Science.gov

Sample records for dengue vector control

  1. Intersectoral approaches to dengue vector control.

    PubMed

    Kay, B H

    1994-12-01

    Medical entomology in the context of urban vector control, especially for dengue, can be likened to the tail of a dog. Vertically structured Aedes aegypti campaigns such as run by Gorgas and Soper earlier this century relied on sufficient legislative backing for vector control to ensure that the tail was capable of wagging the dog. Under these conditions, especially where individual rights do not intrude, vertical programs will be successful. The global expansion of dengue, dengue hemorrhagic fever and its vectors, plus growing trends towards urban/periurban living indicate a more serious scenario than at present. In 1987, the Brundtland Report: "Our Common Future" decried sectoralism in problem solving. Following the United Nations Conference on Environment and Development (UNCED) in 1992, the resulting Commission on Sustainable Development has promoted the intersectoral message of health, environment and development. The WHO/FAO/UNEP/UNCHS Panel of Experts on Environmental Management for Vector Control has promoted this for some time and is attempting to build multidisciplinary projects against urban vector borne disease. Adequate solid waste management and recycling will reduce numbers of water bearing containers infested with Aedes aegypti and provision of reliable piped water supplies will impact heavily on infested water storage containers. Both should be encouraged as viable control options. For much of the world, vertical programs have been reported as prohibitively expensive, and unacceptable intrusion on human rights and thus unsustainable in the modern economic context. However there are successful modern examples.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7844851

  2. Overview of current situation of dengue and dengue vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue is the most important arbovirus of humans in the world. It is caused by one of four closely related virus serotypes whose primary vector is Aedes aegypti and secondarily by Ae. albopictus. A global dengue pandemic began in Southeast Asia after World War II and has intensified during the las...

  3. Dengue and Chikungunya Vector Control Pocket Guide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This technical guide consolidates information and procedures for surveillance and control of mosquitoes that transmit dengue and chikungunya viruses. The guide focuses on mosquitoes that transmit dengue but also makes reference to chikungunya and yellow fever because the pathogens that cause these ...

  4. Cost of Dengue Vector Control Activities in Malaysia

    PubMed Central

    Packierisamy, P. Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Inbaraj, Jonathan; Balan, Venugopalan K.; Halasa, Yara A.; Shepard, Donald S.

    2015-01-01

    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them. PMID:26416116

  5. Cost of Dengue Vector Control Activities in Malaysia.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Inbaraj, Jonathan; Balan, Venugopalan K; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them. PMID:26416116

  6. A Critical Assessment of Vector Control for Dengue Prevention

    PubMed Central

    Achee, Nicole L.; Gould, Fred; Perkins, T. Alex; Reiner, Robert C.; Morrison, Amy C.; Ritchie, Scott A.; Gubler, Duane J.; Teyssou, Remy; Scott, Thomas W.

    2015-01-01

    Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103

  7. A critical assessment of vector control for dengue prevention.

    PubMed

    Achee, Nicole L; Gould, Fred; Perkins, T Alex; Reiner, Robert C; Morrison, Amy C; Ritchie, Scott A; Gubler, Duane J; Teyssou, Remy; Scott, Thomas W

    2015-05-01

    Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103

  8. Ecology and control of dengue vector mosquitoes in Taiwan.

    PubMed

    Chen, Y R; Hwang, J S; Guo, Y J

    1994-12-01

    Due to rapid urbanization, industrialization and social changes in recent years, the use of packing materials and tires has dramatically increased in the Taiwan area. What is more is that some parts of southern Taiwan are short of water resources and water preservation with huge containers becomes part of custom in those areas. Storage water containers, waste vessels and tires are good habitats for Aedes. Meanwhile, some persons traveling to dengue endemic countries bring the dengue disease back to Taiwan. Surveys taken since 1988 show that dengue occurs mainly in the urban and coastal areas where Aedes aegypti is prevalent. This species is the most important, if not the only, vector of dengue in Taiwan. It appears that the types of Aedes breeding have changed quickly. In dengue fever epidemic areas, the most popular breeding sites are ornamental containers (38.8%), storage water containers (30.1%), discarded containers (25.4%), receptacles (3.3%) and water collection in the basement (2.2%). In dengue fever epidemic areas, those building basements, huge water containers, waste vessels and waste tires in open fields are most difficult to clean up and manage and become the most popular Aedes habitats. We established a waste recycling system and promoted a breeding site reduction campaign for waste management, including the application of Temephos in containers to kill larvae. For the drinking water management, fish were released in water containers to prevent larval breeding. It should be mentioned that with the integrated pest control and regular inspections of Aedes larvae in Taiwan the density figures 1, 2-5, and 6 or above for Aedes aegypti were 38.7%, 42.9%, and 18.4%, respectively, in 1988, and in 1993 were 90.8%, 9.2% and 0%. The incidence of dengue fever cases has 98% decreased since 1988. In 1990 and 1993, there was no indigenous cases. We have concluded that integrated pest control is the best and most effective method for dengue fever control, including

  9. Dengue vector control: present status and future prospects.

    PubMed

    Yap, H H; Chong, N L; Foo, A E; Lee, C Y

    1994-12-01

    Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) have been the most common urban diseases in Southeast Asia since the 1950s. More recently, the diseases have spread to Central and South America and are now considered as worldwide diseases. Both Aedes aegypti and Aedes albopictus are involved in the transmission of DF/DHF in Southeast Asian region. The paper discusses the present status and future prospects of Aedes control with reference to the Malaysian experience. Vector control approaches which include source reduction and environmental management, larviciding with the use of chemicals (synthetic insecticides and insect growth regulators and microbial insecticide), and adulticiding which include personal protection measures (household insecticide products and repellents) for long-term control and space spray (both thermal fogging and ultra low volume sprays) as short-term epidemic measures are discussed. The potential incorporation of IGRs and Bacillus thuringiensis-14 (Bti) as larvicides in addition to insecticides (temephos) is discussed. The advantages of using water-based spray over the oil-based (diesel) spray and the use of spray formulation which provide both larvicidal and adulticidal effects that would consequently have greater impact on the overall vector and disease control in DF/DHF are highlighted. PMID:7844836

  10. ProactiveVector control strategies and improved monitoring and evaluation practices for dengue prevention.

    PubMed

    Eisen, Lars; Beaty, Barry J; Morrison, Amy C; Scott, Thomas W

    2009-11-01

    Despite tremendous efforts by public health organizations in dengue-endemic countries, it has proven difficult to achieve effective and sustainable control of the primary dengue virus vector Aedes aegypti (L.) and to effectively disrupt dengue outbreaks. This problem has multiple root causes, including uncontrolled urbanization, increased global spread of dengue viruses, and vector and dengue control programs not being provided adequate resources. In this forum article, we give an overview of the basic elements of a vector and dengue control program and describe a continuous improvement cyclical model to systematically and incrementally improve control program performance by regular efforts to identify ineffective methods and inferior technology, and then replacing them with better performing alternatives. The first step includes assessments of the overall resource allocation among vector/dengue control program activities, the efficacy of currently used vector control methods, and the appropriateness of technology used to support the program. We expect this will reveal that 1) some currently used vector control methods are not effective, 2) resource allocations often are skewed toward reactive vector control measures, and 3) proactive approaches commonly are underfunded and therefore poorly executed. Next steps are to conceptualize desired changes to vector control methods or technologies used and then to operationally determine in pilot studies whether these changes are likely to improve control program performance. This should be followed by a shift in resource allocation to replace ineffective methods and inferior technology with more effective and operationally tested alternatives. The cyclical and self-improving nature of the continuous improvement model will produce locally appropriate management strategies that continually are adapted to counter changes in vector population or dengue virus transmission dynamics. We discuss promising proactive vector control

  11. Challenges and future perspective for dengue vector control in the Western Pacific Region

    PubMed Central

    Christophel, Eva Maria; Gopinath, Deyer; Abdur, Rashid Md.; Vectorborne, Other; Diseases, Parasitic

    2011-01-01

    Dengue remains a significant public health issue in the Western Pacific Region. In the absence of a vaccine, vector control is the mainstay for dengue prevention and control. In this paper we describe vector surveillance and vector control in the Western Pacific countries and areas. Vector surveillance and control strategies used by countries and areas of the Western Pacific Region vary. Vector control strategies include chemical, biological and environmental management that mainly target larval breeding sites. The use of insecticides targeting larvae and adult mosquitoes remains the mainstay of vector control programmes. Existing vector control tools have several limitations in terms of cost, delivery and long-term sustainability. However, there are several new innovative tools in the pipeline. These include Release of Insects Carrying a Dominant Lethal system and Wolbachia, an endosymbiotic bacterium, to inhibit dengue virus in the vector. In addition, the use of biological control such as larvivorous fish in combination with community participation has potential to be scaled up. Any vector control strategy should be selected based on evidence and appropriateness for the entomological and epidemiological setting and carried out in both inter-epidemic and epidemic periods. Community participation and interagency collaboration are required for effective and sustainable dengue prevention and control. Countries and areas are now moving towards integrated vector management. PMID:23908883

  12. Community involvement in dengue vector control: cluster randomised trial

    PubMed Central

    Toledo, M E; Rodríguez, M; Gomez, D; Baly, A; Benitez, J R; Van der Stuyft, P

    2009-01-01

    Objective To assess the effectiveness of an integrated community based environmental management strategy to control Aedes aegypti, the vector of dengue, compared with a routine strategy. Design Cluster randomised trial. Setting Guantanamo, Cuba. Participants 32 circumscriptions (around 2000 inhabitants each). Interventions The circumscriptions were randomly allocated to control clusters (n=16) comprising routine Aedes control programme (entomological surveillance, source reduction, selective adulticiding, and health education) and to intervention clusters (n=16) comprising the routine Aedes control programme combined with a community based environmental management approach. Main outcome measures The primary outcome was levels of Aedes infestation: house index (number of houses positive for at least one container with immature stages of Ae aegypti per 100 inspected houses), Breteau index (number of containers positive for immature stages of Ae aegypti per 100 inspected houses), and the pupae per inhabitant statistic (number of Ae aegypti pupae per inhabitant). Results All clusters were subjected to the intended intervention; all completed the study protocol up to February 2006 and all were included in the analysis. At baseline the Aedes infestation levels were comparable between intervention and control clusters: house index 0.25% v 0.20%, pupae per inhabitant 0.44×10−3 v 0.29×10−3. At the end of the intervention these indices were significantly lower in the intervention clusters: rate ratio for house indices 0.49 (95% confidence interval 0.27 to 0.88) and rate ratio for pupae per inhabitant 0.27 (0.09 to 0.76). Conclusion A community based environmental management embedded in a routine control programme was effective at reducing levels of Aedes infestation. Trial registration Current Controlled Trials ISRCTN88405796. PMID:19509031

  13. Challenges encountered using standard vector control measures for dengue in Boa Vista, Brazil

    PubMed Central

    Valle, Denise

    2014-01-01

    Abstract Problem In 2010, dengue virus (DENV) serotype–4 was detected during a dengue outbreak in the Amazonian city of Boa Vista. At that time Brazil was already endemic for DENV-1, DENV-2 and DENV-3. This was the first time DENV-4 was observed in the country after it was initially detected and eliminated in 1981. Approach To hinder the spread of DENV-4 throughout Brazil, standard vector control measures were intensified. Vector control professionals visited 56 837 households in 22 out of 31 districts of Boa Vista, to eliminate mosquito-breeding sites. Water storage containers were treated with the larvicide diflubenzuron, and deltamethrin was sprayed for adult Aedes aegypti mosquitoes. Fifteen days later, a second larvae survey and additional deltamethrin applications were performed. Local setting In Brazil, dengue vector control is managed at all three government levels. Regular surveillance of Aedes aegypti is done four to six times a year to strengthen mosquito control activities in areas with high-vector density. Educational dengue control campaigns in communities are scarce, especially between outbreaks. Relevant changes In spite of extensive implementation of all standard control actions recommended by the Brazilian dengue control programme, only a slight decrease in mosquito density was detected. Lessons learnt There is a need to redesign all levels of dengue control. Public consultation and engagement, behaviour change and actions that go beyond technical impositions are required. Vector control programme managers need to reflect on what constitutes good practices and whether intermittent information campaigns are effective measures for dengue prevention and control. PMID:25378760

  14. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  15. INTERIM ANALYSIS OF THE CONTRIBUTION OF HIGH-LEVEL EVIDENCE FOR DENGUE VECTOR CONTROL.

    PubMed

    Horstick, Olaf; Ranzinger, Silvia Runge

    2015-01-01

    This interim analysis reviews the available systematic literature for dengue vector control on three levels: 1) single and combined vector control methods, with existing work on peridomestic space spraying and on Bacillus thuringiensis israelensis; further work is available soon on the use of Temephos, Copepods and larvivorous fish; 2) or for a specific purpose, like outbreak control, and 3) on a strategic level, as for example decentralization vs centralization, with a systematic review on vector control organization. Clear best practice guidelines for methodology of entomological studies are needed. There is a need to include measuring dengue transmission data. The following recommendations emerge: Although vector control can be effective, implementation remains an issue; Single interventions are probably not useful; Combinations of interventions have mixed results; Careful implementation of vector control measures may be most important; Outbreak interventions are often applied with questionable effectiveness. PMID:26506739

  16. Thailand Momentum on Policy and Practice in Local Legislation on Dengue Vector Control

    PubMed Central

    Bhumiratana, Adisak; Intarapuk, Apiradee; Chujun, Suriyo; Kaewwaen, Wuthichai; Sorosjinda-Nunthawarasilp, Prapa; Koyadun, Surachart

    2014-01-01

    Over a past decade, an administrative decentralization model, adopted for local administration development in Thailand, is replacing the prior centralized (top-down) command system. The change offers challenges to local governmental agencies and other public health agencies at all the ministerial, regional, and provincial levels. A public health regulatory and legislative framework for dengue vector control by local governmental agencies is a national topic of interest because dengue control program has been integrated into healthcare services at the provincial level and also has been given priority in health plans of local governmental agencies. The enabling environments of local administrations are unique, so this critical review focuses on the authority of local governmental agencies responsible for disease prevention and control and on the functioning of local legislation with respect to dengue vector control and practices. PMID:24799896

  17. The interplay of vaccination and vector control on small dengue networks.

    PubMed

    Hendron, Ross-William S; Bonsall, Michael B

    2016-10-21

    Dengue fever is a major public health issue affecting billions of people in over 100 countries across the globe. This challenge is growing as the invasive mosquito vectors, Aedes aegypti and Aedes albopictus, expand their distributions and increase their population sizes. Hence there is an increasing need to devise effective control methods that can contain dengue outbreaks. Here we construct an epidemiological model for virus transmission between vectors and hosts on a network of host populations distributed among city and town patches, and investigate disease control through vaccination and vector control using variants of the sterile insect technique (SIT). Analysis of the basic reproductive number and simulations indicate that host movement across this small network influences the severity of epidemics. Both vaccination and vector control strategies are investigated as methods of disease containment and our results indicate that these controls can be made more effective with mixed strategy solutions. We predict that reduced lethality through poor SIT methods or imperfectly efficacious vaccines will impact efforts to control disease spread. In particular, weakly efficacious vaccination strategies against multiple virus serotype diversity may be counter productive to disease control efforts. Even so, failings of one method may be mitigated by supplementing it with an alternative control strategy. Generally, our network approach encourages decision making to consider connected populations, to emphasise that successful control methods must effectively suppress dengue epidemics at this landscape scale. PMID:27457093

  18. Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis

    PubMed Central

    Bowman, Leigh R.; Donegan, Sarah; McCall, Philip J.

    2016-01-01

    Background Although a vaccine could be available as early as 2016, vector control remains the primary approach used to prevent dengue, the most common and widespread arbovirus of humans worldwide. We reviewed the evidence for effectiveness of vector control methods in reducing its transmission. Methodology/Principal Findings Studies of any design published since 1980 were included if they evaluated method(s) targeting Aedes aegypti or Ae. albopictus for at least 3 months. Primary outcome was dengue incidence. Following Cochrane and PRISMA Group guidelines, database searches yielded 960 reports, and 41 were eligible for inclusion, with 19 providing data for meta-analysis. Study duration ranged from 5 months to 10 years. Studies evaluating multiple tools/approaches (23 records) were more common than single methods, while environmental management was the most common method (19 studies). Only 9/41 reports were randomized controlled trials (RCTs). Two out of 19 studies evaluating dengue incidence were RCTs, and neither reported any statistically significant impact. No RCTs evaluated effectiveness of insecticide space-spraying (fogging) against dengue. Based on meta-analyses, house screening significantly reduced dengue risk, OR 0.22 (95% CI 0.05–0.93, p = 0.04), as did combining community-based environmental management and water container covers, OR 0.22 (95% CI 0.15–0.32, p<0.0001). Indoor residual spraying (IRS) did not impact significantly on infection risk (OR 0.67; 95% CI 0.22–2.11; p = 0.50). Skin repellents, insecticide-treated bed nets or traps had no effect (p>0.5), but insecticide aerosols (OR 2.03; 95% CI 1.44–2.86) and mosquito coils (OR 1.44; 95% CI 1.09–1.91) were associated with higher dengue risk (p = 0.01). Although 23/41 studies examined the impact of insecticide-based tools, only 9 evaluated the insecticide susceptibility status of the target vector population during the study. Conclusions/Significance This review and meta

  19. A cluster-randomized trial of insecticide-treated curtains for dengue vector control in Thailand.

    PubMed

    Lenhart, Audrey; Trongtokit, Yuwadee; Alexander, Neal; Apiwathnasorn, Chamnarn; Satimai, Wichai; Vanlerberghe, Veerle; Van der Stuyft, Patrick; McCall, Philip J

    2013-02-01

    The efficacy of insecticide-treated window curtains (ITCs) for dengue vector control was evaluated in Thailand in a cluster-randomized controlled trial. A total of 2,037 houses in 26 clusters was randomized to receive the intervention or act as control (no treatment). Entomological surveys measured Aedes infestations (Breteau index, house index, container index, and pupae per person index) and oviposition indices (mean numbers of eggs laid in oviposition traps) immediately before and after intervention, and at 3-month intervals over 12 months. There were no consistent statistically significant differences in entomological indices between intervention and control clusters, although oviposition indices were lower (P < 0.01) in ITC clusters during the wet season. It is possible that the open housing structures in the study reduced the likelihood of mosquitoes making contact with ITCs. ITCs deployed in a region where this house design is common may be unsuitable for dengue vector control. PMID:23166195

  20. A Cluster-Randomized Trial of Insecticide-Treated Curtains for Dengue Vector Control in Thailand

    PubMed Central

    Lenhart, Audrey; Trongtokit, Yuwadee; Alexander, Neal; Apiwathnasorn, Chamnarn; Satimai, Wichai; Vanlerberghe, Veerle; Van der Stuyft, Patrick; McCall, Philip J.

    2013-01-01

    The efficacy of insecticide-treated window curtains (ITCs) for dengue vector control was evaluated in Thailand in a cluster-randomized controlled trial. A total of 2,037 houses in 26 clusters was randomized to receive the intervention or act as control (no treatment). Entomological surveys measured Aedes infestations (Breteau index, house index, container index, and pupae per person index) and oviposition indices (mean numbers of eggs laid in oviposition traps) immediately before and after intervention, and at 3-month intervals over 12 months. There were no consistent statistically significant differences in entomological indices between intervention and control clusters, although oviposition indices were lower (P < 0.01) in ITC clusters during the wet season. It is possible that the open housing structures in the study reduced the likelihood of mosquitoes making contact with ITCs. ITCs deployed in a region where this house design is common may be unsuitable for dengue vector control. PMID:23166195

  1. The Cost of Dengue Vector Control Activities in Malaysia by Different Service Providers.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Venugopalan, B; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia. PMID:26047628

  2. Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review

    PubMed Central

    George, Leyanna; Lenhart, Audrey; Toledo, Joao; Lazaro, Adhara; Han, Wai Wai; Velayudhan, Raman; Runge Ranzinger, Silvia; Horstick, Olaf

    2015-01-01

    The application of the organophosphate larvicide temephos to water storage containers is one of the most commonly employed dengue vector control methods. This systematic literature review is to the knowledge of the authors the first that aims to assess the community-effectiveness of temephos in controlling both vectors and dengue transmission when delivered either as a single intervention or in combination with other interventions. A comprehensive literature search of 6 databases was performed (PubMed, WHOLIS, GIFT, CDSR, EMBASE, Wiley), grey literature and cross references were also screened for relevant studies. Data were extracted and methodological quality of the studies was assessed independently by two reviewers. 27 studies were included in this systematic review (11 single intervention studies and 16 combined intervention studies). All 11 single intervention studies showed consistently that using temephos led to a reduction in entomological indices. Although 11 of the 16 combined intervention studies showed that temephos application together with other chemical vector control methods also reduced entomological indices, this was either not sustained over time or–as in the five remaining studies—failed to reduce the immature stages. The community-effectiveness of temephos was found to be dependent on factors such as quality of delivery, water turnover rate, type of water, and environmental factors such as organic debris, temperature and exposure to sunlight. Timing of temephos deployment and its need for reapplication, along with behavioural factors such as the reluctance of its application to drinking water, and operational aspects such as cost, supplies, time and labour were further limitations identified in this review. In conclusion, when applied as a single intervention, temephos was found to be effective at suppressing entomological indices, however, the same effect has not been observed when temephos was applied in combination with other

  3. Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review.

    PubMed

    George, Leyanna; Lenhart, Audrey; Toledo, Joao; Lazaro, Adhara; Han, Wai Wai; Velayudhan, Raman; Runge Ranzinger, Silvia; Horstick, Olaf

    2015-01-01

    The application of the organophosphate larvicide temephos to water storage containers is one of the most commonly employed dengue vector control methods. This systematic literature review is to the knowledge of the authors the first that aims to assess the community-effectiveness of temephos in controlling both vectors and dengue transmission when delivered either as a single intervention or in combination with other interventions. A comprehensive literature search of 6 databases was performed (PubMed, WHOLIS, GIFT, CDSR, EMBASE, Wiley), grey literature and cross references were also screened for relevant studies. Data were extracted and methodological quality of the studies was assessed independently by two reviewers. 27 studies were included in this systematic review (11 single intervention studies and 16 combined intervention studies). All 11 single intervention studies showed consistently that using temephos led to a reduction in entomological indices. Although 11 of the 16 combined intervention studies showed that temephos application together with other chemical vector control methods also reduced entomological indices, this was either not sustained over time or-as in the five remaining studies--failed to reduce the immature stages. The community-effectiveness of temephos was found to be dependent on factors such as quality of delivery, water turnover rate, type of water, and environmental factors such as organic debris, temperature and exposure to sunlight. Timing of temephos deployment and its need for reapplication, along with behavioural factors such as the reluctance of its application to drinking water, and operational aspects such as cost, supplies, time and labour were further limitations identified in this review. In conclusion, when applied as a single intervention, temephos was found to be effective at suppressing entomological indices, however, the same effect has not been observed when temephos was applied in combination with other interventions

  4. Innovative dengue vector control interventions in Latin America: what do they cost?

    PubMed Central

    Basso, César; Beltrán-Ayala, Efraín; Mitchell-Foster, Kendra; Cortés, Sebastián; Manrique-Saide, Pablo; Guillermo-May, Guillermo; Carvalho de Lima, Edilmar

    2016-01-01

    Background Five studies were conducted in Fortaleza (Brazil), Girardot (Colombia), Machala (Ecuador), Acapulco (Mexico), and Salto (Uruguay) to assess dengue vector control interventions tailored to the context. The studies involved the community explicitly in the implementation, and focused on the most productive breeding places for Aedes aegypti. This article reports the cost analysis of these interventions. Methods We conducted the costing from the perspective of the vector control program. We collected data on quantities and unit costs of the resources used to deliver the interventions. Comparable information was requested for the routine activities. Cost items were classified, analyzed descriptively, and aggregated to calculate total costs, costs per house reached, and incremental costs. Results Cost per house of the interventions were $18.89 (Fortaleza), $21.86 (Girardot), $30.61 (Machala), $39.47 (Acapulco), and $6.98 (Salto). Intervention components that focused mainly on changes to the established vector control programs seem affordable; cost savings were identified in Salto (−21%) and the clean patio component in Machala (−12%). An incremental cost of 10% was estimated in Fortaleza. On the other hand, there were also completely new components that would require sizeable financial efforts (installing insecticide-treated nets in Girardot and Acapulco costs $16.97 and $24.96 per house, respectively). Conclusions The interventions are promising, seem affordable and may improve the cost profile of the established vector control programs. The costs of the new components could be considerable, and should be assessed in relation to the benefits in reduced dengue burden. PMID:26924235

  5. Effect of dengue vector control interventions on entomological parameters in developing countries: a systematic review and meta-analysis.

    PubMed

    Erlanger, T E; Keiser, J; Utzinger, J

    2008-09-01

    The aim of this review was to compare the effects of different dengue vector control interventions (i.e. biological control, chemical control, environmental management and integrated vector management) with respect to the following entomological parameters: Breteau index (BI), container index (CI), and house index (HI). We systematically searched PubMed, ISI Web of Science, Science Direct, the Dengue Bulletin of the World Health Organization and reference lists of retrieved articles on dengue vector control interventions in developing countries. We extracted data on the effectiveness of different dengue vector control interventions (defined as the relative reduction of an entomological measure caused by the intervention compared with the control or pre-intervention phase) and calculated a measure of combined relative effectiveness, with 95% confidence intervals (95% c.i.). We identified 56 publications covering 61 dengue vector control interventions. Integrated vector management was found to be the most effective method to reduce the CI, HI and BI, resulting in random combined relative effectiveness values of 0.12 (95% c.i. 0.02-0.62), 0.17 (95% c.i. 0.02-1.28) and 0.33 (95% c.i. 0.22-0.48), respectively. Environmental management showed a relatively low effectiveness of 0.71 (95% c.i. 0.55-0.90) for the BI, 0.49 (95% c.i. 0.30-0.79) for the CI and 0.43 (95% c.i. 0.31-0.59) for the HI. Biological control (relative effectiveness for the CI: 0.18) usually targeted a small number of people (median population size: 200; range 20-2500), whereas integrated vector management focused on larger populations (median: 12 450; range: 210-9 600 000). In conclusion, dengue vector control is effective in reducing vector populations, particularly when interventions use a community-based, integrated approach, which is tailored to local eco-epidemiological and sociocultural settings and combined with educational programmes to increase knowledge and understanding of best practice. New

  6. A Model Framework to Estimate Impact and Cost of Genetics-Based Sterile Insect Methods for Dengue Vector Control

    PubMed Central

    Alphey, Nina; Alphey, Luke; Bonsall, Michael B.

    2011-01-01

    Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654

  7. Determining the spatial autocorrelation of dengue vector populations: influences of mosquito sampling method, covariables, and vector control.

    PubMed

    Azil, Aishah H; Bruce, David; Williams, Craig R

    2014-06-01

    We investigated spatial autocorrelation of female Aedes aegypti L. mosquito abundance from BG-Sentinel trap and sticky ovitrap collections in Cairns, north Queensland, Australia. BG-Sentinel trap collections in 2010 show a significant spatial autocorrelation across the study site and over a smaller spatial extent, while sticky ovitrap collections only indicate a non-significant, weak spatial autocorrelation. The BG-Sentinel trap collections were suitable for spatial interpolation using ordinary kriging and cokriging techniques. The uses of Premise Condition Index and potential breeding container data have helped improve our prediction of vector abundance. Semiovariograms and prediction maps indicate that the spatial autocorrelation of mosquito abundance determined by BG-Sentinel traps extends farther compared to sticky ovitrap collections. Based on our data, fewer BG-Sentinel traps are required to represent vector abundance at a series of houses compared to sticky ovitraps. A lack of spatial structure was observed following vector control treatment in the area. This finding has implications for the design and costs of dengue vector surveillance programs. PMID:24820568

  8. Dengue vector control and surveillance during a major outbreak in a coastal Red Sea area in Sudan.

    PubMed

    Seidahmed, O M E; Siam, H A M; Soghaier, M A; Abubakr, M; Osman, H A; Abd Elrhman, L S; Elmagbol, B; Velayudhan, R

    2012-12-01

    An unprecedented dengue outbreak occurred in 2010 in Port Sudan city, Sudan. Dengue incidence was 94 cases per 10 000 observed over 17 epidemiological weeks (total cases = 3 765). We report here the impact of the vector control response plan to the outbreak, which mainly entailed house inspection and insecticide space spraying. In total 3 048 houses were inspected during vector surveillance and 19 794 larvae and 3 240 pupae of Aedes aegypti were collected. Entomological indices decreased during the period: house index declined from 100% to 16% (F= 57.8, P < 0.001) and pupal/person (P/P) index from 0.77 to 0.10 (F= 3.06, P < 0.01) in weeks 9 and 21 respectively. This decline was accompanied by a decrease in cases from a peak of 341 cases in week 13 to zero in week 29 and the end of the outbreak. There was a significant correlation between the entomological parameters and dengue incidence (R2 = 0.83, F= 23.9, P < 0.001). Integrated epidemiological and vector surveillance is essential to an effective dengue control programme PMID:23301396

  9. National dengue surveillance in Cambodia 1980–2008: epidemiological and virological trends and the impact of vector control

    PubMed Central

    Huy, Rekol; Buchy, Philippe; Conan, Anne; Ngan, Chantha; Ong, Sivuth; Ali, Rabia; Duong, Veasna; Yit, Sunnara; Ung, Sophal; Te, Vantha; Chroeung, Norith; Pheaktra, Nguon Chan; Uok, Vithiea

    2010-01-01

    Abstract Objective Dengue has been reportable in Cambodia since 1980. Virological surveillance began in 2000 and sentinel surveillance was established at six hospitals in 2001. Currently, national surveillance comprises passive and active data collection and reporting on hospitalized children aged 0–15 years. This report summarizes surveillance data collected since 1980. Methods Crude data for 1980–2001 are presented, while data from 2002–2008 are used to describe disease trends and the effect of vector control interventions. Trends in dengue incidence were analysed using the Prais–Winsten generalized linear regression model for time series. Findings During 1980–2001, epidemics occurred in cycles of 3–4 years, with the cycles subsequently becoming less prominent. For 2002–2008 data, linear regression analysis detected no significant trend in the annual reported age-adjusted incidence of dengue (incidence range: 0.7–3.0 per 1000 population). The incidence declined in 2.7% of the 185 districts studied, was unchanged in 86.2% and increased in 9.6%. The age-specific incidence was highest in infants aged < 1 year and children aged 4–6 years. The incidence was higher during rainy seasons. All four dengue virus (DENV) serotypes were permanently in circulation, though the predominant serotype has alternated between DENV-3 and DENV-2 since 2000. Although larvicide has been distributed in 94 districts since 2002, logistic regression analysis showed no association between the intervention and dengue incidence. Conclusion The dengue burden remained high among young children in Cambodia, which reflects intense transmission. The national vector control programme appeared to have little impact on disease incidence. PMID:20865069

  10. Estimating dengue vector abundance in the wet and dry season: implications for targeted vector control in urban and peri-urban Asia

    PubMed Central

    Wai, Khin Thet; Arunachalam, Natarajan; Tana, Susilowati; Espino, Fe; Kittayapong, Pattamaporn; Abeyewickreme, W; Hapangama, Dilini; Tyagi, Brij Kishore; Htun, Pe Than; Koyadun, Surachart; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2012-01-01

    Background Research has shown that the classical Stegomyia indices (or “larval indices”) of the dengue vector Aedes aegypti reflect the absence or presence of the vector but do not provide accurate measures of adult mosquito density. In contrast, pupal indices as collected in pupal productivity surveys are a much better proxy indicator for adult vector abundance. However, it is unknown when it is most optimal to conduct pupal productivity surveys, in the wet or in the dry season or in both, to inform control services about the most productive water container types and if this pattern varies among different ecological settings. Methods A multi-country study in randomly selected twelve to twenty urban and peri-urban neighborhoods (“clusters”) of six Asian countries, in which all water holding containers were examined for larvae and pupae of Aedes aegypti during the dry season and the wet season and their productivity was characterized by water container types. In addition, meteorological data and information on reported dengue cases were collected. Findings The study reconfirmed the association between rainfall and dengue cases (“dengue season”) and underlined the importance of determining through pupal productivity surveys the “most productive containers types”, responsible for the majority (>70%) of adult dengue vectors. The variety of productive container types was greater during the wet than during the dry season, but included practically all container types productive in the dry season. Container types producing pupae were usually different from those infested by larvae indicating that containers with larval infestations do not necessarily foster pupal development and thus the production of adult Aedes mosquitoes. Conclusion Pupal productivity surveys conducted during the wet season will identify almost all of the most productive container types for both the dry and wet seasons and will therefore facilitate cost-effective targeted interventions

  11. [Social representations concerning dengue, dengue vectors, and control activities among residents of São Sebastião on the northern coast of São Paulo State, Brazil].

    PubMed

    Lefèvre, Ana Maria Cavalcanti; Ribeiro, Andressa Francisca; Marques, Gisela Rita de Alvarenga Monteiro; Serpa, Lígia Leandro Nunes; Lefèvre, Fernando

    2007-07-01

    This study sought to identify people's knowledge on dengue and its vector biology, aimed at promoting a communications channel between technical and lay reasoning in order to foster community involvement in dengue and dengue vector control activities. A survey was conducted in an Aedes aegypti-infested area with dengue transmission in São Sebastião on the northern coast of São Paulo State, Brazil. One hundred interviews were held, with five open questions on topics related to dengue and vector control. Collective Subject Discourse methodology was used in the analysis. People were not able to properly identify the kinds of accumulated water sources that serve as breeding places for mosquitoes and were unaware of the egg phase in vector development. There was inadequate awareness of vector biology and a need for greater government-community integration. Educational activities should incorporate the study results as insight for improving the social efficiency and efficacy of joint actions to fight dengue and control the mosquito vector. PMID:17572820

  12. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    PubMed

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  13. Genetic elimination of dengue vector mosquitoes

    PubMed Central

    Wise de Valdez, Megan R.; Nimmo, Derric; Betz, John; Gong, Hong-Fei; James, Anthony A.; Alphey, Luke; Black, William C.

    2011-01-01

    An approach based on mosquitoes carrying a conditional dominant lethal gene (release of insects carrying a dominant lethal, RIDL) is being developed to control the transmission of dengue viruses by vector population suppression. A transgenic strain, designated OX3604C, of the major dengue vector, Aedes aegypti, was engineered to have a repressible female-specific flightless phenotype. This strain circumvents the need for radiation-induced sterilization, allows genetic sexing resulting in male-only releases, and permits the release of eggs instead of adult mosquitoes. OX3604C males introduced weekly into large laboratory cages containing stable target mosquito populations at initial ratios of 8.5–10∶1 OX3604C∶target eliminated the populations within 10–20 weeks. These data support the further testing of this strain in contained or confined field trials to evaluate mating competitiveness and environmental and other effects. Successful completion of the field trials should facilitate incorporation of this approach into area-wide dengue control or elimination efforts as a component of an integrated vector management strategy. PMID:21383140

  14. Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti

    PubMed Central

    Lucantoni, Leonardo; Magaraggia, Michela; Lupidi, Giulio; Ouedraogo, Robert Kossivi; Coppellotti, Olimpia; Esposito, Fulvio; Fabris, Clara; Jori, Giulio; Habluetzel, Annette

    2011-01-01

    Background Control of the mosquito vector population is the most effective strategy currently available for the prevention of dengue fever and the containment of outbreaks. Photo-activated oxidants may represent promising tools for developing effective, safe and ecofriendly novel larvicides. The purpose of this study was to evaluate the potential of the synthetic meso-substituted porphyrin meso-tri(N-methylpyridyl), meso-mono(N-tetradecylpyridyl)porphine (C14) as a photoactivatable larvicide against the dengue vector Aedes (Stegomyia) aegypti. Methodology The photophysical and photochemical properties of the C14 molecule were assessed spectrophotometrically. Photomediated larvicidal efficacy, route of intake and site of action were determined on Ae. aegypti larvae by laboratory bioassays and fluorescence microscopy. Using powdered food pellet for laboratory rodents (a common larval food used in the laboratory) as a carrier for C14, loading-release dynamics, larvicidal efficacy and residual activity of the C14-carrier complex were investigated. Main Findings The C14 molecule was found to exert a potent photosensitizing activity on Ae. aegypti larvae. At irradiation intervals of 12 h and 1 h, at a light intensity of 4.0 mW/cm2, which is 50–100 times lower than that of natural sunlight, LC50 values of 0.1 µM (0.15 mg/l) and 0.5 µM (0.77 mg/l) were obtained, respectively. The molecule was active after ingestion by the larvae and caused irreversible, lethal damage to the midgut and caecal epithelia. The amphiphilic nature of C14 allowed a formulate to be produced that not only was as active against the larvae as C14 in solution, but also possessed a residual activity of at least two weeks, in laboratory conditions. Conclusions The meso-substituted synthetic porphyrin C14, thanks to its photo-sensitizing properties represents an attractive candidate for the development of novel photolarvicides for dengue vector control. PMID:22206031

  15. Evaluation of the Effectiveness of Insecticide Treated Materials for Household Level Dengue Vector Control

    PubMed Central

    Vanlerberghe, Veerle; Villegas, Elci; Oviedo, Milagros; Baly, Alberto; Lenhart, Audrey; McCall, P. J.; Van der Stuyft, Patrick

    2011-01-01

    Objective To assess the operational effectiveness of long-lasting insecticide treated materials (ITMs), when used at household level, for the control of Aedes aegypti in moderately infested urban and suburban areas. Methods In an intervention study, ITMs consisting of curtains and water jar-covers (made from PermaNet) were distributed under routine field conditions in 10 clusters (5 urban and 5 suburban), with over 4000 houses, in Trujillo, Venezuela. Impact of the interventions were determined by comparing pre-and post-intervention measures of the Breteau index (BI, number of positive containers/100 houses) and pupae per person index (PPI), and by comparison with indices from untreated areas of the same municipalities. The effect of ITM coverage was modeled. Results At distribution, the proportion of households with ≥1 ITM curtain was 79.7% in urban and 75.2% in suburban clusters, but decreased to 32.3% and 39.0%, respectively, after 18 months. The corresponding figures for the proportion of jars using ITM covers were 34.0% and 50.8% at distribution and 17.0% and 21.0% after 18 months, respectively. Prior to intervention, the BI was 8.5 in urban clusters and 42.4 in suburban clusters, and the PPI was 0.2 and 0.9, respectively. In both urban and suburban clusters, the BI showed a sustained 55% decrease, while no discernable pattern was observed at the municipal level. After controlling for confounding factors, the percentage ITM curtain coverage, but not ITM jar-cover coverage, was significantly associated with both entomological indices (Incidence Rate Ratio = 0.98; 95%CI 0.97–0.99). The IRR implied that ITM curtain coverage of at least 50% was necessary to reduce A. aegypti infestation levels by 50%. Conclusion Deployment of insecticide treated window curtains in households can result in significant reductions in A. aegypti levels when dengue vector infestations are moderate, but the magnitude of the effect depends on the coverage attained, which itself

  16. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Paulpandi, Manickam; Panneerselvam, Chellasamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Higuchi, Akon; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Vadivalagan, Chithravel; Chandramohan, Balamurugan; Alarfaj, Abdullah A; Munusamy, Murugan A; Barnard, Donald R; Benelli, Giovanni

    2015-09-01

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required. PMID:26063530

  17. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  18. Sustained reduction of the dengue vector population resulting from an integrated control strategy applied in two Brazilian cities.

    PubMed

    Regis, Lêda N; Acioli, Ridelane Veiga; Silveira, José Constantino; Melo-Santos, Maria Alice Varjal; Souza, Wayner Vieira; Ribeiro, Cândida M Nogueira; da Silva, Juliana C Serafim; Monteiro, Antonio Miguel Vieira; Oliveira, Cláudia M F; Barbosa, Rosângela M R; Braga, Cynthia; Rodrigues, Marco Aurélio Benedetti; Silva, Marilú Gomes N M; Ribeiro, Paulo Justiniano; Bonat, Wagner Hugo; de Castro Medeiros, Liliam César; Carvalho, Marilia Sa; Furtado, André Freire

    2013-01-01

    Aedes aegypti has developed evolution-driven adaptations for surviving in the domestic human habitat. Several trap models have been designed considering these strategies and tested for monitoring this efficient vector of Dengue. Here, we report a real-scale evaluation of a system for monitoring and controlling mosquito populations based on egg sampling coupled with geographic information systems technology. The SMCP-Aedes, a system based on open technology and open data standards, was set up from March/2008 to October/2011 as a pilot trial in two sites of Pernambuco -Brazil: Ipojuca (10,000 residents) and Santa Cruz (83,000), in a joint effort of health authorities and staff, and a network of scientists providing scientific support. A widespread infestation by Aedes was found in both sites in 2008-2009, with 96.8%-100% trap positivity. Egg densities were markedly higher in SCC than in Ipojuca. A 90% decrease in egg density was recorded in SCC after two years of sustained control pressure imposed by suppression of >7,500,000 eggs and >3,200 adults, plus larval control by adding fishes to cisterns. In Ipojuca, 1.1 million mosquito eggs were suppressed and a 77% reduction in egg density was achieved. This study aimed at assessing the applicability of a system using GIS and spatial statistic analysis tools for quantitative assessment of mosquito populations. It also provided useful information on the requirements for reducing well-established mosquito populations. Results from two cities led us to conclude that the success in markedly reducing an Aedes population required the appropriate choice of control measures for sustained mass elimination guided by a user-friendly mosquito surveillance system. The system was able to support interventional decisions and to assess the program's success. Additionally, it created a stimulating environment for health staff and residents, which had a positive impact on their commitment to the dengue control program. PMID:23844059

  19. Sustained Reduction of the Dengue Vector Population Resulting from an Integrated Control Strategy Applied in Two Brazilian Cities

    PubMed Central

    Regis, Lêda N.; Acioli, Ridelane Veiga; Silveira, José Constantino; Melo-Santos, Maria Alice Varjal; Souza, Wayner Vieira; Ribeiro, Cândida M. Nogueira.; da Silva, Juliana C. Serafim.; Monteiro, Antonio Miguel Vieira; Oliveira, Cláudia M. F.; Barbosa, Rosângela M. R.; Braga, Cynthia; Rodrigues, Marco Aurélio Benedetti; Silva, Marilú Gomes N. M.; Ribeiro Jr., Paulo Justiniano; Bonat, Wagner Hugo; de Castro Medeiros, Liliam César; Carvalho, Marilia Sa; Furtado, André Freire

    2013-01-01

    Aedes aegypti has developed evolution-driven adaptations for surviving in the domestic human habitat. Several trap models have been designed considering these strategies and tested for monitoring this efficient vector of Dengue. Here, we report a real-scale evaluation of a system for monitoring and controlling mosquito populations based on egg sampling coupled with geographic information systems technology. The SMCP-Aedes, a system based on open technology and open data standards, was set up from March/2008 to October/2011 as a pilot trial in two sites of Pernambuco -Brazil: Ipojuca (10,000 residents) and Santa Cruz (83,000), in a joint effort of health authorities and staff, and a network of scientists providing scientific support. A widespread infestation by Aedes was found in both sites in 2008–2009, with 96.8%–100% trap positivity. Egg densities were markedly higher in SCC than in Ipojuca. A 90% decrease in egg density was recorded in SCC after two years of sustained control pressure imposed by suppression of >7,500,000 eggs and >3,200 adults, plus larval control by adding fishes to cisterns. In Ipojuca, 1.1 million mosquito eggs were suppressed and a 77% reduction in egg density was achieved. This study aimed at assessing the applicability of a system using GIS and spatial statistic analysis tools for quantitative assessment of mosquito populations. It also provided useful information on the requirements for reducing well-established mosquito populations. Results from two cities led us to conclude that the success in markedly reducing an Aedes population required the appropriate choice of control measures for sustained mass elimination guided by a user-friendly mosquito surveillance system. The system was able to support interventional decisions and to assess the program’s success. Additionally, it created a stimulating environment for health staff and residents, which had a positive impact on their commitment to the dengue control program. PMID:23844059

  20. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti.

    PubMed Central

    Bosio, C F; Fulton, R E; Salasek, M L; Beaty, B J; Black, W C

    2000-01-01

    Quantitative trait loci (QTL) affecting the ability of the mosquito Aedes aegypti to become infected with dengue-2 virus were mapped in an F(1) intercross. Dengue-susceptible A. aegypti aegypti were crossed with dengue refractory A. aegypti formosus. F(2) offspring were analyzed for midgut infection and escape barriers. In P(1) and F(1) parents and in 207 F(2) individuals, regions of 14 cDNA loci were analyzed with single-strand conformation polymorphism analysis to identify and orient linkage groups with respect to chromosomes I-III. Genotypes were also scored at 57 RAPD-SSCP loci, 5 (TAG)(n) microsatellite loci, and 6 sequence-tagged RAPD loci. Dengue infection phenotypes were scored in 86 F(2) females. Two QTL for a midgut infection barrier were detected with standard and composite interval mapping on chromosomes II and III that accounted for approximately 30% of the phenotypic variance (sigma(2)(p)) in dengue infection and these accounted for 44 and 56%, respectively, of the overall genetic variance (sigma(2)(g)). QTL of minor effect were detected on chromosomes I and III, but these were not detected with composite interval mapping. Evidence for a QTL for midgut escape barrier was detected with standard interval mapping but not with composite interval mapping on chromosome III. PMID:11014816

  1. Exploring new thermal fog and ultra-low volume technologies to improve indoor control of the dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Harwood, James F; Farooq, Muhammad; Richardson, Alec G; Doud, Carl W; Putnam, John L; Szumlas, Daniel E; Richardson, Jason H

    2014-07-01

    Control of the mosquito vector, Aedes aegypti (L.), inside human habitations must be performed quickly and efficiently to reduce the risk of transmission during dengue outbreaks. As part of abroad study to assess the efficacy of dengue vector control tools for the U.S. Military, two pesticide delivery systems (ultra-low volume [ULV] and thermal fog) were evaluated for their ability to provide immediate control of Ae. aegypti mosquitoes with a contact insecticide inside simulated urban structures. An insect growth regulator was also applied to determine how well each sprayer delivered lethal doses of active ingredient to indoor water containers for pupal control. Mortality of caged Ae. aegypti, pesticide droplet size, and droplet deposition were recorded after applications. In addition, larval and pupal mortality was measured from treated water samples for 4 wk after the applications. The ULV and the thermal fogger performed equally well in delivering lethal doses of adulticide throughout the structures. The ULV resulted in greater larval mortality and adult emergence inhibition in the water containers for a longer period than the thermal fogger. Therefore, the ULV technology is expected to be a better tool for sustained vector suppression when combined with an effective insect growth regulator. However, during a dengue outbreak, either delivery system should provide an immediate knockdown of vector populations that may lower the risk of infection and allow other suppression strategies to be implemented. PMID:25118418

  2. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection.

    PubMed

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-07-01

    Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  3. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates.

    PubMed

    Padmanabha, H; Soto, E; Mosquera, M; Lord, C C; Lounibos, L P

    2010-08-01

    Understanding linkages between household behavior and Aedes aegypti (L.) larval ecology is essential for community-based dengue mitigation. Here we associate water storage behaviors with the rate of A. aegypti pupal production in three dengue-endemic Colombian cities with different mean temperatures. Qualitative, semi-structured interviews and pupal counts were conducted over a 7-15-day period in 235 households containing a water storage vessel infested with larvae. Emptying vessels more often than every 7 days strongly reduced pupal production in all three cities. Emptying every 7-15 days reduced production by a similar magnitude as emptying <7 days in Armenia (21.9 degrees C), has a threefold smaller reduction as compared to <7 days in Bucaramanga (23.9 degrees C), and did not reduce production in Barranquilla (29.0 degrees C). Lidding vessels reduced mosquito production and was most feasible in Barranquilla because of container structure. Vessel emptying strongly correlated with usage in Barranquilla, where many households stored water in case of interruptions in piped service rather than for regular use. In the cooler cities, >90% of households regularly used stored water for washing clothes, generating a weaker correlation between emptying and usage. Emptying was less frequent in the households surveyed in the dry season in all three cities. These results show that A. aegypti production and human behaviors are coupled in a temperature-dependent manner. In addition to biological effects on aquatic stages, climate change may impact A. aegypti production through human behavioral adaptations. Vector control programs should account for geographic variation in temperature and water usage behaviors in designing targeted interventions. PMID:20358255

  4. Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control

    PubMed Central

    Rašić, Gordana; Schama, Renata; Powell, Rosanna; Maciel-de Freitas, Rafael; Endersby-Harshman, Nancy M; Filipović, Igor; Sylvestre, Gabriel; Máspero, Renato C; Hoffmann, Ary A

    2015-01-01

    Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio. PMID:26495042

  5. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.

    PubMed

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I

    2015-02-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control. PMID:25625483

  6. Use of Insecticide-Treated House Screens to Reduce Infestations of Dengue Virus Vectors, Mexico

    PubMed Central

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J.; Kroeger, Axel

    2015-01-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control. PMID:25625483

  7. Community-centred eco-bio-social approach to control dengue vectors: an intervention study from Myanmar

    PubMed Central

    Wai, Khin Thet; Htun, Pe Than; Oo, Tin; Myint, Hla; Lin, Zaw; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2012-01-01

    Objectives To build up and analyse the feasibility, process, and effectiveness of a partnership-driven ecosystem management intervention in reducing dengue vector breeding and constructing sustainable partnerships among multiple stakeholders. Methods A community-based intervention study was conducted from May 2009 to January 2010 in Yangon city. Six high-risk and six low-risk clusters were randomized and allocated as intervention and routine service areas, respectively. For each cluster, 100 households were covered. Bi-monthly entomological evaluations (i.e. larval and pupal surveys) and household acceptability surveys at the end of 6-month intervention period were conducted, supplemented by qualitative evaluations. Intervention description The strategies included eco-friendly multi-stakeholder partner groups (Thingaha) and ward-based volunteers, informed decision-making of householders, followed by integrated vector management approach. Findings Pupae per person index (PPI) decreased at the last evaluation by 5.7% (0.35–0.33) in high-risk clusters. But in low-risk clusters, PPI remarkably decreased by 63.6% (0.33–0.12). In routine service area, PPI also decreased due to availability of Temephos after Cyclone Nargis. As for total number of pupae in all containers, when compared to evaluation 1, there was a reduction of 18.6% in evaluation 2 and 44.1% in evaluation 3 in intervention area. However, in routine service area, more reduction was observed. All intervention tools were found as acceptable, being feasible to implement by multi-stakeholder partner groups. Conclusions The efficacy of community-controlled partnership-driven interventions was found to be superior to the vertical approach in terms of sustainability and community empowerment. PMID:23318238

  8. The dengue vaccine pipeline: Implications for the future of dengue control.

    PubMed

    Schwartz, Lauren M; Halloran, M Elizabeth; Durbin, Anna P; Longini, Ira M

    2015-06-26

    Dengue has become the most rapidly expanding mosquito-borne infectious disease on the planet, surpassing malaria and infecting at least 390 million people per year. There is no effective treatment for dengue illness other than supportive care, especially for severe cases. Symptoms can be mild or life-threatening as in dengue hemorrhagic fever and dengue shock syndrome. Vector control has been only partially successful in decreasing dengue transmission. The potential use of safe and effective tetravalent dengue vaccines is an attractive addition to prevent disease or minimize the possibility of epidemics. There are currently no licensed dengue vaccines. This review summarizes the current status of all dengue vaccine candidates in clinical evaluation. Currently five candidate vaccines are in human clinical trials. One has completed two Phase III trials, two are in Phase II trials, and three are in Phase I testing. PMID:25989449

  9. Effectiveness and feasibility of long-lasting insecticide-treated curtains and water container covers for dengue vector control in Colombia: a cluster randomised trial

    PubMed Central

    Quintero, Juliana; García-Betancourt, Tatiana; Cortés, Sebastian; García, Diana; Alcalá, Lucas; González-Uribe, Catalina; Brochero, Helena; Carrasquilla, Gabriel

    2015-01-01

    Background Long-lasting insecticide-treated net (LLIN) window and door curtains alone or in combination with LLIN water container covers were analysed regarding effectiveness in reducing dengue vector density, and feasibility of the intervention. Methods A cluster randomised trial was conducted in an urban area of Colombia comparing 10 randomly selected control and 10 intervention clusters. In control clusters, routine vector control activities were performed. The intervention delivered first, LLIN curtains (from July to August 2013) and secondly, water container covers (from October to March 2014). Cross-sectional entomological surveys were carried out at baseline (February 2013 to June 2013), 9 weeks after the first intervention (August to October 2013), and 4–6 weeks after the second intervention (March to April 2014). Results Curtains were installed in 922 households and water container covers in 303 households. The Breteau index (BI) fell from 14 to 6 in the intervention group and from 8 to 5 in the control group. The additional intervention with LLIN covers for water containers showed a significant reduction in pupae per person index (PPI) (p=0.01). In the intervention group, the PPI index showed a clear decline of 71% compared with 25% in the control group. Costs were high but options for cost savings were identified. Conclusions Short term impact evaluation indicates that the intervention package can reduce dengue vector density but sustained effect will depend on multiple factors. PMID:25604762

  10. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future.

    PubMed

    Schaffner, Francis; Mathis, Alexander

    2014-12-01

    After 55 years of absence, dengue has re-emerged in the WHO European region both as locally transmitted sporadic cases and as an outbreak in Madeira, driven by the introduction of people infected with the virus and the invasion of the vector mosquito species Aedes aegypti and Aedes albopictus. Models predict a further spread of A albopictus, particularly under climate change conditions. Dengue transmission models suggest a low risk in Europe, but these models too rarely include transmission by A albopictus (the main established vector). Further information gaps exist with regard to the Caucasus and central Asian countries of the WHO European region. Many European countries have implemented surveillance and control measures for invasive mosquitoes, but only a few include surveillance for dengue. As long as no dengue-specific prophylaxis or therapeutics are available, integrated vector management is the most sustainable control option. The rapid elimination of newly introduced A aegypti populations should be targeted in the European region, particularly in southern Europe and the Caucasus, where the species was present for decades until the 1950s. PMID:25172160

  11. Long-lasting insecticide-treated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico

    PubMed Central

    Che-Mendoza, Azael; Guillermo-May, Guillermo; Herrera-Bojórquez, Josué; Barrera-Pérez, Mario; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Arredondo-Jiménez, Juan I.; Sánchez-Tejeda, Gustavo; Vazquez-Prokopec, Gonzalo; Ranson, Hilary; Lenhart, Audrey; Sommerfeld, Johannes; McCall, Philip J.; Kroeger, Axel; Manrique-Saide, Pablo

    2015-01-01

    Background Long-lasting insecticidal net screens (LLIS) fitted to domestic windows and doors in combination with targeted treatment (TT) of the most productive Aedes aegypti breeding sites were evaluated for their impact on dengue vector indices in a cluster-randomised trial in Mexico between 2011 and 2013. Methods Sequentially over 2 years, LLIS and TT were deployed in 10 treatment clusters (100 houses/cluster) and followed up over 24 months. Cross-sectional surveys quantified infestations of adult mosquitoes, immature stages at baseline (pre-intervention) and in four post-intervention samples at 6-monthly intervals. Identical surveys were carried out in 10 control clusters that received no treatment. Results LLIS clusters had significantly lower infestations compared to control clusters at 5 and 12 months after installation, as measured by adult (male and female) and pupal-based vector indices. After addition of TT to the intervention houses in intervention clusters, indices remained significantly lower in the treated clusters until 18 (immature and adult stage indices) and 24 months (adult indices only) post-intervention. Conclusions These safe, simple affordable vector control tools were well-accepted by study participants and are potentially suitable in many regions at risk from dengue worldwide. PMID:25604761

  12. Promoting health education and public awareness about dengue and its mosquito vector in Saudi Arabia.

    PubMed

    Aziz, Al Thabiani; Al-Shami, Salman A; Mahyoub, Jazem A; Hatabbi, Mesed; Ahmad, Abu Hassan; Md Rawi, Che Salmah

    2014-01-01

    Currently, dengue fever is considered as the main health problem in several parts (Mekkah, Jeddah, Jazan and Najran) of Kingdom of Saudi Arabia (KSA) with dramatically increase in the number of cases reported every year. This is associated with obvious ineffectiveness in the recent control and management programs for the mosquito vector (Aedes aegypti). Here, we suggested promoting the health education and public awareness among Saudi people to improve the control of dengue mosquito vector. Several suggestions and recommendations were highlighted here to ensure effectiveness in the future control and management programs of dengue mosquito vector in KSA. PMID:25403705

  13. Community-based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia.

    PubMed

    Seng, Chang Moh; Setha, To; Nealon, Joshua; Socheat, Doung; Chantha, Ngan; Nathan, Michael B

    2008-06-01

    A community-based study of the distribution of larvivorous fish, Poecilia reticulata (common name: guppy), in water storage containers for dengue control was undertaken in 14 villages and approximately 1,000 households in Cambodia. Community volunteers reared guppies and distributed them in water jars and tanks in households for which they were responsible. A nearby control area received no intervention. One year after project commencement, 56.9% of eligible containers contained guppies and there was a 79.0% reduction in Aedes infestation in the intervention community compared with the control. Smaller or discarded containers unsuitable for guppy distribution in the intervention area also had 51% less infestation than those in the control area, suggesting a "community-wide" protective effect. In addition, there was less infestation in villages with higher rates of fish uptake, suggesting that the presence of fish was responsible for a reduction in Aedes infestation. This applied vector control model was well-accepted, effective, efficient, and shows promise as a sustainable community-based, non-insecticidal intervention for dengue vector control in large domestic water storage containers in rural Cambodia and elsewhere. PMID:18697316

  14. Eco-bio-social research on dengue in Asia: a multicountry study on ecosystem and community-based approaches for the control of dengue vectors in urban and peri-urban Asia.

    PubMed

    Sommerfeld, Johannes; Kroeger, Axel

    2012-12-01

    This article provides an overview of methods and cross-site insights of a 5-year research and capacity building initiative conducted between 2006 and 2011 in six countries of South Asia (India, Sri Lanka) and South-East Asia (Indonesia, Myanmar, Philippines, Thailand).The initiative managed an interdisciplinary investigation of ecological, biological, and social (i.e., eco-bio-social) dimensions of dengue in urban and peri-urban areas, and developed community-based interventions aimed at reducing dengue vector breeding and viral transmission. The multicountry study comprised interdisciplinary research groups from six leading Asian research institutions. The groups conducted a detailed situation analysis to identify and characterize local eco-bio-social conditions, and formed a community-of-practice for EcoHealth research where group partners disseminated results and collaboratively developed site-specific intervention tools for vector-borne diseases. In sites where water containers produced more than 70% of Aedes pupae, interventions ranged from mechanical lid covers for containers to biological control. Where small discarded containers presented the main problem, groups experimented with solid waste management, composting and recycling schemes. Many intervention tools were locally produced and all tools were implemented through community partnership strategies. All sites developed socially and culturally appropriate health education materials. The study also mobilised and empowered women's, students' and community groups and at several sites organized new volunteer groups for environmental health. The initiative's programmes showed significant impact on vector densities in some sites. Other sites showed varying effect - partially attributable to the 'contamination' of control groups - yet led to significant outcomes at the community level where local groups united around broad interests in environmental hygiene and sanitation. The programme's findings are relevant

  15. Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes mediovitattus, a Dengue Competent Mosquito in Puerto Rico

    PubMed Central

    Little, Eliza; Barrera, Roberto; Seto, Karen C.; Diuk-Wasser, Maria

    2015-01-01

    Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning. PMID:21989642

  16. Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka.

    PubMed

    Karunaratne, S H P P; Weeraratne, T C; Perera, M D B; Surendran, S N

    2013-09-01

    Unprecedented incidence of dengue has been recorded in Sri Lanka in recent times. Source reduction and use of insecticides in space spraying/fogging and larviciding, are the primary means of controlling the vector mosquitoes Aedes aegypti and Ae. albopictus in the island nation. A study was carried out to understand insecticide cross-resistance spectra and mechanisms of insecticide resistance of both these vectors from six administrative districts, i.e. Kandy, Kurunegala, Puttalam, Gampaha, Ratnapura and Jaffna, of Sri Lanka. Efficacy of the recommended dosages of frequently used insecticides in space spraying and larviciding in dengue vector control programmes was also tested. Insecticide bioassay results revealed that, in general, both mosquito species were highly resistant to DDT but susceptible to propoxur and malathion except Jaffna Ae. aegypti population. Moderate resistance to malathion shown by Jaffna Ae. aegypti population correlated with esterase and malathion carboxylesterase activities of the population. High levels of acetylcholinesterase (AChE) insensitivity in the absence of malathion and propoxur resistance may be due to non-synaptic forms of AChE proteins. Moderate pyrethroid resistance in the absence of high monooxygenase levels indicated the possible involvement of 'kdr' type resistance mechanism in Sri Lankan dengue vectors. Results of the space spraying experiments revealed that 100% mortality at a 10 m distance and >50% mortality at a 50 m distance can be achieved with malathion, pesguard and deltacide even in a ground with dense vegetation. Pesguard and deltacide spraying gave 100% mortality up to 50 m distance in open area and areas with little vegetation. Both species gave >50% mortalities for deltacide at a distance of 75 m in a dense vegetation area. Larval bioassays conducted in the laboratory showed that a 1 ppm temephos solution can maintain a larval mortality rate of 100% for ten months, and the mortality rate declined to 0% in the

  17. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  18. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.

    PubMed

    Liu-Helmersson, Jing; Quam, Mikkel; Wilder-Smith, Annelies; Stenlund, Hans; Ebi, Kristie; Massad, Eduardo; Rocklöv, Joacim

    2016-05-01

    Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC) based on historic and projected temperature (1901-2099). VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence-if sufficient vector populations (either Ae. aegypti and Ae. albopictus) were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe. PMID:27322480

  19. Space treatments of insecticide for control of dengue virus vector Aedes aegypti in southern Mexico. I. Baseline penetration trials in open field and houses.

    PubMed

    Arrendondo-Jimenez, Juan I; Rivero, Norma E

    2006-06-01

    We studied the efficacy of space ultra-low volume treatments of 3 insecticides for the control of the dengue virus vector Aedes aegypti in southern Mexico. Insecticides tested were permethrin (Aqua-Reslin Super), d-phenothrin (Anvil), and cyfluthrin (Solfac), applied at rates of 10.87, 7.68, and 2 g/ha, respectively, by using London Fog, HP910-PHXL, or Micro-Gen pumps mounted on vehicles. Studies included 1) open field penetration tests and 2) house penetration tests. Open field tests indicated that Anvil and Solfac were more effective than Aqua-Reslin Super. In house tests, Anvil yielded the highest mosquito mortalities (>/=88%) of the three insecticides in the front porch, living room, bedroom, and backyard. Therefore, Anvil proved to be better than other insecticides evaluated to control Ae. aegypti in Chiapas, Mexico. PMID:17019777

  20. Toxicity effect of Delonix elata (Yellow Gulmohr) and predatory efficiency of Copepod, Mesocyclops aspericornis for the control of dengue vector, Aedes aegypti

    PubMed Central

    Vasugi, Chellamuthu; Kamalakannan, Siva; Murugan, Kadarkarai

    2013-01-01

    Objective To evaluate the toxicity, predatory efficiency of Delonix elata (D. elata) and Mesocyclops aspericornis (M. aspericornis) against dengue vector, Aedes aegypti (Ae. aegypti). Methods A mosquitocidal bioassay was conducted at different concentration of plant extract followed by WHO standard method. The probit analysis of each tested concentration and control were observed by using software SPSS 11 version package. The each tested concentration variable was assessed by DMRT method. The predatory efficiency of copepod was followed by Deo et al., 1988. The predator, M. aspericornis was observed for mortality, abnormalities, survival and swimming activity after 24 h treatment of plant and also predation on the mosquito larvae were observed. Results D. elata were tested for biological activity against the larvae, and pupae of Ae. aegypti. Significant mortality effects were observed in each life stage. The percentage of mortality was 100% in first and second instars whereas 96%, 92% in third and fourth instars. Fitted probit-mortality curves for larvae indicated the median and 90% lethal concentrations of D. elata for instars 1-4 to be 4.91 (8.13), 5.16 (8.44), 5.95 (7.76) and 6.87 (11.23), respectively. The results indicate that leaf extract exhibits significant biological activity against life stages. The present study revealed that D. elata is potentially important in the control of Ae. aegypti. Similar studies were conducted for predatory efficiency of Copepod, M. aspericornis against mosquito vector Ae. Aegypti. This study reported that the predatory copepod fed on 39% and 25% in I and III instar larvae of mosquito and in combined treatment of D. elata and copepod maximum control of mosquito larval states and at 83%, 80%, 75% and 53% in I, II, III and IV instars, respectively. Conclusions The combined action of plant extract and predatory copepod to effectively control mosquito population and reduce the dengue transmitting diseases.

  1. Chapter 3. Integration of botanicals and microbial pesticides for the control of dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes are the single most important group of insects in terms of public health significance and causing diseases such as malaria, filariasis, dengue fever, Japanese encephalitis and other fevers. There has been an outbreak of Chikungunya and dengue all over the India from 2006 – 2009. Aedes ae...

  2. Insecticide Control in a Dengue Epidemics Model

    NASA Astrophysics Data System (ADS)

    Rodrigues, Helena Sofia; Monteiro, M. Teresa T.; Torres, Delfim F. M.

    2010-09-01

    A model for the transmission of dengue disease is presented. It consists of eight mutually-exclusive compartments representing the human and vector dynamics. It also includes a control parameter (insecticide) in order to fight the mosquitoes. The main goal of this work is to investigate the best way to apply the control in order to effectively reduce the number of infected humans and mosquitoes. A case study, using data of the outbreak that occurred in 2009 in Cape Verde, is presented.

  3. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specifi...

  4. Dengue Fever Occurrence and Vector Detection by Larval Survey, Ovitrap and MosquiTRAP: A Space-Time Clusters Analysis

    PubMed Central

    de Melo, Diogo Portella Ornelas; Scherrer, Luciano Rios; Eiras, Álvaro Eduardo

    2012-01-01

    The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools. PMID:22848729

  5. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a space-time clusters analysis.

    PubMed

    de Melo, Diogo Portella Ornelas; Scherrer, Luciano Rios; Eiras, Álvaro Eduardo

    2012-01-01

    The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools. PMID:22848729

  6. DengueTools: innovative tools and strategies for the surveillance and control of dengue

    PubMed Central

    Wilder-Smith, Annelies; Renhorn, Karl-Erik; Tissera, Hasitha; Abu Bakar, Sazaly; Alphey, Luke; Kittayapong, Pattamaporn; Lindsay, Steve; Logan, James; Hatz, Christoph; Reiter, Paul; Rocklöv, Joacim; Byass, Peter; Louis, Valérie R.; Tozan, Yesim; Massad, Eduardo; Tenorio, Antonio; Lagneau, Christophe; L'Ambert, Grégory; Brooks, David; Wegerdt, Johannah; Gubler, Duane

    2012-01-01

    Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of ‘Comprehensive control of Dengue fever under changing climatic conditions’. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named ‘DengueTools’ to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change. The consortium comprises 12 work packages to address a set of research questions in three areas: Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring. Research area 2: Develop novel strategies to prevent dengue in children. Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change. In this paper, we report on the rationale and specific study objectives of ‘DengueTools’. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589

  7. Impact of dengue virus infection and its control.

    PubMed

    Igarashi, A

    1997-08-01

    Dengue virus infection has been counted among emerging and re-emerging diseases because of (1) the increasing number of patients, (2) the expansion of epidemic areas, and (3) the appearance of severe clinical manifestation of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS), which is often fatal if not properly treated. In the meantime, there are no effective dengue control measures: a dengue vaccine is still under development and vector control does not provide a long-lasting effect. In order to obtain direct evidence for the virulent virus theory concerning the pathogenesis of DHF/DSS, type 2 dengue virus strains isolated from patients with different clinical severities in the same epidemic area in northeast Thailand, during the same season, were comparatively sequenced. The result revealed a DF strain specific amino acid substitution from I to R in the PrM, and a DSS strain specific amino acid substitution from D to G in the NS1 gene regions, which could significantly alter the nature of these proteins. Moreover, DF strain specific nucleotide substitutions in the 3' noncoding region were predicted to alter its secondary structure. These amino acid and nucleotide substitutions in other strains isolated in different epidemic areas during other seasons, together with their biological significance, remain to be confirmed. In order to innovate dengue vector control, field tests were carried out in dengue epidemic areas in Vietnam to examine the efficacy of Olyset Net screen, which is a wide-mesh net made of polyethylene thread impregnated with permethrin. The results show that Olyset Net (1) reduced the number of principal dengue vector species, Aedes aegypti, (2) interrupted the silent transmission of dengue viruses and (3) was highly appreciated by the local people as a convenient and comfortable vector control method. This encouraging evaluation of the Olyset Net screen should be confirmed further by other tests under different settings. PMID:9348165

  8. Evaluating Liquid and Granular Bacillus thuringiensis var. israelensis Broadcast Applications for Controlling Vectors of Dengue and Chikungunya Viruses in Artificial Containers and Tree Holes.

    PubMed

    Harwood, James F; Farooq, Muhammad; Turnwall, Brent T; Richardson, Alec G

    2015-07-01

    The principal vectors of chikungunya and dengue viruses typically oviposit in water-filled artificial and natural containers, including tree holes. Despite the risk these and similar tree hole-inhabiting mosquitoes present to global public health, surprisingly few studies have been conducted to determine an efficient method of applying larvicides specifically to tree holes. The Stihl SR 450, a backpack sprayer commonly utilized during military and civilian vector control operations, may be suitable for controlling larval tree-hole mosquitoes, as it is capable of delivering broadcast applications of granular and liquid dispersible formulations of Bacillus thuringiensis var. israelensis (Bti) to a large area relatively quickly. We compared the application effectiveness of two granular (AllPro Sustain MGB and VectoBac GR) and two liquid (Aquabac XT and VectoBac WDG) formulations of Bti in containers placed on bare ground, placed beneath vegetative cover, and hung 1.5 or 3 m above the ground to simulate tree holes. Aedes aegypti (L.) larval mortality and Bti droplet and granule density data (when appropriate) were recorded for each formulation. Overall, granular formulations of Bti resulted in higher mortality rates in the simulated tree-hole habitats, whereas applications of granular and liquid formulations resulted in similar levels of larval mortality in containers placed on the ground in the open and beneath vegetation. PMID:26335473

  9. Framework for application of geographic information system to the monitoring of dengue vectors.

    PubMed

    Su, M D; Chang, N T

    1994-12-01

    In a successful management program of dengue vectors, not only health education, source reduction or insecticide application should be conducted, but all basic information should also be manipulated properly and efficiently. This information includes the surveys of species, dispersal and dynamics of vectors, as well as the detection of breeding sources, and the records of dengue cases and epidemic periods. Most of the above information expressed as regionalized variables always varies spatially and/or temporally. However, due to the deficiency of topological information, the conventional database management system cannot efficiently analyze those dengue related data. Thus, we have applied the geographic information system (GIS) to the monitoring of dengue vectors. The purpose of this report is to introduce the basic concepts of GIS, to describe the framework of the prototype dengue vector monitoring system which was built using data collected from the Sanmin area, Kaoshiung city, Taiwan, and to indicate the possibility of using this system to manipulate spatially correlated data and support decision making in the control of dengue disease. PMID:7844857

  10. Synergistic action of octopamine receptor agonists on the activity of selected novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2015-05-01

    Studying insecticide resistance in mosquitoes has attracted the attention of many scientists to elucidate the pathways of resistance development and to design novel strategies in order to prevent or minimize the spread and evolution of resistance. Here, we tested the synergistic action of piperonyl butoxide (PBO) and two octopamine receptor (OR) agonists, amitraz (AMZ) and chlordimeform (CDM) on selected novel insecticides to increase their lethal action on the fourth instar larvae of Aedes aegypti L. However, chlorfenapyr was the most toxic insecticide (LC50 = 193, 102, and 48 ng/ml, after 24, 48, and 72 h exposure, respectively) tested. Further, PBO synergized all insecticides and the most toxic combinatorial insecticide was nitenpyram even after 48 and 72 h exposure. In addition, OR agonists significantly synergized most of the selected insecticides especially after 48 and 72 h exposure. The results imply that the synergistic effects of amitraz are a promising approach in increasing the potency of certain insecticides in controlling the dengue vector Ae. aegypti mosquito. PMID:25987220

  11. Need for an efficient adult trap for the surveillance of dengue vectors

    PubMed Central

    Sivagnaname, N.; Gunasekaran, K.

    2012-01-01

    The emergence and re-emergence of arboviral diseases transmitted by Aedes aegypti and Ae. albopictus continue to be a major threat in the tropics and subtropics. Associations between currently used indices and dengue transmission have not been proven to be satisfactorily predictive of dengue epidemics. Classical larval indices in dengue surveillance have limited use in assessing transmission risk and are a poor proxy for measuring adult emergence. Besides, collection of larval indices is labour intensive and plagued by difficulties of access particularly in urban settings. The re-emergence of dengue disease in many countries despite lower immature indices has warranted the need for more effective indices in dengue vector surveillance and control. Reliable and highly useful indices could be developed with the help of efficient and appropriate entomological tools. Most current programmes emphasize reduction of immature Ae. aegypti density, but it is of little value because its relation to transmission risk is weak. More attention should be paid to methods directed toward adult rather than immature Ae. aegypti. Collection of sufficient numbers of adult mosquitoes is important to understand disease transmission dynamics and to devise an appropriate control strategy. Even though, use of certain traps such as BG-Sentinel traps has been attempted in monitoring Ae. aegypti population, their utility is limited due to various setbacks which make these insufficient for entomological and epidemiological studies. Thus, there is an urgent need for the development of an ideal trap that could be used for adult vector surveillance. The present review critically analyzes the setbacks in the existing tools of entomological surveillance of dengue vectors and highlights the importance and necessity of more improved, more sensitive and reliable adult trap that could be used for surveillance of dengue vectors. PMID:23287120

  12. Evolution of dengue in Sri Lanka-changes in the virus, vector, and climate.

    PubMed

    Sirisena, P D N N; Noordeen, F

    2014-02-01

    Despite the presence of dengue in Sri Lanka since the early 1960s, dengue has become a major public health issue, with a high morbidity and mortality. Aedes aegypti and Aedes albopictus are the vectors responsible for the transmission of dengue viruses (DENV). The four DENV serotypes (1, 2, 3, and 4) have been co-circulating in Sri Lanka for more than 30 years. The new genotype of DENV-1 has replaced an old genotype, and new clades of DENV-3 genotype III have replaced older clades. The emergence of new clades of DENV-3 in the recent past coincided with an abrupt increase in the number of dengue fever (DF)/dengue hemorrhagic fever (DHF) cases, implicating this serotype in severe epidemics. Climatic factors play a pivotal role in the epidemiological pattern of DF/DHF in terms of the number of cases, severity of illness, shifts in affected age groups, and the expansion of spread from urban to rural areas. There is a regular incidence of DF/DHF throughout the year, with the highest incidence during the rainy months. To reduce the morbidity and mortality associated with DF/DHF, it is important to implement effective vector control programs in the country. The economic impact of DF/DHF results from the expenditure on DF/DHF critical care units in several hospitals and the cost of case management. PMID:24334026

  13. Integrated control of the dengue vector Aedes aegypti in Liu-Chiu village, Ping-Tung County, Taiwan.

    PubMed

    Wang, C H; Chang, N T; Wu, H H; Ho, C M

    2000-06-01

    Because of an inadequate supply of potable water, villagers of Small Liu-Chiu Isle, Ping-Tung County, Taiwan, store water in containers supporting a large population of Aedes aegypti. In 1989-96, integrated control measures against Ae. aegypti were implemented on the basis of community participation. These measures included release of mosquito larvivorous fish in the drinking water storage facilities, application of larvicides to the water storage facilities in vegetable gardens, removal of discarded and unused containers and tires, improvement of household water storage facilities, and increase of potable water supply. Before implementation of the integrated control measures in 1988, 74% of the water-containing vessels were water storage facilities, and 24% of those were infested by Ae. aegypti. In 1989, the Breteau index for the entire island, indicating the average distribution density for larval Ae. aegypti, was 53.9, as compared to an index of 1.2 in 1996. In 4 villages located at the southwest and middle of the island, Ae. aegypti nearly became extinct because of the enthusiastic participation of the community. Before the implementation of integrated control, Ae. aegypti was the dominant species in containers both inside and outside the household, but after the integrated control, Aedes albopictus became predominant outside. PMID:10901632

  14. Assessing the epidemiological effect of wolbachia for dengue control.

    PubMed

    Lambrechts, Louis; Ferguson, Neil M; Harris, Eva; Holmes, Edward C; McGraw, Elizabeth A; O'Neill, Scott L; Ooi, Eng E; Ritchie, Scott A; Ryan, Peter A; Scott, Thomas W; Simmons, Cameron P; Weaver, Scott C

    2015-07-01

    Dengue viruses cause more human morbidity and mortality than any other arthropod-borne virus. Dengue prevention relies mainly on vector control; however, the failure of traditional methods has promoted the development of novel entomological approaches. Although use of the intracellular bacterium wolbachia to control mosquito populations was proposed 50 years ago, only in the past decade has its use as a potential agent of dengue control gained substantial interest. Here, we review evidence that supports a practical approach for dengue reduction through field release of wolbachia-infected mosquitoes and discuss the additional studies that have to be done before the strategy can be validated and implemented. A crucial next step is to assess the efficacy of wolbachia in reducing dengue virus transmission. We argue that a cluster randomised trial is at this time premature because choice of wolbachia strain for release and deployment strategies are still being optimised. We therefore present a pragmatic approach to acquiring preliminary evidence of efficacy through various complementary methods including a prospective cohort study, a geographical cluster investigation, virus phylogenetic analysis, virus surveillance in mosquitoes, and vector competence assays. This multipronged approach could provide valuable intermediate evidence of efficacy to justify a future cluster randomised trial. PMID:26051887

  15. Assessing the epidemiological impact of Wolbachia deployment for dengue control

    PubMed Central

    Lambrechts, Louis; Ferguson, Neil M.; Harris, Eva; Holmes, Edward C.; McGraw, Elizabeth A.; O’Neill, Scott L.; Ooi, Eng E.; Ritchie, Scott A.; Ryan, Peter A.; Scott, Thomas W.; Simmons, Cameron P.; Weaver, Scott C.

    2016-01-01

    Summary Dengue viruses cause more human morbidity and mortality than any other arthropod-borne virus. Dengue prevention relies primarily on vector control but the failure of traditional methods has promoted the development of novel entomological approaches. Although use of the intracellular bacterium Wolbachia to control mosquito populations was proposed half a century ago, it has only gained significant interest as a potential agent of dengue control in the last decade. Here, we review the evidence that supports a practical approach for dengue reduction through field release of Wolbachia-infected mosquitoes and discuss the additional studies that must be conducted before the strategy can be validated and operationally implemented. A critical next step is to assess the efficacy of Wolbachia deployment in reducing dengue virus transmission. We argue that a cluster-randomized trial is currently premature because Wolbachia strain choice for release as well as deployment strategies are still being optimized. We therefore present a pragmatic approach to acquiring preliminary evidence of efficacy via a suite of complementary methodologies: prospective cohort study, geographical cluster investigation, virus phylogenetic analysis, virus surveillance in mosquitoes, and vector competence assays. This multi-pronged approach could provide valuable intermediate evidence of efficacy to justify a future cluster-randomized trial. PMID:26051887

  16. Influence of environmental conditions on asynchronous outbreaks of dengue disease and increasing vector population in Kaohsiung, Taiwan.

    PubMed

    Lai, Li-Wei

    2011-04-01

    The objective of this study was to clarify the associations between dengue vectors and the number of dengue fever admissions. We statistically analyzed the daily meteorological and sea surface temperature (SST) data obtained from 13 monitoring stations for 2002-2007, the daily number of dengue fever admissions to hospitals, as well as the Breteau index (BI) values obtained from the Taiwan Centres for Disease Control for the 38 political districts of metropolitan Kaohsiung. It was found that hot and wet environmental conditions were caused by warm SSTs together with the weather patterns that cause typhoons and high-pressure areas in the tropical Pacific Ocean. The conditions clearly contribute to an increase in the BI. Synoptic weather patterns still remain an important factor in determining the growth of dengue vectors, particularly in rural areas, although public health programs and improved environmental sanitation can also reduce the threat of the disease. PMID:21424970

  17. Effect of Spatial Repellent Exposure on Dengue Vector Attraction to Oviposition Sites

    PubMed Central

    Grieco, John P.; Apperson, Charles S.; Schal, Coby; Ponnusamy, Loganathan; Wesson, Dawn M.; Achee, Nicole L.

    2016-01-01

    Background Aedes aegypti is a primary vector of dengue virus (DENV), the causative agent of dengue fever, an arthropod-borne disease of global importance. Although a vaccine has been recommended for prevention, current dengue prevention strategies rely on vector control. Recently, volatile pyrethroids—spatial repellents—have received interest as a novel delivery system for adult Ae. aegypti control. Understanding the full range of behavioral effects spatial repellents elicit in mosquito species will be critical to understanding the overall impact these products have on vector populations and will guide expectations of efficacy against DENV transmission. Methodology/Principal Findings The current study quantified changes in attraction of gravid Ae. aegypti to experimental oviposition sites following exposure to the spatial repellent transfluthrin. Responses were measured with two-choice olfaction bioassays using ‘sticky-screens’ covering cups to prevent contact with the oviposition substrate. Two cups contained a bacterial attractant composed of four species of bacteria in calcium alginate beads in water and two cups contained only deionized water. Results from 40 replicates (n = 780 females total per treatment) indicated an estimated difference in attraction of 9.35% ± 0.18 (p ≤ 0.003), implying that the transfluthrin-exposed mosquitoes were more attracted to the experimental oviposition sites than the non-exposed mosquitoes. Conclusions/Significance Findings from this study will further characterize the role of spatial repellents to modify Ae. aegypti behavior related to dengue prevention specifically, and encourage innovation in vector control product development more broadly. PMID:27428011

  18. Seasonal and habitat effects on dengue and West Nile virus vectors in San Juan, Puerto Rico.

    PubMed

    Smith, Joshua; Amador, Manuel; Barrera, Roberto

    2009-03-01

    The presence of West Nile (WNV) and dengue viruses and the lack of recent mosquito surveys in Puerto Rico prompted an investigation on the distribution and abundance of potential arbovirus vectors in the San Juan Metropolitan Area, and their variation with seasons and habitats. We sampled mosquitoes in early and late 2005 in 58 sites from forests, nonforest vegetation, wetlands, and high- and low-density housing areas using ovijars, Centers for Disease Control and Prevention miniature light/CO2 traps, and gravid traps. A total of 28 mosquito species was found. San Juan had potential WNV enzooticvectors (Culex nigripalpus) within and around the city in wetlands and forests, but few were captured in residential areas. A potential WNV bridge vector (Cx. quinquefasciatus) was abundant in urbanized areas, and it was positively correlated with the main dengue vector, Aedes aegypti. High-density housing areas harbored more Ae. aegypti. Container mosquitoes, including Aedes mediovittatus, were more abundant during the climax of the rainy season when most dengue occurs in Puerto Rico. The greatest risk for contracting WNV would be visiting forests and swamps at night. Culex (Culex) and Culex (Melanoconion) mosquito species were more abundant during the transition dry-wet seasons (March-May). PMID:19432067

  19. Towards a Semen Proteome of the Dengue Vector Mosquito: Protein Identification and Potential Functions

    PubMed Central

    Sirot, Laura K.; Ribeiro, José M. C.; Kimura, Mari; Deewatthanawong, Prasit; Wolfner, Mariana F.; Harrington, Laura C.

    2011-01-01

    Background No commercially licensed vaccine or treatment is available for dengue fever, a potentially lethal infection that impacts millions of lives annually. New tools that target mosquito control may reduce vector populations and break the cycle of dengue transmission. Male mosquito seminal fluid proteins (Sfps) are one such target since these proteins, in aggregate, modulate the reproduction and feeding patterns of the dengue vector, Aedes aegypti. As an initial step in identifying new targets for dengue vector control, we sought to identify the suite of proteins that comprise the Ae. aegypti ejaculate and determine which are transferred to females during mating. Methodology and Principal Findings Using a stable-isotope labeling method coupled with proteomics to distinguish male- and female-derived proteins, we identified Sfps and sperm proteins transferred from males to females. Sfps were distinguished from sperm proteins by comparing the transferred proteins to sperm-enriched samples derived from testes and seminal vesicles. We identified 93 male-derived Sfps and 52 predicted sperm proteins that are transferred to females during mating. The Sfp protein classes we detected suggest roles in protein activation/inactivation, sperm utilization, and ecdysteroidogenesis. We also discovered that several predicted membrane-bound and intracellular proteins are transferred to females in the seminal fluids, supporting the hypothesis that Ae. aegypti Sfps are released from the accessory gland cells through apocrine secretion, as occurs in mammals. Many of the Ae. aegypti predicted sperm proteins were homologous to Drosophila melanogaster sperm proteins, suggesting conservation of their sperm-related function across Diptera. Conclusion and Significance This is the first study to directly identify Sfps transferred from male Ae. aegypti to females. Our data lay the groundwork for future functional analyses to identify individual seminal proteins that may trigger female post

  20. A comparison of dengue hemorrhagic fever control interventions in northeastern Thailand.

    PubMed

    Chaikoolvatana, Anun; Chanruang, Suparat; Pothaled, Prakongsil

    2008-07-01

    This study compared the effectiveness of the currently available interventions of dengue vector and dengue hemorrhagic fever (DHF) control used in northeastern Thailand, an area with a high incidence of the disease. Also, the basic knowledge of dengue vector and DHF control of a group of 568 participants from local communities was measured. These communities were divided into two groups that had no reported cases in the previous year (non-DHF) and a group that had reported cases (DHF). Three current interventions of dengue vector and DHF control were assessed: insecticide fogging, 1% w/w temephos sand granules, and a combination of these two. Assessment included numbers of DHF cases, vector indices [house index (HI), container index (CI), and Breteau index (BI)], and cost. A multiple choice questionnaire was used to measure participants' basic knowledge desirable for knowledge retention. Data was statistically analyzed by the use of means, standard deviations, percentages, ANOVA repeated measure, and logistic regression. The results showed 1% w/w temephos sand granules as the most effective intervention of dengue vector and DHF control and there was a statistically significant difference between the control measures (p =0.001). Most participants had either a very low or very high level of knowledge and basic knowledge was statistically significantly associated with vector index (BI) (p = 0.008). Participants stated that they mainly gained knowledge about dengue vector and DHF control from public health workers followed by television and public media. Overall, the findings of this study illustrated the importance of public health workers and communities in health issues at the local level and the need to assess the benefits of current interventions and combinations of current and new interventions of dengue vector and control. PMID:19058598

  1. Simulation of the probable vector density that caused the Nagasaki dengue outbreak vectored by Aedes albopictus in 1942.

    PubMed

    Oki, M; Yamamoto, T

    2013-12-01

    Japan experienced dengue outbreaks vectored by Aedes albopictus during the Second World War. The probable vector density that caused the largest dengue outbreak in Nagasaki in 1942 was estimated using a mathematical simulation model. The estimated vector density was 15.0-558.0 per person when various assumptions of uncertain parameters were applied, such as proportion of symptomatic cases, vector mortality, and human biting rate of A. albopictus. When the most favourable disease spread conditions, such as a combination of the exclusive human biting rate and the longest vector survival were assumed, the vector density was 15-25 mosquitoes per person. Unusually high vector density due to wartime practices, and the traditional Japanese lifestyle were presumably responsible for the earlier dengue outbreak. If an outbreak occurs in present-day Japan, it is unlikely to spread as much as the previous one, as environmental conditions and human behaviour have changed in a protective manner. PMID:23481094

  2. Assessing the Relationship between Vector Indices and Dengue Transmission: A Systematic Review of the Evidence

    PubMed Central

    Bowman, Leigh R.; Runge-Ranzinger, Silvia; McCall, P. J.

    2014-01-01

    Background Despite doubts about methods used and the association between vector density and dengue transmission, routine sampling of mosquito vector populations is common in dengue-endemic countries worldwide. This study examined the evidence from published studies for the existence of any quantitative relationship between vector indices and dengue cases. Methodology/Principal Findings From a total of 1205 papers identified in database searches following Cochrane and PRISMA Group guidelines, 18 were included for review. Eligibility criteria included 3-month study duration and dengue case confirmation by WHO case definition and/or serology. A range of designs were seen, particularly in spatial sampling and analyses, and all but 3 were classed as weak study designs. Eleven of eighteen studies generated Stegomyia indices from combined larval and pupal data. Adult vector data were reported in only three studies. Of thirteen studies that investigated associations between vector indices and dengue cases, 4 reported positive correlations, 4 found no correlation and 5 reported ambiguous or inconclusive associations. Six out of 7 studies that measured Breteau Indices reported dengue transmission at levels below the currently accepted threshold of 5. Conclusions/Significance There was little evidence of quantifiable associations between vector indices and dengue transmission that could reliably be used for outbreak prediction. This review highlighted the need for standardized sampling protocols that adequately consider dengue spatial heterogeneity. Recommendations for more appropriately designed studies include: standardized study design to elucidate the relationship between vector abundance and dengue transmission; adult mosquito sampling should be routine; single values of Breteau or other indices are not reliable universal dengue transmission thresholds; better knowledge of vector ecology is required. PMID:24810901

  3. Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand

    PubMed Central

    Harrington, Laura C.; Fleisher, Andrew; Ruiz-Moreno, Diego; Vermeylen, Francoise; Wa, Chrystal V.; Poulson, Rebecca L.; Edman, John D.; Clark, John M.; Jones, James W.; Kitthawee, Sangvorn; Scott, Thomas W.

    2014-01-01

    Background Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles. Methodology and principal findings We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces. Conclusion and significance High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a

  4. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics.

    PubMed

    Araújo, Helena R C; Carvalho, Danilo O; Ioshino, Rafaella S; Costa-da-Silva, André L; Capurro, Margareth L

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil's National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil's mosquito control program. PMID:26463204

  5. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics

    PubMed Central

    Araújo, Helena R. C.; Carvalho, Danilo O.; Ioshino, Rafaella S.; Costa-da-Silva, André L.; Capurro, Margareth L.

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil’s National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil’s mosquito control program. PMID:26463204

  6. Community participation in the prevention and control of dengue: the patio limpio strategy in Mexico

    PubMed Central

    Tapia-Conyer, Roberto; Méndez-Galván, Jorge; Burciaga-Zúñiga, Pierre

    2012-01-01

    Community participation is vital to prevent and control the spread of dengue in Latin America. Initiatives such as the integrated management strategy for dengue prevention and control (IMS-Dengue) and integrated vector management (IVM) incorporate social mobilisation and behavioural change at the community level as part of a wider strategy to control dengue. These strategies aim to improve the efficacy, cost-effectiveness, environmental impact and sustainability of vector control strategies. Community empowerment is a key aspect of the strategy as it allows the local population to drive eradication of the disease in their environment. Through the patio limpio campaign, the concept of community participation has been employed in Mexico to raise awareness of the consequences of dengue. Patio limpio consists of training local people to identify, eliminate, monitor and evaluate vector breeding sites systematically in households under their supervision. A community participation programme in Guerrero State found that approximately 54% were clean and free of breeding sites. Households that were not visited and assessed had a 2·4-times higher risk of developing dengue than those that were. However, after a year, only 30% of trained households had a clean backyard. This emphasises the need for a sustainable process to encourage individuals to maintain efforts in keeping their environment free of dengue. PMID:22668443

  7. Human antibody response to Aedes albopictus salivary proteins: a potential biomarker to evaluate the efficacy of vector control in an area of Chikungunya and Dengue Virus transmission.

    PubMed

    Doucoure, Souleymane; Mouchet, François; Cornelie, Sylvie; Drame, Papa Makhtar; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2014-01-01

    Aedes borne viruses represent public health problems in southern countries and threat to emerge in the developed world. Their control is currently based on vector population control. Much effort is being devoted to develop new tools to control such arbovirus. Recent findings suggest that the evaluation of human antibody (Ab) response to arthropod salivary proteins is relevant to measuring the level of human exposure to mosquito bites. Using an immunoepidemiological approach, the present study aimed to assess the usefulness of the salivary biomarker for measuring the efficacy of Ae. albopictus control strategies in La Reunion urban area. The antisaliva Ab response of adult humans exposed to Ae. albopictus was evaluated before and after vector control measures. Our results showed a significant correlation between antisaliva Ab response and the level of exposure to vectors bites. The decrease of Ae. albopictus density has been detected by this biomarker two weeks after the implementation of control measures, suggesting its potential usefulness for evaluating control strategies in a short time period. The identification of species specific salivary proteins/peptides should improve the use of this biomarker. PMID:24822216

  8. Bioimpedance Vector Analysis in Diagnosing Severe and Non-Severe Dengue Patients.

    PubMed

    Khalil, Sami F; Mohktar, Mas S; Ibrahim, Fatimah

    2016-01-01

    Real-time monitoring and precise diagnosis of the severity of Dengue infection is needed for better decisions in disease management. The aim of this study is to use the Bioimpedance Vector Analysis (BIVA) method to differentiate between healthy subjects and severe and non-severe Dengue-infected patients. Bioimpedance was measured using a 50 KHz single-frequency bioimpedance analyzer. Data from 299 healthy subjects (124 males and 175 females) and 205 serologically confirmed Dengue patients (123 males and 82 females) were analyzed in this study. The obtained results show that the BIVA method was able to assess and classify the body fluid and cell mass condition between the healthy subjects and the Dengue-infected patients. The bioimpedance mean vectors (95% confidence ellipse) for healthy subjects, severe and non-severe Dengue-infected patients were illustrated. The vector is significantly shortened from healthy subjects to Dengue patients; for both genders the p-value is less than 0.0001. The mean vector of severe Dengue patients is significantly shortened compare to non-severe patients with a p-value of 0.0037 and 0.0023 for males and females, respectively. This study confirms that the BIVA method is a valid method in differentiating the healthy, severe and non-severe Dengue-infected subjects. All tests performed had a significance level with a p-value less than 0.05. PMID:27322285

  9. Bioimpedance Vector Analysis in Diagnosing Severe and Non-Severe Dengue Patients

    PubMed Central

    Khalil, Sami F.; Mohktar, Mas S.; Ibrahim, Fatimah

    2016-01-01

    Real-time monitoring and precise diagnosis of the severity of Dengue infection is needed for better decisions in disease management. The aim of this study is to use the Bioimpedance Vector Analysis (BIVA) method to differentiate between healthy subjects and severe and non-severe Dengue-infected patients. Bioimpedance was measured using a 50 KHz single-frequency bioimpedance analyzer. Data from 299 healthy subjects (124 males and 175 females) and 205 serologically confirmed Dengue patients (123 males and 82 females) were analyzed in this study. The obtained results show that the BIVA method was able to assess and classify the body fluid and cell mass condition between the healthy subjects and the Dengue-infected patients. The bioimpedance mean vectors (95% confidence ellipse) for healthy subjects, severe and non-severe Dengue-infected patients were illustrated. The vector is significantly shortened from healthy subjects to Dengue patients; for both genders the p-value is less than 0.0001. The mean vector of severe Dengue patients is significantly shortened compare to non-severe patients with a p-value of 0.0037 and 0.0023 for males and females, respectively. This study confirms that the BIVA method is a valid method in differentiating the healthy, severe and non-severe Dengue-infected subjects. All tests performed had a significance level with a p-value less than 0.05. PMID:27322285

  10. No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand.

    PubMed

    Fansiri, Thanyalak; Pongsiri, Arissara; Klungthong, Chonticha; Ponlawat, Alongkot; Thaisomboonsuk, Butsaya; Jarman, Richard G; Scott, Thomas W; Lambrechts, Louis

    2016-04-01

    Despite their epidemiological importance, the evolutionary forces that shape the spatial structure of dengue virus genetic diversity are not fully understood. Fine-scale genetic structure of mosquito vector populations and evidence for genotype × genotype interactions between dengue viruses and their mosquito vectors are consistent with the hypothesis that the geographical distribution of dengue virus genetic diversity may reflect viral adaptation to local mosquito populations. To test this hypothesis, we measured vector competence in all sympatric and allopatric combinations of 14 low-passage dengue virus isolates and two wild-type populations of Aedes aegypti mosquitoes sampled in Bangkok and Kamphaeng Phet, two sites located about 300 km apart in Thailand. Despite significant genotype × genotype interactions, we found no evidence for superior vector competence in sympatric versus allopatric vector-virus combinations. Viral phylogenetic analysis revealed no geographical clustering of the 14 isolates, suggesting that high levels of viral migration (gene flow) in Thailand may counteract spatially heterogeneous natural selection. We conclude that it is unlikely that vector-mediated selection is a major driver of dengue virus adaptive evolution at the regional scale that we examined. Dengue virus local adaptation to mosquito vector populations could happen, however, in places or times that we did not test, or at a different geographical scale. PMID:27099625

  11. Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia

    PubMed Central

    Tana, Susilowati; Espino, Fe; Kittayapong, Pattamaporn; Abeyewickreme, Wimal; Wai, Khin Thet; Tyagi, Brij Kishore; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2010-01-01

    Abstract Objective To study dengue vector breeding patterns under a variety of conditions in public and private spaces; to explore the ecological, biological and social (eco-bio-social) factors involved in vector breeding and viral transmission, and to define the main implications for vector control. Methods In each of six Asian cities or periurban areas, a team randomly selected urban clusters for conducting standardized household surveys, neighbourhood background surveys and entomological surveys. They collected information on vector breeding sites, people’s knowledge, attitudes and practices surrounding dengue, and the characteristics of the study areas. All premises were inspected; larval indices were used to quantify vector breeding sites, and pupal counts were used to identify productive water container types and as a proxy measure for adult vector abundance. Findings The most productive vector breeding sites were outdoor water containers, particularly if uncovered, beneath shrubbery and unused for at least one week. Peridomestic and intradomestic areas were much more important for pupal production than commercial and public spaces other than schools and religious facilities. A complex but non-significant association was found between water supply and pupal counts, and lack of waste disposal services was associated with higher vector abundance in only one site. Greater knowledge about dengue and its transmission was associated with lower mosquito breeding and production. Vector control measures (mainly larviciding in one site) substantially reduced larval and pupal counts and “pushed” mosquito breeding to alternative containers. Conclusion Vector breeding and the production of adult Aedes aegypti are influenced by a complex interplay of factors. Thus, to achieve effective vector management, a public health response beyond routine larviciding or focal spraying is essential. PMID:20428384

  12. Dengue and Dengue Hemorrhagic Fever

    PubMed Central

    Gubler, Duane J.

    1998-01-01

    Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000 cases of dengue hemorrhagic fever, and 25,000 deaths annually. The reasons for this resurgence and emergence of dengue hemorrhagic fever in the waning years of the 20th century are complex and not fully understood, but demographic, societal, and public health infrastructure changes in the past 30 years have contributed greatly. This paper reviews the changing epidemiology of dengue and dengue hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both dengue fever and dengue hemorrhagic fever, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control. A major challenge for public health officials in all tropical areas of the world is to devleop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever. PMID:9665979

  13. Dengue viral infections

    PubMed Central

    Malavige, G; Fernando, S; Fernando, D; Seneviratne, S

    2004-01-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections. PMID:15466994

  14. Transcriptomics and disease vector control

    PubMed Central

    2010-01-01

    Next-generation sequencing can be used to compare transcriptomes under different conditions. A study in BMC Genomics applies this approach to investigating the effects of exposure to a range of xenobiotics on changes in gene expression in the larvae of Aedes aegypti, the mosquito vector of dengue fever. See research article http://www.biomedcentral.com/1471-2164/11/216 PMID:20525113

  15. The impact of indoor residual spraying of deltamethrin on dengue vector populations in the Peruvian Amazon.

    PubMed

    Paredes-Esquivel, Claudia; Lenhart, Audrey; del Río, Ricardo; Leza, M M; Estrugo, M; Chalco, Enrique; Casanova, Wilma; Miranda, Miguel Ángel

    2016-02-01

    Dengue is an important public health problem in the Amazon area of Peru, resulting in significant morbidity each year. As in other areas of the world, ultra-low volume (ULV) application of insecticides is the main strategy to reduce adult populations of the dengue vector Aedes aegypti, despite growing evidence of its limitations as a single control method. This study investigated the efficacy of deltamethrin S.C. applied through indoor residual spraying (IRS) of dwellings in reducing A. aegypti populations. The residual effect of the insecticide was tested by monthly bioassays on the three most common indoor surfaces found in the Amazon area: painted wood, unpainted wood and brick. The results showed that in an area with moderate levels of A. aegypti infestation, IRS dramatically reduced all immature indices the first week after deltamethrin IRS application and the adult index from 18.5 to 3.1, four weeks after intervention (p<0.05). Even though housing conditions facilitated reinfestation with A. aegypti (100% of the houses have open roof eaves, 31.5% lack sewage systems, and 60.4% collected rain in open containers), indices remained low compared to baseline 16 weeks after insecticide application. Bioassays showed that deltamethrin S.C. caused mortalities >80% 8 weeks after application on all types of surfaces. The residual effect of the insecticide was greater on brick than on wooden walls (p<0.05). Our results demonstrate that IRS can have both an immediate and sustained effect on reducing adult and immature A. aegypti populations and should be considered as an adult mosquito control strategy by dengue vector control programs. PMID:26571068

  16. EVALUATION OF SUBLETHAL EFFECTS OF Ipomoea cairica LINN. EXTRACT ON LIFE HISTORY TRAITS OF DENGUE VECTORS

    PubMed Central

    ZUHARAH, Wan Fatma; AHBIRAMI, Rattanam; DIENG, Hamady; THIAGALETCHUMI, Maniam; FADZLY, Nik

    2016-01-01

    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors. PMID:27253746

  17. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Dieng, Hamady; Rajasaygar, Sudha; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; Fukumitsu, Yuki; Saad, Ahmad Ramli; Abdul Hamid, Suhaila; Vargas, Ronald Enrique Morales; Ab Majid, Abdul Hafiz; Fadzly, Nik; Abu Kassim, Nur Faeza; Hashim, Nur Aida; Abd Ghani, Idris; Abang, Fatimah Bt; AbuBakar, Sazaly

    2014-02-01

    Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans. PMID:24239749

  18. EVALUATION OF SUBLETHAL EFFECTS OF Ipomoea cairica LINN. EXTRACT ON LIFE HISTORY TRAITS OF DENGUE VECTORS.

    PubMed

    Zuharah, Wan Fatma; Ahbirami, Rattanam; Dieng, Hamady; Thiagaletchumi, Maniam; Fadzly, Nik

    2016-01-01

    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors. PMID:27253746

  19. Temporal genetic structure of major dengue vector Aedes aegypti from Manaus, Amazonas, Brazil.

    PubMed

    Mendonça, Barbara Alessandra Alves; de Sousa, Adna Cristina Barbosa; de Souza, Anete Pereira; Scarpassa, Vera Margarete

    2014-06-01

    In recent years, high levels of Aedes aegypti infestation and several dengue outbreaks with fatal outcome cases have been reported in Manaus, State of Amazonas, Brazil. This situation made it important to understand the genetic structure and gene flow patterns among the populations of this vector in Manaus, vital pieces of information for their management and development of new control strategies. In this study, we used nine microsatellite loci to examine the effect of seasonality on the genetic structure and gene flow patterns in Ae. aegypti populations from four urban neighborhoods of Manaus, collected during the two main rainy and dry seasons. All loci were polymorphic in the eight samples from the two seasons, with a total of 41 alleles. The genetic structure analyses of the samples from the rainy season revealed genetic homogeneity and extensive gene flow, a result consistent with the abundance of breeding sites for this vector. However, the samples from the dry season were significantly structured, due to a reduction of Ne in two (Praça 14 de Janeiro and Cidade Nova) of the four samples analyzed, and this was the primary factor influencing structure during the dry season. Genetic bottleneck analyses suggested that the Ae. aegypti populations from Manaus are being maintained continuously throughout the year, with seasonal reduction rather than severe bottleneck or extinction, corroborating previous reports. These findings are of extremely great importance for designing new dengue control strategies in Manaus. PMID:24631342

  20. Multiobjective Genetic Algorithm applied to dengue control.

    PubMed

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. PMID:25230238

  1. Spatio-Temporal Distribution of Dengue and Lymphatic Filariasis Vectors along an Altitudinal Transect in Central Nepal

    PubMed Central

    Dhimal, Meghnath; Gautam, Ishan; Kreß, Aljoscha; Müller, Ruth; Kuch, Ulrich

    2014-01-01

    Background Rapidly increasing temperatures in the mountain region of Nepal and recent reports of dengue fever and lymphatic filariasis cases from mountainous areas of central Nepal prompted us to study the spatio-temporal distribution of the vectors of these two diseases along an altitudinal transect in central Nepal. Methodology/Principal Findings We conducted a longitudinal study in four distinct physiographical regions of central Nepal from September 2011 to February 2012. We used BG-Sentinel and CDC light traps to capture adult mosquitoes. We found the geographical distribution of the dengue virus vectors Aedes aegypti and Aedes albopictus along our study transect to extend up to 1,310 m altitude in the Middle Mountain region (Kathmandu). The distribution of the lymphatic filariasis vector Culex quinquefasciatus extended up to at least 2,100 m in the High Mountain region (Dhunche). Statistical analysis showed a significant effect of the physiographical region and month of collection on the abundance of A. aegypti and C. quinquefasciatus only. BG-Sentinel traps captured significantly higher numbers of A. aegypti than CDC light traps. The meteorological factors temperature, rainfall and relative humidity had significant effects on the mean number of A. aegypti per BG-Sentinel trap. Temperature and relative humidity were significant predictors of the number of C. quinquefasciatus per CDC light trap. Dengue fever and lymphatic filariasis cases had previously been reported from all vector positive areas except Dhunche which was free of known lymphatic filariasis cases. Conclusions/Significance We conclude that dengue virus vectors have already established stable populations up to the Middle Mountains of Nepal, supporting previous studies, and report for the first time the distribution of lymphatic filariasis vectors up to the High Mountain region of this country. The findings of our study should contribute to a better planning and scaling-up of mosquito

  2. Dengue 3 Epidemic, Havana, 2001

    PubMed Central

    Peláez, Otto; Kourí, Gustavo; Pérez, Raúl; San Martín, José L.; Vázquez, Susana; Rosario, Delfina; Mora, Regla; Quintana, Ibrahim; Bisset, Juan; Cancio, Reynel; Masa, Ana M; Castro, Osvaldo; González, Daniel; Avila, Luis C.; Rodríguez, Rosmari; Alvarez, Mayling; Pelegrino, Jose L.; Bernardo, Lídice; Prado, Irina

    2004-01-01

    In June 2001, dengue transmission was detected in Havana, Cuba; 12,889 cases were reported. Dengue 3, the etiologic agent of the epidemic, caused the dengue hemorrhagic fever only in adults, with 78 cases and 3 deaths. After intensive vector control efforts, no new cases have been detected. PMID:15200868

  3. Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities

    PubMed Central

    Bahia, Ana C.; Saraiva, Raul G.; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-01-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies. PMID:25340821

  4. Dengue and dengue hemorrhagic fever epidemics in Brazil: what research is needed based on trends, surveillance, and control experiences?

    PubMed

    Teixeira, Maria da Glória; Costa, Maria da Conceição Nascimento; Barreto, Maurício Lima; Mota, Eduardo

    2005-01-01

    Dengue epidemics account annually for several million cases and deaths worldwide. The high endemic level of dengue fever and its hemorrhagic form correlates to extensive domiciliary infestation by Aedes aegypti and multiple viral serotype human infection. This study analyzed serial case reports registered in Brazil since 1981, describing incidence evolutionary patterns and spatial distribution. Epidemic waves followed the introduction of every serotype (DEN 1 to 3), and reduction in susceptible individuals possibly accounted for decreasing case frequency. An incremental expansion of affected areas and increasing occurrence of dengue fever and its hemorrhagic form with high case fatality were noted in recent years. In contrast, efforts based solely on chemical vector control have been insufficient. Moreover, some evidence demonstrates that educational measures do not permanently modify population habits. Thus, as long as a vaccine is not available, further dengue control depends on potential results from basic interdisciplinary research and intervention evaluation studies, integrating environmental changes, community participation and education, epidemiological and virological surveillance, and strategic technological innovations aimed to stop transmission. PMID:16158135

  5. Quantitative Trait Loci That Control Dengue-2 Virus Dissemination in the Mosquito Aedes aegypti

    PubMed Central

    Bennett, Kristine E.; Flick, Don; Fleming, Karen H.; Jochim, Ryan; Beaty, Barry J.; Black, William C.

    2005-01-01

    The mosquito Aedes aegypti is the most important vector of yellow fever and dengue fever flaviviruses. Ae. aegypti eradication campaigns have not been sustainable and there are no effective vaccines for dengue viruses. Alternative control strategies may depend upon identification of mosquito genes that condition flavivirus susceptibility and may ultimately provide clues for interrupting transmission. Quantitative trait loci affecting the ability of Ae. aegypti to develop a dengue-2 infection in the midgut have been mapped previously. Herein we report on QTL that determine whether mosquitoes with a dengue-2-infected gut can then disseminate the virus to other tissues. A strain selected for high rates of dengue-2 dissemination was crossed to a strain selected for low dissemination rates. QTL were mapped in the F2 and again in an F5 advanced intercross line. QTL were detected at 31 cM on chromosome I, at 32 cM on chromosome II, and between 44 and 52 cM on chromosome III. Alleles at these QTL were additive or dominant in determining rates of dengue-2 dissemination and accounted for ∼45% of the phenotypic variance. The locations of dengue-2 midgut infection and dissemination QTL correspond to those found in earlier studies. PMID:15781707

  6. Dengue: a continuing global threat

    PubMed Central

    Guzman, Maria G.; Halstead, Scott B.; Artsob, Harvey; Buchy, Philippe; Farrar, Jeremy; Gubler, Duane J.; Hunsperger, Elizabeth; Kroeger, Axel; Margolis, Harold S.; Martínez, Eric; Nathan, Michael B.; Pelegrino, Jose Luis; Simmons, Cameron; Yoksan, Sutee; Peeling, Rosanna W.

    2014-01-01

    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ~50 million dengue infections and ~500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future. PMID:21079655

  7. Field evaluation of a lethal ovitrap against dengue vectors in Brazil.

    PubMed

    Perich, M J; Kardec, A; Braga, I A; Portal, I F; Burge, R; Zeichner, B C; Brogdon, W A; Wirtz, R A

    2003-06-01

    Field evaluation of a "lethal ovitrap" (LO) to control dengue vector Aedes mosquitoes (Diptera: Culicidae), was undertaken in two Brazilian municipalities, Areia Branca and Nilopolis, in the State of Rio de Janeiro. The LO is designed to kill Aedes via an insecticide-treated ovistrip (impregnated with deltamethrin). In each municipality, the intervention was applied to a group of 30 houses (10 LOs/house) and compared to 30 houses without LOs in the same neighbourhood. Five LOs were put outside and five LOs inside each treated house. Three methods of monitoring Aedes density were employed: (i) percentage of containers positive for larvae and/or pupae; (ii) total pupae/house; (iii) total adult females/house collected by aspirator indoors. Weekly mosquito surveys began during the month before LO placement, by sampling from different groups of 10 houses/week for 3 weeks pre-intervention (i.e. 30 houses/month) and for 3 months post-intervention in both treated and untreated areas. Prior to LO placement at the end of February 2001, Aedes aegypti (L) densities were similar among houses scheduled for LO treatment and comparison (untreated control) at each municipality. Very few Ae. albopictus (Skuse) were found and this species was excluded from the assessment. Post-intervention densities of Ae. aegypti were significantly reduced for most comparators (P < 0.01), as shown by fewer positive containers (4-5 vs. 10-18) and pupae/house (0.3-0.7 vs. 8-10) at LO-treated vs. untreated houses, 3 months post-treatment at both municipalities. Numbers of adult Ae. aegypti females indoors were consistently reduced in LO-treated houses at Areia Branca (3.6 vs. 6.8/house 3 months post-intervention) but not at Niloplis (approximately 3/house, attributed to immigration). These results demonstrate sustained impact of LOs on dengue vector population densities in housing conditions of Brazilian municipalities. PMID:12823838

  8. Research in vector control

    PubMed Central

    Quarterman, K. D.

    1963-01-01

    Current research on vector control is directed mainly at finding answers to the problem of resistance. Despite considerable advances in knowledge of the genetics, biochemistry, physiology, and ecology of resistant vectors, the only practical answer found so far has been the development of new, substitute insecticides. At present the operational needs of existing large-scale control or eradication programmes swallow up much of the funds, personnel and facilities that might otherwise be devoted to basic research. Moreover, to back up these programmes, there is a continuing need for applied research on such questions as the packaging of pesticides, improvements in equipment and the development of new formulations. The author gives examples of applied research already carried out or in progress and indicates some areas of both basic and applied research demanding urgent attention. Like other participants in the seminar, he stresses the fundamental importance of ecological studies. He also examines the concept of integrated vector control and points out that the realization of this concept presupposes close co-ordination between basic and applied research, laboratory and field studies, and investigations on chemical and non-chemical vector control measures. PMID:20604177

  9. Nation-Wide, Web-Based, Geographic Information System for the Integrated Surveillance and Control of Dengue Fever in Mexico

    PubMed Central

    Hernández-Ávila, Juan Eugenio; Rodríguez, Mario-Henry; Santos-Luna, René; Sánchez-Castañeda, Veronica; Román-Pérez, Susana; Ríos-Salgado, Víctor Hugo; Salas-Sarmiento, Jesús Alberto

    2013-01-01

    Dengue fever incidence and its geographical distribution are increasing throughout the world. Quality and timely information is essential for its prevention and control. A web based, geographically enabled, dengue integral surveillance system (Dengue-GIS) was developed for the nation-wide collection, integration, analysis and reporting of geo-referenced epidemiologic, entomologic, and control interventions data. Consensus in the design and practical operation of the system was a key factor for its acceptance. Working with information systems already implemented as a starting point facilitated its acceptance by officials and operative personnel. Dengue-GIS provides the geographical detail needed to plan, asses and evaluate the impact of control activities. The system is beginning to be adopted as a knowledge base by vector control programs. It is used to generate evidence on impact and cost-effectiveness of control activities, promoting the use of information for decision making at all levels of the vector control program. Dengue-GIS has also been used as a hypothesis generator for the academic community. This GIS-based model system for dengue surveillance and the experience gathered during its development and implementation could be useful in other dengue endemic countries and extended to other infectious or chronic diseases. PMID:23936394

  10. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases.

    PubMed

    Peterson, A Townsend; Martínez-Campos, Carmen; Nakazawa, Yoshinori; Martínez-Meyer, Enrique

    2005-09-01

    Numerous human diseases-malaria, dengue, yellow fever and leishmaniasis, to name a few-are transmitted by insect vectors with brief life cycles and biting activity that varies in both space and time. Although the general geographic distributions of these epidemiologically important species are known, the spatiotemporal variation in their emergence and activity remains poorly understood. We used ecological niche modeling via a genetic algorithm to produce time-specific predictive models of monthly distributions of Aedes aegypti in Mexico in 1995. Significant predictions of monthly mosquito activity and distributions indicate that predicting spatiotemporal dynamics of disease vector species is feasible; significant coincidence with human cases of dengue indicate that these dynamics probably translate directly into transmission of dengue virus to humans. This approach provides new potential for optimizing use of resources for disease prevention and remediation via automated forecasting of disease transmission risk. PMID:15979656

  11. Spatial Evaluation and Modeling of Dengue Seroprevalence and Vector Density in Rio de Janeiro, Brazil

    PubMed Central

    Honório, Nildimar Alves; Nogueira, Rita Maria Ribeiro; Codeço, Cláudia Torres; Carvalho, Marilia Sá; Cruz, Oswaldo Gonçalves; de Avelar Figueiredo Mafra Magalhães, Mônica; de Araújo, Josélio Maria Galvão; de Araújo, Eliane Saraiva Machado; Gomes, Marcelo Quintela; Pinheiro, Luciane Silva; da Silva Pinel, Célio; Lourenço-de-Oliveira, Ricardo

    2009-01-01

    Background Rio de Janeiro, Brazil, experienced a severe dengue fever epidemic in 2008. This was the worst epidemic ever, characterized by a sharp increase in case-fatality rate, mainly among younger individuals. A combination of factors, such as climate, mosquito abundance, buildup of the susceptible population, or viral evolution, could explain the severity of this epidemic. The main objective of this study is to model the spatial patterns of dengue seroprevalence in three neighborhoods with different socioeconomic profiles in Rio de Janeiro. As blood sampling coincided with the peak of dengue transmission, we were also able to identify recent dengue infections and visually relate them to Aedes aegypti spatial distribution abundance. We analyzed individual and spatial factors associated with seroprevalence using Generalized Additive Model (GAM). Methodology/Principal Findings Three neighborhoods were investigated: a central urban neighborhood, and two isolated areas characterized as a slum and a suburban area. Weekly mosquito collections started in September 2006 and continued until March 2008. In each study area, 40 adult traps and 40 egg traps were installed in a random sample of premises, and two infestation indexes calculated: mean adult density and mean egg density. Sera from individuals living in the three neighborhoods were collected before the 2008 epidemic (July through November 2007) and during the epidemic (February through April 2008). Sera were tested for DENV-reactive IgM, IgG, Nested RT-PCR, and Real Time RT-PCR. From the before–after epidemics paired data, we described seroprevalence, recent dengue infections (asymptomatic or not), and seroconversion. Recent dengue infection varied from 1.3% to 14.1% among study areas. The highest IgM seropositivity occurred in the slum, where mosquito abundance was the lowest, but household conditions were the best for promoting contact between hosts and vectors. By fitting spatial GAM we found dengue

  12. Assessing Carbon Dioxide and Synthetic Lure-Baited Traps for Dengue and Chikungunya Vector Surveillance (3).

    PubMed

    Harwood, James F; Arimoto, Hanayo; Nunn, Peter; Richardson, Alec G; Obenauer, Peter J

    2015-09-01

    The Aedes mosquito vectors of dengue virus (DENV) and chikungunya virus (CHIKV) are attracted to specific host cues that are not generated by traditional light traps. For this reason multiple companies have designed traps to specifically target those species. Recently the standard trap for DENV and CHIKV vectors, the BG-Sentinel (BGS) trap, has been remodeled to be more durable and better suited for use in harsh field conditions, common during military operations, and relabeled the BG-Sentinel 2 (BGS2). This new trap was evaluated against the standard Centers for Disease Control and Prevention (CDC) light trap, Zumba Trap, and BG-Mosquitito Trap to determine relative effectiveness in collecting adult Aedes aegypti and Ae. albopictus. Evaluations were conducted under semifield and field conditions in suburban areas in northeastern Florida from May to August 2014. The BGS2 trap collected more DENV and CHIKV vectors than the standard CDC light trap, Zumba Trap, and BG-Mosquitito Trap, but attracted fewer species, while the BG-Mosquitito Trap attracted the greatest number of mosquito species. PMID:26375905

  13. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  14. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. PMID:27443607

  15. Dengue

    MedlinePlus

    Dengue is an infection caused by a virus. You can get it if an infected mosquito bites you. Dengue does not spread from person to person. It ... the world. Outbreaks occur in the rainy season. Dengue is rare in the United States. Symptoms include ...

  16. Dengue infection.

    PubMed

    Guzman, Maria G; Gubler, Duane J; Izquierdo, Alienys; Martinez, Eric; Halstead, Scott B

    2016-01-01

    Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities. PMID:27534439

  17. Characterization of the spatial and temporal dynamics of the dengue vector population established in urban areas of Fernando de Noronha, a Brazilian oceanic island.

    PubMed

    Regis, Lêda N; Acioli, Ridelane Veiga; Silveira, José Constantino; de Melo-Santos, Maria Alice Varjal; da Cunha, Mércia Cristiane Santana; Souza, Fátima; Batista, Carlos Alberto Vieira; Barbosa, Rosângela Maria Rodrigues; de Oliveira, Cláudia Maria Fontes; Ayres, Constância Flávia Junqueira; Monteiro, Antonio Miguel Vieira; Souza, Wayner Vieira

    2014-09-01

    Aedes aegypti has played a major role in the dramatic expansion of dengue worldwide. The failure of control programs in reducing the rhythm of global dengue expansion through vector control suggests the need for studies to support more appropriated control strategies. We report here the results of a longitudinal study on Ae. aegypti population dynamics through continuous egg sampling aiming to characterize the infestation of urban areas of a Brazilian oceanic island, Fernando de Noronha. The spatial and temporal distribution of the dengue vector population in urban areas of the island was described using a monitoring system (SMCP-Aedes) based on a 103-trap network for Aedes egg sampling, using GIS and spatial statistics analysis tools. Mean egg densities were estimated over a 29-month period starting in 2011 and producing monthly maps of mosquito abundance. The system detected continuous Ae. aegypti oviposition in most traps. The high global positive ovitrap index (POI=83.7% of 2815 events) indicated the frequent presence of blood-fed-egg laying females at every sampling station. Egg density (eggs/ovitrap/month) reached peak values of 297.3 (0 - 2020) in May and 295 (0 - 2140) in August 2012. The presence of a stable Ae. aegypti population established throughout the inhabited areas of the island was demonstrated. A strong association between egg abundance and rainfall with a 2-month lag was observed, which combined with a first-order autocorrelation observed in the series of egg counts can provide an important forecasting tool. This first description of the characteristics of the island infestation by the dengue vector provides baseline information to analyze relationships between the spatial distribution of the vector and dengue cases, and to the development of integrated vector control strategies. PMID:24832009

  18. Oviposition deterring and oviciding potentials of Ipomoea cairica L. leaf extract against dengue vectors.

    PubMed

    Ahbirami, Rattanam; Zuharah, Wan Fatma; Yahaya, Zary Shariman; Dieng, Hamady; Thiagaletchumi, Maniam; Fadzly, Nik; Ahmad, Abu Hassan; Abu Bakar, Sazaly

    2014-09-01

    Bioprospecting of plant-based insecticides for vector control has become an area of interest within the last two decades. Due to drawbacks of chemical insecticides, phytochemicals of plant origin with mosquito control potential are being utilized as alternative sources in integrated vector control. In this regard, the present study aimed to investigate oviposition deterring and oviciding potentials of Ipomoea cairica (L.) (Family: Convolvulaceae) crude leaf extract against dengue vectors, Aedes aegypti and Aedes albopictus. Ipomoea cairica is an indigenous plant that has demonstrated marked toxicity towards larvae of Ae. aegypti and Ae. albopictus. Leaves of I. cairica were extracted using Soxhlet apparatus with acetone as solvent. Oviposition deterrent activity and ovicidal assay was carried out in oviposition site choice tests with three different concentrations (50, 100, 450 ppm). Acetone extract of I. cairica leaf strongly inhibited oviposition with 100% repellence to Ae. aegypti at lower concentration of 100 ppm, while for Ae. albopictus was at 450 ppm. The oviposition activity index (OAI) values which ranged from -0.69 to -1.00 revealed that I. cairica demonstrated deterrent effect. In ovicidal assay, similar trend was observed whereby zero hatchability was recorded for Ae. aegypti and Ae. albopictus eggs at 100 and 450 ppm, respectively. It is noteworthy that I. cairica leaf extract had significantly elicited dual properties as oviposition deterrent and oviciding agent in both Aedes species. Reduction in egg number through oviposition deterring activity, reduction in hatching percentage and survival rates, suggested an additional hallmark of this plant to be integrated in Aedes mosquito control. Ipomoea cairica deserved to be considered as one of the potential alternative sources for the new development of novel plant based insecticides in future. PMID:25382472

  19. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)

    PubMed Central

    Khan, Saranjam; Ullah, Rahat; Khan, Asifullah; Wahab, Noorul; Bilal, Muhammad; Ahmed, Mushtaq

    2016-01-01

    The current study presents the use of Raman spectroscopy combined with support vector machine (SVM) for the classification of dengue suspected human blood sera. Raman spectra for 84 clinically dengue suspected patients acquired from Holy Family Hospital, Rawalpindi, Pakistan, have been used in this study.The spectral differences between dengue positive and normal sera have been exploited by using effective machine learning techniques. In this regard, SVM models built on the basis of three different kernel functions including Gaussian radial basis function (RBF), polynomial function and linear functionhave been employed to classify the human blood sera based on features obtained from Raman Spectra.The classification model have been evaluated with the 10-fold cross validation method. In the present study, the best performance has been achieved for the polynomial kernel of order 1. A diagnostic accuracy of about 85% with the precision of 90%, sensitivity of 73% and specificity of 93% has been achieved under these conditions. PMID:27375941

  20. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM).

    PubMed

    Khan, Saranjam; Ullah, Rahat; Khan, Asifullah; Wahab, Noorul; Bilal, Muhammad; Ahmed, Mushtaq

    2016-06-01

    The current study presents the use of Raman spectroscopy combined with support vector machine (SVM) for the classification of dengue suspected human blood sera. Raman spectra for 84 clinically dengue suspected patients acquired from Holy Family Hospital, Rawalpindi, Pakistan, have been used in this study.The spectral differences between dengue positive and normal sera have been exploited by using effective machine learning techniques. In this regard, SVM models built on the basis of three different kernel functions including Gaussian radial basis function (RBF), polynomial function and linear functionhave been employed to classify the human blood sera based on features obtained from Raman Spectra.The classification model have been evaluated with the 10-fold cross validation method. In the present study, the best performance has been achieved for the polynomial kernel of order 1. A diagnostic accuracy of about 85% with the precision of 90%, sensitivity of 73% and specificity of 93% has been achieved under these conditions. PMID:27375941

  1. Field bioefficacy of deltamethrin residual spraying against dengue vectors.

    PubMed

    Rozilawati, H; Lee, H L; Mohd Masri, S; Mohd Noor, I; Rosman, S

    2005-12-01

    Field bioefficacy of residual-sprayed deltamethrin against Aedes vectors was evaluated in an urban residential area in Kuala Lumpur. The trial area consisted of single storey wood-brick houses and a block of flat. The houses were treated with outdoor residual spraying while the flat was used as an untreated control. Initial pre-survey using ovitrap surveillance indicated high Aedes population in the area. Deltamethrin WG was sprayed at a dosage of 25mg/m2 using a compression sprayer. The effectiveness of deltamethrin was determined by wall bioassay and ovitrap surveillance. The residual activity of 25mg/m2 deltamethrin was still effective for 6 weeks after treatment, based on biweekly bioassay results. Bioassay also indicated that both Aedes aegypti and Aedes albopictus were more susceptible on the wooden surfaces than on brick. Aedes aegypti was more susceptible than Ae. albopictus against deltamethrin. Residual spraying of deltamethrin was not very effective against Aedes in this study since the Aedes population in the study area did not reduce as indicated by the total number of larvae collected using the ovitrap (Wilcoxon Sign Test, p> 0.05). Further studies are required to improve the effectiveness of residual spraying against Aedes vectors. PMID:16883280

  2. Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti.

    PubMed

    Zuharah, W F; Fadzly, N; Ali, Y; Zakaria, R; Juperi, S; Asyraf, M; Dieng, H

    2014-06-01

    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants. PMID:25134898

  3. Use of Mapping and Spatial and Space-Time Modeling Approaches in Operational Control of Aedes aegypti and Dengue

    PubMed Central

    Eisen, Lars; Lozano-Fuentes, Saul

    2009-01-01

    The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163

  4. Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue.

    PubMed

    Eisen, Lars; Lozano-Fuentes, Saul

    2009-01-01

    The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163

  5. The role of octopamine receptor agonists in the synergistic toxicity of certain insect growth regulators (IGRs) in controlling Dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2016-03-01

    The synergistic action of octopamine receptor agonists (OR agonists) on many insecticide classes (e.g., organophosphorus, pyrethroids, and neonicotinoids) on Aedes aegypti L. has been reported recently. An investigation of OR agonist's effect on insect growth regulators (IGRs) was undertaken to provide a better understanding of the mechanism of action. Based on the IGR bioassay, pyriproxyfen was the most potent IGR insecticide tested (EC50=0.0019ng/ml). However, the lethal toxicity results indicate that diafenthiuron was the most potent insecticide (LC50=56ng/cm(2)) on A. aegypti adults after 24h of exposure. The same trend was true after 48 and 72h of exposure. Further, the synergistic effects of OR agonists plus amitraz (AMZ) or chlordimeform (CDM) was significant on adults. Among the tested synergists, AMZ increased the potency of the selected IGRs on adults the greatest. As results, OR agonists were largely synergistic with the selected IGRs. OR agonists enhanced the lethal toxicity of IGRs, which is a valuable new tool in the field of A. aegypti control. However, further field experiments need to be done to understand the unique potential role of OR agonists and their synergistic action on IGRs. PMID:26672383

  6. Dengue

    MedlinePlus

    ... Epidemiology Transmission, information on epidemics and stats... Entomology & Ecology Mosquito that spreads dengue and its ecology... Clinical & Laboratory Guidance Tools for clinicians and laboratorians... ...

  7. Competitive exclusion in a vector-host model for the dengue fever.

    PubMed

    Feng, Z; Velasco-Hernández, J X

    1997-05-01

    We study a system of differential equations that models the population dynamics of an SIR vector transmitted disease with two pathogen strains. This model arose from our study of the population dynamics of dengue fever. The dengue virus presents four serotypes each induces host immunity but only certain degree of cross-immunity to heterologous serotypes. Our model has been constructed to study both the epidemiological trends of the disease and conditions that permit coexistence in competing strains. Dengue is in the Americas an epidemic disease and our model reproduces this kind of dynamics. We consider two viral strains and temporary cross-immunity. Our analysis shows the existence of an unstable endemic state ('saddle' point) that produces a long transient behavior where both dengue serotypes cocirculate. Conditions for asymptotic stability of equilibria are discussed supported by numerical simulations. We argue that the existence of competitive exclusion in this system is product of the interplay between the host superinfection process and frequency-dependent (vector to host) contact rates. PMID:9145954

  8. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Suresh, Udaiyan; Murugan, Kadarkarai; Benelli, Giovanni; Nicoletti, Marcello; Barnard, Donald R; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Dinesh, Devakumar; Chandramohan, Balamurugan

    2015-04-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract

  9. Diarrhea and dengue control in rural primary schools in Colombia: study protocol for a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Diarrheal diseases and dengue fever are major global health problems. Where provision of clean water is inadequate, water storage is crucial. Fecal contamination of stored water is a common source of diarrheal illness, but stored water also provides breeding sites for dengue vector mosquitoes. Poor household water management and sanitation are therefore potential determinants of both diseases. Little is known of the role of stored water for the combined risk of diarrhea and dengue, yet a joint role would be important for developing integrated control and management efforts. Even less is known of the effect of integrating control of these diseases in school settings. The objective of this trial was to investigate whether interventions against diarrhea and dengue will significantly reduce diarrheal disease and dengue entomological risk factors in rural primary schools. Methods/design This is a 2×2 factorial cluster randomized controlled trial. Eligible schools were rural primary schools in La Mesa and Anapoima municipalities, Cundinamarca, Colombia. Eligible pupils were school children in grades 0 to 5. Schools were randomized to one of four study arms: diarrhea interventions (DIA); dengue interventions (DEN); combined diarrhea and dengue interventions (DIADEN); and control (C). Schools were allocated publicly in each municipality (strata) at the start of the trial, obviating the need for allocation concealment. The primary outcome for diarrhea is incidence rate of diarrhea in school children and for dengue it is density of adult female Aedes aegypti per school. Approximately 800 pupils from 34 schools were enrolled in the trial with eight schools in the DIA arm, nine in the DEN, eight in the DIADEN, and nine in the control arms. The trial status as of June 2012 was: completed baseline data collections; enrollment, randomization, and allocation of schools. The trial was funded by the Research Council of Norway and the Lazos de Calandaima Foundation

  10. Exposure of a Dengue Vector to Tea and Its Waste: Survival, Developmental Consequences, and Significance for Pest Management.

    PubMed

    Dieng, Hamady; Tan Yusop, Nur Syafiqah Bt; Kamal, Nurafidah Natasyah Bt; Ahmad, Abu Hassan; Ghani, Idris Abd; Abang, Fatimah; Satho, Tomomitsu; Ahmad, Hamdan; Zuharah, Wan Fatma; Majid, Abdul Hafiz Ab; Morales, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Noweg, Gabriel Tonga

    2016-05-11

    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution. PMID:27115536

  11. Dengue vector management using insecticide treated materials and targeted interventions on productive breeding-sites in Guatemala

    PubMed Central

    2012-01-01

    Background In view of the epidemiological expansion of dengue worldwide and the availability of new tools and strategies particularly for controlling the primary dengue vector Aedes aegypti, an intervention study was set up to test the efficacy, cost and feasibility of a combined approach of insecticide treated materials (ITMs) alone and in combination with appropriate targeted interventions of the most productive vector breeding-sites. Methods The study was conducted as a cluster randomized community trial using “reduction of the vector population” as the main outcome variable. The trial had two arms: 10 intervention clusters (neighborhoods) and 10 control clusters in the town of Poptun Guatemala. Activities included entomological assessments (characteristics of breeding-sites, pupal productivity, Stegomyia indices) at baseline, 6 weeks after the first intervention (coverage of window and exterior doorways made of PermaNet 2.0 netting, factory treated with deltamethrin at 55 mg/m2, and of 200 L drums with similar treated material) and 6 weeks after the second intervention (combination of treated materials and other suitable interventions targeting productive breeding-sites i.e larviciding with Temephos, elimination etc.). The second intervention took place 17 months after the first intervention. The insecticide residual activity and the insecticidal content were also studied at different intervals. Additionally, information about demographic characteristics, cost of the intervention, coverage of houses protected and satisfaction in the population with the interventions was collected. Results At baseline (during the dry season) a variety of productive container types for Aedes pupae were identified: various container types holding >20 L, 200 L drums, washbasins and buckets (producing 83.7% of all pupae). After covering 100% of windows and exterior doorways and a small number of drums (where the commercial cover could be fixed) in 970 study households, tropical

  12. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study

    PubMed Central

    2014-01-01

    Background Dengue is an increasingly important public health problem in most Latin American countries and more cost-effective ways of reducing dengue vector densities to prevent transmission are in demand by vector control programs. This multi-centre study attempted to identify key factors associated with vector breeding and development as a basis for improving targeted intervention strategies. Methods In each of 5 participant cities in Mexico, Colombia, Ecuador, Brazil and Uruguay, 20 clusters were randomly selected by grid sampling to incorporate 100 contiguous households, non-residential private buildings (businesses) and public spaces. Standardized household surveys, cluster background surveys and entomological surveys specifically targeted to obtain pupal indices for Aedes aegypti, were conducted in the dry and wet seasons. Results The study clusters included mainly urban low-middle class populations with satisfactory infrastructure and –except for Uruguay- favourable climatic conditions for dengue vector development. Household knowledge about dengue and “dengue mosquitoes” was widespread, mainly through mass media, but there was less awareness around interventions to reduce vector densities. Vector production (measured through pupal indices) was favoured when water containers were outdoor, uncovered, unused (even in Colombia and Ecuador where the large tanks used for household water storage and washing were predominantly productive) and –particularly during the dry season- rainwater filled. Larval infestation did not reflect productive container types. All productive container types, including those important in the dry season, were identified by pupal surveys executed during the rainy season. Conclusions A number of findings are relevant for improving vector control: 1) there is a need for complementing larval surveys with occasional pupal surveys (to be conducted during the wet season) for identifying and subsequently targeting productive container

  13. Predatory potential of Platynectes sp. (Coleoptera: Dytiscidae) on Aedes albopictus, the vector of dengue/chikungunya in Kerala, India.

    PubMed

    Kumar, N P; Bashir, A; Abidha, S; Sabesan, S; Jambulingam, P

    2014-12-01

    Unused and discarded latex collection containers (LCCs) are the major breeding habitats of Aedes albopictus in the rubber plantations of Kerala, India. Platynectes sp. (Family: Dytiscidae) was observed to invade these habitats during the monsoon season and voraciously devour the larval instars of this major vector species of arbo-viral diseases. Field observations showed a reduction of 70.91% (p = 0.0017) and 100% in Aedes larval density, on the first and four days post release of eight beetles per LCC respectively. In laboratory, a beetle was found to devour 17.75 + 5.0 late larval instars of Ae. albopictus per day. Our findings indicate Platynectes sp. could be a potential bio-control agent against Ae. albopictus, the vector of chikungunya/dengue fevers, in rubber plantations. PMID:25776599

  14. Polyandry Depends on Postmating Time Interval in the Dengue Vector Aedes aegypti

    PubMed Central

    Degner, Ethan C.; Harrington, Laura C.

    2016-01-01

    Aedes aegypti is the primary vector of the dengue and chikungunya viruses. After mating, male seminal fluid molecules cause females to become unreceptive to a subsequent mating. This response is often assumed to be immediate and complete, but a growing body of evidence suggests that some females do mate more than once. It is unknown how quickly a female becomes unreceptive to a second mating. Furthermore, the degree to which she remains monandrous after laying several batches of eggs has not been rigorously tested. Therefore, we assessed the rates of polyandry in two sets of experiments using wild-type males and those with fluorescent sperm. The first experiment tested the likelihood of polyandry after postmating intervals of various durations. Most females became refractory to a second mating within 2 hours after mating, and rates of polyandry ranged from 24% immediately after mating to 3% at 20 hours after mating. The second experiment tested whether females were polyandrous after cycles of blood meals and oviposition. No re-insemination was found after one, three, or five such cycles. This study is the first to demonstrate that polyandrous behavior depends on the postmating interval. Our results will inform future applications that depend on an accurate knowledge of Ae. aegypti mating behavior, including models of gene flow, investigations of molecules that drive female mating behavior, and control strategies that deploy genetically modified mosquitoes into the field. PMID:26880776

  15. Effect of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2014-09-01

    The present study aimed to evaluate the essential oil and an isolated compound from the leaves of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. The plant material was macerated and steam distilled using clavenger apparatus for oil extraction. The essential oil was tested at different concentrations of 100, 50, 25, 12.5 and 6.25 ppm concentrations against the larvae of Ae. albopictus. The isolated compound was tested for larvicidal, ovicidal, repellent, oviposition deterrent and adulticidal activities at 10, 5, 2.5, 1.25 and 0.625 ppm concentrations. The essential oil exhibited LC₅₀ values of 194.63 and 199.65 and confertifolin exhibited LC₅₀ values of 2.02 and 3.16 against the second and fourth instar larvae of Ae. albopictus, respectively. The ovicidal activity of 100% on 0- to 6-h-old eggs, repellent activity of 320.6 min, oviposition deterrent activity of 98.51% and adulticidal activity of 100% at 10 ppm concentration of confertifolin were recorded. No mortality of was observed in negative control. To the best of our knowledge, this is the first report on the potential mosquitocidal activities of confertifolin against Ae. albopictus. PMID:25033815

  16. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    PubMed Central

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides. PMID:22629156

  17. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia.

    PubMed

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  18. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia

    PubMed Central

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  19. Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique Island

    PubMed Central

    Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence

    2013-01-01

    Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique. PMID:24204999

  20. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  1. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions.

    PubMed

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Harduin-Lepers, Anne; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Zenteno, Edgar; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  2. Defective rainwater harvesting structure and dengue vector productivity compared with peridomestic habitats in a coastal town in southern India.

    PubMed

    Mariappan, T; Srinivasan, R; Jambulingam, P

    2008-01-01

    to be among the key containers, propagating Aedes population. The pupae per person obtained during northeast monsoon in different houses varied between 0.077 and 2.839 (average 0.864). House and Breteau Indices were relatively higher during northeast monsoon, whereas the Container Index was higher in southwest monsoon. In view of risk of dengue vectors propagation, the need for source reduction involving community and prioritizing control measures toward the highly productive water-holdings is discussed. PMID:18283956

  3. Re-assess Vector Indices Threshold as an Early Warning Tool for Predicting Dengue Epidemic in a Dengue Non-endemic Country

    PubMed Central

    Hsu, Pi-Shan; Chen, Chaur-Dong; Lian, Ie-Bin; Chao, Day-Yu

    2015-01-01

    Background Despite dengue dynamics being driven by complex interactions between human hosts, mosquito vectors and viruses that are influenced by climate factors, an operational model that will enable health authorities to anticipate the outbreak risk in a dengue non-endemic area has not been developed. The objectives of this study were to evaluate the temporal relationship between meteorological variables, entomological surveillance indices and confirmed dengue cases; and to establish the threshold for entomological surveillance indices including three mosquito larval indices [Breteau (BI), Container (CI) and House indices (HI)] and one adult index (AI) as an early warning tool for dengue epidemic. Methodology/Principal Findings Epidemiological, entomological and meteorological data were analyzed from 2005 to 2012 in Kaohsiung City, Taiwan. The successive waves of dengue outbreaks with different magnitudes were recorded in Kaohsiung City, and involved a dominant serotype during each epidemic. The annual indigenous dengue cases usually started from May to June and reached a peak in October to November. Vector data from 2005–2012 showed that the peak of the adult mosquito population was followed by a peak in the corresponding dengue activity with a lag period of 1–2 months. Therefore, we focused the analysis on the data from May to December and the high risk district, where the inspection of the immature and mature mosquitoes was carried out on a weekly basis and about 97.9% dengue cases occurred. The two-stage model was utilized here to estimate the risk and time-lag effect of annual dengue outbreaks in Taiwan. First, Poisson regression was used to select the optimal subset of variables and time-lags for predicting the number of dengue cases, and the final results of the multivariate analysis were selected based on the smallest AIC value. Next, each vector index models with selected variables were subjected to multiple logistic regression models to examine the

  4. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  5. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. In this scenario, eco-friendly control tools against mosquito vectors are a priority. Green synthesis of silver nanoparticles (AgNP) using a cheap, aqueous leaf extract of Anisomeles indica by reduction of Ag(+) ions from silver nitrate solution has been investigated. Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of A. indica leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the A. indica leaf extract and AgNP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized AgNP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 31.56, 35.21 and 38.08 μg/mL, respectively. Overall, this study firstly shed light on the mosquitocidal potential of A. indica, a potential bioresource for rapid, cheap and effective AgNP synthesis. PMID:26708933

  6. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors.

    PubMed

    Marcombe, Sébastien; Mathieu, Romain Blanc; Pocquet, Nicolas; Riaz, Muhammad-Asam; Poupardin, Rodolphe; Sélior, Serge; Darriet, Frédéric; Reynaud, Stéphane; Yébakima, André; Corbel, Vincent; David, Jean-Philippe; Chandre, Fabrice

    2012-01-01

    Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the "knock-down resistance" V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed. PMID:22363529

  7. Epidemiology of dengue in Nepal: History of incidence, current prevalence and strategies for future control.

    PubMed

    Subedi, Dinesh; Taylor-Robinson, Andrew W

    2016-01-01

    Dengue is now established as one of the most important arboviral infections. As the epidemic continues unabated globally, this Aedes mosquito-transmitted pathogen is considered a major re-emerging tropical disease and significant public health concern. Four well-established distinct serotypes of dengue virus, with a fifth one recently proposed, are responsible for causing a spectrum of clinical symptoms in humans ranging from mild fever to severe haemorrhagic manifestations. Indigenous cases of dengue were first recognised in Nepal, a Himalayan country bordered by India and China, just a decade ago in a cluster of tropical and subtropical areas. Subsequently, the range of infection has extended all over the country and now comprises not only low lying regions, but also hilly locations including the capital city Kathmandu. The two major epidemics to date, in 2010 and 2013, have demonstrated the capacity of infection outbreaks to be explosive and challenging to currently available disease control measures. There is a pressing need to undertake effective vector surveillance studies supported by provision of well-equipped diagnostic virology laboratories. However, sincere efforts are being made to map the nationwide prevalence and understand the epidemiology of dengue infection. Yet, the precise burden of dengue in Nepal remains unknown, since most reports are confined to economically affluent areas and do not account for regions of relative social deprivation in which disease is more likely to occur. This review presents a current overview of dengue in Nepal and discusses future prospects for control of this debilitating disease in the country. PMID:27004572

  8. Clustering, climate and dengue transmission.

    PubMed

    Junxiong, Pang; Yee-Sin, Leo

    2015-06-01

    Dengue is currently the most rapidly spreading vector-borne disease, with an increasing burden over recent decades. Currently, neither a licensed vaccine nor an effective anti-viral therapy is available, and treatment largely remains supportive. Current vector control strategies to prevent and reduce dengue transmission are neither efficient nor sustainable as long-term interventions. Increased globalization and climate change have been reported to influence dengue transmission. In this article, we reviewed the non-climatic and climatic risk factors which facilitate dengue transmission. Sustainable and effective interventions to reduce the increasing threat from dengue would require the integration of these risk factors into current and future prevention strategies, including dengue vaccination, as well as the continuous support and commitment from the political and environmental stakeholders. PMID:25872683

  9. Evaluation of the Larvicidal Efficacy of Five Indigenous Weeds against an Indian Strain of Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Sharma, Aarti; Kumar, Sarita; Tripathi, Pushplata

    2016-01-01

    Background and Objectives. Aedes aegypti, dengue fever mosquito, is primarily associated with the transmission of dengue and chikungunya in tropical and subtropical regions of the world. The present investigations were carried out to assess the larvicidal efficiency of five indigenous weeds against Ae. aegypti. Methods. The 1,000 ppm hexane and ethanol extracts prepared from the leaves and stem of five plants (Achyranthes aspera, Cassia occidentalis, Catharanthus roseus, Lantana camara, and Xanthium strumarium) were screened for their larvicidal activity against early fourth instars of dengue vector. The extracts which could cause 80–100% mortality were further investigated for their efficacy. Results. The preliminary screening established the efficacy of hexane extracts as compared to the ethanol extracts. Further investigations revealed the highest larvicidal potential of A. aspera extracts exhibiting LC50 value of 82.555 ppm and 68.133 ppm, respectively. Further, their leaf extracts showed 5–85.9% higher larvicidal activity and stem extracts exhibited 0.23- to 0.85-fold more efficiency than the other four extracts. Conclusion. The present investigations suggest the possible use of A. aspera as an ideal ecofriendly, larvicidal agent for the control of dengue vector, Ae. aegypti. Future studies are, however, required to explore and identify the bioactive component involved and its mode of action. PMID:26941996

  10. Evaluation of the Larvicidal Efficacy of Five Indigenous Weeds against an Indian Strain of Dengue Vector, Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Sharma, Aarti; Kumar, Sarita; Tripathi, Pushplata

    2016-01-01

    Background and Objectives. Aedes aegypti, dengue fever mosquito, is primarily associated with the transmission of dengue and chikungunya in tropical and subtropical regions of the world. The present investigations were carried out to assess the larvicidal efficiency of five indigenous weeds against Ae. aegypti. Methods. The 1,000 ppm hexane and ethanol extracts prepared from the leaves and stem of five plants (Achyranthes aspera, Cassia occidentalis, Catharanthus roseus, Lantana camara, and Xanthium strumarium) were screened for their larvicidal activity against early fourth instars of dengue vector. The extracts which could cause 80-100% mortality were further investigated for their efficacy. Results. The preliminary screening established the efficacy of hexane extracts as compared to the ethanol extracts. Further investigations revealed the highest larvicidal potential of A. aspera extracts exhibiting LC50 value of 82.555 ppm and 68.133 ppm, respectively. Further, their leaf extracts showed 5-85.9% higher larvicidal activity and stem extracts exhibited 0.23- to 0.85-fold more efficiency than the other four extracts. Conclusion. The present investigations suggest the possible use of A. aspera as an ideal ecofriendly, larvicidal agent for the control of dengue vector, Ae. aegypti. Future studies are, however, required to explore and identify the bioactive component involved and its mode of action. PMID:26941996

  11. Prevention and control of influenza and dengue through vaccine development.

    PubMed

    Greenberg, David P; Robertson, Corwin A; Gordon, Daniel M

    2013-08-01

    Influenza and dengue are viral illnesses of global public health importance, especially among children. Accordingly, these diseases have been the focus of efforts to improve their prevention and control. Influenza vaccination offers the best protection against clinical disease caused by strains contained within the specific year's formulation. It is not uncommon for there to be a mismatch between vaccine strains and circulating strains, particularly with regards to the B lineages. For more than a decade, two distinct lineages of influenza B (Yamagata and Victoria) have co-circulated in the US with varying frequencies, but trivalent influenza vaccines contain only one B-lineage strain and do not offer adequate protection against the alternate B-lineage. Quadrivalent influenza vaccines (QIVs), containing two A strains (H1N1 and H3N2) and two B strains (one from each lineage) have been developed to help protect against the four strains predicted to be the most likely to be circulating. The QIV section of this article discusses epidemiology of pediatric influenza, importance of influenza B in children, potential benefits of QIV, and new quadrivalent vaccines. In contrast to influenza, a vaccine against dengue is not yet available in spite of many decades of research and development. A global increase in reports of dengue fever (DF) and its more severe presentations, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), suggest that US physicians will increasingly encounter patients with this disease. Similarities of the early signs and symptoms of influenza and dengue and the differences in disease management necessitates a better understanding of the epidemiology, clinical presentation, management, and prevention of DF by US physicians, including pediatricians. The article also provides a brief overview of dengue and discusses dengue vaccine development. PMID:23910031

  12. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. PMID:26995063

  13. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-03-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM analysis

  14. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-05-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM

  15. What role for insecticides in vector control programs?

    PubMed

    Gratz, N G; Jany, W C

    1994-01-01

    Vector-borne diseases including dengue, yellow fever, Japanese encephalitis, malaria, leishmaniasis, and filariasis remain severe public health problems in most of the countries in which they are endemic. In some cases, their incidence is increasing and they are spreading to new geographic areas. For a number of the infections, the most effective manner of controlling their transmission is through control of their vectors. However, in some instances, such as dengue and Chagas' disease, there is no alternative. Most countries that are endemic for vector-borne diseases maintain vector control services, and most large tropical and semitropical cities also have pest control programs, mainly against pest mosquitoes. Virtually all of the vector and pest control programs depend on the use of insecticides formulated as larvicides, adulticides, baits, or insecticide impregnated bed nets. For many years, the development of new insecticides for use in public health programs was encouraged and supported by multilateral and bilateral health agencies, including the implementation of field trials in endemic areas. Due to the development of insecticide resistance, toxicologic and environmental considerations, and the cost of development and of registration, the number of compounds available for use has declined while the number of new insecticides submitted for laboratory and field trials to the World Health Organization has dwindled even more. The recrudescence of vector-borne diseases, the rapid pace of urbanization, lagging development of environmental services in many tropical cities, and difficulties encountered in ensuring the community's cooperation in its own protection through environmental measures make imperative the continued availability of pesticides for public health use. Since only the pesticide manufacturing industry has the combination of technical and financial resources to promulgate the research and development of new pesticides and pesticide groups, it is

  16. [Lessons learned in the control of Aedes aegypti to address dengue and the emergency of chikungunya in Iquitos, Peru].

    PubMed

    Vilcarromero, Stalin; Casanova, Wilma; Ampuero, Julia S; Ramal-Asayag, Cesar; Siles, Crystyan; Díaz, Gloria; Durand, Salomón; Celis-Salinas, Juan C; Astete, Helvio; Rojas, Percy; Vásquez-La Torre, Gabriela; Marín, Johan; Bazán, Isabel; Alegre, Yuri; Morrison, Amy C; Rodriguez-Ferrucci, Hugo

    2015-01-01

    Dengue has affected Iquitos since 1990 causing outbreaks of major impact on public health and for this reason great efforts have been made for its temporal control. Currently, with the expansion of the chikungunya virus in the Americas and the threat of the emergence of the virus in Iquitos, we reflect on lessons learned by way of the activities undertaken in the area of vector control; epidemiological surveillance, diagnosis and clinical management during periods of outbreaks of dengue, in a way that will allow us to better face the threat of an outbreak of chikungunya virus in the largest city in the Peruvian Amazon. PMID:26102121

  17. Dengue

    MedlinePlus

    ... the hospital and get fluids. To lower your risk when traveling to areas where dengue is found Wear insect repellent with DEET Wear clothes that cover your arms, legs and feet Close unscreened doors and windows NIH: National Institute of Allergy and Infectious Diseases

  18. [Dengue and dengue hemorrhagic fever: research priorities].

    PubMed

    Guzmán, María G; García, Gissel; Kourí, Gustavo

    2006-03-01

    Dengue is one of the most important infectious diseases in tropical and subtropical countries. At present, the only strategy available to reduce the incidence of dengue is vector control. The World Health Organization and the Pan American Health Organization have called on all nations to take the needed steps to help diminish the burden of this disease and its medical and socioeconomic impact. It is hoped that it will be possible to reverse the increase in dengue and help control its spread through a coordinated, effective international response, along with epidemiological, clinical, and virological research that brings together the most advanced methods and techniques. This piece summarizes the most up-to-date information on dengue, analyzes current epidemiologic trends in the Region of the Americas, discusses the main global and Western Hemisphere initiatives to control the disease, and presents the main areas of research that should be developed in the immediate future. PMID:16640849

  19. Solid rocket thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Thrust vector control systems that superimpose a side force on the motor thrust, steering being achieved by the side force causing a moment about the vehicle center of gravity are described. A brief review of thrust vector control systems is presented, and two systems, flexible joint and liquid injection, are treated in detail. Treatment of the flexible-joint thrust vector control system is limited to the design of the flexible joint and its insulation against hot motor gases. Treatment of the liquid injection thrust vector control system is limited to discussion of the injectant, valves, piping, storage tanks, and pressurization system; no evaluation is presented of the nozzle except for (1) the effect of the injectant and erosion at the injection port and (2) the effect of injection on pressure distribution within the nozzle.

  20. The Aedes aegypti Toll Pathway Controls Dengue Virus Infection

    PubMed Central

    Xi, Zhiyong; Ramirez, Jose L.; Dimopoulos, George

    2008-01-01

    Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference–based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi)-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway–associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway. PMID:18604274

  1. Mathematical model in controlling dengue transmission with sterile mosquito strategies

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.

    2015-09-01

    In this article, we propose a mathematical model for controlling dengue disease transmission with sterile mosquito techniques (SIT). Sterile male introduced from lab in to habitat to compete with wild male mosquito for mating with female mosquito. Our aim is to displace gradually the natural mosquito from the habitat. Mathematical model analysis for steady states and the basic reproductive ratio are performed analytically. Numerical simulation are shown in some different scenarios. We find that SIT intervention is potential to controlling dengue spread among humans population

  2. Optimal Control of a Dengue Epidemic Model with Vaccination

    NASA Astrophysics Data System (ADS)

    Rodrigues, Helena Sofia; Teresa, M.; Monteiro, T.; Torres, Delfim F. M.

    2011-09-01

    We present a SIR+ASI epidemic model to describe the interaction between human and dengue fever mosquito populations. A control strategy in the form of vaccination, to decrease the number of infected individuals, is used. An optimal control approach is applied in order to find the best way to fight the disease.

  3. The Sublethal Effects of the Entomopathic Fungus Leptolegnia chapmanii on Some Biological Parameters of the Dengue Vector Aedes aegypti

    PubMed Central

    Pelizza, S.A.; Scorsetti, A.C.; Tranchida, M.C.

    2013-01-01

    The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti. PMID:23901823

  4. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  5. Modelling the control strategies against dengue in Singapore

    PubMed Central

    BURATTINI, M. N.; CHEN, M.; CHOW, A.; COUTINHO, F. A. B.; GOH, K. T.; LOPEZ, L. F.; MA, S.; MASSAD, E.

    2008-01-01

    SUMMARY Notified cases of dengue infections in Singapore reached historical highs in 2004 (9459 cases) and 2005 (13 817 cases) and the reason for such an increase is still to be established. We apply a mathematical model for dengue infection that takes into account the seasonal variation in incidence, characteristic of dengue fever, and which mimics the 2004–2005 epidemics in Singapore. We simulated a set of possible control strategies and confirmed the intuitive belief that killing adult mosquitoes is the most effective strategy to control an ongoing epidemic. On the other hand, the control of immature forms was very efficient in preventing the resurgence of dengue epidemics. Since the control of immature forms allows the reduction of adulticide, it seems that the best strategy is to combine both adulticide and larvicide control measures during an outbreak, followed by the maintenance of larvicide methods after the epidemic has subsided. In addition, the model showed that the mixed strategy of adulticide and larvicide methods introduced by the government seems to be very effective in reducing the number of cases in the first weeks after the start of control. PMID:17540051

  6. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes.

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2015-02-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticides, in the present study, the repellent activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Erythrina indica and root of Asparagus racemosus were assayed for their repellency against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The crude extract was applied on a membrane used for membrane feeding of unfed mosquitoes in a 1-ft cage. About 50 unfed 3-4-day-old laboratory-reared pathogen-free strains of A. stephensi, A. aegypti, and C. quinquefasciatus were introduced in a 1-ft cage fitted with a membrane with blood for feeding with temperature maintained at 37 °C through circulating water bath maintained at 40-45 °C. Three concentrations (1.0, 2.0, and 5.0 mg/cm(2)) of the crude extracts were evaluated. Repellents in E. indica afforded longer protection time against A. stephensi, A. aegypti, and C. quinquefasciatus than those in A. racemosus at 5.0 mg/cm(2) concentration, and the mean complete protection time ranged from 120 to 210 min with the different extracts tested. In this observation, these two plant crude extracts gave protection against mosquito bites; also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf extract of E. indica and root extract of A. racemosus have the potential to

  7. Understanding the Dengue Viruses and Progress towards Their Control

    PubMed Central

    Gould, Ernest A.

    2013-01-01

    Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this “scourge” of the tropical and subtropical world. PMID:23936833

  8. Community Involvement in Dengue Outbreak Control: An Integrated Rigorous Intervention Strategy

    PubMed Central

    Lin, Hualiang; Liu, Tao; Song, Tie; Lin, Lifeng; Xiao, Jianpeng; Lin, Jinyan; He, Jianfeng; Zhong, Haojie; Hu, Wenbiao; Deng, Aiping; Peng, Zhiqiang; Ma, Wenjun; Zhang, Yonghui

    2016-01-01

    Background An explosive outbreak of dengue fever occurred in Guangdong Province, China in 2014. A community-based integrated intervention was applied to control this outbreak in the capital city Guangzhou, where dengue epidemic was mainly caused by imported cases. Methodology/Principal Findings We used a time series generalized additive model based on meteorological factors to assess the effectiveness of this intervention. The results showed that there was significant reduction in mosquito density following the intervention, and there was a 70.47% (95% confidence interval: 66.07%, 74.88%) reduction in the reported dengue cases compared with the predicted cases after 12 days since the beginning of the intervention, we estimated that a total of 23,302 dengue cases were prevented. Conclusions This study suggests that an integrated dengue intervention program has significant effects to control a dengue outbreak in areas where dengue epidemic was mainly caused by imported dengue cases. PMID:27548481

  9. Dengue Expansion in Africa—Not Recognized or Not Happening?

    PubMed Central

    Junghanss, Thomas; Wills, Bridget; Brady, Oliver J.; Eckerle, Isabella; Farlow, Andrew; Hay, Simon I.; McCall, Philip J.; Messina, Jane P.; Ofula, Victor; Sall, Amadou A.; Sakuntabhai, Anavaj; Velayudhan, Raman; Wint, G.R. William; Zeller, Herve; Margolis, Harold S.; Sankoh, Osman

    2014-01-01

    An expert conference on Dengue in Africa was held in Accra, Ghana, in February 2013 to consider key questions regarding the possible expansion of dengue in Africa. Four key action points were highlighted to advance our understanding of the epidemiology of dengue in Africa. First, dengue diagnostic tools must be made more widely available in the healthcare setting in Africa. Second, representative data need to be collected across Africa to uncover the true burden of dengue. Third, established networks should collaborate to produce these types of data. Fourth, policy needs to be informed so the necessary steps can be taken to provide dengue vector control and health services. PMID:25271370

  10. Dengue expansion in Africa-not recognized or not happening?

    PubMed

    Jaenisch, Thomas; Junghanss, Thomas; Wills, Bridget; Brady, Oliver J; Eckerle, Isabella; Farlow, Andrew; Hay, Simon I; McCall, Philip J; Messina, Jane P; Ofula, Victor; Sall, Amadou A; Sakuntabhai, Anavaj; Velayudhan, Raman; Wint, G R William; Zeller, Herve; Margolis, Harold S; Sankoh, Osman

    2014-10-01

    An expert conference on Dengue in Africa was held in Accra, Ghana, in February 2013 to consider key questions regarding the possible expansion of dengue in Africa. Four key action points were highlighted to advance our understanding of the epidemiology of dengue in Africa. First, dengue diagnostic tools must be made more widely available in the healthcare setting in Africa. Second, representative data need to be collected across Africa to uncover the true burden of dengue. Third, established networks should collaborate to produce these types of data. Fourth, policy needs to be informed so the necessary steps can be taken to provide dengue vector control and health services. PMID:25271370

  11. Pyrethroid Resistance Reduces the Efficacy of Space Sprays for Dengue Control on the Island of Martinique (Caribbean)

    PubMed Central

    Marcombe, Sébastien; Darriet, Frédéric; Tolosa, Michel; Agnew, Philip; Duchon, Stéphane; Etienne, Manuel; Yp Tcha, Marie Michèle; Chandre, Fabrice; Corbel, Vincent; Yébakima, André

    2011-01-01

    Background Dengue fever is reemerging on the island of Martinique and is a serious threat for the human population. During dengue epidemics, adult Aedes aegypti control with pyrethroid space sprays is implemented in order to rapidly reduce transmission. Unfortunately, vector control programs are facing operational challenges with the emergence of pyrethroid resistant Ae. aegypti populations. Methodology/Principal Findings To assess the impact of pyrethroid resistance on the efficacy of treatments, applications of deltamethrin and natural pyrethrins were performed with vehicle-mounted thermal foggers in 9 localities of Martinique, where Ae. aegypti populations are strongly resistant to pyrethroids. Efficacy was assessed by monitoring mortality rates of naturally resistant and laboratory susceptible mosquitoes placed in sentinel cages. Before, during and after spraying, larval and adult densities were estimated. Results showed high mortality rates of susceptible sentinel mosquitoes treated with deltamethrin while resistant mosquitoes exhibited very low mortality. There was no reduction of either larval or adult Ae. aegypti population densities after treatments. Conclusions/Significance This is the first documented evidence that pyrethroid resistance impedes dengue vector control using pyrethroid-based treatments. These results emphasize the need for alternative tools and strategies for dengue control programs. PMID:21713017

  12. DENGUE VIRAL INFECTIONS

    PubMed Central

    Gurugama, Padmalal; Garg, Pankaj; Perera, Jennifer; Wijewickrama, Ananda; Seneviratne, Suranjith L

    2010-01-01

    Dengue viral infections are one of the most important mosquito-borne diseases in the world. Presently dengue is endemic in 112 countries in the world. It has been estimated that almost 100 million cases of dengue fever and half a million cases of dengue hemorrhagic fever (DHF) occur worldwide. An increasing proportion of DHF is in children less than 15 years of age, especially in South East and South Asia. The unique structure of the dengue virus and the pathophysiologic responses of the host, different serotypes, and favorable conditions for vector breeding have led to the virulence and spread of the infections. The manifestations of dengue infections are protean from being asymptomatic to undifferentiated fever, severe dengue infections, and unusual complications. Early recognition and prompt initiation of appropriate supportive treatment are often delayed resulting in unnecessarily high morbidity and mortality. Attempts are underway for the development of a vaccine for preventing the burden of this neglected disease. This review outlines the epidemiology, clinical features, pathophysiologic mechanisms, management, and control of dengue infections. PMID:20418983

  13. Impact of larviciding with a Bacillus thuringiensis israelensis formulation, VectoBac WG, on dengue mosquito vectors in a dengue endemic site in Selangor State, Malaysia.

    PubMed

    Lee, H L; Chen, C D; Masri, S Mohd; Chiang, Y F; Chooi, K H; Benjamin, S

    2008-07-01

    The field bioefficacy of a wettable granule (WG) formulation of Bacillus thuringiensis israelensis (Bti), VectoBac WG (Bti strain AM65-52) against dengue vectors, Aedes aegypti and Ae albopictus; was evaluated in a suburban residential area (TST) and in a temporary settlement site (KB) in the state of Selangor, Malaysia. Pre-control ovitrap surveillance of the trial sites indicated a high population of both types of Aedes mosquitoes. The populations were monitored continuously by weekly ovitrapping. Bti was sprayed biweekly at a dosage of 500 g/ha by using a mist-blower. The spray application was targeted into outdoor larval habitats. If required, Bti formulation was also applied directly into indoor water-holding containers at 8 g/1,000 l. Based on ovitrap surveillance, a significant reduction in Aedes populations was evident 4 weeks after initiating the first Bti treatment. The ovitrap index (OI) and the larvae density decreased drastically in both trial sites. In TST, the indoor OI was significantly reduced from 57.50 +/- 7.50% to 19.13 +/- 5.49% (p<0.05), while the outdoor OI decreased from 38.89 +/- 11.11% to 15.36 +/- 5.93%. In KB, similarly, the OI was significantly reduced by more than half, from 66.66 +/- 6.67% to 30.26 +/- 2.99% (p< 0.05). In all cases, the reduction in OI was paralleled by reduction in larval density. PMID:19058596

  14. Epidemiology and vector efficiency during a dengue fever outbreak in Cixi, Zhejiang Province, China.

    PubMed

    Yang, Tianci; Lu, Liang; Fu, Guiming; Zhong, Shi; Ding, Gangqiang; Xu, Rong; Zhu, Guangfeng; Shi, Nanfeng; Fan, Feilong; Liu, Qiyong

    2009-06-01

    An emigrant worker returning from Southeast Asia triggered the outbreak of a DF epidemic in Zhejiang province, China, in October, 2004. Eighty-three cases, mainly young and middle-aged people between 20 and 50 (78.3%), were reported in the area of Cixi. There were no obvious occupational patterns. The majority of cases were female, with a sex ratio of 1:1.86 (m:f). The dengue virus (DENV) strains from the epidemic area were isolated and identified as DENV-1, which belongs to Asian strain 1. According to the epidemiological investigation, the incidence of DF had no relationship to temperature, humidity, or precipitation, and the Breteau index of larvae showed a clear relationship only with the House Index and Container Index. Recent dengue problems in the town have been associated with the complex social factors and hygienic conditions for endemic villagers and immigrant workers. Some hygienic measures should be taken by the local government to reduce the risk of mosquito-borne disease. These measures should aim to eliminate the breeding sites of the vector Aedes albopictus in indoor and outdoor containers filled with rainwater and thus reducing the risk of DF transmission. PMID:20836815

  15. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  16. Reduced efficacy of pyrethroid space sprays for dengue control in an area of Martinique with pyrethroid resistance.

    PubMed

    Marcombe, Sébastien; Carron, Alexandre; Darriet, Frédéric; Etienne, Manuel; Agnew, Philip; Tolosa, Michel; Yp-Tcha, Marie Michèle; Lagneau, Christophe; Yébakima, André; Corbel, Vincent

    2009-05-01

    In the Caribbean, insecticide resistance is widely developed in Aedes aegypti and represents a serious obstacle for dengue vector control. The efficacy of pyrethroid and organophosphate ultra-low volume space sprays was investigated in Martinique where Ae. aegypti has been shown to be resistant to conventional insecticides. In the laboratory, a wild-field caught population showed high levels of resistance to deltamethrin, organophosphate (naled), and pyrethrum. Simulated-field trials showed that this resistance can strongly reduce the knock-down effect and mortality of deltamethrin and synergized pyrethrins when applied by thermal-fogging. Conversely, the efficacy of naled was high against insecticide-resistant mosquitoes. Chemical analyses of nettings exposed to the treatments showed a decrease in residues over distance from release for the pyrethroids, and naled was not detected. This finding has important implications for dengue vector control and emphasizes the need to develop innovative strategies to maintain effective control of resistant Ae. aegypti populations. PMID:19407118

  17. Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil

    PubMed Central

    Caprara, Andrea; De Oliveira Lima, José Wellington; Rocha Peixoto, Ana Carolina; Vasconcelos Motta, Cyntia Monteiro; Soares Nobre, Joana Mary; Sommerfeld, Johannes; Kroeger, Axel

    2015-01-01

    Background This study intended to implement a novel intervention strategy, in Brazil, using an ecohealth approach and analyse its effectiveness and costs in reducing Aedes aegypti vector density as well as its acceptance, feasibility and sustainability. The intervention was conducted from 2012 to 2013 in the municipality of Fortaleza, northeast Brazil. Methodology A cluster randomized controlled trial was designed by comparing ten intervention clusters with ten control clusters where routine vector control activities were conducted. The intervention included: community workshops; community involvement in clean-up campaigns; covering the elevated containers and in-house rubbish disposal without larviciding; mobilization of schoolchildren and senior inhabitants; and distribution of information, education and communication (IEC) materials in the community. Results Differences in terms of social participation, commitment and leadership were present in the clusters. The results showed the effectiveness of the intervention package in comparison with the routine control programme. Differences regarding the costs of the intervention were reasonable and could be adopted by public health services. Conclusions Embedding social participation and environmental management for improved dengue vector control was feasible and significantly reduced vector densities. Such a participatory ecohealth approach offers a promising alternative to routine vector control measures. PMID:25604760

  18. Climate change influences on global distributions of dengue and chikungunya virus vectors.

    PubMed

    Campbell, Lindsay P; Luther, Caylor; Moo-Llanes, David; Ramsey, Janine M; Danis-Lozano, Rogelio; Peterson, A Townsend

    2015-04-01

    Numerous recent studies have illuminated global distributions of human cases of dengue and other mosquito-transmitted diseases, yet the potential distributions of key vector species have not been incorporated integrally into those mapping efforts. Projections onto future conditions to illuminate potential distributional shifts in coming decades are similarly lacking, at least outside Europe. This study examined the global potential distributions of Aedes aegypti and Aedes albopictus in relation to climatic variation worldwide to develop ecological niche models that, in turn, allowed anticipation of possible changes in distributional patterns into the future. Results indicated complex global rearrangements of potential distributional areas, which--given the impressive dispersal abilities of these two species--are likely to translate into actual distributional shifts. This exercise also signalled a crucial priority: digitization and sharing of existing distributional data so that models of this sort can be developed more rigorously, as present availability of such data is fragmentary and woefully incomplete. PMID:25688023

  19. Harmonic convergence in the love songs of the dengue vector mosquito.

    PubMed

    Cator, Lauren J; Arthur, Ben J; Harrington, Laura C; Hoy, Ronald R

    2009-02-20

    The familiar buzz of flying mosquitoes is an important mating signal, with the fundamental frequency of the female's flight tone signaling her presence. In the yellow fever and dengue vector Aedes aegypti, both sexes interact acoustically by shifting their flight tones to match, resulting in a courtship duet. Matching is made not at the fundamental frequency of 400 hertz (female) or 600 hertz (male) but at a shared harmonic of 1200 hertz, which exceeds the previously known upper limit of hearing in mosquitoes. Physiological recordings from Johnston's organ (the mosquito's "ear") reveal sensitivity up to 2000 hertz, consistent with our observed courtship behavior. These findings revise widely accepted limits of acoustic behavior in mosquitoes. PMID:19131593

  20. Harmonic convergence in the love songs of the dengue vector mosquito

    PubMed Central

    Cator, Lauren J.; Arthur, Ben J.; Harrington, Laura C.; Hoy, Ronald R.

    2010-01-01

    The familiar buzz of flying mosquitoes is an important mating signal, with the fundamental frequency of the female's flight tone signalling her presence. In the yellow fever and dengue vector, Aedes aegypti, both sexes interact acoustically by shifting their flight tones to match, resulting in a courtship duet. Surprisingly, matching is made not at the fundamental frequency of 400 Hz (female) or 600 Hz (male), but at a shared harmonic of 1200 Hz, which exceeds the previously known upper limit of hearing in mosquitoes. Physiological recordings from Johnston's organ (the mosquito's “ear”) reveal sensitivity up to 2000 Hz, consistent with our observed courtship behavior. These findings revise widely accepted limits of acoustic behavior in mosquitoes. PMID:19131593

  1. HPTLC analysis of Scoparia dulcis Linn (Scrophulariaceae) and its larvicidal potential against dengue vector Aedes aegypti.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rathinasamy, Sheeladevi

    2015-01-01

    This study evaluates the larvicidal activity of Scoparia dulcis aqueous extract against dengue vector and determines its major chemical components. The extract was tested at various concentrations ranging from 0.1 to 2 mg/mL against Aedes aegypti larvae. The extracts displayed significant larvicidal efficacy against Ae. aegypt species after 24 h exposure revealing LC50 of 3.3835 (mg/mL) and LC90 of 5.7578 (mg/mL). Finger printing profile carried out by CAMAG automatic TLC sample applicator programmed through WIN CATS software revealed peaks with different Rf values for three different volumes injected: 16, 15 and 18 peaks were spotted for 3, 6 and 9 μL, respectively. Ascending order of Rf values was also ascertained for each peak recorded. This study clearly signifies that S. dulcis extract contains numerous compounds that are known to have larvicidal properties which clearly substantiates its efficacy on Ae. aegypti larvae. PMID:25573588

  2. Replacing a Native Wolbachia with a Novel Strain Results in an Increase in Endosymbiont Load and Resistance to Dengue Virus in a Mosquito Vector

    PubMed Central

    Lu, Peng; Xi, Zhiyong

    2013-01-01

    Wolbachia is a maternally transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce pathogen interference and spread into mosquito vector populations makes it possible to develop Wolbachia as a biological control agent for vector-borne disease control. Although Wolbachia induces resistance to dengue virus (DENV), filarial worms, and Plasmodium in mosquitoes, species like Aedes polynesiensis and Aedes albopictus, which carry native Wolbachia infections, are able to transmit dengue and filariasis. In a previous study, the native wPolA in Ae. polynesiensis was replaced with wAlbB from Ae. albopictus, and resulted in the generation of the transinfected “MTB” strain with low susceptibility for filarial worms. In this study, we compare the dynamics of DENV serotype 2 (DENV-2) within the wild type “APM” strain and the MTB strain of Ae. polynesiensis by measuring viral infection in the mosquito whole body, midgut, head, and saliva at different time points post infection. The results show that wAlbB can induce a strong resistance to DENV-2 in the MTB mosquito. Evidence also supports that this resistance is related to a dramatic increase in Wolbachia density in the MTB's somatic tissues, including the midgut and salivary gland. Our results suggests that replacement of a native Wolbachia with a novel infection could serve as a strategy for developing a Wolbachia-based approach to target naturally infected insects for vector-borne disease control. PMID:23755311

  3. Household disposables as breeding habitats of dengue vectors: Linking wastes and public health

    SciTech Connect

    Banerjee, Soumyajit; Aditya, Gautam; Saha, Goutam K

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities of tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that

  4. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes transmit pathogens that cause millions of human deaths each year. Dengue virus is transmitted to humans in tropical and subtropical areas by Aedes aegypti (Diptera: Culicidae). The use of synthetic insecticides to control this mosquito is accompanied by high operational costs and adverse...

  5. Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes.

    PubMed

    Franz, Alexander W E; Clem, Rollie J; Passarelli, A Lorena

    2014-03-01

    Aedes aegypti is the principal vector of dengue virus (DENV) throughout the tropical world. This anthropophilic mosquito species needs to be persistently infected with DENV before it can transmit the virus through its saliva to a new vertebrate host. In the mosquito, DENV is confronted with several innate immune pathways, among which RNA interference is considered the most important. The Ae. aegypti genome project opened the doors for advanced molecular studies on pathogen-vector interactions including genetic manipulation of the vector for basic research and vector control purposes. Thus, Ae. aegypti has become the primary model for studying vector competence for arboviruses at the molecular level. Here, we present recent findings regarding DENV-mosquito interactions, emphasizing how innate immune responses modulate DENV infections in Ae. aegypti. We also describe the latest advancements in genetic manipulation of Ae. aegypti and discuss how this technology can be used to investigate vector transmission of DENV at the molecular level and to control transmission of the virus in the field. PMID:24693489

  6. Dengue infection: a growing global health threat.

    PubMed

    Hemungkorn, Marisa; Thisyakorn, Usa; Thisyakorn, Chule

    2007-10-01

    Dengue infection, one of the most devastating mosquito-borne viral diseases in humans, is now a significant problem in several tropical countries. The disease, caused by the four dengue virus serotypes, ranges from asymptomatic infection to undifferentiated fever, dengue fever (DF), and severe dengue hemorrhagic fever (DHF) with or without shock. DHF is characterized by fever, bleeding diathesis and a tendency to develop a potentially fatal shock syndrome. Consistent hematological findings include vasculopathy, coagulopathy, and thrombocytopenia. There are increasing reports of dengue infection with unusual manifestations that mainly involve cerebral and hepatic symptoms. Laboratory diagnosis includes virus isolation, serology, and detection of dengue ribonucleic acid. Successful treatment, which is mainly supportive, depends on early recognition of the disease and careful monitoring for shock. Prevention depends primarily on control of the mosquito vector. Further study of the pathogenesis of DHF is required for the development of a safe and effective dengue vaccine. PMID:20103874

  7. Field Worker Evaluation of Dengue Vector Surveillance Methods: Factors That Determine Perceived Ease, Difficulty, Value, and Time Effectiveness in Australia and Malaysia.

    PubMed

    Azil, Aishah H; Ritchie, Scott A; Williams, Craig R

    2015-10-01

    This qualitative study aimed to describe field worker perceptions, evaluations of worth, and time costs of routine dengue vector surveillance methods in Cairns (Australia), Kuala Lumpur and Petaling District (Malaysia). In Cairns, the BG-Sentinel trap is a favored method for field workers because of its user-friendliness, but is not as cost-efficient as the sticky ovitrap. In Kuala Lumpur, the Mosquito Larvae Trapping Device is perceived as a solution for the inaccessibility of premises to larval surveys. Nonetheless, the larval survey method is retained in Malaysia for prompt detection of dengue vectors. For dengue vector surveillance to be successful, there needs to be not only technical, quantitative evaluations of method performance but also an appreciation of how amenable field workers are to using particular methods. Here, we report novel field worker perceptions of dengue vector surveillance methods in addition to time analysis for each method. PMID:25186807

  8. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Arivoli, Subramanian; Tennyson, Samuel; Benelli, Giovanni

    2016-05-01

    Mosquitoes (Diptera: Culicidae) are important vectors of terms of public health relevance, especially in tropical and sub-tropical regions. The continuous and indiscriminate use of conventional pesticides for the control of mosquito vectors has resulted in the development of resistance and negative impacts on non-target organisms and the environment. Therefore, there is a need for development of effective mosquito control tools. In this study, the larvicidal and repellent activity of Zingiber nimmonii rhizome essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the Z. nimmonii EO contained at least 33 compounds. Major constituents were myrcene, β-caryophyllene, α-humulene, and α-cadinol. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus, with LC50 values of 41.19, 44.46, and 48.26 μg/ml, respectively. Repellency bioassays at 1.0, 2.0, and 5.0 mg/cm(2) of Z. nimmonii EO gave 100 % protection up to 120, 150, and 180 min. against An. stephensi, followed by Ae. aegypti (90, 120, and 150 min) and Cx. quinquefasciatus (60, 90, and 120 min). Furthermore, the EO was safer towards two non-target aquatic organisms, Diplonychus indicus and Gambusia affinis, with LC50 values of 3241.53 and 9250.12 μg/ml, respectively. Overall, this research adds basic knowledge to develop newer and safer natural larvicides and repellent from Zingiberaceae plants against malaria, dengue, and filariasis mosquito vectors. PMID:26792432

  9. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-01-01

    Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. Conclusion These results suggest

  10. Improving dengue virus capture rates in humans and vectors in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance strategy.

    PubMed

    Thomas, Stephen J; Aldstadt, Jared; Jarman, Richard G; Buddhari, Darunee; Yoon, In-Kyu; Richardson, Jason H; Ponlawat, Alongkot; Iamsirithaworn, Sopon; Scott, Thomas W; Rothman, Alan L; Gibbons, Robert V; Lambrechts, Louis; Endy, Timothy P

    2015-07-01

    Dengue is of public health importance in tropical and sub-tropical regions. Dengue virus (DENV) transmission dynamics was studied in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance of 93 hospitalized subjects with confirmed dengue (initiates) and associated cluster individuals (associates) with entomologic sampling. A total of 438 associates were enrolled from 208 houses with household members with a history of fever, located within a 200-m radius of an initiate case. Of 409 associates, 86 (21%) had laboratory-confirmed DENV infection. A total of 63 (1.8%) of the 3,565 mosquitoes collected were dengue polymerase chain reaction positive (PCR+). There was a significant relationship between spatial proximity to the initiate case and likelihood of detecting DENV from associate cases and Aedes mosquitoes. The viral detection rate from human hosts and mosquito vectors in this study was higher than previously observed by the study team in the same geographic area using different methodologies. We propose that the sampling strategy used in this study could support surveillance of DENV transmission and vector interactions. PMID:25986580

  11. Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province, Thailand, Using an Enhanced Spatiotemporal Surveillance Strategy

    PubMed Central

    Thomas, Stephen J.; Aldstadt, Jared; Jarman, Richard G.; Buddhari, Darunee; Yoon, In-Kyu; Richardson, Jason H.; Ponlawat, Alongkot; Iamsirithaworn, Sopon; Scott, Thomas W.; Rothman, Alan L.; Gibbons, Robert V.; Lambrechts, Louis; Endy, Timothy P.

    2015-01-01

    Dengue is of public health importance in tropical and sub-tropical regions. Dengue virus (DENV) transmission dynamics was studied in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance of 93 hospitalized subjects with confirmed dengue (initiates) and associated cluster individuals (associates) with entomologic sampling. A total of 438 associates were enrolled from 208 houses with household members with a history of fever, located within a 200-m radius of an initiate case. Of 409 associates, 86 (21%) had laboratory-confirmed DENV infection. A total of 63 (1.8%) of the 3,565 mosquitoes collected were dengue polymerase chain reaction positive (PCR+). There was a significant relationship between spatial proximity to the initiate case and likelihood of detecting DENV from associate cases and Aedes mosquitoes. The viral detection rate from human hosts and mosquito vectors in this study was higher than previously observed by the study team in the same geographic area using different methodologies. We propose that the sampling strategy used in this study could support surveillance of DENV transmission and vector interactions. PMID:25986580

  12. Conditions of the household and peridomicile and severe dengue: a case–control study in Brazil

    PubMed Central

    Gibson, Gerusa; Souza-Santos, Reinaldo; Honório, Nildimar Alves; Pacheco, Antonio Guilherme; Moraes, Milton Ozório; Kubelka, Claire; Brasil, Patrícia; Cruz, Oswaldo; Carvalho, Marilia Sá

    2014-01-01

    Introduction The potential influence of high-vector-density environments where people are supposedly more exposed to mosquito bites may have a relation to the clinical severity of dengue fever, an association that has been poorly discussed in the literature. Objective This study aimed at analyzing the association between anthropic environmental factors, particularly those related to the conditions of domicile and peridomicile, and the occurrence of severe dengue cases during the 2008 epidemic in the state of Rio de Janeiro. Methods We conducted a retrospective case–control study with a sample of 88 severe patients aged 2–18. They were selected through chart review in four children's tertiary care centers. The 367 controls were neighbors of the cases, paired by age. Data were collected through interviews and systematic assessment of house conditions as well as peridomicile area conditions, and they were later analyzed by conditional logistic regression. Results The presence of three or more high-volume capacity containers, which were without a lid or were inadequately sealed (water tanks, wells, cisterns, cement tanks, and pools), was significantly more frequent in households with severe cases when compared with households of controls (OR=1.6; CI 95%=1.36–20.01; p=0.015). Discussion The presence of such larger reservoirs that could potentially produce more adult forms of the vector is consistent with a situation where people are more exposed to mosquito bites, and consequently are more prone to have multiple infections over a short period of time. Conclusion The emergence of severe dengue cases in a high-transmission context underpins the importance of constant vigilance and interventions in those types of reservoirs, which result from precarious household structures and irregular water supply services. PMID:24765250

  13. Reviewing dengue: still a neglected tropical disease?

    PubMed

    Horstick, Olaf; Tozan, Yesim; Wilder-Smith, Annelies

    2015-04-01

    Dengue is currently listed as a "neglected tropical disease" (NTD). But is dengue still an NTD or not? Classifying dengue as an NTD may carry advantages, but is it justified? This review considers the criteria for the definition of an NTD, the current diverse lists of NTDs by different stakeholders, and the commonalities and differences of dengue with other NTDs. We also review the current research gaps and research activities and the adequacy of funding for dengue research and development (R&D) (2003-2013). NTD definitions have been developed to a higher precision since the early 2000s, with the following main features: NTDs are characterised as a) poverty related, b) endemic to the tropics and subtropics, c) lacking public health attention, d) having poor research funding and shortcomings in R&D, e) usually associated with high morbidity but low mortality, and f) often having no specific treatment available. Dengue meets most of these criteria, but not all. Although dengue predominantly affects resource-limited countries, it does not necessarily only target the poor and marginalised in those countries. Dengue increasingly attracts public health attention, and in some affected countries it is now a high profile disease. Research funding for dengue has increased exponentially in the past two decades, in particular in the area of dengue vaccine development. However, despite advances in dengue research, dengue epidemics are increasing in frequency and magnitude, and dengue is expanding to new areas. Specific treatment and a highly effective vaccine remain elusive. Major research gaps exist in the area of integrated surveillance and vector control. Hence, although dengue differs from many of the NTDs, it still meets important criteria commonly used for NTDs. The current need for increased R&D spending, shared by dengue and other NTDs, is perhaps the key reason why dengue should continue to be considered an NTD. PMID:25928673

  14. Reviewing Dengue: Still a Neglected Tropical Disease?

    PubMed Central

    Horstick, Olaf; Tozan, Yesim; Wilder-Smith, Annelies

    2015-01-01

    Dengue is currently listed as a “neglected tropical disease” (NTD). But is dengue still an NTD or not? Classifying dengue as an NTD may carry advantages, but is it justified? This review considers the criteria for the definition of an NTD, the current diverse lists of NTDs by different stakeholders, and the commonalities and differences of dengue with other NTDs. We also review the current research gaps and research activities and the adequacy of funding for dengue research and development (R&D) (2003–2013). NTD definitions have been developed to a higher precision since the early 2000s, with the following main features: NTDs are characterised as a) poverty related, b) endemic to the tropics and subtropics, c) lacking public health attention, d) having poor research funding and shortcomings in R&D, e) usually associated with high morbidity but low mortality, and f) often having no specific treatment available. Dengue meets most of these criteria, but not all. Although dengue predominantly affects resource-limited countries, it does not necessarily only target the poor and marginalised in those countries. Dengue increasingly attracts public health attention, and in some affected countries it is now a high profile disease. Research funding for dengue has increased exponentially in the past two decades, in particular in the area of dengue vaccine development. However, despite advances in dengue research, dengue epidemics are increasing in frequency and magnitude, and dengue is expanding to new areas. Specific treatment and a highly effective vaccine remain elusive. Major research gaps exist in the area of integrated surveillance and vector control. Hence, although dengue differs from many of the NTDs, it still meets important criteria commonly used for NTDs. The current need for increased R&D spending, shared by dengue and other NTDs, is perhaps the key reason why dengue should continue to be considered an NTD. PMID:25928673

  15. TALEN-based gene disruption in the dengue vector Aedes aegypti.

    PubMed

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w) mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector. PMID:23555893

  16. Categorization of potential breeding sites of dengue vectors in Johor, Malaysia.

    PubMed

    Nyamah, M A; Sulaiman, S; Omar, B

    2010-04-01

    This cross-sectional study was to compare and categorize potential breeding sites of dengue vectors, Aedes aegypti and Aedes albopictus at three different places, namely, an urban (Taman Permas Jaya, Johor Bahru, Johor), a suburban (Kg. Melayu Gelang Patah, Johor Bahru, Johor) and a rural (Felda Simpang Waha, Kota Tinggi, Johor) habitats in Malaysia. Larval surveys were conducted once in every two months at each habitat over a period of 11 months from August 2000 until June 2001. There was a significant difference between the three study sites in terms of potential breeding sites inspected (p<0.001). There were more potential breeding sites found in the rural area when compared to the urban and suburban habitats. The mean Potential Container Index (PCI) values in descending order were as follows: rural habitat (57.72)>suburban (29.35)>urban habitat (16.97). Both breeding sites and potential breeding sites were the nominator and the total number of containers inspected as the denominator in the formula of PCI, thus the latter could be a potential indicator to initiate anti-dengue campaign at the community level to rid off potential Aedes breeding sites. The three most common potential breeding sites of Aedes species were similar for urban and suburban habitats (flower pots, pails and bowls respectively). However, flower pots, vases and tyres were the three most common potential breeding sites for the rural habitat. Another finding in this study was that various types of larval habitats were found indoors and outdoors for both species. PMID:20562811

  17. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping

    PubMed Central

    2012-01-01

    Background Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes. Methods Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson’s correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic. Results Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture

  18. Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak

    PubMed Central

    Maciel-de-Freitas, Rafael; Avendanho, Fernando Campos; Santos, Rosangela; Sylvestre, Gabriel; Araújo, Simone Costa; Lima, José Bento Pereira; Martins, Ademir Jesus; Coelho, Giovanini Evelim; Valle, Denise

    2014-01-01

    Background During a dengue outbreak with co-circulation of DENV-1 and -2 in the city of Boa Vista, one patient was diagnosed with DENV-4, a serotype supposed absent from Brazil for almost 30 years. The re-emergence of DENV-4 triggered the intensification of mechanical and chemical Aedes aegypti control activities in order to reduce vector density and avoid DENV-4 dissemination throughout the country. Methods/Principal Findings Vector control activities consisted of (a) source reduction, (b) application of diflubenzuron against larvae and (c) vehicle-mounted space spraying of 2% deltamethrin to eliminate adults. Control activity efficacy was monitored by comparing the infestation levels and the number of eggs collected in ovitraps before and after interventions, performed in 22 Boa Vista districts, covering an area of ∼80% of the city and encompassing 56,837 dwellings. A total of 94,325 containers were eliminated or treated with diflubenzuron. The most frequently positive containers were small miscellaneous receptacles, which corresponded to 59% of all positive breeding sites. Insecticide resistance to deltamethrin was assessed before, during and after interventions by dose-response bioassays adopting WHO-based protocols. The intense use of the pyrethroid increased fourfold the resistance ratio of the local Ae. aegypti population only six months after the beginning of vector control. Curiously, this trend was also observed in the districts in which no deltamethrin was applied by the public health services. On the other hand, changes in the resistance ratio to the organophosphate temephos seemed less influenced by insecticide in Boa Vista. Conclusions Despite the intense effort, mosquito infestation levels were only slightly reduced. Besides, the median number of eggs in ovitraps remained unaltered after control activity intensification. The great and rapid increase in pyrethroid resistance levels of natural Ae. aegypti populations is discussed in the context of

  19. Dengue Fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue Fever” will be included in “Health Information for International Travel, 2007-2008” which will be published by the U.S. Centers for Disease Control and Prevention. Dengue and dengue hemorrhagic fever are viral diseases transmitted by Aedes mosquitoes. The disease is found in tropical and s...

  20. Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology

    PubMed Central

    2010-01-01

    Background The control of mosquitoes transmitting infectious diseases relies mainly on the use of chemical insecticides. However, mosquito control programs are now threatened by the emergence of insecticide resistance. Hitherto, most research efforts have been focused on elucidating the molecular basis of inherited resistance. Less attention has been paid to the short-term response of mosquitoes to insecticides and pollutants which could have a significant impact on insecticide efficacy. Here, a combination of LongSAGE and Solexa sequencing was used to perform a deep transcriptome analysis of larvae of the dengue vector Aedes aegypti exposed for 48 h to sub-lethal doses of three chemical insecticides and three anthropogenic pollutants. Results Thirty millions 20 bp cDNA tags were sequenced, mapped to the mosquito genome and clustered, representing 6850 known genes and 4868 additional clusters not located within predicted genes. Mosquitoes exposed to insecticides or anthropogenic pollutants showed considerable modifications of their transcriptome. Genes encoding cuticular proteins, transporters, and enzymes involved in the mitochondrial respiratory chain and detoxification processes were particularly affected. Genes and molecular mechanisms potentially involved in xenobiotic response and insecticide tolerance were identified. Conclusions The method used in the present study appears as a powerful approach for investigating fine transcriptome variations in genome-sequenced organisms and can provide useful informations for the detection of novel transcripts. At the biological level, despite low concentrations and no apparent phenotypic effects, the significant impact of these xenobiotics on mosquito transcriptomes raise important questions about the 'hidden impact' of anthropogenic pollutants on ecosystems and consequences on vector control. PMID:20356352

  1. Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations.

    PubMed

    Zhang, Xianghong; Tang, Sanyi; Cheke, Robert A

    2015-11-01

    Dengue fever is increasing in importance in the tropics and subtropics. Endosymbiotic Wolbachia bacteria as novel control methods can reduce the ability of virus transmission. So, many mosquitoes infected with Wolbachia are released in some countries so that strategies for population replacement can be fulfilled. However, not all of these field trails are successful, for example, releases on Tri Nguyen Island, Vietnam in 2013 failed. Thus, we evaluated a series of relevant issues such as (a) why do some releases fail? (b) What affects the success of population replacement? And (c) Whether or not augmentation can block the dengue diseases in field trials. If not, how we can success be achieved? Models with and without augmentation, incorporating the effects of cytoplasmic incompatibility (CI) and fitness effects are proposed to describe the spread of Wolbachia in mosquito populations. Stability analysis revealed that backward bifurcations and multiple attractors may exist, which indicate that initial quantities of infected and uninfected mosquitoes, augmentation methods (timing, quantity, order and frequency) may affect the success of the strategies. The results show that successful population replacement will rely on selection of suitable strains of Wolbachia and careful design of augmentation methods. PMID:26407645

  2. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae).

    PubMed

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-02-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (-)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (-)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (-)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H₂DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound. PMID:26821032

  3. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae)

    PubMed Central

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-01-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (−)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (−)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (−)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H2DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound. PMID:26821032

  4. Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors.

    PubMed

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Kirthi, Arivarasan Vishnu; Santhoshkumar, Thirunavukkarasu; Jayaseelan, Chidambaram; Rajakumar, Govindasamy

    2013-12-01

    The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm(-1) for O-H hydroxyl group, 2924 cm(-1) for methylene C-H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r (2) values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively. PMID:24013343

  5. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors.

    PubMed

    Velu, Kuppan; Elumalai, Devan; Hemalatha, Periaswamy; Janaki, Arumugam; Babu, Muthu; Hemavathi, Maduraiveeran; Kaleena, Patheri Kunyil

    2015-11-01

    Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue. PMID:26154036

  6. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors

    PubMed Central

    Bargielowski, Irka E.; Lounibos, L. Philip; Carrasquilla, María Cristina

    2013-01-01

    Recently, the highly invasive Asian tiger mosquito, Aedes albopictus, rapidly displaced resident populations of the yellow fever mosquito, Aedes aegypti in the southeastern United States and in Bermuda. Although multiple mechanisms of competitive displacement have been hypothesized, recent evidence of cross-insemination between these species in nature and the sterilizing effects of male accessory gland products asymmetrically favoring A. albopictus in interspecific matings support a role for satyrization (a form of reproductive interference) to explain the rapid displacements. Because of the drastic reproductive loss of A. aegypti females satyrized by A. albopictus males, we predicted selection for prezygotic isolation in populations of A. aegypti sympatric with A. albopictus. Exposures in cages demonstrated that female A. aegypti from populations in Florida sympatric with A. albopictus for the past 20 y were significantly less likely than nearby allopatric populations to mate with heterospecific males. Cross-inseminations of A. albopictus females by A. aegypti males were significantly less common, supporting the one-way direction of displacements observed in nature. Our results indicate rapid sexual selection leading to reproductive character displacement and the potential for satyr-resistant A. aegypti to recover from competitive displacements. These results have implications for increased risks of dengue transmission where these vector species meet worldwide. PMID:23359710

  7. Spatio-Temporal Distribution of Aedes aegypti (Diptera: Culicidae) Mitochondrial Lineages in Cities with Distinct Dengue Incidence Rates Suggests Complex Population Dynamics of the Dengue Vector in Colombia

    PubMed Central

    Jaimes-Dueñez, Jeiczon; Arboleda, Sair; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2015-01-01

    Background Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. Methods/Findings Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. Conclusions Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is

  8. Epidemiology of dengue: past, present and future prospects.

    PubMed

    Murray, Natasha Evelyn Anne; Quam, Mikkel B; Wilder-Smith, Annelies

    2013-01-01

    Dengue is currently regarded globally as the most important mosquito-borne viral disease. A history of symptoms compatible with dengue can be traced back to the Chin Dynasty of 265-420 AD. The virus and its vectors have now become widely distributed throughout tropical and subtropical regions of the world, particularly over the last half-century. Significant geographic expansion has been coupled with rapid increases in incident cases, epidemics, and hyperendemicity, leading to the more severe forms of dengue. Transmission of dengue is now present in every World Health Organization (WHO) region of the world and more than 125 countries are known to be dengue endemic. The true impact of dengue globally is difficult to ascertain due to factors such as inadequate disease surveillance, misdiagnosis, and low levels of reporting. Currently available data likely grossly underestimates the social, economic, and disease burden. Estimates of the global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. The expansion of dengue is expected to increase due to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement and also viral evolution. No vaccine or specific antiviral therapy currently exists to address the growing threat of dengue. Prompt case detection and appropriate clinical management can reduce the mortality from severe dengue. Effective vector control is the mainstay of dengue prevention and control. Surveillance and improved reporting of dengue cases is also essential to gauge the true global situation as indicated in the objectives of the WHO Global Strategy for Dengue Prevention and Control, 2012-2020. More accurate data will inform the prioritization of research, health policy, and financial resources toward reducing this poorly controlled disease. The objective of

  9. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  10. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  11. [Differences and similarities in approach of integrated strategy for dengue prevention and control between Colombia and Peru].

    PubMed

    Castro-Orozco, Raimundo; Alvis-Guzmán, Nelson; Gómez-Arias, Rubén

    2015-10-01

    We analyzed and compared two Integrated Management Strategies for Dengue Prevention and Control (IMS-dengue Colombia and IMS-dengue Peru), through a narrative review of available literature, in order to identify common and dissimilar patterns in two Andean countries with epidemiological differences in the context of dengue disease. We were able to identify differences related to: formal assessment of problem, formation of groups of actors, and quantitative information provided by performance indicators. These limitations identified in IMS-dengue Colombia 2006-2010 were overcome in a new version of the strategy (IMS-dengue Colombia 2012-2021). We were able to document an epidemiological impact of implementation of IMS-dengue Colombia 2006-2010. Additionally, a gradual increase was observed in incidence rates of dengue cases that could be related to the strengthening of surveillance system of IMS- dengue Peru. PMID:26732932

  12. The global distribution and burden of dengue

    PubMed Central

    Bhatt, Samir; Gething, Peter W.; Brady, Oliver J.; Messina, Jane P.; Farlow, Andrew W.; Moyes, Catherine L.; Drake, John M.; Brownstein, John S.; Hoen, Anne G.; Sankoh, Osman; Myers, Monica F.; George, Dylan B.; Jaenisch, Thomas; Wint, G.R. William; Simmons, Cameron P.; Scott, Thomas W.; Farrar, Jeremy J.; Hay, Simon I.

    2013-01-01

    Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes1. For some patients dengue is a life-threatening illness2. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread3. The contemporary worldwide distribution of the risk of dengue virus infection4 and its public health burden are poorly known2,5. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanisation. Using cartographic approaches, we estimate there to be 390 million (95 percent credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of clinical or sub-clinical severity). This infection total is more than three times the dengue burden estimate of the World Health Organization2. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help guide improvements in disease control strategies using vaccine, drug and vector control methods and in their economic evaluation. [285] PMID:23563266

  13. Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds.

    PubMed

    Sharma, Gaurav; Kapoor, Himanshi; Chopra, Madhu; Kumar, Kaushal; Agrawal, Veena

    2014-01-01

    Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation. PMID:24158647

  14. Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes albopictus), Their Altitudinal Distribution and Climatic Determinants of Their Abundance in Central Nepal

    PubMed Central

    Dhimal, Meghnath; Gautam, Ishan; Joshi, Hari Datt; O’Hara, Robert B.; Ahrens, Bodo; Kuch, Ulrich

    2015-01-01

    Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to

  15. Cost of dengue outbreaks: literature review and country case studies

    PubMed Central

    2013-01-01

    Background Dengue disease surveillance and vector surveillance are presumed to detect dengue outbreaks at an early stage and to save – through early response activities – resources, and reduce the social and economic impact of outbreaks on individuals, health systems and economies. The aim of this study is to unveil evidence on the cost of dengue outbreaks. Methods Economic evidence on dengue outbreaks was gathered by conducting a literature review and collecting information on the costs of recent dengue outbreaks in 4 countries: Peru, Dominican Republic, Vietnam, and Indonesia. The literature review distinguished between costs of dengue illness including cost of dengue outbreaks, cost of interventions and cost-effectiveness of interventions. Results Seventeen publications on cost of dengue showed a large range of costs from 0.2 Million US$ in Venezuela to 135.2 Million US$ in Brazil. However, these figures were not standardized to make them comparable. Furthermore, dengue outbreak costs are calculated differently across the publications, and cost of dengue illness is used interchangeably with cost of dengue outbreaks. Only one paper from Australia analysed the resources saved through active dengue surveillance. Costs of vector control interventions have been reported in 4 studies, indicating that the costs of such interventions are lower than those of actual outbreaks. Nine papers focussed on the cost-effectiveness of dengue vaccines or dengue vector control; they do not provide any direct information on cost of dengue outbreaks, but their modelling methodologies could guide future research on cost-effectiveness of national surveillance systems. The country case studies – conducted in very different geographic and health system settings - unveiled rough estimates for 2011 outbreak costs of: 12 million US$ in Vietnam, 6.75 million US$ in Indonesia, 4.5 million US$ in Peru and 2.8 million US$ in Dominican Republic (all in 2012 US$). The proportions of the

  16. [The risk of urban yellow fever outbreaks in Brazil by dengue vectors. Aedes aegypti and Aedes albopictus].

    PubMed

    Mondet, B; da Rosa, A P; Vasconcelos, P F

    1996-01-01

    Urban yellow fever (YF) epidemics have disappeared from Brazil since about 50 years, but a selvatic cycle still exist. In many States, cases are more or less numerous each year. Ae. aegypti was eradicated in 1954, re-appeared temporarily in 1967, and then definitively in 1976-1977. Ae. aegypti is a vector of yellow few (YF), but also of dengue, whose first cases were reported in 1982. Today, dengue is endemic in many regions. A second Flavivirus vector, Aedes albopictus is present since about ten years in some States, from which Säo Paulo. The analysis of the YF cases between 1972 and 1994 allowed us to determine the epidemiologic regions. In the first region, the endemic area, the YF virus is circulating "silently" among monkeys, and the emergence of human cases is rare. In the second region, the epidemic area, some epizootics occur in a more or less cyclic way, and human cases can be numerous. Nevertheless, these outbreaks are considered "selvatic" epidemics, as long as Ae. aegypti is not concerned. From the Amazonian region, the virus moves forward along the forest galleries of the Amazone tributaries, from North to South. Actually, dengue epidemics appear in quite all States, and reflect the geographical distribution of Ae. aegypti. Recently, Ae. aegypti was found in the southern part of the Pará State, in the Carajás region considered to be the source of the main YF epidemics. In another hand, Ae. albopictus is now increasing its distribution area, specially in the suburban zones. The ecology of this potential vector, which seems to have a great adaptative capacity, give this vector an intermediate position between the forest galleries, where the YF virus circulates, and the agglomerations infested with Ae. aegypti. Since a few years, the possibility of urban YF is threatening Brazil, it is more and more predictable and we must survey very carefully the epidemiological situation in some regions of the country. PMID:8924767

  17. Dengue vaccines: challenges, development, current status and prospects.

    PubMed

    Ghosh, A; Dar, L

    2015-01-01

    Infection with dengue virus (DENV) is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future. PMID:25559995

  18. Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-12-01

    Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands. PMID:26344869

  19. Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia

    PubMed Central

    Ocampo, Clara B.; Mina, Neila Julieth; Carabalí, Mabel; Alexander, Neal; Osorio, Lyda

    2015-01-01

    Dengue incidence continues to increase globally and, in the absence of an efficacious vaccine, prevention strategies are limited to vector control. It has been suggested that targeting the most productive breeding sites instead of all water-holding containers could be a cost-effective vector control strategy. We sought to identify and continuously control the most productive Aedes (Stegomyia) breeding site in an endemic urban area in Colombia and followed the subsequent incidence of dengue. In the urban area of Guadalajara de Buga, southwestern Colombia, potential breeding sites inside and outside houses were first characterized, and local personnel trained to assess their productivity based on the pupae/person index. Simultaneously, training and monitoring were implemented to improve the dengue case surveillance system. Entomological data and insecticide resistance studies were used to define the targeted intervention. Then, a quasi-experimental design was used to assess the efficacy of the intervention in terms of the positivity index of the targeted and non- targeted breeding sites, and the impact on dengue cases. Street catch basins (storm drains) were the potential breeding site most frequently found containing Aedes immature stages in the baseline (58.3% of 108). Due to the high resistance to temephos (0% mortality after 24 h), the intervention consisted of monthly application of pyriproxyfen in all the street catch basins (n = 4800). A significant decrease in catch basins positivity for Aedes larvae was observed after each monthly treatment (p < 0.001). Over the intervention period, a reduction in the dengue incidence in Buga was observed (rate ratio 0.19, 95% CI 0.12–0.30, p < 0.0001) after adjusting for autocorrelation and controlling with a neighboring town, Palmira, This study highlights the importance of street catch basins as Aedes breeding sites and suggests that their targeted control could help to decrease dengue transmission in such areas. PMID

  20. Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia.

    PubMed

    Ocampo, Clara B; Mina, Neila Julieth; Carabalí, Mabel; Alexander, Neal; Osorio, Lyda

    2014-04-01

    Dengue incidence continues to increase globally and, in the absence of an efficacious vaccine, prevention strategies are limited to vector control. It has been suggested that targeting the most productive breeding sites instead of all water-holding containers could be a cost-effective vector control strategy. We sought to identify and continuously control the most productive Aedes (Stegomyia) breeding site in an endemic urban area in Colombia and followed the subsequent incidence of dengue. In the urban area of Guadalajara de Buga, southwestern Colombia, potential breeding sites inside and outside houses were first characterized, and local personnel trained to assess their productivity based on the pupae/person index. Simultaneously, training and monitoring were implemented to improve the dengue case surveillance system. Entomological data and insecticide resistance studies were used to define the targeted intervention. Then, a quasi-experimental design was used to assess the efficacy of the intervention in terms of the positivity index of the targeted and non- targeted breeding sites, and the impact on dengue cases. Street catch basins (storm drains) were the potential breeding site most frequently found containing Aedes immature stages in the baseline (58.3% of 108). Due to the high resistance to temephos (0% mortality after 24h), the intervention consisted of monthly application of pyriproxyfen in all the street catch basins (n=4800). A significant decrease in catch basins positivity for Aedes larvae was observed after each monthly treatment (p<0.001). Over the intervention period, a reduction in the dengue incidence in Buga was observed (rate ratio 0.19, 95% CI 0.12-0.30, p<0.0001) after adjusting for autocorrelation and controlling with a neighboring town, Palmira, This study highlights the importance of street catch basins as Aedes breeding sites and suggests that their targeted control could help to decrease dengue transmission in such areas. PMID:24388794

  1. Meteorological Factors for Dengue Fever Control and Prevention in South China.

    PubMed

    Gu, Haogao; Leung, Ross Ka-Kit; Jing, Qinlong; Zhang, Wangjian; Yang, Zhicong; Lu, Jiahai; Hao, Yuantao; Zhang, Dingmei

    2016-01-01

    Dengue fever (DF) is endemic in Guangzhou and has been circulating for decades, causing significant economic loss. DF prevention mainly relies on mosquito control and change in lifestyle. However, alert fatigue may partially limit the success of these countermeasures. This study investigated the delayed effect of meteorological factors, as well as the relationships between five climatic variables and the risk for DF by boosted regression trees (BRT) over the period of 2005-2011, to determine the best timing and strategy for adapting such preventive measures. The most important meteorological factor was daily average temperature. We used BRT to investigate the lagged relationship between dengue clinical burden and climatic variables, with the 58 and 62 day lag models attaining the largest area under the curve. The climatic factors presented similar patterns between these two lag models, which can be used as references for DF prevention in the early stage. Our results facilitate the development of the Mosquito Breeding Risk Index for early warning systems. The availability of meteorological data and modeling methods enables the extension of the application to other vector-borne diseases endemic in tropical and subtropical countries. PMID:27589777

  2. Risk factors associated with death in Brazilian children with severe dengue: a case-control study

    PubMed Central

    dos Remédios Freitas Carvalho Branco, Maria; de Albuquerque Luna, Expedito José; Júnior, Leônidas Lopes Braga; de Oliveira, Ricardo Villar Barbosa; Rios, Lívia Teresa Moreira; do Socorro da Silva, Maria; Medeiros, Maria Nilza Lima; Silva, Gilnara Fontinelle; Nina, Fernanda Campos Amaral Figueiredo; Lima, Taliane Jardim; Brito, Jayron Alves; de Oliveira, Avessandra Costa Cardoso; Pannuti, Claudio Sergio

    2014-01-01

    OBJECTIVE: The purpose of this case-control study was to evaluate risk factors associated with death in children with severe dengue. METHODS: The clinical condition of hospitalized patients with severe dengue who died (cases, n = 18) was compared with that of hospitalized patients with severe dengue who survived (controls, n = 77). The inclusion criteria for this study were age under 13 years; hospital admission in São Luis, northeastern Brazil; and laboratory-confirmed diagnosis of dengue. RESULTS: Severe bleeding (hemoptysis), a defining criterion for dengue severity, was the factor most strongly associated with death in our study. We also found that epistaxis and persistent vomiting, both included as warning signs in the World Health Organization (WHO) classification of dengue, were strongly associated with death. No significant association was observed between any of the laboratory findings and death. CONCLUSIONS: The finding that epistaxis and persistent vomiting were also associated with death in children with severe dengue was unexpected and deserves to be explored in future studies. Because intensive care units are often limited in resource-poor settings, any information that can help to distinguish patients with severe dengue with a higher risk to progress to death may be crucial. PMID:24473560

  3. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    NASA Astrophysics Data System (ADS)

    Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

    2012-09-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

  4. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental

  5. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial

    PubMed Central

    Nava-Aguilera, Elizabeth; Arosteguí, Jorge; Morales-Perez, Arcadio; Suazo-Laguna, Harold; Legorreta-Soberanis, José; Hernandez-Alvarez, Carlos; Fernandez-Salas, Ildefonso; Paredes-Solís, Sergio; Balmaseda, Angel; Cortés-Guzmán, Antonio Juan; Serrano de los Santos, René; Coloma, Josefina; Ledogar, Robert J; Harris, Eva

    2015-01-01

    Objective To test whether community mobilization adds effectiveness to conventional dengue control. Design Pragmatic open label parallel group cluster randomized controlled trial. Those assessing the outcomes and analyzing the data were blinded to group assignment. Centralized computerized randomization after the baseline study allocated half the sites to intervention, stratified by country, evidence of recent dengue virus infection in children aged 3-9, and vector indices. Setting Random sample of communities in Managua, capital of Nicaragua, and three coastal regions in Guerrero State in the south of Mexico. Participants Residents in a random sample of census enumeration areas across both countries: 75 intervention and 75 control clusters (about 140 households each) were randomized and analyzed (60 clusters in Nicaragua and 90 in Mexico), including 85 182 residents in 18 838 households. Interventions A community mobilization protocol began with community discussion of baseline results. Each intervention cluster adapted the basic intervention—chemical-free prevention of mosquito reproduction—to its own circumstances. All clusters continued the government run dengue control program. Main outcome measures Primary outcomes per protocol were self reported cases of dengue, serological evidence of recent dengue virus infection, and conventional entomological indices (house index: households with larvae or pupae/households examined; container index: containers with larvae or pupae/containers examined; Breteau index: containers with larvae or pupae/households examined; and pupae per person: pupae found/number of residents). Per protocol secondary analysis examined the effect of Camino Verde in the context of temephos use. Results With cluster as the unit of analysis, serological evidence from intervention sites showed a lower risk of infection with dengue virus in children (relative risk reduction 29.5%, 95% confidence interval 3.8% to 55.3%), fewer reports of

  6. A tetravalent alphavirus-vector based dengue vaccine provides effective immunity in an early life mouse model.

    PubMed

    Khalil, Syed Muaz; Tonkin, Daniel R; Mattocks, Melissa D; Snead, Andrew T; Johnston, Robert E; White, Laura J

    2014-07-01

    Dengue viruses (DENV1-4) cause 390 million clinical infections every year, several hundred thousand of which progress to severe hemorrhagic and shock syndromes. Preexisting immunity resulting from a previous DENV infection is the major risk factor for severe dengue during secondary heterologous infections. During primary infections in infants, maternal antibodies pose an analogous risk. At the same time, maternal antibodies are likely to prevent induction of endogenous anti-DENV antibodies in response to current live, attenuated virus (LAV) vaccine candidates. Any effective early life dengue vaccine has to overcome maternal antibody interference (leading to ineffective vaccination) and poor induction of antibody responses (increasing the risk of severe dengue disease upon primary infection). In a previous study, we demonstrated that a non-propagating Venezuelan equine encephalitis virus replicon expression vector (VRP), expressing the ectodomain of DENV E protein (E85), overcomes maternal interference in a BALB/c mouse model. We report here that a single immunization with a tetravalent VRP vaccine induced NAb and T-cell responses to each serotype at a level equivalent to the monovalent vaccine components, suggesting that this vaccine modality can overcome serotype interference. Furthermore, neonatal immunization was durable and could be boosted later in life to further increase NAb and T-cell responses. Although the neonatal immune response was lower in magnitude than responses in adult BALB/c mice, we demonstrate that VRP vaccines generated protective immunity from a lethal challenge after a single neonatal immunization. In summary, VRP vaccines expressing DENV antigens were immunogenic and protective in neonates, and hence are promising candidates for safe and effective vaccination in early life. PMID:24882043

  7. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    PubMed Central

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  8. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    PubMed

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  9. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes.

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L

    2015-05-01

    Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of An. stephensi (lethal dose (LC₅₀) = 22.44 μg/mL; LC₉₀ 40.65 μg/mL), Ae. aegypti (LC₅₀ = 25.77 μg/mL; LC₉₀ 45.98 μg/mL), and C. quinquefasciatus (LC₅₀ = 27.83 μg/mL; LC₉₀ 48.92 μg/mL), respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents. PMID:25666372

  10. Community and School-Based Health Education for Dengue Control in Rural Cambodia: A Process Evaluation

    PubMed Central

    Khun, Sokrin; Manderson, Lenore

    2007-01-01

    Dengue fever continues to be a major public health problem in Cambodia, with significant impact on children. Health education is a major means for prevention and control of the National Dengue Control Program (NDCP), and is delivered to communities and in schools. Drawing on data collected in 2003–2004 as part of an ethnographic study conducted in eastern Cambodia, we explore the approaches used in health education and their effectiveness to control dengue. Community health education is provided through health centre outreach activities and campaigns of the NDCP, but is not systematically evaluated, is under-funded and delivered irregularly; school-based education is restricted in terms of time and lacks follow-up in terms of practical activities for prevention and control. As a result, adherence is partial. We suggest the need for sustained routine education for dengue prevention and control, and the need for approaches to ensure the translation of knowledge into practice. PMID:18160981

  11. The impact of insecticide-treated school uniforms on dengue infections in school-aged children: study protocol for a randomised controlled trial in Thailand

    PubMed Central

    2012-01-01

    Background There is an urgent need to protect children against dengue since this age group is particularly sensitive to the disease. Since dengue vectors are active mainly during the day, a potential target for control should be schools where children spend a considerable amount of their day. School uniforms are the cultural norm in most developing countries, worn throughout the day. We hypothesise that insecticide-treated school uniforms will reduce the incidence of dengue infection in school-aged children. Our objective is to determine the impact of impregnated school uniforms on dengue incidence. Methods A randomised controlled trial will be conducted in eastern Thailand in a group of schools with approximately 2,000 students aged 7–18 years. Pre-fabricated school uniforms will be commercially treated to ensure consistent, high-quality insecticide impregnation with permethrin. A double-blind, randomised, crossover trial at the school level will cover two dengue transmission seasons. Discussion Practical issues and plans concerning intervention implementation, evaluation, analysing and interpreting the data, and possible policy implications arising from the trial are discussed. Trial registration clinicaltrial.gov. Registration number: NCT01563640 PMID:23153360

  12. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  13. Mediational Effects of Self-Efficacy Dimensions in the Relationship between Knowledge of Dengue and Dengue Preventive Behaviour with Respect to Control of Dengue Outbreaks: A Structural Equation Model of a Cross-Sectional Survey

    PubMed Central

    Isa, Affendi; Loke, Yoon K.; Smith, Jane R.; Papageorgiou, Alexia; Hunter, Paul R.

    2013-01-01

    Background Dengue fever is endemic in Malaysia, with frequent major outbreaks in urban areas. The major control strategy relies on health promotional campaigns aimed at encouraging people to reduce mosquito breeding sites close to people's homes. However, such campaigns have not always been 100% effective. The concept of self-efficacy is an area of increasing research interest in understanding how health promotion can be most effective. This paper reports on a study of the impact of self-efficacy on dengue knowledge and dengue preventive behaviour. Methods and Findings We recruited 280 adults from 27 post-outbreak villages in the state of Terengganu, east coast of Malaysia. Measures of health promotion and educational intervention activities and types of communication during outbreak, level of dengue knowledge, level and strength of self-efficacy and dengue preventive behaviour were obtained via face-to-face interviews and questionnaires. A structural equation model was tested and fitted the data well (χ2 = 71.659, df = 40, p = 0.002, RMSEA = 0.053, CFI = 0.973, TLI = 0.963). Mass media, local contact and direct information-giving sessions significantly predicted level of knowledge of dengue. Level and strength of self-efficacy fully mediated the relationship between knowledge of dengue and dengue preventive behaviours. Strength of self-efficacy acted as partial mediator in the relationship between knowledge of dengue and dengue preventive behaviours. Conclusions To control and prevent dengue outbreaks by behavioural measures, health promotion and educational interventions during outbreaks should now focus on those approaches that are most likely to increase the level and strength of self-efficacy. PMID:24086777

  14. The Importance of Long-Term Social Research in Enabling Participation and Developing Engagement Strategies for New Dengue Control Technologies

    PubMed Central

    McNaughton, Darlene

    2012-01-01

    Background In recent years, new strategies aimed at reducing the capacity of mosquito vectors to transmit dengue fever have emerged. As with earlier control methods, they will have to be employed in a diverse range of communities across the globe and into the main settings for disease transmission, the homes, businesses and public buildings of residents in dengue-affected areas. However, these strategies are notably different from previous methods and draw on technologies that are not without controversy. Public engagement and authorization are critical to the future success of these programs. Methodology/Principal Findings This paper reports on an Australian case study where long-term social research was used to enable participation and the design of an engagement strategy tailored specifically to the sociopolitical setting of a potential trial release site of Wolbachia-infected Aedes aegytpi mosquitoes. Central themes of the social research, methods used and conclusions drawn are briefly described. Results indicate that different communities are likely to have divergent expectations, concerns and cultural sensibilities with regard to participation, engagement and authorization. Conclusions/Significance The findings show that a range of issues need to be understood and taken into account to enable sensitive, ethical and effective engagement when seeking public support for new dengue control methods. PMID:22953011

  15. Current perspectives on the spread of dengue in India

    PubMed Central

    Gupta, Ekta; Ballani, Neha

    2014-01-01

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are important arthropod-borne viral diseases. Each year, there are ~50 million dengue infections and ~500,000 individuals are hospitalized with DHF, mainly in Southeast Asia. Dengue in India has dramatically expanded over the last few decades, with rapidly changing epidemiology. The first major DHF outbreak in the entire nation occurred in 1996 by dengue virus serotype 2, and after a gap of almost a decade, the country faced yet another DF outbreak in the year 2003 by dengue virus serotype 3. A dramatic increase in the number and frequency of outbreaks followed, and, at present, in most of the states of India, dengue is almost endemic. At present, all the four serotypes are seen in circulation, but the predominant serotype keeps changing. Despite this trend, surveillance, reporting, and diagnosis of dengue remain largely passive in India. More active community-based epidemiological studies with intensive vector control and initiatives for dengue vaccine development should be geared up to control the spread of dengue in India. We review here the factors that may have contributed to the changing epidemiology of dengue in India. PMID:25525374

  16. Current perspectives on the spread of dengue in India.

    PubMed

    Gupta, Ekta; Ballani, Neha

    2014-01-01

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are important arthropod-borne viral diseases. Each year, there are ~50 million dengue infections and ~500,000 individuals are hospitalized with DHF, mainly in Southeast Asia. Dengue in India has dramatically expanded over the last few decades, with rapidly changing epidemiology. The first major DHF outbreak in the entire nation occurred in 1996 by dengue virus serotype 2, and after a gap of almost a decade, the country faced yet another DF outbreak in the year 2003 by dengue virus serotype 3. A dramatic increase in the number and frequency of outbreaks followed, and, at present, in most of the states of India, dengue is almost endemic. At present, all the four serotypes are seen in circulation, but the predominant serotype keeps changing. Despite this trend, surveillance, reporting, and diagnosis of dengue remain largely passive in India. More active community-based epidemiological studies with intensive vector control and initiatives for dengue vaccine development should be geared up to control the spread of dengue in India. We review here the factors that may have contributed to the changing epidemiology of dengue in India. PMID:25525374

  17. Effect of community participation on household environment to mitigate dengue transmission in Thailand.

    PubMed

    Suwannapong, N; Tipayamongkholgul, M; Bhumiratana, A; Boonshuyar, C; Howteerakul, N; Poolthin, S

    2014-03-01

    Due to the absence of dengue vaccination, vector control is the only measure to prevent dengue outbreaks. The key element of dengue prevention is to eliminate vector habitats. Clean household environment, preventive behaviors of household members and community participation in dengue prevention and control are key successful elements. This study aimed to investigate the associations between environmental factors, dengue knowledge, perception and preventive behaviors of household and collaboration of community members and household risk of dengue by using mixed methods. One dengue epidemic province was selected from each region of Thailand including Bangkok. Two districts, one from the highest and another from the lowest dengue incidence areas, were selected from those provinces. The household leaders, community members, and local authorities in highest dengue incidence areas were interviewed by using questionnaire and through group interviews. The environment of each selected household was observed. Of 4,561 households, 194 were reported having dengue case(s) in the past year and that outdoor solid waste disposal significantly influenced household risk of dengue (OR=1.62; 95% CI=1.16-2.29). In contrast, having gardening areas reduced dengue risk at household level by 32%. High level of community participation in dengue prevention and control in uninfected areas and the information from local authorities and community members reconfirmed that community participation was the key factor against dengue outbreaks. Sustainable process of encouraging community members to eliminate vector breeding sites such as outdoor solid waste disposal is likely to lead to an achievement in dengue prevention and control. PMID:24862055

  18. Economic Cost of Dengue in Puerto Rico

    PubMed Central

    Halasa, Yara A.; Shepard, Donald S.; Zeng, Wu

    2012-01-01

    Dengue, endemic in Puerto Rico, reached a record high in 2010. To inform policy makers, we derived annual economic cost. We assessed direct and indirect costs of hospitalized and ambulatory dengue illness in 2010 dollars through surveillance data and interviews with 100 laboratory-confirmed dengue patients treated in 2008–2010. We corrected for underreporting by using setting-specific expansion factors. Work absenteeism because of a dengue episode exceeded the absenteeism for an episode of influenza or acute otitis media. From 2002 to 2010, the aggregate annual cost of dengue illness averaged $38.7 million, of which 70% was for adults (age 15+ years). Hospitalized patients accounted for 63% of the cost of dengue illness, and fatal cases represented an additional 17%. Households funded 48% of dengue illness cost, the government funded 24%, insurance funded 22%, and employers funded 7%. Including dengue surveillance and vector control activities, the overall annual cost of dengue was $46.45 million ($12.47 per capita). PMID:22556069

  19. Silica nanoparticle: a potential new insecticide for mosquito vector control.

    PubMed

    Barik, Tapan K; Kamaraju, Raghavendra; Gowswami, Arunava

    2012-09-01

    Presently, there is a need for increased efforts to develop newer and effective methods to control mosquito vectors as the existing chemical and biological methods are not as effective as in earlier period owing to different technical and operational reasons. The use of nanomaterial products in various sectors of science including health increased during the last decade. We tested three types of nanosilica, namely lipophilic, hydrophilic and hydrophobic, to assess their larvicidal, pupicidal and growth inhibitor properties and also their influence on oviposition behaviour (attraction/deterrence) of mosquito species that transmit human diseases, namely malaria (Anopheles), yellow fever, chickungunya and dengue (Aedes), lymphatic filariasis and encephalitis (Culex and Aedes). Application of hydrophobic nanosilica at 112.5 ppm was found effective against mosquito species tested. The larvicidal effect of hydrophobic nanosilica on mosquito species tested was in the order of Anopheles stephensi > Aedes aegypti > Culex quinquefasciatus, and the pupicidal effect was in the order of A. stephensi > C. quinquefasciatus > Ae. aegypti. Results of combined treatment of hydrophobic nanosilica with temephos in larvicidal test indicated independent toxic action without any additive effect. This is probably the first report that demonstrated that nanoparticles particularly nanosilica could be used in mosquito vector control. PMID:22565400

  20. Studies on community knowledge and behavior following a dengue epidemic in Chennai city, Tamil Nadu, India.

    PubMed

    Ashok Kumar, V; Rajendran, R; Manavalan, R; Tewari, S C; Arunachalam, N; Ayanar, K; Krishnamoorthi, R; Tyagi, B K

    2010-08-01

    In 2001, a major dengue outbreak was recorded in Chennai city, with 737 cases (90%) out of a total of 861 cases recorded from Tamil Nadu state. A KAP survey was carried out to assess the community knowledge, attitude and practice on dengue fever (DF), following the major dengue outbreak in 2001. A pre- tested, structured questionnaire was used for data collection. The multistage cluster sampling method was employed and 640 households (HHs) were surveyed. Among the total HHs surveyed, 34.5% of HHs were aware of dengue and only 3.3% of HHs knew that virus is the causative agent for DF. Majority of the HHs (86.5%) practiced water storage and only 3% of them stored water more than 5 days. No control measures were followed to avoid mosquito breeding in the water holding containers by majority of HHs (65%). Sixty percent of HHs did not know the biting behaviour of dengue vector mosquitoes. The survey results indicate that the community knowledge was very poor on dengue, its transmission, vector breeding sources, biting behavior and preventive measures. The lack of basic knowledge of the community on dengue epidemiology and vector bionomics would be also a major cause of increasing trend of dengue in this highly populated urban environment. There is an inevitable need to organize health education programmes about dengue disease to increase community knowledge and also to sensitize the community to participate in integrated vector control programme to resolve the dengue problem. PMID:20962733

  1. Paratransgenesis: a promising new strategy for mosquito vector control.

    PubMed

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2015-01-01

    The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host's reproduction; (c) reducing the vector's competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated

  2. Dengue fever, Hawaii, 2001-2002.

    PubMed

    Effler, Paul V; Pang, Lorrin; Kitsutani, Paul; Vorndam, Vance; Nakata, Michele; Ayers, Tracy; Elm, Joe; Tom, Tammy; Reiter, Paul; Rigau-Perez, José G; Hayes, John M; Mills, Kristin; Napier, Mike; Clark, Gary G; Gubler, Duane J

    2005-05-01

    Autochthonous dengue infections were last reported in Hawaii in 1944. In September 2001, the Hawaii Department of Health was notified of an unusual febrile illness in a resident with no travel history; dengue fever was confirmed. During the investigation, 1,644 persons with locally acquired denguelike illness were evaluated, and 122 (7%) laboratory-positive dengue infections were identified; dengue virus serotype 1 was isolated from 15 patients. No cases of dengue hemorrhagic fever or shock syndrome were reported. In 3 instances autochthonous infections were linked to a person who reported denguelike illness after travel to French Polynesia. Phylogenetic analyses showed the Hawaiian isolates were closely associated with contemporaneous isolates from Tahiti. Aedes albopictus was present in all communities surveyed on Oahu, Maui, Molokai, and Kauai; no Ae. aegypti were found. This outbreak underscores the importance of maintaining surveillance and control of potential disease vectors even in the absence of an imminent disease threat. PMID:15890132

  3. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  4. Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L.

    PubMed

    Warikoo, Radhika; Wahab, Naim; Kumar, Sarita

    2011-10-01

    The oviposition deterrence and ovicidal potential of five different essential oils, peppermint oil (Mentha piperita), basil oil (Ocimum basilicum), rosemary oil (Rosemarinus officinalis), citronella oil (Cymbopogon nardus), and celery seed oil (Apium graveolens), were assessed against female adults of the dengue vector, Aedes aegypti L. Multiple concentration tests were carried out where cups containing 1 mL of different concentrations (100%, 10%, 1%, 0.1%) of the oils and 199 mL of water were used for oviposition. The number of eggs laid and the larvae hatched in each cup were scored to evaluate the oviposition deterrent and ovicidal potentials of the oils. Our investigations revealed that the addition of 100% oil (pure oil) caused complete oviposition deterrence except in A. graveolens which resulted in 75% effective repellency. The use of 10% oil resulted in the maximum deterrence of 97.5% as shown by the M. piperita oil while other oils caused 36-97% oviposition deterrence as against the control. The oviposition medium with 1% oil showed decreased deterrent potential with 30-64% effective repellency, the M. piperita oil being exceptional. However, as the concentrations of the oil were reduced further to 0.1%, the least effective oil observed was A. graveolens (25% ER). Also, the M. piperita oil showed much reduced activity (40%) as compared to the control, while the other oils exhibited 51-58% repellency to oviposition. The studies on the ovicidal effects of these oils revealed that the eggs laid in the water with 100% essential oils did not hatch at all, whereas when 10% oils were used, only the R. officinalis oil resulted in 28% egg hatch. At lower concentrations (1%), the oils of M. piperita, O. basilicum, and C. nardus showed complete egg mortality while those of A. graveolens and R. officinalis resulted in 71% and 34% egg hatches, respectively. When used at 0.1%, the O. basilicum oil was found to be the only effective oil with 100% egg mortality, whereas

  5. Mosquito vector biology and control in latin america-a 24th symposium.

    PubMed

    Clark, Gary G; Fernández-Salas, Ildefonso

    2014-09-01

    The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA, in February 2014. The principal objective, for the previous 23 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 26 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical control, studies of dengue viruses, and insecticide resistance associated with Aedes aegypti; Anopheles vectors of malaria; essential oils; and ethnic groups and vector-borne diseases. PMID:25843096

  6. Vector control activities, fiscal year 1983

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1984-07-01

    The goal of the Vector Control Program is to safeguard public health and well-being in the Tennessee Valley region by controlling arthropod pests of medical importance that are propagated on TVA lands or waters or that are produced as a result of TVA activities. To achieve this goal the program is divided into two major categories consisting of operations and support studies. The latter is geared to improving the operational effectiveness and efficiency of the control program and to identify additional vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed.

  7. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  8. Latest developments and future directions in dengue vaccines

    PubMed Central

    Thisyakorn, Chule

    2014-01-01

    Dengue is a mosquito-borne disease which is currently an expanding global health problem. The disease is caused by four closely related viruses, the dengue virus. There are no specific dengue therapeutics and prevention is currently limited to vector control measures. Development of an effective tetravalent dengue vaccine would therefore represent a major advance in the control of the disease and is considered a high public health priority. While a licensed dengue vaccine is not yet available, the scope and intensity of dengue vaccine development has increased dramatically in the last decade. The uniqueness of the dengue viruses and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on chimeric yellow fever dengue virus, has progressed to phase III efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA and purified inactivated vaccine candidates, are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and virus-like particle-based vaccines, are under evaluation in preclinical studies. PMID:24757522

  9. Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR

    PubMed Central

    Morin, Cory W.; Monaghan, Andrew J.; Hayden, Mary H.; Barrera, Roberto; Ernst, Kacey

    2015-01-01

    Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010–2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important

  10. Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR.

    PubMed

    Morin, Cory W; Monaghan, Andrew J; Hayden, Mary H; Barrera, Roberto; Ernst, Kacey

    2015-08-01

    Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010-2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important

  11. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  12. The Role of Serotype Interactions and Seasonality in Dengue Model Selection and Control: Insights from a Pattern Matching Approach

    PubMed Central

    ten Bosch, Quirine A.; Hassan, Muhammad R. A.; Chadee, Dave D.; Michael, Edwin

    2016-01-01

    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control. PMID:27159023

  13. The Role of Serotype Interactions and Seasonality in Dengue Model Selection and Control: Insights from a Pattern Matching Approach.

    PubMed

    Ten Bosch, Quirine A; Singh, Brajendra K; Hassan, Muhammad R A; Chadee, Dave D; Michael, Edwin

    2016-05-01

    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control. PMID:27159023

  14. Dengue Disease Risk Mental Models in the City of Dhaka, Bangladesh: Juxtapositions and Gaps Between the Public and Experts.

    PubMed

    Dhar-Chowdhury, Parnali; Haque, C Emdad; Driedger, S Michelle

    2016-05-01

    Worldwide, more than 50 million cases of dengue fever are reported every year in at least 124 countries, and it is estimated that approximately 2.5 billion people are at risk for dengue infection. In Bangladesh, the recurrence of dengue has become a growing public health threat. Notably, knowledge and perceptions of dengue disease risk, particularly among the public, are not well understood. Recognizing the importance of assessing risk perception, we adopted a comparative approach to examine a generic methodology to assess diverse sets of beliefs related to dengue disease risk. Our study mapped existing knowledge structures regarding the risk associated with dengue virus, its vector (Aedes mosquitoes), water container use, and human activities in the city of Dhaka, Bangladesh. "Public mental models" were developed from interviews and focus group discussions with diverse community groups; "expert mental models" were formulated based on open-ended discussions with experts in the pertinent fields. A comparative assessment of the public's and experts' knowledge and perception of dengue disease risk has revealed significant gaps in the perception of: (a) disease risk indicators and measurements; (b) disease severity; (c) control of disease spread; and (d) the institutions responsible for intervention. This assessment further identifies misconceptions in public perception regarding: (a) causes of dengue disease; (b) dengue disease symptoms; (c) dengue disease severity; (d) dengue vector ecology; and (e) dengue disease transmission. Based on these results, recommendations are put forward for improving communication of dengue risk and practicing local community engagement and knowledge enhancement in Bangladesh. PMID:26387980

  15. [New vector control measures implemented between 2005 and 2011 on Reunion Island: lessons learned from chikungunya epidemic].

    PubMed

    Bâville, M; Dehecq, J S; Reilhes, O; Margueron, T; Polycarpe, D; Filleul, L

    2012-03-01

    A major chikungunya outbreak concerned 38% of people living in Reunion Island in 2005-2006. Chikungunya is an arthropod-born-virus disease conveyed by mosquitoes called Aedes albopictus. The health agency in Indian Ocean is responsible for vector control. Previously, in the early 40s, vector control concerned only malaria prophylaxis in La Réunion. Then, during the chikungunya outbreak, a new vector control team was installed and learned from this epidemic. The lessons drawn from chikungunya outbreak in La Réunion are about global executive management and organization linked the local partners and population. The lessons also concern technical topics such as the need of scientific research about vectors and vector-control methods. Finally, the regional cooperation in Indian Ocean (Réunion, Maurice, Seychelles, Comoros, Madagascar) has to be developed to share epidemiologic and entomologic data in order to prevent new chikungunya or dengue outbreak. PMID:22693927

  16. Household Wastes as Larval Habitats of Dengue Vectors: Comparison between Urban and Rural Areas of Kolkata, India.

    PubMed

    Banerjee, Soumyajit; Aditya, Gautam; Saha, Goutam K

    2015-01-01

    Porcelain and plastic materials constitute bulk of household wastes. Owing to resistibility and slow degradability that accounts for higher residence time, these materials qualify as potential hazardous wastes. Retention of water permits these wastes to form a congenial biotope for the breeding of different vector mosquitoes. Thus porcelain and plastic wastes pose a risk from public health viewpoint. This proposition was validated through the study on the porcelain and plastic household wastes as larval habitats of Dengue vectors (Aedes spp.) in rural and urban areas around Kolkata, India. The wastes were characterized in terms of larval productivity, seasonal variation and a comparison between urban and rural areas was made using data of two subsequent years. The number of wastes positive as larval habitats and their productivity of Aedes spp. varied among the types of household wastes with reference to months and location. Multivariate analysis revealed significant differences in the larval productivity of the household wastes based on the materials, season, and urban-rural context. Results of Discriminant Analysis indicated differences in abundance of Ae. aegypti and Ae. albopictus for the urban and rural areas. The porcelain and plastic wastes were more productive in urban areas compared to the rural areas, indicating a possible difference in the household waste generation. A link between household wastes with Aedes productivity is expected to increase the risk of dengue epidemics if waste generation is continued without appropriate measures to limit addition to the environment. Perhaps, alternative strategies and replacement of materials with low persistence time can reduce this problem of waste and mosquito production. PMID:26447690

  17. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  18. Household Wastes as Larval Habitats of Dengue Vectors: Comparison between Urban and Rural Areas of Kolkata, India

    PubMed Central

    Banerjee, Soumyajit; Aditya, Gautam; Saha, Goutam K.

    2015-01-01

    Porcelain and plastic materials constitute bulk of household wastes. Owing to resistibility and slow degradability that accounts for higher residence time, these materials qualify as potential hazardous wastes. Retention of water permits these wastes to form a congenial biotope for the breeding of different vector mosquitoes. Thus porcelain and plastic wastes pose a risk from public health viewpoint. This proposition was validated through the study on the porcelain and plastic household wastes as larval habitats of Dengue vectors (Aedes spp.) in rural and urban areas around Kolkata, India. The wastes were characterized in terms of larval productivity, seasonal variation and a comparison between urban and rural areas was made using data of two subsequent years. The number of wastes positive as larval habitats and their productivity of Aedes spp. varied among the types of household wastes with reference to months and location. Multivariate analysis revealed significant differences in the larval productivity of the household wastes based on the materials, season, and urban–rural context. Results of Discriminant Analysis indicated differences in abundance of Ae. aegypti and Ae. albopictus for the urban and rural areas. The porcelain and plastic wastes were more productive in urban areas compared to the rural areas, indicating a possible difference in the household waste generation. A link between household wastes with Aedes productivity is expected to increase the risk of dengue epidemics if waste generation is continued without appropriate measures to limit addition to the environment. Perhaps, alternative strategies and replacement of materials with low persistence time can reduce this problem of waste and mosquito production. PMID:26447690

  19. The incorporation of activities to control dengue by community health agents

    PubMed Central

    Cazola, Luiza Helena de Oliveira; Tamaki, Edson Mamoru; Pontes, Elenir Rose Jardim Cury; de Andrade, Sonia Maria Oliveira

    2014-01-01

    OBJECTIVE To evaluate the performance of Community Health Agents when dengue control activities were added to their tasks. METHODS Performance was measured comparing the evolution of selected indicators from the Brazilian National Dengue Control Program and the Family Health Strategy for 2002 to 2008 in the municipality of Sao Gabriel do Oeste, MS, Central Western Brazil, with those of Rio Verde de Mato Grosso, neighboring municipality with demographic, socioeconomic and health services similarities. Data were collected from municipal databases of the Information System for Yellow Fever and Dengue and the Information System for Primary Healthcare of the Mato Grosso do Sul State Health Office. The variables selected for the family health strategy activities were: monthly home visits, pregnant women whose antenatal care began in the first trimester, children under one with up-to-date vaccinations and hypertensive patients. Those selected for the Brazilian National Dengue Control Program were: properties inspected with Aedes aegypti and properties not inspected. RESULTS The two municipalities maintained a similar trend in dengue control indicators in the period studied. With regard to the Family Health Strategy, in 2002 Sao Gabriel do Oeste was better off in three of the four indicators studied, however, this situation was reversed at the end of the period when the county was overtaken by Rio Verde de Mato Grosso in three of the four indicators analyzed, including, the monthly average community health worker visits per registered family, the main activity of a Family Health Strategy agent. CONCLUSIONS: Incorporating the National Dengue Control Program into the Family Health Strategy is viable and developed without prejudice to dengue control activities, however, the same did not occur with the activities of family health in Sao Gabriel do Oeste. The additional workload of the community health workers is the most likely hypothesis for the declining performance of these

  20. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Bhattacharyya, Atanu; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Eco-friendly mosquitocides are a priority. In Ayurvedic medicine, Plectranthus species have been used to treat heart disease, convulsions, spasmodic pain and painful urination. In this research, we evaluated the acute toxicity of essential oil from Plectranthus barbatus and its major constituents, against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. The chemical composition of P. barbatus essential oil was analyzed by gas chromatography-mass spectroscopy. Nineteen components were identified. Major constituents were eugenol (31.12%), α-pinene (19.38%) and β-caryophyllene (18.42%). Acute toxicity against early third-instar larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus was investigated. The essential oil had a significant toxic effect against larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus, with 50% lethal concentration (LC50) values of 84.20, 87.25 and 94.34 μg/ml and 90% lethal concentration (LC90) values of 165.25, 170.56 and 179.58 μg/ml, respectively. Concerning major constituents, eugenol, α-pinene and β-caryophyllene appeared to be most effective against An. subpictus (LC50 = 25.45, 32.09 and 41.66 μg/ml, respectively), followed by Ae. albopictus (LC50 = 28.14, 34.09 and 44.77 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 30.80, 36.75 and 48.17 μg/ml, respectively). Overall, the chance to use metabolites from P. barbatus essential oil against mosquito vectors seems promising, since they are effective at low doses and could be an advantageous alternative to build newer and safer mosquito control tools. PMID:26518773

  1. [Dengue fever in mainland France].

    PubMed

    Paty, M-C

    2014-11-01

    Dengue fever is the most widespread distributed vector borne viral disease. It is transmitted through the bites of Aedes aegypti and Aedes albopictus mosquitoes. With the expansion of Aedes albopictus and increasing travel exchange, it is no longer limited to the tropical zone and transmission has been documented in temperate areas. In mainland France, where Aedes albopictus has been present and disseminating since 2004, 2 episodes of autochthonous transmission occurred in 2010 and in 2013. Control measures against dengue and chikungunya, which shares the same vector, are implemented every year since 2006, in the areas where the vector is present. They aim at preventing or limiting local transmission of these diseases. They are based on epidemiological and entomological surveillance and vector control measures. The diagnosis of dengue, and chikungunya should be considered in case of suggestive symptoms in patients returning from an area of virus circulation. It should also be considered for patients living or having stayed in areas of mainland France where Aedes albopictus is present, during its activity period from May 1 to November 30. The prevention and control system, including vector control measures and the notification of cases to the local health authority should be known, as the risk of autochthonous transmission increases every year. PMID:25080833

  2. Vaccines and immunization strategies for dengue prevention.

    PubMed

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  3. Host biomarkers distinguish dengue from leptospirosis in Colombia: a case–control study

    PubMed Central

    2014-01-01

    Background Dengue fever and leptospirosis have partially overlapping geographic distributions, similar clinical presentations and potentially life-threatening complications but require different treatments. Distinguishing between these cosmopolitan emerging pathogens represents a diagnostic dilemma of global importance. We hypothesized that perturbations in host biomarkers can differentiate between individuals with dengue fever and leptospirosis during the acute phase of illness. Methods We randomly selected subjects from a prospective cohort study of acute febrile illness in Bucaramanga, Colombia and tested 19 serum biomarkers by ELISA in dengue fever (DF, n = 113) compared to subjects with leptospirosis (n = 47). Biomarkers were selected for further analysis if they had good discriminatory ability (area under the ROC curve (AUC) >0.80) and were beyond a reference range (assessed using local healthy controls). Results Nine biomarkers differed significantly between dengue fever and leptospirosis, with higher levels of Angptl3, IL-18BP, IP-10/CXCL10, Platelet Factor 4, sICAM-1, Factor D, sEng and sKDR in dengue and higher levels of sTie-2 in leptospirosis (p < 0.001 for all comparisons). Two biomarkers, sEng and IL18BP, showed excellent discriminatory ability (AUROC >0.90). When incorporated into multivariable models, sEng and IL18BP improved the diagnostic accuracy of clinical information alone. Conclusions These results suggest that host biomarkers may have utility in differentiating between dengue and leptospirosis, clinically similar conditions of different etiology. PMID:24444080

  4. Emergency vector control in a DENV-2 outbreak in 2002 in Pingtung City, Pingtung County, Taiwan.

    PubMed

    Teng, Hwa-Jen; Chen, Tzay-Jinn; Tsai, Shu-Fen; Lin, Chiung-Pin; Chiou, Horng-Ying; Lin, Min-Cheng; Yang, Shih-Yan; Lee, Yi-Wun; Kang, Chi-Chieh; Hsu, Ho-Cheng; Chang, Niann-Tai

    2007-09-01

    This paper reports the strategy and effectiveness of an emergency control program conducted in Pingtung City, Taiwan in response to dengue outbreaks. In our control strategy, we carried out 3 insecticide space sprays with an interval of 6-7 days and 2 source reductions to cover the entire duration of dengue virus exposure in humans and mosquito vectors. The control effect was demonstrated by a significant reduction in the Breteau (51.1%) and larval (80.0%) indices, but no such effect was demonstrated by alterations in the adult index (54.9%), house index (45.0%), container index (33.8%), or by indoor (15.8%), outdoor (31.2%), or total water-filled containers (22.7%) per 100 premises examined. The contribution made by the reduction in the number of positive containers was primarily in the outdoor (77.2%), and not the indoor containers (-6.0%). This reduction attributed to an overall reduction of 96.0% Aedes albopictus larvae and 71.0% Aedes aegypti. Therefore, 4 weeks after this extensive emergency control measure, the number of dengue cases dropped to one. Finally, due to both the decrease in temperature resulting from the upcoming winter, and to the sustained effort toward source reduction, the transmission cycle of DENV-2 in Pingtung City was interrupted at the beginning of 2003, and no additional cases were identified in late 2003. PMID:17881866

  5. Dengue viruses – an overview

    PubMed Central

    Bäck, Anne Tuiskunen; Lundkvist, Åke

    2013-01-01

    Dengue viruses (DENVs) cause the most common arthropod-borne viral disease in man with 50–100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF) is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence. PMID:24003364

  6. An Alphavirus Vector-Based Tetravalent Dengue Vaccine Induces a Rapid and Protective Immune Response in Macaques That Differs Qualitatively from Immunity Induced by Live Virus Infection

    PubMed Central

    Sariol, Carlos A.; Mattocks, Melissa D.; Wahala M. P. B., Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L.; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V.; Martinez, Melween I.; de Silva, Aravinda; Johnston, Robert E.

    2013-01-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans. PMID:23302884

  7. Dengue in Florida (USA)

    PubMed Central

    Rey, Jorge R.

    2014-01-01

    Florida (USA), particularly the southern portion of the State, is in a precarious situation concerning arboviral diseases. The geographic location, climate, lifestyle, and the volume of travel and commerce are all conducive to arbovirus transmission. During the last decades, imported dengue cases have been regularly recorded in Florida, and the recent re-emergence of dengue as a major public health concern in the Americas has been accompanied by a steady increase in the number of imported cases. In 2009, there were 28 cases of locally transmitted dengue in Key West, and in 2010, 65 cases were reported. Local transmission was also reported in Martin County in 2013 (29 cases), and isolated locally transmitted cases were also reported from other counties in the last five years. Dengue control and prevention in the future will require close cooperation between mosquito control and public health agencies, citizens, community and government agencies, and medical professionals to reduce populations of the vectors and to condition citizens and visitors to take personal protection measures that minimize bites by infected mosquitoes. PMID:26462955

  8. Insecticide susceptibility of the dengue vector, Aedes aegypti (L.) in Metropolitan Bangkok.

    PubMed

    Komalamisra, Narumon; Srisawat, Raweewan; Phanbhuwong, Theerawit; Oatwaree, Sompis

    2011-07-01

    Mosquito larvae were collected from the houses of dengue infected patients in Bangkok, Thailand from 55 sites (36 out of the 50 districts of Metropolitan Bangkok). Aedes aegypti larvae were tested against temephos using WHO bioassay techniques. Adult mosquitoes were tested for susceptibility to permethrin, deltamethrin, cyfluthrin, malathion and DDT using WHO diagnostic doses. Most of the larvae tested were susceptible to temephos. Only few specimens were resistant to temephos. Most adult mosquitoes were highly susceptible to malathion. Deltamethrin resistance was seen in 6 districts of Bangkok. Variable levels of susceptibility were seen with cyfluthrin. Most of the specimens showed resistance to permethrin and all specimens were resistant to DDT. PMID:22299463

  9. A prospective case-control study to investigate retinal microvascular changes in acute dengue infection

    PubMed Central

    Tan, Petrina; Lye, David C.; Yeo, Tun Kuan; Cheung, Carol Y.; Thein, Tun-Linn; Wong, Joshua G.; Agrawal, Rupesh; Li, Ling-Jun; Wong, Tien-Yin; Gan, Victor C.; Leo, Yee-Sin; Teoh, Stephen C.

    2015-01-01

    Dengue infection can affect the microcirculation by direct viral infection or activation of inflammation. We aimed to determine whether measured retinal vascular parameters were associated with acute dengue infection. Patients with acute dengue were recruited from Communicable Diseases Center, Singapore and age-gender-ethnicity matched healthy controls were selected from a population-based study. Retinal photographs were taken on recruitment and convalescence. A spectrum of quantitative retinal microvascular parameters (retinal vascular caliber, fractal dimension, tortuosity and branching angle) was measured using a semi-automated computer-based program. (Singapore I Vessel Assessment, version 3.0). We included 62 dengue patients and 127 controls. Dengue cases were more likely to have wider retinal arteriolar and venular calibers (158.3 μm vs 144.3 μm, p < 0.001; 227.7 μm vs 212.8 μm, p < 0.001; respectively), higher arteriolar and venular fractal dimensions (1.271 vs 1.249, p = 0.002; 1.268 vs. 1.230, p < 0.001, respectively), higher arteriolar and venular tortuosity (0.730 vs 0.546 [x104], p < 0.001; 0.849 vs 0.658 [x104], p < 0.001; respectively), compared to controls. Resolution of acute dengue coincided with decrease in retinal vascular calibers and venular fractal dimension. Dengue patients have altered microvascular network in the retina; these changes may reflect pathophysiological processes in the immune system. PMID:26603217

  10. A prospective case-control study to investigate retinal microvascular changes in acute dengue infection.

    PubMed

    Tan, Petrina; Lye, David C; Yeo, Tun Kuan; Cheung, Carol Y; Thein, Tun-Linn; Wong, Joshua G; Agrawal, Rupesh; Li, Ling-Jun; Wong, Tien-Yin; Gan, Victor C; Leo, Yee-Sin; Teoh, Stephen C

    2015-01-01

    Dengue infection can affect the microcirculation by direct viral infection or activation of inflammation. We aimed to determine whether measured retinal vascular parameters were associated with acute dengue infection. Patients with acute dengue were recruited from Communicable Diseases Center, Singapore and age-gender-ethnicity matched healthy controls were selected from a population-based study. Retinal photographs were taken on recruitment and convalescence. A spectrum of quantitative retinal microvascular parameters (retinal vascular caliber, fractal dimension, tortuosity and branching angle) was measured using a semi-automated computer-based program. (Singapore I Vessel Assessment, version 3.0). We included 62 dengue patients and 127 controls. Dengue cases were more likely to have wider retinal arteriolar and venular calibers (158.3 μm vs 144.3 μm, p < 0.001; 227.7 μm vs 212.8 μm, p < 0.001; respectively), higher arteriolar and venular fractal dimensions (1.271 vs 1.249, p = 0.002; 1.268 vs. 1.230, p < 0.001, respectively), higher arteriolar and venular tortuosity (0.730 vs 0.546 [x10(4)], p < 0.001; 0.849 vs 0.658 [x10(4)], p < 0.001; respectively), compared to controls. Resolution of acute dengue coincided with decrease in retinal vascular calibers and venular fractal dimension. Dengue patients have altered microvascular network in the retina; these changes may reflect pathophysiological processes in the immune system. PMID:26603217

  11. Factors associated with larval control practices in a dengue outbreak prone area.

    PubMed

    Mohamad, Mariam; Selamat, Mohamad Ikhsan; Ismail, Zaliha

    2014-01-01

    In order to reduce the risk of dengue outbreak recurrence in a dengue outbreak prone area, the members of the community need to sustain certain behavior to prevent mosquito from breeding. Our study aims to identify the factors associated with larval control practices in this particular community. A cross-sectional study involves 322 respondents living in a dengue outbreak prone area who were interviewed using a pretested questionnaire. The level of knowledge about Aedes mosquitoes, dengue transmission, its symptoms, and personal preventive measures ranges from fair to good. The level of attitude towards preventive measures was high. However, reported level of personal larval control practices was low (33.2%). Our multiple logistic regression analysis showed that only those with a good level of attitude towards personal preventive measure and frequent attendance to health campaigns were significantly associated with the good larval control practices. We conclude that, in a dengue outbreak prone area, having a good attitude towards preventive measures and frequent participation in health campaigns are important factors to sustain practices on larval control. PMID:25309602

  12. Vector control activities: Fiscal Year, 1986

    SciTech Connect

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vector control operations and tick control research. Specific program control activities and support studies are discussed.

  13. Control of Chagas disease vectors.

    PubMed

    Ramsey, J M; Schofield, C J

    2003-01-01

    Most Latin American countries are making dramatic progress in controlling Chagas disease, through a series of national and international initiatives focusing on elimination of domestic populations of Triatominae, improved screening of blood donors, and clinical support and treatment of persons infected with Trypanosoma cruzi. Some countries, particularly Uruguay, Chile and Brazil, are sufficiently advanced in their programmes to initiate detailed planning of the subsequent phases of Chagas disease control, while others such as Peru, Ecuador, and Mexico, are currently applying only the initial phases of the control campaigns. In this review, we seek to provide a brief history of the campaigns as a basis for discussion of future interventions. Our aim is to relate operational needs to the underlying biological aspects that have made Chagas disease so serious in Latin America but have also revealed the epidemiological vulnerability of this disease. The English version of this paper is available too at: http://www.insp.mx/salud/index.html. PMID:12736992

  14. Effects of Blood Coagulate Removal Method on Aedes albopictus (Diptera: Culicidae) Life Table Characteristics and Vector Competence for Dengue Virus.

    PubMed

    van Dodewaard, Caitlin A M; Richards, Stephanie L; Harris, Jonathan W

    2016-01-01

    Commercially available blood can be used as an alternative to live animals to maintain mosquito colonies and deliver infectious bloodmeals during research studies. We analyzed the extent to which two methods for blood coagulate removal (defibrination or addition of sodium citrate) affected life table characteristics (i.e., fecundity, fertility, hatch rate, and adult survival) and vector competence (infection, dissemination, and transmission) of Aedes albopictus (Skuse) for dengue virus (DENV). Two types of bovine blood were tested at two extrinsic incubation temperatures (27 or 30°C) for DENV-infected and uninfected mosquitoes. Fully engorged mosquitoes were transferred to individual cages containing an oviposition cup and a substrate. Eggs (fecundity) and hatched larvae (fertility) were counted. At 14 and 21 d post feeding on a DENV-infected bloodmeal, 15 mosquitoes were sampled from each group, and vector competence was analyzed (bodies [infection], legs [dissemination], and saliva [transmission]). Differences in life table characteristics and vector competence were analyzed for mosquitoes fed blood processed using different methods for removal of coagulates. The method for removal of coagulates significantly impacted fecundity, fertility, and hatch time in the uninfected group, but not DENV-infected group. Infected mosquitoes showed significantly higher fecundity and faster hatch time than uninfected mosquitoes. We show no significant differences in infection or dissemination rates between groups; however, horizontal transmission rate was significantly higher in mosquitoes fed DENV-infected citrated compared with defibrinated blood. We expect the findings of this study to inform research using artificial blood delivery methods to assess vector competence. PMID:26474883

  15. Genetic shifting: a novel approach for controlling vector-borne diseases.

    PubMed

    Powell, Jeffrey R; Tabachnick, Walter J

    2014-06-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control. PMID:24794113

  16. Dengue virus infection alters post-transcriptional modification of microRNAs in the mosquito vector Aedes aegypti.

    PubMed

    Etebari, Kayvan; Osei-Amo, Solomon; Blomberg, Simon Phillip; Asgari, Sassan

    2015-01-01

    Recent discoveries regarding the importance of isomiRs have increased our understanding of the regulatory complexities of the miRNAome. Observed changes in the miRNA profiles in mosquitoes infected with flaviviruses have implicated small RNAs in the interactions between viruses and their vectors. Here we analysed the isomiR profiles of both uninfected and infected Aedes aegypti mosquitoes with the major human pathogen dengue virus (DENV). We found that several specific isomiRs were significantly altered in their abundance patterns in response to DENV infection potentially affecting their target repertoire. Notable among these were isomiR variants which displayed arm-switching. We also demonstrate that modifications to the 3p end of miRNAs are vastly more prevalent than those at the 5p ends. We also observed that in only 45% of Ae. aegypti miRNAs the most abundant read matches the exact sequence reported in miRBase. Further, we found positive correlations between the number of mature miRNA reads, pre-miRNA length, GC content and secondary structure minimum free energy with the number of isomiRs. The findings presented here provide some evidence that isomiR production is not a random phenomenon and may be important in DENV replication in its vector. PMID:26514826

  17. Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus.

    PubMed

    Charan, Shakti S; Pawar, Kiran D; Severson, David W; Patole, Milind S; Shouche, Yogesh S

    2013-07-01

    Differences in midgut bacterial communities of Aedes aegypti, the primary mosquito vector of dengue viruses (DENV), might influence the susceptibility of these mosquitoes to infection by DENV. As a first step toward addressing this hypothesis, comparative analysis of bacterial communities from midguts of mosquito strains with differential genetic susceptibility to DENV was performed. 16S rRNA gene libraries and real-time PCR approaches were used to characterize midgut bacterial community composition and abundance in three Aedes aegypti strains: MOYO, MOYO-R, and MOYO-S. Although Pseudomonas spp.-related clones were predominant across all libraries, some interesting and potentially significant differences were found in midgut bacterial communities among the three strains. Pedobacter sp.- and Janthinobacterium sp.-related phylotypes were identified only in the MOYO-R strain libraries, while Bacillus sp. was detected only in the MOYO-S strain. Rahnella sp. was found in MOYO-R and MOYO strains libraries but was absent in MOYO-S libraries. Both 16S rRNA gene library and real-time PCR approaches confirmed the presence of Pedobacter sp. only in the MOYO-R strain. Further, real-time PCR-based quantification of 16S rRNA gene copies showed bacterial abundance in midguts of the MOYO-R strain mosquitoes to be at least 10-100-folds higher than in the MOYO-S and MOYO strain mosquitoes. Our study identified some putative bacteria with characteristic physiological properties that could affect the infectivity of dengue virus. This analysis represents the first report of comparisons of midgut bacterial communities with respect to refractoriness and susceptibility of Aedes aegypti mosquitoes to DENV and will guide future efforts to address the potential interactive role of midgut bacteria of Aedes aegypti mosquitoes in determining vectorial capacity for DENV. PMID:23636307

  18. Permethrin-Treated Clothing as Protection against the Dengue Vector, Aedes aegypti: Extent and Duration of Protection

    PubMed Central

    DeRaedt Banks, Sarah; Orsborne, James; Gezan, Salvador A.; Kaur, Harparkash; Wilder-Smith, Annelies; Lindsey, Steve W.; Logan, James G.

    2015-01-01

    Introduction Dengue transmission by the mosquito vector, Aedes aegypti, occurs indoors and outdoors during the day. Personal protection of individuals, particularly when outside, is challenging. Here we assess the efficacy and durability of different types of insecticide-treated clothing on laboratory-reared Ae. aegypti. Methods Standardised World Health Organisation Pesticide Evaluation Scheme (WHOPES) cone tests and arm-in-cage assays were used to assess knockdown (KD) and mortality of Ae. aegypti tested against factory-treated fabric, home-dipped fabric and microencapsulated fabric. Based on the testing of these three different treatment types, the most protective was selected for further analysis using arm-in cage assays with the effect of washing, ultra-violet light, and ironing investigated using high pressure liquid chromatography. Results Efficacy varied between the microencapsulated and factory dipped fabrics in cone testing. Factory-dipped clothing showed the greatest effect on KD (3 min 38.1%; 1 hour 96.5%) and mortality (97.1%) with no significant difference between this and the factory dipped school uniforms. Factory-dipped clothing was therefore selected for further testing. Factory dipped clothing provided 59% (95% CI = 49.2%– 66.9%) reduction in landing and a 100% reduction in biting in arm-in-cage tests. Washing duration and technique had a significant effect, with insecticidal longevity shown to be greater with machine washing (LW50 = 33.4) compared to simulated hand washing (LW50 = 17.6). Ironing significantly reduced permethrin content after 1 week of simulated use, with a 96.7% decrease after 3 months although UV exposure did not reduce permethrin content within clothing significantly after 3 months simulated use. Conclusion Permethrin-treated clothing may be a promising intervention in reducing dengue transmission. However, our findings also suggest that clothing may provide only short-term protection due to the effect of washing and ironing

  19. Mosquito Vector Biology and Control in Latin America-A 25TH Symposium.

    PubMed

    2015-09-01

    The 25th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 81st Annual Meeting in New Orleans, LA, in March 2015. The principal objective, as for the previous 24 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 24 presentations that were given orally in Spanish by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, operations, ecology, chemical control, studies of dengue viruses, and insecticide resistance. Insect vectors included Aedes, Culex, and Anopheles mosquitoes in addition to phlebotomine sand flies and triatomine bugs. PMID:26375913

  20. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India. PMID:26627691

  1. Ascent thrust vector control system test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Testing of the Ascent Thrust Vector Control System in support of the Ares 1-X program at the Marshall Space Flight Center in Huntsville, Alabama. This image is extracted from a high definition video file and is the highest resolution available

  2. Dengue Knowledge and Preventive Practices in Iquitos, Peru.

    PubMed

    Paz-Soldán, Valerie A; Morrison, Amy C; Cordova Lopez, Jhonny J; Lenhart, Audrey; Scott, Thomas W; Elder, John P; Sihuincha, Moises; Kochel, Tadeusz J; Halsey, Eric S; Astete, Helvio; McCall, Philip J

    2015-12-01

    As part of a cluster-randomized trial to evaluate insecticide-treated curtains for dengue prevention in Iquitos, Peru, we surveyed 1,333 study participants to examine knowledge and reported practices associated with dengue and its prevention. Entomological data from 1,133 of these households were linked to the survey. Most participants knew that dengue was transmitted by mosquito bite (85.6%), but only few (18.6%) knew that dengue vectors bite during daytime. Most commonly recognized dengue symptoms were fever (86.6%), headache (76.4%), and muscle/joint pain (67.9%). Most commonly reported correct practices for mosquito control were cleaning homes (61.6%), using insecticide sprays (23%), and avoiding having standing water at home (12.3%). Higher education was associated with higher knowledge about dengue, including transmission and vector control. Higher socioeconomic status was associated with increased reported use of preventive practices requiring money expenditure. We were less likely to find Aedes aegypti eggs, larvae, or pupae in households that had < 5-year-old children at home. Although dengue has been transmitted in Iquitos since the 1990s and the Regional Health Authority routinely fumigates households, treats domestic water containers with larvicide, and issues health education messages through mass media, knowledge of dengue transmission and household practices for prevention could be improved. PMID:26503276

  3. Dengue Knowledge and Preventive Practices in Iquitos, Peru

    PubMed Central

    Paz-Soldán, Valerie A.; Morrison, Amy C.; Cordova Lopez, Jhonny J.; Lenhart, Audrey; Scott, Thomas W.; Elder, John P.; Sihuincha, Moises; Kochel, Tadeusz J.; Halsey, Eric S.; Astete, Helvio; McCall, Philip J.

    2015-01-01

    As part of a cluster-randomized trial to evaluate insecticide-treated curtains for dengue prevention in Iquitos, Peru, we surveyed 1,333 study participants to examine knowledge and reported practices associated with dengue and its prevention. Entomological data from 1,133 of these households were linked to the survey. Most participants knew that dengue was transmitted by mosquito bite (85.6%), but only few (18.6%) knew that dengue vectors bite during daytime. Most commonly recognized dengue symptoms were fever (86.6%), headache (76.4%), and muscle/joint pain (67.9%). Most commonly reported correct practices for mosquito control were cleaning homes (61.6%), using insecticide sprays (23%), and avoiding having standing water at home (12.3%). Higher education was associated with higher knowledge about dengue, including transmission and vector control. Higher socioeconomic status was associated with increased reported use of preventive practices requiring money expenditure. We were less likely to find Aedes aegypti eggs, larvae, or pupae in households that had < 5-year-old children at home. Although dengue has been transmitted in Iquitos since the 1990s and the Regional Health Authority routinely fumigates households, treats domestic water containers with larvicide, and issues health education messages through mass media, knowledge of dengue transmission and household practices for prevention could be improved. PMID:26503276

  4. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  5. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  6. Cell Phone-Based System (Chaak) for Surveillance of Immatures of Dengue Virus Mosquito Vectors

    PubMed Central

    LOZANO–FUENTES, SAUL; WEDYAN, FADI; HERNANDEZ–GARCIA, EDGAR; SADHU, DEVADATTA; GHOSH, SUDIPTO; BIEMAN, JAMES M.; TEP-CHEL, DIANA; GARCÍA–REJÓN, JULIÁN E.; EISEN, LARS

    2014-01-01

    Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, México, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network. PMID:23926788

  7. Effectiveness of Ultra-Low Volume Nighttime Applications of an Adulticide against Diurnal Aedes albopictus, a Critical Vector of Dengue and Chikungunya Viruses

    PubMed Central

    Farajollahi, Ary; Healy, Sean P.; Unlu, Isik; Gaugler, Randy; Fonseca, Dina M.

    2012-01-01

    Aedes albopictus, the Asian tiger mosquito, continues expanding its geographic range and involvement in mosquito-borne diseases such as chikungunya and dengue. Vector control programs rarely attempt to suppress this diurnal species with an ultra-low volume (ULV) adulticide because for maximum efficacy applications are conducted at night. During 2009–2011 we performed experimental nighttime applications of a novel adulticide (DUET®) against field populations of Ae. albopictus within an urban site composed of approximately 1,000 parcels (home and yard) in northeastern USA. Dual applications at mid label rate of the adulticide spaced one or two days apart accomplished significantly higher control (85.0±5.4% average reduction) than single full rate applications (73.0±5.4%). Our results demonstrate that nighttime ULV adulticiding is effective in reducing Ae. albopictus abundance and highlight its potential for use as part of integrated pest management programs and during disease epidemics when reducing human illness is of paramount importance. PMID:23145115

  8. 2nd International External Quality Control Assessment for the Molecular Diagnosis of Dengue Infections

    PubMed Central

    Domingo, Cristina; Niedrig, Matthias; Teichmann, Anette; Kaiser, Marco; Rumer, Leonid; Jarman, Richard G.; Donoso-Mantke, Oliver

    2010-01-01

    Background Currently dengue viruses (DENV) pose an increasing threat to over 2.5 billion people in over 100 tropical and sub-tropical countries worldwide. International air travel is facilitating rapid global movement of DENV, increasing the risk of severe dengue epidemics by introducing different serotypes. Accurate diagnosis is critical for early initiation of preventive measures. Different reverse transcriptase PCR (RT-PCR) methods are available, which should be evaluated and standardized. Epidemiological and laboratory-based surveillance is required to monitor and guide dengue prevention and control programmes, i.e., by mosquito control or possible vaccination (as soon as an effective and safe vaccine becomes available). Objective The purpose of the external quality assurance (EQA) study described is to assess the efficiency and accuracy of dengue molecular diagnosis methods applied by expert laboratories. Study Design A panel of 12 human plasma samples was distributed and tested for DENV-specific RNA. The panel comprised 9 samples spiked with different DENV serotypes (DENV-1 to DENV-4), including 10-fold dilution series of DENV-1 and DENV-3. Two specificity controls consisted of a sample with a pool of 4 other flaviviruses and a sample with chikungunya virus. A negative control sample was also included. Results Thirty-seven laboratories (from Europe, Middle East Asia, Asia, the Americas/Caribbean, and Africa) participated in this EQA study, and reports including 46 sets of results were returned. Performance among laboratories varied according to methodologies used. Only 5 (10.9%) data sets met all criteria with optimal performance, and 4 (8.7%) with acceptable performance, while 37 (80.4%) reported results showed the need for improvement regarding accomplishment of dengue molecular diagnosis. Failures were mainly due to lack of sensitivity and the presence of false positives. Conclusions The EQA provides information on each laboratory's efficacy of RT

  9. [Society, economy, inequities and dengue].

    PubMed

    Kouri, Gustavo; Pelegrino, José L; Munster, Blanca María; Guzmán, María G

    2007-01-01

    Dengue and dengue hemorrhagic fever in the Americas have been on the rise throughout the 1990s, with the highest number -over one million cases- reported in 2002. This paper analyzed the situation of dengue in the region and discussed the determining factors that account for the rise of the disease, making emphasis on socioeconomic factors, such as poverty, inequality, migrations and the lack of access to basic services, which are the most influential in perpetuating this disease in most countries. Considering that a safe and accessible vaccine is now unavailable, basic principles of vector control combined with political willingness, inter-sectoral involvement, active community participation and the tightening of health legislation were also examined as the only viable solution at present. PMID:23427454

  10. Acceptability of impregnated school uniforms for dengue control in Thailand: a mixed methods approach

    PubMed Central

    Murray, Natasha; Jansarikij, Suphachai; Olanratmanee, Phanthip; Maskhao, Pongsri; Souares, Aurélia; Wilder-Smith, Annelies; Kittayapong, Pattamaporn; Louis, Valérie R.

    2014-01-01

    Background As current dengue control strategies have been shown to be largely ineffective in reducing dengue in school-aged children, novel approaches towards dengue control need to be studied. Insecticide-impregnated school uniforms represent an innovative approach with the theoretical potential to reduce dengue infections in school children. Objectives This study took place in the context of a randomised control trial (RCT) to test the effectiveness of permethrin-impregnated school uniforms (ISUs) for dengue prevention in Chachoengsao Province, Thailand. The objective was to assess the acceptability of ISUs among parents, teachers, and principals of school children involved in the trial. Methodology Quantitative and qualitative tools were used in a mixed methods approach. Class-clustered randomised samples of school children enrolled in the RCT were selected and their parents completed 321 self-administered questionnaires. Descriptive statistics and logistic regression were used to analyse the quantitative data. Focus group discussions and individual semi-structured interviews were conducted with parents, teachers, and principals. Qualitative data analysis involved content analysis with coding and thematic development. Results The knowledge and experience of dengue was substantial. The acceptability of ISUs was high. Parents (87.3%; 95% CI 82.9–90.8) would allow their child to wear an ISU and 59.9% (95% CI 53.7–65.9) of parents would incur additional costs for an ISU over a normal uniform. This was significantly associated with the total monthly income of a household and the educational level of the respondent. Parents (62.5%; 95% CI 56.6–68.1) indicated they would be willing to recommend ISUs to other parents. Conclusions Acceptability of the novel tool of ISUs was high as defined by the lack of concern along with the willingness to pay and recommend. Considering issues of effectiveness and scalability, assessing acceptability of ISUs over time is

  11. Costs of Dengue Control Activities and Hospitalizations in the Public Health Sector during an Epidemic Year in Urban Sri Lanka

    PubMed Central

    Thalagala, Neil; Tissera, Hasitha; Palihawadana, Paba; Amarasinghe, Ananda; Ambagahawita, Anuradha; Wilder-Smith, Annelies; Shepard, Donald S.; Tozan, Yeşim

    2016-01-01

    Background Reported as a public health problem since the 1960s in Sri Lanka, dengue has become a high priority disease for public health authorities. The Ministry of Health is responsible for controlling dengue and other disease outbreaks and associated health care. The involvement of large numbers of public health staff in dengue control activities year-round and the provision of free medical care to dengue patients at secondary care hospitals place a formidable financial burden on the public health sector. Methods We estimated the public sector costs of dengue control activities and the direct costs of hospitalizations in Colombo, the most heavily urbanized district in Sri Lanka, during the epidemic year of 2012 from the Ministry of Health’s perspective. The financial costs borne by public health agencies and hospitals are collected using cost extraction tools designed specifically for the study and analysed retrospectively using a combination of activity-based and gross costing approaches. Results The total cost of dengue control and reported hospitalizations was estimated at US$3.45 million (US$1.50 per capita) in Colombo district in 2012. Personnel costs accounted for the largest shares of the total costs of dengue control activities (79%) and hospitalizations (46%). The results indicated a per capita cost of US$0.42 for dengue control activities. The average costs per hospitalization ranged between US$216–609 for pediatric cases and between US$196–866 for adult cases according to disease severity and treatment setting. Conclusions This analysis is a first attempt to assess the economic burden of dengue response in the public health sector in Sri Lanka. Country-specific evidence is needed for setting public health priorities and deciding about the deployment of existing or new technologies. Our results suggest that dengue poses a major economic burden on the public health sector in Sri Lanka. PMID:26910907

  12. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus

    PubMed Central

    Ishak, Intan H.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus. PMID:27094778

  13. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus.

    PubMed

    Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S

    2016-01-01

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus. PMID:27094778

  14. Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Kalaivani, Kandaswamy; Senthil-Nathan, Sengottayan; Murugesan, Arunachalam Ganesan

    2012-03-01

    The larvicidal activity of hydrodistillate extracts from Mentha piperita L. Ocimum basilicum L. Curcuma longa L. and Zingiber officinale L. were investigated against the dengue vector Aedes aegypti L. (Diptera: Culicidae).The results indicated that the mortality rates at 80, 100, 200 and 400 ppm of M. piperita, Z. officinale, C. longa and O. basilicum concentrations were highest amongst all concentrations of the crude extracts tested against all the larval instars and pupae of A. aegypti. Result of log probit analysis (at 95% confidence level) revealed that lethal concentration LC₅₀ and LC₉₀ values were 47.54 and 86.54 ppm for M. piperita, 40.5 and 85.53 ppm for Z. officinale, 115.6 and 193.3 ppm for C. longa and 148.5 and 325.7 ppm for O. basilicum, respectively. All of the tested oils proved to have strong larvicidal activity (doses from 5 to 350 ppm) against A. aegypti fourth instars, with the most potent oil being M. piperita extract, followed by Z. officinale, C. longa and O. basilicum. In general, early instars were more susceptible than the late instars and pupae. The results achieved suggest that, in addition to their medicinal activities, Lamiaceae and Zingiberaceae plant extracts may also serve as a natural larvicidal agent. PMID:21881945

  15. Neural responses to one- and two-tone stimuli in the hearing organ of the dengue vector mosquito

    PubMed Central

    Arthur, Ben J.; Wyttenbach, Robert A.; Harrington, Laura C.; Hoy, Ronald R.

    2010-01-01

    SUMMARY Recent studies demonstrate that mosquitoes listen to each other's wing beats just prior to mating in flight. Field potentials from sound-transducing neurons in the antennae contain both sustained and oscillatory components to pure and paired tone stimuli. Described here is a direct comparison of these two types of response in the dengue vector mosquito, Aedes aegypti. Across a wide range of frequencies and intensities, sustained responses to one- and two-tone stimuli are about equal in magnitude to oscillatory responses to the beats produced by two-tone stimuli. All of these responses are much larger than the oscillatory responses to one-tone stimuli. Similarly, the frequency range extends up to at least the fifth harmonic of the male flight tone for sustained responses to one- and two-tone stimuli and oscillatory responses at the beat frequency of two-tone stimuli, whereas the range of oscillatory response to a one-tone stimulus is limited to, at most, the third harmonic. Thresholds near the fundamental of the flight tone are lower for oscillatory responses than for sustained deflections, lower for males than for females, and within the behaviorally relevant range. A simple model of the transduction process can qualitatively account for both oscillatory and sustained responses to pure and paired tones. These data leave open the question as to which of several alternative strategies underlie flight tone matching behavior in mosquitoes. PMID:20348350

  16. Thrust vector control using electric actuation

    NASA Astrophysics Data System (ADS)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  17. Thrust Vector Control using movable probes

    NASA Technical Reports Server (NTRS)

    Cavalleri, Robert; Tiarn, Weihnurng; Readey, Harvey

    1990-01-01

    A study was undertaken to determine if movable probes or struts positioned in the nozzle can be used to provide Thrust Vector Control of the Space Shuttle Solid Rocket Booster. The study employed CFD to determine estimates of the shock standoff distance from the probe. An empirical correlation was used to construct the shock shape and the pressure distribution generated by the probe. The TVC performance for a single and multiple number of probes was then used to determine requirements for a maximum thrust angle offset of 7.5 degrees. Consideration was given to what materials would be suitable for the probe and if active cooling is required. Based on the performance analysis and thermal requirements, a Probe Thrust Vector Control (PTVC) system was sized. Indications are that a PTVC system weight is in the 1500 1bm weight range, compared to the existing weight of 7500 1bm for the SRB nozzle gimble system.

  18. Global Trends in the Use of Insecticides to Control Vector-Borne Diseases

    PubMed Central

    van den Berg, Henk; Zaim, Morteza; Soares, Agnes; Ameneshewa, Birkinesh; Mnzava, Abraham; Hii, Jeffrey; Dash, Aditya Prasad; Ejov, Mikhail

    2012-01-01

    Background: Data on insecticide use for vector control are essential for guiding pesticide management systems on judicious and appropriate use, resistance management, and reduction of risks to human health and the environment. Objective: We studied the global use and trends of insecticide use for control of vector-borne diseases for the period 2000 through 2009. Methods: A survey was distributed to countries with vector control programs to request national data on vector control insecticide use, excluding the use of long-lasting insecticidal nets (LNs). Data were received from 125 countries, representing 97% of the human populations of 143 targeted countries. Results: The main disease targeted with insecticides was malaria, followed by dengue, leishmaniasis, and Chagas disease. The use of vector control insecticides was dominated by organochlorines [i.e., DDT (dichlorodiphenyltrichloroethane)] in terms of quantity applied (71% of total) and by pyrethroids in terms of the surface or area covered (81% of total). Global use of DDT for vector control, most of which was in India alone, was fairly constant during 2000 through 2009. In Africa, pyrethroid use increased in countries that also achieved high coverage for LNs, and DDT increased sharply until 2008 but dropped in 2009. Conclusions: The global use of DDT has not changed substantially since the Stockholm Convention went into effect. The dominance of pyrethroid use has major implications because of the spread of insecticide resistance with the potential to reduce the efficacy of LNs. Managing insecticide resistance should be coordinated between disease-specific programs and sectors of public health and agriculture within the context of an integrated vector management approach. PMID:22251458

  19. Prospects for vector control through sterilization procedures

    PubMed Central

    Smith, Carroll N.

    1963-01-01

    Interest in sterilization as a possible method for controlling insects of public health importance can be said to have arisen first in the mid-fifties, when the screw-worm fly was successfully eradicated from the island of Curaçao by the release over the entire island of large numbers of male flies sterilized by gamma-radiation. Since then, many studies on the sterilization of various insect vectors of disease have been carried out. This paper reviews these studies and discusses the present position regarding vector control by sterilization procedures, with special reference to the use of chemosterilants. These compounds have certain advantages over radiation since they can be used not only as a substitute for X-rays or gamma-rays in the sterilization of insects specially reared for release in large numbers, but also as a means of inducing sterility in natural populations of insects. The author emphasizes that chemosterilants cannot at present be recommended as a practical control or eradication procedure for any vector species of insect, but considers that this extension of the sterilization method holds great promise and merits intensive investigation. PMID:20604181

  20. Dynamics of Midgut Microflora and Dengue Virus Impact on Life History Traits in Aedes aegypti

    PubMed Central

    Hill, Casey L.; Sharma, Avinash; Shouche, Yogesh; Severson, David W.

    2014-01-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  1. Dynamics of midgut microflora and dengue virus impact on life history traits in Aedes aegypti.

    PubMed

    Hill, Casey L; Sharma, Avinash; Shouche, Yogesh; Severson, David W

    2014-12-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  2. Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas

    PubMed Central

    Kesorn, Kraisak; Ongruk, Phatsavee; Chompoosri, Jakkrawarn; Phumee, Atchara; Thavara, Usavadee; Tawatsin, Apiwat; Siriyasatien, Padet

    2015-01-01

    Background In the past few decades, several researchers have proposed highly accurate prediction models that have typically relied on climate parameters. However, climate factors can be unreliable and can lower the effectiveness of prediction when they are applied in locations where climate factors do not differ significantly. The purpose of this study was to improve a dengue surveillance system in areas with similar climate by exploiting the infection rate in the Aedes aegypti mosquito and using the support vector machine (SVM) technique for forecasting the dengue morbidity rate. Methods and Findings Areas with high incidence of dengue outbreaks in central Thailand were studied. The proposed framework consisted of the following three major parts: 1) data integration, 2) model construction, and 3) model evaluation. We discovered that the Ae. aegypti female and larvae mosquito infection rates were significantly positively associated with the morbidity rate. Thus, the increasing infection rate of female mosquitoes and larvae led to a higher number of dengue cases, and the prediction performance increased when those predictors were integrated into a predictive model. In this research, we applied the SVM with the radial basis function (RBF) kernel to forecast the high morbidity rate and take precautions to prevent the development of pervasive dengue epidemics. The experimental results showed that the introduced parameters significantly increased the prediction accuracy to 88.37% when used on the test set data, and these parameters led to the highest performance compared to state-of-the-art forecasting models. Conclusions The infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity rate forecasting efficiency better than the climate parameters used in classical frameworks. We demonstrated that the SVM-R-based model has high generalization performance and obtained the highest prediction performance compared to classical models as measured by

  3. Vaccines for the prevention of neglected diseases--dengue fever.

    PubMed

    Pang, Tikki

    2003-06-01

    Dengue and dengue hemorrhagic fever have spread to all tropical areas of the developing world, but still remain largely neglected diseases. Several promising vaccine candidates in the form of live attenuated and chimeric vaccines have been developed and are currently in human clinical trials. However, significant practical, logistic, and scientific challenges remain before these vaccines can widely and safely be applied to vulnerable populations. Vector control, community education and public health measures must be pursued in parallel with vaccine development. PMID:12849789

  4. Controlling Vector Bessel Beams with Metasurfaces

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Carl; Grbic, Anthony

    2014-10-01

    Unprecedented control of an electromagnetic wave front is demonstrated with reflectionless metasurfaces that can manipulate vector Bessel beams: cylindrical vector beams with a Bessel profile. First, two metasurfaces are developed to convert linearly and circularly polarized Gaussian beams into vector Bessel beams. Each unit cell of the metasurfaces provides polarization and phase control with high efficiency. Next, the reciprocal process is demonstrated: an incident radially polarized Bessel beam is transformed into collimated, linearly and circularly polarized beams. In this configuration, a planar Bessel beam launcher is integrated with a collimating metasurface lens to realize a low-profile lens-antenna. The lens-antenna achieves a high directivity (exceeding 20 dB) with a subwavelength overall thickness. Finally, a metasurface providing isotropic polarization rotation is used to transform a radially polarized Bessel beam into an azimuthally polarized Bessel beam. This work demonstrates that metasurfaces can be used to generate arbitrary combinations of radial and azimuthal polarizations for applications such as focus shaping or generating tractor beams.

  5. The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics

    PubMed Central

    Shang, Chuin-Shee; Wen, Tzai-Hung; Tsai, Kun-Hsien

    2010-01-01

    Background Travelers who acquire dengue infection are often routes for virus transmission to other regions. Nevertheless, the interplay between infected travelers, climate, vectors, and indigenous dengue incidence remains unclear. The role of foreign-origin cases on local dengue epidemics thus has been largely neglected by research. This study investigated the effect of both imported dengue and local meteorological factors on the occurrence of indigenous dengue in Taiwan. Methods and Principal Findings Using logistic and Poisson regression models, we analyzed bi-weekly, laboratory-confirmed dengue cases at their onset dates of illness from 1998 to 2007 to identify correlations between indigenous dengue and imported dengue cases (in the context of local meteorological factors) across different time lags. Our results revealed that the occurrence of indigenous dengue was significantly correlated with temporally-lagged cases of imported dengue (2–14 weeks), higher temperatures (6–14 weeks), and lower relative humidity (6–20 weeks). In addition, imported and indigenous dengue cases had a significant quantitative relationship in the onset of local epidemics. However, this relationship became less significant once indigenous epidemics progressed past the initial stage. Conclusions These findings imply that imported dengue cases are able to initiate indigenous epidemics when appropriate weather conditions are present. Early detection and case management of imported cases through rapid diagnosis may avert large-scale epidemics of dengue/dengue hemorrhagic fever. The deployment of an early-warning surveillance system, with the capacity to integrate meteorological data, will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries. PMID:20689820

  6. Geo-database use to promote dengue infection prevention and control.

    PubMed

    Wongbutdee, Jaruwan; Chaikoolvatana, Anun; Saengnill, Wacharapong; Krasuaythong, Nantaya; Phuphak, Surajit

    2010-07-01

    Dengue infection (DI) is a major health problem in Thailand and is especially prevalent in Ubon Ratchathani Province. The objectives of the project were: (1) to develop a geo-database system for DI prevention and control, (2) to perform an Aedes aegypti larval vector survey for DI prevention and control in Ubon Ratchathani Province, (3) to study the behavior and perceptions regarding DI prevention among the target population in Ubon Ratchathani Province. Ten villages with high incidences of DI over a 3 year period from 2005 to 2007 were selected. The survey was divided into 2 periods, pre-outbreak period (February-April 2008) and outbreak period (June-August 2008). The data were collected in April and June 2008. The households in each village were purposively sampled. Water containers inside and outside of the houses were surveyed using the World Health Organization's house index (HI), container index (CI), and Breteau index (BI). The location of each household was recorded using the global positioning system (GPS). Data regarding people's perceptions and behaviors concerning DI prevention were collected during interviews of 383 families in Mach 2008. A database for DI was developed using ArcView version 9.2. The results showed during the pre-outbreak period, Non Jig, Non Sawang, and Huai Teeneu villages had the highest risk level (BI > or =50). During the outbreak period, Non Jig and Huai Teeneu village had the highest risk level (BI > or =50). Results regarding DI perceptions showed the target population had high levels of DI perceptions. DI preventive behavior was found in 50.9%. PMID:21073058

  7. Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand

    PubMed Central

    Boonklong, Ornanong; Bhumiratana, Adisak

    2016-01-01

    Using GIS-based land use map for the urban-rural division (the relative ratio of population density adjusted to relatively Aedes-infested land area), we demonstrated significant independent observations of seasonal and geographical variation of Aedes aegypti and Aedes albopictus vectors between Muang Narathiwat district (urban setting) and neighbor districts (rural setting) of Narathiwat, Southern Thailand, based on binomial distribution of Aedes vectors in water-holding containers (water storage containers, discarded receptacles, miscellaneous containers, and natural containers). The distribution of Aedes vectors was influenced seasonally by breeding outdoors rather than indoors in all 4 containers. Accordingly, both urban and rural settings elicited significantly seasonal (wet versus dry) distributions of Ae. aegypti larvae observed in water storage containers (P = 0.001 and P = 0.002) and natural containers (P = 0.016 and P = 0.015), whereas, in rural setting, the significant difference was observed in discarded receptacles (P = 0.028) and miscellaneous containers (P < 0.001). Seasonal distribution of Ae. albopictus larvae in any containers in urban setting was not remarkably noticed, whereas, in rural setting, the significant difference was observed in water storage containers (P = 0.007) and discarded receptacles (P < 0.001). Moreover, the distributions of percentages of container index for Aedes-infested households in dry season were significantly lower than that in other wet seasons, P = 0.034 for urban setting and P = 0.001 for rural setting. Findings suggest that seasonal and geographical variation of Aedes vectors affect the infestation in those containers in human inhabitations and surroundings. PMID:27437001

  8. Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand.

    PubMed

    Boonklong, Ornanong; Bhumiratana, Adisak

    2016-01-01

    Using GIS-based land use map for the urban-rural division (the relative ratio of population density adjusted to relatively Aedes-infested land area), we demonstrated significant independent observations of seasonal and geographical variation of Aedes aegypti and Aedes albopictus vectors between Muang Narathiwat district (urban setting) and neighbor districts (rural setting) of Narathiwat, Southern Thailand, based on binomial distribution of Aedes vectors in water-holding containers (water storage containers, discarded receptacles, miscellaneous containers, and natural containers). The distribution of Aedes vectors was influenced seasonally by breeding outdoors rather than indoors in all 4 containers. Accordingly, both urban and rural settings elicited significantly seasonal (wet versus dry) distributions of Ae. aegypti larvae observed in water storage containers (P = 0.001 and P = 0.002) and natural containers (P = 0.016 and P = 0.015), whereas, in rural setting, the significant difference was observed in discarded receptacles (P = 0.028) and miscellaneous containers (P < 0.001). Seasonal distribution of Ae. albopictus larvae in any containers in urban setting was not remarkably noticed, whereas, in rural setting, the significant difference was observed in water storage containers (P = 0.007) and discarded receptacles (P < 0.001). Moreover, the distributions of percentages of container index for Aedes-infested households in dry season were significantly lower than that in other wet seasons, P = 0.034 for urban setting and P = 0.001 for rural setting. Findings suggest that seasonal and geographical variation of Aedes vectors affect the infestation in those containers in human inhabitations and surroundings. PMID:27437001

  9. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  10. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using...

  11. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using...

  12. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using...

  13. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using...

  14. Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases.

    PubMed

    Carvalho, Danilo Oliveira; Costa-da-Silva, André Luis; Lees, Rosemary Susan; Capurro, Margareth Lara

    2014-04-01

    Mosquitoes are responsible for the transmission of pathogens that cause devastating human diseases such as malaria and dengue. The current increase in mean global temperature and changing sea level interfere with precipitation frequency and some other climatic conditions which, in general, influence the rate of development of insects and etiologic agents causing acceleration as the temperature rises. The most common strategy employed to combat target mosquito species is the Integrated Vector Management (IVM), which comprises the use of multiple activities and various approaches to preventing the spread of a vector in infested areas. IVM programmes are becoming ineffective; and the global scenario is threatening, requiring new interventions for vector control and surveillance. Not surprisingly, there is a growing need to find alternative methods to combat the mosquito vectors. The possibility of using transgenic mosquitoes to fight against those diseases has been discussed over the last two decades and this use of transgenic lines to suppress populations or to replace them is still under investigation through field and laboratory trials. As an alternative, the available transgenic strategies could be improved by coupling suppression and substitution strategies. The idea is to first release a suppression line to significantly reduce the wild population, and once the first objective is reached a second release using a substitution line could be then performed. Examples of targeting this approach against vectors of malaria and dengue are discussed. PMID:24513036

  15. A profile of dengue cases admitted to a tertiary care hospital in Karnataka, southern India.

    PubMed

    Kumar, Ashwini; Pandit, Vinay Ramakrishna; Shetty, Sirish; Pattanshetty, Sanjay; Krish, Sonia Nagesh; Roy, Sreoshi

    2010-01-01

    During the past two decades, epidemics of dengue fever have been causing concern in several South-East Asian countries, including India. A study was conducted in a tertiary care hospital situated in Southern India to determine the trends and outcome of dengue cases. There was a steady rise in number of cases from 2002 to 2007, with the largest number of cases seen in 2007. Most cases were observed in the post-monsoon season in the month of September. Out of a total of 344 cases, 285 (82.8%) patients had dengue fever, 34 (9.8%) had dengue haemorrhagic fever and 25 (7.3%) had dengue shock syndrome. Deaths were reported in nine cases, with the majority of deaths occurring in 2003. The disease control programme should emphasise on vector surveillance, integrated vector control, emergency response, early clinical diagnosis and appropriate management of the cases. PMID:20075426

  16. The biological control of the malaria vector.

    PubMed

    Kamareddine, Layla

    2012-09-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  17. Dengue vaccine: an update on recombinant subunit strategies.

    PubMed

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines. PMID:26982462

  18. Legal aspects of public health: difficulties in controlling vector-borne and zoonotic diseases in Brazil.

    PubMed

    Mendes, Marcílio S; de Moraes, Josué

    2014-11-01

    In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. PMID:25051187

  19. Determinants of mortality from severe dengue in Brazil: a population-based case-control study.

    PubMed

    Moraes, Giselle Hentzy; de Fátima Duarte, Eliane; Duarte, Elisabeth Carmen

    2013-04-01

    Although increases in severity of mortality from dengue infection have been observed in Brazil, their determinants are not fully known. A case-control study was conducted by using the National Notifiable Diseases Surveillance System, including patients with severe dengue during 2000-2005. Cases were defined as patients that died and controls were those who survived. Hierarchical multivariate logistic regression was performed. During the study period, there were 12,321 severe cases of dengue and 1,062 deaths. Factors independently associated with death included age ≥ 50 years (odds ratio [OR] = 2.29, 95% confidence interval [CI] = 1.59-3.29), < 4 years of schooling (OR = 1.83, 95% CI = 1.47-2.28), a rural area (OR =2.84, 95% CI = 2.19-3.69), hospitalization (OR = 1.42, 95% CI = 1.17-1.73), and a high hematocrit (OR = 2.46, 95% CI = 1.85-3.28). Factors associated with a lower chance of dying were female sex (OR = 0.76, 95% CI = 0.67-0.87), history of previous dengue (OR = 0.78, 95% CI = 0.62-0.99), positive tourniquet test result (OR = 0.47, 95% CI = 0.33-0.66), laboratory diagnosis of dengue (OR = 0.75, 95% CI = 0.61-0.92), and a platelet count of 50,000-100,000 cells/mm(3) (OR = 0.56, 95% CI = 0.36-0.87). The risk profile identified in this study should serve to direct public health interventions to minimize deaths. PMID:23400577

  20. Wolbachia versus dengue

    PubMed Central

    Bull, James J.; Turelli, Michael

    2013-01-01

    A novel form of biological control is being applied to the dengue virus. The agent is the maternally transmitted bacterium Wolbachia, naturally absent from the main dengue vector, the mosquito Aedes aegypti. Three Wolbachia-based control strategies have been proposed. One is suppression of mosquito populations by large-scale releases of males incompatible with native females; this intervention requires ongoing releases. The other interventions transform wild mosquito populations with Wolbachia that spread via the frequency-dependent fitness advantage of Wolbachia-infected females; those interventions potentially require just a single, local release for area-wide disease control. One of these latter strategies uses Wolbachia that shortens mosquito life, indirectly preventing viral maturation/transmission. The other strategy uses Wolbachia that block viral transmission. All interventions can be undermined by viral, bacterial or mosquito evolution; viral virulence in humans may also evolve. We examine existing theory, experiments and comparative evidence to motivate predictions about evolutionary outcomes. (i) The life-shortening strategy seems the most likely to be thwarted by evolution. (ii) Mosquito suppression has a reasonable chance of working locally, at least in the short term, but long-term success over large areas is challenging. (iii) Dengue blocking faces strong selection for viral resistance but may well persist indefinitely at some level. Virulence evolution is not mathematically predictable, but comparative data provide no precedent for Wolbachia increasing dengue virulence. On balance, our analysis suggests that the considerable possible benefits of these technologies outweigh the known negatives, but the actual risk is largely unknown. PMID:24481199

  1. Influence of container design on predation rate of potential biocontrol agent, Toxorhynchites splendens (Diptera: Culicidae) against dengue vector.

    PubMed

    Mohamad, N; Zuharah, W F

    2014-03-01

    Toxorhynchites splendens larvae are a natural predator of dengue vector mosquito larvae, Aedes albopictus. This study was carried out to evaluate the predation rate of Tx. splendens third instar larvae on Ae. albopictus larvae in 24 h. Each predator was offered prey at a density between 10 to 50 individuals. Predation rate of Tx. splendens were also tested with two manipulated factors; various types of container and different water volumes. The experiment was evaluated in man-made containers (tin cans, plastic drinking glasses and rubber tires) and natural container (bamboo stumps) which were filled with different water volumes (full, half full, 1/4 full, and 1/8 full). The prey density and the characteristics of the container were found as significant factors which influence the predation rate of Tx. splendens. The predator consumed significantly more prey at higher prey densities (40 and 50 preys) compared to the lowest density (10 preys) (F=3.935, df=4, p=0.008). The results showed significantly higher consumption in horizontal shaped container of rubber tire than in vertical shape of bamboo stumps (F=3.100, df=3, p=0.029). However, the water volume had no significant effect on predation rate of Tx. splendens (F=1.736, df=3, p=0.162). We generally suggest that Tx. splendens is best to be released in discarded tires or any other containers with horizontal shape design with wide opening since Tx. splendens can become more effective in searching prey in this type of container design. This predator is also a suitable biocontrol candidates to be introduced either in wet and dry seasons in Malaysia. PMID:24862057

  2. Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors

    PubMed Central

    Wijayanti, Siwi P. M.; Sunaryo, Sunaryo; Suprihatin, Suprihatin; McFarlane, Melanie; Rainey, Stephanie M.; Dietrich, Isabelle; Schnettler, Esther; Biek, Roman; Kohl, Alain

    2016-01-01

    Background No vaccine is currently available for dengue virus (DENV), therefore control programmes usually focus on managing mosquito vector populations. Entomological surveys provide the most common means of characterising vector populations and predicting the risk of local dengue virus transmission. Despite Indonesia being a country strongly affected by DENV, only limited information is available on the local factors affecting DENV transmission and the suitability of available survey methods for assessing risk. Methodology/principal findings We conducted entomological surveys in the Banyumas Regency (Central Java) where dengue cases occur on an annual basis. Four villages were sampled during the dry and rainy seasons: two villages where dengue was endemic, one where dengue cases occurred sporadically and one which was dengue-free. In addition to data for conventional larvae indices, we collected data on pupae indices, and collected adult mosquitoes for species identification in order to determine mosquito species composition and population density. Traditionally used larval indices (House indices, Container indices and Breteau indices) were found to be inadequate as indicators for DENV transmission risk. In contrast, species composition of adult mosquitoes revealed that competent vector species were dominant in dengue endemic and sporadic villages. Conclusions/significance Our data suggested that the utility of traditional larvae indices, which continue to be used in many dengue endemic countries, should be re-evaluated locally. The results highlight the need for validation of risk indicators and control strategies across DENV affected areas here and perhaps elsewhere in SE Asia. PMID:26967524

  3. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  4. Electromechanical actuation for thrust vector control applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  5. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti.

    PubMed

    Bonin, Aurélie; Paris, Margot; Frérot, Hélène; Bianco, Erica; Tetreau, Guillaume; Després, Laurence

    2015-10-01

    The bacterial insecticide Bacillus thuringiensis subsp. israelensis (Bti) is an increasingly popular alternative to chemical insecticides for controlling mosquito populations. Because Bti toxicity relies on the action of four main toxins, resistance to Bti is very likely a complex phenotype involving several genes simultaneously. Dissecting the underlying genetic basis thus requires associating a quantitative measure of resistance to genetic variation at many loci in a segregating population. Here, we undertake this task using the dengue and yellow fever vector, the mosquito Aedes aegypti, as a study model. We conducted QTL (Quantitative Trait Locus) and admixture mapping analyses on two controlled crosses and on an artificial admixed population, respectively, all obtained from resistant and susceptible lab strains. We detected 16 QTL regions, among which four QTLs were revealed by different analysis methods. These four robust QTLs explained altogether 29.2% and 62.2% of the total phenotypic variance in the two QTL crosses, respectively. They also all showed a dominant mode of action. In addition, we found six loci showing statistical association with Bti resistance in the admixed population. Five of the supercontigs highlighted in this study contained candidate genes as suggested by their function, or by prior evidence from expression and/or outlier analyses. These genomic regions are thus good starting points for fine mapping of resistance to Bti or functional analyses aiming at identifying the underlying genes and mutations. Moreover, for the purpose of this work, we built the first Ae. aegypti genetic map based on markers associated with genes expressed in larvae. This genetic map harbors 229 SNP markers mapped across the three chromosomes for a total length of 311.9cM. It brought to light several assembly discrepancies with the reference genome, suggesting a high level of genome plasticity in Ae. aegypti. PMID:26238211

  6. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand.

    PubMed

    Champakaew, D; Junkum, A; Chaithong, U; Jitpakdi, A; Riyong, D; Sanghong, R; Intirach, J; Muangmoon, R; Chansang, A; Tuetun, B; Pitasawat, B

    2015-06-01

    Botanical resources with great diversity in medicinal and aromatic plants are a rich and reliable source for finding insect repellents of plant origin, which are widely popular among today's consumers. Although some herbal-based repellents have been proven comparable to or even better than synthetics, commercially available natural repellents generally tend to be expensive, with short-lived effectiveness. This critical flaw leads to ongoing research for new and effective repellents, which provide longer protection against vector and nuisance-biting insects, while remaining safe, user friendly, and reasonably priced. This study aimed to evaluate the repellent activity of plant-derived products against the primary dengue vector, Aedes aegypti, by following the human bait technique of World Health Organization guidelines. Preliminary laboratory screening tests for repellency of 33 plant species clearly demonstrated Angelica sinensis as the most effective repellent from each kind of extracted product, with its essential oil and ethanolic extract having median complete protection times of 7.0 h (6.0-7.5) and 2.5 h (2.0-2.5), respectively. Due to its low yield (0.02 %), pungent smell, and little cause of irritation, A. sinensis essential oil did not qualify as a candidate for further repellent assessment. However, subsequent extractions of A. sinensis with different organic solvents of increasing polarity provided four extractants with varying degrees of repellency against A. aegypti. The hexane extract of A. sinensis provided excellent repellency, with a median complete protection time of 7.5 h (6.5-8.5), which was longer than that of ethanol (2.5, 2.0-2.5 h), acetone (1.75, 0.5-2.5 h), and methanol extracts (0.5, 0-1.0 h). By being the most effective product, A. sinensis hexane extract gave significant protection comparable to that of its essential oil and the standard synthetic repellent, N,N-diethyl-3-methylbenzamide (DEET: 6.25, 5.0-6.5 h). Qualitative gas

  7. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    PubMed Central

    2014-01-01

    Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene

  8. Health Economics of Dengue: A Systematic Literature Review and Expert Panel's Assessment

    PubMed Central

    Beatty, Mark E.; Beutels, Philippe; Meltzer, Martin I.; Shepard, Donald S.; Hombach, Joachim; Hutubessy, Raymond; Dessis, Damien; Coudeville, Laurent; Dervaux, Benoit; Wichmann, Ole; Margolis, Harold S.; Kuritsky, Joel N.

    2011-01-01

    Dengue vaccines are currently in development and policymakers need appropriate economic studies to determine their potential financial and public health impact. We searched five databases (PubMed, EMBASE, LILAC, EconLit, and WHOLIS) to identify health economics studies of dengue. Forty-three manuscripts were identified that provided primary data: 32 report economic burden of dengue and nine are comparative economic analyses assessing various interventions. The remaining two were a willingness-to-pay study and a policymaker survey. An expert panel reviewed the existing dengue economic literature and recommended future research to fill information gaps. Although dengue is an important vector-borne disease, the economic literature is relatively sparse and results have often been conflicting because of use of inconsistent assumptions. Health economic research specific to dengue is urgently needed to ensure informed decision making on the various options for controlling and preventing this disease. PMID:21363989

  9. Health economics of dengue: a systematic literature review and expert panel's assessment.

    PubMed

    Beatty, Mark E; Beutels, Philippe; Meltzer, Martin I; Shepard, Donald S; Hombach, Joachim; Hutubessy, Raymond; Dessis, Damien; Coudeville, Laurent; Dervaux, Benoit; Wichmann, Ole; Margolis, Harold S; Kuritsky, Joel N

    2011-03-01

    Dengue vaccines are currently in development and policymakers need appropriate economic studies to determine their potential financial and public health impact. We searched five databases (PubMed, EMBASE, LILAC, EconLit, and WHOLIS) to identify health economics studies of dengue. Forty-three manuscripts were identified that provided primary data: 32 report economic burden of dengue and nine are comparative economic analyses assessing various interventions. The remaining two were a willingness-to-pay study and a policymaker survey. An expert panel reviewed the existing dengue economic literature and recommended future research to fill information gaps. Although dengue is an important vector-borne disease, the economic literature is relatively sparse and results have often been conflicting because of use of inconsistent assumptions. Health economic research specific to dengue is urgently needed to ensure informed decision making on the various options for controlling and preventing this disease. PMID:21363989

  10. Thrust vector control using electric actuation

    SciTech Connect

    Bechtel, R.T.; Hall, D.K.

    1995-01-25

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  11. DGV: Dengue Genographic Viewer

    PubMed Central

    Yamashita, Akifumi; Sakamoto, Tetsuya; Sekizuka, Tsuyoshi; Kato, Kengo; Takasaki, Tomohiko; Kuroda, Makoto

    2016-01-01

    Dengue viruses (DENVs) and their vectors are widely distributed throughout the tropical and subtropical regions of the world. An autochthonous case of DENV was reported in Tokyo, Japan, in 2014, for the first time in 70 years. A comprehensive database of DENV sequences containing both serotype and genotype data and epidemiological data is crucial to trace DENV outbreak isolates and promptly respond to outbreaks. We constructed a DENV database containing the serotype, genotype, year and country/region of collection by collecting all publically available DENV sequence information from the National Center for Biotechnology Information (NCBI) and assigning genotype information. We also implemented the web service Dengue Genographic Viewer (DGV), which shows the geographical distribution of each DENV genotype in a user-specified time span. DGV also assigns the serotype and genotype to a user-specified sequence by performing a homology search against the curated DENV database, and shows its homologous sequences with the geographical position and year of collection. DGV also shows the distribution of DENV-infected entrants to Japan by plotting epidemiological data from the Infectious Agents Surveillance Report (IASR), Japan. This overview of the DENV genotype distribution may aid in planning for the control of DENV infections. DGV is freely available online at: (https://gph.niid.go.jp/geograph/dengue/content/genomemap). PMID:27375595

  12. Control of dengue: Consensus views of Endemic Disease Control Agents and Community Health Agents on their integrated action.

    PubMed

    Pessoa, João Paulo de Morais; Oliveira, Ellen Synthia Fernandes de; Teixeira, Ricardo Antônio Gonçalves; Lemos, Cristiane Lopes Simão; Barros, Nelson Filice de

    2016-08-01

    Dengue is one of Brazil's most important public health challenges. Activities for its prevention and control have been based on the strategy of integrated management proposed in health policies, in which the central actors are the Endemic Disease Control Agent(ACE) and the Community Health Agent (ACS). This study analyzes consensus opinions produced by ACSs and ACEs on theactions for incorporating ACEs into the teams of the Family Health Strategy (ESF). It is a qualitative study from a large municipality in Brazil in which dengue is endemic, using a focus group of professionals that is subsequently analyzed using Collective Subject Discourse Analysis, supported by WebQDA. The results indicate consensus positions in relation to the following subjects: I) difficulty in the process of integration of ACSs and ACEs for control of dengue; II) inclusion of ACEs in the primary healthcare of the ESF; and III) absence of monitoring and assessment of the integrated actions. In conclusion, there are needs: to make participants more aware, seeking changes in behavior; to offer an environment of support to those involved with training courses about dengue; and to monitor the process of integration, and evaluate it periodically, creating indicators of quality and quantity. PMID:27557006

  13. Dengue epidemic in Malaysia: Not a predominantly urban disease anymore

    PubMed Central

    2011-01-01

    Background Dengue infection has been an important and serious public health concern in Malaysia ever since its first reported case here in 1902. Nevertheless, to our knowledge, no nationwide investigation has been carried out to determine the actual magnitude of dengue endemicity in the Malaysian population. In this study, we describe a cross sectional seroepidemiology study of dengue IgG seroprevalence in the Malaysian adult population. Findings From 1000 subjects (35-74 years old), 91.6% subjects were found to be dengue seropositive. Age is found to be a significant risk factor associated with dengue seroposivity, where the seroprevalence increased with every 10 year increase in age. Nevertheless, gender and ethnicity did not have an effect. Interestingly, there were similar seroprevalence rates between urban and rural samples, showing that dengue is presently not confined to urban areas in Malaysia. Conclusions High dengue IgG seropositivity found in the population is an indication that dengue might be endemic in Malaysia for a long time into the future. Public awareness, proper vector control and vigilant surveillance are critical to keep the infection rates low and to prevent outbreaks. PMID:21714858

  14. Dengue in the United States of America: A Worsening Scenario?

    PubMed Central

    Rios, Maria

    2013-01-01

    Dengue is a febrile illness caused by any of the four dengue virus types (DENV-1 to -4, genus Flavivirus, family Flaviviridae) mainly transmitted by the mosquito Aedes aegypti. DENV can be transmitted by blood transfusion. Dengue has been historically present in the continental United States (US), in the state of Hawaii, and in the US insular territories in the Caribbean and the Pacific. During the second half of the 20th century, most of the cases reported in the US were imported cases brought to the country by travelers. Since 2009, cases of autochthonous dengue have been recognized in the state of Florida after 75 years of absence, followed by intensification of transmission in endemic places including the US territories of US Virgin Islands and Puerto Rico, which experienced a large dengue epidemic in 2010. The widespread distribution of dengue mosquito vectors, deficient mosquito control measures and increased frequency of DENV-infected visitors to the US coming from dengue-endemic locations or places experiencing epidemics appear to be jointly responsible for the emergence and reemergence of dengue in the US and its territories. PMID:23865061

  15. Dengue vaccine development: strategies and challenges.

    PubMed

    Ramakrishnan, Lakshmy; Pillai, Madhavan Radhakrishna; Nair, Radhakrishnan R

    2015-03-01

    Infection with dengue virus may result in dengue fever or a more severe outcome, such as dengue hemorrhagic syndrome/shock. Dengue virus infection poses a threat to endemic regions for four reasons: the presence of four serotypes, each with the ability to cause a similar disease outcome, including fatality; difficulties related to vector control; the lack of specific treatment; and the nonavailability of a suitable vaccine. Vaccine development is considered challenging due to the severity of the disease observed in individuals who have acquired dengue-specific immunity, either passively or actively. Therefore, the presence of vaccine-induced immunity against a particular serotype may prime an individual to severe disease on exposure to dengue virus. Vaccine development strategies include live attenuated vaccines, chimeric, DNA-based, subunit, and inactivated vaccines. Each of the candidates is in various stages of preclinical and clinical development. Issues pertaining to selection pressures, viral interaction, and safety still need to be evaluated in order to induce a complete protective immune response against all four serotypes. This review highlights the various strategies that have been employed in vaccine development, and identifies the obstacles to producing a safe and effective vaccine. PMID:25494228

  16. Vector and reservoir control for preventing leishmaniasis

    PubMed Central

    González, Urbà; Pinart, Mariona; Sinclair, David; Firooz, Alireza; Enk, Claes; Vélez, Ivan D; Esterhuizen, Tonya M; Tristan, Mario; Alvar, Jorge

    2015-01-01

    Background Leishmaniasis is caused by the Leishmania parasite, and transmitted by infected phlebotomine sandflies. Of the two distinct clinical syndromes, cutaneous leishmaniasis (CL) affects the skin and mucous membranes, and visceral leishmaniasis (VL) affects internal organs. Approaches to prevent transmission include vector control by reducing human contact with infected sandflies, and reservoir control, by reducing the number of infected animals. Objectives To assess the effects of vector and reservoir control interventions for cutaneous and for visceral leishmaniasis. Search methods We searched the following databases to 13 January 2015: Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS and WHOLIS, Web of Science, and RePORTER. We also searched trials registers for ongoing trials. Selection criteria Randomized controlled trials (RCTs) evaluating the effects of vector and reservoir control interventions in leishmaniasis-endemic regions. Data collection and analysis Two review authors independently searched for trials and extracted data from included RCTs. We resolved any disagreements by discussion with a third review author. We assessed the quality of the evidence using the GRADE approach. Main results We included 14 RCTs that evaluated a range of interventions across different settings. The study methods were generally poorly described, and consequently all included trials were judged to be at high or unclear risk of selection and reporting bias. Only seven trials reported clinical outcome data which limits our ability to make broad generalizations to different epidemiological settings and cultures. Cutaneous leishmaniasis One four-arm RCT from Afghanistan compared indoor residual spraying (IRS), insecticide-treated bednets (ITNs), and insecticide-treated bedsheets, with no intervention. Over 15 months follow-up, all three insecticide-based interventions had a lower incidence of CL than the control area (IRS: risk

  17. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  18. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  19. Influence of Container Size, Location, and Time of Day on Oviposition Patterns of the Dengue Vector, Aedes aegypti, in Thailand

    PubMed Central

    Ponlawat, A.; Edman, J.D.; Scott, T.W.; Vermeylen, F.

    2008-01-01

    Abstract We conducted a study to determine the effect of container size and location on oviposition site selection by Ae. aegypti in large outdoor field enclosures (10 × 10 × 4 m high). There was a strong positive relationship between increasing container diameter, container volume, and water surface area with egg numbers over both high (rainy, July) and low (cool-dry, January) dengue transmission seasons. Location of containers (indoors versus immediately outdoors and underneath houses) did not influence the number of eggs deposited for containers 5–32 cm in diameter in either season. No trends based on container color (black, brown, or grey) were observed. A slight trend with a greater numbers of eggs laid outdoors in the largest containers (42 cm diameter) during the dry season was observed. Three separate models were run using the mixed model procedure in SAS for each container attribute. Controlling for season, time, and date, the most important container attribute predicting total egg numbers was container volume (total capacity) explaining 88% of the variation, followed by water surface area (85%), and container diameter opening (83%). Oviposition peaked in the afternoon at 1600 hrs and 2000 hrs in the dry and rainy seasons, respectively. Few eggs were laid overnight (2000 hrs–0600 hrs). Our results indicate that physical attributes of oviposition sites, such as size, light-dark contrasts, and specular reflectance from water surfaces, play a significant role in oviposition site selection. Key Words: Aedes aegypti—Oviposition—Container dimensions—Site selection—Thailand. PMID:18279006

  20. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia.

    PubMed

    Setha, To; Chantha, Ngan; Benjamin, Seleena; Socheat, Doung

    2016-09-01

    A multi-phased study was conducted in Cambodia from 2005-2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0-5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10-12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province. PMID:27627758

  1. Speed sensorless hybrid vector controlled induction motor drive

    SciTech Connect

    Bose, B.K.; Simoes, M.G.; Crecelius, D.R.; Rajashekara, K.; Martin, R.

    1995-12-31

    The paper describes a speed and flux sensorless vector-controlled induction motor drive primarily aimed for electric vehicle type applications. The stator flux oriented drive starts at zero speed in indirect vector control mode, transitions to direct vector control mode as the speed develops, and then transitions back to indirect vector control at zero speed. The vector control uses stator flux orientation in both indirect and direct vector control modes with the stator resistance variation compensated by measurement of stator temperature. The problem of integration at low stator frequency is solved by cascaded low pass filters with programmable time constants. The control strategy of the four-quadrant drive has been analyzed, validated by simulation study, and finally evaluated by experimental study on a laboratory 5 hp drive system.

  2. Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites

    PubMed Central

    Doucoure, Souleymane; Mouchet, François; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothée; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

    2012-01-01

    Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites. PMID:22848099

  3. In silico models for predicting vector control chemicals targeting Aedes aegypti

    PubMed Central

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  4. Application of remote sensing to arthropod vector surveillance and control.

    PubMed

    Washino, R K; Wood, B L

    1994-01-01

    A need exists to further develop new technologies, such as remote sensing and geographic information systems analysis, for estimating arthropod vector abundance in aquatic habitats and predicting adult vector population outbreaks. A brief overview of remote sensing technology in vector surveillance and control is presented, and suggestions are made on future research opportunities in light of current and proposed remote sensing systems. PMID:8024079

  5. Approaches to refining estimates of global burden and economics of dengue.

    PubMed

    Shepard, Donald S; Undurraga, Eduardo A; Betancourt-Cravioto, Miguel; Guzmán, María G; Halstead, Scott B; Harris, Eva; Mudin, Rose Nani; Murray, Kristy O; Tapia-Conyer, Roberto; Gubler, Duane J

    2014-11-01

    for diagnosis, vaccination, vector control, and treatment are being developed, these recommended steps should improve objective, systematic measures of dengue burden to strengthen health policy decisions. PMID:25412506

  6. Approaches to Refining Estimates of Global Burden and Economics of Dengue

    PubMed Central

    Shepard, Donald S.; Undurraga, Eduardo A.; Betancourt-Cravioto, Miguel; Guzmán, María G.; Halstead, Scott B.; Harris, Eva; Mudin, Rose Nani; Murray, Kristy O.; Tapia-Conyer, Roberto; Gubler, Duane J.

    2014-01-01

    for diagnosis, vaccination, vector control, and treatment are being developed, these recommended steps should improve objective, systematic measures of dengue burden to strengthen health policy decisions. PMID:25412506

  7. Low Entomological Impact of New Water Supply Infrastructure in Southern Vietnam, with Reference to Dengue Vectors

    PubMed Central

    Tran, Hau P.; Huynh, Trang T. T.; Nguyen, Yen T.; Kutcher, Simon; O'Rourke, Peter; Marquart, Louise; Ryan, Peter A.; Kay, Brian H.

    2012-01-01

    We did a prospective study in southern Vietnam where new water infrastructure was added. New 1,200-L tanks may present potential breeding grounds for Aedes aegypti, particularly when sealed lids were not always supplied. Some householders in these communes received a piped water supply, however there was no reduction in water storage practices. The prevalence of Aedes aegypti immatures in tank and tap households reached 73%, but were non-significantly different from each other and from control households that received no infrastructure. In all three communes, standard jars comprised from 48% to 71% of containers but were associated with > 90% of III–IV instars and pupae on occasions. In contrast, project tanks contributed from 0–21% of the total population. Non-functional or no lids were apparent 4 months after installation in 45–76% of new tanks, but there was no difference between communes with lids and without lids. PMID:22869632

  8. Challenges for the formulation of a universal vaccine against dengue.

    PubMed

    Chokephaibulkit, Kulkanya; Perng, Guey Chuen

    2013-05-01

    Dengue is rapidly becoming a disease of an escalating global public health concern. The disease is a vector-borne disease, transmitted by the bite of an Aedes spp. mosquito. Dynamic clinical manifestations, ranging from asymptomatic, flu-like febrile illness, dengue fever (DF) to dengue hemorrhagic fever (DHF) with or without dengue shock syndrome (DSS), make the disease one of the most challenging to diagnose and treat. DF is a self-limited illness, while DHF/DSS, characterized by plasma leakage resulting from an increased vascular permeability, can have severe consequences, including death. The pathogenesis of dengue virus infection remains poorly understood, mainly due to the lack of a suitable animal model that can recapitulate the cardinal features of human dengue diseases. Currently, there is no specific treatment or antiviral therapy available for dengue virus infection and supportive care with vigilant monitoring is the principle course of treatment. Since vector control programs have been largely unsuccessful in preventing outbreaks, vaccination seems to be the most viable option for prevention. There are four dengue viral serotypes and each one of them is capable of causing severe dengue. Although immunity induced by infection by one serotype is effective in protection against the homologous viral serotype, it only has a transient protective effect against infection with the other three serotypes. The meager cross protective immunity generated wanes over time and may even induce a harmful effect at the time of subsequent secondary infection. Thus, it is imperative to have a vaccine that can elicit equal and long-lasting immunity to all four serotypes simultaneously. Numerous tetravalent vaccines are currently either in the pipeline for clinical trials or under development. For those frontrunner tetravalent vaccines in clinical trials, despite good safety and immunogenicity profiles registered, issues such as imbalanced immune responses between serotypes

  9. [The historical evolution of dengue prevention and control programs in Brazil].

    PubMed

    Ferreira, Beatriz Jansen; Souza, Maria de Fátima Marinho; Soares Filho, Adauto Martins; Carvalho, André Anderson

    2009-01-01

    An epidemiological analysis of the forms and distribution of Dengue fever in Brazil and worldwide was carried out. The National Program of Dengue Control (NPDC) was evaluated based on the data available at 'Diagdengue' an official computerized information system allowing to follow-up the implantation and impact of the Program. A factorial analysis was performed by means of a set of indicators contributing to variability. The indicator scores were added and the cities demanding for prior attention of the NPCD were classified for the construction of an index, which is presented three-monthly for every state, with intervals distributed between 0 and 9. The implantation of the NCPD is irregular. Cities with bad implantation are predominating in the north and northeast of the country. In the second analysis, socio-economic variables of the selected cities were added. For the association tests these cities were classified into two groups: 'Bad' and 'Good/Very Good', based on the association of the index of building infestation informed in the FAD (Yellow Fever and Dengue) database and the constructed index. Associations were verified based on variance analysis, trend test and trend estimate. It was observed that cities with low rates of illiteracy, efficient garbage collection and high ratio of sanitary installations are correlated with a good classification of the city according to Diagdengue. PMID:19547796

  10. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  11. New Highly Dynamic Approach for Thrust Vector Control

    NASA Astrophysics Data System (ADS)

    Hecht, M.; Ettl, J.; Grothe, D.; Hrbud, I.

    2015-09-01

    For a new launcher system a thrust vector control system is needed. This launch vehicle system consists of two rockets which are namely the VS-50 (two-stage suborbital vehicle) and the VLM-1 (three-stage microsatellite launch vehicle). VLM-1 and VS-50 are developed in a cooperation between the German Aerospace Center (DLR) and the Brazilian Aeronautics and Space Institute (IAE). To keep these two rockets on its trajectory during flight a highly dynamic thrust vector control system is required. For the purpose of developing such a highly dynamic thrust vector control system a master thesis was written by the author. The development includes all mechanical constructions as well as control algorithms and electronics design. Moreover an optimization of control algorithms was made to increase the dynamic capabilities of the thrust vector control system. The composition of the right components plus the sophisticated control algorithm make the thrust vector control system highly dynamic.

  12. A Randomized, Double-Blind Placebo Controlled Trial of Balapiravir, a Polymerase Inhibitor, in Adult Dengue Patients

    PubMed Central

    Nguyen, Nguyet Minh; Tran, Chau Nguyen Bich; Phung, Lam Khanh; Duong, Kien Thi Hue; Huynh, Huy le Anh; Farrar, Jeremy; Nguyen, Quyen Than Ha; Tran, Hien Tinh; Nguyen, Chau Van Vinh; Merson, Laura; Hoang, Long Truong; Hibberd, Martin L.; Aw, Pauline P. K.; Wilm, Andreas; Nagarajan, Niranjan; Nguyen, Dung Thi; Pham, Mai Phuong; Nguyen, Truong Thanh; Javanbakht, Hassan; Klumpp, Klaus; Hammond, Janet; Petric, Rosemary; Wolbers, Marcel; Nguyen, Chinh Tran; Simmons, Cameron P.

    2013-01-01

    Background. Dengue is the most common arboviral infection of humans. There are currently no specific treatments for dengue. Balapiravir is a prodrug of a nucleoside analogue (called R1479) and an inhibitor of hepatitis C virus replication in vivo. Methods. We conducted in vitro experiments to determine the potency of balapiravir against dengue viruses and then an exploratory, dose-escalating, randomized placebo-controlled trial in adult male patients with dengue with <48 hours of fever. Results. The clinical and laboratory adverse event profile in patients receiving balapiravir at doses of 1500 mg (n = 10) or 3000 mg (n = 22) orally for 5 days was similar to that of patients receiving placebo (n = 32), indicating balapiravir was well tolerated. However, twice daily assessment of viremia and daily assessment of NS1 antigenemia indicated balapiravir did not measurably alter the kinetics of these virological markers, nor did it reduce the fever clearance time. The kinetics of plasma cytokine concentrations and the whole blood transcriptional profile were also not attenuated by balapiravir treatment. Conclusions. Although this trial, the first of its kind in dengue, does not support balapiravir as a candidate drug, it does establish a framework for antiviral treatment trials in dengue and provides the field with a clinically evaluated benchmark molecule. Clinical Trials Registration. NCT01096576. PMID:22807519

  13. Dengue virus vaccine development.

    PubMed

    Yauch, Lauren E; Shresta, Sujan

    2014-01-01

    Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches. PMID:24373316

  14. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti

    PubMed Central

    Gonzales, Kristina K.; Tsujimoto, Hitoshi

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing. PMID:26020000

  15. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti.

    PubMed

    Gonzales, Kristina K; Tsujimoto, Hitoshi; Hansen, Immo A

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing. PMID:26020000

  16. Urban epidemic of dengue virus serotype 3 infection, Senegal, 2009.

    PubMed

    Faye, Ousmane; Ba, Yamar; Faye, Oumar; Talla, Cheikh; Diallo, Diawo; Chen, Rubing; Mondo, Mireille; Ba, Rouguiétou; Macondo, Edgard; Siby, Tidiane; Weaver, Scott C; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-03-01

    An urban epidemic of dengue in Senegal during 2009 affected 196 persons and included 5 cases of dengue hemorrhagic fever and 1 fatal case of dengue shock syndrome. Dengue virus serotype 3 was identified from all patients, and Aedes aegypti mosquitoes were identified as the primary vector of the virus. PMID:24572297

  17. Dengue Epidemiology

    MedlinePlus

    ... the southern U. S., dengue is endemic in northern Mexico, and the U.S. population has no immunity, the ... south Texas in 2005. (Dengue Hemorrhagic Fever - U.S.- Mexico Border, 2005 ) A small dengue outbreak occurred in ...

  18. Operational vector-borne disease surveillance and control: closing the capabilities gap through research at overseas military laboratories.

    PubMed

    Evans, Brian P; Clark, Jeffrey W; Barbara, Kathryn A; Mundal, Kirk D; Furman, Barry D; McAvin, James C; Richardson, Jason H

    2009-01-01

    Malaria, dengue fever, chikungunya virus, leishmaniasis, and a myriad of other vector-borne diseases pose significant threats to the warfighter and to the overall combat effectiveness of units. Military preventive medicine (PM) assets must accurately evaluate the vector-borne disease threat and then implement and/or advise the commander on countermeasures to reduce a particular threat. The success of these measures is contingent upon the biology of the disease vector and on the tools or methods used to conduct vector/pathogen surveillance and vector control. There is a significant gap between the tools available and those required for operational PM assets to provide real-time, effective surveillance and control. A network of US Army and US Navy overseas laboratories is focused on closing the current capabilities gap. Their mission is to develop and field test tools and methods to enhance the combatant commander's ability to identify and mitigate the threat posed by these vector-borne diseases. PMID:20084734

  19. High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions

    PubMed Central

    2012-01-01

    Background Mosquito transgenesis offers new promises for the genetic control of vector-borne infectious diseases such as malaria and dengue fever. Genetic control strategies require the release of large number of male mosquitoes into field populations, whether they are based on the use of sterile males (sterile insect technique, SIT) or on introducing genetic traits conferring refractoriness to disease transmission (population replacement). However, the current absence of high-throughput techniques for sorting different mosquito populations impairs the application of these control measures. Methods A method was developed to generate large mosquito populations of the desired sex and genotype. This method combines flow cytometry and the use of Anopheles gambiae transgenic lines that differentially express fluorescent markers in males and females. Results Fluorescence-assisted sorting allowed single-step isolation of homozygous transgenic mosquitoes from a mixed population. This method was also used to select wild-type males only with high efficiency and accuracy, a highly desirable tool for genetic control strategies where the release of transgenic individuals may be problematic. Importantly, sorted males showed normal mating ability compared to their unsorted brothers. Conclusions The developed method will greatly facilitate both laboratory studies of mosquito vectorial capacity requiring high-throughput approaches and future field interventions in the fight against infectious disease vectors. PMID:22929810

  20. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Disease vector control. 258.22 Section 258.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or...

  1. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: randomized controlled phase I trial in the Philippines.

    PubMed

    Capeding, Rosario Z; Luna, Imelda A; Bomasang, Emily; Lupisan, Socorro; Lang, Jean; Forrat, Remi; Wartel, Anh; Crevat, Denis

    2011-05-17

    A recombinant live attenuated tetravalent dengue vaccine (TDV) is safe and immunogenic in adults and children in dengue-naïve populations. Data are needed in dengue endemic populations. In a phase I, randomized, controlled, blind-observer study in the Philippines, groups of participants aged 2-5, 6-11, 12-17, and 18-45 years received either three TDV vaccinations at months 0, 3.5, and 12 (TDV-TDV-TDV group) or licensed typhoid vaccination at month 0 and TDV at months 3.5 and 12 (TyVi-TDV-TDV group) and were followed for safety (including biological safety and vaccine virus viremia) and immunogenicity. No serious adverse vaccine related events and no significant trends in biological safety parameters were reported. Injection site pain, headache, malaise, myalgia, fever, and asthenia were reported most frequently, as mild to moderate in most cases and transient. Reactogenicity did not increase with successive vaccinations and was no higher in children than in adults and adolescents. Low levels of vaccinal viremia were detected in both groups after each TDV vaccination. After three TDV vaccinations, the seropositivity rates against serotypes 1-4 were: 91%, 100%, 96%, 100%, respectively, in 2-5 year-olds; 88%, 96% 96%, 92% in 6-11 year-olds; 88%, 83%, 92%, 96% in adolescents; and 100% for all serotypes in adults. A similar response was observed after two doses for the TyVi-TDV-TDV group. The safety profile of TDV in a flavivirus endemic population was consistent with previous reports from flavivirus naïve populations. A vaccine regimen of either three TDV vaccinations administered over a year or two TDV vaccinations given more than 8 months apart resulted in a balanced antibody response to all four dengue serotypes in this flavivirus-exposed population, including children. PMID:21477675

  2. Vector control in some countries of Southeast Asia: comparing the vectors and the strategies.

    PubMed

    Meek, S R

    1995-04-01

    The use of information on malaria vector behaviour in vector control is discussed in relation to the area of Southeast Asia comprising Cambodia, Laos, Myanmar, Thailand and Vietnam. The major vectors in the region are Anopheles dirus, An. minimus, An. maculatus and An. sundaicus, of which An. dirus is the most important. Options for vector control and the biological features of mosquitoes, which would make them amenable to control by these measures, are listed. The methods with the greatest potential for controlling each of the four vector species are described. Experiences of vector control by residual spraying, insecticide-treated nets and larva control and of personal protection against the four vectors are outlined, and it is noted that choice of control strategy is often determined by epidemiological, economic and political considerations, whilst entomological observations may help to explain failures of control and to indicate alternative strategies. Future research needs include basic entomological field studies using the most appropriate indicators to detect changes related to rapidly changing environmental conditions, such as loss of forest and climate change. Further studies of the efficacy of insecticide-treated mosquito nets, with greater attention to study design, are needed before it can be assumed that they will work in Southeast Asia. At the same time, research to improve sustainable utilization of nets is important, bearing in mind that nets are not the only means to control malaria and should not drain resources from supervision and training, which improve access to diagnosis and treatment of malaria and other diseases. Research is needed to make decisions on whether vector control is appropriate in different environments, and, if so, how to carry it out in different health systems. Researchers need to play a greater role in making operational research (entomological, epidemiological, social, economic and health systems research) of good quality

  3. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.

    PubMed

    Murugan, Kadarkarai; Priyanka, Vishwanathan; Dinesh, Devakumar; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Suresh, Udaiyan; Chandramohan, Balamurugan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Khater, Hanem F; Messing, Russell H; Benelli, Giovanni

    2015-10-01

    Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control. PMID:26091763

  4. Potential anti-dengue medicinal plants: a review.

    PubMed

    Abd Kadir, Siti Latifah; Yaakob, Harisun; Mohamed Zulkifli, Razauden

    2013-10-01

    Dengue fever causes mortality and morbidity around the world, specifically in the Tropics and subtropic regions, which has been of major concern to governments and the World Health Organization (WHO). As a consequence, the search for new anti-dengue agents from medicinal plants has assumed more urgency than in the past. Medicinal plants have been used widely to treat a variety of vector ailments such as malaria. The demand for plant-based medicines is growing as they are generally considered to be safer, non-toxic and less harmful than synthetic drugs. This article reviews potential anti-dengue activities from plants distributed around the world. Sixty-nine studies from 1997 to 2012 describe 31 different species from 24 families that are known for their anti-dengue activities. About ten phytochemicals have been isolated from 11 species, among which are compounds with the potential for development of dengue treatment. Crude extracts and essential oils obtained from 31 species showed a broad activity against Flavivirus. Current studies show that natural products represent a rich potential source of new anti-dengue compounds. Further ethnobotanical surveys and laboratory investigations are needed established the potential of identified species in contributing to dengue control. PMID:23591999

  5. Intra- and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia.

    PubMed

    Eastin, Matthew D; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron

    2014-09-01

    Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors-all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C--the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts. PMID:24957546

  6. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China. PMID:27260668

  7. Efficacy of extracts of Bacillus thuringiensis israelensis for the control of mosquito vectors.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 1 million human cases of Chikungunya were recently reported in India. Aedes aegypti (the yellow fever mosquito) is an important disease vector in India where it transmits Chikungunya, dengue, and yellow fever viruses to humans. In this study, scientists from Bharathiar University in Coim...

  8. Use of Anti-Aedes aegypti Salivary Extract Antibody Concentration to Correlate Risk of Vector Exposure and Dengue Transmission Risk in Colombia

    PubMed Central

    Londono-Renteria, Berlin; Cardenas, Jenny C.; Cardenas, Lucio D.; Christofferson, Rebecca C.; Chisenhall, Daniel M.; Wesson, Dawn M.; McCracken, Michael K.; Carvajal, Daisy; Mores, Christopher N.

    2013-01-01

    Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an “Ae. aegypti-free” area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence. PMID:24312537

  9. Repetitive dengue outbreaks in East Africa: A proposed phased mitigation approach may reduce its impact.

    PubMed

    Baba, Marycelin; Villinger, Jandouwe; Masiga, Daniel K

    2016-05-01

    Dengue outbreaks have persistently occurred in eastern African countries for several decades. We assessed each outbreak to identify risk factors and propose a framework for prevention and impact mitigation. Seven out of ten countries in eastern Africa and three islands in the Indian Ocean have experienced dengue outbreaks between 1823 and 2014. Major risk factors associated with past dengue outbreaks include climate, virus and vector genetics and human practices. Appropriate use of dengue diagnostic tools and their interpretation are necessary for both outbreak investigations and sero-epidemiological studies. Serosurvey findings during inter-epidemic periods have not been adequately utilised to prevent re-occurrence of dengue outbreaks. Local weather variables may be used to predict dengue outbreaks, while entomological surveillance can complement other disease-mitigation efforts during outbreaks and identify risk-prone areas during inter-epidemic periods. The limitations of past dengue outbreak responses and the enormous socio-economic impacts of the disease on human health are highlighted. Its repeated occurrence in East Africa refutes previous observations that susceptibility may depend on race. Alternate hypotheses on heterotypic protection among flaviviruses may not be applied to all ecologies. Prevention and mitigation of severe dengue outbreaks should necessarily consider the diverse factors associated with their occurrence. Implementation of phased dengue mitigation activities can enforce timely and judicious use of scarce resources, promote environmental sanitation, and drive behavioural change, hygienic practices and community-based vector control. Understanding dengue epidemiology and clinical symptoms, as determined by its evolution, are significant to preventing future dengue epidemics. PMID:26922851

  10. Exploiting the potential of vector control for disease prevention.

    PubMed Central

    Townson, H.; Nathan, M. B.; Zaim, M.; Guillet, P.; Manga, L.; Bos, R.; Kindhauser, M.

    2005-01-01

    Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities. PMID:16462987

  11. Spatial and temporal patterns in pupal and adult production of the dengue vector Aedes aegypti in Kamphaeng Phet, Thailand.

    PubMed

    Koenraadt, Constantianus J M; Aldstadt, Jared; Kijchalao, Udom; Sithiprasasna, Ratana; Getis, Arthur; Jones, James W; Scott, Thomas W

    2008-08-01

    We investigated how temporal and spatial effects confound the functional relationship between pupal and adult populations of Aedes aegypti and thus the value of pupal numbers as predictors of dengue transmission risk in Kamphaeng Phet, Thailand. We found considerable seasonal shifts in productivity of key containers. Tires contained much less pupae in the dry season than in the wet season. Earthenware jars and cement tanks for washing purposes were consistent producers over the entire study period. Houses in the two villages, with approximately twice as many houses per unit area, were significantly more likely to have adults and pupae. No significant annual, seasonal, or spatial effects on the strength of correlations between pupal and adult populations were found. Except for 2 (of 16) occasions, pupal, and adult populations were correlated strongly in time and space. Our results are consistent with application of the pupal survey technique for assessing dengue transmission risk. PMID:18689629

  12. Dry Season Production of Filariasis and Dengue Vectors in American Samoa and Comparison with Wet Season Production

    PubMed Central

    Lambdin, Barrot H.; Schmaedick, Mark A.; McClintock, Shannon; Roberts, Jacqueline; Gurr, Neil E.; Marcos, Kenneth; Waller, Lance; Burkot, Thomas R.

    2015-01-01

    Aedes polynesiensis and Ae. aegypti breeding site productivity in two American Samoa villages were analyzed during a dry season survey and compared with a wet season survey. Both surveys identified similar container types producing greater numbers of pupae, with buckets, drums, and tires responsible for > 50% of Aedes pupae during the dry season. The prevalence of containers with Ae. polynesiensis and the density of Ae. polynesiensis in discarded appliances, drums, and discarded plastic ice cream containers were significantly greater during the dry season. Aedes aegypti pupal densities were significantly greater in the dry season in ice cream containers and tires. Significant clustering of the most productive container types by household was only found for appliances. The high productivity for Ae. polynesiensis and Ae. aegypti pupae during the wet and dry seasons suggests that dengue and lymphatic filariasis transmission can occur throughout the year, consistent with the reporting of dengue cases. PMID:19996430

  13. Current perspectives on dengue episode in Malaysia.

    PubMed

    Pang, Ee Leen; Loh, Hwei-San

    2016-04-01

    Prevalence of dengue transmission has been alarmed by an estimate of 390 million infections per annum. Urban encroachment, ecological disruption and poor sanitation are all contributory factors of increased epidemiology. Complication however arises from the fact that dengue virus inherently exists as four different serotypes. Secondary infection is often manifested in the more severe form, such that antibody-dependent enhancement (ADE) could aggravate ailment by allowing pre-existing antibodies to form complexes with infecting viruses as means of intrusion. Consequently, increased viraemic titter and suppression of antiviral response are observed. Deep concerns are thus expressed in regards to escalating trend of hospitalisation and mortality rates. In Malaysia, situation is exacerbated by improper clinical management and pending vector control operations. As a preparedness strategy against the potential deadly dengue pandemic, the call for development of a durable and cost-effective dengue vaccine against all infecting serotypes is intensified. Even though several vaccine candidates are currently being evaluated in clinical trials, uncertainties in regards to serotypes interference, incomplete protection and dose adequacy have been raised. Instead of sole reliance on outsourcing, production of local vaccine should be considered in coherent to government's efforts to combat against dengue. PMID:27086160

  14. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu

    2014-11-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 μg mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)₅₀ and LD₉₀ values: A. stephensi had LD₅₀ and LD₉₀ values of 18

  15. Lovastatin for the Treatment of Adult Patients With Dengue: A Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Whitehorn, James; Nguyen, Chau Van Vinh; Khanh, Lam Phung; Kien, Duong Thi Hue; Quyen, Nguyen Than Ha; Tran, Nguyen Thi Thanh; Hang, Nguyen Thuy; Truong, Nguyen Thanh; Hue Tai, Luong Thi; Cam Huong, Nguyen Thi; Nhon, Vo Thanh; Van Tram, Ta; Farrar, Jeremy; Wolbers, Marcel; Simmons, Cameron P.; Wills, Bridget

    2016-01-01

    Background. Dengue endangers billions of people in the tropical world, yet no therapeutic is currently available. In part, the severe manifestations of dengue reflect inflammatory processes affecting the vascular endothelium. In addition to lipid lowering, statins have pleiotropic effects that improve endothelial function, and epidemiological studies suggest that outcomes from a range of acute inflammatory syndromes are improved in patients already on statin therapy. Methods. Following satisfactory review of a short pilot phase (40 mg lovastatin vs placebo in 30 cases), we performed a randomized, double-blind, placebo-controlled trial of 5 days of 80 mg lovastatin vs placebo in 300 Vietnamese adults with a positive dengue NS1 rapid test presenting within 72 hours of fever onset. The primary outcome was safety. Secondary outcomes included comparisons of disease progression rates, fever clearance times, and measures of plasma viremia and quality of life between the treatment arms. Results. Adverse events occurred with similar frequency in both groups (97/151 [64%] placebo vs 82/149 [55%] lovastatin; P = .13), and were in keeping with the characteristic clinical and laboratory features of acute dengue. We also observed no difference in serious adverse events or any of the secondary outcome measures. Conclusions. We found lovastatin to be safe and well tolerated in adults with dengue. However, although the study was not powered to address efficacy, we found no evidence of a beneficial effect on any of the clinical manifestations or on dengue viremia. Continuing established statin therapy in patients who develop dengue is safe. Chinese Clinical Trials Registration. ISRCTN03147572. PMID:26565005

  16. House-to-house human movement drives dengue virus transmission.

    PubMed

    Stoddard, Steven T; Forshey, Brett M; Morrison, Amy C; Paz-Soldan, Valerie A; Vazquez-Prokopec, Gonzalo M; Astete, Helvio; Reiner, Robert C; Vilcarromero, Stalin; Elder, John P; Halsey, Eric S; Kochel, Tadeusz J; Kitron, Uriel; Scott, Thomas W

    2013-01-15

    Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention. PMID:23277539

  17. Forced egg retention and oviposition behavior of malaria, dengue and filariasis vectors to a topical repellent diethyl-phenylacetamide.

    PubMed

    Seenivasagan, T; Iqbal, S Thanvir; Guha, Lopamudra

    2015-07-01

    Egg retention and oviposition behavior of four species of mosquito vectors viz., Anopheles stephensi, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus to a topical insect repellent diethyl-phenylacetamide (DEPA) at 0.1-1000 mg/L was investigated under laboratory conditions. Based on oviposition activity indices, DEPA demonstrated concentration dependent oviposition deterrent effect to A. stephensi (-0.18 to -0.97), A. aegypti (-0.18 to -0.91) and A. albopictus (-0.50 to -0.98) females. In contrast, positive oviposition response by C. quinquefasciatus (+0.39 and +0.70) was observed respectively at 0.1 and 1 ppm, while 10 ppm of DEPA on water received 50% lesser egg rafts than control. Gravid Culex females laid no egg rafts at 100 and 1000 ppm DEPA treated bowls effecting 100% oviposition deterrence. Test mosquito females deposited most of their eggs (> 90%) in the absence of repellent odour, while DEPA odour on water surface forced them to retain huge numbers of eggs. Females of A. aegypti, A. albopictus and A. stephensi retained 49, 67 and 50% of total eggs, respectively throughout the experiment. Egg retention by Culex females due to DEPA on the water surface was ca. 65%, equivalent to 4 egg rafts. Therefore, DEPA at lower concentrations could effectively disturb the oviposition by these vectors. Application of repellents in small water bodies would help in reducing the population build up of mosquitoes near human households and could be useful in the integrated management of mosquito vectors. PMID:26245028

  18. Confirmed adult dengue deaths in Singapore: 5-year multi-center retrospective study

    PubMed Central

    2011-01-01

    Background Dengue re-emerges in Singapore despite decades of effective vector control; the infection predominantly afflicts adults. Severe dengue not fulfilling dengue hemorrhagic fever (DHF) criteria according to World Health Organization (WHO) 1997 guideline was increasingly reported. A new WHO 2009 guideline emphasized warning signs and a wider range of severe dengue manifestations. We aim to evaluate the utility of these two guidelines in confirmed adult dengue fatalities. Methods We conducted a multi-center retrospective chart review of all confirmed adult dengue deaths in Singapore from 1 January 2004 to 31 December 2008. Results Of 28 adult dengue deaths, median age was 59 years. Male gender comprised 67.9% and co-morbidities existed in 75%. From illness onset, patients presented for admission at a median of 4 days and death occurred at a median of 12 days. Intensive care admission was required in 71.4%. Probable dengue was diagnosed in 32.1% by WHO 1997 criteria and 78.6% by WHO 2009. The earliest warning sign was persistent vomiting at a median of 1.5 days. Hematocrit change ≥20% concurrent with platelet count <20 × 10^9/L was associated with the shortest interval to death at a median of 3 days. Only 35.7% of death cases fulfilled DHF criteria by WHO 1997 versus severe dengue in 100.0% by WHO 2009 criteria. Deaths were due to shock and organ failure. Acute renal impairment occurred in 71.4%, impaired consciousness 57.1% and severe hepatitis 53.6%. Conclusions In our adult fatal dengue cohort, WHO 2009 criteria had higher sensitivity in diagnosing probable dengue and severe dengue compared with WHO 1997. As warning signs, persistent vomiting occurred early and hematocrit change ≥20% concurrent with platelet count <20 × 10^9/L preceded death most closely. PMID:21569427

  19. Public Acceptance and Willingness-to-Pay for a Future Dengue Vaccine: A Community-Based Survey in Bandung, Indonesia

    PubMed Central

    Hadisoemarto, Panji Fortuna; Castro, Marcia C.

    2013-01-01

    Background All four serotypes of dengue virus are endemic in Indonesia, where the population at risk for infection exceeds 200 million people. Despite continuous control efforts that were initiated more than four decades ago, Indonesia still suffers from multi-annual cycles of dengue outbreak and dengue remains as a major public health problem. Dengue vaccines have been viewed as a promising solution for controlling dengue in Indonesia, but thus far its potential acceptability has not been assessed. Methodology/Principal Findings We conducted a household survey in the city of Bandung, Indonesia by administering a questionnaire to examine (i) acceptance of a hypothetical pediatric dengue vaccine; (ii) participant's willingness-to-pay (WTP) for the vaccine, had it not been provided for free; and (iii) whether people think vector control would be unnecessary if the vaccine was available. A proportional odds model and an interval regression model were employed to identify determinants of acceptance and WTP, respectively. We demonstrated that out of 500 heads of household being interviewed, 94.2% would agree to vaccinate their children with the vaccine. Of all participants, 94.6% were willing to pay for the vaccine with a median WTP of US$1.94. In addition, 7.2% stated that vector control would not be necessary had there been a dengue vaccination program. Conclusions/Significance Our results suggest that future dengue vaccines can have a very high uptake even when delivered through the private market. This, however, can be influenced by vaccine characteristics and price. In addition, reduction in community vector control efforts may be observed following vaccine introduction but its potential impact in the transmission of dengue and other vector-borne diseases requires further study. PMID:24069482

  20. Social sustainability of Mesocyclops biological control for dengue in South Vietnam.

    PubMed

    Tran, Thanh Tam; Olsen, Anna; Viennet, Elvina; Sleigh, Adrian

    2015-01-01

    Copepod Mesocyclops as biological control agents for dengue was previously proven to be effective and sustainable in the Northern and Central provinces of Vietnam. We aim to study social sustainability of Mesocyclops intervention in south Vietnam. Both quantitative and qualitative approaches were used. An entomological survey was carried out in 100 random households of Chanh An commune, Vinh Long Province. Aedes larval indices and Mesocyclops prevalence were compared with historical pre- and post-intervention values. In the same commune, using purposeful sampling, sixteen semi-structured interviews (1 villager leader, 1 local doctor, 10 villagers, 2 teachers, 2 entomology officials), and a focus group discussion (6 Mesocyclops program collaborators) explored water storage habits, beliefs about dengue prevention and behaviour related to Mesocyclops. Thematic analysis was conducted to interpret the qualitative findings. Aedes abundance increased after responsibility for Mesocyclops intervention moved from government to community in 2010, with post-transfer surges in Breteau Index, Container Index, and Larval Density Index. Larval increments coincided with decrease in Mesocyclops prevalence. Villagers had some knowledge of dengue but it was conflated with other mosquito borne diseases and understanding of Mesocyclops was incomplete. Program adoption among the villagers was limited. With reduced government support program collaborators reported limited capacity to conduct population monitoring, and instead targeted 'problem' households. Although the Mesocyclops program was highly sustainable in northern and central provinces of Vietnam, the intervention has not been consistently adopted by southern households in Chanh An commune. Limited education, household monitoring and government support are affecting sustainability. Findings were based on a small household sample visited over a short time period, so other evaluations are needed. However, our results suggest that

  1. Forecast of Dengue Incidence Using Temperature and Rainfall

    PubMed Central

    Hii, Yien Ling; Zhu, Huaiping; Ng, Nawi; Ng, Lee Ching; Rocklöv, Joacim

    2012-01-01

    Introduction An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore. Methodology and Principal Findings We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000–2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93–98%) in 2004–2010 and 98% (CI = 95%–100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm. Significance We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited

  2. Chlorophyll derivatives can be an efficient weapon in the fight against dengue.

    PubMed

    Azizullah, Azizullah; Rehman, Zia Ur; Ali, Imran; Murad, Waheed; Muhammad, Noor; Ullah, Waheed; Häder, Donat-Peter

    2014-12-01

    Dengue, a mosquito-borne viral infection, is one of the major public health concerns in the tropical and subtropical regions of the world. Approximately, 2.5 billion people across the world are at risk from dengue and 50 to 100 million new infections of dengue occur annually. There is yet no vaccine or medicine available against dengue, and treatment remains only supportive. Targeting its vector by a combination of biological and chemical approaches and management of breeding sites are currently the only existing approaches to control or eliminate dengue. Chlorophyll derivatives like chlorophyllin and pheophorbide have been reported as effective natural photosensitizers against larvae of several insects including flies. Chlorophyll derivatives were also reported effective against larval stages of freshwater snails as well as against certain parasites of fish. This article briefly discusses the possible application of chlorophyll derivatives in controlling dengue vectors and hence the disease itself. Chlorophyll derivatives can prove to be a good contributor in an integrated approach against dengue. PMID:25316581

  3. A portable approach for the surveillance of dengue virus-infected mosquitoes.

    PubMed

    Muller, David A; Frentiu, Francesca D; Rojas, Alejandra; Moreira, Luciano A; O'Neill, Scott L; Young, Paul R

    2012-07-01

    Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses. PMID:22575689

  4. Parity and Longevity of Aedes aegypti According to Temperatures in Controlled Conditions and Consequences on Dengue Transmission Risks

    PubMed Central

    Goindin, Daniella; Delannay, Christelle; Ramdini, Cédric; Gustave, Joël; Fouque, Florence

    2015-01-01

    Background In Guadeloupe, Aedes aegypti mosquitoes are the only vectors of dengue and chikungunya viruses. For both diseases, vector control is the only tool for preventing epidemics since no vaccine or specific treatment is available. However, to efficiently implement control of mosquitoes vectors, a reliable estimation of the transmission risks is necessary. To become infective an Ae. aegypti female must ingest the virus during a blood meal and will not be able to transmit the virus during another blood-meal until the extrinsic incubation period is completed. Consequently the aged females will carry more infectious risks. The objectives of the present study were to estimate under controlled conditions the expectation of infective life for females and thus the transmission risks in relation with their reproductive cycle and parity status. Methodology/Principal Findings Larvae of Ae. aegypti were collected in central Guadeloupe and breed under laboratory conditions until adult emergence. The experiments were performed at constant temperatures (± 1.5°C) of 24°C, 27°C and 30°C on adults females from first generation (F1). Females were kept and fed individually and records of blood-feeding, egg-laying and survival were done daily. Some females were dissected at different physiological stages to observe the ovaries development. The data were analyzed to follow the evolution of parity rates, the number of gonotrophic cycles, the fecundity and to study the mean expectation of life and the mean expectation of infective life for Ae. aegypti females according to temperatures. The expectation of life varies with the parity rates and according to the temperatures, with durations from about 10 days at low parity rates at the higher temperature to an optimal duration of about 35 days when 70% of females are parous at 27°C. Infective life expectancy was found highly variable in the lower parous rates and again the optimal durations were found when more than 50% of females

  5. Diffusion Pattern and Hotspot Detection of Dengue in Belo Horizonte, Minas Gerais, Brazil

    PubMed Central

    Pessanha, José Eduardo Marques Pessanha; Caiaffa, Waleska Teixeira; Almeida, Maria Cristina de Mattos; Brandão, Silvana Tecles; Proietti, Fernando Augusto

    2012-01-01

    This study considers the dengue occurrence in the city of Belo Horizonte over the last fifteen years. Approximately 186,000 cases registered from 1996 to 2011 were analyzed. The home address of individuals whose dengue case was notified was used as a proxy for exposure location. For determining possible outbreaks of disease and the specific patterns of dengue cases, spatial statistics used included Kernel's estimation. The occurrence of waves of dengue outbreaks was correlated with climatic and vector presence data. Outbreaks had different durations and intensities: case clustering, thinned out both spatially and temporally. These findings may be useful for public health professionals responsible for fighting the disease providing some tools for improving evaluation of interventions such as vector control and patient care, minimizing the collective and individual burden of the disease. PMID:22536269

  6. Suppressing Aedes albopictus, an emerging vector of dengue and chikungunya viruses, by a novel combination of a monomolecular film and an insect-growth regulator.

    PubMed

    Nelder, Mark; Kesavaraju, Banugopan; Farajollahi, Ary; Healy, Sean; Unlu, Isik; Crepeau, Taryn; Ragavendran, Ashok; Fonseca, Dina; Gaugler, Randy

    2010-05-01

    The Asian tiger mosquito Aedes albopictus (Skuse) is rapidly increasing its global range and importance in transmission of chikungunya and dengue viruses. We tested pellet formulations of a monomolecular film (Agnique) and (S)-methoprene (Altosid) under laboratory and field conditions. In the laboratory, Agnique provided 80% control for 20 days, whereas Altosid, in combination with Agnique, provided 80% control for > 60 days. During field trials, the 1:1 pellet ratio of combined products provided > 95% control for at least 32 days and 50% control for at least 50 days. Altosid remained effective after a 107-day laboratory-induced drought, suggesting that the product serves as a means of control during drought conditions and against spring broods in temperate regions. Agnique and Altosid, when used in tandem for cryptic, difficult-to-treat locations, can provide long-term control of Ae. albopictus larvae and pupae. The possible additive or synergistic effects of the combined products deserve further investigation. PMID:20439963

  7. Is drought helping or killing dengue? Investigation of spatiotemporal relationship between dengue fever and drought

    NASA Astrophysics Data System (ADS)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2015-04-01

    Dengue Fever is a vector-borne disease that is transmitted between human and mosquitos in tropical and sub-tropical regions. Previous studies have found significant relationship between the epidemic of dengue cases and climate variables, especially temperature and precipitation. Besides, the natural phenomena (e.g., drought) are considered that significantly drop the number of dengue cases by killing vector's breeding environment. However, in Kaohsiung City, Taiwan, there are evidences that the temporal pattern of dengue is correlated to drought events. Kaohsiung City experienced two main dengue outbreaks in 2002 and 2014 that both years were confirmed with serious drought. Especially in 2014, Kaohsiung City was suffered from extremely dengue outbreak in 2014 that reported the highest number of dengue cases in the history. This study constructs the spatiotemporal model of dengue incidences and index of drought events (Standardized Precipitation Index, SPI) based on the distributed lag nonlinear model (DLNM). Other meteorological measures are also included in the analysis.

  8. Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?

    PubMed

    Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A

    2015-06-01

    Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. PMID:26313985

  9. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus

    PubMed Central

    Yadav, Ruchi; Tyagi, Varun; Tikar, Sachin N; Sharma, Ajay K; Mendki, Murlidhar J; Jain, Ashok K; Sukumaran, Devanathan

    2014-01-01

    Background: Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory. Methods: Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20–400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior) against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50), while OAI (Oviposition activity index) was calculated for oviposition altering activity of the plant extracts. Results: Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466) at 100ppm. Conclusion: Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito. PMID:26114131

  10. Dengue and other flavivirus infections.

    PubMed

    Choumet, V; Desprès, Ph

    2015-08-01

    Flaviviruses are responsible for yellow fever, Zika fever and dengue, all of which are major human diseases found in tropical regions of the globe. They are zoonoses with a transmission cycle that involves primates as reservoirs and mosquitoes of the genus Aedes as vectors. The recent upsurge of urban epidemics of yellow fever, Zika fever and dengue has involved human-to-human transmission with mosquitoes as the vector. This paper is primarily concerned with dengue, which has become the pre-eminent arbovirosis in terms of public health. PMID:26601449

  11. Wolbachia versus dengue: Evolutionary forecasts.

    PubMed

    Bull, James J; Turelli, Michael

    2013-01-01

    A novel form of biological control is being applied to the dengue virus. The agent is the maternally transmitted bacterium Wolbachia, naturally absent from the main dengue vector, the mosquito Aedes aegypti. Three Wolbachia-based control strategies have been proposed. One is suppression of mosquito populations by large-scale releases of males incompatible with native females; this intervention requires ongoing releases. The other interventions transform wild mosquito populations with Wolbachia that spread via the frequency-dependent fitness advantage of Wolbachia-infected females; those interventions potentially require just a single, local release for area-wide disease control. One of these latter strategies uses Wolbachia that shortens mosquito life, indirectly preventing viral maturation/transmission. The other strategy uses Wolbachia that block viral transmission. All interventions can be undermined by viral, bacterial or mosquito evolution; viral virulence in humans may also evolve. We examine existing theory, experiments and comparative evidence to motivate predictions about evolutionary outcomes. (i) The life-shortening strategy seems the most likely to be thwarted by evolution. (ii) Mosquito suppression has a reasonable chance of working locally, at least in the short term, but long-term success over large areas is challenging. (iii) Dengue blocking faces strong selection for viral resistance but may well persist indefinitely at some level. Virulence evolution is not mathematically predictable, but comparative data provide no precedent for Wolbachia increasing dengue virulence. On balance, our analysis suggests that the considerable possible benefits of these technologies outweigh the known negatives, but the actual risk is largely unknown. PMID:24481199

  12. From population structure to genetically-engineered vectors: new ways to control vector-borne diseases?

    PubMed

    Sparagano, O A E; De Luna, C J

    2008-07-01

    Epidemiological studies on vectors and the pathogens they can carry (such as Borrelia burgdorferi) are showing some correlations between infection rates and biodiversity highlighting the "dilution" effects on potential vectors. Meanwhile other studies comparing sympatric small rodent species demonstrated that rodent species transmitting more pathogens are parasitized by more ectoparasite species. Studies on population structure and size have also proven a difference on the intensity of the parasitic infection. Furthermore, preliminary results in genetic improvement in mosquitoes (genetic markers, sexing, and genetic sterilization) will also increase performance as it has already been shown in field applications in developing countries. Recent results have greatly improved the fitness of genetically-modified insects compared to wild type populations with new approaches such as the post-integration elimination of transposon sequences, stabilising any insertion in genetically-modified insects. Encouraging results using the Sterile Insect Technique highlighted some metabolism manipulation to avoid the viability of offspring from released parent insect in the wild. Recent studies on vector symbionts would also bring a new angle in vector control capabilities, while complete DNA sequencing of some arthropods could point out ways to block the deadly impact on animal and human populations. These new potential approaches will improve the levels of control or even in some cases would eradicate vector species and consequently the vector-borne diseases they can transmit. In this paper we review some of the population biology theories, biological control methods, and the genetic techniques that have been published in the last years that are recommended to control for vector-borne diseases. PMID:17560836

  13. Rapid evolution of reduced receptivity to interspecific mating in the dengue vector Aedes aegypti in response to satyrization by invasive Aedes albopictus

    PubMed Central

    Bargielowski, I.; Lounibos, L.P.

    2013-01-01

    In this paper we examine the effect of reproductive interference on the dynamics of two mosquito vectors of public health concern and add to the growing literature on the strength and speed with which interspecific reproductive interference may drive evolution. Recent evidence supports a role for asymmetric reproductive interference, or satyrization, in competitive displacements of Aedes aegypti by Aedes albopictus. However, populations of A. aegypti sympatric with A. albopictus in nature evolve resistance to satyrization. Here we report that A. aegypti from Tucson, Arizona (USA), where A. albopictus are not known to occur, are satyrization-susceptible. Furthermore, in cage experiments we demonstrate rapid evolution in satyrization-susceptible lines. Exposing allopatric strains of A. aegypti to A. albopictus in cages led to significant reductions, within 1–3 generations, in the frequency of reproductive interference. We also demonstrate that satyrization-resistant A. aegypti females derived from selection experiments are significantly slower to mate with conspecific males, suggesting a cost for the evolution of satyrization-resistance. Results show how interspecific interactions between these vector species are rapidly evolving, with implications for the arboviral diseases, especially dengue and chikungunya, which they transmit. PMID:24563572

  14. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control.

    PubMed

    Brand, Samuel P C; Rock, Kat S; Keeling, Matt J

    2016-04-01

    Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models. PMID:27128163

  15. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control

    PubMed Central

    Brand, Samuel P. C.; Keeling, Matt J.

    2016-01-01

    Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models. PMID:27128163

  16. Identification of a major Quantitative Trait Locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti.

    PubMed

    Paiva, Marcelo H S; Lovin, Diane D; Mori, Akio; Melo-Santos, Maria A V; Severson, David W; Ayres, Constância F J

    2016-01-01

    Organophosphate insecticides (OP) have extensively been used to control mosquitoes, such as the vector Aedes aegypti. Unfortunately, OP resistance has hampered control programs worldwide. We used Quantitative Trait Locus (QTL) mapping to evaluate temephos resistance in two F1 intercross populations derived from crosses between a resistant Ae. aegypti strain (RecR) and two susceptible strains (MoyoD and Red). A single major effect QTL was identified on chromosome 2 of both segregating populations, named rtt1 (resistance to temephos 1). Bioinformatics analyses identified a cluster of carboxylesterase genes (CCE) within the rtt1 interval. qRT-PCR demonstrated that different CCEs were up-regulated in F2 resistant individuals from both crosses. However, none exceeded the 2-fold expression. Primary mechanisms for temephos resistance may vary between Ae. aegypti populations, yet also appear to support previous findings suggesting that multiple linked esterase genes may contribute to temephos resistance in the RecR strain as well as other populations. PMID:26576515

  17. The Potential Impact of Vaccination on the Dynamics of Dengue Infections.

    PubMed

    Knipl, Diána; Moghadas, Seyed M

    2015-12-01

    Dengue, classified as a 'neglected topical disease', is currently regarded globally as the most important mosquito-borne viral disease, which inflicts substantial socioeconomic and health burden in many tropical and subtropical regions of the world. While efforts continue towards developing and improving the efficacy of a tetravalent vaccine to protect individuals against all dengue virus serotypes, the long-term epidemiological impact of vaccination remains elusive. We develop a serotype-specific, vector-host compartmental model to evaluate the effect of vaccination in the presence of antibody-dependent enhancement and cross-protection following recovery from primary infection. Reproducing the reported multi-annual patterns of dengue infection, our model projects that vaccination can dramatically reduce the overall incidence of the disease. However, if the duration of vaccine-induced protection is shorter than the average lifetime of the human population, vaccination can potentially increase the incidence of severe infection of dengue haemorrhagic fever due to the effects of antibody-dependent enhancement. The magnitude and timelines for this increase depend strongly on the efficacy and duration of the vaccine-induced protection. Corresponding to the current estimates of vaccine efficacy, we show that dengue eradication is infeasible using an imperfect vaccine. Furthermore, for a vaccine that induces lifetime protection, a nearly full coverage of infant vaccination is required for dengue elimination. Our findings suggest that other vector control measures may still play a significant role in dengue prevention even when a vaccine with high protection efficacy becomes available. PMID:26585748

  18. Describing the Breakbone Fever: IDODEN, an Ontology for Dengue Fever

    PubMed Central

    Mitraka, Elvira; Topalis, Pantelis; Dritsou, Vicky; Dialynas, Emmanuel; Louis, Christos

    2015-01-01

    Background Ontologies represent powerful tools in information technology because they enhance interoperability and facilitate, among other things, the construction of optimized search engines. To address the need to expand the toolbox available for the control and prevention of vector-borne diseases we embarked on the construction of specific ontologies. We present here IDODEN, an ontology that describes dengue fever, one of the globally most important diseases that are transmitted by mosquitoes. Methodology/Principal Findings We constructed IDODEN using open source software, and modeled it on IDOMAL, the malaria ontology developed previously. IDODEN covers all aspects of dengue fever, such as disease biology, epidemiology and clinical features. Moreover, it covers all facets of dengue entomology. IDODEN, which is freely available, can now be used for the annotation of dengue-related data and, in addition to its use for modeling, it can be utilized for the construction of other dedicated IT tools such as decision support systems. Conclusions/Significance The availability of the dengue ontology will enable databases hosting dengue-associated data and decision-support systems for that disease to perform most efficiently and to link their own data to those stored in other independent repositories, in an architecture- and software-independent manner. PMID:25646954

  19. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    SciTech Connect

    Perera, Rushika M.; Riley, Catherine; Isaac, Georgis; Hopf- Jannasch, Amber; Moore, Ronald J.; Weitz, Karl K.; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Adamec, Jiri; Kuhn, Richard J.

    2012-03-22

    Dengue virus causes {approx}50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.

  20. [Dengue fever--not just a tropical infectious disease].

    PubMed

    Stock, Ingo

    2016-03-01

    Dengue fever is a viral disease that is transmitted primarily by Aedes mosquitoes, i. e., A. aegypti and A. albopictus. Other species are rarely involved. The disease is caused by dengue virus, an enveloped RNA virus which belongs to the family of flaviviridae. Although most infections are asymptomatic, in 20 to 30 percentages all cases infections are accompanied with high fever and other influenza-like signs of illness. Serious medical conditions with lethal complications also occur. During the last decades, the incidence of dengue fever rose sharply in many tropical and subtropical countries. In some of these regions, dengue is one of the leading causes of death in children. In Europe, since a few years a strong clustering of dengue fever cases has been registered in travelers returning from certain tropical or subtropical regions. Recently, autochthonous outbreaks have been observed on the Atlantic island of Madeira and in a few other regions of South Europe. Treatment of dengue fever is supportive and symptomatic, a specific therapy does not exist. For prevention of disease, vector control is of crucial importance. PMID:27120872

  1. Efficiency aspects of vector control applied to synchronous reluctance motors

    SciTech Connect

    Fletcher, J.E.; Williams, B.W.; Green, T.C.

    1995-12-31

    Core losses in a synchronous reluctance machine are modeled. The empirical model obtained is used to implement a control scheme to compensate for equivalent core loss currents. This enables accurate control of the magnetizing currents, hence torque. Efficiency over the base speed operating range of the machine is compared for two different vector control schemes. Methods of triplen series injection for vector controllers are discussed and a new method proposed. The new technique has advantages in terms of overall triplen content and computational requirements. Inductance ripple in the machine is estimated using direct torque ripple measurements and incorporated in a machine model valid for low speed operation.

  2. Thrust vector control for the Space Shuttle Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Counter, D. N.; Brinton, B. C.

    1975-01-01

    Thrust vector control (TVC) for the Space Shuttle Solid Rocket Motor (SRM) is obtained by omniaxis vectoring of the nozzle. The development and integration of the system are under the cognizance of Marshall Space Flight Center (MSFC). The nozzle and flexible bearing have been designed and will be built by Thiokol Corporation/Wasatch Division. The vector requirements of the system, the impact of multiple reuse on the components, and the unique problems associated with a large flexible bearing are discussed. The design details of each of the major TVC subcomponents are delineated. The subscale bearing development program and the overall development schedule also are presented.

  3. Parallel and vector computation for stochastic optimal control applications

    NASA Technical Reports Server (NTRS)

    Hanson, F. B.

    1989-01-01

    A general method for parallel and vector numerical solutions of stochastic dynamic programming problems is described for optimal control of general nonlinear, continuous time, multibody dynamical systems, perturbed by Poisson as well as Gaussian random white noise. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random atmospheric fluctuations. The numerical formulation is highly suitable for a vector multiprocessor or vectorizing supercomputer, and results exhibit high processor efficiency and numerical stability. Advanced computing techniques, data structures, and hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations.

  4. Threat of dengue fever and dengue haemorrhagic fever to Egypt from travelers.

    PubMed

    El-Bahnasawy, Mamdouh M; Khalil, Hazem H M; Morsy, Ayman T A; Morsy, Tosson A

    2011-08-01

    Dengue (DF) and dengue hemorrhagic fevers (DHF) are present in urban and suburban areas in the Americas, South-East Asia, the Eastern Mediterranean and the Western Pacific, but dengue fever is present mainly in the rural areas of Africa. Several factors have combined to produce epidemiological conditions in developing countries in the tropics and subtropics that favour viral transmission by the main mosquito vector, Aedes aegypti as the rapid population growth, rural-urban migration, inadequate basic urban infrastructure (eg. the unreliable water supply leading householders to store water in containers close to homes) and the increase in volume of solid waste, such as discarded plastic containers and other abandoned items which provide larval habitats in urban areas. Geographical expansion of the mosquito has been aided by the international commercial trade particularly in used car-tyres which easily accumulate rainwater. Increased air travel and the breakdown of vector control measures have also contributed greatly to the global burden of dengue and DH fevers. The presence of Ae. aegypti and endemicity of DF and DHF in the neighbor- ing regional countries must be in mind of the Public Health Authorities. PMID:21980768

  5. Understanding dengue pathogenesis: implications for vaccine design.

    PubMed Central

    Stephenson, John R.

    2005-01-01

    In the second half of the twentieth century dengue spread throughout the tropics, threatening the health of a third of the world's population. Dengue viruses cause 50-100 million cases of acute febrile disease every year, including more than 500,000 reported cases of the severe forms of the disease--dengue haemorrhagic fever and dengue shock syndrome. Attempts to create conventional vaccines have been hampered by the lack of suitable experimental models, the need to provide protection against all four serotypes simultaneously and the possible involvement of virus-specific immune responses in severe disease. The current understanding of dengue pathogenesis is outlined in this review, with special emphasis on the role of the immune response. The suspected involvement of the immune system in increased disease severity and vascular damage has raised concerns about every vaccine design strategy proposed so far. Clearly more research is needed on understanding the correlates of protection and mechanisms of pathogenesis. There is, however, an urgent need to provide a solution to the escalating global public health problems caused by dengue infections. Better disease management, vector control and improved public health measures will help reduce the current disease burden, but a safe and effective vaccine is probably the only long-term solution. Although concerns have been raised about the possible safety and efficacy of both conventional and novel vaccine technologies, the situation is now so acute that it is not possible to wait for the perfect vaccine. Consequently the careful and thorough evaluation of several of the current candidate vaccines may be the best approach to halting the spread of disease. PMID:15868023

  6. Current progress in dengue vaccines

    PubMed Central

    2013-01-01

    Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered. PMID:23758699

  7. Robust nonlinear control of vectored thrust aircraft

    NASA Technical Reports Server (NTRS)

    Doyle, John C.; Murray, Richard; Morris, John

    1993-01-01

    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.

  8. Outwitting dengue threat and epidemics resurgence in Asia-Pacific countries: strengthening integrated dengue surveillance, monitoring and response systems.

    PubMed

    Tambo, Ernest; Chen, Jun-Hu; Zhou, Xiao-Nong; Khater, Emad I M

    2016-01-01

    Dengue is still a substantial vector-borne viral disease threat and burden of public health importance worldwide. This situation is complicated by dengue virus unprecedented resurgence and persistence of varied serotypes in endemic-prone areas, and man-made and natural activities consequences that promote vector emergence, transmission dynamics and spread across the Asia-Pacific region. There is an urgent need to strengthen operational and contextual surveillance-response research in improving early detection of active reservoir detection, novel drug in case management and quality evidence-based response including the deployment of dengue mass vaccination. Moreover, sustained mapping and watching of dengue risk factors or determinants, performance and outcome indicators of control or elimination programs effectiveness in defining minimum effective data towards community knowledge-based decision-making policy and effective response packages is imperative. Moreover, implementation of a robust, integrated dengue early warning surveillance, monitoring and response systems metrics is required for evidence-based, timely and cost-effective contextual mitigation strategies, and innovative interventions. PMID:27233238

  9. A Quasioptical Vector Interferometer for Polarization Control

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Moseley, Harvey S.; Novak, Giles

    2005-01-01

    We present a mathematical description of a Quasioptical Vector Interferometer (QVI), a device that maps an input polarization state to an output polarization state by introducing a phase delay between two linear orthogonal components of the input polarization. The advantages of such a device over a spinning wave-plate modulator for measuring astronomical polarization in the far-infrared through millimeter are: 1. The use of small, linear motions eliminates the need for cryogenic rotational bearings, 2. The phase flexibility allows measurement of Stokes V as well as Q and U, and 3. The QVI allows for both multi-wavelength and broadband modulation. We suggest two implementations of this device as an astronomical polarization modulator. The first involves two such modulators placed in series. By adjusting the two phase delays, it is possible to use such a modulator to measure Stokes Q, U, and V for passbands that are not too large. Conversely, a single QVI may be used to measure Q and V independent of frequency. In this implementation, Stokes U must be measured by rotating the instrument. We conclude this paper by presenting initial laboratory results.

  10. Vector control and surveillance operations in the republic of singapore.

    PubMed

    Yoshikawa, Minako Jen

    2013-06-01

    Singapore is known for its comprehensive vector control methods that keep mosquito populations at low levels in the urban, tropical, and green city-state. This report describes the measures taken by the National Environment Agency on the basis of observations of vector control and surveillance activities in residential areas, construction sites, and foreign worker quarters. The government-led active operations dealt not only with mosquito control but also social issues in urban residential buildings where people with varying preferences live, the responsibilities of the business sector, and the education of multi-cultural/lingual residents and foreign workers. The public health measures implemented in Singapore offer useful ideas to countries/cities that have not yet established vector control programs against mosquito-borne infectious diseases. PMID:23874140

  11. Vector Control and Surveillance Operations in the Republic of Singapore

    PubMed Central

    Yoshikawa, Minako Jen

    2013-01-01

    Singapore is known for its comprehensive vector control methods that keep mosquito populations at low levels in the urban, tropical, and green city-state. This report describes the measures taken by the National Environment Agency on the basis of observations of vector control and surveillance activities in residential areas, construction sites, and foreign worker quarters. The government-led active operations dealt not only with mosquito control but also social issues in urban residential buildings where people with varying preferences live, the responsibilities of the business sector, and the education of multi-cultural/lingual residents and foreign workers. The public health measures implemented in Singapore offer useful ideas to countries/cities that have not yet established vector control programs against mosquito-borne infectious diseases. PMID:23874140

  12. Variations in Modeled Dengue Transmission over Puerto Rico Using a Climate Driven Dynamic Model

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Monaghan, Andrew; Crosson, William; Quattrochi, Dale; Luvall, Jeffrey

    2014-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Because of variations in topography, ocean influences and atmospheric processes, temperature and rainfall patterns vary across Puerto Rico and so do dengue virus transmission rates. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input, ground-based observations for temperature input, and laboratory confirmed dengue cases reported by the Centers for Disease Control and Prevention for parameter calibration, we modeled dengue transmission at the county level across Puerto Rico from 2010-2013 using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations for each county in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. The top 1% of model simulations that best reproduced the reported dengue case data were then analyzed to determine the most important parameters for dengue virus transmission in each county, as well as the relative influence of climate variability on transmission. These results can be used by public health workers to implement dengue control methods that are targeted for specific locations and climate conditions.

  13. Dengue Fever

    MedlinePlus

    ... away from areas that have a dengue fever epidemic, the risk of contracting dengue fever is small for international travelers./p> Reviewed by: Elana Pearl Ben-Joseph, ... Nile Virus First Aid: Vomiting Are Insect Repellents With DEET ...

  14. Dengue Fever

    MedlinePlus

    ... Search Button Leading research to understand, treat, and prevent infectious, immunologic, and allergic diseases NIAID Home Health & ... NIAID News & Events Volunteer NIAID > Health & Research Topics > Dengue Fever > Understanding Dengue Fever Understanding Cause Transmission Symptoms ...

  15. A Comprehensive Entomological, Serological and Molecular Study of 2013 Dengue Outbreak of Swat, Khyber Pakhtunkhwa, Pakistan

    PubMed Central

    Khan, Jehangir; Khan, Inamullah; Amin, Ibne

    2016-01-01

    more in males (55.3%) as compare to females (44.7%). The increase in vector mosquito density and the subsequent viral transmission was determined by a complex interplay of ecological, biological and social factors. Conclusion The suitable environmental conditions and discriminable role of Aedes through trans-ovarial transmission of DENV is indispensable in the recent geographic increase of dengue in Pakistan. Climate change affects the survival and dispersion of vectors as well as the transmission rates of dengue. Control of Aedes mosquitoes (vectors) and elimination of breeding sources must be emphasized and prioritized. Such actions may not only reduce the risk of dengue transmission during epidemics, but also minimize the chances of dengue viruses establishment in new (non endemic) areas of the region. PMID:26848847

  16. Assessing Weather Effects on Dengue Disease in Malaysia

    PubMed Central

    Cheong, Yoon Ling; Burkart, Katrin; Leitão, Pedro J.; Lakes, Tobia

    2013-01-01

    The number of dengue cases has been increasing on a global level in recent years, and particularly so in Malaysia, yet little is known about the effects of weather for identifying the short-term risk of dengue for the population. The aim of this paper is to estimate the weather effects on dengue disease accounting for non-linear temporal effects in Selangor, Kuala Lumpur and Putrajaya, Malaysia, from 2008 to 2010. We selected the weather parameters with a Poisson generalized additive model, and then assessed the effects of minimum temperature, bi-weekly accumulated rainfall and wind speed on dengue cases using a distributed non-linear lag model while adjusting for trend, day-of-week and week of the year. We found that the relative risk of dengue cases is positively associated with increased minimum temperature at a cumulative percentage change of 11.92% (95% CI: 4.41–32.19), from 25.4 °C to 26.5 °C, with the highest effect delayed by 51 days. Increasing bi-weekly accumulated rainfall had a positively strong effect on dengue cases at a cumulative percentage change of 21.45% (95% CI: 8.96, 51.37), from 215 mm to 302 mm, with the highest effect delayed by 26–28 days. The wind speed is negatively associated with dengue cases. The estimated lagged effects can be adapted in the dengue early warning system to assist in vector control and prevention plan. PMID:24287855

  17. Locally acquired Dengue--Key West, Florida, 2009-2010.

    PubMed

    2010-05-21

    Dengue is the most common vector-borne viral disease in the world, causing an estimated 50-100 million infections and 25,000 deaths each year. During 1946-1980, no cases of dengue acquired in the continental United States were reported. Since 1980, a few locally acquired U.S. cases have been confirmed along the Texas-Mexico border, temporally associated with large outbreaks in neighboring Mexican cities. On September 1, 2009, a New York physician notified the Monroe County (Florida) Health Department (MCHD) and the Florida Department of Health (FDOH) of a suspected dengue case in a New York state resident whose only recent travel was to Key West, Florida. CDC confirmed the diagnosis, and a press release was issued to notify the public and Key West physicians of the potential risk for locally acquired dengue infections. In the next 2 weeks, two dengue infections in Key West residents without recent travel were reported and confirmed. Subsequently, enhanced and active surveillance identified 24 more Key West cases during 2009. On April 13, 2010, another Key West dengue case was reported to FDOH, bringing the total to 28. This report describes the first three dengue cases reported in 2009, briefly summarizes the 2010 case, highlights preliminary findings from the ongoing investigation, and outlines measures used to mitigate and control the outbreak. Clinicians should include dengue in the differential diagnosis of acute febrile illnesses in patients who live in or have recently traveled to subtropical areas of the United States or to the tropics. PMID:20489680

  18. Climate and Dengue Transmission: Evidence and Implications

    PubMed Central

    Comrie, Andrew C.; Ernst, Kacey

    2013-01-01

    Background: Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. Objective: We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. Methods: We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Results and Discussion: Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host–species interactions. Conclusion: Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence. Citation: Morin CW, Comrie AC, Ernst KC. 2013. Climate and dengue transmission

  19. Spray characterization of ULV sprayers typically used in vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous spray machines are used to apply products for the control of human disease vectors, such as mosquitoes and flies. However, the selection and setup of these machines significantly affect the level of control achieved during an application. The droplet spectra produced by nine different ULV...

  20. Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence

    PubMed Central

    de Castro Medeiros, Líliam César; Castilho, César Augusto Rodrigues; Braga, Cynthia; de Souza, Wayner Vieira; Regis, Leda; Monteiro, Antonio Miguel Vieira

    2011-01-01

    Background Dengue is a disease of great complexity, due to interactions between humans, mosquitoes and various virus serotypes as well as efficient vector survival strategies. Thus, understanding the factors influencing the persistence of the disease has been a challenge for scientists and policy makers. The aim of this study is to investigate the influence of various factors related to humans and vectors in the maintenance of viral transmission during extended periods. Methodology/Principal Findings We developed a stochastic cellular automata model to simulate the spread of dengue fever in a dense community. Each cell can correspond to a built area, and human and mosquito populations are individually monitored during the simulations. Human mobility and renewal, as well as vector infestation, are taken into consideration. To investigate the factors influencing the maintenance of viral circulation, two sets of simulations were performed: (1st) varying human renewal rates and human population sizes and (2nd) varying the house index (fraction of infested buildings) and vector per human ratio. We found that viral transmission is inhibited with the combination of small human populations with low renewal rates. It is also shown that maintenance of viral circulation for extended periods is possible at low values of house index. Based on the results of the model and on a study conducted in the city of Recife, Brazil, which associates vector infestation with Aedes aegytpi egg counts, we question the current methodology used in calculating the house index, based on larval survey. Conclusions/Significance This study contributed to a better understanding of the dynamics of dengue subsistence. Using basic concepts of metapopulations, we concluded that low infestation rates in a few neighborhoods ensure the persistence of dengue in large cities and suggested that better strategies should be implemented to obtain measures of house index values, in order to improve the dengue

  1. Economic Impact of Dengue Illness and the Cost-Effectiveness of Future Vaccination Programs in Singapore

    PubMed Central

    Carrasco, Luis R.; Lee, Linda K.; Lee, Vernon J.; Ooi, Eng Eong; Shepard, Donald S.; Thein, Tun L.; Gan, Victor; Cook, Alex R.; Lye, David; Ng, Lee Ching; Leo, Yee Sin

    2011-01-01

    Background Dengue illness causes 50–100 million infections worldwide and threatens 2.5 billion people in the tropical and subtropical regions. Little is known about the disease burden and economic impact of dengue in higher resourced countries or the cost-effectiveness of potential dengue vaccines in such settings. Methods and Findings We estimate the direct and indirect costs of dengue from hospitalized and ambulatory cases in Singapore. We consider inter alia the impacts of dengue on the economy using the human-capital and the friction cost methods. Disease burden was estimated using disability-adjusted life years (DALYs) and the cost-effectiveness of a potential vaccine program was evaluated. The average economic impact of dengue illness in Singapore from 2000 to 2009 in constant 2010 US$ ranged between $0.85 billion and $1.15 billion, of which control costs constitute 42%–59%. Using empirically derived disability weights, we estimated an annual average disease burden of 9–14 DALYs per 100 000 habitants, making it comparable to diseases such as hepatitis B or syphilis. The proportion of symptomatic dengue cases detected by the national surveillance system was estimated to be low, and to decrease with age. Under population projections by the United Nations, the price per dose threshold for which vaccines stop being more cost-effective than the current vector control program ranged from $50 for mass vaccination requiring 3 doses and only conferring 10 years of immunity to $300 for vaccination requiring 2 doses and conferring lifetime immunity. The thresholds for these vaccine programs to not be cost-effective for Singapore were $100 and $500 per dose respectively. Conclusions Dengue illness presents a serious economic and disease burden in Singapore. Dengue vaccines are expected to be cost-effective if reasonably low prices are adopted and will help to reduce the economic and disease burden of dengue in Singapore substantially. PMID:22206028

  2. Personal Protection of Permethrin-Treated Clothing against Aedes aegypti, the Vector of Dengue and Zika Virus, in the Laboratory

    PubMed Central

    Orsborne, James; DeRaedt Banks, Sarah; Hendy, Adam; Gezan, Salvador A.; Kaur, Harparkash; Wilder-Smith, Annelies; Lindsay, Steve W.; Logan, James G.

    2016-01-01

    Background The dengue and Zika viruses are primarily transmitted by Aedes aegypti mosquitoes, which are most active during day light hours and feed both in and outside of the household. Personal protection technologies such as insecticide-treated clothing could provide individual protection. Here we assessed the efficacy of permethrin-treated clothing on personal protection in the laboratory. Methods The effect of washing on treated clothing, skin coverage and protection against resistant and susceptible Ae. aegypti was assessed using modified WHO arm-in-cage assays. Coverage was further assessed using free-flight room tests to investigate the protective efficacy of unwashed factory-dipped permethrin-treated clothing. Clothing was worn as full coverage (long sleeves and trousers) and partial coverage (short sleeves and shorts). Residual permethrin on the skin and its effect on mosquitoes was measured using modified WHO cone assays and quantified using high-pressure liquid chromatography (HPLC) analysis. Results In the arm-in-cage assays, unwashed clothing reduced landing by 58.9% (95% CI 49.2–66.9) and biting by 28.5% (95% CI 22.5–34.0), but reduced to 18.5% (95% CI 14.7–22.3) and 11.1% (95% CI 8.5–13.8) respectively after 10 washes. Landing and biting for resistant and susceptible strains was not significantly different (p<0.05). In free-flight room tests, full coverage treated clothing reduced landing by 24.3% (95% CI 17.4–31.7) and biting by 91% (95% CI 82.2–95.9) with partial coverage reducing landing and biting by 26.4% (95% CI 20.3–31.2) and 49.3% (95% CI 42.1–59.1) respectively with coverage type having no significant difference on landing (p<0.05). Residual permethrin was present on the skin in low amounts (0.0041mg/cm2), but still produced a KD of >80% one hour after wearing treated clothing. Conclusion Whilst partially covering the body with permethrin-treated clothing provided some protection against biting, wearing treated clothing with

  3. Surveillance for dengue and dengue-associated neurologic syndromes in the United States.

    PubMed

    Waterman, Stephen H; Margolis, Harold S; Sejvar, James J

    2015-05-01

    Autochthonous dengue virus transmission has occurred in the continental United States with increased frequency during the last decade; the principal vector, Aedes aegypti, has expanded its geographic distribution in the southern United States. Dengue, a potentially fatal arboviral disease, is underreported, and US clinicians encountering patients with acute febrile illness consistent with dengue are likely to not be fully familiar with dengue diagnosis and management. Recently, investigators suggested that an outbreak of dengue likely occurred in Houston during 2003 based on retrospective laboratory testing of hospitalized cases with encephalitis and aseptic meningitis. Although certain aspects of the Houston testing results and argument for local transmission are doubtful, the report highlights the importance of prospective surveillance for dengue in Aedes-infested areas of the United States, the need for clinical training on dengue and its severe manifestations, and the need for laboratory testing in domestic patients presenting with febrile neurologic illness in these regions to include dengue. PMID:25371183

  4. Surveillance for Dengue and Dengue-Associated Neurologic Syndromes in the United States

    PubMed Central

    Waterman, Stephen H.; Margolis, Harold S.; Sejvar, James J.

    2015-01-01

    Autochthonous dengue virus transmission has occurred in the continental United States with increased frequency during the last decade; the principal vector, Aedes aegypti, has expanded its geographic distribution in the southern United States. Dengue, a potentially fatal arboviral disease, is underreported, and US clinicians encountering patients with acute febrile illness consistent with dengue are likely to not be fully familiar with dengue diagnosis and management. Recently, investigators suggested that an outbreak of dengue likely occurred in Houston during 2003 based on retrospective laboratory testing of hospitalized cases with encephalitis and aseptic meningitis. Although certain aspects of the Houston testing results and argument for local transmission are doubtful, the report highlights the importance of prospective surveillance for dengue in Aedes-infested areas of the United States, the need for clinical training on dengue and its severe manifestations, and the need for laboratory testing in domestic patients presenting with febrile neurologic illness in these regions to include dengue. PMID:25371183

  5. Dengue hemorrhagic fever

    MedlinePlus

    Hemorrhagic dengue; Dengue shock syndrome; Philippine hemorrhagic fever; Thai hemorrhagic fever; Singapore hemorrhagic fever ... Four different dengue viruses are known to cause dengue hemorrhagic fever. Dengue hemorrhagic fever occurs when a person is bitten by ...

  6. Weather factors influencing the occurrence of dengue fever in Nakhon Si Thammarat, Thailand.

    PubMed

    Wongkoon, S; Jaroensutasinee, M; Jaroensutasinee, K

    2013-12-01

    This study explored the impact of weather variability on the transmission of dengue fever in Nakhon Si Thammarat, Thailand. Data on monthly-notified cases of dengue fever, over the period of January 1981 - June 2012 were collected from the Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health. Weather data over the same period were obtained from the Thai Meteorological Department. Spearman correlation analysis and time-series adjusted Poisson regression analysis were performed to quantify the relationship between weather and the number of dengue cases. The results showed that maximum and minimum temperatures at a lag of zero months, the amount of rainfall, and relative humidity at a lag of two months were significant predictors of dengue incidence in Nakhon Si Thammarat. The time series Poisson regression model demonstrated goodness-of-fit with a correlation between observed and predicted number of dengue incidence rate of 91.82%. This model could be used to optimise dengue prevention by predicting trends in dengue incidence. Accurate predictions, for even a few months, provide an invaluable opportunity to mount a vector control intervention or to prepare for hospital demand in the community. PMID:24522133

  7. Epidemiological Scenario of Dengue in Brazil

    PubMed Central

    Fares, Rafaelle C. G.; Souza, Katia P. R.; Añez, Germán; Rios, Maria

    2015-01-01

    Dengue is the most important reemerging mosquito-borne viral disease worldwide. It is caused by any of four Dengue virus types or serotypes (DENV-1 to DENV-4) and is transmitted by mosquitoes from the genus Aedes. Ecological changes have favored the geographic expansion of the vector and, since the dengue pandemic in the Asian and Pacific regions, the infection became widely distributed worldwide, reaching Brazil in 1845. The incidence of dengue in Brazil has been frequently high, and the number of cases in the country has at some point in time represented up to 60% of the dengue reported cases worldwide. This review addresses vector distribution, dengue outbreaks, circulating serotypes and genotypes, and prevention approaches being utilized in Brazil. PMID:26413514

  8. Assessing dengue vaccination impact: Model challenges and future directions.

    PubMed

    Recker, Mario; Vannice, Kirsten; Hombach, Joachim; Jit, Mark; Simmons, Cameron P

    2016-08-31

    In response to the sharp rise in the global burden caused by dengue virus (DENV) over the last few decades, the WHO has set out three specific key objectives in its disease control strategy: (i) to estimate the true burden of dengue by 2015; (ii) a reduction in dengue mortality by at least 50% by 2020 (used as a baseline); and (iii) a reduction in dengue morbidity by at least 25% by 2020. Although various elements will all play crucial parts in achieving this goal, from diagnosis and case management to integrated surveillance and outbreak response, sustainable vector control, vaccine implementation and finally operational and implementation research, it seems clear that new tools (e.g. a safe and effective vaccine and/or effective vector control) are key to success. The first dengue vaccine was licensed in December 2015, Dengvaxia® (CYD-TDV) developed by Sanofi Pasteur. The WHO has provided guidance on the use of CYD-TDV in endemic countries, for which there are a variety of considerations beyond the risk-benefit evaluation done by regulatory authorities, including public health impact and cost-effectiveness. Population-level vaccine impact and economic and financial aspects are two issues that can potentially be considered by means of mathematical modelling, especially for new products for which empirical data are still lacking. In December 2014 a meeting was convened by the WHO in order to revisit the current status of dengue transmission models and their utility for public health decision-making. Here, we report on the main points of discussion and the conclusions of this meeting, as well as next steps for maximising the use of mathematical models for vaccine decision-making. PMID:27461457

  9. A spatiotemporal dengue fever early warning model accounting for nonlinear associations with meteorological factors: a Bayesian maximum entropy approach

    NASA Astrophysics Data System (ADS)

    Lee, Chieh-Han; Yu, Hwa-Lung; Chien, Lung-Chang

    2014-05-01

    Dengue fever has been identified as one of the most widespread vector-borne diseases in tropical and sub-tropical. In the last decade, dengue is an emerging infectious disease epidemic in Taiwan especially in the southern area where have annually high incidences. For the purpose of disease prevention and control, an early warning system is urgently needed. Previous studies have showed significant relationships between climate variables, in particular, rainfall and temperature, and the temporal epidemic patterns of dengue cases. However, the transmission of the dengue fever is a complex interactive process that mostly understated the composite space-time effects of dengue fever. This study proposes developing a one-week ahead warning system of dengue fever epidemics in the southern Taiwan that considered nonlinear associations between weekly dengue cases and meteorological factors across space and time. The early warning system based on an integration of distributed lag nonlinear model (DLNM) and stochastic Bayesian Maximum Entropy (BME) analysis. The study identified the most significant meteorological measures including weekly minimum temperature and maximum 24-hour rainfall with continuous 15-week lagged time to dengue cases variation under condition of uncertainty. Subsequently, the combination of nonlinear lagged effects of climate variables and space-time dependence function is implemented via a Bayesian framework to predict dengue fever occurrences in the southern Taiwan during 2012. The result shows the early warning system is useful for providing potential outbreak spatio-temporal prediction of dengue fever distribution. In conclusion, the proposed approach can provide a practical disease control tool for environmental regulators seeking more effective strategies for dengue fever prevention.

  10. Dengue vaccine

    PubMed Central

    Jindal, Harashish; Bhatt, Bhumika; Malik, Jagbir Singh; SK, Shashikantha

    2014-01-01

    Dengue has emerged as one of the major global public health problems. The disease has broken out of its shell and has spread due to increased international travel and climatic changes. Globally, over 2.5 billion people accounting for >40% of the world's population are at risk from dengue. Since the 1940s, dengue vaccines have been under investigation. A live-attenuated tetravalent vaccine based on chimeric yellow fever-dengue virus (CYD-TDV) has progressed to phase III efficacy studies. Dengue vaccine has been found to be a cost-effective intervention to reduce morbidity and mortality. Current dengue vaccine candidates aim to protect against the 4 dengue serotypes, but the recent discovery of a fifth serotype could complicate vaccine development. In recent years, an urgent need has been felt for a vaccine to prevent the morbidity and mortality from this disease in a cost-effective way. PMID:25424928

  11. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control.

    PubMed

    Yeap, H L; Mee, P; Walker, T; Weeks, A R; O'Neill, S L; Johnson, P; Ritchie, S A; Richardson, K M; Doig, C; Endersby, N M; Hoffmann, A A

    2011-02-01

    Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

  12. Financing dengue vaccine introduction in the Americas: challenges and opportunities.

    PubMed

    Constenla, Dagna; Clark, Samantha

    2016-01-01

    Dengue has escalated in the region of the Americas unabated despite major investments in integrated vector control and prevention strategies. An effective and affordable dengue vaccine can play a critical role in reducing the human and economic costs of the disease by preventing millions around the world from getting sick. However, there are considerable challenges on the path towards vaccine introduction. These include lack of sufficient financing tools, absence of capacity within national level decision-making bodies, and demands that new vaccines place on stressed health systems. Various financing models can be used to overcome these challenges including setting up procurement mechanisms, integrating regional and domestic taxes, and setting up low interest multilateral loans. In this paper we review these challenges and opportunities of financing dengue vaccine introduction in the Americas. PMID:26690087

  13. El Niño-Southern Oscillation and dengue early warning in Ecuador

    NASA Astrophysics Data System (ADS)

    Stewart, A. M.; Lowe, R.

    2012-04-01

    Dengue fever, a mosquito-borne viral disease, is one of the most important emerging tropical diseases. Dengue is hyper-endemic in coastal Ecuador, where all four serotypes co-circulate. The El Niño-Southern Oscillation (ENSO) influences climate in Ecuador, with positive phase ENSO (El Niño) associated with wetter and warmer conditions over the southern coastal region. In turn, greater rainfall increases the availability of mosquito breeding sites for the dengue mosquito (Aedes aegypti), while warmer temperatures increase rates of larval development, mosquito biting, and viral replication in the mosquito. We report a statistical model for assessing the importance of climate as a driver for inter-annual variability in dengue fever in southern coastal Ecuador. Climate variables from a local meteorology station (precipitation, number of rainy days, minimum/maximum/mean air temperature), combined with gridded climate products, and anomalies of Pacific sea surface temperatures (Oceanic Niño Index, ONI) were used to predict monthly dengue standardized morbidity ratios (SMR) (1995-2010). Non-climatic confounding factors such as serotype introduction and vector control effort were also considered. Preliminary results indicated a statistically significant positive association between dengue risk and the number of rainy days during the previous month. Both the number of rainy days and dengue SMR were positively associated with the Pacific SST anomalies with a lead time of several months. Due to time lags involved in the climate-disease transmission system, monitoring El Niño / La Niña evolution in the Pacific Ocean could provide some predictive lead time for forecasting dengue epidemics. This is the first study of dengue fever and climate in this region. This research provides the foundation to develop a climate-driven early warning system for dengue fever in Ecuador.

  14. Genetics and evolution of triatomines: from phylogeny to vector control

    PubMed Central

    Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E

    2012-01-01

    Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436

  15. Methods for control of tick vectors of Lyme Borreliosis

    USGS Publications Warehouse

    Jaenson, T.G.T.; Fish, D.; Ginsberg, H.S.; Gray, J.S.; Mather, T.N.; Piesman, J.

    1991-01-01

    During the IVth International Conference on Lyme Borreliosis in Stockholm, 1990, a workshop on control of Lyme disease vectors briefly reviewed: basic ecological principles for tick control; biocontrol of ticks; chemical control, including the use of repellents and use of permethrin-treated rodent nest material; tick control by habitat modification; and reduction of tick host availability. It was concluded that, although much research work remains, Lyme borreliosis is to a large extent a preventable infection. Avoidance of heavily tick-infested areas, personal protection using proper clothing, and prompt removal of attached ticks remain the most effective protective measures. Many other prophylactic measures are available and could be efficiently integrated into schemes to reduce the abundance of vectors. However, since the ecology of the infection varies greatly between different localities it may be necessary to apply different combinations of control methods in different endemic regions.

  16. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia

    PubMed Central

    Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan

    2015-01-01

    Background/Objectives Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. Methods We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. Results The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3°C, mean incidence rates during epidemics could double. Conclusion In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a

  17. Direct numerical simulation of vector-controlled free jets

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ao, K.; Shakouchi, T.; Ando, T.

    2011-12-01

    We conduct DNS (direct numerical simulation) of vector controlled free jets. The inflow velocity of jet is periodically oscillated perpendicular to the jet axis. In order to realize the high accurate computation, a discretization in space is performed with hybrid scheme in which Fourier spectral and 6th order compact scheme are adopted. From visualized instantaneous vortex structures, it is found that the flow pattern considerably changes according to the oscillating frequency, i.e., according to the increasing the frequency, wave, bifurcating and flapping modes appear in turn. In order to quantify mixing efficiency under the vector control, as the mixing measure, statistical entropy is investigated. Compared to the uncontrolled jet, the mixing efficiency is improved in order of wavy, flapping and bifurcating modes. Thus the vector control can be expected for the improvement of mixing efficiency. Further to make clear the reason for the mixing enhancement, Snapshot POD and DMD method are applied. The primary flow structures under the vector control are demonstrated.

  18. Discovering and Designing New Insecticides and their Development Vector Control.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The discovery and development of novel insecticides for vector control is a primary focus of toxicology research conducted at the Mosquito and Fly Research Unit, Gainesville, FL. To identify new active ingredients, the screening of large numbers of experimental compounds is conducted using a primary...

  19. Vector Disparity Sensor with Vergence Control for Active Vision Systems

    PubMed Central

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737

  20. Economic and Disease Burden of Dengue in Mexico

    PubMed Central

    Undurraga, Eduardo A.; Betancourt-Cravioto, Miguel; Ramos-Castañeda, José; Martínez-Vega, Ruth; Méndez-Galván, Jorge; Gubler, Duane J.; Guzmán, María G.; Halstead, Scott B.; Harris, Eva; Kuri-Morales, Pablo; Tapia-Conyer, Roberto; Shepard, Donald S.

    2015-01-01

    Background Dengue imposes a substantial economic and disease burden in most tropical and subtropical countries. Dengue incidence and severity have dramatically increased in Mexico during the past decades. Having objective and comparable estimates of the economic burden of dengue is essential to inform health policy, increase disease awareness, and assess the impact of dengue prevention and control technologies. Methods and Findings We estimated the annual economic and disease burden of dengue in Mexico for the years 2010–2011. We merged multiple data sources, including a prospective cohort study; patient interviews and macro-costing from major hospitals; surveillance, budget, and health data from the Ministry of Health; WHO cost estimates; and available literature. We conducted a probabilistic sensitivity analysis using Monte Carlo simulations to derive 95% certainty levels (CL) for our estimates. Results suggest that Mexico had about 139,000 (95%CL: 128,000–253,000) symptomatic and 119 (95%CL: 75–171) fatal dengue episodes annually on average (2010–2011), compared to an average of 30,941 symptomatic and 59 fatal dengue episodes reported. The annual cost, including surveillance and vector control, was US$170 (95%CL: 151–292) million, or $1.56 (95%CL: 1.38–2.68) per capita, comparable to other countries in the region. Of this, $87 (95%CL: 87–209) million or $0.80 per capita (95%CL: 0.62–1.12) corresponds to illness. Annual disease burden averaged 65 (95%CL: 36–99) disability-adjusted life years (DALYs) per million population. Inclusion of long-term sequelae, co-morbidities, impact on tourism, and health system disruption during outbreaks would further increase estimated economic and disease burden. Conclusion With this study, Mexico joins Panama, Puerto Rico, Nicaragua, and Thailand as the only countries or areas worldwide with comprehensive (illness and preventive) empirical estimates of dengue burden. Burden varies annually; during an outbreak

  1. A single crossing-over event in voltage-sensitive Na+ channel genes may cause critical failure of dengue mosquito control by insecticides.

    PubMed

    Hirata, Koichi; Komagata, Osamu; Itokawa, Kentaro; Yamamoto, Atsushi; Tomita, Takashi; Kasai, Shinji

    2014-08-01

    The voltage-sensitive sodium (Na+) channel (Vssc) is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s) in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction), respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti. PMID:25166902

  2. A Single Crossing-Over Event in Voltage-Sensitive Na+ Channel Genes May Cause Critical Failure of Dengue Mosquito Control by Insecticides

    PubMed Central

    Hirata, Koichi; Komagata, Osamu; Itokawa, Kentaro; Yamamoto, Atsushi; Tomita, Takashi; Kasai, Shinji

    2014-01-01

    The voltage-sensitive sodium (Na+) channel (Vssc) is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s) in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction), respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti. PMID:25166902

  3. [The epidemiological surveillance of dengue in Mexico].

    PubMed

    Montesano-Castellanos, R; Ruiz-Matus, C

    1995-01-01

    The clinical behavior of dengue fever in Mexico has changed, now with the occurrence of hemorrhagic cases. In response to the emergence of such cases, a specific epidemiologic surveillance system has been designed and implemented. This system includes the means to monitor the factors