overexpression inhibited the growth of bacteria expressing the rOf-Pis1 protein in a growth delay assay. The broad antimicrobial spectrum of pOf-Pis1 was evidenced by its potent activity against an array of microbes

  8. US28 Is a Potent Activator of Phospholipase C during HCMV Infection of Clinically Relevant Target Cells

    PubMed Central

    Miller, William E.; Zagorski, William A.; Brenneman, Joanna D.; Avery, Diana; Miller, Jeanette L. C.; O’Connor, Christine M.

    2012-01-01

    Members of the cytomegalovirus family each encode two or more genes with significant homology to G-protein coupled receptors (GPCRs). In rodent models of pathogenesis, these viral encoded GPCRs play functionally significant roles, as their deletion results in crippled viruses that cannot traffic properly and/or replicate in virally important target cells. Of the four HCMV encoded GPCRs, US28 has garnered the most attention due to the fact that it exhibits both agonist-independent and agonist-dependent signaling activity and has been demonstrated to promote cellular migration and proliferation. Thus, it appears that the CMV GPCRs play important roles in viral replication in vivo as well as promote the development of virus-associated pathology. In the current study we have utilized a series of HCMV/US28 recombinants to investigate the expression profile and signaling activities of US28 in a number of cell types relevant to HCMV infection including smooth muscle cells, endothelial cells and cells derived from glioblastoma multiforme (GBM) tumors. The results indicate that US28 is expressed and exhibits constitutive agonist-independent signaling activity through PLC-β in all cell types tested. Moreover, while CCL5/RANTES and CX3CL1/Fractalkine both promote US28-dependent Ca++ release in smooth muscle cells, this agonist-dependent effect appears to be cell-specific as we fail to detect US28 driven Ca++ release in the GBM cells. We have also investigated the effects of US28 on signaling via endogenous GPCRs including those in the LPA receptor family. Our data indicate that US28 can enhance signaling via endogenous LPA receptors. Taken together, our results indicate that US28 induces a variety of signaling events in all cell types tested suggesting that US28 signaling likely plays a significant role during HCMV infection and dissemination in vivo. PMID:23209769

  9. Extending the structure-activity relationship of anthranilic acid derivatives as farnesoid X receptor modulators: development of a highly potent partial farnesoid X receptor agonist.

    PubMed

    Merk, Daniel; Lamers, Christina; Ahmad, Khalil; Carrasco Gomez, Roberto; Schneider, Gisbert; Steinhilber, Dieter; Schubert-Zsilavecz, Manfred

    2014-10-01

    The ligand activated transcription factor nuclear farnesoid X receptor (FXR) is involved as a regulator in many metabolic pathways including bile acid and glucose homeostasis. Therefore, pharmacological activation of FXR seems a valuable therapeutic approach for several conditions including metabolic diseases linked to insulin resistance, liver disorders such as primary biliary cirrhosis or nonalcoholic steatohepatitis, and certain forms of cancer. The available FXR agonists, however, activate the receptor to the full extent which might be disadvantageous over a longer time period. Hence, partial FXR activators are required for long-term treatment of metabolic disorders. We here report the SAR of anthranilic acid derivatives as FXR modulators and development, synthesis, and characterization of compound 51, which is a highly potent partial FXR agonist in a reporter gene assay with an EC50 value of 8 ± 3 nM and on mRNA level in liver cells. PMID:25255039

  10. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase.

    PubMed

    Jackson, P F; Cole, D C; Slusher, B S; Stetz, S L; Ross, L E; Donzanti, B A; Trainor, D A

    1996-01-19

    A series of substituted phosphonate derivatives were designed and synthesized in order to study the ability of these compounds to inhibit the neuropeptidase N-acetylated alpha-linked acidic dipeptidase (NAALADase). The molecules were shown to act as inhibitors of the enzyme, with the most potent (compound 3) having a Ki of 0.275 nM. The potency of this compound is more than 1000 times greater than that of previously reported inhibitors of the enzyme. NAALADase is responsible for the catabolism of the abundant neuropeptide N-acetyl-aspartylglutamate (NAAG) into N-acetylaspartate and glutamate. NAAG has been proposed to be a neurotransmitter at a subpopulation of glutamate receptors; alternatively, NAAG has been suggested to act as a storage form of synaptic glutamate. As a result, inhibition of NAALADase may show utility as a therapeutic intervention in diseases in which altered levels of glutamate are thought to be involved. PMID:8558536

  11. Novel Indole-2-Carboxamide Compounds Are Potent Broad-Spectrum Antivirals Active against Western Equine Encephalitis Virus In Vivo

    PubMed Central

    Delekta, Phillip C.; Dobry, Craig J.; Sindac, Janice A.; Barraza, Scott J.; Blakely, Pennelope K.; Xiang, Jianming; Kirchhoff, Paul D.; Keep, Richard F.; Irani, David N.; Larsen, Scott D.

    2014-01-01

    ABSTRACT Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of

  12. Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity

    PubMed Central

    Khedr, Mohammed A

    2015-01-01

    Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were synthesized and evaluated for their antifungal activity. In silico study results showed the high binding affinity to lanosterol 14α-demethylase (−24.49 and −25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (−18.19 kcal/mol) and fluconazole (−16.08 kcal/mol). Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively. The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole. PMID:26309398

  13. Isopentenyl pyrophosphate activated CD56+ γδ T lymphocytes display potent anti-tumor activity towards human squamous cell carcinoma

    PubMed Central

    Alexander, Alan A.Z.; Maniar, Amudhan; Cummings, Jean-Saville; Hebbeler, Andrew M.; Schulze, Dan H.; Gastman, Brian R.; Pauza, C. David; Strome, Scott E.; Chapoval, Andrei I.

    2008-01-01

    Purpose The expression of CD56, a natural killer (NK) cell-associated molecule, on αβ T lymphocytes correlates with their increased anti-tumor effector function. CD56 is also expressed on a subset of γδ T cells. However, anti-tumor effector functions of CD56+ γδ T cells are poorly characterized. Experimental design To investigate the potential effector role of CD56+ γδ T cells in tumor killing, we employed isopentenyl pyrophosphate (IPP) and IL-2 expanded γδ T cells from PBMC of healthy donors. Results Thirty to 70% of IPP+IL-2 expanded γδ T cells express CD56 on their surface. Interestingly, while both CD56+ and CD56− γδ T cells express comparable levels of receptors involved in the regulation of γδ T cell cytotoxicity (e.g. NKG2D and CD94) only CD56+ γδ T lymphocytes are capable of killing squamous cell carcinoma (SCC) and other solid tumor cell lines. This effect is likely mediated by the enhanced release of cytolytic granules, since CD56+ γδ T lymphocytes expressed higher levels of CD107a compared to CD56− controls, following exposure to tumor cell lines. Lysis of tumor cell lines is blocked by concanomycin A and a combination of anti-γδTCR + anti-NKG2D mAb, suggesting that the lytic activity of CD56+ γδ T cells involves the perforin-granzyme pathway and is mainly γδTCR/NKGD2 dependent. Importantly, CD56 expressing γδ T lymphocytes are resistant to Fas ligand and chemically induced apoptosis. Conclusions Our data indicate that CD56+ γδ T cells are potent anti-tumor effectors capable of killing SCC and may play an important therapeutic role in patients with head and neck cancer and other malignancies. PMID:18594005

  14. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines

    PubMed Central

    Clemente-Vicario, Francisco; Alvarez, Carlos E.; Rowell, Jennie L.; Roy, Satavisha; London, Cheryl A.; Kisseberth, William C.; Lorch, Gwendolen

    2015-01-01

    Background It has been an open question how similar human and canine lung cancers are. This has major implications in availability of human treatments for dogs and in establishing translational models to test new therapies in pet dogs. The prognosis for canine advanced lung cancer is poor and new treatments are needed. Heat shock protein 90 (HSP90) is an ATPase-dependent molecular chaperone ubiquitously expressed in eukaryotic cells. HSP90 is essential for posttranslational conformational maturation and stability of client proteins including protein kinases and transcription factors, many of which are important for the proliferation and survival of cancer cells. We investigated the activity of STA-1474, a HSP90 inhibitor, in two canine lung cancer cell lines, BACA and CLAC. Results Comparative genomic hybridization analysis of both cell lines revealed genetic relevance to human non-small cell lung cancer. STA-1474 inhibited growth and induced apoptosis of both cell lines in a dose- and time-dependent manner. The ICs50 after 72 h treatment with STA-1474 were 0.08 and 0.11 μM for BACA and CLAC, respectively. When grown as spheroids, the IC50 of STA-1474 for BACA cells was approximately two-fold higher than when grown as a monolayer (0.348 μM vs. 0.168 μM), whereas CLAC spheroids were relatively drug resistant. Treatment of tumor-stromal fibroblasts with STA-1474 resulted in a dose-dependent decrease in their relative cell viability with a low IC50 of 0.28 μM. Conclusions Here we first established that lung adenocarcinoma in people and dogs are genetically and biochemically similar. STA1474 demonstrated biological activity in both canine lung cancer cell lines and tumor-stromal fibroblasts. As significant decreases in relative cell viability can be achieved with nanomolar concentrations of STA-1474, investigation into the clinical efficacy of this drug in canine lung cancer patients is warranted. PMID:26560147

  15. In Vitro Activities of ER-119884 and E5700, Two Potent Squalene Synthase Inhibitors, against Leishmania amazonensis: Antiproliferative, Biochemical, and Ultrastructural Effects▿

    PubMed Central

    Fernandes Rodrigues, Juliany Cola; Concepcion, Juan Luis; Rodrigues, Carlos; Caldera, Aura; Urbina, Julio A.; de Souza, Wanderley

    2008-01-01

    ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC50s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range. Growth inhibition was strictly associated with the depletion of the parasite's main endogenous sterols and the concomitant accumulation of exogenous cholesterol. Using electron microscopy, we identified the intracellular structures affected by the compounds. A large number of lipid inclusions displaying different shapes and electron densities were observed after treatment with both SQS inhibitors, and these inclusions were associated with an intense disorganization of the membrane that surrounds the cell body and flagellum, as well as the endoplasmic reticulum and the Golgi complex. Cells treated with ER-119884 but not those treated with E5700 had an altered cytoskeleton organization due to an abnormal distribution of tubulin, and many were arrested at cytokinesis. A prominent contractile vacuole and a phenotype typical of programmed cell death were frequently found in drug-treated cells. The selectivity of the drugs was demonstrated with the JC-1 mitochondrial fluorescent label and by trypan blue exclusion tests with macrophages, which showed that the IC50s against the host cells were 4 to 5 orders of magnitude greater that those against the intracellular parasites. Taken together, our results show that ER-119884 and E5700 are unusually potent and selective inhibitors of the growth of Leishmania amazonensis, probably because of their inhibitory effects on de novo sterol biosynthesis at the level of SQS, but some of our

  16. Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma

    PubMed Central

    LaPlant, Betsy; Chng, Wee Joo; Zonder, Jeffrey; Callander, Natalie; Fonseca, Rafael; Fruth, Briant; Roy, Vivek; Erlichman, Charles; Stewart, A. Keith

    2015-01-01

    Dysregulation of cyclin-dependent kinases is a hallmark of myeloma, and specifically, cdk5 inhibition can enhance the activity of proteasome inhibitors in vitro. Dinaciclib is a novel potent small molecule inhibitor of cyclin-dependent kinases (CDK)1, CDK2, CDK5, and CDK9. Patients with relapsed multiple myeloma and ≤5 prior lines of therapy, with measurable disease, were enrolled. Dinaciclib was administered on day 1 of a 21-day cycle at doses of 30 to 50 mg/m2. Overall, 27 evaluable patients were accrued; the median number of prior therapies was 4. The dose level of 50 mg/m2 was determined to be the maximally tolerated dose. The overall confirmed partial response rate (PR) was 3 of 27 (11%), including 1 patient at the 30 mg/m2 dose (1 very good PR [VGPR]) and 2 patients at the 40 mg/m2 dose (1 VGPR and 1 PR). In addition, 2 patients at the 50 mg/mg2 dose achieved a minimal response (clinical benefit rate, 19%). Leukopenia, thrombocytopenia, gastrointestinal symptoms, alopecia, and fatigue were the most common adverse events. The current study demonstrates single agent activity of dinaciclib in relapsed myeloma, with 2 patients achieving a deep response (VGPR) and 10 patients obtaining some degree of M protein stabilization or decrease. This trial was registered at www.clinicaltrials.gov as #NCT01096342. PMID:25395429

  17. Evaluation of in vitro antimalarial activity of different extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and fractions of the most potent extracts.

    PubMed

    Mojarrab, Mahdi; Shiravand, Ali; Delazar, Abbas; Heshmati Afshar, Fariba

    2014-01-01

    Ten extracts with different polarity from two Iranian Artemisia species, A. armeniaca Lam. and A. aucheri Boiss, were screened for their antimalarial properties by in vitro   β -hematin formation assay. Dichloromethane (DCM) extracts of both plants showed significant antimalarial activities with IC50 values of 1.36±0.01 and 1.83±0.03 mg/mL and IC90 values of 2.12±0.04 and 2.62±0.09 mg/mL for A. armeniaca and A. aucheri, respectively. Bioactivity-guided fractionation of DCM extracts of both plants by vacuum liquid chromatography (VLC) over silica gel with solvent mixtures of increasing polarities afforded seven fractions. Two fractions from DCM extract of A. armeniaca and four fractions from DCM extract of A. aucheri showed potent antimalarial activity with reducing IC50 and IC90 values compared to extracts. The most potent fraction belonged to DCM extract of A. armeniaca with IC50 and IC90 values of 0.47±0.006 and 0.71±0.006 mg/mL, respectively. PMID:24558335

  18. Rational Design of Benzylidenehydrazinyl-Substituted Thiazole Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase with in Vivo Anti-arthritic Activity

    PubMed Central

    Li, Shiliang; Luan, Guoqin; Ren, Xiaoli; Song, Wenlin; Xu, Liuxin; Xu, Minghao; Zhu, Junsheng; Dong, Dong; Diao, Yanyan; Liu, Xiaofeng; Zhu, Lili; Wang, Rui; Zhao, Zhenjiang; Xu, Yufang; Li, Honglin

    2015-01-01

    Human dihydroorotate dehydrogenase (hDHODH) is an attractive therapeutic target for the treatment of rheumatoid arthritis, transplant rejection and other autoimmune diseases. Based on the X-ray structure of hDHODH in complex with lead compound 7, a series of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of hDHODH were designed and synthesized, of which 19 and 30 were the most potent with IC50 values in the double-digit nanomolar range. Moreover, compound 19 displayed significant anti-arthritic effects and favorable pharmacokinetic profiles in vivo. Further X-ray structure and SAR analyses revealed that the potencies of the designed inhibitors were partly attributable to additional water-mediated hydrogen bond networks formed by an unexpected buried water between hDHODH and the 2-(2-methylenehydrazinyl)thiazole scaffold. This work not only elucidates promising scaffolds targeting hDHODH for the treatment of rheumatoid arthritis, but also demonstrates that the water-mediated hydrogen bond interaction is an important factor in molecular design and optimization. PMID:26443076

  19. Tetrahydro-2-naphthyl and 2-Indanyl Triazolopyrimidines Targeting Plasmodium falciparum Dihydroorotate Dehydrogenase Display Potent and Selective Antimalarial Activity.

    PubMed

    Kokkonda, Sreekanth; Deng, Xiaoyi; White, Karen L; Coteron, Jose M; Marco, Maria; de Las Heras, Laura; White, John; El Mazouni, Farah; Tomchick, Diana R; Manjalanagara, Krishne; Rudra, Kakali Rani; Chen, Gong; Morizzi, Julia; Ryan, Eileen; Kaminsky, Werner; Leroy, Didier; Martínez-Martínez, María Santos; Jimenez-Diaz, Maria Belen; Bazaga, Santiago Ferrer; Angulo-Barturen, Iñigo; Waterson, David; Burrows, Jeremy N; Matthews, Dave; Charman, Susan A; Phillips, Margaret A; Rathod, Pradipsinh K

    2016-06-01

    Malaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor 1 (DSM265) is in clinical development. We sought to identify compounds with higher potency against Plasmodium DHODH while showing greater selectivity toward animal DHODHs. Herein we describe a series of novel triazolopyrimidines wherein the p-SF5-aniline was replaced with substituted 1,2,3,4-tetrahydro-2-naphthyl or 2-indanyl amines. These compounds showed strong species selectivity, and several highly potent tetrahydro-2-naphthyl derivatives were identified. Compounds with halogen substitutions displayed sustained plasma levels after oral dosing in rodents leading to efficacy in the P. falciparum SCID mouse malaria model. These data suggest that tetrahydro-2-naphthyl derivatives have the potential to be efficacious for the treatment of malaria, but due to higher metabolic clearance than 1, they most likely would need to be part of a multidose regimen. PMID:27127993

  20. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi

    PubMed Central

    Bashyal, Bharat P.; Wellensiek, Brian P.; Ramakrishnan, Rajesh; Faeth, Stanley H.; Ahmad, Nafees; Leslie Gunatilaka, A. A.

    2014-01-01

    Screening of a small library of natural product extracts derived from endophytic fungi of the Sonoran desert plants in a cell-based anti-HIV assay involving T-cells infected with the HIV-1 virus identified the EtOAc extract of a fermentation broth of Alternaria tenuissima QUE1Se inhabiting the stem tissue of Quercus emoryi as a promising candidate for further investigation. Bioactivity-guided fractionation of this extract led to the isolation and identification of two new metabolites, altertoxins V (1) and VI (2) together with the known compounds, altertoxins I (3), II (4), and III (5). The structures of 1 and 2 were determined by detailed spectroscopic analysis and those of 3–5 were established by comparison with reported data. When tested in our cell-based assay at concentrations insignificantly toxic to T-cells, altertoxins V (1), I (3), II (4), and III (5) completely inhibited replication of the HIV-1 virus at concentrations of 0.50, 2.20, 0.30, and 1.50 μM respectively. Our findings suggest that the epoxyperylene structural scaffold in altertoxins may be manipulated to produce potent anti-HIV therapeutics. 2014 Elsevier Ltd. All rights reserved. PMID:25260957

  1. The oncolytic adenovirus Δ24-RGD in combination with cisplatin exerts a potent anti-osteosarcoma activity.

    PubMed

    Martinez-Velez, Naiara; Xipell, Enric; Jauregui, Patricia; Zalacain, Marta; Marrodan, Lucía; Zandueta, Carolina; Vera, Beatriz; Urquiza, Leire; Sierrasesúmaga, Luis; Julián, Mikel San; Toledo, Gemma; Fueyo, Juan; Gomez-Manzano, Candelaria; Torre, Wensceslao; Lecanda, Fernando; Patiño-García, Ana; Alonso, Marta M

    2014-10-01

    Osteosarcoma is the most common malignant bone tumor in children and adolescents. The presence of metastases and the lack of response to conventional treatment are the major adverse prognostic factors. Therefore, there is an urgent need for new treatment strategies that overcome both of these problems. Our purpose was to elucidate whether the use of the oncolytic adenovirus Δ24-RGD alone or in combination with standard chemotherapy would be effective, in vitro and in vivo, against osteosarcoma. Our results showed that Δ24-RGD exerted a potent antitumor effect against osteosarcoma cell lines that was increased by the addition of cisplatin. Δ24-RGD osteosarcoma treatment resulted in autophagy in vitro that was further enhanced when combined with cisplatin. Of importance, administration of Δ24-RGD and/or cisplatin, in novel orthotopic and two lung metastatic models in vivo resulted in a significant reduction of tumor burden meanwhile maintaining a safe toxicity profile. Together, our data underscore the potential of Δ24-RGD to become a realistic therapeutic option for primary and metastatic pediatric osteosarcoma. Moreover, this study warrants a future clinical trial to evaluate the safety and efficacy of Δ24-RGD for this devastating disease. PMID:24737304

  2. Structure-activity relationships of 2-arylquinazolin-4-ones as highly selective and potent inhibitors of the tankyrases.

    PubMed

    Nathubhai, Amit; Haikarainen, Teemu; Hayward, Penelope C; Muñoz-Descalzo, Silvia; Thompson, Andrew S; Lloyd, Matthew D; Lehtiö, Lari; Threadgill, Michael D

    2016-08-01

    Tankyrases (TNKSs), members of the PARP (Poly(ADP-ribose)polymerases) superfamily of enzymes, have gained interest as therapeutic drug targets, especially as they are involved in the regulation of Wnt signalling. A series of 2-arylquinazolin-4-ones with varying substituents at the 8-position was synthesised. An 8-methyl group (compared to 8-H, 8-OMe, 8-OH), together with a 4'-hydrophobic or electron-withdrawing group, provided the most potency and selectivity towards TNKSs. Co-crystal structures of selected compounds with TNKS-2 revealed that the protein around the 8-position is more hydrophobic in TNKS-2 compared to PARP-1/2, rationalising the selectivity. The NAD(+)-binding site contains a hydrophobic cavity which accommodates the 2-aryl group; in TNKS-2, this has a tunnel to the exterior but the cavity is closed in PARP-1. 8-Methyl-2-(4-trifluoromethylphenyl)quinazolin-4-one was identified as a potent and selective inhibitor of TNKSs and Wnt signalling. This compound and analogues could serve as molecular probes to study proliferative signalling and for development of inhibitors of TNKSs as drugs. PMID:27163581

  3. Tetrahydro-2-naphthyl and 2-Indanyl Triazolopyrimidines Targeting Plasmodium falciparum Dihydroorotate Dehydrogenase Display Potent and Selective Antimalarial Activity

    PubMed Central

    2016-01-01

    Malaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor 1 (DSM265) is in clinical development. We sought to identify compounds with higher potency against Plasmodium DHODH while showing greater selectivity toward animal DHODHs. Herein we describe a series of novel triazolopyrimidines wherein the p-SF5-aniline was replaced with substituted 1,2,3,4-tetrahydro-2-naphthyl or 2-indanyl amines. These compounds showed strong species selectivity, and several highly potent tetrahydro-2-naphthyl derivatives were identified. Compounds with halogen substitutions displayed sustained plasma levels after oral dosing in rodents leading to efficacy in the P. falciparum SCID mouse malaria model. These data suggest that tetrahydro-2-naphthyl derivatives have the potential to be efficacious for the treatment of malaria, but due to higher metabolic clearance than 1, they most likely would need to be part of a multidose regimen. PMID:27127993

  4. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi.

    PubMed

    Bashyal, Bharat P; Wellensiek, Brian P; Ramakrishnan, Rajesh; Faeth, Stanley H; Ahmad, Nafees; Gunatilaka, A A Leslie

    2014-11-01

    Screening of a small library of natural product extracts derived from endophytic fungi of the Sonoran desert plants in a cell-based anti-HIV assay involving T-cells infected with the HIV-1 virus identified the EtOAc extract of a fermentation broth of Alternaria tenuissima QUE1Se inhabiting the stem tissue of Quercus emoryi as a promising candidate for further investigation. Bioactivity-guided fractionation of this extract led to the isolation and identification of two new metabolites, altertoxins V (1) and VI (2) together with the known compounds, altertoxins I (3), II (4), and III (5). The structures of 1 and 2 were determined by detailed spectroscopic analysis and those of 3-5 were established by comparison with reported data. When tested in our cell-based assay at concentrations insignificantly toxic to T-cells, altertoxins V (1), I (3), II (4), and III (5) completely inhibited replication of the HIV-1 virus at concentrations of 0.50, 2.20, 0.30, and 1.50 μM, respectively. Our findings suggest that the epoxyperylene structural scaffold in altertoxins may be manipulated to produce potent anti-HIV therapeutics. PMID:25260957

  5. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus

    PubMed Central

    Zhao, Shuang; Rong, Cheng-Bo; Kong, Chang; Liu, Yu; Xu, Feng; Miao, Qian-Jiang; Wang, Shou-Xian; Wang, He-Xiang

    2014-01-01

    A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, Km values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. PMID:25540778

  6. Anxiolytic and antidepressant-like activities of the novel and potent non-imidazole histamine H₃ receptor antagonist ST-1283.

    PubMed

    Bahi, Amine; Schwed, Johannes Stephan; Walter, Miriam; Stark, Holger; Sadek, Bassem

    2014-01-01

    Previous studies have suggested a potential link between histamine H₃ receptors (H₃R) signaling and anxiolytic-like and antidepressant-like effects. The aim of this study was to investigate the acute effects of ST-1283, a novel H₃R antagonist, on anxiety-related and depression-related behaviors in comparison with those of diazepam and fluoxetine. The effects of ST-1283 were evaluated using the elevated plus maze test, open field test, marbles burying test, tail suspension test, novelty suppressed feeding test, and forced swim test in male C57BL/6 mice. The results showed that, like diazepam, ST-1283 (7.5 mg/kg) significantly modified all the parameters observed in the elevated plus maze test. In addition, ST-1283 significantly increased the amount of time spent in the center of the arena without altering general motor activity in the open field test. In the same vein, ST-1283 reduced the number of buried marbles as well as time spent digging in the marbles burying test. The tail suspension test and forced swim test showed that ST-1283 was able to reduce immobility time, like the recognized antidepressant drug fluoxetine. In the novelty suppressed feeding test, treatment with ST-1283 decreased latency to feed with no effect on food intake in the home cage. Importantly, pretreatment with the H₃R agonist R-α-methylhistamine abrogated the anxiolytic and antidepressant effects of ST-1283. Taken together, the present series of studies demonstrates the novel effects of this newly synthesized H₃R antagonist in a number of preclinical models of psychiatric disorders and highlights the histaminergic system as a potential therapeutic target for the treatment of anxiety-related and depression-related disorders. PMID:24920886

  7. Thiolates Chemically Induce Redox Activation of BTZ043 and Related Potent Nitro Aromatic Anti-Tuberculosis Agents

    PubMed Central

    Tiwari, Rohit; Moraski, Garrett C.; Krchňák, Viktor; Miller, Patricia A.; Colon-Martinez, Mariangelli; Herrero, Eliza; Oliver, Allen G.; Miller, Marvin J.

    2013-01-01

    The development of multidrug resistant (MDR) and extensively drug resistant (XDR) forms of tuberculosis (TB) has stimulated research efforts globally to expand the new drug pipeline. Nitro aromatic compounds, including 1, 3-Benzothiazin-4-ones (BTZs) and related agents, are a promising new class for the treatment of TB. Research has shown that the nitroso intermediates of BTZs that are generated in vivo cause suicide inhibition of decaprenylphosphoryl-β-D-ribose 2′ oxidase (DprE1), which is responsible for cell wall arabinogalactan biosynthesis. We have designed and synthesized novel anti-TB agents inspired from BTZs and other nitroaromatic compounds. Computational studies indicated that the unsubstituted aromatic carbons of BTZ043 and related nitroaromatic compounds are the most electron deficient and might be prone to nucleophilic attack. Our chemical studies on BTZ043 and the additional nitro aromatic compounds synthesized by us and the others confirmed the postulated reactivity. The results indicate that nucleophiles such as thiolates, cyanide and hydride induce non-enzymatic reduction of the nitro groups present in these compounds to the corresponding nitroso intermediates by addition at the unsubstituted electron deficient aromatic carbon present in these compounds. Furthermore we demonstrate here that these compounds are good candidates for the classical von Richter reaction. These chemical studies offer an alternate hypotheses for the mechanism of action of nitro aromatic anti-TB agents in that the cysteine thiol(ate) or a hydride source at the active site of DprE1 may trigger the reduction of the nitro groups in a manner similar to the von Richter reaction to the nitroso intermediates, to initiate the inhibition of DprE1. PMID:23402278

  8. Vialinin A and thelephantin G, potent inhibitors of tumor necrosis factor-α production, inhibit sentrin/SUMO-specific protease 1 enzymatic activity.

    PubMed

    Yoshioka, Yasukiyo; Namiki, Daisuke; Makiuchi, Mao; Sugaya, Kouichi; Onose, Jun-Ichi; Ashida, Hitoshi; Abe, Naoki

    2016-09-01

    Several p-terphenyl compounds have been isolated from the edible Chinese mushroom Thelephora vialis. Vialinin A, a p-terphenyl compound, strongly inhibits tumor necrosis factor-α production and release. Vialinin A inhibits the enzymatic activity of ubiquitin-specific peptidase 5, one of the target molecules in RBL-2H3 cells. Here we examined the inhibitory effect of p-terphenyl compounds, including vialinin A, against sentrin/SUMO-specific protease 1 (SENP1) enzymatic activity. The half maximal inhibitory concentration values of vialinin A and thelephantin G against full-length SENP1 were 1.64±0.23μM and 2.48±0.02μM, respectively. These findings suggest that p-terphenyl compounds are potent SENP1 inhibitors. PMID:27491710

  9. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain

    PubMed Central

    Chan, Mun Chiang; Atasoylu, Onur; Hodson, Emma; Tumber, Anthony; Leung, Ivanhoe K. H.; Chowdhury, Rasheduzzaman; Gómez-Pérez, Verónica; Demetriades, Marina; Rydzik, Anna M.; Holt-Martyn, James; Tian, Ya-Min; Bishop, Tammie; Claridge, Timothy D. W.; Kawamura, Akane; Pugh, Christopher W.; Ratcliffe, Peter J.; Schofield, Christopher J.

    2015-01-01

    As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs). Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs). Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4) induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke. PMID:26147748

  10. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes.

    PubMed

    Kaloriti, Despoina; Jacobsen, Mette; Yin, Zhikang; Patterson, Miranda; Tillmann, Anna; Smith, Deborah A; Cook, Emily; You, Tao; Grimm, Melissa J; Bohovych, Iryna; Grebogi, Celso; Segal, Brahm H; Gow, Neil A R; Haynes, Ken; Quinn, Janet; Brown, Alistair J P

    2014-01-01

    Immune cells exploit reactive oxygen species (ROS) and cationic fluxes to kill microbial pathogens, such as the fungus Candida albicans. Yet, C. albicans is resistant to these stresses in vitro. Therefore, what accounts for the potent antifungal activity of neutrophils? We show that simultaneous exposure to oxidative and cationic stresses is much more potent than the individual stresses themselves and that this combinatorial stress kills C. albicans synergistically in vitro. We also show that the high fungicidal activity of human neutrophils is dependent on the combinatorial effects of the oxidative burst and cationic fluxes, as their pharmacological attenuation with apocynin or glibenclamide reduced phagocytic potency to a similar extent. The mechanistic basis for the extreme potency of combinatorial cationic plus oxidative stress--a phenomenon we term stress pathway interference--lies with the inhibition of hydrogen peroxide detoxification by the cations. In C. albicans this causes the intracellular accumulation of ROS, the inhibition of Cap1 (a transcriptional activator that normally drives the transcriptional response to oxidative stress), and altered readouts of the stress-activated protein kinase Hog1. This leads to a loss of oxidative and cationic stress transcriptional outputs, a precipitous collapse in stress adaptation, and cell death. This stress pathway interference can be suppressed by ectopic catalase (Cat1) expression, which inhibits the intracellular accumulation of ROS and the synergistic killing of C. albicans cells by combinatorial cationic plus oxidative stress. Stress pathway interference represents a powerful fungicidal mechanism employed by the host that suggests novel approaches to potentiate antifungal therapy. Importance: The immune system combats infection via phagocytic cells that recognize and kill pathogenic microbes. Human neutrophils combat Candida infections by killing this fungus with a potent mix of chemicals that includes

  11. Taselisib (GDC-0032), a Potent β-Sparing Small Molecule Inhibitor of PI3K, Radiosensitizes Head and Neck Squamous Carcinomas Containing Activating PIK3CA Alterations

    PubMed Central

    Zumsteg, Zachary S.; Morse, Natasha; Krigsfeld, Gabriel; Gupta, Gaorav; Higginson, Daniel S.; Lee, Nancy Y.; Morris, Luc; Ganly, Ian; Shiao, Stephan L.; Powell, Simon N.; Chung, Christine H.; Scaltriti, Maurizio; Baselga, José

    2016-01-01

    Purpose Activating PIK3CA genomic alterations are frequent in head and neck squamous cell carcinoma (HNSCC), and there is an association between phosphoinositide 3-kinase (PI3K) signaling and radioresistance. Hence, we investigated the therapeutic efficacy of inhibiting PI3K with GDC-0032, a PI3K inhibitor with potent activity against p110α, in combination with radiation in HNSCC. Experimental Design The efficacy of GDC-0032 was assessed in vitro in 26 HNSCC cell lines with crystal violet proliferation assays, and changes in PI3K signaling were measured by Western blot analysis. Cytotoxicity and radiosensitization were assessed with Annexin V staining via flow cytometry and clonogenic survival assays, respectively. DNA damage repair was assessed with immunofluorescence for γH2AX foci, and cell cycle analysis was performed with flow cytometry. In vivo efficacy of GDC-0032 and radiation was assessed in xenografts implanted into nude mice. Results GDC-0032 inhibited potently PI3K signaling and displayed greater antiproliferative activity in HNSCC cell lines with PIK3CA mutations or amplification, whereas cell lines with PTEN alterations were relatively resistant to its effects. Pretreatment with GDC-0032 radiosensitized PIK3CA-mutant HNSCC cells, enhanced radiation-induced apoptosis, impaired DNA damage repair, and prolonged G2–M arrest following irradiation. Furthermore, combined GDC-0032 and radiation was more effective than either treatment alone in vivo in subcutaneous xenograft models. Conclusions GDC-0032 has increased potency in HNSCC cell lines harboring PIK3CA-activating aberrations. Further, combined GDC-0032 and radiotherapy was more efficacious than either treatment alone in PIK3CA-altered HNSCC in vitro and in vivo. This strategy warrants further clinical investigation PMID:26589432

  12. Potent activity of 2'-beta-fluoro-2',3'-dideoxyadenosine against human immunodeficiency virus type 1 infection in hu-PBL-SCID mice.

    PubMed Central

    Ruxrungtham, K; Boone, E; Ford, H; Driscoll, J S; Davey, R T; Lane, H C

    1996-01-01

    A new antiretroviral agent, 2'-beta-fluoro-2',3'-dideoxyadenosine (FddA), is an acid-stable compound whose triphosphate form is a potent reverse transcriptase inhibitor with in vitro anti-human immunodeficiency virus (HIV) activity and a favorable pharmacokinetic profile. Severe combined immunodeficiency (SCID) mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID mice) provide a useful small-animal model for HIV research. In the present study we utilized this experimental system for the in vivo evaluation of the anti-HIV activity of this new compound when administered prior to infection. Initial studies revealed that, following a challenge with 50 100% tissue culture infective doses of HIV type 1 lymphadenopathy-associated virus, 39 of 42 (93%) control mice developed HIV infection, as evidenced by positive coculture or positive PCR. Administration of zidovudine decreased the infection rate to 5 of 16 (31%), while administration of FddA decreased the infection rate to 0 of 44 (0%). In follow-up controlled studies, the anti-HIV activity of FddA was confirmed, with 18 of 20 control mice showing evidence of HIV infection, compared with 4 of 20 FddA-treated mice. In addition to having direct anti-HIV effects, FddA was found to have a protective effect on human CD4+ T cells in the face of HIV infection. Mice treated with FddA were found to have a significantly higher percentage of CD4+ T cells than controls (10.3% +/- 3.4% versus 0.27% +/- 0.21%; P = 0.01). Thus, FddA, with its potent anti-HIV activity in vivo, high oral bioavailability, long intracellular half-life, and ability to preserve CD4+ cells in the presence of HIV, appears to be a promising agent for clinical investigation. PMID:8891146

  13. The 2′-5′-Oligoadenylate Synthetase 3 Enzyme Potently Synthesizes the 2′-5′-Oligoadenylates Required for RNase L Activation

    PubMed Central

    Ibsen, Mikkel Søes; Gad, Hans Henrik; Thavachelvam, Karthiga; Boesen, Thomas; Desprès, Philippe

    2014-01-01

    ABSTRACT The members of the oligoadenylate synthetase (OAS) family of proteins are antiviral restriction factors that target a wide range of RNA and DNA viruses. They function as intracellular double-stranded RNA (dsRNA) sensors that, upon binding to dsRNA, undergo a conformational change and are activated to synthesize 2′-5′-linked oligoadenylates (2-5As). 2-5As of sufficient length act as second messengers to activate RNase L and thereby restrict viral replication. We expressed human OAS3 using the baculovirus system and purified it to homogeneity. We show that recombinant