Science.gov

Sample records for dense cores vi

  1. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. VI. THE PROTOSTARS OF LYNDS DARK NEBULA 1221

    SciTech Connect

    Young, Chadwick H.; Young, Kaisa E.; Popa, Victor; Bourke, Tyler L.; Dunham, Michael M.; Evans, Neal J.; Joergensen, Jes K.; Shirley, Yancy L.; De Vries, Christopher; Claussen, Mark J.

    2009-09-01

    Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars toward L1221, only two of which were previously known. The infrared observations also show signatures of outflowing material, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modeling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and a larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.

  2. Infrared and Submilllimeter Studies of Dense Cores

    NASA Astrophysics Data System (ADS)

    Bourke, Tyler L.

    2014-07-01

    Dense Cores are the birthplace of stars, and so understanding their structure and evolution is key to understanding star formation. Information on the density, temperature, and motions within cores are needed to describe these properties, and are obtained through continuum and line observations at far infrared and submm/mm wavelengths. Recent observations of dust emission with Herschel and molecular line observations with single-dish telescopes and interferometers provide the wavelength coverage and resolution to finally map core properties without appealing to spherical simplifications. Although large scale Herschel observations reveal numerous filaments in molecular clouds which are well described by cylindrical geometries, cores are still modeled as spherical entities. A few examples of other core geometries exist in the literature, and the wealth of new data on cloud filaments demand that non-spherical models receive more attention in future studies. This talk will examine the evidence for non-spherical cores and their connection to the filaments from which they form.

  3. Dense Molecular Cores Being Externally Heated

    NASA Astrophysics Data System (ADS)

    Kim, Gwanjeong; Lee, Chang Won; Gopinathan, Maheswar; Jeong, Woong-Seob; Kim, Mi-Ryang

    2016-06-01

    We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μm) imaging observations with the AKARI telescope and molecular line (HCN and N2H+) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L ⊙. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼105 years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

  4. Model For Dense Molecular Cloud Cores

    NASA Technical Reports Server (NTRS)

    Doty, Steven D.; Neufeld, David A.

    1997-01-01

    We present a detailed theoretical model for the thermal balance, chemistry, and radiative transfer within quiescent dense molecular cloud cores that contain a central protostar. In the interior of such cores, we expect the dust and gas temperatures to be well coupled, while in the outer regions CO rotational emissions dominate the gas cooling and the predicted gas temperature lies significantly below the dust temperature. Large spatial variations in the gas temperature are expected to affect the gas phase chemistry dramatically; in particular, the predicted water abundance varies by more than a factor of 1000 within cloud cores that contain luminous protostars. Based upon our predictions for the thermal and chemical structure of cloud cores, we have constructed self-consistent radiative transfer models to compute the line strengths and line profiles for transitions of (12)CO, (13)CO, C(18)O, ortho- and para-H2(16)O, ortho- and para-H2(18)O, and O I. We carried out a general parameter study to determine the dependence of the model predictions upon the parameters assumed for the source. We expect many of the far-infrared and submillimeter rotational transitions of water to be detectable either in emission or absorption with the use of the Infrared Space Observatory (ISO) and the Submillimeter Wave Astronomy Satellite. Quiescent, radiatively heated hot cores are expected to show low-gain maser emission in the 183 GHz 3(sub 13)-2(sub 20) water line, such as has been observed toward several hot core regions using ground-based telescopes. We predict the (3)P(sub l) - (3)P(sub 2) fine-structure transition of atomic oxygen near 63 micron to be in strong absorption against the continuum for many sources. Our model can also account successfully for recent ISO observations of absorption in rovibrational transitions of water toward the source AFGL 2591.

  5. Two Rab2 interactors regulate dense-core vesicle maturation.

    PubMed

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M

    2014-04-01

    Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  6. Ammonia and HC7 N Emission in Dense Cores

    NASA Astrophysics Data System (ADS)

    Candelaria, Tierra; Schnee, Scott; Devine, Katie; NRAO Team; The College of Idaho Team

    2015-04-01

    Dense cores represent the transition between the turbulent, diffuse ISM and protostars. Thus, understanding dense cores' chemical and physical properties provides valuable information about the early stages of low mass star formation. We present an analysis of 13 starless dense cores in the Taurus Molecular Cloud using new data taken with the Green Bank Telescope. Our observations consist of ammonia (NH3) (1,1) and (2,2) and HC7 N (J =21-20) emission. We present new detections of HC7 N (a carbon chain bearing species) in four cores and confirm detection in two cores. We also present temperature and velocity gradient maps. These results are the foundation of a more complete survey and illustrate an important relationship between ammonia and the carbon chain bearing species HC7 N.

  7. Ammonia and HC7N Emission in Starless Dense Cores

    NASA Astrophysics Data System (ADS)

    Candelaria, Tierra M.; Scott Schnee, Kathryn Devine, John Carpenter, Paola Caselli, Mario Tafalla, Youngmin Seo, Yancy Shirley, James Di Francesco, John Tobin, Shadi Chitsazzadeh, Sarah Sadavoy, Alyssa Goodman, Luca Ricci,; Shigehisa Takakuwa

    2015-01-01

    Dense cores represent the transition between the turbulent, diffuse ISM and protostars. Thus, understanding dense cores' chemical and physical properties provides valuable information about the early stages of low mass star formation. We present an analysis of 13 starless dense cores in the Taurus Molecular Cloud using new data taken with the Green Bank Telescope. Our observations consist of ammonia (NH3) (1,1) and (2,2) and HC7N (J=21-20) emission. We present new detections of HC7N (a carbon chain bearing species) in four cores and confirm detection in two cores. We also present temperature and velocity gradient maps. These results are the foundation of a more complete survey and illustrate an important relationship between ammonia and the carbon chain bearing species HC7N.

  8. CORRELATING INFALL WITH DEUTERIUM FRACTIONATION IN DENSE CORES

    SciTech Connect

    Schnee, Scott; Brunetti, Nathan; Friesen, Rachel; Di Francesco, James; Johnstone, Doug; Pon, Andy; Caselli, Paola

    2013-11-10

    We present a survey of HCO{sup +} (3-2) observations pointed toward dense cores with previous measurements of N(N{sub 2}D{sup +})/N(N{sub 2}H{sup +}). Of the 26 cores in this survey, 5 show the spectroscopic signature of outward motion, 9 exhibit neither inward nor outward motion, 11 appear to be infalling, and 1 is not detected. We compare the degree of deuterium fractionation with infall velocities calculated from the HCO{sup +} spectra and find that those cores with [D]/[H] > 0.1 are more likely to have the signature of inward motions than cores with smaller [D]/[H] ratios. Infall motions are also much more common in cores with masses exceeding their thermal Jeans masses. The fastest infall velocity measured belongs to one of the two protostellar cores in our survey, L1521F, and the observed motions are typically on the order of the sound speed.

  9. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  10. Contraction Signatures toward Dense Cores in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.

    2016-03-01

    We report the results of an HCO+ (3-2) and N2D+ (3-2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO+ asymmetry using a dimensionless asymmetry parameter δv, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO+ profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22 cores. Comparing the δv and collapse model results, we find that δv is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s-1) to supersonic (0.4 km s-1), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/MJ > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/MJ, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.

  11. ON THE FORMATION OF GLYCOLALDEHYDE IN DENSE MOLECULAR CORES

    SciTech Connect

    Woods, Paul M.; Kelly, George; Viti, Serena; Slater, Ben; Brown, Wendy A.; Puletti, Fabrizio; Burke, Daren J.; Raza, Zamaan

    2012-05-01

    Glycolaldehyde is a simple monosaccharide sugar linked to prebiotic chemistry. Recently, it was detected in a molecular core in the star-forming region G31.41+0.31 at a reasonably high abundance. We investigate the formation of glycolaldehyde at 10 K to determine whether it can form efficiently under typical dense core conditions. Using an astrochemical model, we test five different reaction mechanisms that have been proposed in the astrophysical literature, finding that a gas-phase formation route is unlikely. Of the grain-surface formation routes, only two are efficient enough at very low temperatures to produce sufficient glycolaldehyde to match the observational estimates, with the mechanism culminating in CH{sub 3}OH + HCO being favored. However, when we consider the feasibility of these mechanisms from a reaction chemistry perspective, the second grain-surface route looks more promising, H{sub 3}CO + HCO.

  12. Massive Star Formation: Characterising Infall and Outflow in dense cores.

    NASA Astrophysics Data System (ADS)

    Akhter, Shaila; Cunningham, Maria; Harvey-Smith, Lisa; Jones, Paul Andrew; Purcell, Cormac; Walsh, Andrew John

    2015-08-01

    Massive stars are some of the most important objects in the Universe, shaping the evolution of galaxies, creating chemical elements, and hence shaping the evolution of the Universe. However, the processes by which they form, and how they shape their environment during their birth processes, are not well understood. We are using NH3 data from the "The H2O Southern Galactic Plane Survey" (HOPS) to define the positions of dense cores/clumps of gas in the southern Galactic plane that are likely to form stars. Due to its effective critical density, NH3 can detect massive star forming regions effectively compared to other tracers. We did a comparative study with different methods for finding clumps and found Fellwalker as the best. We found ~ 10% of the star forming clumps with multiple components and ~ 90% clumps with single component along the line of sight. Then, using data from the "The Millimetre Astronomy Legacy Team 90 GHz" (MALT90) survey, we search for the presence of infall and outflow associated with these cores. We will subsequently use the "3D Molecular Line Radiative Transfer Code" (MOLLIE) to constrain properties of the infall and outflow, such as velocity and mass flow. The aim of the project is to determine how common infall and outflow are in star forming cores, hence providing valuable constraints on the timescales and physical process involved in massive star formation.

  13. Phosphorus-bearing Molecules in Massive Dense Cores

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Rivilla, V. M.; Caselli, P.; Vasyunin, A.; Palau, A.

    2016-05-01

    Phosphorus is a crucial element for the development of life, but so far P-bearing molecules have been detected only in a few astrophysical objects; hence, its interstellar chemistry is almost totally unknown. Here, we show new detections of phosphorus nitride (PN) in a sample of dense cores in different evolutionary stages of the intermediate- and high-mass star formation process: starless, with protostellar objects, and with ultracompact H ii regions. All detected PN line widths are smaller than ≃5 km s‑1, and they arise from regions associated with kinetic temperatures smaller than 100 K. Because the few previous detections reported in the literature are associated with warmer and more turbulent sources, the results of this work show that PN can arise from relatively quiescent and cold gas. This information is challenging for theoretical models that invoke either high desorption temperatures or grain sputtering from shocks to release phosphorus into the gas phase. Derived column densities are of the order of 1011–12 cm‑2, marginally lower than the values derived in the few high-mass star-forming regions detected so far. New constraints on the abundance of phosphorus monoxide, the fundamental unit of biologically relevant molecules, are also given. Based on observations carried out with the IRAM-30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  14. Motions and Initial Conditions in Star-Forming Dense Cores

    NASA Technical Reports Server (NTRS)

    Myers, Philip C.

    2001-01-01

    Under this grant in the past year we have pursued spectral-line observations of star-forming regions over size scales from 0.01 pc to 0.5 pc. Our main goal has been to measure the systematic and turbulent motions of condensing and collapsing gas. In this area, our results include (1) in 67 starless dense cores, some 19 show clear evidence of spatially extended inward motions, with typical line-of-sight inward speed 0.05-0.09 km s(sup -1) and with typical plane-of-the-sky extent 0.1-0.3 pc, (2) In some 40 nearby regions with embedded groups and clusters, we see extended infall asymmetry in lines of CS and HCO(+) clearly in 4 regions and less clearly in 4 others, (3) Using finer resolution (15 arcsec or 0.01-0.02 pc) and lines tracing higher density, we see spatial concentration of infall asymmetry near the protostars in NGC 1333 IRS 4A and B, L483, and L1251B, and with still finer resolution (2 arcsec or 0.003 pc or 600 AU) we detect inverse P Cyg profiles, indicating absorption of continuum emission from the protostellar envelope by infalling gas in NGC 1333 IRS 4A and 4B. Further, at high resolution we identify regions of stellar mass and low turbulence ("kernels") which are good candidates to become the next generation of stars in embedded clusters. In addition we have completed a survey for the OH Zeeman effect in absorption against nearby H II regions, indicating that the large-scale magnetic field may be nearly critical if it typically threads a flattened structure. We have also developed a model of spatially extended infall motions based on dissipation of turbulence in a magnetized, selfgravitating layer. In the following we describe some of these results in more detail.

  15. The JCMT Gould Belt Survey: Dense Core Clusters in Orion B

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Johnstone, D.; Di Francesco, J.; Lane, J.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey Team

    2016-04-01

    The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.

  16. The JCMT Gould Belt Survey: Dense Core Clusters in Orion B

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Johnstone, D.; Di Francesco, J.; Lane, J.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey team

    2016-04-01

    The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M–Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.

  17. Carbon Isotope and Isotopomer Fractionation in Dense Molecular Cloud Cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Aikawa, Y.; Sakai, N.; Yamamoto, S.

    2011-05-01

    Observations of 13C species would be useful to investigate chemistry of carbon-bearing species. Recent observations in TMC-1 indicate that the abundances are different among carbon isotopomers of the same species. For instance, Takano et al. (1998) found that HCC13CN is more abundant than HC13CCN and H13CCCN, which indicates the three carbon atoms are not equivalent in HC_3N. Sakai et al. (2007; 2010) reported the abundance ratios of C13CS/13CCS and CCH/13CCH to be 4.2 and 1.6, respectively. Again, two carbon atoms are not equivalent in CCS and CCH. Sakai et al. (2007; 2010) discussed an origin of these anomalies and pointed out two possibilities: (i) fractionation during the formation of the species and (ii) rearrangements of the 13C position after the formation of molecules by isotopomer-exchange reactions. We construct a gas-grain chemical network model which includes carbon isotopes (12C and 13C) and isotopomers in order to investigate the evolution of molecular abundances, the carbon isotope ratios (12CX/13CX) and the isotopomer ratios (12C13CX/13C12CX) of CCH and CCS in dense molecular cores. We confirm that the isotope ratios of molecules, both in the gas phase and on grain surfaces, mostly depend on whether the species is formed from the carbon atom (ion) or the CO molecule; the isotope ratio is larger than the elemental abundance ratio of 12C/13C if the species is formed from the carbon atom, while the ratio is smaller if the species is formed from the CO molecule (cf. Langer et al. 1984). We successfully reproduce the observed C13CH/13CCH ratio in TMC-1 by considering the isotopomer-exchange reaction, 13CCH + H rightleftharpoons C13CH + H + 8.1 K. However, the C13CS/13CCS ratio remains lower than observed in TMC-1. We then assume the isotopomer-exchange reaction catalyzed by the H atom, 13CCS + H rightleftharpoons C13CS + H + 17.4 K. In the model with this reaction, the observed C13CS/13CCS, CCS/C13CS and CCS/13CCS ratios can be reproduced simultaneously.

  18. 3D numerical calculations and synthetic observations of magnetized massive dense core collapse and fragmentation.

    NASA Astrophysics Data System (ADS)

    Commerçon, B.; Hennebelle, P.; Levrier, F.; Launhardt, R.; Henning, Th.

    2012-03-01

    I will present radiation-magneto-hydrodynamics calculations of low-mass and massive dense core collapse, focusing on the first collapse and the first hydrostatic core (first Larson core) formation. The influence of magnetic field and initial mass on the fragmentation properties will be investigated. In the first part reporting low mass dense core collapse calculations, synthetic observations of spectral energy distributions will be derived, as well as classical observational quantities such as bolometric temperature and luminosity. I will show how the dust continuum can help to target first hydrostatic cores and to state about the nature of VeLLOs. Last, I will present synthetic ALMA observation predictions of first hydrostatic cores which may give an answer, if not definitive, to the fragmentation issue at the early Class 0 stage. In the second part, I will report the results of radiation-magneto-hydrodynamics calculations in the context of high mass star formation, using for the first time a self-consistent model for photon emission (i.e. via thermal emission and in radiative shocks) and with the high resolution necessary to resolve properly magnetic braking effects and radiative shocks on scales <100 AU (Commercon, Hennebelle & Henning ApJL 2011). In this study, we investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores (M=100 M_⊙). We identify a new mechanism that inhibits initial fragmentation of massive dense cores, where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation, while moderately magnetized massive dense cores are more appropriate to form OB associations or small star clusters. Finally we will also present synthetic observations of these

  19. Nucleation of strange matter in dense stellar cores

    SciTech Connect

    Horvath, J.E. Sao Paulo, Sao Paulo ); Benvenuto, O.G. La Plata ); Vucetich, H. La Plata )

    1992-05-15

    We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature {ital T} for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios.

  20. Motions and Initial Conditions in Star-Forming Dense Cores

    NASA Technical Reports Server (NTRS)

    Myers, Philip C.

    2004-01-01

    The main focus was the study of star-forming regions through high spectral- and spatial resolution observations of mm-wavelength lines, and through models of the observations. The main accomplishments were a) demonstration that more than 15 starless cores show substantial evidence of extended inward motion at about half the sound speed; b) observations of infall asymmetry in several cores, in lines of N2H(+) and DCO(+), low- depletion tracers of the "inner core"; c) observation of "infall asymmetry" of spectral lines over approx. 0.5 pc in the NGC1333 cluster-forming region; d) observations indicating that cores are nearly at rest with respect to their envelopes; and e) development of analytic, power-series solutions to the equations of motions for condensing 1-D systems (layers, cylinders and spheres).

  1. The JCMT Gould Belt Survey: A First Look at Dense Cores in Orion B

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Di Francesco, J.; Johnstone, D.; Duarte-Cabral, A.; Sadavoy, S.; Hatchell, J.; Mottram, J. C.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-02-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 × 1023 cm-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 1023 cm-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.

  2. Cycling of Dense Core Vesicles Involved in Somatic Exocytosis of Serotonin by Leech Neurons

    PubMed Central

    Trueta, Citlali; Kuffler, Damien P.; De-Miguel, Francisco F.

    2012-01-01

    We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear

  3. Dense cores in dark clouds. 10: Ammonia emission in the Perseus molecular cloud complex

    NASA Astrophysics Data System (ADS)

    Ladd, E. F.; Myers, P. C.; Goodman, A. A.

    1994-09-01

    We present a survey for dense material around young IRAS sources in the Perseus molecular cloud complex in the NH3 (J, K)=(1,1) line at 1.3 cm. NH3 emission was detected in eight, and mapped in seven, out of 10 positions chosen for study. The dense cores found typically have lower masses and narrower line widths than cores previously studied in Perseus and are located near sources of lower luminosity. NH3 cores are found throughout the Perseus complex; however, much of the detected dense gas is concentrated into two filamentary 'ridges' located in the western part. As a group, NH3 cores in Perseus have a mean line width of 0.6 km/s, mean radius of 0.12 pc, mean kinetic temperature of 13 K, and mean mass of 9 solar mass. These mean values are larger than the mean values for NH3 cores with associated stars in Taurus, but smaller than the mean values for cores associated with stars in Orion A. Some of the cores in Perseus are 'thermally dominated', with thermal and nonthermal line widths similar to most Taurus cores, while others are 'nonthermally dominated' and are more similar to the cores in Orion A. We conclude that the Perseus complex is intermediate in its star-forming potential between the predominantly low-mass star-producing regions like Taurus and the regions capable of the producing high-mass stars such as Orion A.

  4. Dense molecular cloud cores as a source of micrometer-sized grains in galaxies

    NASA Astrophysics Data System (ADS)

    Hirashita, Hiroyuki; Asano, Ryosuke S.; Nozawa, Takaya; Li, Zhi-Yun; Liu, Ming-Chang

    2014-10-01

    Coreshine in dense molecular cloud cores (dense cores) is interpreted as evidence for micrometer-sized grains (referred to as very large grains, VLGs). VLGs may have a significant influence on the total dust amount and the extinction curve. We estimate the total abundance of VLGs in the Galaxy, assuming that dense cores are the site of VLG formation. We find that the VLG abundance relative to the total dust mass is roughly ϕVLG~0.01(1-ε)/ε((fVLG/0.5)(tshat/108 year), where ε is the star formation efficiency in dense cores, τSF is the timescale of gas consumption by star formation, fVLG is the fraction of dust mass eventually coagulated into VLGs in dense cores, and tshat is the lifetime of VLGs (determined by shattering). Adopting their typical values for the Galaxy, we obtain ϕVLG~0.02-0.09. This abundance is well below the value detected in the heliosphere by Ulysses and Galileo, which means that local enhancement of VLG abundance in the solar neighborhood is required if the VLGs originate from dense cores. We also show that the effects of VLGs on the extinction curve are negligible even with the upper value of the above range, ϕVLG~0.09. If we adopt an extreme value, ϕVLG~0.5, close to that inferred from the above spacecraft data, the extinction curve is still in the range of the variation in Galactic extinction curves, but is not typical of the diffuse ISM.

  5. COLLAPSE OF MASSIVE MAGNETIZED DENSE CORES USING RADIATION MAGNETOHYDRODYNAMICS: EARLY FRAGMENTATION INHIBITION

    SciTech Connect

    Commercon, Benoit; Henning, Thomas; Hennebelle, Patrick

    2011-11-20

    We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales <100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outward and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation while moderately magnetized massive dense cores are more appropriate forming OB associations or small star clusters.

  6. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles.

    PubMed

    Topalidou, Irini; Cattin-Ortolá, Jérôme; Pappas, Andrea L; Cooper, Kirsten; Merrihew, Gennifer E; MacCoss, Michael J; Ailion, Michael

    2016-05-01

    The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843

  7. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles

    PubMed Central

    Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.

    2016-01-01

    The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843

  8. Massive quiescent cores in Orion. V. The internal structures and physical and chemical properties of two extremely dense cores

    SciTech Connect

    Ren, Zhiyuan; Li, Di; Chapman, N. E-mail: dili@nao.cas.cn

    2014-06-20

    We present a high-resolution (∼ 1.''5) observational study of two massive dust-gas cores, ORI8nw{sub 2} and ORI2{sub 6}, in the Orion molecular cloud using the Combined Array for Research in Millimeter-wave Astronomy. In each region the 3.2 mm continuum emission exhibits a dense and compact dust core at the center with 1-3 solar masses. The cores have number densities exceeding 10{sup 9} cm{sup –3}, which are among the highest volume densities observed in star-forming cores. In both regions the N{sub 2}H{sup +} shows clumpy structures that are spatially displaced from the densest gas. In OIR8nw{sub 2} in particular, the N{sub 2}H{sup +} shows a noticeable filament structure with a central cavity shell. The calculation for the dynamical state shows that this core can be potentially supported by the magnetic field against its gravitational instability, but the fragmentation might still occur and produce the observed N{sub 2}H{sup +} clumps if the gas density exceeds 5 × 10{sup 7} cm{sup –3} and this value is available within the observed density range. Also, the extremely high density at the core center suggests super-Jeans condition and the possibility for further fragmentation. For the chemical properties, the N{sub 2}H{sup +}-to-HCO{sup +} abundance ratios are shown to be different than those observed in infrared dark clouds. A combined analysis with the other Orion cores and the chemical model suggests that the different abundance ratios can be explained by the low CO abundances in our cores. To further reveal the evolution of such dense cores, higher resolution and sensitivity are required.

  9. Galactic cold cores. VI. Dust opacity spectral index

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Demyk, K.; Doi, Y.; Hughes, A.; Lefèvre, C.; Marshall, D. J.; Meny, C.; Montillaud, J.; Pagani, L.; Paradis, D.; Ristorcelli, I.; Malinen, J.; Montier, L. A.; Paladini, R.; Pelkonen, V.-M.; Rivera-Ingraham, A.

    2015-12-01

    Context. The Galactic Cold Cores project has carried out Herschel photometric observations of 116 fields where the Planck survey has found signs of cold dust emission. The fields contain sources in different environments and different phases of star formation. Previous studies have revealed variations in their dust submillimetre opacity. Aims: The aim is to measure the value of dust opacity spectral index and to understand its variations spatially and with respect to other parameters, such as temperature, column density, and Galactic location. Methods: The dust opacity spectral index β and the dust colour temperature T are derived using Herschel and Planck data. The relation between β and T is examined for the whole sample and inside individual fields. Results: Based on IRAS and Planck data, the fields are characterised by a median colour temperature of 16.1 K and a median opacity spectral index of β = 1.84. The values are not correlated with Galactic longitude. We observe a clear T-β anti-correlation. In Herschel observations, constrained at lower resolution by Planck data, the variations follow the column density structure and βFIR can rise to ~2.2 in individual clumps. The highest values are found in starless clumps. The Planck 217 GHz band shows a systematic excess that is not restricted to cold clumps and is thus consistent with a general flattening of the dust emission spectrum at millimetre wavelengths. When fitted separately below and above 700 μm, the median spectral index values are βFIR ~ 1.91 and β(mm) ~ 1.66. Conclusions: The spectral index changes as a function of column density and wavelength. The comparison of different data sets and the examination of possible error sources show that our results are robust. However, β variations are partly masked by temperature gradients and the changes in the intrinsic grain properties may be even greater. Planck http://www.esa.int/Planck is a project of the European Space Agency - ESA - with instruments

  10. Dense cores in Ophiuchus and Chamaeleon molecular clouds: detection and evolutionary trends

    NASA Astrophysics Data System (ADS)

    Benedettini, Milena; Burton, Michael; Busquet, Gemma; Caselli, Paola; Pezzuto, Stefano; Viti, Serena

    2012-04-01

    We propose to map the densest regions of the Ophiucus, Chamaeleon I and Chamaeleon III molecular clouds in high density tracers in order to derive the distribution of the dense cores and their evolutionary stage with the aim to study the core mass function and its relationship to the stellar initial mass function. Spectroscopic surveys of star forming regions in chemical species copiously produced in the first stages of star formation are essential to derive the kinematics and the physical conditions of the pre- and proto-stellar cores, as well as their evolutionary stage. A previous study of the Lupus molecular cloud carried out with Mopra has shown the high potential of the multi-line spectroscopic surveys in identifying the dense condensations and their evolutionary stage. We ask to observe several key species: HCN, HNC, HC3N, N2H+ and HCO+ whose chemical abundance ratios are good chemical clocks for the first stages of the star formation process. The Mopra antenna is ideal for observations at 3mm of the close-by, high southern declination Ophiucus and Chamaeleon clouds since the beam size at 90GHz corresponds to about 0.03pc, well-matched to sampling the dense cores with typical sizes of 0.1pc.

  11. Chemical and Physical Characterization of Collapsing Low-mass Prestellar Dense Cores

    NASA Astrophysics Data System (ADS)

    Hincelin, U.; Commerçon, B.; Wakelam, V.; Hersant, F.; Guilloteau, S.; Herbst, E.

    2016-05-01

    The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation as predicted by theory. With recent and future high-performance telescopes, the details of these first phases are becoming accessible, and observations may confirm theory and even present new challenges for theoreticians. In this context, from a theoretical point of view, we study the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical model with full gas-grain chemistry, using different assumptions for the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests that some chemical species act as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.

  12. Image restoration of R136 - The dense core of NGC 2070

    NASA Technical Reports Server (NTRS)

    Weir, N.; Djorgovski, S.; Meylan, G.

    1991-01-01

    We present results from the application of a new seeing deconvolution technique to images of the dense core of NGC 2070 = 30 Doradus (the controversial object R136a). We utilize a new maximum entropy algorithm capable of restoring images to very high resolution, even to subpixel accuracy. Images of the object in different colors, as well as comparisons with previous speckle results, have been used to check the validity of the results. Our images of R136 have an angular resolution approaching 0.2 arcsec, better than any direct images of this object published to date, and corroborate evidence that R136a is a dense star cluster core, rather than a single ultraluminous object.

  13. Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.

    2008-05-01

    As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.

  14. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.

    PubMed

    Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J

    2016-02-15

    The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  15. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  16. Chains of dense cores in the Taurus L1495/B213 complex

    NASA Astrophysics Data System (ADS)

    Tafalla, M.; Hacar, A.

    2015-02-01

    Context. Cloud fragmentation into dense cores is a critical step in the process of star formation. A number of recent observations show that it is connected to the filamentary structure of the gas, but the processes responsible for core formation remain mysterious. Aims: We studied the kinematics and spatial distribution of the dense gas in the L1495/B213 filamentary region of the Taurus molecular cloud with the goal of understanding the mechanism of core formation. Methods: We mapped the densest regions of L1495/B213 in N2H+(1-0) and C18O(2-1) with the IRAM 30 m telescope, and complemented these data with archival dust-continuum observations from the Herschel Space Observatory. Results: The dense cores in L1495/B213 are significantly clustered in linear chain-like groups about 0.5 pc long. The internal motions in these chains are mostly subsonic and the velocity is continuous, indicating that turbulence dissipation in the cloud has occurred at the scale of the chains and not at the smaller scale of the individual cores. The chains also present an approximately constant abundance of N2H+ and radial intensity profiles that can be modeled with a density law that follows a softened power law. A simple analysis of the spacing between the cores using an isothermal cylinder model indicates that the cores have likely formed by gravitational fragmentation of velocity-coherent filaments. Conclusions: Combining our analysis of the cores with our previous study of the large-scale C18O emission from the cloud, we propose a two-step scenario of core formation in L1495/B213. In this scenario, named "fray and fragment", L1495/B213 originated from the supersonic collision of two flows. The collision produced a network of intertwined subsonic filaments or fibers (fray step). Some of these fibers accumulated enough mass to become gravitationally unstable and fragment into chains of closely-spaced cores. Based on observations carried out with the IRAM 30 m Telescope. IRAM is

  17. Chains of Dense Cores in the Taurus L1495/B213 Complex

    NASA Astrophysics Data System (ADS)

    Tafalla, Mario; Hacar, Alvaro

    2014-07-01

    We study the formation of dense cores in the filamentary L1495/B213 region of Taurus. Observations of its C18O emission show that what appears as a single 10pc-long filament in optical and continuum images is in fact a complex web of smaller filamentary structures that we call fibers. These fibers are typically 0.5~pc long and velocity coherent, and seem to have decoupled from the turbulent velocity field of the large-scale cloud. Fibers appear as the true parent structures of the cores, but only a small subset of them seem able to form cores ("fertile fibers") while the rest remain sterile. The fertile-sterile dychotomy of fibers is striking, since sterile fibers do not form cores but fertile fibers form three cores on average. As a result, most cores in the L1495/B213 region are part of linear groups or chains that have a typical core spacing of 0.1pc. Our observations and analysis suggest that core formation out of a large-scale filament is a two-step process that involves first the dissipation of turbulence via shock interaction and then the fragmentation of those disspated structures that exceed the mass per unit length limit of gravitational instability.

  18. Synthetic observations of first hydrostatic cores in collapsing low-mass dense cores. II. Simulated ALMA dust emission maps

    NASA Astrophysics Data System (ADS)

    Commerçon, B.; Levrier, F.; Maury, A. J.; Henning, Th.; Launhardt, R.

    2012-12-01

    Context. First hydrostatic cores are predicted by theories of star formation, but their existence has never been demonstrated convincingly by (sub)millimeter observations. Furthermore, the multiplicity in the early phases of the star formation process is poorly constrained. Aims: The purpose of this paper is twofold. First, we seek to provide predictions for ALMA dust continuum emission maps from early Class 0 objects. Second, we show to what extent ALMA will be able to probe the fragmentation scale in these objects. Methods: Following our companion paper, we post-processed three state-of-the-art radiation-magneto-hydrodynamic 3D adaptive mesh refinement calculations to compute the emanating dust emission maps. We then produced synthetic ALMA observations of the dust thermal continuum from first hydrostatic cores. Results: We present the first synthetic ALMA observations of dust continuum emission from the first hydrostatic cores. We analyze the results given by the different bands and configurations and we discuss for which combinations of the two the first hydrostatic cores would most likely be observed. We also show that observing dust continuum emission with ALMA will help in identifying the physical processes occurring within collapsing dense cores. If the magnetic field is playing a role, the emission pattern will show evidence of a pseudo-disk and even of a magnetically driven outflow, which pure hydrodynamical calculations cannot reproduce. Conclusions: The capabilities of ALMA will enable us to make significant progress towards understanding the fragmentation at the early Class 0 stage and discovering first hydrostatic cores.

  19. Fragmentation of Massive Dense Cores Down to <~ 1000 AU: Relation between Fragmentation and Density Structure

    NASA Astrophysics Data System (ADS)

    Palau, Aina; Estalella, Robert; Girart, Josep M.; Fuente, Asunción; Fontani, Francesco; Commerçon, Benoit; Busquet, Gemma; Bontemps, Sylvain; Sánchez-Monge, Álvaro; Zapata, Luis A.; Zhang, Qizhou; Hennebelle, Patrick; di Francesco, James

    2014-04-01

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada.

  20. Beyond the pseudo-time-dependent approach: chemical models of dense core precursors

    NASA Astrophysics Data System (ADS)

    Hassel, G. E.; Herbst, E.; Bergin, E. A.

    2010-06-01

    Context. Chemical models of dense cloud cores often utilize the so-called pseudo-time-dependent approximation, in which the physical conditions are held fixed and uniform as the chemistry occurs. In this approximation, the initial abundances chosen, which are totally atomic in nature except for molecular hydrogen, are artificial. A more detailed approach to the chemistry of dense cold cores should include the physical evolution during their early stages of formation. Aims: Our major goal is to investigate the initial synthesis of molecular ices and gas-phase molecules as cold molecular gas begins to form behind a shock in the diffuse interstellar medium. The abundances calculated as the conditions evolve can then be utilized as reasonable initial conditions for a theory of the chemistry of dense cores. Methods: Hydrodynamic shock-wave simulations of the early stages of cold core formation are used to determine the time-dependent physical conditions for a gas-grain chemical network. We follow the cold post-shock molecular evolution of ices and gas-phase molecules as the visual extinction increases with time to AV ≈ 3. (Note that instead of an equal sign, the approximately equal sign should remain.) At higher extinction, self-gravity becomes important. Results: As the newly condensed gas enters its cool post-shock phase, a large amount of CO is produced in the gas. As the CO forms, water ice is produced on grains, while accretion of CO produces CO ice. The production of CO2 ice from CO occurs via several surface mechanisms, while the production of CH4 ice is slowed by gas-phase conversion of C into CO.

  1. Kinetic Temperatures of the Dense Gas Clumps in the Orion KL Molecular Core

    NASA Technical Reports Server (NTRS)

    Wang, Kuo-Song; Kuan, Yi-Jehng; Liu, Sheng-Yuan; Charnley, Steven B.

    2010-01-01

    High angular-resolution images of the J = 18(sub K)-17(sub K) emission of CH3CN in the Orion KL molecular core were observed with the Submillimeter Array (SMA). Our high-resolution observations clearly reveal that CH3CN emission originates mainly from the Orion Hot Core and the Compact Ridge, both within approximately 15 inches of the warm and dense part of Orion KL. The clumpy nature of the molecular gas in Orion KL can also be readily seen from our high-resolution SMA images. In addition, a semi-open cavity-like kinematic structure is evident at the location between the Hot Core and the Compact Ridge. We performed excitation analysis with the "population diagram" method toward the Hot Core, IRc7, and the northern part of the Compact Ridge. Our results disclose a non-uniform temperature structure on small scales in Orion KL, with a range of temperatures from 190-620 K in the Hot Core. Near the Compact Ridge, the temperatures are found to be 170-280 K. Comparable CH3CN fractional abundances of 10(exp -8) to 10(exp -7) are found around both in the Hot Core and the Compact Ridge. Such high abundances require that a hot gas phase chemistry, probably involving ammonia released from grain mantles, plays an important role in forming these CH3CN molecules.

  2. Colliding filaments and a massive dense core in the Cygnus OB 7 molecular cloud

    SciTech Connect

    Dobashi, Kazuhito; Shimoikura, Tomomi; Akisato, Ko; Ohashi, Kenjiro; Nakagomi, Keisuke; Matsumoto, Tomoaki; Saito, Hiro

    2014-12-10

    We report the results of molecular line observations carried out toward a massive dense core in the Cyg OB 7 molecular cloud. The core has an extraordinarily large mass (∼1.1 × 10{sup 4} M {sub ☉}) and size (∼2 × 5 pc{sup 2}), but there is no massive young star forming therein. We observed this core in various molecular lines such as C{sup 18}O(J = 1-0) using the 45 m telescope at Nobeyama Radio Observatory. We find that the core has an elongated morphology consisting of several filaments and core-like structures. The filaments are massive (10{sup 2}-10{sup 3} M {sub ☉}), and they are apparently colliding with one another. Some candidates for young stellar objects are distributed around their intersection, suggesting that the collisions of the filaments may have influenced their formation. To understand the formation and evolution of such colliding filaments, we performed numerical simulations using the adaptive mesh refinement technique, adopting the observed core parameters (the mass and size) as the initial conditions. The results indicate that the filaments are formed as seen in other earlier simulations for small cores in the literature, but we could not reproduce the collisions of the filaments simply by assuming a large initial mass and size. We find that collisions of the filaments occur only when there is a large velocity gradient in the initial core, in a sense compressing it. We suggest that the observed core was actually compressed by an external effect, e.g., shocks from nearby supernova remnants, including HB 21 which has been suggested to be interacting with the Cyg OB 7 molecular cloud.

  3. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS

    SciTech Connect

    Schmalzl, Markus; Kainulainen, Jouni; Henning, Thomas; Launhardt, Ralf; Quanz, Sascha P.; Alves, Joao; Goodman, Alyssa A.; Pineda, Jaime E.; Roman-Zuniga, Carlos G.

    2010-12-10

    We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M{sub line} = 17 M{sub sun} pc{sup -1}, reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M{sub sun} and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent {Gamma} = 1.2 {+-} 0.2, a form commonly observed in star-forming regions.

  4. Sending proteins to dense core secretory granules: still a lot to sort out

    PubMed Central

    Dikeakos, Jimmy D.; Reudelhuber, Timothy L.

    2007-01-01

    The intracellular sorting of peptide hormone precursors to the dense core secretory granules (DCSGs) is essential for their bioactivation. Despite the fundamental importance of this cellular process, the nature of the sorting signals for entry of proteins into DCSGs remains a source of vigorous debate. This review highlights recent discoveries that are consistent with a model in which several protein domains, acting in a cell-specific fashion and at different steps in the sorting process, act in concert to regulate the entry of proteins into DCSGs. PMID:17438078

  5. Massive Quiescent Cores in Orion. VI. The Internal Structures and a Candidate of Transiting Core in NGC 2024 Filament

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyuan; Li, Di

    2016-06-01

    We present a multiwavelength observational study of the NGC 2024 filament using infrared to submillimeter continuum and the {{NH}}3 (1,1) and (2,2) inversion transitions centered on FIR-3, the most massive core therein. FIR-3 is found to have no significant infrared point sources in the Spitzer/IRAC bands. But the {{NH}}3 kinetic temperature map shows a peak value at the core center with {T}{{k}}=25 K, which is significantly higher than the surrounding level ({T}{{k}}\\quad = 15–19 K). Such internal heating signature without an infrared source suggests an ongoing core collapse possibly at a transition stage from first hydrostatic core (FHSC) to protostar. The eight dense cores in the filament have dust temperatures between 17.5 and 22 K. They are much cooler than the hot ridge ({T}{{d}}∼ 55 K) around the central heating star IRS-2b. Comparison with a dust heating model suggests that the filament should have a distance of 3–5 pc from IRS-2b. This value is much larger than the spatial extent of the hot ridge, suggesting that the filament is spatially separated from the hot region along the line of sight.

  6. How is kinematic structure connected to the core scale from filament scale?; Mopra mapping observations with multi-lines of dense cores in Lupus I

    NASA Astrophysics Data System (ADS)

    Kiyokane, Kazuhiro; Saito, Masao; Tachihara, Kengo; Saigo, Kazuya; van Kempen, Tim; Cortes, Paulo; Hill, Tracey; Knee, Lewis; Kurono, Yasutaka; Takahashi, Satoko; Aya, Higuchi; Nyman, Lars-Ake

    2014-06-01

    Recently, high sensitivity mappings of nearby molecular clouds in far-infrared and submillimeter wavelengths with Hershel and AzTEC/ASTE show ubiquitous existence of the filamentary structures with 0.1-pc uniform width. It is important to investigate dense core formation from large scale structure via fragmentation. We have conducted MOPRA multi-line mapping observations covered on 0.02 - 0.2 pc scales of 8 dense cores in a filamentary cloud of nearby Lupus I at 140 pc. A class 0/I protostellar core IRAS 15398-3359 is included as a sample, which has an adjacent prestellar core with the separation of 0.13pc in the west. The maps of N2H+, HNC, HC3N show well associated with each core. The velocity field of C18O shows 1.4 km/s/pc from north to south over the region containing two dense cores, which is consistent with past observation of NANTEN. In contrast to C18O results, the velocity field of HC3N shows different structures, which suggest counter rotation of two dense cores; 1.2 km/s/pc from north-west to south-east around a protostellar core and 0.8 km/s/pc from east to west around a presteller core. The filament will be fragmentized and collapsed to dense cores when the line density is over 2Cs/G (where Cs is sound speed and G is gravitational constant). If that velocity gradient was caused by such situation, it should be red-blue-red-blue across two dense cores but the observed kinematics is not consistent with this scenario, which requires that the filament structure would be extremely curved with a skew angle. Although we cannot reject the collapsing interruption, those results suggest the spin-up rotating picture separated from large-scale structure.

  7. Properties of dense cores in clustered massive star-forming regions at high angular resolution

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Álvaro; Palau, Aina; Fontani, Francesco; Busquet, Gemma; Juárez, Carmen; Estalella, Robert; Tan, Jonathan C.; Sepúlveda, Inma; Ho, Paul T. P.; Zhang, Qizhou; Kurtz, Stan

    2013-07-01

    We aim at characterizing dense cores in the clustered environments associated with intermediate-/high-mass star-forming regions. For this, we present a uniform analysis of Very Large Array NH3 (1,1) and (2,2) observations towards a sample of 15 intermediate-/high-mass star-forming regions, where we identify a total of 73 cores, classify them as protostellar, quiescent starless, or perturbed starless, and derive some physical properties. The average sizes and ammonia column densities of the total sample are ˜0.06 pc and ˜1015 cm-2, respectively, with no significant differences between the starless and protostellar cores, while the linewidth and rotational temperature of quiescent starless cores are smaller, ˜1.0 km s-1 and 16 K, than linewidths and temperatures of protostellar (˜1.8 km s-1 and 21 K), and perturbed starless (˜1.4 km s-1 and 19 K) cores. Such linewidths and temperatures for these quiescent starless cores in the surroundings of intermediate-/high-mass stars are still significantly larger than the typical linewidths and rotational temperatures measured in starless cores of low-mass star-forming regions, implying an important non-thermal component. We confirm at high angular resolutions (spatial scales ˜0.05 pc) the correlations previously found with single-dish telescopes (spatial scales ≳ 0.1 pc) between the linewidth and the rotational temperature of the cores, as well as between the rotational temperature and the linewidth with respect to the bolometric luminosity. In addition, we find a correlation between the temperature of each core and the incident flux from the most massive star in the cluster, suggesting that the large temperatures measured in the starless cores of our sample could be due to heating from the nearby massive star. A simple virial equilibrium analysis seems to suggest a scenario of a self-similar, self-gravitating, turbulent, virialized hierarchy of structures from clumps (˜0.1-10 pc) to cores (˜0.05 pc). A closer

  8. Numerical modelling of dense material distribution on the core-mantle boundaries in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Płonka, A.; Czechowski, L.

    2013-09-01

    Our main interest lies within the properties of the lower thermal boundary layer of the mantle convection. We assume whole-mantle convection for smaller planetary bodies like Westa, for the Earth our model corresponds to two-layered convection with only the strongest currents reaching the lowermost mantle. For certain densities of the accumulates on the core we calculate their distribution, stream function and temperature. The Rayleigh number is kept relatively low. We search over accumulate densities reaching from 1 to 2.5 of the mantle density - in this way we want to determine for which densities the accumulates start to form distinct domes on the core-mantle boundary. For the Earth, formation of high and sharp domes is visible for high densities after 700 million years. Another question, addressing also the problem of the accumulate genesis, is the ratio of radiogenic heat production in the dense material.

  9. Prestellar core modeling in the presence of a filament. The dense heart of L1689B

    NASA Astrophysics Data System (ADS)

    Steinacker, J.; Bacmann, A.; Henning, Th.; Heigl, S.

    2016-08-01

    Context. Lacking a paradigm for the onset of star formation, it is important to derive basic physical properties of prestellar cores and filaments like density and temperature structures. Aims: We aim to disentangle the spatial variation in density and temperature across the prestellar core L1689B, which is embedded in a filament. We want to determine the range of possible central densities and temperatures that are consistent with the continuum radiation data. Methods: We apply a new synergetic radiative transfer method: the derived 1D density profiles are both consistent with a cut through the Herschel PACS/SPIRE and JCMT SCUBA-2 continuum maps of L1689B and with a derived local interstellar radiation field. Choosing an appropriate cut along the filament major axis, we minimize the impact of the filament emission on the modeling. Results: For the bulk of the core (5000-20 000 au) an isothermal sphere model with a temperature of around 10 K provides the best fits. We show that the power law index of the density profile, as well as the constant temperature can be derived directly from the radial surface brightness profiles. For the inner region (<5000 au), we find a range of densities and temperatures that are consistent with the surface brightness profiles and the local interstellar radiation field. Based on our core models, we find that pixel-by-pixel single temperature spectral energy distribution fits are incapable of determining dense core properties. Conclusions: We conclude that, to derive physical core properties, it is important to avoid azimuthally-averaging core and filament. Correspondingly, derived core masses are too high since they include some mass of the filament, and might introduce errors when determining core mass functions. The forward radiative transfer methods also avoids the loss of information owing to smearing of all maps to the coarsest spatial resolution. We find the central core region to be colder and denser than estimated in recent

  10. Star Forming Dense Cloud Cores in the TeV -ray SNR RX J1713.7-3946

    SciTech Connect

    Sano, H.; Sato, J.; Yamamoto, H.; Hayakawa, T.; Torii, K.; Moribe, N.; Kawamura, A.; Okuda, T.; Mizuno, N.; Onishi, T.; Maezawa, H.; Inoue, T.; Inutsuka, S.; Tanaka, T.; Mizuno, A.; Ogawa, H.; Stutzki, J.; Bertoldi, F.; Anderl, S.; Bronfman, L.; Koo, B.C.

    2010-10-27

    RX J1713.7-3946 is one of the TeV {gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at {approx}1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the {sup 12}CO(J=2-1) and {sup 13}CO(J=2-1) transitions at angular resolution of 90 degrees. The most intense core in {sup 13}CO, peak C, was also mapped in the {sup 12}CO(J=4-3) transition at angular resolution of 38 degrees. Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r{sup -2.2 {+-} 0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to the enhanced synchrotron X rays around dense cores.

  11. ON THE SURVIVABILITY AND METAMORPHISM OF TIDALLY DISRUPTED GIANT PLANETS: THE ROLE OF DENSE CORES

    SciTech Connect

    Liu, Shang-Fei; Lin, Douglas N. C.; Guillochon, James; Ramirez-Ruiz, Enrico

    2013-01-01

    A large population of planetary candidates in short-period orbits have been found recently through transit searches, mostly with the Kepler mission. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate that the orbital angular momentum vector of some planets is inclined relative to the spin axis of their host stars. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-in super-Earths and Neptune-like planets through the tidal disruption of gas giant planets as a consequence of these dynamical processes. We model the core-envelope structure of gas giant planets with composite polytropes which characterize the distinct chemical composition of the core and envelope. Using three-dimensional hydrodynamical simulations of close encounters between Jupiter-like planets and their host stars, we find that the presence of a core with a mass more than 10 times that of the Earth can significantly increase the fraction of envelope which remains bound to it. After the encounter, planets with cores are more likely to be retained by their host stars in contrast with previous studies which suggested that coreless planets are often ejected. As a substantial fraction of their gaseous envelopes is preferentially lost while the dense incompressible cores retain most of their original mass, the resulting metallicity of the surviving planets is increased. Our results suggest that some gas giant planets can be effectively transformed into either super-Earths or Neptune-like planets after multiple close stellar passages. Finally, we analyze the orbits and structure of known planets and Kepler candidates and find that our model is capable of producing some of the shortest-period objects.

  12. A census of dense cores in the Taurus L1495 cloud from the Herschel

    NASA Astrophysics Data System (ADS)

    Marsh, K. A.; Kirk, J. M.; André, Ph.; Griffin, M. J.; Könyves, V.; Palmeirim, P.; Men'shchikov, A.; Ward-Thompson, D.; Benedettini, M.; Bresnahan, D. W.; Francesco, J. Di; Elia, D.; Motte, F.; Peretto, N.; Pezzuto, S.; Roy, A.; Sadavoy, S.; Schneider, N.; Spinoglio, L.; White, G. J.

    2016-06-01

    We present a catalogue of dense cores in a ˜4° × 2° field of the Taurus star-forming region, inclusive of the L1495 cloud, derived from Herschel SPIRE and PACS observations in the 70 μm, 160 μm, 250 μm, 350 μm, and 500 μm continuum bands. Estimates of mean dust temperature and total mass are derived using modified blackbody fits to the spectral energy distributions. We detect 525 starless cores of which ˜10-20 per cent are gravitationally bound and therefore presumably prestellar. Our census of unbound objects is ˜85 per cent complete for M > 0.015 M⊙ in low-density regions (AV ≲ 5 mag), while the bound (prestellar) subset is ˜85 per cent complete for M > 0.1 M⊙ overall. The prestellar core mass function (CMF) is consistent with lognormal form, resembling the stellar system initial mass function, as has been reported previously. All of the inferred prestellar cores lie on filamentary structures whose column densities exceed the expected threshold for filamentary collapse, in agreement with previous reports. Unlike the prestellar CMF, the unbound starless CMF is not lognormal, but instead is consistent with a power-law form below 0.3 M⊙ and shows no evidence for a low-mass turnover. It resembles previously reported mass distributions for CO clumps at low masses (M ≲ 0.3 M⊙). The volume density PDF, however, is accurately lognormal except at high densities. It is consistent with the effects of self-gravity on magnetized supersonic turbulence. The only significant deviation from lognormality is a high-density tail which can be attributed unambiguously to prestellar cores.

  13. XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.

    2016-03-01

    Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

  14. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    SciTech Connect

    Sato, Mai; Kitaguchi, Tetsuya; Ikematsu, Kazuya; Kakeyama, Masaki; Murata, Masayuki; Sato, Ken; Tsuboi, Takashi

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  15. Stability of β-equilibrated dense matter and core-crust transition in neutron stars

    NASA Astrophysics Data System (ADS)

    Atta, Debasis; Basu, D. N.

    2014-09-01

    The stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y effective nucleon-nucleon interaction, the effects of the nuclear incompressibility on the proton fraction in neutron stars and the location of the inner edge of their crusts and core-crust transition density and pressure are investigated. The high-density behavior of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using β-equilibrated neutron star matter obtained from this effective interaction for a pure hadronic model agree with the recent observations of the massive compact stars. The density, pressure, and proton fraction at the inner edge separating the liquid core from the solid crust of neutron stars are determined to be ρt=0.0938 fm-3, Pt=0.5006 MeV fm-3, and xp (t)=0.0308, respectively.

  16. UNC-31/CAPS docks and primes dense core vesicles in C. elegans neurons.

    PubMed

    Lin, Xian-Guang; Ming, Min; Chen, Mao-Rong; Niu, Wei-Pin; Zhang, Yong-Deng; Liu, Bei; Jiu, Ya-Ming; Yu, Jun-Wei; Xu, Tao; Wu, Zheng-Xing

    2010-07-01

    UNC-31 or its mammalian homologue, Ca(2+)-dependent activator protein for secretion (CAPS), is indispensable for exocytosis of dense core vesicle (DCV) and synaptic vesicle (SV). From N- to the C-terminus, UNC-31 contains putative functional domains, including dynactin 1 binding domain (DBD), C2, PH, (M)UNC-13 homology domain (MHD) and DCV binding domain (DCVBD), the last four we examined in this study. We employed UNC-31 null mutant C. elegans worms to examine whether UNC-31 functions could be rescued by ectopic expression of full length UNC-31 vs each of these four domain-deleted mutants. Full length UNC-31 cDNA rescued the phenotypes of C. elegans null mutants in response to Ca(2+)-elevation in ALA neurons. Surprisingly, MHD deletion also rescued UNC-31 exocytotic function in part because the relatively high Ca(2+) level (pre-flash Ca(2+) was 450 nM) used in the capacitance study could bypass the MHD defect. Nonetheless, the three other domain-truncation cDNAs had almost no rescue on Ca(2+) evoked secretion. Importantly, this genetic null mutant rescue strategy enabled physiological studies at levels of whole organism to single cells, such as locomotion assay, pharmacological study of neurotransmission at neuromuscular junction, in vivo neuropeptide release measurement and analysis of vesicular docking. Our results suggest that each of these UNC-31 domains support distinct sequential molecular actions of UNC-31 in vesicular exocytosis, including steps in vesicle tethering and docking that bridge vesicle with plasma membrane, and subsequently priming vesicle by initiating the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex. PMID:20515653

  17. PC12 Cells that Lack Synaptotagmin I Exhibit Loss of a Subpool of Small Dense Core Vesicles

    PubMed Central

    Adams, Robert D.; Harkins, Amy B.

    2014-01-01

    Neurons communicate by releasing neurotransmitters that are stored in intracellular vesicular compartments. PC12 cells are frequently used as a model secretory cell line that is described to have two subpools of vesicles: small clear vesicles and dense core vesicles. We measured transmitter molecules released from vesicles in NGF-differentiated PC12 cells using carbon-fiber amperometry, and relative diameters of individual vesicles using electron microscopy. Both amperometry and electron micrograph data were analyzed by statistical and machine learning methods for Gaussian mixture models. An electron microscopy size correction algorithm was used to predict and correct for observation bias of vesicle size due to tangential slices through some vesicles. Expectation maximization algorithms were used to perform maximum likelihood estimation for the Gaussian parameters of different populations of vesicles, and were shown to be better than histogram and cumulative distribution function methods for analyzing mixed populations. The Bayesian information criterion was used to determine the most likely number of vesicle subpools observed in the amperometric and electron microscopy data. From this analysis, we show that there are three major subpools, not two, of vesicles stored and released from PC12 cells. The three subpools of vesicles include small clear vesicles and two subpools of dense core vesicles, a small and a large dense core vesicle subpool. Using PC12 cells stably transfected with short-hairpin RNA targeted to synaptotagmin I, an exocytotic Ca2+ sensor, we show that the presence and release of the small dense core vesicle subpool is dependent on synaptotagmin I. Furthermore, synaptotagmin I also plays a role in the formation and/or maintenance of the small dense core vesicle subpool in PC12 cells. PMID:25517150

  18. Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis

    PubMed Central

    Man, Kwun Nok M; Imig, Cordelia; Walter, Alexander M; Pinheiro, Paulo S; Stevens, David R; Rettig, Jens; Sørensen, Jakob B; Cooper, Benjamin H; Brose, Nils; Wojcik, Sonja M

    2015-01-01

    It is currently unknown whether the molecular steps of large dense-core vesicle (LDCV) docking and priming are identical to the corresponding reactions in synaptic vesicle (SV) exocytosis. Munc13s are essential for SV docking and priming, and we systematically analyzed their role in LDCV exocytosis using chromaffin cells lacking individual isoforms. We show that particularly Munc13-2 plays a fundamental role in LDCV exocytosis, but in contrast to synapses lacking Munc13s, the corresponding chromaffin cells do not exhibit a vesicle docking defect. We further demonstrate that ubMunc13-2 and Munc13-1 confer Ca2+-dependent LDCV priming with similar affinities, but distinct kinetics. Using a mathematical model, we identify an early LDCV priming step that is strongly dependent upon Munc13s. Our data demonstrate that the molecular steps of SV and LDCV priming are very similar while SV and LDCV docking mechanisms are distinct. DOI: http://dx.doi.org/10.7554/eLife.10635.001 PMID:26575293

  19. Stochastic Subcellular Organization of Dense-Core Vesicles Revealed by Point Pattern Analysis.

    PubMed

    Robinson, Benjamin J; Stanisavljevic, Bogdan; Silverman, Michael A; Scalettar, Bethe A

    2016-08-23

    Dense-core vesicles (DCVs) are regulated secretory organelles found in many types of neurons. In neurons of the hippocampus, their cargo includes proteins that mediate several pivotal processes, including differentiation and synaptic plasticity. Motivated by interest in DCV distribution and its impact on cargo action, we have used fluorescence microscopy and statistical analysis to develop a quantitative model of the subcellular organization of DCVs in hippocampal neurons that are spontaneously active (their most prevalent state). We also have tested the functionally motivated hypothesis that these organelles are synaptically enriched. Variance-to-mean ratio, frequency distribution, and Moran's autocorrelation analyses reveal that DCV distribution along shafts, and within synapses, follows Poisson statistics, establishing that stochastically dictated organization sustains cargo function. Occupancy in boutons exceeds that at nearby extrasynaptic axonal sites by approximately threefold, revealing significant local presynaptic enrichment. Widespread stochastic organization is consistent with the emerging functional importance of synaptically and extrasynaptically localized DCVs. Presynaptic enrichment is consistent with the established importance of protecting presynaptic sites from depletion of DCV cargo. These results enhance understanding of the link between DCV organization and mechanisms of cargo action, and they reinforce the emerging theme that randomness is a prevalent aspect of synaptic organization and composition. PMID:27558728

  20. Excitatory and Inhibitory Neurons in the Hippocampus Exhibit Molecularly Distinct Large Dense Core Vesicles

    PubMed Central

    Ramírez-Franco, José J.; Munoz-Cuevas, Francisco J.; Luján, Rafael; Jurado, Sandra

    2016-01-01

    Hippocampal interneurons comprise a diverse family of inhibitory neurons that are critical for detailed information processing. Along with gamma-aminobutyric acid (GABA), interneurons secrete a myriad of neuroactive substances via secretory vesicles but the molecular composition and regulatory mechanisms remain largely unknown. In this study, we have carried out an immunohistofluorescence analysis to describe the molecular content of vesicles in distinct populations of hippocampal neurons. Our results indicate that phogrin, an integral protein of secretory vesicles in neuroendocrine cells, is highly enriched in parvalbumin-positive interneurons. Consistently, immunoelectron microscopy revealed phogrin staining in axon terminals of symmetrical synapses establishing inhibitory contacts with cell bodies of CA1 pyramidal neurons. Furthermore, phogrin is highly expressed in CA3 and dentate gyrus (DG) interneurons which are both positive for PV and neuropeptide Y. Surprisingly, chromogranin B a canonical large dense core vesicle marker, is excluded from inhibitory cells in the hippocampus but highly expressed in excitatory CA3 pyramidal neurons and DG granule cells. Our results provide the first evidence of phogrin expression in hippocampal interneurons and suggest the existence of molecularly distinct populations of secretory vesicles in different types of inhibitory neurons.

  1. Modulation of cargo release from dense core granules by size and actin network.

    PubMed

    Felmy, Felix

    2007-08-01

    During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)(2)] as an intermediate-sized fusion probe is released most slowly. Although, the time-course of release varies substantially for a given probe. Coexpression of beta-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time-course and that actin rearrangements similar to those mediating actin-mediated motility influences the time-course of release without directly interfering with the granule membrane to cell membrane connection. PMID:17506863

  2. High-resolution core-level photoemission study of dense Pb overlayers on Si(111)

    NASA Astrophysics Data System (ADS)

    Choi, Won Hoon; Kim, Keun Su; Yeom, Han Woong

    2008-11-01

    Structure and bonding configuration of dense Pb overlayers on the Si(111) surface have been studied by low-energy-electron diffraction and high-resolution photoelectron spectroscopy using synchrotron radiation. Several representative phases in its devil’s staircase phase diagram have been systematically investigated by varying the Pb coverage at 200-300 K. Pb5d photoelectron spectra indicate that there exist two distinct bonding configurations of Pb, which are interpreted as the hollow and on-top (T1) sites of the structure models proposed earlier. In case of surface Si atoms, mainly two different bonding environments are revealed by surface Si2p components for the low-density 7×3 phase. These can be assigned to T1 and modified on-top (T1') sites surrounding hollow-site adatoms. As the coverage increases, the minority site T1 converts to T1' making the topmost Si layer have a unique bonding configuration. This behavior is also consistent with the structure models. The temperature-dependent study reveals that the 7×3 phase undergoes a reversible phase transition into a 1×1 phase. This phase transition induces no significant change in Pb core levels but a marginal increase in the Si2p component for the T1' sites. We suggest a plausible scenario of the phase transition based on the structure model with 1.2 monolayer Pb and the active diffusion of hollow-site adatoms.

  3. TBC-8, a Putative RAB-2 GAP, Regulates Dense Core Vesicle Maturation in Caenorhabditis elegans

    PubMed Central

    Hannemann, Mandy; Sasidharan, Nikhil; Hegermann, Jan; Kutscher, Lena M.; Koenig, Sabine; Eimer, Stefan

    2012-01-01

    Dense core vesicles (DCVs) are thought to be generated at the late Golgi apparatus as immature DCVs, which subsequently undergo a maturation process through clathrin-mediated membrane remodeling events. This maturation process is required for efficient processing of neuropeptides within DCVs and for removal of factors that would otherwise interfere with DCV release. Previously, we have shown that the GTPase, RAB-2, and its effector, RIC-19, are involved in DCV maturation in Caenorhabditis elegans motoneurons. In rab-2 mutants, specific cargo is lost from maturing DCVs and missorted into the endosomal/lysosomal degradation route. Cargo loss could be prevented by blocking endosomal delivery. This suggests that RAB-2 is involved in retention of DCV components during the sorting process at the Golgi-endosomal interface. To understand how RAB-2 activity is regulated at the Golgi, we screened for RAB-2–specific GTPase activating proteins (GAPs). We identified a potential RAB-2 GAP, TBC-8, which is exclusively expressed in neurons and which, when depleted, shows similar DCV maturation defects as rab-2 mutants. We could demonstrate that RAB-2 binds to its putative GAP, TBC-8. Interestingly, TBC-8 also binds to the RAB-2 effector, RIC-19. This interaction appears to be conserved as TBC-8 also interacted with the human ortholog of RIC-19, ICA69. Therefore, we propose that a dynamic ON/OFF cycling of RAB-2 at the Golgi induced by the GAP/effector complex is required for proper DCV maturation. PMID:22654674

  4. Impaired maturation of large dense-core vesicles in muted-deficient adrenal chromaffin cells.

    PubMed

    Hao, Zhenhua; Wei, Lisi; Feng, Yaqin; Chen, Xiaowei; Du, Wen; Ma, Jing; Zhou, Zhuan; Chen, Liangyi; Li, Wei

    2015-04-01

    The large dense-core vesicle (LDCV), a type of lysosome-related organelle, is involved in the secretion of hormones and neuropeptides in specialized secretory cells. The granin family is a driving force in LDCV biogenesis, but the machinery for granin sorting to this biogenesis pathway is largely unknown. The mu mutant mouse, which carries a spontaneous null mutation on the Muted gene (also known as Bloc1s5), which encodes a subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), is a mouse model of Hermansky-Pudlak syndrome. Here, we found that LDCVs were enlarged in mu adrenal chromaffin cells. Chromogranin A (CgA, also known as CHGA) was increased in mu adrenals and muted-knockdown cells. The increased CgA in mu mice was likely due a failure to export this molecule out of immature LDCVs, which impairs LDCV maturation and docking. In mu chromaffin cells, the size of readily releasable pool and the vesicle release frequency were reduced. Our studies suggest that the muted protein is involved in the selective export of CgA during the biogenesis of LDCVs. PMID:25673877

  5. Insight into core-shell dependent anoxic Cr(VI) removal with Fe@Fe2O3 nanowires: indispensable role of surface bound Fe(II).

    PubMed

    Mu, Yi; Ai, Zhihui; Zhang, Lizhi; Song, Fahui

    2015-01-28

    In this study, we investigated the anoxic Cr(VI) removal with core-shell Fe@Fe2O3 nanowires. It was found the surface area normalized Cr(VI) removal rate constants of Fe@Fe2O3 nanowires first increased with increasing the iron oxide shell thickness and then decreased, suggesting that Fe@Fe2O3 nanowires possessed an interesting core-shell structure dependent Cr(VI) removal property. Meanwhile, the Cr(VI) removal efficiency was positively correlated to the amount of surface bound Fe(II). This result revealed that the core-shell structure dependent Cr(VI) removal property of Fe@Fe2O3 nanowires was mainly attributed to the reduction of Cr(VI) by the surface bound Fe(II) besides the reduction of Cr(VI) adsorbed on the iron oxide shell via the electrons transferred from the iron core. The indispensable role of surface bound Fe(II) was confirmed by Tafel polarization and high-resolution X-ray photoelectron spectroscopic depth profiles analyses. X-ray diffraction patterns and scanning electron microscope images of the fresh and used Fe@Fe2O3 nanowires revealed the formation of Fe(III)/Cr(III)/Cr(VI) composite oxides during the anoxic Cr(VI) removal process. This study sheds a deep insight into the anoxic Cr(VI) removal mechanism of core-shell Fe@Fe2O3 nanowires and also provides an efficient Cr(VI) removal method. PMID:25543716

  6. Recommendations for Editing the Common Core of Data, Parts VI and VI-A. Technical Report No. 11.

    ERIC Educational Resources Information Center

    Fingerman, Paul W.

    Recommendations are made for data processing procedures for the National Center for Education Statistics' (NCES) Common Core of Data survey program. Data are anticipated from about 16,000 local education agencies and 85,000 schools in the 50 states, the District of Columbia, and 7 territories. These recommendations concern editing and verification…

  7. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires.

    PubMed

    Mu, Yi; Wu, Hao; Ai, Zhihui

    2015-11-15

    In this study, we demonstrate that the presence of oxygen molecule can inhibit Cr(VI) removal with core-shell Fe@Fe2O3 nanowires at neutral pH of 6.1. 100% of Cr(VI) removal was achieved by the Fe@Fe2O3 nanowires within 60 min in the anoxic condition, in contrast, only 81.2% of Cr(VI) was sequestrated in the oxic condition. Removal kinetics analysis indicated that the presence of oxygen could inhibit the Cr(VI) removal efficiency by near 3 times. XRD, SEM, and XPS analysis revealed that either the anoxic or oxic Cr(VI) removal was involved with adsorption, reduction, co-precipitation, and re-adsorption processes. More Cr(VI) was bound in a reduced state of Cr(III) in the anoxic process, while a thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell, leading to inhibiting the electron transfer, was found under the oxic process. The negative impact of oxygen molecule was attributed to the oxygen molecular activation which competed with Cr(VI) adsorbed for the consumption of donor electrons from Fe(0) core and ferrous ions bound on the iron oxides surface under the oxic condition. This study sheds light on the understanding of the fate and transport of Cr(VI) in oxic and anoxic environment, as well provides helpful guide for optimizing Cr(VI) removal conditions in real applications. PMID:25988715

  8. THE AGE, STELLAR CONTENT, AND STAR FORMATION TIMESCALE OF THE B59 DENSE CORE

    SciTech Connect

    Covey, K. R.; Lada, C. J.; Muench, A. A.; Forbrich, J.; Ascenso, J.; Roman-Zuniga, C.

    2010-10-20

    We have investigated the stellar content of Barnard 59 (B59), the most active star-forming core in the Pipe Nebula. Using the SpeX spectrograph on the NASA Infrared Telescope Facility, we obtained moderate resolution, near-infrared (NIR) spectra for 20 candidate young stellar objects (YSOs) in B59 and a representative sample of NIR and mid-IR bright sources distributed throughout the Pipe. Measuring luminosity and temperature sensitive features in these spectra, we identified likely background giant stars and measured each star's spectral type, extinction, and NIR continuum excess. To measure B59's age, we place its candidate YSOs in the Hertzsprung-Russell diagram and compare their location to YSOs in several well-studied star-forming regions, as well as predictions of pre-main-sequence (PMS) evolutionary models. We find that B59 is composed of late-type (K4-M6) low-mass (0.9-0.1 M{sub sun}) YSOs whose median stellar age is comparable to, if not slightly older than, that of YSOs within the {rho} Oph, Taurus, and Chameleon star-forming regions. Deriving absolute age estimates from PMS models computed by D'Antona et al., and accounting only for statistical uncertainties, we measure B59's median stellar age to be 2.6 {+-} 0.8 Myr. Including potential systematic effects increases the error budget for B59's median (DM98) stellar age to 2.6{sup +4.1}{sub -2.6} Myr. We also find that the relative age orderings implied by PMS evolutionary tracks depend on the range of stellar masses sampled, as model isochrones possess significantly different mass dependences. The maximum likelihood median stellar age we measure for B59, and the region's observed gas properties, suggests that the B59 dense core has been stable against global collapse for roughly six dynamical timescales and is actively forming stars with a star formation efficiency per dynamical time of {approx}6%. While the {approx}150% uncertainties associated with our age measurement propagate directly into these

  9. THE BLAST SURVEY OF THE VELA MOLECULAR CLOUD: DYNAMICAL PROPERTIES OF THE DENSE CORES IN VELA-D

    SciTech Connect

    Olmi, Luca; Angles-Alcazar, Daniel; De Luca, Massimo; Elia, Davide; Giannini, Teresa; Lorenzetti, Dario; Massi, Fabrizio; Martin, Peter G.; Strafella, Francesco E-mail: olmi@arcetri.astro.i

    2010-11-10

    The Vela-D region, according to the nomenclature given by Murphy and May, of the star-forming complex known as the Vela molecular ridge (VMR), has recently been analyzed in detail by Olmi, who studied the physical properties of 141 pre- and proto-stellar cold dust cores, detected by the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) during a much larger (55 deg{sup 2}) Galactic plane survey encompassing the whole VMR. This survey's primary goal was to identify the coldest dense dust cores possibly associated with the earliest phases of star formation. In this work, the dynamical state of the Vela-D cores is analyzed. Comparison to dynamical masses of a sub-sample of the Vela-D cores estimated from the {sup 13}CO survey of Elia is complicated by the fact that the {sup 13}CO linewidths are likely to trace the lower density intercore material, in addition to the dense gas associated with the compact cores observed by BLAST. In fact, the total internal pressure of these cores, if estimated using the {sup 13}CO linewidths, appears to be higher than the cloud ambient pressure. If this were the case, then self-gravity and surface pressure would be insufficient to bind these cores and an additional source of external confinement (e.g., magnetic field pressure) would be required. However, if one attempts to scale down the {sup 13}CO linewidths, according to the observations of high-density tracers in a small sample of sources, then most proto-stellar cores would be effectively gravitationally bound.

  10. Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

    SciTech Connect

    2015-03-23

    In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as it transitions into a superhot, highly compressed concoction known as “warm dense matter.”

  11. A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey

    NASA Astrophysics Data System (ADS)

    Könyves, V.; André, Ph.; Men'shchikov, A.; Palmeirim, P.; Arzoumanian, D.; Schneider, N.; Roy, A.; Didelon, P.; Maury, A.; Shimajiri, Y.; Di Francesco, J.; Bontemps, S.; Peretto, N.; Benedettini, M.; Bernard, J.-Ph.; Elia, D.; Griffin, M. J.; Hill, T.; Kirk, J.; Ladjelate, B.; Marsh, K.; Martin, P. G.; Motte, F.; Nguyên Luong, Q.; Pezzuto, S.; Roussel, H.; Rygl, K. L. J.; Sadavoy, S. I.; Schisano, E.; Spinoglio, L.; Ward-Thompson, D.; White, G. J.

    2015-12-01

    We present and discuss the results of the Herschel Gould Belt survey (HGBS) observations in an 11 deg2 area of the Aquila molecular cloud complex at d 260 pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70 μm to 500 μm. Using the multi-scale, multi-wavelength source extraction algorithm getsources, we identify a complete sample of starless dense cores and embedded (Class 0-I) protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, 60% ± 10% of which are gravitationally bound prestellar cores, and they will likely form stars inthe future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the large population of prestellar cores is very similar in shape to the stellar initial mass function (IMF), confirming earlier findings on a much stronger statistical basis and supporting the view that there is a close physical link between the stellar IMF and the prestellar CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of 40% at the level of an individual core. By comparing the numbers of starless cores in various density bins to the number of young stellar objects (YSOs), we estimate that the lifetime of prestellar cores is 1 Myr, which is typically 4 times longer than the core free-fall time, and that it decreases with average core density. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments observed in the Aquila complex. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to AV 7, and 75% of them lie within filamentary structures with supercritical masses per unit length ≳16 M⊙/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the

  12. The Blast Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

    NASA Astrophysics Data System (ADS)

    Olmi, Luca; Ade, Peter A. R.; Anglés-Alcázar, Daniel; Bock, James J.; Chapin, Edward L.; De Luca, Massimo; Devlin, Mark J.; Dicker, Simon; Elia, Davide; Fazio, Giovanni G.; Giannini, Teresa; Griffin, Matthew; Gundersen, Joshua O.; Halpern, Mark; Hargrave, Peter C.; Hughes, David H.; Klein, Jeff; Lorenzetti, Dario; Marengo, Massimo; Marsden, Gaelen; Martin, Peter G.; Massi, Fabrizio; Mauskopf, Philip; Netterfield, Calvin B.; Patanchon, Guillaume; Rex, Marie; Salama, Alberto; Scott, Douglas; Semisch, Christopher; Smith, Howard A.; Strafella, Francesco; Thomas, Nicholas; Truch, Matthew D. P.; Tucker, Carole; Tucker, Gregory S.; Viero, Marco P.; Wiebe, Donald V.

    2009-12-01

    The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350, and 500 μm survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here, we present the results from observations of the Vela-D region, covering about 4 deg2, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC, and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index β = 2.0. This combination of data allows us to determine the temperature, luminosity, and mass of each BLAST core, and also enables us to separate starless from protostellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and protostellar cores, and we find that there appear to be a smooth transition from the pre- to the protostellar phase. In particular, for protostellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.

  13. Catalog of Dense Cores in the Orion A Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Shimajiri, Yoshito; Kitamura, Y.; Nakamura, F.; Momose, M.; Saito, M.; Tsukagoshi, T.; Hiramatsu, M.; Shimoikura, T.; Dobashi, K.; Hara, C.; Kawabe, R.

    2015-03-01

    We present Orion A giant molecular cloud core catalogs, which are based on a 1.1 mm map with an angular resolution of 36″ (˜0.07 pc) and C18O (J = 1-0) data with an angular resolution of 26.4″ (˜0.05 pc). We have cataloged 619 dust cores in the 1.1 mm map using the Clumpfind method. The ranges of the radius, mass, and density of these cores are estimated to be 0.01-0.20 pc, 0.6-1.2 × 102 {{M}⊙ }, and 0.3 × 104-9.2 × 106 cm-3, respectively. We have identified 235 cores from the C18O data. The ranges of the radius, velocity width, LTE mass, and density are 0.13-0.34 pc, 0.31-1.31 km s-1, 1.0-61.8 {{M}⊙ }, and (0.8-17.5) × 103 cm-3, respectively. From the comparison of the spatial distributions between the dust and C18O cores, four types of spatial relations were revealed: (1) the peak positions of the dust and C18O cores agree with each other (32.4% of the C18O cores), (2) two or more C18O cores are distributed around the peak position of one dust core (10.8% of the C18O cores), (3) 56.8% of the C18O cores are not associated with any dust cores, and (4) 69.3% of the dust cores are not associated with any C18O cores. The data sets and analysis are public. The data sets and annotation files for MIRIAD and KARMA of Tables 2 and 4 are available at the NRO star formation project web site via http://th.nao.ac.jp/MEMBER/nakamrfm/sflegacy/data.html

  14. Experimental evidence of exciton-plasmon coupling in densely packed dye doped core-shell nanoparticles obtained via microfluidic technique

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Iazzolino, A.; Salmon, J.-B.; Leng, J.; Ravaine, S.; Grigorenko, A. N.; Strangi, G.

    2014-09-01

    The interplay between plasmons and excitons in bulk metamaterials are investigated by performing spectroscopic studies, including variable angle pump-probe ellipsometry. Gain functionalized gold nanoparticles have been densely packed through a microfluidic chip, representing a scalable process towards bulk metamaterials based on self-assembly approach. Chromophores placed at the hearth of plasmonic subunits ensure exciton-plasmon coupling to convey excitation energy to the quasi-static electric field of the plasmon states. The overall complex polarizability of the system, probed by variable angle spectroscopic ellipsometry, shows a significant modification under optical excitation, as demonstrated by the behavior of the ellipsometric angles Ψ and Δ as a function of suitable excitation fields. The plasmon resonances observed in densely packed gain functionalized core-shell gold nanoparticles represent a promising step to enable a wide range of electromagnetic properties and fascinating applications of plasmonic bulk systems for advanced optical materials.

  15. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles.

    PubMed

    Kralchevska, Radina P; Prucek, Robert; Kolařík, Jan; Tuček, Jiří; Machala, Libor; Filip, Jan; Sharma, Virender K; Zbořil, Radek

    2016-10-15

    Despite the importance of phosphorus as a nutrient for humans and its role in ecological sustainability, its high abundance, resulting in large part from human activities, causes eutrophication that negatively affects the environment and public health. Here, we present the use of ferrate(VI) as an alternative agent for removing phosphorus from aqueous media. We address the mechanism of phosphate removal as a function of the Fe/P mass ratio and the pH value of the solution. The isoelectric point of γ-Fe2O3 nanoparticles, formed as dominant Fe(VI) decomposition products, was identified to play a crucial role in predicting their efficiency in removing of phosphates. Importantly, it was found that the removal efficiency dramatically changes if Fe(VI) is added before (ex-situ conditions) or after (in-situ conditions) the introduction of phosphates into water. Removal under in-situ conditions showed remarkable sorption capacity of 143.4 mg P per gram of ferric precipitates due to better accessibility of active surface sites on in-situ formed ferric oxides/oxyhydroxides. At pH = 6.0-7.0, complete removal of phosphates was observed at a relatively low Fe/P mass ratio (5:1). The results show that phosphates are removed from water solely by sorption on the surface of γ-Fe2O3/γ-FeOOH core/shell nanoparticles. The advantages of Fe(VI) utilization include its environmentally friendly nature, the possibility of easy separation of the final product from water by a magnetic field or by natural settling, and the capacity for successful phosphate elimination at pH values near the neutral range and at low Fe/P mass ratios. PMID:27438903

  16. Hidden carbon in Earth's inner core revealed by shear softening in dense Fe7C3.

    PubMed

    Chen, Bin; Li, Zeyu; Zhang, Dongzhou; Liu, Jiachao; Hu, Michael Y; Zhao, Jiyong; Bi, Wenli; Alp, E Ercan; Xiao, Yuming; Chow, Paul; Li, Jie

    2014-12-16

    Earth's inner core is known to consist of crystalline iron alloyed with a small amount of nickel and lighter elements, but the shear wave (S wave) travels through the inner core at about half the speed expected for most iron-rich alloys under relevant pressures. The anomalously low S-wave velocity (vS) has been attributed to the presence of liquid, hence questioning the solidity of the inner core. Here we report new experimental data up to core pressures on iron carbide Fe7C3, a candidate component of the inner core, showing that its sound velocities dropped significantly near the end of a pressure-induced spin-pairing transition, which took place gradually between 10 GPa and 53 GPa. Following the transition, the sound velocities increased with density at an exceptionally low rate. Extrapolating the data to the inner core pressure and accounting for the temperature effect, we found that low-spin Fe7C3 can reproduce the observed vS of the inner core, thus eliminating the need to invoke partial melting or a postulated large temperature effect. The model of a carbon-rich inner core may be consistent with existing constraints on the Earth's carbon budget and would imply that as much as two thirds of the planet's carbon is hidden in its center sphere. PMID:25453077

  17. VizieR Online Data Catalog: HCO+ and N2D+ dense cores in Perseus (Campbell+, 2016)

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.

    2016-05-01

    Table 1 summarizes the 91 dense cores observed, with their Right Ascension and Declination pointing positions. Pointed observations of the Perseus cores were performed using the James Clerk Maxwell Telescope (JCMT). Targets were observed in the HCO+ (3-2) and N2D+ (3-2) rotational transitions in position-switching mode, with assumed rest frequencies of 267.557619GHz and 231.321665GHz, respectively. The spectral resolution was 30.5kHz, corresponding to a velocity resolution of 0.03km/s for HCO+ (3-2) and 0.04km/s for N2D+ (3-2). Observations were conducted between 2007 September and 2009 September. (3 data files).

  18. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    SciTech Connect

    Polychroni, D.; Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S.; Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V.; Di Francesco, J.; Arzoumanian, D.; Bontemps, S. [Université de Bordeaux, Laboratoire d' Astrophysique de Bordeaux, CNRS and others

    2013-11-10

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M {sub ☉} and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M {sup –1.4±0.4}. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M {sub ☉} and leads to a flattening of the CMF at masses lower than ∼4 M {sub ☉}. We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud.

  19. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles.

    PubMed

    Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang

    2014-01-01

    Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and stimulated emission depletion microscopy imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1-30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832

  20. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles

    NASA Astrophysics Data System (ADS)

    Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang

    2014-02-01

    Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and stimulated emission depletion microscopy imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1-30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles.

  1. Evolution of dense rotating star clusters in the cores of early galaxies

    NASA Astrophysics Data System (ADS)

    Girash, J.

    1996-12-01

    We present simulations of the evolution of dense star clusters integrated using a two-dimensional Fokker-Planck approach. Effects of initial rotation, ellipticity, and stellar mergers are included. When an instability criterion is satisfied (Trot/|W| > alpha , where alpha is the stability parameter), a non-axisymmetric component of the potential is applied to model the formation of a stellar bar. Results are interpreted with a view to describing the formation of a massive ( ~ 10(3) M_sun) object near the cluster center which could evolve into the seed black hole of an AGN or quasar.

  2. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM.

    PubMed

    Rubio, Monica; Elmegreen, Bruce G; Hunter, Deidre A; Brinks, Elias; Cortés, Juan R; Cigan, Phil

    2015-09-10

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations they are molecular, with H2 the dominant species and carbon monoxide (CO) the best available tracer. When the abundances of carbon and oxygen are low compared with that of hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13 per cent of the solar value and 50 per cent lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star clusters in giant spiral galaxies. The low cloud masses suggest that these clusters will also be low mass, unless some galaxy-scale compression occurs, such as an impact from a cosmic cloud or other galaxy. If the massive metal-poor globular clusters in the halo of the Milky Way formed in dwarf galaxies, as is commonly believed, then they were probably triggered by such an impact. PMID:26354481

  3. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    SciTech Connect

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-08-20

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H{sub 2}O, MgO, and SiO{sub 2} dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures.

  4. Dense cores in galaxies out to z = 2.5 in SDSS, UltraVISTA, and the five 3D-HST/Candels fields

    SciTech Connect

    Van Dokkum, Pieter G.; Nelson, Erica June; Momcheva, Ivelina; Leja, Joel; Oesch, Pascal; Bezanson, Rachel; Van der Wel, Arjen; Skelton, Rosalind E.; Labbé, Ivo; Muzzin, Adam; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Schreiber, Natascha M. Förster; Fumagalli, Mattia; Wuyts, Stijn; Kriek, Mariska; Marchesini, Danilo

    2014-08-10

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 10{sup 10} M{sub ☉} inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ∼50% at z = 2.5 to ∼15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M{sub 1{sub kpc}} > 3 × 10{sup 10} M{sub ☉} make up ∼0.1% of the stellar mass density of the universe today but 10%-20% at z ∼ 2, depending on their initial mass function. The formation of these cores required the conversion of ∼10{sup 11} M{sub ☉} of gas into stars within ∼1 kpc, while preventing significant star formation at larger radii.

  5. G305.136+0.068: A MASSIVE AND DENSE COLD CORE IN AN EARLY STAGE OF EVOLUTION

    SciTech Connect

    Garay, Guido; Mardones, Diego; Contreras, Yanett; Servajean, Elise; Guzmán, Andrés E.; Pineda, Jaime E.

    2015-01-20

    We report molecular line observations, made with ASTE and SEST, and dust continuum observations at 0.87 mm, made with APEX, toward the cold dust core G305.136+0.068. The molecular observations show that the core is isolated and roughly circularly symmetric and imply that it has a mass of 1.1 × 10{sup 3} M {sub ☉}. A simultaneous model fitting of the spectra observed in four transitions of CS, using a non-LTE radiative transfer code, indicates that the core is centrally condensed, with the density decreasing with radius as r {sup –1.8}, and that the turbulent velocity increases toward the center. The dust observations also indicate that the core is highly centrally condensed and that the average column density is 1.1 g cm{sup –2}, a value slightly above the theoretical threshold required for the formation of high-mass stars. A fit to the spectral energy distribution of the emission from the core indicates a dust temperature of 17 ± 2 K, confirming that the core is cold. Spitzer images show that the core is seen in silhouette from 3.6 to 24.0 μm and that it is surrounded by an envelope of emission, presumably tracing an externally excited photo-dissociated region. We found two embedded sources within a region of 20'' centered at the peak of the core, one of which is young, has a luminosity of 66 L {sub ☉}, and is accreting mass with a high accretion rate of ∼1 × 10{sup –4} M {sub ☉} yr{sup –1}. We suggest that this object corresponds to the seed of a high-mass protostar still in the process of formation. The present observations support the hypothesis that G305.136+0.068 is a massive and dense cold core in an early stage of evolution, in which the formation of a high-mass star has just started.

  6. Detection and Quantification of Pu(III, IV, V, and VI) Using a1.0-meter Liquid Core Waveguide

    SciTech Connect

    Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

    2005-02-15

    Detection and quantification of the aquo ions of Pu in 1 MHClO4 was carried out using a 1-meter liquid core waveguide (LCW) coupledto a fiber optic UV-Vis spectrometer. Detection limits of 7 x 10-7 M forPu(VI), 1.6 x 10-5 M for Pu(V), 5 x 10-6 M for Pu(IV) and 8 x 10-6 M forPu(III) were achieved. The limits of detection represent increases of 18to 33 times those achievable using a conventional 1-cm path length.Because of the much lower detection limits of the LCW, routineidentification of the oxidation states in dilute Pu solutions can bemade.

  7. STAR-FORMING DENSE CLOUD CORES IN THE TeV GAMMA-RAY SNR RX J1713.7-3946

    SciTech Connect

    Sano, H.; Sato, J.; Horachi, H.; Moribe, N.; Yamamoto, H.; Hayakawa, T.; Torii, K.; Kawamura, A.; Okuda, T.; Mizuno, N.; Onishi, T.; Inutsuka, S.; Matsumoto, H.; Maezawa, H.; Mizuno, A.; Inoue, T.; Tanaka, T.; Ogawa, H.; Stutzki, J.; Bertoldi, F.

    2010-11-20

    RX J1713.7-3946 is one of the TeV {gamma}-ray supernova remnants (SNRs) emitting synchrotron X-rays. The SNR is associated with molecular gas located at {approx}1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C, and D, in the SNR in the {sup 12}CO(J = 2-1) and {sup 13}CO(J = 2-1) transitions at an angular resolution of 90''. The most intense core in {sup 13}CO, peak C, was also mapped in the {sup 12}CO(J = 4-3) transition at an angular resolution of 38''. Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source, and has a steep gradient with a r {sup -2.2{+-}0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X-rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X-rays are physically associated with the molecular gas. We present a scenario where the densest molecular core, peak C, survived the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since the shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to enhanced synchrotron X-rays around dense cores.

  8. Structure of the dense cores and ablation plasmas in the initiation phase of tungsten wire-array Z pinches

    SciTech Connect

    Douglass, J. D.; Hammer, D. A.; McBride, R. D.; Pikuz, S. A.; Shelkovenko, T. A.; Bland, S. N.; Bott, S. C.

    2007-01-15

    The early stages of tungsten (W) wire-array Z-pinch implosions have been studied using two-frame point projection x-ray backlighting on the 1 MA COBRA pulsed power generator [J. D. Douglass, J. B. Greenly, D. A. Hammer, and B. R. Kusse, in Proceedings of the 15th IEEE International Pulsed Power Conference, Monterey, 2005 (to be published)]. X-pinch backlighter images with subnanosecond time resolution and 4-10 {mu}m spatial resolution have been obtained of individual W exploding wires in 8-wire arrays that show evolution of wire-core and coronal plasma structures. The timing of the X-pinch x-ray bursts relative to the Z-pinch initiation time was adjusted over a 50 ns time interval by varying the X-pinch mass per unit length. Wire-cores seen in two images separated in view by 120 deg. show that the expansion is remarkably azimuthally symmetric. A strong correlation is observed between the structure on the dense exploding wire-cores and the structure of the {>=}10{sup 18}/cm{sup 3} ablation plasma being drawn from radial prominences. Plasma ablation velocity was estimated to have a lower bound of 24 km/s. The wire-core expansion rate was found to be approximately constant with time over the interval 50-100 ns after the start of the current pulse. Finally, micron-scale axial gaps, seen as early as 70 ns into the current pulse and persisting from that time, were observed along the wire-core.

  9. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect

    Guo, Yijun; Rowland, Clare E; Schaller, Richard D; Vela, Javier

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  10. Electron-ion relaxation in a dense plasma. [supernovae core physics

    NASA Technical Reports Server (NTRS)

    Littleton, J. E.; Buchler, J.-R.

    1974-01-01

    The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.

  11. The L1495-B218 filaments in Taurus seen in NH3 & CCS and Dynamical Stability of Filaments and Dense Cores

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin

    2016-01-01

    We present deep NH3 map of L1495-B218 filaments and the dense cores embedded within the filaments in Taurus. The L1495-B218 filaments form an interconnected, nearby, large complex extending 8 pc. We observed the filaments in NH3 (1,1) & (2,2) and CCS 21-10 with spectral resolution of 0.038 km/s and spatial resolution of 31". The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithm, identifies 39 leaves and 16 branches in NH3 (1,1). Applying a virial analysis for the 39 NH3 leaves, we find only 9 out of 39 leaves are gravitationally bound, and 12 out of 30 gravitationally unbound leaves are pressure-confined. Our analysis suggests that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and then undergo collapse to form a protostar (Seo et al. 2015).We also present more realistic dynamic stability conditions for dense cores with converging motions and under the influence of radiation pressure. The critical Bonnor-Ebert sphere and the isothermal cylinder have been widely used to test stability of dense cores and filaments; however, these assume a quiescent environment while actual star forming regions are turbulent and illuminated by radiation. In a new analysis of stability conditions we account for converging motions which have been modeled toward starless cores (Seo et al. 2011) and the effect of radiation fields into account. We find that the critical size of a dense core having a homologous converging motion with its peak speed being the sound speed is roughly half of the critical size of the Bonnor-Ebert sphere (Seo et al. 2013). We also find that the critical mass/line density of a dense core/filament irradiated by radiation are considerably smaller than that of the Bonnor-Ebert sphere/isothermal cylinder when the radiation pressure is stronger than the central gas pressure of dense core/isothermal cylinder. For inner Galactic regions and regions near OB associations, the critical

  12. The absence of a dense potential core in supercritical injection: A thermal break-up mechanism

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel T.; Hannemann, Klaus

    2016-03-01

    Certain experiments in quasi-isobaric supercritical injection remain unexplained by the current state of theory: Without developing a constant value potential core as expected from the mechanical view of break-up, density is observed to drop immediately upon entering the chamber. Furthermore, this phenomenon has never been captured in computational fluid dynamics (CFD) despite having become a de facto standard case for real fluid CFD validation. In this paper, we present strong evidence for a thermal jet disintegration mechanism (in addition to classical mechanical break-up) which resolves both the theoretical and the computational discrepancies. A new interpretation of supercritical jet disintegration is introduced, based on pseudo-boiling, a nonlinear supercritical transition from gas-like to liquid-like states. We show that thermal disintegration may dominate classical mechanical break-up when heat transfer takes place in the injector and when the fluid state is sufficiently close to the pseudo-boiling point. A procedure which allows to capture subsided cores with standard CFD is provided and demonstrated.

  13. Formation of Dense Clumps/Cores in Infrared Dark Clouds and Their Magnetic Field Properties from AMR MHD Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Li, Pak Shing; Klein, Richard I.

    2014-07-01

    Massive infrared dark clouds (IRDCs) are believed to be the precursors to star clusters and massive stars (e.g. Bergin & Tafalla 2007). The supersonic turbulent nature of molecular clouds in the presence of magnetic fields poses a great challenge in understanding the structure and dynamics of molecular clouds and the star formation therein (e.g. Falgarone et al. 2008, Crutcher et al. 2010, Peretto & Fuller 2010, Hernandez & Tan 2011, Harcar et al. 2013, Kainulainen & Tan 2013). We perform two high resolution ideal MHD AMR simulations with supersonically driven turbulence on the formation of massive infrared dark clouds, using our radiative-MHD AMR code ORION2 (P.S. Li, et al. 2012), to reveal the complex 3D filamentary structure and the subsequent formation of dense clumps and cores inside the dark clouds. The two models differ only in field strength, with one model having an initial field 10 times as strong as the other. The magnetic properties of the clumps from the two models are compared with the Zeeman observations summarized in Crutcher et al. (2010). Our dense clumps exhibit a power-law relation between magnetic field strength and density similar to the observations. Despite the order of magnitude difference in initial field strength, with the magnetic field enhancement and fragmentation as the result of turbulence, the magnetic properties of clumps in the weak field model are remarkably similar to those in the strong field model, except for a clear difference in the magnetic field orientation with respect to the global mean field direction. The almost random orientation of the weak field simulation is inconsistent with the observation of the field orientation on large and small scales by H.-b. Li, et al. (2009). I will briefly summarize the physical properties of the filamentary dark clouds in the simulations and report a detailed comparison of the magnetic properties of dense clumps in the simulations with the Zeeman observations. We have continued the

  14. DENSE IRON EJECTA AND CORE-COLLAPSE SUPERNOVA EXPLOSION IN THE YOUNG SUPERNOVA REMNANT G11.2-0.3

    SciTech Connect

    Moon, Dae-Sik; Koo, Bon-Chul; Seok, Ji Yeon; Lee, Ho-Gyu; Matthews, Keith; Lee, Jae-Joon; Pyo, Tae-Soo; Hayashi, Masahiko

    2009-09-20

    We present the results of near-infrared spectroscopic observations of dense ({approx}>10{sup 3} cm{sup -3}) iron ejecta in the young core-collapse supernova remnant G11.2-0.3. Five ejecta knots projected to be close to its center show a large dispersion in their Doppler shifts: two knots in the east are blueshifted by more than 1000 km s{sup -1}, while three western knots have relatively small blueshifts of 20-60 km s{sup -1}. This velocity discrepancy may indicate that the western knots have been significantly decelerated or that there exists a systematic velocity difference among the knots. One ejecta filament in the northwestern boundary, on the other hand, is redshifted by {approx}>200 km s{sup -1}, while opposite filament in the southeastern boundary shows a negligible radial motion. Some of the knots and filaments have secondary velocity components, and one knot shows a bow shock-like feature in the velocity structure. The iron ejecta appear to be devoid of strong emission from other heavy elements, such as S, which may attest to the alpha-rich freezeout process in the explosive nucleosynthesis of the core-collapse supernova explosion close to its center. The prominent bipolar distribution of the Fe ejecta in the northwestern and southeastern direction, along with the elongation of the central pulsar wind nebula in the perpendicular direction, is consistent with the interpretation that the supernova exploded primarily along the northwestern and southeastern direction.

  15. HUBBLE UNCOVERS MYSTERY OBJECTS IN THE DENSE CORE OF A NEARBY STAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Piercing the heart of a glittering swarm of stars, NASA's sharp-eyed Hubble Space Telescope unveils the central region of the globular cluster M22, a 12- to 14-billion-year-old grouping of stars in the constellation Sagittarius. The telescope's view of the cluster's core measures 3.3 light-years across. The stars near the cluster's core are 100,000 times more numerous than those in the Sun's neighborhood. Buried in the glow of starlight are about six 'mystery objects,' which astronomers estimate are no larger than one quarter the mass of the giant planet Jupiter, the solar system's heftiest planet. The mystery objects are too far and dim for Hubble to see directly. Instead, the orbiting observatory detected these unseen celestial bodies by looking for their gravitational effects on the light from far distant stars. In this case, the stars are far beyond the cluster in the galactic bulge, about 30,000 light-years from Earth at the center of the Milky Way Galaxy. M22 is 8,500 light-years away. The invisible objects betrayed their presence by bending the starlight gravitationally and amplifying it, a phenomenon known as microlensing. From February 22 to June 15, 1999, Hubble's Wide Field and Planetary Camera 2 looked through this central region and monitored 83,000 stars. During that time the orbiting observatory recorded six unexpectedly brief microlensing events. In each case a background star jumped in brightness for less than 20 hours before dropping back to normal. These transitory spikes in brightness mean that the object passing in front of the star must have been much smaller than a normal star. Hubble also detected one clear microlensing event. In that observation a star appeared about 10 times brighter over an 18-day span before returning to normal. Astronomers traced the leap in brightness to a dwarf star in the cluster floating in front of the background star. The inset photo shows the entire globular cluster of about 10 million stars. M22 is about 60

  16. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.

  17. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A. E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  18. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. IX. DISCOVERY OF A VERY LOW LUMINOSITY OBJECT DRIVING A MOLECULAR OUTFLOW IN THE DENSE CORE L673-7

    SciTech Connect

    Dunham, Michael M.; Evans, Neal J.; Bourke, Tyler L.; Myers, Philip C.; Huard, Tracy L.; Stutz, Amelia M.

    2010-10-01

    We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 {mu}m Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2to4.5 M{sub sun}. Millimeter continuum emission indicates a mass of {approx}2 M{sub sun}, both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be L{sub int} = 0.01-0.045 L{sub sun}, with L{sub int} {approx} 0.04 L{sub sun} the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner. From the outflow properties and standard assumptions regarding the driving of outflows, we calculate the time-averaged protostellar mass accretion rate, total protostellar mass accreted, and expected accretion luminosity to be {>=}1.2 x 10{sup -6} (sin i)/(co{sup 2} i) M{sub sun} yr{sup -1}, M{sub acc{>=}}0.07 1/cos i M{sub sun}, and L{sub acc} {>=} 0.36 L{sub sun}, respectively. The discrepancy between this calculated L{sub acc} and the L{sub int} derived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as

  19. The Spitzer c2d Survey of Nearby Dense Cores. IX. Discovery of a Very Low Luminosity Object Driving a Molecular Outflow in the Dense Core L673-7

    NASA Astrophysics Data System (ADS)

    Dunham, Michael M.; Evans, Neal J.; Bourke, Tyler L.; Myers, Philip C.; Huard, Tracy L.; Stutz, Amelia M.

    2010-10-01

    We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 μm Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2to4.5 M sun. Millimeter continuum emission indicates a mass of ~2 M sun, both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be L int = 0.01-0.045 L sun, with L int ~ 0.04 L sun the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner. From the outflow properties and standard assumptions regarding the driving of outflows, we calculate the time-averaged protostellar mass accretion rate, total protostellar mass accreted, and expected accretion luminosity to be < \\dot{M}_acc > ≥ 1.2 × 10^{-6} sin i {cos}^2 i Msun yr-1, M_acc ≥ 0.07 {1}/{cos } M sun, and Lacc >= 0.36 L sun, respectively. The discrepancy between this calculated L acc and the L int derived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as such given the substantial mass reservoir remaining in the core.

  20. Dense Iron Ejecta and Core-Collapse Supernova Explosion in the Young Supernova Remnant G11.2-0.3

    NASA Astrophysics Data System (ADS)

    Moon, Dae-Sik; Koo, Bon-Chul; Lee, Ho-Gyu; Matthews, Keith; Lee, Jae-Joon; Pyo, Tae-Soo; Seok, Ji Yeon; Hayashi, Masahiko

    2009-09-01

    We present the results of near-infrared spectroscopic observations of dense (gsim103 cm-3) iron ejecta in the young core-collapse supernova remnant G11.2-0.3. Five ejecta knots projected to be close to its center show a large dispersion in their Doppler shifts: two knots in the east are blueshifted by more than 1000 km s-1, while three western knots have relatively small blueshifts of 20-60 km s-1. This velocity discrepancy may indicate that the western knots have been significantly decelerated or that there exists a systematic velocity difference among the knots. One ejecta filament in the northwestern boundary, on the other hand, is redshifted by gsim200 km s-1, while opposite filament in the southeastern boundary shows a negligible radial motion. Some of the knots and filaments have secondary velocity components, and one knot shows a bow shock-like feature in the velocity structure. The iron ejecta appear to be devoid of strong emission from other heavy elements, such as S, which may attest to the α-rich freezeout process in the explosive nucleosynthesis of the core-collapse supernova explosion close to its center. The prominent bipolar distribution of the Fe ejecta in the northwestern and southeastern direction, along with the elongation of the central pulsar wind nebula in the perpendicular direction, is consistent with the interpretation that the supernova exploded primarily along the northwestern and southeastern direction. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  1. Muted protein is involved in the targeting of CD63 to large dense-core vesicles of chromaffin cells.

    PubMed

    Zhenhua, Hao; Wei, Li

    2016-08-01

    Large dense-core vesicles (LDCVs) are characterized as a class of lysosome-related organelles (LROs), which undergo regulated release and play important roles in development, metabolism and homeostasis. The Muted protein is a subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), which functions in the biogenesis of lysosomes and LROs. CD63 is a membrane component of lysosomes and LROs. Whether and how CD63 is sorted into LDCVs is largely unknown. In this study, we aim to identify the localization of CD63 in chromaffin cells by colocalization, living cell imaging and cell fractionation. We found that a proportion of CD63-YFP colocalized with NPY-dsRed labeled LDCVs. By sucrose density gradient fractionation, a proportion of CD63 was found to be highly enriched in LDCVs fractions. The Muted mutant mouse is a model of Hermansky-Pudlak syndrome (HPS). We also found that the level of CD63 was significantly decreased in Muted-deficient adrenal glands, suggesting that the Muted protein is important for the steady-state level of CD63. Our results suggest that CD63 is a membrane component of LDCVs and the stability of CD63 is dependent on the Muted protein, which provides a clue to the pathogenesis of LRO defects in HPS. PMID:27531610

  2. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells

    PubMed Central

    Ashery, Uri; Varoqueaux, Frederique; Voets, Thomas; Betz, Andrea; Thakur, Pratima; Koch, Henriette; Neher, Erwin; Brose, Nils; Rettig, Jens

    2000-01-01

    In chromaffin cells the number of large dense-core vesicles (LDCVs) which can be released by brief, intense stimuli represents only a small fraction of the ‘morphologically docked’ vesicles at the plasma membrane. Recently, it was shown that Munc13-1 is essential for a post-docking step of synaptic vesicle fusion. To investigate the role of Munc13-1 in LDCV exocytosis, we overexpressed Munc13-1 in chromaffin cells and stimulated secretion by flash photolysis of caged calcium. Both components of the exocytotic burst, which represent the fusion of release-competent vesicles, were increased by a factor of three. The sustained component, which represents vesicle maturation and subsequent fusion, was increased by the same factor. The response to a second flash, however, was greatly reduced, indicating a depletion of release-competent vesicles. Since there was no apparent change in the number of docked vesicles, we conclude that Munc13-1 acts as a priming factor by accelerating the rate constant of vesicle transfer from a pool of docked, but unprimed vesicles to a pool of release-competent, primed vesicles. PMID:10899113

  3. CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic terminals of mammalian neurons

    PubMed Central

    Farina, Margherita; van de Bospoort, Rhea; He, Enqi; Persoon, Claudia M; van Weering, Jan RT; Broeke, Jurjen H; Verhage, Matthijs; Toonen, Ruud F

    2015-01-01

    Neuropeptides released from dense-core vesicles (DCVs) modulate neuronal activity, but the molecules driving DCV secretion in mammalian neurons are largely unknown. We studied the role of calcium-activator protein for secretion (CAPS) proteins in neuronal DCV secretion at single vesicle resolution. Endogenous CAPS-1 co-localized with synaptic markers but was not enriched at every synapse. Deletion of CAPS-1 and CAPS-2 did not affect DCV biogenesis, loading, transport or docking, but DCV secretion was reduced by 70% in CAPS-1/CAPS-2 double null mutant (DKO) neurons and remaining fusion events required prolonged stimulation. CAPS deletion specifically reduced secretion of stationary DCVs. CAPS-1-EYFP expression in DKO neurons restored DCV secretion, but CAPS-1-EYFP and DCVs rarely traveled together. Synaptic localization of CAPS-1-EYFP in DKO neurons was calcium dependent and DCV fusion probability correlated with synaptic CAPS-1-EYFP expression. These data indicate that CAPS-1 promotes fusion competence of immobile (tethered) DCVs in presynaptic terminals and that CAPS-1 localization to DCVs is probably not essential for this role. DOI: http://dx.doi.org/10.7554/eLife.05438.001 PMID:25719439

  4. Dominant-Negative Myosin Va Impairs Retrograde but Not Anterograde Axonal Transport of Large Dense Core Vesicles

    PubMed Central

    Bittins, Claudia Margarethe; Eichler, Tilo Wolf; Hammer, John A.; Gerdes, Hans-Hermann

    2013-01-01

    Axonal transport of peptide and hormone-containing large dense core vesicles (LDCVs) is known to be a microtubule-dependent process. Here, we suggest a role for the actin-based motor protein myosin Va specifically in retrograde axonal transport of LDCVs. Using live-cell imaging of transfected hippocampal neurons grown in culture, we measured the speed, transport direction, and the number of LDCVs that were labeled with ectopically expressed neuropeptide Y fused to EGFP. Upon expression of a dominant-negative tail construct of myosin Va, a general reduction of movement in both dendrites and axons was observed. In axons, it was particularly interesting that the retrograde speed of LDCVs was significantly impaired, although anterograde transport remained unchanged. Moreover, particles labeled with the dominant-negative construct often moved in the retrograde direction but rarely in the anterograde direction. We suggest a model where myosin Va acts as an actin-dependent vesicle motor that facilitates retrograde axonal transport. PMID:19787448

  5. Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease

    PubMed Central

    Dikeakos, Jimmy D.; Di Lello, Paola; Lacombe, Marie-Josée; Ghirlando, Rodolfo; Legault, Pascale; Reudelhuber, Timothy L.; Omichinski, James G.

    2009-01-01

    Several peptide hormones are initially synthesized as inactive precursors. It is only on entry of these prohormones and their processing proteases into dense core secretory granules (DCSGs) that the precursors are cleaved to generate their active forms. Prohormone convertase (PC)1/3 is a processing protease that is targeted to DCSGs. The signal for targeting PC1/3 to DCSGs resides in its carboxy-terminal tail (PC1/3617–753), where 3 regions (PC1/3617–625, PC1/3665–682, and PC1/3711–753) are known to aid in sorting and membrane association. In this article, we have determined a high-resolution structure of the extreme carboxy-terminal sorting domain, PC1/3711–753 in micelles by NMR spectroscopy. PC1/3711–753 contains 2 alpha helices located between residues 722–728 and 738–750. Functional assays demonstrate that the second helix (PC1/3738–750) is necessary and sufficient to target a constitutively secreted protein to granules, and that L745 anchors a hydrophobic patch that is critical for sorting. Also, we demonstrate that calcium binding by the second helix of PC1/3711–753 promotes aggregation of the domain via the hydrophobic patch centered on L745. These results provide a structure-function analysis of a DCSG-sorting domain, and reveal the importance of a hydrophobic patch and calcium binding in controlling the sorting of proteins containing alpha helices to DCSGs. PMID:19376969

  6. Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease.

    PubMed

    Dikeakos, Jimmy D; Di Lello, Paola; Lacombe, Marie-Josée; Ghirlando, Rodolfo; Legault, Pascale; Reudelhuber, Timothy L; Omichinski, James G

    2009-05-01

    Several peptide hormones are initially synthesized as inactive precursors. It is only on entry of these prohormones and their processing proteases into dense core secretory granules (DCSGs) that the precursors are cleaved to generate their active forms. Prohormone convertase (PC)1/3 is a processing protease that is targeted to DCSGs. The signal for targeting PC1/3 to DCSGs resides in its carboxy-terminal tail (PC1/3(617-753)), where 3 regions (PC1/3(617-625), PC1/3(665-682), and PC1/3(711-753)) are known to aid in sorting and membrane association. In this article, we have determined a high-resolution structure of the extreme carboxy-terminal sorting domain, PC1/3(711-753) in micelles by NMR spectroscopy. PC1/3(711-753) contains 2 alpha helices located between residues 722-728 and 738-750. Functional assays demonstrate that the second helix (PC1/3(738-750)) is necessary and sufficient to target a constitutively secreted protein to granules, and that L(745) anchors a hydrophobic patch that is critical for sorting. Also, we demonstrate that calcium binding by the second helix of PC1/3(711-753) promotes aggregation of the domain via the hydrophobic patch centered on L(745). These results provide a structure-function analysis of a DCSG-sorting domain, and reveal the importance of a hydrophobic patch and calcium binding in controlling the sorting of proteins containing alpha helices to DCSGs. PMID:19376969

  7. The role of tonic preganglionic neuron firing in the turnover of the large dense-cored vesicle store in sympathetic preganglionic nerve terminals.

    PubMed

    Weldon, P; Bachoo, M; Polosa, C

    1994-09-01

    Large dense-cored vesicles are transported centrifugally in the cervical sympathetic trunk and are depleted in a calcium-dependent manner from synaptic boutons of the cat superior cervical ganglion during orthodromic stimulation at 20-40 Hz [P. Weldon et al. (1993) Neuroscience 55, 1045-1054]. In the present study, we tested in awake cats whether the normal tonic firing of the sympathetic preganglionic neuron contributes to the turnover of large dense-cored vesicles in synaptic boutons of the superior cervical ganglion. Tetrodotoxin was applied with a mini-osmotic pump to one cervical sympathetic trunk, while vehicle alone was applied to the contralateral cervical sympathetic trunk, for two, four or seven days. The appearance of Horner syndrome ipsilateral to the tetrodotoxin application demonstrated block of action potential propagation. Both superior cervical ganglia were excised and processed for electron microscopy. The number of large dense-cored vesicles per bouton cross-section was higher in the ganglion with tetrodotoxin-treated input than in the control. The content at four days was higher than at two days; the content at seven days was similar to that at four days. The number of lysosomes per bouton profile also increased in the ganglion with tetrodotoxin-treated input. No changes were observed in size of bouton profiles, number of boutons or of synapses per grid square and length of the presynaptic densities in the ganglion with tetrodotoxin-treated input.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7830896

  8. Optical phonon modes of III-V nanoparticles and indium phosphide/II-VI core-shell nanoparticles: A Raman and infrared study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia Speranta

    The prospects for realizing efficient nanoparticle light emitters in the visible/near IR for communications and bio-medical applications have benefited from progress in chemical fabrication of nanoparticles. III-V semiconductor nanopaticles such as GaP and InP are promising materials for the development of "blue" and "green" emitters, respectively, due to their large effective bandgaps. Enhanced emission efficiency has been achieved for core-shell nanoparticles, since inorganic shell materials increase electronic tunability and may decrease surface defects that often occur for nanoparticles capped with organic molecules. Also, the emission wavelength of InP nanoparticle cores can be tuned from green to red by changing the shell material in InP/II-VI core-shell nanoparticles. Investigations of phonon modes in nanocrystals are of both fundamental and applied interest. In the former case the optical phonon modes, such as surface/interface modes, are dependent on the nanoparticle dimensions, and also can provide information about dynamical properties of the nanoparticles and test the validity of various theoretical approaches. In the latter case the vibronic properties of nanoparticle emitters are controlled by confined phonons and modifications of the electron-phonon interaction by the confinement. Thus, the objective of the present thesis is the detailed study of the phonon modes of III-V nanoparticles (GaP and InP) and InP/II-VI core-shell nanoparticles by IR absorption and Raman scattering spectroscopies, and an elucidation of their complex vibrational properties. With the exception of three samples (two GaP and one InP), all samples were synthesized by a novel colloidal chemistry method, which does not requires added surfactant, but rather treatment of the corresponding precursors in octadecene noncoordinative solvent. Sample quality was characterized by ED, TEM and X-ray diffraction. Based on a comparison with a dielectric continuum model, the observed features

  9. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. IV. Effects of Rotational Axis Orientation

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.; Keiser, Sandra A.

    2015-08-01

    Both astronomical observations of the interaction of Type II supernova remnants (SNRs) with dense interstellar clouds as well as cosmochemical studies of the abundances of daughter products of short-lived radioisotopes (SLRIs) formed by supernova nucleosynthesis support the hypothesis that the Solar System's SLRIs may have been derived from a supernova. This paper continues a series devoted to examining whether or not such a shock wave could have triggered the dynamical collapse of a dense, presolar cloud core and simultaneously injected sufficient abundances of SLRIs to explain the cosmochemical evidence. Here, we examine the effects of shock waves striking clouds whose spin axes are oriented perpendicular, rather than parallel, to the direction of propagation of the shock front. The models start with 2.2 {M}⊙ cloud cores and shock speeds of 20 or 40 km s-1. Central protostars and protoplanetary disks form in all models, although with their disk spin axes aligned somewhat randomly. The disks derive most of their angular momentum not from the initial cloud rotation, but from the Rayleigh-Taylor fingers that also inject shock wave SLRIs. Injection efficiencies, fi, the fraction of the incident shock wave material injected into the collapsing cloud core, are ˜0.04-0.1 in these models, similar to when the rotation axis is parallel to the shock propagation direction. Evidently, altering the rotation axis orientation has only a minor effect on the outcome, strengthening the case for this scenario as an explanation for the Solar System's SLRIs.

  10. Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3

    PubMed Central

    Li, Zeyu; Zhang, Dongzhou; Liu, Jiachao; Hu, Michael Y.; Zhao, Jiyong; Bi, Wenli; Alp, E. Ercan; Xiao, Yuming; Chow, Paul; Li, Jie

    2014-01-01

    Earth’s inner core is known to consist of crystalline iron alloyed with a small amount of nickel and lighter elements, but the shear wave (S wave) travels through the inner core at about half the speed expected for most iron-rich alloys under relevant pressures. The anomalously low S-wave velocity (vS) has been attributed to the presence of liquid, hence questioning the solidity of the inner core. Here we report new experimental data up to core pressures on iron carbide Fe7C3, a candidate component of the inner core, showing that its sound velocities dropped significantly near the end of a pressure-induced spin-pairing transition, which took place gradually between 10 GPa and 53 GPa. Following the transition, the sound velocities increased with density at an exceptionally low rate. Extrapolating the data to the inner core pressure and accounting for the temperature effect, we found that low-spin Fe7C3 can reproduce the observed vS of the inner core, thus eliminating the need to invoke partial melting or a postulated large temperature effect. The model of a carbon-rich inner core may be consistent with existing constraints on the Earth's carbon budget and would imply that as much as two thirds of the planet's carbon is hidden in its center sphere. PMID:25453077

  11. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. I. VARIED SHOCK SPEEDS

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.; Ipatov, Sergei I.; Myhill, Elizabeth A.; Vanhala, Harri A. T. E-mail: keiser@dtm.ciw.ed E-mail: elizabeth.myhill@marymount.ed

    2010-01-10

    The discovery of decay products of a short-lived radioisotope (SLRI) in the Allende meteorite led to the hypothesis that a supernova shock wave transported freshly synthesized SLRI to the presolar dense cloud core, triggered its self-gravitational collapse, and injected the SLRI into the core. Previous multidimensional numerical calculations of the shock-cloud collision process showed that this hypothesis is plausible when the shock wave and dense cloud core are assumed to remain isothermal at approx10 K, but not when compressional heating to approx1000 K is assumed. Our two-dimensional models with the FLASH2.5 adaptive mesh refinement hydrodynamics code have shown that a 20 km s{sup -1} shock front can simultaneously trigger collapse of a 1 M{sub sun} core and inject shock wave material, provided that cooling by molecular species such as H{sub 2}O, CO, and H{sub 2} is included. Here, we present the results for similar calculations with shock speeds ranging from 1 km s{sup -1} to 100 km s{sup -1}. We find that shock speeds in the range from 5 km s{sup -1} to 70 km s{sup -1} are able to trigger the collapse of a 2.2 M{sub sun} cloud while simultaneously injecting shock wave material: lower speed shocks do not achieve injection, while higher speed shocks do not trigger sustained collapse. The calculations continue to support the shock-wave trigger hypothesis for the formation of the solar system, though the injection efficiencies in the present models are lower than desired.

  12. Density Measurements in Coronal Plasmas and Dense Cores in Nanosecond Tungsten Wire and Wire Array Z-pinches Using X-ray Backlighting.

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Mingaleev, A. R.; Hammer, D. A.; Neves, H. P.

    1998-11-01

    Multiframe direct x-ray backlighting using X-pinches as the point source of radiation has enabled density measurements in both the coronal plasmas and dense cores of W wire and wire array plasmas, powered by the ~ 450 kA, 100 ns XP-pulser at Cornell University. To record the backlighting images, Mo wire X-pinch radiation filtered by 12.5 μm Ti impinges upon a ``sandwich'' of films sensitive to different spectral ranges to increase the dynamic range of the method. The front film (Micarat VR) has the thinnest emulsion layer and lowest x-ray sensitivity, especially for hard x-ray radiation. The two following films (Kodak RAR 2498 and Kodak DEF) have increasing sensitivity. For quantitative measurements of W plasma density a W step wedge filter was placed in front of the films. Assuming the plasma absorption is the same as from solid material we are able to measure W line densities from 3.2 × 10^19 to 2 × 10^17/cm^2. For example, for an exploded 7.5 μm wire with a 15-20 μm diameter dense core and a 1 mm coronal plasma diameter, the implied W volume density ranges from 2 × 10^18 to 3 over 10^22/cm^3.

  13. Preparation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol microspheres for highly efficient sorption of uranium(VI).

    PubMed

    Tan, Lichao; Zhang, Xiaofei; Liu, Qi; Wang, Jun; Sun, Yanbo; Jing, Xiaoyan; Liu, Jingyuan; Song, Dalei; Liu, Lianhe

    2015-04-21

    We report a facile approach for the formation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol (Fe3O4@SiO2@Ni-L) microspheres. The structure and morphology of Fe3O4@SiO2@Ni-L are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen sorption isotherm. The composite possesses a high specific surface area of 382 m(2) g(-1). The obtained core/shell structure is composed of a superparamagnetic core with a strong response to external fields, which are recovered readily from aqueous solutions by magnetic separation. When used as the adsorbent for uranium(vi) in water, the as-prepared Fe3O4@SiO2@Ni-L multi-structural microspheres exhibit a high adsorption capacity, which is mainly attributed to the large specific surface area and typical mesoporous characteristics of Fe3O4@SiO2@Ni-L microspheres. This work provides a promising approach for the design and synthesis of multifunctional microspheres, which can be used for water treatment, as well as having other potential applications in a variety of biomedical fields including drug delivery and biosensors. PMID:25773512

  14. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. VII. CHEMISTRY AND DYNAMICS IN L43

    SciTech Connect

    Chen, Jo-Hsin; Evans, Neal J.; Lee, Jeong-Eun; Bourke, Tyler L. E-mail: nje@astro.as.utexas.ed E-mail: tbourke@cfa.harvard.ed

    2009-11-10

    We present results from the Spitzer Space Telescope and molecular line observations of nine species toward the dark cloud L43. The Spitzer images and molecular line maps suggest that it has a starless core and a Class I protostar evolving in the same environment. CO depletion is seen in both sources, and DCO{sup +} lines are stronger toward the starless core. With a goal of testing the chemical characteristics from pre- to protostellar stages, we adopt an evolutionary chemical model to calculate the molecular abundances and compare with our observations. Among the different model parameters we tested, the best-fit model suggests a longer total timescale at the pre-protostellar stage, but with faster evolution at the later steps with higher densities.

  15. Vesicle-associated membrane protein (VAMP)/synaptobrevin-2 is associated with dense core secretory granules in PC12 neuroendocrine cells.

    PubMed

    Papini, E; Rossetto, O; Cutler, D F

    1995-01-20

    The presence and intracellular distribution of vesicle-associated membrane protein-1 (VAMP-1) and VAMP-2 were investigated in the PC12 neuroendocrine cell line using isotype-specific polyclonal antibodies. VAMP-2 was detected in the total membrane fraction, while VAMP-1 was undetectable. Subcellular fractionation demonstrates that a substantial amount of the VAMP-2 (24-36%) is associated with dense core, catecholamine-containing granules (DCGs). This was confirmed by immunofluorescence microscopy. The L chain of tetanus neurotoxin, known to inhibit granule mediated secretion in permeabilized PC12 cells, as well as botulinum neurotoxins F and G, effectively cleaved DCG-associated VAMP-2. These data demonstrate that VAMP-2 is present on the secretory granules of PC12 cells. PMID:7836399

  16. Dense Cores of Dark Clouds. XII. 13CO and C18O in Lupus, Corona Australis, Vela, and Scorpius

    NASA Astrophysics Data System (ADS)

    Vilas-Boas, J. W. S.; Myers, P. C.; Fuller, G. A.

    2000-04-01

    More than 110 dense condensations of the dark clouds in Lupus, Corona Australis, Norma, Vela, and Scorpius were observed in the 13CO and C18O (J=1-0) transitions. The condensations of dark clouds with high star formation activity like the Ophiuchus, Taurus, and Cepheus have average C18O and H2 column densities of 1.8x1015 and 1.1x1022 cm-2. If we take the average size of the condensations to be 0.2 pc, a condensation must have average H2 volumetric densities >=2x104 cm-3 in order to be a good candidate to form stars. The four Lupus filaments have similar radial velocities and velocity dispersions, suggesting that they originated from the same parental cloud. Among these filaments, Lupus 1 is unique in having recent star formation activity, despite the high number of T Tauri stars observed toward the others. Lupus 1 also shows a complex velocity gradient along its main axis. The distribution of radial velocities of the condensations observed toward Scorpius are in good agreement with the hypothesis that they are in a region with expansion velocity smaller than or equal to 18 km s-1. The Corona Australis cloud has velocity gradients ranging from -0.5 km s-1 pc-1 at one extreme to 0.1 km s-1 pc-1 at the other.

  17. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.

    PubMed

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Tanoue, Yoshimasa; Harumoto, Takashi; Yanagida, Sayaka; Yasumori, Atsuo; Tomita, Shohei; Otsuki, Joe

    2015-09-01

    We investigated the dependence of the surface-enhanced Raman scattering (SERS) activity of densely arranged two-dimensional assemblies of spherical Au(core)-Ag(shell) nanoparticles (Au/AgNSs) on the nanoparticle diameter. The size-controlled Au/AgNSs were synthesized using the Au nanosphere seed-mediated growth method without any bulky stabilizers. The diameters of the Au/AgNSs were 38, 53, and 90 nm and the ratio of the total diameter to the Au core diameter was adjusted to ca. 2.0. Extinction spectra of the colloidal solutions of these nanoparticles exhibited the prominent peak of the localized surface plasmon resonance (LSPR) of Ag and therefore the Au/AgNSs exhibited LSPR properties almost the same as Ag nanospheres. It was confirmed from SEM observation that the organic solvent-mediated liquid-liquid interface assembly technique easily generated densely arranged two-dimensional assemblies of the nanospheres. The extinction spectra of all the assemblies exhibited a prominent broad peak ranging from 500 nm to the near-infrared region, which is assigned to the longitudinal LSPR mode of the coupling nanospheres. The extinction intensity increased with increasing nanosphere diameter. The SERS activities of these assemblies were investigated using p-aminothiophenol as a probe molecule. The result revealed that the enhancement factor (EF) of the Raman signal dramatically increased upon increasing the particle diameter. The maximum EF obtained with a laser excitation wavelength of 785 nm was 1.90 × 10(6) for a nanosphere diameter of 90 nm. This renders the two-dimensional assemblies of the plasmonic Au/AgNSs promising for the development of highly sensitive SERS sensor platforms due to their strong electromagnetic effect. PMID:25558009

  18. Peptidergic Cell-Specific Synaptotagmins in Drosophila: Localization to Dense-Core Granules and Regulation by the bHLH Protein DIMMED

    PubMed Central

    Park, Dongkook; Li, Peiyao; Dani, Adish

    2014-01-01

    Bioactive peptides are packaged in large dense-core secretory vesicles, which mediate regulated secretion by exocytosis. In a variety of tissues, the regulated release of neurotransmitters and hormones is dependent on calcium levels and controlled by vesicle-associated synaptotagmin (SYT) proteins. Drosophila express seven SYT isoforms, of which two (SYT-α and SYT-β) were previously found to be enriched in neuroendocrine cells. Here we show that SYT-α and SYT-β tissue expression patterns are similar, though not identical. Furthermore, both display significant overlap with the bHLH transcription factor DIMM, a known neuroendocrine (NE) regulator. RNAi-mediated knockdown indicates that both SYT-α and SYT-β functions are essential in identified NE cells as these manipulations phenocopy loss-of-function states for the indicated peptide hormones. In Drosophila cell culture, both SYT-α and neuropeptide cargo form DIMM-dependent fluorescent puncta that are coassociated by super-resolution microscopy. DIMM is required to maintain SYT-α and SYT-β protein levels in DIMM-expressing cells in vivo. In neurons normally lacking all three proteins (DIMM−/SYT-α−/SYT-β−), DIMM misexpression conferred accumulation of endogenous SYT-α and SYT-β proteins. Furthermore transgenic SYT-α does not appreciably accumulate in nonpeptidergic neurons in vivo but does so if DIMM is comisexpressed. Among Drosophila syt genes, only syt-α and syt-β RNA levels are upregulated by DIMM overexpression. Together, these data suggest that SYT-α and SYT-β are important for NE cell physiology, that one or both are integral membrane components of the large dense-core vesicles, and that they are closely regulated by DIMM at a post-transcriptional level. PMID:25253864

  19. Dynamics, CO depletion, and deuterium fractionation of the dense condensations within the fragmented prestellar core Orion B9-SMM 6

    NASA Astrophysics Data System (ADS)

    Miettinen, O.; Offner, S. S. R.

    2013-07-01

    Context. Low-mass prestellar cores are rarely found to be fragmented into smaller condensations, but studying any substructure, where present, is essential for understanding the origin of multiple stellar systems. Aims: We attempt to better understand the kinematics and dynamics of the subfragments inside the prestellar core SMM 6 in Orion B9. Another goal of the present study is to constrain the evolutionary stage of the condensations by investigating the levels of CO depletion and deuterium fractionation. Methods: We used the APEX telescope to observe the molecular lines C17O(2-1), N2H+(3-2), and N2D+(3-2) towards the condensations. We used the line data in conjunction with our previous SABOCA 350-μm dust continuum map of the source. Results: The condensations are characterised by subsonic internal non-thermal motions (σNT ≃ 0.5cs), and most of them appear to be gravitationally bound. The dispersion of the N2H+ velocity centroids among the condensations is very low (0.02 km s-1). The CO depletion factors we derive, fD = 0.8 ± 0.4-3.6 ± 1.5, do not suggest any significant CO freeze-out, but this may be due to the canonical CO abundance we adopt. The fractional abundances of N2H+ and N2D+ with respect to H2 are found to be ~0.9-2.3 × 10-9 and ~4.9-9.9 × 10-10, respectively. The deuterium fractionation of N2H+ lies in the range 0.30 ± 0.07-0.43 ± 0.09. Conclusions: The detected substructure inside SMM 6 is most likely the result of cylindrical Jeans-type gravitational fragmentation. We estimate the timescale for this fragmentation to be ~1.8 × 105 yr. The condensations are unlikely to be able to interact with one another and coalesce before local gravitational collapse ensues. Moreover, significant mass growth of the condensations via competitive-like accretion from the parent core seems unfeasible. The high level of molecular deuteration in the condensations suggests that gas-phase CO should be strongly depleted. It also points towards an advanced stage

  20. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES: JET AND MOLECULAR OUTFLOW ASSOCIATED WITH A YOUNG STELLAR OBJECT IN CORE A OF L1251

    SciTech Connect

    Lee, Jeong-Eun; Kim, Il-Suk; Choi, Yunhee; Lee, Ho-Gyu; Shinn, Jong-Ho; Dunham, Michael M.; Evans, Neal J.; Kim, Chang Hee; Bourke, Tyler L. E-mail: tohogyu@gmail.com E-mail: nje@astro.as.utexas.edu

    2010-01-20

    A long infrared jet has been discovered by the Spitzer c2d Legacy Program in core A of L1251. It is associated with a very embedded Class 0 object with an accretion luminosity of about 0.9 L {sub sun} derived by radiative transfer model fitting to the observed spectral energy distribution. Comparing the observed Infrared Array Camera colors along the infrared jet with those calculated from a model of an admixture of gas with a power-law temperature distribution indicates that the jet is possibly created by a paraboloidal bow shock propagating into the ambient medium of n(H{sub 2}) = 10{sup 5} cm{sup -3}. In addition, the variation of the power-law index along the jet suggests that the portion of hot gas decreases with distance from the jet engine. The molecular outflow in this region has been mapped for the first time using CO data. From the calculated outflow momentum flux, a very strong lower limit to the average accretion luminosity is 3.6 sin i/cos{sup 3} i L {sub sun}, indicative of a decrease in the accretion rate with time.

  1. Chemical evolution of the HC3N and N2H+ molecules in dense cores of the Vela C giant molecular cloud complex

    NASA Astrophysics Data System (ADS)

    Ohashi, Satoshi; Tatematsu, Ken'ichi; Fujii, Kosuke; Sanhueza, Patricio; Nguyen Luong, Quang; Choi, Minho; Hirota, Tomoya; Mizuno, Norikazu

    2016-02-01

    We have observed the HC3N(J = 10-9) and N2H+ (J = 1-0) lines toward the Vela C molecular clouds with the Mopra 22 m telescope to study the chemical characteristics of dense cores. The intensity distributions of these molecules are similar to each other at an angular resolution of 53″, corresponding to 0.19 pc, suggesting that these molecules trace the same dense cores. We identified 25 local peaks in the velocity-integrated intensity maps of the HC3N and/or N2H+ emission. Assuming local thermodynamic equilibrium conditions, we calculated the column densities of these molecules and found a tendency for the N2H+/HC3N abundance ratio to be low in starless regions while it seems to be high in star-forming regions, similar to the tendencies in the NH3/CCS, NH3/HC3N, and N2H+/CCS abundance ratios found in previous studies of dark clouds and the Orion A giant molecular cloud (GMC). We suggest that carbon chain molecules, including HC3N, may trace chemically young molecular gas, and that N-bearing molecules, such as N2H+, may trace later stages of chemical evolution in the Vela C molecular clouds. It may be possible that the N2H+/HC3N abundance ratio of ˜1.4 divides the star-forming and starless peaks in Vela C, although it is not as clear as those in NH3/CCS, NH3/HC3N, and N2H+/CCS for the Orion A GMC. This less clear separation may be caused by our lower spatial resolution or the misclassification of star-forming and starless peaks due to the larger distance of Vela C. It might also be possible that the HC3N (J = 10-9) transition is not a good chemical evolution tracer compared with CCS (J = 4-3 and 7-6) transitions.

  2. Rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A in PC12 cells.

    PubMed

    Fukuda, Mitsunori; Kanno, Eiko; Yamamoto, Akitsugu

    2004-03-26

    Rabphilin and Noc2 were originally described as Rab3A effector proteins involved in the regulation of secretory vesicle exocytosis, however, recently both proteins have been shown to bind Rab27A in vitro in preference to Rab3A (Fukuda, M. (2003) J. Biol. Chem. 278, 15373-15380), suggesting that Rab3A is not their major ligand in vivo. In the present study we showed by means of deletion and mutation analyses that rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A, not with Rab3A, in PC12 cells. Rab3A binding-defective mutants of rabphilin(E50A) and Noc2(E51A) were still localized in the distal portion of the neurites (where dense-core vesicles had accumulated) in nerve growth factor-differentiated PC12 cells, the same as the wild-type proteins, whereas Rab27A binding-defective mutants of rabphilin(E50A/I54A) and Noc2(E51A/I55A) were present throughout the cytosol. We further showed that expression of the wild-type or the E50A mutant of rabphilin-RBD, but not the E50A/I54A mutant of rabphilin-RBD, significantly inhibited high KCl-dependent neuropeptide Y secretion by PC12 cells. We also found that rabphilin and its binding partner, Rab27 have been highly conserved during evolution (from nematoda to humans) and that Caenorhabditis elegans and Drosophila rabphilin (ce/dm-rabphilin) specifically interact with ce/dm-Rab27, but not with ce/dm-Rab3 or ce/dm-Rab8, suggesting that rabphilin functions as a Rab27 effector across phylogeny. Based on these findings, we propose that the N-terminal Rab binding domain of rabphilin and Noc2 be referred to as "RBD27 (Rab binding domain for Rab27)", the same as the synaptotagmin-like protein homology domain (SHD) of Slac2-a/melanophilin. PMID:14722103

  3. A Model for the Active-Site Formation Process in DMSO Reductase Family Molybdenum Enzymes Involving Oxido-Alcoholato and Oxido-Thiolato Molybdenum(VI) Core Structures.

    PubMed

    Sugimoto, Hideki; Sato, Masanori; Asano, Kaori; Suzuki, Takeyuki; Mieda, Kaoru; Ogura, Takashi; Matsumoto, Takashi; Giles, Logan J; Pokhrel, Amrit; Kirk, Martin L; Itoh, Shinobu

    2016-02-15

    New bis(ene-1,2-dithiolato)-oxido-alcoholato molybdenum(VI) and -oxido-thiolato molybdenum(VI) anionic complexes, denoted as [Mo(VI)O(ER)L2](-) (E = O, S; L = dimethoxycarboxylate-1,2-ethylenedithiolate), were obtained from the reaction of the corresponding dioxido-molybdenum(VI) precursor complex with either an alcohol or a thiol in the presence of an organic acid (e.g., 10-camphorsulfonic acid) at low temperature. The [Mo(VI)O(ER)L2](-) complexes were isolated and characterized, and the structure of [Mo(VI)O(OEt)L2](-) was determined by X-ray crystallography. The Mo(VI) center in [Mo(VI)O(OEt)L2](-) exhibits a distorted octahedral geometry with the two ene-1,2-dithiolate ligands being symmetry inequivalent. The computed structure of [Mo(VI)O(SR)L2](-) is essentially identical to that of [Mo(VI)O(OR)L2](-). The electronic structures of the resulting molybdenum(VI) complexes were evaluated using electronic absorption spectroscopy and bonding calculations. The nature of the distorted O(h) geometry in these [Mo(VI)O(EEt)L2](-) complexes results in a lowest unoccupied molecular orbital wave function that possesses strong π* interactions between the Mo(d(xy)) orbital and the cis S(p(z)) orbital localized on one sulfur donor from a single ene-1,2-dithiolate ligand. The presence of a covalent Mo-S(dithiolene) bonding interaction in these monooxido Mo(VI) compounds contributes to their low-energy ligand-to-metal charge transfer transitions. A second important d-p π bonding interaction derives from the ∼180° O(oxo)-Mo-E-C dihedral angle involving the alcoholate and thiolate donors, and this contributes to ancillary ligand contributions to the electronic structure of these species. The formation of [Mo(VI)O(OEt)L2](-) and [Mo(VI)O(SEt)L2](-) from the dioxidomolybdenum(VI) precursor may be regarded as a model for the active-site formation process that occurs in the dimethyl sulfoxide reductase family of pyranopterin molybdenum enzymes. PMID:26816115

  4. An Ammonia Spectral Map of the L1495-B218 Filaments in the Taurus Molecular Cloud. I. Physical Properties of Filaments and Dense Cores

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Shirley, Yancy L.; Goldsmith, Paul; Ward-Thompson, Derek; Kirk, Jason M.; Schmalzl, Markus; Lee, Jeong-Eun; Friesen, Rachel; Langston, Glen; Masters, Joe; Garwood, Robert W.

    2015-06-01

    We present deep NH3 observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3° angular range using the K-band focal plane array on the 100 m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH3 (1, 1) and (2, 2) with a spectral resolution of 0.038 km s-1 and a spatial resolution of 31″. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 and 500 μm. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8-15 K, velocity dispersions of 0.05-0.25 km s-1, and NH3 column densities of 5 × 1012 to 1 × 1014 cm-2. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH3 structures, including 39 leaves and 16 branches. The masses of the NH3 sources range from 0.05 to 9.5 {{M}⊙ }. The masses of NH3 leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests that these leaves are gravitationally unbound structures. Nine out of 39 NH3 leaves are gravitationally bound, and seven out of nine gravitationally bound NH3 leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar.

  5. Metal Oxide Assisted Preparation of Core-Shell Beads with Dense Metal-Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants.

    PubMed

    Del Rio, Mateo; Palomino Cabello, Carlos; Gonzalez, Veronica; Maya, Fernando; Parra, Jose B; Cerdà, Victor; Turnes Palomino, Gemma

    2016-08-01

    Dense and homogeneous metal-organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core-shell beads. The ZnO@PS beads are reactive in the presence of 2-methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework-8 (ZIF-8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF-8@ZnO@PS beads can be easily packed in column format for flow-through applications, such as the solid-phase extraction of trace priority-listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4-tert-octylphenol and 4-n-nonylphenol), facilitating their analysis when present at very low levels (<1 μg L(-1) ) in drinking waters. For the extraction of the pollutant bisphenol A, the prepared ZIF-8@ZnO@PS beads also show a superior extraction and preconcentration capacity to that of the PS beads used as precursors and the composite materials obtained by the direct growth of ZIF-8 on the surface of the PS beads in the absence of metal oxide intermediate coatings. PMID:27388932

  6. A Very Compact Dense Galaxy Overdensity with δ ≃ 130 Identified at z ∼ 8: Implications for Early Protocluster and Cluster Core Formation

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masafumi; Ouchi, Masami; Harikane, Yuichi

    2016-05-01

    We report the first identification of a compact dense galaxy overdensity at z∼ 8 called A2744z8OD. A2744z8OD consists of eight Y-dropout galaxies behind Abell 2744 that were originally pinpointed by Hubble Frontier Fields studies. However, so far, no studies have derived the basic physical quantities of structure formation or made comparisons with theoretical models. We obtain a homogeneous sample of dropout galaxies at z∼ 8 from eight field data of Hubble legacy images that are as deep as the A2744z8OD data. Using the sample, we find that a galaxy surface overdensity value of A2744z8OD is very high δ ≃ 130, where δ is defined by an overdensity in a small circle of 6″ (≃ 30 physical kiloparsecs) radius. Because there is no such large δ value reported for high-z overdensities to date, A2744z8OD is a system that is clearly different from those found in previous high-z overdensity studies. In the galaxy+structure formation models of Henriques et al., there exists a very similar overdensity, Modelz8OD, that is made of eight model dropout galaxies at z∼ 8 in a 6″ radius circle. Modelz8OD is a progenitor of a today’s {10}14{M}ȯ cluster, and more than half of the seven Modelz8OD galaxies are merged into the brightest cluster galaxy of the cluster. If Modelz8OD is a counterpart to A2744z8OD, the models suggest that A2744z8OD would be part of a cluster core forming from a {10}14{M}ȯ cluster that began star formation at z\\gt 12.

  7. Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons.

    PubMed

    Goodwin, Patricia R; Sasaki, Jennifer M; Juo, Peter

    2012-06-13

    The polarized trafficking of axonal and dendritic proteins is essential for the structure and function of neurons. Cyclin-dependent kinase 5 (CDK-5) and its activator CDKA-1/p35 regulate diverse aspects of nervous system development and function. Here, we show that CDK-5 and CDKA-1/p35 are required for the polarized distribution of neuropeptide-containing dense-core vesicles (DCVs) in Caenorhabditis elegans cholinergic motor neurons. In cdk-5 or cdka-1/p35 mutants, the predominantly axonal localization of DCVs containing INS-22 neuropeptides was disrupted and DCVs accumulated in dendrites. Time-lapse microscopy in DB class motor neurons revealed decreased trafficking of DCVs in axons and increased trafficking and accumulation of DCVs in cdk-5 mutant dendrites. The polarized distribution of several axonal and dendritic markers, including synaptic vesicles, was unaltered in cdk-5 mutant DB neurons. We found that microtubule polarity is plus-end out in axons and predominantly minus-end out in dendrites of DB neurons. Surprisingly, cdk-5 mutants had increased amounts of plus-end-out microtubules in dendrites, suggesting that CDK-5 regulates microtubule orientation. However, these changes in microtubule polarity are not responsible for the increased trafficking of DCVs into dendrites. Genetic analysis of cdk-5 and the plus-end-directed axonal DCV motor unc-104/KIF1A suggest that increased trafficking of UNC-104 into dendrites cannot explain the dendritic DCV accumulation. Instead, we found that mutations in the minus-end-directed motor cytoplasmic dynein, completely block the increased DCVs observed in cdk-5 mutant dendrites without affecting microtubule polarity. We propose a model in which CDK-5 regulates DCV polarity by both promoting DCV trafficking in axons and preventing dynein-dependent DCV trafficking into dendrites. PMID:22699897

  8. Herschel Observations of EXtra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    NASA Astrophysics Data System (ADS)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H2S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H2 32S, H2 34S, and H2 33S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H2S follow straight lines given the uncertainties and yield T rot = 141 ± 12 K. This indicates H2S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E up >~ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N tot(H2 32S) = 9.5 ± 1.9 × 1017 cm-2, gas kinetic temperature, T kin = 120+/- ^{13}_{10} K, and constrain the H2 volume density, n_H_2 >~ 9 × 10 7 cm-3, for the H2S emitting gas. These results point to an H2S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H2S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H2S of <4.9 × 10 -3. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. Herschel observations of extra-ordinary sources: H{sub 2}S as a probe of dense gas and possibly hidden luminosity toward the Orion KL hot core

    SciTech Connect

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H{sub 2}S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H{sub 2} {sup 32}S, H{sub 2} {sup 34}S, and H{sub 2} {sup 33}S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H{sub 2}S follow straight lines given the uncertainties and yield T {sub rot} = 141 ± 12 K. This indicates H{sub 2}S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E {sub up} ≳ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N {sub tot}(H{sub 2} {sup 32}S) = 9.5 ± 1.9 × 10{sup 17} cm{sup –2}, gas kinetic temperature, T {sub kin} = 120±{sub 10}{sup 13} K, and constrain the H{sub 2} volume density, n{sub H{sub 2}} ≳ 9 × 10 {sup 7} cm{sup –3}, for the H{sub 2}S emitting gas. These results point to an H{sub 2}S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H{sub 2}S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H{sub 2}S of <4.9 × 10 {sup –3}.

  10. The JCMT and Herschel Gould Belt Surveys: A comparison of SCUBA-2 and Herschel data of dense cores in the Taurus dark cloud L1495

    NASA Astrophysics Data System (ADS)

    Ward-Thompson, D.; Pattle, K.; Kirk, J. M.; Marsh, K.; Buckle, J.; Hatchell, J.; Nutter, D. J.; Griffin, M. J.; Di Francesco, J.; André, P.; Beaulieu, S.; Berry, D.; Broekhoven-Fiene, H.; Currie, M.; Fich, M.; Jenness, T.; Johnstone, D.; Kirk, H.; Mottram, J.; Pineda, J.; Quinn, C.; Sadavoy, S.; Salji, C.; Tisi, S.; Walker-Smith, S.; White, G.; Hill, T.; Könyves, V.; Palmeirim, P.; Pezzuto, S.

    2016-08-01

    We present a comparison of SCUBA-2 850-μm and Herschel 70-500-μm observations of the L1495 filament in the Taurus Molecular Cloud with the goal of characterising the SCUBA-2 Gould Belt Survey (GBS) data set. We identify and characterise starless cores in three data sets: SCUBA-2 850-μm, Herschel 250-μm, and Herschel 250-μm spatially filtered to mimic the SCUBA-2 data. SCUBA-2 detects only the highest-surface-brightness sources, principally detecting protostellar sources and starless cores embedded in filaments, while Herschel is sensitive to most of the cloud structure, including extended low-surface-brightness emission. Herschel detects considerably more sources than SCUBA-2 even after spatial filtering. We investigate which properties of a starless core detected by Herschel determine its detectability by SCUBA-2, and find that they are the core's temperature and column density (for given dust properties). For similar-temperature cores, such as those seen in L1495, the surface brightnesses of the cores are determined by their column densities, with the highest-column-density cores being detected by SCUBA-2. For roughly spherical geometries, column density corresponds to volume density, and so SCUBA-2 selects the densest cores from a population at a given temperature. This selection effect, which we quantify as a function of distance, makes SCUBA-2 ideal for identifying those cores in Herschel catalogues that are closest to forming stars. Our results can now be used by anyone wishing to use the SCUBA-2 GBS data set.

  11. Dense cores in dark clouds. 9: Observations of (13)CO and C(18)O in Vela, Chamaeleon, Musca, and the Coalsack

    NASA Astrophysics Data System (ADS)

    Vilas-Boas, J. W. S.; Myers, P. C.; Fuller, G. A.

    1994-09-01

    One hundred one condensations with average optical size less than 7 min and visual extinction greater than 2.5 mag have been selected from European Southern Observatory (ESO) J plates, extinction maps, and catalogs of southern hemisphere dark clouds for observation in the (13)CO and C(18)O J = 1 goes to 0 transitions. These regions are condensations in the dark molecular clouds Musca, Coalsack, Chamaeleon II, Chamaeleon III, and cometary globules in Vela and Gum nebula. A search for IRAS point sorces having colors of young stellar objects shows that these condensations have at most seven associated young stellar objects-far fewer than in Taurus and Ophiuchus. These 101 condensations generally have lower (13)CO and C(18)O line intensity, C(18)O optical depth, and (13)CO line width than do 90 condensations in Taurus, Ophiuchus, and Cepheus. Similarly, 47 of these southern condensations having star-count estimates of visual extinction generally have less extinction than do the 19 condensations in Taurus having extinction estimated by the same method. The C(18)O to (13)CO line-width ratio for the cometary globules in the Vela ragion is greater than for the other clouds, indicating that the (13)CO line width observed toward dark cloud condensations is related to the more extended and less dense intercondensation gas. Radial velocities suggest that the system of Vela globules has velocity dispersion 4.7 km/s, which is at least 2 times greater than the dispersion determined from formalhyde observations. The Musca filament has velocities which are slightly higher-by approximately 0.5 km/s-in the center than at the ends of the filament. Chamaeleon III has a 0.2 km/s velocity gradient and Chamaeleon II has no indication of velocity gradients. The Chamaeleon clouds and the Musca filament appear close to virial equilibrium.

  12. Warm dense crystallography

    NASA Astrophysics Data System (ADS)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  13. Cranial mononeuropathy VI

    MedlinePlus

    ... Abducens palsy; Lateral rectus palsy; Vith nerve palsy; Cranial nerve VI palsy ... mononeuropathy VI is damage to the sixth cranial (skull) nerve. This nerve, also called the abducens nerve, helps ...

  14. Cranial mononeuropathy VI

    MedlinePlus

    Abducens paralysis; Abducens palsy; Lateral rectus palsy; Vith nerve palsy; Cranial nerve VI palsy ... VI is damage to the sixth cranial (skull) nerve. This nerve, also called the abducens nerve, helps ...

  15. Abnormal neuronal metabolism and storage in mucopolysaccharidosis type VI (Maroteaux-Lamy) disease.

    PubMed

    Walkley, S U; Thrall, M A; Haskins, M E; Mitchell, T W; Wenger, D A; Brown, D E; Dial, S; Seim, H

    2005-10-01

    Mucopolysaccharidosis (MPS) type VI, also known as Maroteaux-Lamy disease, is an inherited disorder of glycosaminoglycan catabolism caused by deficient activity of the lysosomal hydrolase, N-acetylgalactosamine 4-sulphatase (4S). A variety of prominent visceral and skeletal defects are characteristic, but primary neurological involvement has generally been considered absent. We report here that the feline model of MPS VI exhibits abnormal lysosomal storage in occasional neurones and glia distributed throughout the cerebral cortex. Abnormal lysosomal inclusions were pleiomorphic with some resembling zebra bodies and dense core inclusions typical of other MPS diseases or the membranous storage bodies characteristic of the gangliosidoses. Pyramidal neurones were shown to contain abnormal amounts of GM2 and GM3 gangliosides by immunocytochemical staining and unesterified cholesterol by histochemical (filipin) staining. Further, Golgi staining of pyramidal neurones revealed that some possessed ectopic axon hillock neurites and meganeurites similar to those described in Tay-Sachs and other neuronal storage diseases with ganglioside storage. Some animals evaluated in this study also received allogeneic bone marrow transplants, but no significant differences in neuronal storage were noted between treated and untreated individuals. These studies demonstrate that deficiency of 4S activity can lead to metabolic abnormalities in the neurones of central nervous system in cats, and that these changes may not be readily amenable to correction by bone marrow transplantation. Given the close pathological and biochemical similarities between feline and human MPS VI, it is conceivable that children with this disease have similar neuronal involvement. PMID:16150124

  16. Magnetic Phases in Dense Quark Matter

    SciTech Connect

    Incera, Vivian de la

    2007-10-26

    In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.

  17. Dynamical theory of dense groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  18. Atoms in dense plasmas

    SciTech Connect

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  19. The Distribution of YSO Masses in Dense Hubs and Less Dense Filaments

    NASA Astrophysics Data System (ADS)

    Kirk, Helen; Myers, P.

    2010-01-01

    Dense "hubs" and less dense radiating "filaments" are common features of nearby star-forming regions and infrared dark clouds. Cores and young stars are more concentrated in such hubs than in their radiating filaments. Accreting protostars may gain less mass in such low-density filaments, since low-density gas takes longer to accrete, and since the accretion must draw gas from a greater distance in filamentary geometry. We present an investigation of the mass distributions of YSOs in dense clusters and low-density filaments in the nearest molecular clouds, to test whether YSO masses depend on environment density and geometry. HK is supported by an NSERC PDF.

  20. Collagen type VI myopathies.

    PubMed

    Bushby, Kate M D; Collins, James; Hicks, Debbie

    2014-01-01

    Mutations in each of the three collagen VI genes COL6A1, COL6A2 and COL6A3 cause two main types of muscle disorders: Ullrich congenital muscular dystrophy, a severe phenotype, and a mild to moderate phenotype Bethlem myopathy. Recently, two additional phenotypes, including a limb-girdle muscular dystrophy phenotype and an autosomal recessive myosclerosis reported in one family with mutations in COL6A2 have been reported. Collagen VI is an important component of the extracellular matrix which forms a microfibrillar network that is found in close association with the cell and surrounding basement membrane. Collagen VI is also found in the interstitial space of many tissues including muscle, tendon, skin, cartilage, and intervertebral discs. Thus, collagen VI mutations result in disorders with combined muscle and connective tissue involvement, including weakness, joint laxity and contractures, and abnormal skin findings.In this review we highlight the four recognized clinical phenotypes of collagen VI related - myopathies; Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM), autosomal dominant limb-girdle muscular dystrophy phenotype and autosomal recessive myosclerosis. We discuss the diagnostic criteria of these disorders, the molecular pathogenesis, genetics, treatment, and related disorders. PMID:24443028

  1. DPIS for warm dense matter

    SciTech Connect

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  2. Engineering Test Satellite VI (ETS-VI)

    NASA Technical Reports Server (NTRS)

    Horii, M.; Funakawa, K.

    1991-01-01

    The Engineering Test Satellite-VI (ETS-VI) is being developed as the third Japanese three-axis stabilized engineering test satellite to establish the 2-ton geostationary operational satellite bus system and to demonstrate the high performance satellite communication technology for future operational satellites. The satellite is expected to be stationed at 154 deg east latitude. It will be launched from the Tanegashima Space Center in Japan by a type H-II launch vehicle. The Deep Space Network (DSN) will support the prelaunch compatibility test, data interface verification testing, and launch rehersals. The DSN primary support period is from launch through the final AEF plus 1 hour. Contingency support is from final AEF plus 1 hour until launch plus 1 month. The coverage will consist of all the 26-m antennas as prime and the 34-m antennas at Madrid and Canberra as backup. Maximum support will consist of two 8-hour tracks per station for a 7-day period, plus the contingency support, if required. Information is given in tabular form for DSN support, telemetry, command, and tracking support responsibility.

  3. Intelsat VI Capture Attempt

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The first single crewmember EVA capture attempt of the Intelsat VI as seen from Endeavour's aft flight deck windows. EVA Mission Specialist Pierre Thuot standing on the Remote Manipulator System (RMS) end effector platform, with the satellite capture bar attempting to attach it to the free floating communications satellite.

  4. ESL VI Curriculum Guide.

    ERIC Educational Resources Information Center

    Flander, Leonard

    This curriculum guide for English as a Second Language (ESL) Level VI is the sixth of six in a Guam Community College ESL project series. The other five guides, a companion teacher's guide and pre- and post-tests are available separately (see note). The entire project centers around the Peabody Kits P, Level P, Level 1, Level 2, Level 3, and the…

  5. Chromium(VI)

    Integrated Risk Information System (IRIS)

    Chromium ( VI ) ; CASRN 18540 - 29 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  6. Structure of Ice VI.

    PubMed

    Kamb, B

    1965-10-01

    Ice VI, a high-pressure form of density 1.31 g cm-(3), has a tetragonal cell of dimensions a = 6.27 A, c = 5.79 A, space group P4(2)/nmc, each cell containing ten water molecules. The structure is built up of hydrogen-bonded chdins of water molecules that are analogs of the tectosilicate chains out of which the fibrous zeolites are constructed. The chains in ice VI are linked laterally to one another to form an open, zeolite-like framework. The cavities in this framework are filled with a second framework identical with the first. The two frameworks interpenetrate but do not interconnect, and the complete structure can thus be considered a "self-clathrate." This structural feature is a natural way to achieve high density in tetrahedrally linked framework structures. PMID:17787274

  7. Intelsat VI antenna system

    NASA Astrophysics Data System (ADS)

    Caulfield, M. F.; Lane, S. O.; Taormina, F. A.

    The antenna system design of a series of five new communications satellites known as Intelsat VI is described in detail. Each satellite will utilize 50 transponders operating in the C and K band portions of the frequency spectrum. The transponders are interconnectible using either static switch matrices or a network which provides satellite switched time division multiple access capability. The antenna coverages, characteristics, and special design features are shown and discussed.

  8. Dense molecular gas tracers in high mass star formation regions

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Jun; Gao, Yu; Wu, Jing-Wen

    2016-02-01

    We report the FCRAO observations that mapped HCN (1-0), CS (2-1), HNC (1-0) and HCO+ (1-0) in ten high-mass star forming cores associated with water masers. We present velocity integrated intensity maps of the four lines for these dense cores, compare their line profiles, and derive physical properties of these cores. We find that these four tracers identify areas with similar properties in these massive dense cores, and in most cases, the emissions of HCN and HCO+ are stronger than those of HNC and CS. We also use the line ratios of HCO+/HCN, HNC/HCN and HNC/HCO+ as the diagnostics to explore the environment of these high-mass star forming regions, and find that most of the cores agree with the model that photodominated regions dominate the radiation field, except for W44, for which the radiation field is similar to an X-ray dominated region.

  9. The Galactic Dense Gas Distribution and Properties

    NASA Astrophysics Data System (ADS)

    Glenn, Jason

    2015-08-01

    As the nearest spiral galaxy, the Milky Way provides a foundation for understanding galactic astrophysics. However, our position within the Galactic plane makes it challenging to decipher the detailed disk structure. The Galactic distribution of dense gas is relatively poorly known; thus, it is difficult to assess models of galaxy evolution by comparison to the Milky Way. Furthermore, fundamental aspects of star formation remain unknown, such as why the stellar and star cluster initial mass functions appear to be ubiquitous.Sub/millimeter dust continuum surveys, coupled with molecular gas surveys, are revealing the 3D distribution and properties of dense, star-forming gas throughout the disk. Here we report on the use of BGPS and Hi-GAL. BGPS is a 1.1 mm survey of the 1st Galactic quadrant and some lines of sight in the 2nd quadrant, totalling 200 deg2. We developed a technique using the Galactic rotation curve to derive distance probability density functions (DPDFs) to molecular cloud structures identified with continuum surveys. DPDFs combine vLSR measures from dense gas tracers and 13CO with distance discriminators, such as 8 μm extinction, HI self absorption, and (l, b, vLSR) associations with objects of known distances. Typical uncertainties are σdist ≤ 1 kpc for 1,710 BGPS objects with well-constrained distances.From DPDFs we derived the dense gas distribution and the dense gas mass function. We find evidence for dense gas in and between putative spiral arms. A log-normal distribution describes the mass function, which ranges from cores to clouds, but is primarily comprised of clumps. High-mass power laws do not fit the entire data set well, although power-law behavior emerges for sources nearer than 6.5 kpc (α = 2.0±0.1) and for objects between 2 kpc and 10 kpc (α = 1.9±0.1). The power law indices are generally between those of GMC and the stellar IMF. We have begun to apply this approach to the Hi-GAL (70 - 500 μm). With coverage of the entire

  10. Dense suspension splash

    NASA Astrophysics Data System (ADS)

    Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Schaarsberg, Martin H. Klein; Jaeger, Heinrich M.; Zhang, Wendy W.

    2014-11-01

    Impact of a dense suspension drop onto a solid surface at speeds of several meters-per-second splashes by ejecting individual liquid-coated particles. Suppression or reduction of this splash is important for thermal spray coating and additive manufacturing. Accomplishing this aim requires distinguishing whether the splash is generated by individual scattering events or by collective motion reminiscent of liquid flow. Since particle inertia dominates over surface tension and viscous drag in a strong splash, we model suspension splash using a discrete-particle simulation in which the densely packed macroscopic particles experience inelastic collisions but zero friction or cohesion. Numerical results based on this highly simplified model are qualitatively consistent with observations. They also show that approximately 70% of the splash is generated by collective motion. Here an initially downward-moving particle is ejected into the splash because it experiences a succession of low-momentum-change collisions whose effects do not cancel but instead accumulate. The remainder of the splash is generated by scattering events in which a small number of high-momentum-change collisions cause a particle to be ejected upwards. Current Address: Physics of Fluids Group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

  11. DENSE MEDIUM CYCLONE OPTIMIZATON

    SciTech Connect

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  12. Core bounce supernovae

    SciTech Connect

    Cooperstein, J.

    1987-01-01

    The gravitational collapse mechanism for Type II supernovae is considered, concentrating on the direct implosion - core bounce - hydrodynamic explosion picture. We examine the influence of the stiffness of the dense matter equation of state and discuss how the shock wave is formed. Its chances of success are determined by the equation of state, general relativistic effects, neutrino transport, and the size of presupernova iron core. 12 refs., 1 tab.

  13. Hydrodynamic stellar interactions in dense star clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.

    1993-01-01

    Highly detailed HST observations of globular-cluster cores and galactic nuclei motivate new theoretical studies of the violent dynamical processes which govern the evolution of these very dense stellar systems. These processes include close stellar encounters and direct physical collisions between stars. Such hydrodynamic stellar interactions are thought to explain the large populations of blue stragglers, millisecond pulsars, X-ray binaries, and other peculiar sources observed in globular clusters. Three-dimensional hydrodynamics techniques now make it possible to perform realistic numerical simulations of these interactions. The results, when combined with those of N-body simulations of stellar dynamics, should provide for the first time a realistic description of dense star clusters. Here I review briefly current theoretical work on hydrodynamic stellar interactions, emphasizing its relevance to recent observations.

  14. Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex

    PubMed Central

    English, Grant; Byron, Olwyn; Cianfanelli, Francesca R.; Prescott, Alan R.; Coulthurst, Sarah J.

    2014-01-01

    Gram-negative bacteria use the Type VI secretion system (T6SS) to inject toxic proteins into rival bacteria or eukaryotic cells. However, the mechanism of the T6SS is incompletely understood. In the present study, we investigated a conserved component of the T6SS, TssK, using the antibacterial T6SS of Serratia marcescens as a model system. TssK was confirmed to be essential for effector secretion by the T6SS. The native protein, although not an integral membrane protein, appeared to localize to the inner membrane, consistent with its presence within a membrane-anchored assembly. Recombinant TssK purified from S. marcescens was found to exist in several stable oligomeric forms, namely trimer, hexamer and higher-order species. Native-level purification of TssK identified TssF and TssG as interacting proteins. TssF and TssG, conserved T6SS components of unknown function, were required for T6SS activity, but not for correct localization of TssK. A complex containing TssK, TssF and TssG was subsequently purified in vitro, confirming that these three proteins form a new subcomplex within the T6SS. Our findings provide new insight into the T6SS assembly, allowing us to propose a model whereby TssK recruits TssFG into the membrane-associated T6SS complex and different oligomeric states of TssK may contribute to the dynamic mechanism of the system. PMID:24779861

  15. Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex.

    PubMed

    English, Grant; Byron, Olwyn; Cianfanelli, Francesca R; Prescott, Alan R; Coulthurst, Sarah J

    2014-07-15

    Gram-negative bacteria use the Type VI secretion system (T6SS) to inject toxic proteins into rival bacteria or eukaryotic cells. However, the mechanism of the T6SS is incompletely understood. In the present study, we investigated a conserved component of the T6SS, TssK, using the antibacterial T6SS of Serratia marcescens as a model system. TssK was confirmed to be essential for effector secretion by the T6SS. The native protein, although not an integral membrane protein, appeared to localize to the inner membrane, consistent with its presence within a membrane-anchored assembly. Recombinant TssK purified from S. marcescens was found to exist in several stable oligomeric forms, namely trimer, hexamer and higher-order species. Native-level purification of TssK identified TssF and TssG as interacting proteins. TssF and TssG, conserved T6SS components of unknown function, were required for T6SS activity, but not for correct localization of TssK. A complex containing TssK, TssF and TssG was subsequently purified in vitro, confirming that these three proteins form a new subcomplex within the T6SS. Our findings provide new insight into the T6SS assembly, allowing us to propose a model whereby TssK recruits TssFG into the membrane-associated T6SS complex and different oligomeric states of TssK may contribute to the dynamic mechanism of the system. PMID:24779861

  16. Dense Hypervelocity Plasma Jets

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Case, Andrew; Phillips, Michael W.

    2006-10-01

    High velocity dense plasma jets are under continued experimental development for a variety of fusion applications including refueling, disruption mitigation, rotation drive, and magnetized target fusion. The technical goal is to accelerate plasma slugs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section geometry to prevent formation of the blow-by instability. Injected plasma is generated by electrothermal capillary discharges using either cylindrical capillaries or a newer toroidal spark gap arrangement that has worked at pressures as low as 3.5 x10-6 Torr in bench tests. Experimental plasma data will be presented for a complete 32 injector accelerator system recently built for driving rotation in the Maryland MCX experiment which utilizes the cylindrical capillaries, and also for a 50 spark gap test unit currently under construction.

  17. Dense Subgraph Partition of Positive Hypergraphs.

    PubMed

    Liu, Hairong; Latecki, Longin Jan; Yan, Shuicheng

    2015-03-01

    In this paper, we present a novel partition framework, called dense subgraph partition (DSP), to automatically, precisely and efficiently decompose a positive hypergraph into dense subgraphs. A positive hypergraph is a graph or hypergraph whose edges, except self-loops, have positive weights. We first define the concepts of core subgraph, conditional core subgraph, and disjoint partition of a conditional core subgraph, then define DSP based on them. The result of DSP is an ordered list of dense subgraphs with decreasing densities, which uncovers all underlying clusters, as well as outliers. A divide-and-conquer algorithm, called min-partition evolution, is proposed to efficiently compute the partition. DSP has many appealing properties. First, it is a nonparametric partition and it reveals all meaningful clusters in a bottom-up way. Second, it has an exact and efficient solution, called min-partition evolution algorithm. The min-partition evolution algorithm is a divide-and-conquer algorithm, thus time-efficient and memory-friendly, and suitable for parallel processing. Third, it is a unified partition framework for a broad range of graphs and hypergraphs. We also establish its relationship with the densest k-subgraph problem (DkS), an NP-hard but fundamental problem in graph theory, and prove that DSP gives precise solutions to DkS for all kin a graph-dependent set, called critical k-set. To our best knowledge, this is a strong result which has not been reported before. Moreover, as our experimental results show, for sparse graphs, especially web graphs, the size of critical k-set is close to the number of vertices in the graph. We test the proposed partition framework on various tasks, and the experimental results clearly illustrate its advantages. PMID:26353260

  18. The Azimuthal Dependence of Outflows and Accretion Detected Using O VI Absorption

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Nielsen, Nikole M.; Charlton, Jane C.

    2015-12-01

    We report a bimodality in the azimuthal angle (Φ) distribution of gas around galaxies traced by O vi absorption. We present the mean Φ probability distribution function of 29 Hubble Space Telescope-imaged O vi absorbing (EW > 0.1 Å) and 24 non-absorbing (EW < 0.1 Å) isolated galaxies (0.08 \\lt z \\lt 0.67) within ˜200 kpc of background quasars. We show that equivalent width (EW) is anti-correlated with impact parameter and O vi covering fraction decreases from 80% within 50 kpc to 33% at 200 kpc. The presence of O vi absorption is azimuthally dependent and occurs between ±10°-20° of the galaxy projected major axis and within ±30° of the projected minor axis. We find higher EWs along the projected minor axis with weaker EWs along the project major axis. Highly inclined galaxies have the lowest covering fractions due to minimized outflow/inflow cross-section geometry. Absorbing galaxies also have bluer colors while non-absorbers have redder colors, suggesting that star formation is a key driver in the O vi detection rate. O vi surrounding blue galaxies exists primarily along the projected minor axis with wide opening angles while O vi surrounding red galaxies exists primarily along the projected major axis with smaller opening angles, which may explain why absorption around red galaxies is less frequently detected. Our results are consistent with a circumgalactic medium (CGM) originating from major axis-fed inflows/recycled gas and from minor axis-driven outflows. Non-detected O vi occurs between Φ = 20°-60°, suggesting that O vi is not mixed throughout the CGM and remains confined within the outflows and the disk-plane. We find low O vi covering fractions within +/- 10^\\circ of the projected major axis, suggesting that cool dense gas resides in a narrow planer geometry surrounded by diffuse O vi gas.

  19. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  20. Lattice thermal conductivity of dense silicate glass at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2015-12-01

    The layered structure of the Earth's interior is generally believed to develop through the magma ocean differentiation in the early Earth. Previous seismic studies revealed the existence of ultra low velocity zones above the core mantle boundary (CMB) which was inferred to be associated with the remnant of a deep magma ocean. The heat flux through the core mantle boundary therefore would strongly depend on the thermal conductivity, both lattice (klat) and radiative (krad) of dense silicate melts and major constituent minerals of the lower mantle. Recent experimental results on the radiative thermal conductivity of dense silicate glasses and lower-mantle minerals suggest that krad of dense silicate glasses could be remarkably lower than krad of the surrounding solid mantle phases. In this case, the dense silicate melts will act as a trap for heat from the Earth's outer core. However, this conclusion remains uncertain because of the lack of direct measurements on lattice thermal conductivities of silicate glasses/melts under lower mantle pressures up to date. Here we report experimental results on lattice thermal conductivities of dense silicate glass with basaltic composition under pressures relevant to the Earth's lower mantle in a diamond-anvil cell using time-domain thermoreflectance method. The study will assist the comprehension of thermal transport properties of silicate melts in the Earth's deep interior and is crucial for understanding the dynamic and thermal evolution of the Earth's internal structure.

  1. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  2. Ariel's Densely Pitted Surface

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This mosaic of the four highest-resolution images of Ariel represents the most detailed Voyager 2 picture of this satellite of Uranus. The images were taken through the clear filter of Voyager's narrow-angle camera on Jan. 24, 1986, at a distance of about 130,000 kilometers (80,000 miles). Ariel is about 1,200 km (750 mi) in diameter; the resolution here is 2.4 km (1.5 mi). Much of Ariel's surface is densely pitted with craters 5 to 10 km (3 to 6 mi) across. These craters are close to the threshold of detection in this picture. Numerous valleys and fault scarps crisscross the highly pitted terrain. Voyager scientists believe the valleys have formed over down-dropped fault blocks (graben); apparently, extensive faulting has occurred as a result of expansion and stretching of Ariel's crust. The largest fault valleys, near the terminator at right, as well as a smooth region near the center of this image, have been partly filled with deposits that are younger and less heavily cratered than the pitted terrain. Narrow, somewhat sinuous scarps and valleys have been formed, in turn, in these young deposits. It is not yet clear whether these sinuous features have been formed by faulting or by the flow of fluids.

    JPL manages the Voyager project for NASA's Office of Space Science.

  3. Dense Hypervelocity Plasma Jets

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  4. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    USGS Publications Warehouse

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  5. Supernovae in dense and dusty environments

    NASA Astrophysics Data System (ADS)

    Kankare, Erkki

    2013-02-01

    In this doctoral thesis supernovae in dense and dusty environments are studied, with an emphasis on core-collapse supernovae. The articles included in the thesis aim to increase our understanding of supernovae interacting with the circumstellar material and their place in stellar evolution. The results obtained have also importance in deriving core-collapse supernova rates with reliable extinction corrections, which are directly related to star formation rates and galaxy evolution. In other words, supernovae are used as a tool in the research of both stellar and galaxy evolution, both of which can be considered as fundamental basics for our understanding of the whole Universe. A detailed follow-up study of the narrow-line supernova 2009kn is presented in paper I, and its similarity to another controversial transient, supernova 1994W, is shown. These objects are clearly strongly interacting with relatively dense circumstellar matter, however their physical origin is quite uncertain. In paper I different explosion models are discussed. Discoveries from a search programme for highly obscured supernovae in dusty luminous infrared galaxies are presented in papers II and III. The search was carried out using laser guide star adaptive optics monitoring at near-infrared wavelengths. By comparing multi-band photometric follow-up observations to template light curves, the likely types and the host galaxy extinctions for the four supernovae discovered were derived. The optical depth of normal spiral galaxy disks were studied statistically and reported in paper IV. This is complementary work to studies such as the one presented in paper V, where the missing fractions of core-collapse supernovae were derived for both normal spiral galaxies and luminous infrared galaxies, to be used for correcting supernova rates both locally and as a function of redshift.

  6. Dense gas in high-latitude molecular clouds

    NASA Technical Reports Server (NTRS)

    Reach, William T.; Pound, Marc W.; Wilner, David J.; Lee, Youngung

    1995-01-01

    The nearby molecular clouds MBM 7, 12, 30, 32, 40, 41, and 55 were surveyed for tracers of dense gas, including the (1-0), (2-1), and (3-2) rotational lines of CS and the (1-0) lines of HCO(+) and HCN. MBM 7 and MBM 12 contain dense cores, while the other clouds contain little or no traces of dense gas. Comparison of the emission from dense gas tracers to that of (13)CO reveals that the former are more compact in angular size as well as line width. An extensive CS(2-1) survey of part of MBM 12 reveals that the emission is characterized by clumps on approximately 3 min scales as well as extended emission. Observations of the CS(1-0) and (3-2) lines using telescopes with matched beam sizes reveal that the volume density must be at least approximately 10(exp 4.5)/cc within the (3-2) emitting regions, which are approximately 0.03 pc in radius. Electron excitation of the CS rotational levels is ruled out (in the cores) by comparing the (3-2)/(1-0) line ratios with models including H2 and electron collisions. The volume density in the cores is substantially larger than in the portions of the cloud traced by CO emission. The density increases into the cores as r(exp -2), suggesting dynamical collapse. The masses of the cores are close to the virial mass, suggesting they are dynamically bound. The cores in MBM 7 and MBM 12 are thus likely to form stars; they are the nearest sites of star formation.

  7. Structure, Motion, and Evolution of Star-Forming Dense Cores

    NASA Technical Reports Server (NTRS)

    Myers, Philip C.

    2002-01-01

    Under this grant in the past year we have pursued spectral-line observations of star-forming regions over size scales from 0.01 pc to 0.5 pc. Our main goal has been to measure the systematic and turbulent motions of condensing and collapsing gas. The following summary is excerpted from our recent application for a new three-year grant, submitted in June, 2002.

  8. Structure, Motion, and Evolution of Star-Forming Dense Cores

    NASA Technical Reports Server (NTRS)

    Myers, Philip C.

    2003-01-01

    We have pursued spectral-line observations of star-forming regions over size scales from 0.01 pc to 0.5 pc. Our main goal has been to measure the systematic and turbulent motions of condensing and collapsing gas.

  9. ENDF/B-V and ENDF/B-VI results for UO-2 lattice benchmark problems using MCNP

    SciTech Connect

    Mosteller, R.D.

    1998-08-01

    Calculations for the ANS UO{sub 2} lattice benchmark have been performed with the MCNP Monte Carlo code and its ENDF/B-V and EnDF/B-VI continuous-energy libraries. Similar calculations were performed previously for the experiments upon which these benchmarks are based, using continuous-energy libraries derived from EnDF/B-V and from Release 2 of EnDF/B-VI (ENDF/B-VI.2). This study extends those calculations to the infinite-lattice configurations given in the benchmark specifications and also includes results from Release 3 of EnDF/B-VI (ENDF/B-VI.3) for both the core and infinite-lattice configurations. For this set of benchmarks, the only significant difference between the ENDF/B-VI.2 and EnDF/B-VI.3 libraries is the cross-section behavior of {sup 235}U. EnDF/B-VI.3 contains revised cross sections for {sup 235}U below 900 eV, although those changes principally affect the range below 110 eV. In particular, relative to EnDF/B-VI.2, EnDF/B-VI.3 increases the epithermal capture-to-fission ratio for {sup 235}U and slightly increases its thermal fission cross section.

  10. Salivary carbonic anhydrase isoenzyme VI

    PubMed Central

    Kivelä, Jyrki; Parkkila, Seppo; Parkkila, Anna-Kaisa; Leinonen, Jukka; Rajaniemi, Hannu

    1999-01-01

    The carbonic anhydrases (CAs) participate in the maintenance of pH homeostasis in various tissues and biological fluids of the human body by catalysing the reversible reaction CO2+ H2O ⇌ HCO3−+ H+ (Davenport & Fisher, 1938; Davenport, 1939; Maren, 1967). Carbonic anhydrase isoenzyme VI (CA VI) is the only secretory isoenzyme of the mammalian CA gene family. It is exclusively expressed in the serous acinar cells of the parotid and submandibular glands, from where it is secreted into the saliva. In this review, we will discuss recent advances in research focused on the physiological role of salivary CA VI in the oral cavity and upper alimentary canal. PMID:10523402

  11. Probing the Physical Structures of Dense Filaments

    NASA Astrophysics Data System (ADS)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  12. Collagen VI related muscle disorders

    PubMed Central

    Lampe, A; Bushby, K

    2005-01-01

    Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two conditions which were previously believed to be completely separate entities. BM is a relatively mild dominantly inherited disorder characterised by proximal weakness and distal joint contractures. UCMD was originally described as an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Here we review the clinical phenotypes of BM and UCMD and their diagnosis and management, and provide an overview of the current knowledge of the pathogenesis of collagen VI related disorders. PMID:16141002

  13. Population kinetics in dense plasmas

    SciTech Connect

    Schlanges, M.; Bornath, T.; Prenzel, R.; Kremp, D.

    1996-07-01

    Starting from quantum kinetic equations, rate equations for the number densities of the different atomic states and equations for the energy density are derived which are valid for dense nonideal plasmas. Statistical expressions are presented for the rate coefficients taking into account many-body effects as dynamical screening, lowering of the ionization energy and Pauli-blocking. Based on these generalized expressions, the coefficients of impact ionization, three-body recombination, excitation and deexcitation are calculated for nonideal hydrogen and carbon plasmas. As a result, higher ionization and recombination rates are obtained in the dense plasma region. The influence of the many-body effects on the population kinetics, including density and temperature relaxation, is shown then for a dense hydrogen plasma. {copyright} {ital 1996 American Institute of Physics.}

  14. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    SciTech Connect

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.

  15. Quadrupole interactions in tetraoxoferrates (VI)

    NASA Astrophysics Data System (ADS)

    Dedushenko, Sergey K.; Perfiliev, Yurii D.; Rusakov, Vyacheslav S.; Gapochka, Alexei M.

    2013-05-01

    An applicability of the point charge approach for calculations of quadrupole splittings in Mössbauer spectra of ferrates(VI) was studied. The reasonable correlation between calculated and experimental splittings was observed for the majority of ferrates excepting K3Na(FeO4)2. The comparison of ferrates and chromates was made using calculated nucleus independent coefficient.

  16. Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0

    NASA Astrophysics Data System (ADS)

    Ding, Congcong; Cheng, Wencai; Sun, Yubing; Wang, Xiangke

    2015-09-01

    The effects of Bacillus subtilis (B. subtilis, a typical model bacterium) on the reduction of U(VI) by nanoscale zero-valent iron (nano-Fe0) were investigated using batch techniques. The reaction products were analysed using spectroscopic techniques, and a kinetics model was developed to elucidate the mechanisms of U(VI) reduction by nano-Fe0. The presence of B. subtilis enhanced the U(VI) sorption rate at pH 3.5-9.5 but inhibited the reduction rate of U(VI) to U(IV) at pH > 4.5. According to the FTIR and XRD analysis, the reduction of U(VI) to U(IV) was inhibited due to the formation of inner-sphere surface complexes between the oxygen-containing functional groups of B. subtilis or extracellular polymeric substances with the Fe(II)/Fe(III) generated by nano-Fe0, which blocked electron transport from the Fe0 core to U(VI). Based on the EXAFS analysis, a fitting of U-Fe shell at ∼3.44 Å revealed inner-sphere bidentate complexes between uranyl and the oxide film of nano-Fe0. For the nano-Fe0 + B. subtilis system, the U-Fe shell (at ∼3.44 Å) and the U-C/P shell (at ∼2.90 Å) further indicated the formation of inner-sphere surface complexes. The kinetics model supported that U(VI) reduction was triggered by U(VI) sorption on the oxide shell of nano-Fe0. The XPS and XANES analyses showed that reductive precipitation was the main mechanism of U(VI) removal by nano-Fe0, whereas the sorption process dominated the removal of U(VI) in the presence of B. subtilis, which was further demonstrated by TEM images.

  17. UNITS OF WORK IN THE CORE CURRICULUM PROGRAM GRADE VI.

    ERIC Educational Resources Information Center

    BUEHLER, RONALD G.

    EIGHT UNITS OF WORLD HISTORY AND WORLD GEOGRAPHY ARE USED IN THE SIXTH GRADE AT GROSSE POINTE, MICHIGAN. THE PURPOSE OF THE FIRST UNIT, "MAN LEARNS TO USE HIS WORLD," IS TO CONSIDER CONTRIBUTIONS OF CULTURE BY OTHER CIVILIZATIONS AND GEOGRAPHICAL AREAS. THIS HISTORY OF PRIMITIVE PEOPLES AND CIVILIZATIONS IS TAUGHT. POSSIBLE GROUP ACTIVITIES…

  18. Protostars and Planets VI

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    star and planet formation. They are used by students to dive into new topics, and they are much valued by experienced researchers as a comprehensive overview of the field with all its interactions. We hope that you will enjoy reading (and learning from) this book as much as we do. The organization of the Protostars and Planets conference was carried out in close collaboration between the Max Planck Institute for Astronomy and the Center for Astronomy of the University Heidelberg, with generous support from the German Science Foundation. This volume is a product of effort and care by many people. First and foremost, we want to acknowledge the 250 contributing authors, as it is only due to their expertise and knowledge that such a comprehensive review compendium in all its depth and breadth is possible. The Protostars and Planets VI conference and this volume was a major undertaking, with support and contributions by many people and institutions. We like to thank the members of the Scientific Advisory Committee who selected the 38 teams and chapters out of more than 120 submitted proposals. Similarly, we are grateful to the reviewers, who provided valuable input and help to the chapter authors. The book would also not have been possible without the great support of Renée Dotson and other staff from USRA’s Lunar and Planetary Institute, who handled the detailed processing of all manuscripts and the production of the book, and of Allyson Carter and other staff from the University of Arizona Press. We are also grateful to Richard Binzel, the General Editor of the Space Science Series, for his constant support during the long process, from the original concept to this final product. Finally, we would like to express a very special thank you to the entire conference local organizing committee, and in particular, Carmen Cuevas and Natali Jurina, for their great commitment to the project and for a very fruitful and enjoyable collaboration.

  19. Heterogeneity of Collagen VI Microfibrils

    PubMed Central

    Maaß, Tobias; Bayley, Christopher P.; Mörgelin, Matthias; Lettmann, Sandra; Bonaldo, Paolo; Paulsson, Mats; Baldock, Clair; Wagener, Raimund

    2016-01-01

    Collagen VI, a collagen with uncharacteristically large N- and C-terminal non-collagenous regions, forms a distinct microfibrillar network in most connective tissues. It was long considered to consist of three genetically distinct α chains (α1, α2, and α3). Intracellularly, heterotrimeric molecules associate to form dimers and tetramers, which are then secreted and assembled to microfibrils. The identification of three novel long collagen VI α chains, α4, α5, and α6, led to the question if and how these may substitute for the long α3 chain in collagen VI assembly. Here, we studied structural features of the novel long chains and analyzed the assembly of these into tetramers and microfibrils. N- and C-terminal globular regions of collagen VI were recombinantly expressed and studied by small angle x-ray scattering (SAXS). Ab initio models of the N-terminal globular regions of the α4, α5, and α6 chains showed a C-shaped structure similar to that found for the α3 chain. Single particle EM nanostructure of the N-terminal globular region of the α4 chain confirmed the C-shaped structure revealed by SAXS. Immuno-EM of collagen VI extracted from tissue revealed that like the α3 chain the novel long chains assemble to homotetramers that are incorporated into mixed microfibrils. Moreover, SAXS models of the C-terminal globular regions of the α1, α2, α4, and α6 chains were generated. Interestingly, the α1, α2, and α4 C-terminal globular regions dimerize. These self-interactions may play a role in tetramer formation. PMID:26742845

  20. FUSE Observations of O VI Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oegerle, W. R.; Jenkins, E. B.; Shelton, R. L.; Bowen, D. V.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We report the results of an initial Far Ultraviolet Spectroscopic Explorer (FUSE) survey of O VI Lambda 1032 absorption along the lines of sight to eleven nearby white dwarfs, ten of which are within the Local Bubble (LB; d < or approximately equal 100 pc). A goal of this survey is to investigate the possible formation of O VI in the conductive interfaces between cool (about 10(exp 4) K) clouds immersed in the presumably hot (10(exp 6) K) gas within the LB. This mechanism is often invoked to explain the widespread presence of 0 VI throughout the Galactic disk. We find no 0 VI absorption toward two stars, and the column densities along three additional sight lines are quite low; N(O VI) about 5 x 10(exp 13)/sq cm. In several directions, we observe rather broad, shallow absorption with N(O VI) about 1 - 2 x 10(exp 13)/sq cm. Models of conductive interfaces predict narrow profiles with N(OVI) > or about equal to 10(exp 13)/sq cm per interface, in the absence of a significant transverse magnetic field. Hence, our observations of weak 0 VI absorption indicate that conduction is being quenched, possibly by non-radial magnetic fields. Alternatively, the gas within the LB may not be hot. Breitschwerdt & Schmutzler have proposed a model for the LB in which an explosive event within a dense cloud created rapid expansion and adiabatic cooling, resulting in a cavity containing gas with a kinetic temperature of T about 50,000 K, but with an ionization state characteristic of much hotter gas. This model has a number of attractive features, but appears to predict significantly more O VI than we observe.

  1. Method for dense packing discovery

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  2. Interactions Between Forming Stars and Dense Gas in a Small Low Mass Cluster

    NASA Astrophysics Data System (ADS)

    Ladd, Edwin F.; Wong, T.; Bourke, T. L.; Thompson, K. L.

    2011-05-01

    We present observations of dense gas and outflow activity in the Cederblad 110 region of the Chamaleleon I Dark Cloud. The region contains eight forming low mass stars in evolutionary stages ranging from Class 0 to Class II/III crowded into a 0.2 pc region with high surface density (Σ_YSO 150 pc^-2). The analysis of our N2H+ (J=1-0) maps indicates the presence of 15 solar masses of dense (n 10^5 cm^-3) gas in this region, much of which is unstable against gravitational collapse. The most unstable material is located near the Class 0 source MMS 1. Smaller column densities of more stable dense gas are found toward the region's Class I sources. Little or no dense gas is colocated with the Class II and III sources in the region. The outflow from the Class I source IRS 4 is interacting with the dense core associated with MMS 1. The molecular component of the outflow appears to be deflected by the densest part of the core, after which it plows through some of the lower column density portions of the core. The working surface at the head of the outflow lobe can be seen in the enhanced velocity dispersion of the dense gas. The Class III source IRS 2 may also be influencing the dense gas in the region. A dust temperature gradient across the core is consistent with warming from the 3.4 Lo source, and a sharp gradient in dense gas column density may be caused by winds from this source. Taken together, our data indicate that this region has been producing several young stars in the recent past, and that sources which began forming first are interacting with the remaining dense gas in the region, thereby influencing current and future star formation activity.

  3. Warm Dense Matter: An Overview

    SciTech Connect

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  4. Summary report of session VI

    SciTech Connect

    Weiren Chou et al.

    2002-08-19

    This report gives a brief review of the presentations in Session VI of the Ecloud'02 Workshop and summarizes the major points during the discussions. Some points (e.g., the critical mass phenomenon) are not conclusive and even controversial. But it has been agreed that further investigations are warranted. The topic of Session VI in the Ecloud'02 workshop is ''Discussions of future studies, collaborations and possible solutions.'' Half of the session is devoted to presentations, another half to discussions. This report will focus on the latter. There are six presentations: (1) R. Macek, Possible cures to the e-cloud problem; (2) G. Rumolo, Driving the electron-cloud instability by an electron cooler; (3) U. Iriso Ariz, RF test benches for electron-cloud studies; (4) F. Caspers, Stealth clearing electrodes; (5) F. Ruggiero, Future electron-cloud studies at CERN; and (6) E. Perevedentsev, Beam-beam and transverse impedance model.

  5. Directional Mechanosensing in Myosin VI

    NASA Astrophysics Data System (ADS)

    Yang, Yubo; Tehver, Riina

    2013-03-01

    Myosin is a family of versatile motor proteins that perform various tasks, such as organelle transport, anchoring and cell deformation. Although the general mechanism of the motors has been fairly well established, details on dynamic aspects like force response of the motor, and force propagation are yet to be fully understood. In this poster, we present the response of the ATP binding region to force exerted on the tail domain in order to test the proposed tension-dependent gating mechanism of myosin VI processive motion. We employed the Self-Organized Polymer model in a computer simulation to explore the effect. Current results show that the ATP binding domain of myosin VI indeed exhibits tension dependence - both structurally and dynamically.

  6. Boundary Preserving Dense Local Regions.

    PubMed

    Kim, Jaechul; Grauman, Kristen

    2015-05-01

    We propose a dense local region detector to extract features suitable for image matching and object recognition tasks. Whereas traditional local interest operators rely on repeatable structures that often cross object boundaries (e.g., corners, scale-space blobs), our sampling strategy is driven by segmentation, and thus preserves object boundaries and shape. At the same time, whereas existing region-based representations are sensitive to segmentation parameters and object deformations, our novel approach to robustly sample dense sites and determine their connectivity offers better repeatability. In extensive experiments, we find that the proposed region detector provides significantly better repeatability and localization accuracy for object matching compared to an array of existing feature detectors. In addition, we show our regions lead to excellent results on two benchmark tasks that require good feature matching: weakly supervised foreground discovery and nearest neighbor-based object recognition. PMID:26353319

  7. Lyn, PKC-δ, SHIP-1 interactions regulate GPVI-mediated platelet-dense granule secretion

    PubMed Central

    Chari, Ramya; Kim, Soochong; Murugappan, Swaminathan; Sanjay, Archana; Daniel, James L.

    2009-01-01

    Protein kinase C-δ (PKC-δ) is expressed in platelets and activated downstream of protease-activated receptors (PARs) and glycoprotein VI (GPVI) receptors. We have previously shown that PKC-δ positively regulates PAR-mediated dense granule secretion, whereas it negatively regulates GPVI-mediated dense granule secretion. We further investigated the mechanism of such differential regulation of dense granule release by PKC-δ in platelets. SH2 domain–containing inositol phosphatase-1 (SHIP-1) is phosphorylated on Y1020, a marker for its activation, upon stimulation of human platelets with PAR agonists SFLLRN and AYPGKF or GPVI agonist convulxin. GPVI-mediated SHIP-1 phosphorylation occurred rapidly at 15 seconds, whereas PAR-mediated phosphorylation was delayed, occurring at 1 minute. Lyn and SHIP-1, but not SHIP-2 or Shc, preferentially associated with PKC-δ on stimulation of platelets with a GPVI agonist, but not with a PAR agonist. In PKC-δ–null murine platelets, convulxin-induced SHIP-1 phosphorylation was inhibited. Furthermore, in Lyn null murine platelets, GPVI-mediated phosphorylations on Y-1020 of SHIP-1 and Y311 of PKC-δ were inhibited. In murine platelets lacking Lyn or SHIP-1, GPVI-mediated dense granule secretions are potentiated, whereas PAR-mediated dense granule secretions are inhibited. Therefore, we conclude that Lyn-mediated phosphorylations of PKC-δ and SHIP-1 and their associations negatively regulate GPVI-mediated dense granule secretion in platelets. PMID:19587372

  8. Dense, finely, grained composite materials

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  9. Dense periodic packings of tori

    NASA Astrophysics Data System (ADS)

    Gabbrielli, Ruggero; Jiao, Yang; Torquato, Salvatore

    2014-02-01

    Dense packings of nonoverlapping bodies in three-dimensional Euclidean space R3 are useful models of the structure of a variety of many-particle systems that arise in the physical and biological sciences. Here we investigate the packing behavior of congruent ring tori in R3, which are multiply connected nonconvex bodies of genus 1, as well as horn and spindle tori. Specifically, we analytically construct a family of dense periodic packings of unlinked tori guided by the organizing principles originally devised for simply connected solid bodies [22 Torquato and Jiao, Phys. Rev. E 86, 011102 (2012), 10.1103/PhysRevE.86.011102]. We find that the horn tori as well as certain spindle and ring tori can achieve a packing density not only higher than that of spheres (i.e., π /√18 =0.7404...) but also higher than the densest known ellipsoid packings (i.e., 0.7707...). In addition, we study dense packings of clusters of pair-linked ring tori (i.e., Hopf links), which can possess much higher densities than corresponding packings consisting of unlinked tori.

  10. Dense LU Factorization on Multicore Supercomputer Nodes

    SciTech Connect

    Lifflander, Jonathan; Miller, Phil; Venkataraman, Ramprasad; Arya, Anshu; Jones, Terry R; Kale, Laxmikant V

    2012-01-01

    Dense LU factorization is a prominent benchmark used to rank the performance of supercomputers. Many implementations, including the reference code HPL, use block-cyclic distributions of matrix blocks onto a two-dimensional process grid. The process grid dimensions drive a trade-off between communication and computation and are architecture- and implementation-sensitive. We show how the critical panel factorization steps can be made less communication-bound by overlapping asynchronous collectives for pivot identification and exchange with the computation of rank-k updates. By shifting this trade-off, a modified block-cyclic distribution can beneficially exploit more available parallelism on the critical path, and reduce panel factorization's memory hierarchy contention on now-ubiquitous multi-core architectures. The missed parallelism in traditional block-cyclic distributions arises because active panel factorization, triangular solves, and subsequent broadcasts are spread over single process columns or rows (respectively) of the process grid. Increasing one dimension of the process grid decreases the number of distinct processes in the other dimension. To increase parallelism in both dimensions, periodic 'rotation' is applied to the process grid to recover the row-parallelism lost by a tall process grid. During active panel factorization, rank-1 updates stream through memory with minimal reuse. In a column-major process grid, the performance of this access pattern degrades as too many streaming processors contend for access to memory. A block-cyclic mapping in the more popular row-major order does not encounter this problem, but consequently sacrifices node and network locality in the critical pivoting steps. We introduce 'striding' to vary between the two extremes of row- and column-major process grids. As a test-bed for further mapping experiments, we describe a dense LU implementation that allows a block distribution to be defined as a general function of block

  11. Search for O VI Emission from the Shocked Circurmstellar Gas of SN 1987A

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Lundqvist, P.; Fransson, C.

    2008-01-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) was used to search for broad O VI emission from the shock interaction zones produced by the collision of high-velocity supernova ejecta with the dense inner circumstellar ring of SN 1987A. Since the shock interaction with the inner ring began in 1997, broad (FWHM = 300 km/sec) emission from optical coronal lines (e.g. [Fe X], [Fe XI], and [Fe XIV]) has emerged and increased exponentially in strength. O VI 1032-1038 Angstrom emission is expected to track the coronal lines. O VI is also expected to be the primary cooling transition for the million-degree shocked gas. An accurate measurement of the O VI line strength would significantly improve current models of the shock interaction. FUSE observations of SN 1987A in 2000 and 2001 did not detect broad O VI due to spectral contamination fiom two earlytype stars within a few arc seconds of the SN. However, O VI emission was detected with narrow line widths (FWHM less than 35 km/sec) and a heliocentric radial velocity of +280 km/sec. This places the emitting gas at rest relative to the supernova and is interpreted as emission from unshocked circumstellar gas. A new FUSE observation of SN 1987A obtained in May 2007 used a narrow slit (1.25 x 20 arcsec) to significantly reduce the spectral contamination from the two early-type stars. Yet the 2007 spectrum does not reveal any significant O VI emission. The implications of these results are discussed.

  12. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  13. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  14. Dynamics and evolution of dense stellar systems

    NASA Astrophysics Data System (ADS)

    Fregeau, John M.

    2004-10-01

    The research presented in this thesis comprises a theoretical study of several aspects relating to the dynamics and evolution of dense stellar systems such as globular clusters. First, I present the results of a study of mass segregation in two-component star clusters, based on a large number of numerical N-body simulations using our Monte-Carlo code. Heavy objects, which could represent stellar remnants such as neutron stars or black holes, exhibit behavior that is in quantitative agreement with simple analytical arguments. Light objects, which could represent free-floating planets or brown dwarfs, are predominantly lost from the cluster, as expected from simple analytical arguments, but may remain in the halo in larger numbers than expected. Using a recent null detection of planetary-mass microlensing events in M22, I find an upper limit of ˜25% at the 63% confidence level for the current mass fraction of M22 in the form of very low-mass objects. Turning to more realistic clusters, I present a study of the evolution of clusters containing primordial binaries, based on an enhanced version of the Monte-Carlo code that treats binary interactions via cross sections and analytical prescriptions. All models exhibit a long-lived “binary burning” phase lasting many tens of relaxation times. The structural parameters of the models during this phase match well those of most observed Galactic globular clusters. At the end of this phase, clusters that have survived tidal disruption undergo deep core collapse, followed by gravothermal oscillations. The results clearly show that the presence of even a small fraction of binaries in a cluster is sufficient to support the core against collapse significantly beyond the normal core collapse time predicted without the presence of binaries. For tidally truncated systems, collapse is delayed sufficiently that the cluster will undergo complete tidal disruption before core collapse. Moving a step beyond analytical prescriptions, I

  15. Applicability of VI in arid vegetation delineation using shadow-affected SPOT imagery.

    PubMed

    Gunasekara, N K; Al-Wardy, M M; Al-Rawas, G A; Charabi, Y

    2015-07-01

    GDVI(3), GDVI(2), NDVI, MSAVI and SAVI were evaluated for their dynamic ranges, the class accuracy of the Vegetation Index (VI) classifications, the effects of shadow delineation on the other land use classes and their applicability in vegetation delineation in Al-Qara Mountains, Oman. Supervised classifications of a SPOT scene by Support Vector Machines (SVM) algorithm were employed. GDVI(3) showed the widest dynamic range in all land use types, while GDVI(2) also exhibited evidently wider dynamic ranges for arid to semi-arid Al-Qara than NDVI, MSAVI and SAVI. GDVI(3) reported the highest accuracies in delineating natural vegetation (dense - 74.80%, medium-dense- 43.19%), except for low-dense vegetation (40.51%). It also performs the best in delineating bare soil and dry grass with over 80% and 60% accuracies. The attenuated reflectance created by the shadows results in VI signals in the range of dry grass to bare soil, enabling us to neglect the shadow effect on natural vegetation delineation due to below 9.50% omissions from the shadows class. GDVI(3) also limits shadow delineation better than the other indices, which will enable us to analyze spectral information recovery by the VI with the help of ground truth information under the shadows. For applications such as land degradation assessments, GDVI(3) has better prospects over the other indices explored. Saturation at high-vigor vegetation is an issue in GDVI(3), GDVI(2) and NDVI. Our study also points to a dependency of a VI's capability to weaken shadows on the number of training data pixels to be utilized in a supervised classification. PMID:26093893

  16. Probing cold dense nuclear matter.

    PubMed

    Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L

    2008-06-13

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. PMID:18511658

  17. Probing Cold Dense Nuclear Matter

    SciTech Connect

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  18. Myosin VI: cellular functions and motor properties.

    PubMed Central

    Roberts, Rhys; Lister, Ida; Schmitz, Stephan; Walker, Matthew; Veigel, Claudia; Trinick, John; Buss, Folma; Kendrick-Jones, John

    2004-01-01

    Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell. As an alternative approach, we have expressed and purified full-length myosin VI and studied its in vitro properties. Previous studies assumed that myosin VI was a dimer, but our biochemical, biophysical and electron microscopic studies reveal that myosin VI can exist as a stable monomer. We observed, using an optical tweezers force transducer, that monomeric myosin VI is a non-processive motor which, despite a relatively short lever arm, generates a large working stroke of 18 nm. Whether monomer and/or dimer forms of myosin VI exist in cells and their possible functions will be discussed. PMID:15647169

  19. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 - 8 hour Extravehicular Activities (EVAs) in a clean, controlled ISS environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 - 8 hour traditional EVAs or 576 - 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of ISS-based tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center Crew and Thermal Systems Division to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected at periodic intervals throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the development of improved cycle model tables. This paper provides a

  20. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2011-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 -- 8 hour Extravehicular Activities (EVAs) in a dust free, manufactured microgravity EVA environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 -- 8 hour traditional EVAs or 576 -- 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of International Space Station (ISS)-based EVA tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected periodically throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the

  1. Improving Memory Subsystem Performance Using ViVA: Virtual Vector Architecture

    SciTech Connect

    Gebis, Joseph; Oliker, Leonid; Shalf, John; Williams, Samuel; Yelick, Katherine

    2009-01-12

    The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changes to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.

  2. Magnetism in Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Ferrer, Efrain J.; de la Incera, Vivian

    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.

  3. Mach reflection in a warm dense plasma

    SciTech Connect

    Foster, J. M.; Rosen, P. A.; Wilde, B. H.; Hartigan, P.; Perry, T. S.

    2010-11-15

    The phenomenon of irregular shock-wave reflection is of importance in high-temperature gas dynamics, astrophysics, inertial-confinement fusion, and related fields of high-energy-density science. However, most experimental studies of irregular reflection have used supersonic wind tunnels or shock tubes, and few or no data are available for Mach reflection phenomena in the plasma regime. Similarly, analytic studies have often been confined to calorically perfect gases. We report the first direct observation, and numerical modeling, of Mach stem formation for a warm, dense plasma. Two ablatively driven aluminum disks launch oppositely directed, near-spherical shock waves into a cylindrical plastic block. The interaction of these shocks results in the formation of a Mach-ring shock that is diagnosed by x-ray backlighting. The data are modeled using radiation hydrocodes developed by AWE and LANL. The experiments were carried out at the University of Rochester's Omega laser [J. M. Soures, R. L. McCrory, C. P. Verdon et al., Phys. Plasmas 3, 2108 (1996)] and were inspired by modeling [A. M. Khokhlov, P. A. Hoeflich, E. S. Oran et al., Astrophys J. 524, L107 (1999)] of core-collapse supernovae that suggest that in asymmetric supernova explosion significant mass may be ejected in a Mach-ring formation launched by bipolar jets.

  4. Line shape modeling in warm and dense hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Gigosos, M. A.; González, M. A.

    2007-05-01

    A study of hydrogen lines emitted in warm ( T˜1eV) and dense ( N≥1018cm -3) plasmas is presented. Under such plasma conditions, the electronic and the ionic contributions to the line width are comparable, and the general question related to a transition from impact to quasi-static broadening arises not only for the far wings but also for the core of spectral lines. The transition from impact to quasi-static broadening for electrons is analyzed by means of Frequency Fluctuation Model (FFM). In parallel, direct integration of the semi-classical evolution equation is performed using electron electric fields calculated by Molecular Dynamics (MD) simulations that permit one to correctly describe the emitter environment. New cross comparisons between benchmark MD simulations and FFM are carried out for electron broadening of the Balmer series lines, and, especially, for the Hα line, for which a few experiments in the warm and dense plasma regimes are available.

  5. Oxo complexes of Mo(VI) and W(VI) with α-alkoxycarboxylate ligands: The role of counterions and water of crystallization

    NASA Astrophysics Data System (ADS)

    le Roux, Adelé; Dobrzańska, Liliana; Raubenheimer, Helgard G.; Luckay, Robert C.

    2016-08-01

    Crystal structures of three oxo complexes of Mo(VI) and W(VI) with α-alkoxycarboxylate ligands were solved, namely [(CH3CH2)4N]2[Mo2O5(Hmal)2(H2O)2] (H3mal = malic acid) (1), Na6[Mo2O5(cit)2)]·10.5H2O (H4cit = citric acid) (2) and Na2[WO2(H2cit)2]·10H2O (3). In 1, dianionic malate ligands adopt a unique bidentate coordination mode via alkoxy and α-carboxylate groups in the oxo-bridged dinuclear anionic complex, in which two terminal oxo ligands and a water molecule complete the distorted octahedral geometry around the Mo(VI) centre. In compound 2, a similar oxo-bridged dinuclear core, [Mo2O5]2+, is present. However, the distorted octahedral geometry of each Mo(VI) is completed by oxygen atoms originating from a fully deprotonated citrate ligand, adopting a tridentate coordination mode. The mononuclear complex 3, with two terminal oxo ligands and four oxygen atoms originating from two dianionic, bidentately coordinated citrate ligands positioned in a distorted octahedral geometry around W(VI), shows the presence of unique icosameric water clusters trapped within the crystal lattice.

  6. Genetics Home Reference: collagen VI-related myopathy

    MedlinePlus

    ... Genetics Home Health Conditions collagen VI-related myopathy collagen VI-related myopathy Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Collagen VI-related myopathy is a group of disorders ...

  7. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Chromium (VI). 1915.1026 Section 1915.1026 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Toxic and Hazardous Substances § 1915.1026 Chromium (VI). (a) Scope....

  8. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Chromium (VI). 1910.1026 Section 1910.1026 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1026 Chromium (VI). (a) Scope. (1) This...

  9. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Chromium (VI). 1926.1126 Section 1926.1126 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1126 Chromium (VI). (a) Scope. (1) This...

  10. [Occupational exposure to chromium(VI) compounds].

    PubMed

    Skowroń, Jolanta; Konieczko, Katarzyna

    2015-01-01

    This article discusses the effect of chromium(VI) (Cr(VI)) on human health under conditions of acute and chronic exposure in the workplace. Chromium(VI) compounds as carcinogens and/or mutagens pose a direct danger to people exposed to them. If carcinogens cannot be eliminated from the work and living environments, their exposure should be reduced to a minimum. In the European Union the proposed binding occupational exposure limit value (BOELV) for chromium(VI) of 0.025 mg/m³ is still associated with high cancer risk. Based on the Scientific Commitee of Occupational Exposure Limits (SCOEL) document chromium(VI) concentrations at 0.025 mg/m³ increases the risk of lung cancer in 2-14 cases per 1000 exposed workers. Exposure to chromium(VI) compounds expressed in Cr(VI) of 0.01 mg Cr(VI)/m3; is responsible for the increased number of lung cancer cases in 1-6 per 1000 people employed in this condition for the whole period of professional activity. PMID:26325053

  11. Uniformly dense polymeric foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  12. Dense inhibitory connectivity in neocortex

    PubMed Central

    Fino, Elodie; Yuste, Rafael

    2011-01-01

    Summary The connectivity diagram of neocortical circuits is still unknown, and there are conflicting data as to whether cortical neurons are wired specifically or not. To investigate the basic structure of cortical microcircuits, we use a novel two-photon photostimulation technique that enables the systematic mapping of synaptic connections with single-cell resolution. We map the inhibitory connectivity between upper layers somatostatin-positive GABAergic interneurons and pyramidal cells in mouse frontal cortex. Most, and sometimes all, inhibitory neurons are locally connected to every sampled pyramidal cell. This dense inhibitory connectivity is found at both young and mature developmental ages. Inhibitory innervation of neighboring pyramidal cells is similar, regardless of whether they are connected among themselves or not. We conclude that local inhibitory connectivity is promiscuous, does not form subnetworks and can approach the theoretical limit of a completely connected synaptic matrix. PMID:21435562

  13. Viscoelastic behavior of dense microemulsions

    NASA Astrophysics Data System (ADS)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  14. The Radiolysis of AmVI Solutions

    SciTech Connect

    Bruce J. Mincher

    2013-06-01

    The reduction of bismuthate-produced AmVI by 60Co gamma-rays was measured using post-irradiation UV/Vis spectroscopy. The reduction of AmVI by radiolysis was rapid, producing AmV as the sole product. Relatively low absorbed doses in the ~0.3 kGy range quantitatively reduced a solution of 2.5 x 10-4 M AmVI. The addition of bismuthate to samples during irradiation did not appear to protect AmVI from radiolytic reduction during these experiments. It was also shown here that AmV is very stable toward radiation. The quantitative reduction of the AmVI concentration here corresponds to 1.4 hours of exposure to a process solution, however the actual americium concentrations will be higher and the expected contact times short when using centrifugal contactors. Thus, the reduction rate found in these initial experiments may not be excessive.

  15. A quest for super dense aluminium

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Narayana, C.; Bellin, C.; Shukla, A.; Esteve, I.; Mezouar, N.

    2013-12-01

    The extreme pressure phase diagram of materials is important not only for understanding the interiors of planets or stars, but also for the fundamental understanding of the relation between crystal structure and electronic structure. Structural transitions induced by extreme pressure are governed by the deformation of valence electron charge density which bears the brunt of increasing compression while the relative volume occupied by the nearly incompressible ionic core electrons increases. At extreme pressures common materials are expected to transform into new dense phases with extremely compact atomic arrangements that may also have unusual physical properties. In this report, we present new experiments carried out on aluminium. A simple system like Al is not only important as a benchmark for theory, but can also be used as a standard for pressures in the TPa range and beyond which are targeted at new dynamic compression facilities such as the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in the US or Laser Mégajoule (LMJ) in Bordeaux in France. For aluminium, first principle calculations have consistently predicted a phase transition sequence from fcc to hcp and hcp to bcc in a pressure range below 0.5 TPa [Tambe et al., Phys. Rev. B 77, 172102, 2008]. The hcp phase was identified at 217 GPa in a recent experiment [Akahama et al., Phys. Rev. Lett. 96, 45505, 2006] but the detection of the predicted bcc phase has been hampered by the difficulty of routine static high pressure experiments beyond 350 GPa. Here, we report on the overcoming of this obstacle and the detection of all the structural phase transitions predicted in Al by achieving a pressure in excess of 500 GPa in the static regime in a diamond-anvil cell. In particular, using X-ray diffraction at the high-pressure beamline ID27 at the European Synchrotron Radiation Facility (ESRF), we find a bcc super-dense phase of aluminium at a pressure of 380 GPa. In this report

  16. Simplest identification, O-specific polysaccharide purification and antigenic evaluation of Salmonella enterica serovar Typhi Vi negative isolate

    PubMed Central

    Salman, Muhammad; Ali, Aamir; Jabbar, Abdul; Sarwar, Yasra; Rahman, Moazur; Iqbal, Mazhar; Haque, Abdul

    2015-01-01

    Currently licensed typhoid vaccines are based on Vi capsular polysaccharides. Recent molecular reports from typhoid endemic countries state that Salmonella enterica serovar Typhi (S. Typhi) Vi negative strains occur naturally and cause typhoid fever which is indistinguishable from disease caused by Vi positive strains. Vaccine based on Vi polysaccharide may not protect patients if the invading S. Typhi are negative for Vi. The lipopolysaccharide (LPS) is an essential component of S. Typhi outer membrane in which O-specific polysaccharide (OSP) is a protective antigen and universal candidate for vaccine development. In this study, S. Typhi Vi negative isolates were discriminated from Vi positive isolates through a duplex PCR using primers of fliC-d (599bp) and tviA (495bp) genes. The LPS of S. Typhi Vi negative isolates was extracted by hot phenol method and OSP was purified by core hydrolysis. The yield of extracted LPS was 91 mg/L and that of purified OSP was 49.14 mg/L of culture broth. LPS showed ladder like appearance by zinc imidazole staining following SDS-PAGE. Whole cell challenged mice sera were used for in vitro antigenicity evaluation of the purified LPS and OSP. The antigenicity was found adequate by immunodiffusion assay. To our knowledge, this is the first report of purification and antigenic evaluation of LPS of a Vi negative S. Typhi isolate. The purified OSP from S. Typhi Vi negative isolate may be coupled with a carrier protein to produce universal low cost conjugate vaccine candidates for use in typhoid endemic regions. PMID:26600755

  17. The performance of dense medium processes

    SciTech Connect

    Horsfall, D.W.

    1993-12-31

    Dense medium washing in baths and cyclones is widely carried out in South Africa. The paper shows the reason for the preferred use of dense medium processes rather than gravity concentrators such as jigs. The factors leading to efficient separation in baths are listed and an indication given of the extent to which these factors may be controlled and embodied in the deployment of baths and dense medium cyclones in the planning stages of a plant.

  18. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  19. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  20. The Transition from Diffuse to Dense Gas in Herschel Dust Emission Maps

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul

    Dense cores in dark clouds are the sites where young stars form. These regions manifest as relatively small (<0.1pc) pockets of cold and dense gas. If we wish to understand the star formation process, we have to understand the physical conditions in dense cores. This has been a main aim of star formation research in the past decade. Today, we do indeed possess a good knowledge of the density and velocity structure of cores, as well as their chemical evolution and physical lifetime. However, we do not understand well how dense cores form out of the diffuse gas clouds surrounding them. It is crucial that we constrain the relationship between dense cores and their environment: if we only understand dense cores, we may be able to understand how individual stars form --- but we would not know how the star forming dense cores themselves come into existence. We therefore propose to obtain data sets that reveal both dense cores and the clouds containing them in the same map. Based on these maps, we will study how dense cores form out of their natal clouds. Since cores form stars, this knowledge is crucial for the development of a complete theoretical and observational understanding of the formation of stars and their planets, as envisioned in NASA's Strategic Science Plan. Fortunately, existing archival data allow to derive exactly the sort of maps we need for our analysis. Here, we describe a program that exclusively builds on PACS and SPIRE dust emission imaging data from the NASA-supported Herschel mission. The degree-sized wide-field Herschel maps of the nearby (<260pc) Polaris Flare and Aquila Rift clouds are ideal for our work. They permit to resolve dense cores (<0.1pc), while the maps also reveal large-scale cloud structure (5pc and larger). We will generate column density maps from these dust emission maps and then run a tree-based hierarchical multi-scale structure analysis on them. Only this procedure permits to exploit the full potential of the maps: we will

  1. Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI).

    PubMed

    Nyman, Jennifer L; Wu, Hsin-I; Gentile, Margaret E; Kitanidis, Peter K; Criddle, Craig S

    2007-09-15

    The stimulation of microbial U(VI) reduction is currently being investigated as a means to reduce uranium's mobility in groundwater, but little is known about the concentration at which U(VI) might inhibit microbial activity, or the effect of U(VI) on bacterial community structure. We investigated these questions with an ethanol-fed U(VI)- and sulfate-reducing enrichment developed from sediment from the site of an ongoing field biostimulation experiment at Area 3 of the Oak Ridge Field Research Center (FRC). Sets of triplicate enrichments were spiked with increasing concentrations of U(VI) (from 49 microm to 9.2 mM). As the U(VI) concentration increased to 224 microM, the culture's production of acetate from ethanol slowed, and at or above 1.6 mM U(VI) little acetate was produced over the time frame of the experiment. An uncoupling inhibition model was applied to the data, and the inhibition coefficient for U(VI), Ku, was found to be approximately 100 microM U(VI), or 24 mg/L, indicating the inhibitory effect is relevant at highly contaminated sites. Microbial community structure at the conclusion of the experiment was analyzed with terminal restriction fragment length polymorphism (T-RFLP) analysis. T-RFs associated with Desulfovibrio-like organisms decreased in relative abundance with increasing U(VI) concentration, whereas Clostridia-like T-RFs increased. PMID:17948804

  2. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used. PMID:17355086

  3. Role of dense matter in collective supernova neutrino transformations

    SciTech Connect

    Esteban-Pretel, A.; Pastor, S.; Mirizzi, A.; Tomas, R.; Raffelt, G. G.; Serpico, P. D.; Sigl, G.

    2008-10-15

    For neutrinos streaming from a supernova core, dense matter suppresses self-induced flavor transformations if the electron density n{sub e} significantly exceeds the neutrino density n{sub {nu}} in the conversion region. If n{sub e} is comparable to n{sub {nu}}, one finds multiangle decoherence, whereas the standard self-induced transformation behavior requires that in the transformation region n{sub {nu}} is safely above n{sub e}. This condition need not be satisfied in the early phase after the supernova core bounce. Our new multiangle effect is a subtle consequence of neutrinos traveling on different trajectories when streaming from a source that is not pointlike.

  4. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.

  5. A mechanochemical model for myosin VI

    NASA Astrophysics Data System (ADS)

    Tehver, Riina; Jack, Amanda; Lowe, Ian

    Myosin VI is a motor protein that transports cellular cargo along actin filaments. This transport takes place as a result of a coordinated mechano-chemical cycle that is controlled by external variables including imposed force and nucleotide concentrations. We present a model that captures the different dynamic pathways that myosin VI can take in response to these variables. The results of our model for experimentally observable quantities, such as the motor velocity or run length, agree with available experimental data, and we can also make predictions beyond the tested regimes. Using the model, we study how myosin VI reacts to its environment and test its operational efficiency.

  6. Percolation in dense storage arrays

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Scott; Wilcke, Winfried W.; Garner, Robert B.; Huels, Harald

    2002-11-01

    As computers and their accessories become smaller, cheaper, and faster the providers of news, retail sales, and other services we now take for granted on the Internet have met their increasing computing needs by putting more and more computers, hard disks, power supplies, and the data communications linking them to each other and to the rest of the wired world into ever smaller spaces. This has created a new and quite interesting percolation problem. It is no longer desirable to fix computers, storage or switchgear which fail in such a dense array. Attempts to repair things are all too likely to make problems worse. The alternative approach, letting units “fail in place”, be removed from service and routed around, means that a data communications environment will evolve with an underlying regular structure but a very high density of missing pieces. Some of the properties of this kind of network can be described within the existing paradigm of site or bond percolation on lattices, but other important questions have not been explored. I will discuss 3D arrays of hundreds to thousands of storage servers (something which it is quite feasible to build in the next few years), and show that bandwidth, but not percolation fraction or shortest path lengths, is the critical factor affected by the “fail in place” disorder. Redundancy strategies traditionally employed in storage systems may have to be revised. Novel approaches to routing information among the servers have been developed to minimize the impact.

  7. Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands.

    PubMed

    Xiao, Cheng-Liang; Wu, Qun-Yan; Wang, Cong-Zhi; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-10-20

    The preorganized tetradentate 2,9-diamido-1,10-phenanthroline ligand with hard-soft donors combined in the same molecule has been found to possess high selectivity toward actinides in an acidic aqueous solution. In this work, density functional theory (DFT) coupled with the quasi-relativistic small-core pseudopotential method was used to investigate the structures, bonding nature, and thermodynamic behavior of uranium(VI), neptunium(V), and plutonium(IV,VI) with phenanthrolineamides. Theoretical optimization shows that Et-Tol-DAPhen and Et-Et-DAPhen ligands are both coordinated with actinides in a tetradentate chelating mode through two N donors of the phenanthroline moiety and two O donors of the amide moieties. It is found that [AnO2L(NO3)](n+) (An = U(VI), Np(V), Pu(VI); n = 0, 1) and PuL(NO3)4 are the main 1:1 complexes. With respect to 1:2 complexes, the reaction [Pu(H2O)9](4+)(aq) + 2L(org) + 2NO3(-)(aq) → [PuL2(NO3)2](2+)(org) + 9H2O(aq) might be another probable extraction mechanism for Pu(IV). From the viewpoint of energy, the phenanthrolineamides extract actinides in the order of Pu(IV) > U(VI) > Pu(VI) > Np(V), which agrees well with the experimental results. Additionally, all of the thermodynamic reactions are more energetically favorable for the Et-Tol-DAPhen ligand than the Et-Et-DAPhen ligand, indicating that substitution of one ethyl group with one tolyl group can enhance the complexation abilities toward actinide cations (anomalous aryl strengthening). PMID:25268674

  8. Water in dense molecular clouds

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Kuiper, T. B. H.; Frerking, M. A.; Gulkis, S.; Pickett, H. M.; Wilson, W. J.; Pagani, L.; Lecacheux, A.; Encrenaz, P.

    1991-01-01

    The G.P. Kuiper Airborne Observatory (KAO) was used to make initial observations of the half-millimeter ground-state transition of water in seven giant molecular clouds and in two late-type stars. No significant detections were made, and the resulting upper limits are significantly below those expected from other, indirect observations and from several theoretical models. The implied interstellar H2O/CO abundance is less than 0.003 in the cores of three giant molecular clouds. This value is less than expected from cloud chemistry models and also than estimates based on HDO and H3O(+) observations.

  9. Crystallization of dense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1974-01-01

    The equation of state for cold neutron matter at high density is studied in the t-matrix formulation, and it is shown that energetically it is convenient to have neutrons in a crystalline configuration rather than in a liquid state for values of the density exceeding 1600 Tg/cu cm. The study of the mechanical properties indicates that the system is stable against shearing stresses. A solid core in the deep interior of heavy neutron stars appears to offer the most plausible explanation of speed-ups observed in the Vela pulsar.

  10. U(VI) Adsorption on Aquifer Sediments at the Hanford Site

    SciTech Connect

    Um, Wooyong; Serne, R. Jeffrey; Brown, Christopher F.; Last, George V.

    2007-08-15

    Aquifer core samples collected in three new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Formation Unit E dominated by gravel and sand. High iron-oxide content in iron (Fe) oxide/clay coatings caused the highest U(VI) adsorption as quantified by Kd values, indicating these hydrous iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. In batch adsorption tests with varying total U(VI) concentrations in spiked groundwater, a linear isotherm up to 1 ppm of total U(VI) concentration was observed. However, U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at elevated pH and high carbonate conditions. A small amount of uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption Kd values for aged uranium-contaminated sediments at the Hanford Site can be larger than Kd values determined in short-term laboratory experiments and slow uranium release into the groundwater is expected.

  11. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  12. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  13. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  14. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  15. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  16. 40 CFR 144.18 - Requirements for Class VI wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Requirements for Class VI wells. 144.18 Section 144.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Requirements for Class VI wells. Owners or operators of Class VI wells must obtain a permit. Class VI...

  17. 19 CFR Annex Vi to Part 351 - Countervailing Investigations Timeline

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Countervailing Investigations Timeline VI Annex VI to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex VI Annex VI to Part 351—Countervailing Investigations Timeline ER19MY97.000...

  18. 40 CFR 144.18 - Requirements for Class VI wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Requirements for Class VI wells. 144.18 Section 144.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Requirements for Class VI wells. Owners or operators of Class VI wells must obtain a permit. Class VI...

  19. 19 CFR Annex Vi to Part 351 - Countervailing Investigations Timeline

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Countervailing Investigations Timeline VI Annex VI to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex VI Annex VI to Part 351—Countervailing Investigations Timeline ER19MY97.000...

  20. 24 CFR 971.11 - HOPE VI developments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false HOPE VI developments. 971.11... § 971.11 HOPE VI developments. Developments with HOPE VI implementation grants that have approved HOPE VI revitalization plans will be treated as having shown the ability to achieve long-term...

  1. 40 CFR 144.18 - Requirements for Class VI wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Requirements for Class VI wells. 144.18 Section 144.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Requirements for Class VI wells. Owners or operators of Class VI wells must obtain a permit. Class VI...

  2. 40 CFR 144.18 - Requirements for Class VI wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Requirements for Class VI wells. 144.18 Section 144.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Requirements for Class VI wells. Owners or operators of Class VI wells must obtain a permit. Class VI...

  3. 24 CFR 971.11 - HOPE VI developments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false HOPE VI developments. 971.11... § 971.11 HOPE VI developments. Developments with HOPE VI implementation grants that have approved HOPE VI revitalization plans will be treated as having shown the ability to achieve long-term...

  4. 19 CFR Annex Vi to Part 351 - Countervailing Investigations Timeline

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Countervailing Investigations Timeline VI Annex VI to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex VI Annex VI to Part 351—Countervailing Investigations Timeline ER19MY97.000...

  5. 24 CFR 971.11 - HOPE VI developments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false HOPE VI developments. 971.11... § 971.11 HOPE VI developments. Developments with HOPE VI implementation grants that have approved HOPE VI revitalization plans will be treated as having shown the ability to achieve long-term...

  6. 24 CFR 971.11 - HOPE VI developments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false HOPE VI developments. 971.11... § 971.11 HOPE VI developments. Developments with HOPE VI implementation grants that have approved HOPE VI revitalization plans will be treated as having shown the ability to achieve long-term...

  7. 19 CFR Annex Vi to Part 351 - Countervailing Investigations Timeline

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Countervailing Investigations Timeline VI Annex VI to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex VI Annex VI to Part 351—Countervailing Investigations Timeline ER19MY97.000...

  8. 19 CFR Annex Vi to Part 351 - Countervailing Investigations Timeline

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Countervailing Investigations Timeline VI Annex VI to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex VI Annex VI to Part 351—Countervailing Investigations Timeline ER19MY97.000...

  9. Modeling the multiphase flow in a dense medium cyclone

    SciTech Connect

    Wang, B.; Chu, K.W.; Yu, A.B.; Vince, A.

    2009-04-15

    A mathematical model is proposed to describe the multiphase flow in a dense-medium cyclone (DMC). In this model, the volume of fluid multiphase model is first used to determine the shape and position of the air core, and then the mixture multiphase model is employed to describe the flow of the dense medium (comprising finely ground magnetite in water) and the air core, where the turbulence is described by the Reynolds stress model. The results of fluid flow are finally used in the simulation of coal particle flow described by the stochastic Lagrangian particle tracking model. The validity of the proposed approach is verified by the reasonably good agreement between the measured and predicted results under different conditions. The flow features in a DMC are then examined in terms of factors such as flow field, pressure drop, particle trajectories, and separation efficiency. The results are used to explain the key characteristics of flow in DMCs, such as the origin of a short-circuit flow, the flow pattern, and the motion of coal particles. Moreover, the so-called surging phenomenon is examined in relation to the instability of fluid flow. The model offers a convenient method to investigate the effects of variables related to geometrical and operational conditions on the performance of DMCs.

  10. Rheology of water ices V and VI

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1996-01-01

    We have measured the mechanical strength (??) of pure water ices V and VI under steady state deformation conditions. Constant displacement rate compressional tests were conducted in a gas apparatus at confining pressures from 400 250 K. Ices V and VI are thus Theologically distinct but by coincidence have approximately the same strength under the conditions chosen for these experiments. To avoid misidentification, these tests are therefore accompanied by careful observations of the occurrences and characteristics of phase changes. One sample each of ice V and VI was quenched at pressure to metastably retain the high-pressure phase and the acquired deformation microstructures; X ray diffraction analysis of these samples confirmed the phase identification. Surface replicas of the deformed and quenched samples suggest that ice V probably deforms largely by dislocation creep, while ice VI deforms by a more complicated process involving substantial grain size reduction through recrystallization.

  11. Wide-gap II-VI heterostructures

    NASA Astrophysics Data System (ADS)

    Gunshor, R. L.; Kolodziejski, L. A.; Kobayashi, M.; Otsuka, N.; Nurmikko, A. V.

    1990-04-01

    Recent advances in the growth of II-VI/II-VI and II-VI/III-V heterostructures based on the widegap II-VI semiconductors CdTe and ZnTe are discussed. The potentially important pseudomorphic epilayer/epilayer heterojunction consisting of ZnTe on AlSb has been grown by MBE and characterized. Both microstructural and optical evaluation indicate a high degree of structural quality and the potential for future development of novel light-emitting device structures. Metastable zincblende MnTe, for which TEM and X-ray evaluation reveal the presence of only zincblende phases, has been grown by MBE. Single quantum well structures using zincblende MnTe for the barrier layers have been fabricated and found to show strong carrier confinement, further confirming the predicted zincblende MnTe bandgap at 3.2 eV.

  12. ETS-VI multibeam satellite communications systems

    NASA Astrophysics Data System (ADS)

    Kawai, Makoto; Tanaka, Masayoshi; Ohtomo, Isao

    1989-10-01

    The fixed and mobile satellite communications systems of the Japanese Engineering Test Satellite-VI (ETS-VI) are described. The system requirements are outlined along with the system configuration. The ETS-VI multibeam system employs three frequency bands. When used for Ka-band fixed communications, it covers the Japanese main islands with thirteen 0.3-degree-wide spot beam. Four of the beams are active for ETS-VI. When used for S-band mobile communications, five beams cover the area within 200 nautical miles from the Japanese coast. The C-band beam for fixed communications covers the central area of the Japanese main islands with a single beam. The onboard antenna system is described along with the transponders and their associated onboard systems. A discussion of the system technology follows, covering the TDMA transmisssion system, the relay function, rainfall compensation, and the antenna and propagation performance.

  13. XAS investigations of Fe(VI).

    SciTech Connect

    Kemner, K. M.; Kelly, S. D.; Orlandini, K. A.; Tsapin, A. I.; Goldfeld, M. G.; Perfiliev, Y. D.; Nealson, K. H.; Environmental Research; APS-USR; Jet Propulsion Lab.; Moscow State Univ.

    2001-03-01

    Recent attention has been given to a reexamination of results from the early Viking missions to Mars that suggested the presence of one or more strong oxidants in Martian soil. Since Fe is one of the main constituents of the Martian surface and Fe(VI) is known to be a highly reactive, strong oxidant, we have made XANES and EXAFS measurements of Fe(II), Fe(III), Fe(IV), and Fe(VI) in solid and solution forms. Results from these studies indicate a pre-edge XANES feature from Fe(VI) samples similar to that commonly seen from Cr(VI) samples. Results of first shell analysis indicate a linear relationship between the Fe-O bond length and Fe valence state.

  14. Biotreatment of chromium (VI) effluents

    SciTech Connect

    Tavares, T.; Neto, P.; Martins, C.

    1995-12-31

    The presence of heavy metals in industrial wastewaters is still a serious problem for some local small and medium size industries. Particularly electroplating and tanneries produce highly concentrated chromium effluents, which are treated by traditional physico-chemical processes. Those are able to reduce the total chromium concentration from some hundreds of mg.l{sup {minus}1} to very low concentrations, but the allowable final value of 0.1 mg.l{sup {minus}1} is hardly obtained as the referred processes become too costly for those small and medium size industries. The aim of these studies is the definition of an efficient system, economically attractive and friendly to the environment, based on the ability of some microorganisms to concentrate heavy metals. This system would be used as a final treatment step to remove low concentrations of hexavalent chromium. Three different bacteria were used in batch systems to evaluate their resistance to Cr(VI) and their ability to reduce it to the trivalent form. The results were compared with those obtained with microorganisms isolated from sludge of treatment plants receiving wastewater loaded with chromium. One of those bacteria was supported on granular activated carbon and the biofilm was optimized in terms of adhesion and removal efficiency. The chromium adsorption capacity of the support was also studied as albeit it is known that adsorption is not used for heavy metals removal, granular activated carbon is an excellent immobilization support for the biofilm and certainly has some responsibility on the chromium fixation process.

  15. Structure development models of ETS-VI

    NASA Astrophysics Data System (ADS)

    Katagi, Tsuguhiko; Tsujihata, Akio; Nishio, Masanobu; Kuwao, Fumihiro; Tsukashima, Takashi; Katoh, Tatsuo; Akaeda, Tadayoshi

    Japan's Engineering Test Satellite (ETS) VI has been designed to conduct several communications experiments relevant to future direct-broadcasting satellites and is currently in its design finalization phase. Two structure-development models have accordingly been devised for static and dynamic loading tests, respectively. Results are presented from the ETS VI development models' modal survey, acoustics, sinusoid vibration, pyrotechnic shock, alignment, and mass properties tests.

  16. Dermal ultrastructure in collagen VI myopathy.

    PubMed

    Hermanns-Lê, Trinh; Piérard, Gérald E; Piérard-Franchimont, Claudine; Delvenne, Philippe

    2014-04-01

    The COL VI mutations are responsible for a spectrum of myopathies. The authors report cutaneous ultrastructural alterations in a patient with COL6A2 myopathy. The changes include variations in size of collagen fibrils, flower-like sections of collagen fibrils, as well as thickening of vessel and nerve basement membranes. Electron microscopy of a skin biopsy contributes to the diagnosis of COL VI myopathies. PMID:24134684

  17. O VI IN THE LOCAL INTERSTELLAR MEDIUM

    SciTech Connect

    Barstow, M. A.; Boyce, D. D.; Barstow, J. K.; Forbes, A. E.; Preval, S.; Welsh, B. Y.; Lallement, R.

    2010-11-10

    We report the results of a search for O VI absorption in the spectra of 80 hot DA white dwarfs observed by the FUSE satellite. We have carried out a detailed analysis of the radial velocities of interstellar and (where present) stellar absorption lines for the entire sample of stars. In approximately 35% of cases (where photospheric material is detected), the velocity differences between the interstellar and photospheric components were beneath the resolution of the FUSE spectrographs. Therefore, in 65% of these stars the interstellar and photospheric contributions could be separated and the nature of the O VI component unambiguously determined. Furthermore, in other examples, where the spectra were of a high signal-to-noise, no photospheric material was found and any O VI detected was assumed to be interstellar. Building on the earlier work of Oegerle et al. and Savage and Lehner, we have increased the number of detections of interstellar O VI and, for the first time, compared their locations with both the soft X-ray background emission and new detailed maps of the distribution of neutral gas within the local interstellar medium. We find no strong evidence to support a spatial correlation between O VI and SXRB emission. In all but a few cases, the interstellar O VI was located at or beyond the boundaries of the local cavity. Hence, any T {approx} 300,000 K gas responsible for the O VI absorption may reside at the interface between the cavity and surrounding medium or in that medium itself. Consequently, it appears that there is much less O VI-bearing gas than previously stated within the inner rarefied regions of the local interstellar cavity.

  18. ORNL fission product release tests VI-6

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Collins, J.L.; Lee, C.S.

    1991-01-01

    The ORNL fission product release tests investigate release and transport of the major fission products from high-burnup fuel under LWR accident conditions. The two most recent tests (VI-4 and VI-5) were conducted in hydrogen. In three previous tests in this series (VI-1, VI-2, and VI-3), which had been conducted in steam, the oxidized Zircaloy cladding remained largely intact and acted as a barrier to steam reaction with the UO{sub 2}. Test VI-6 was designed to insure significant oxidation of the UO{sub 2} fuel, which has been shown to enhance release of certain fission products, especially molybdenum and ruthenium. The BR3 fuel specimen used in test VI-6 will be heated in hydrogen to 2300 K; the Zircaloy cladding is expected to melt and runoff at {approximately}2150 K. Upon reaching the 2300 K test temperature, the test atmosphere will be changed to steam, and that temperature will be maintained for 60 min, with the three collection trains being operated for 2-, 18-, and 40-min periods. The releases of {sup 85}Kr and {sup 137}Cs will be monitored continuously throughout the test. Posttest analyses of the material collected on the three trains will provide results on the release and transport of Mo, Ru, Sb, Te, Ba, Ce, and Eu as a function of time at 2300 K. Continuous monitoring of the hydrogen produced during the steam atmosphere period at high temperature will provide a measure of the oxidation rate of the cladding and fuel. Following delays in approval of the safety documentation and in decontamination of the hot cell and test apparatus, test VI-6 will be conducted in late May.

  19. DUBLIN CORE

    EPA Science Inventory

    The Dublin Core is a metadata element set intended to facilitate discovery of electronic resources. It was originally conceived for author-generated descriptions of Web resources, and the Dublin Core has attracted broad ranging international and interdisciplinary support. The cha...

  20. Ferrate(VI) oxidation of aqueous cyanide

    SciTech Connect

    Sharma, V.K.; Rivera, W.; Smith, J.O.; O`Brien, B.

    1998-09-01

    The rates of oxidation of cyanide with Fe(VI) were measured as a function of pH and temperature. The reaction was found to be first order for each reactant. The rates decrease with increasing pH. The energy of activation was found to be 38.9 {+-} 1.0 kJ mol{sup {minus}1} at pH 9.0. The removal of cyanide by oxidation with Fe(VI) was studied at pH 7.5, 9.0, and 12.0. Fe(VI) removal efficiency was greater at pH 9.0 than at pH 7.5 and 12.0. At pH 9.0, Fe(VI) molar consumption was nearly equal to that of oxidized cyanide. Cyanate and nitrite ions were identified as the products of the reaction at pH 7.5. The experiments indicated 1:1 stoichiometric conversion of cyanide to nitrite ion at pH 9.0 and 12.0. Experiments were conducted to test the Fe(VI) removal efficiency of cyanide in electroplating rinsewater. The results indicate that Fe(VI) has the potential to serve as a reliable and safe oxidative treatment for removing cyanide in wastewater effluent.

  1. Atomic Transitions in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Murillo, Michael Sean

    Motivation for the study of hot, dense ( ~solid density) plasmas has historically been in connection with stellar interiors. In recent years, however, there has been a growing interest in such plasmas due to their relevance to short wavelength (EUV and x-ray) lasers, inertial confinement fusion, and optical harmonic generation. In constrast to the stellar plasmas, these laboratory plasmas are typically composed of high-z elements and are not in thermal equilibrium. Descriptions of nonthermal plasma experiments must necessarily involve the consideration of the various atomic processes and the rates at which they occur. Traditionally, the rates of collisional atomic processes are calculated by considering a binary collision picture. For example, a single electron may be taken to collisionally excite an ion. A cross section may be defined for this process and, multiplying by a flux, the rate may be obtained. In a high density plasma this binary picture clearly breaks down as the electrons no longer act independently of each other. The cross section is ill-defined in this regime and another approach is needed to obtain rates. In this thesis an approach based on computing rates without recourse to a cross section is presented. In this approach, binary collisions are replaced by stochastic density fluctuations. It is then these density fluctuations which drive transitions in the ions. Furthermore, the oscillator strengths for the transitions are computed in screened Coulomb potentials which reflect the average polarization of the plasma near the ion. Numerical computations are presented for the collisional ionization rate. The effects of screening in the plasma -ion interaction are investigated for He^+ ions in a plasma near solid density. It is shown that dynamic screening plays an important role in this process. Then, density effects in the oscillator strength are explored for both He^+ and Ar^{+17}. Approximations which introduce a nonorthogonality between the initial

  2. Diffusion of U(VI) in Opalinus Clay: Influence of temperature and humic acid

    NASA Astrophysics Data System (ADS)

    Joseph, C.; Van Loon, L. R.; Jakob, A.; Steudtner, R.; Schmeide, K.; Sachs, S.; Bernhard, G.

    2013-05-01

    The diffusion of U(VI) (c0 = 1 × 10-6 mol/L) in compacted Opalinus Clay from the Mont Terri underground laboratory, Switzerland, was studied in the absence and presence of humic acid (10 mg/L) at two different temperatures (25 °C, 60 °C) under anaerobic conditions. As background electrolyte synthetic Opalinus Clay pore water (pH 7.6, I = 0.36 mol/L) was used. The diffusion-accessible porosity, ɛ, was determined for each Opalinus Clay bore core sample by through-diffusion experiments with tritiated water (HTO) before the U(VI) diffusion experiments were carried out. The values for the effective diffusion and distribution coefficients De and Kd obtained for U(VI) and humic acid at 25 °C as well as at 60 °C showed that humic acid has no significant influence on the U(VI) diffusion. The diffusion profiles of humic acid in Opalinus Clay at 25 and 60 °C indicate the contributions of two different humic acid particle size fractions (<1 kDa and 10-100 kDa). The small-sized humic acid fraction diffused through the whole Opalinus Clay samples at both temperatures within the 3 month duration of the U(VI) diffusion experiments. At 60 °C, diffusion profiles of two different U(VI) species were observed. In a separate experiment the U(VI) speciation in the source reservoir solution at 60 °C was analyzed by laser-induced fluorescence spectroscopy, photon correlation spectroscopy and scanning electron microscopy with an energy dispersive X-ray detector. The two diffusion profiles could be attributed to an unknown colloidal and a known aquatic U(VI) species (Ca2UO2(CO3)3(aq)). The diffusion results showed that the interaction of U(VI) and of the large-sized humic acid colloid fraction with the clay is stronger at 60 °C. An increase of Kd from 0.025 ± 0.003 m3/kg at 25 °C to 0.25 ± 0.05 m3/kg for U(VI)colloidal at 60 °C was determined. In addition, the value for De of U(VI) increased with increasing temperature. Using the De values at 25 and 60 °C, a preliminary

  3. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI).

    PubMed

    Ohnuki, Toshihiko; Aoyagi, Hisao; Kitatsuji, Yoshihiro; Samadfam, Mohammad; Kimura, Yasuhiko; William Purvis, O

    2004-01-01

    The uptake of plutonium(VI) and uranium(VI) by lichen biomass was studied in the foliose lichen Parmotrema tinctorum to elucidate the migration behavior of Pu and U in the terrestrial environment. Pu and U uptake by P. tinctorum averaged 0.040+/-0.010 and 0.055+/-0.015 g gdry (-1), respectively, after 96 h incubation with 4.0 x 10(14) mol 1(-1) Pu solutions of pH 3, 4 and 5. SEM observations showed that the accumulated Pu is evenly distributed on the upper and lower surfaces of P. tinctorum, in contrast to U(VI), which accumulated in both cortical and medullary layers. UV/VIS absorption spectroscopy demonstrates that a fraction of Pu(VI) in the solution is reduced to Pu(V) by the organic substances released from P. tinctorum, and the accumulated Pu on the surface is reduced to Pu(IV), while U(VI) keeps the oxidation state of VI. Since the solubility of Pu(IV) hydroxides is very low, reduced Pu(VI) does not penetrate to the medullary layers, but is probably precipitated as Pu(IV) hydroxides on the cortical lichen surface. It is concluded that the uptake and reduction of Pu(VI) by lichens is important to determine the mobilization and oxidation states of Pu in the terrestrial environment. PMID:15381325

  4. Grain Alignment in Starless Cores

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to {{A}V}˜ 48. We find that {{P}K}/{{τ }K} continues to decline with increasing AV with a power law slope of roughly -0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by {{A}V}≳ 20 the slope for P versus τ becomes ˜-1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than {{A}V}˜ 20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  5. Formation and evolution of black holes in dense star clusters

    NASA Astrophysics Data System (ADS)

    Goswami, Sanghamitra

    Using supercomputer simulations combining stellar dynamics and stellar evolution, we have studied various problems related to the existence of black holes in dense star clusters. We consider both stellar and intermediate-mass black holes, and we focus on massive, dense star clusters, such as old globular clusters and young, so called "super star clusters." The first problem concerns the formation of intermediate-mass black holes in young clusters through the runaway collision instability. A promising mechanism to form intermediate-mass black holes (IMBHs) is runaway mergers in dense star clusters, where main-sequence stars collide re- peatedly and form a very massive star (VMS), which then collapses to a black hole (BH). Here we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code to model systems with N as high as 10^6 stars. Our Monte Carlo code includes an explicittreatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs, as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation we generally see a decrease in core collapse time (tcc). Although for smaller degrees of primordial mass segregation this decrease in tcc is mostly due to the change in the density profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the core which reduces the central relaxation time, decreasing tcc. Finally, flatter IMFs generally increase the average mass in the whole cluster, which increases tcc. For the range of IMFs investigated in this thesis, this increase in tcc is to some degree balanced by stellar collisions, which accelerate core collapse. Thus there is no

  6. 'STARLESS' SUPER-JEANS CORES IN FOUR GOULD BELT CLOUDS

    SciTech Connect

    Sadavoy, Sarah I.; Di Francesco, James; Johnstone, Doug

    2010-07-20

    From a survey of 729 cores based on JCMT/SCUBA data, we present an analysis of 17 candidate starless cores with masses that exceed their stable Jeans masses. We re-examine the classification of these super-Jeans cores using Spitzer maps and find that 3 are re-classified as protostellar, 11 have ambiguous emission near the core positions, and 3 appear to be genuinely starless. We suggest that the 3 starless and 11 undetermined super-Jeans cores represent excellent targets for future observational and computational study to understand the evolution of dense cores and the process of star formation.

  7. Neutrino Propagation in Dense Magnetized Matter

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.

    2009-01-01

    We obtained a complete system of solutions of the Dirac-Pauli equation for a massive neutrino interacting with dense matter and strong electromagnetic field. We demonstrated that these solutions can describe precession of the neutrino spin.

  8. Wide Variation Seen in 'Dense' Breast Diagnoses

    MedlinePlus

    ... defined mammography patients' breasts as dense. Higher breast density is a risk factor for breast cancer, experts ... could have implications for the so-called breast density notification laws that have been passed in about ...

  9. Molecular dynamics for dense matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  10. Dissociation energy of molecules in dense gases

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.

    1992-01-01

    A general approach is presented for calculating the reduction of the dissociation energy of diatomic molecules immersed in a dense (n = less than 10 exp 22/cu cm) gas of molecules and atoms. The dissociation energy of a molecule in a dense gas differs from that of the molecule in vacuum because the intermolecular forces change the intramolecular dynamics of the molecule, and, consequently, the energy of the molecular bond.

  11. Dense loading of catalyst improves hydrotreater performance

    SciTech Connect

    Nooy, F.M.

    1984-11-12

    This paper discusses the advantages of increased capacity and improved catalyst/oil contact in existing hydrotreating units. The similarities between catalyst loading and other material processes are reviewed. Catalyst bed activity is examined. Dense loading systems are reviewed in detail. Over the last years, many refiners have gained experience with the benefits of dense loading techniques, and these techniques are gaining more and more acceptance.

  12. Fabric variables in dense sheared suspensions

    NASA Astrophysics Data System (ADS)

    Radjai, Farhang; Amarsid, Lhassan; Delenne, Jean-Yves

    The rheology of granular flows and dense suspensions can be described in terms of their effective shear and bulk viscosities as a function of packing fraction. Using stress partition and equivalence between frictional and viscous descriptions in the dense state, we show that the effective viscosities can be expressed in terms of the force-network anisotropy. This is supported by our extensive DEM-LBM simulations for a broad range of inertial and viscous parameters.

  13. High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas.

    PubMed

    Murakami, Motohiko; Goncharov, Alexander F; Hirao, Naohisa; Masuda, Ryo; Mitsui, Takaya; Thomas, Sylvia-Monique; Bina, Craig R

    2014-01-01

    The possible presence of dense magmas at Earth's core-mantle boundary is expected to substantially affect the dynamics and thermal evolution of Earth's interior. However, the thermal transport properties of silicate melts under relevant high-pressure conditions are poorly understood. Here we report in situ high-pressure optical absorption and synchrotron Mössbauer spectroscopic measurements of iron-enriched dense silicate glasses, as laboratory analogues for dense magmas, up to pressures of 85 GPa. Our results reveal a significant increase in absorption coefficients, by almost one order of magnitude with increasing pressure to ~50 GPa, most likely owing to gradual changes in electronic structure. This suggests that the radiative thermal conductivity of dense silicate melts may decrease with pressure and so may be significantly smaller than previously expected under core-mantle boundary conditions. Such dark magmas heterogeneously distributed in the lower mantle would result in significant lateral heterogeneity of heat flux through the core-mantle boundary. PMID:25384573

  14. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  15. 24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES FOR A BRASS GATE VALVE BODY MADE ON A CORE BOX, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  16. ViA: a perceptual visualization assistant

    NASA Astrophysics Data System (ADS)

    Healey, Chris G.; St. Amant, Robert; Elhaddad, Mahmoud S.

    2000-05-01

    This paper describes an automated visualized assistant called ViA. ViA is designed to help users construct perceptually optical visualizations to represent, explore, and analyze large, complex, multidimensional datasets. We have approached this problem by studying what is known about the control of human visual attention. By harnessing the low-level human visual system, we can support our dual goals of rapid and accurate visualization. Perceptual guidelines that we have built using psychophysical experiments form the basis for ViA. ViA uses modified mixed-initiative planning algorithms from artificial intelligence to search of perceptually optical data attribute to visual feature mappings. Our perceptual guidelines are integrated into evaluation engines that provide evaluation weights for a given data-feature mapping, and hints on how that mapping might be improved. ViA begins by asking users a set of simple questions about their dataset and the analysis tasks they want to perform. Answers to these questions are used in combination with the evaluation engines to identify and intelligently pursue promising data-feature mappings. The result is an automatically-generated set of mappings that are perceptually salient, but that also respect the context of the dataset and users' preferences about how they want to visualize their data.

  17. Radio core dominance of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are < log Rrangle = 0.99±0.87 for FDBs and < log Rrangle = -0.62±1.15 for the non-FDBs. A K-S test shows that the probability for the two distributions of FDBs and non-FDBs to come from the same parent distribution is near zero (P =9.12×10^{-52}). Secondly, we also investigated the variability index (V.I.) in the γ-ray band for FDBs, and we found V.I.=(0.12 ±0.07) log R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0

  18. O VI absorption in interstellar cloud surfaces

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Jenkins, E. B.; Songaila, A.; York, D. G.

    1979-01-01

    The velocity profiles of O VI absorption lines of 24 stars, observed in early Copernicus surveys, have been compared with the line profiles of Si III (1206.51 A) and N II (1083.99 A). The velocity structures of the O VI lines appear to be correlated with those of the material in the lower ionization stages. It is argued that the O VI absorption arises in the coronal gas of the conductive interface between hot gas, responsible for extended, soft X-ray emission, and cooler interstellar clouds. The velocity broadening of both sets of lines is attributed to motions of the cloud surfaces induced by pressure fluctuations in the interstellar medium.

  19. Core strengthening.

    PubMed

    Arendt, Elizabeth A

    2007-01-01

    Several recent studies have evaluated interventional techniques designed to reduce the risk of serious knee injuries, particularly noncontact anterior cruciate ligament injuries in female athletes. Maintenance of rotational control of the limb underneath the pelvis, especially in response to cutting and jumping activities, is a common goal in many training programs. Rotational control of the limb underneath the pelvis is mediated by a complex set of factors including the strength of the trunk muscles and the relationship between the core muscles. It is important to examine the interrelationship between lower extremity function and core stability. PMID:17472321

  20. Validation of KENO-VI: A comparison with hexagonal lattice light-water-reactor critical experiments

    SciTech Connect

    Lichtenwalter, J.J.

    1998-06-01

    The KENO-VI Monte Carlo code, released with Version 4.3 of the SCALE Code System, provides the capability to model more complex geometries than previously allowed by KENO-V.a. One significant improvement is the simplistic specification of hexprism unit cells and hexagonal arrays, an arduous task to complete in KENO-V.a. This report documents the validation of KENO-VI against 30 critical experiments consisting of low enriched uranium, light water reactor (LWR) fuel rods in hexagonal lattices with no poisons. The reference, enrichment, pitch, cladding, and core identification of the experiments are given. The results indicate that KENO-VI accurately calculates these critical experiments, with a bias of {minus}0.51% for the 238 group cross section library and {minus}0.24% for the 44 group cross section library. If these biases are properly taken into account, the KENO-VI code can be used with confidence for the design and safety analysis of storage and transportation systems of similar LWR type fuels.

  1. Self-induced decoherence in dense neutrino gases

    SciTech Connect

    Raffelt, Georg G.; Sigl, Guenter

    2007-04-15

    Dense neutrino gases exhibit collective oscillations where 'self-maintained coherence' is a characteristic feature, i.e., neutrinos of different energies oscillate with the same frequency. In a nonisotropic gas, however, the flux term of the neutrino-neutrino interaction has the opposite effect of causing kinematical decoherence of neutrinos propagating in different directions, an effect that is at the origin of the 'multiangle behavior' of neutrinos streaming off a supernova core. We cast the equations of motion in a form where the role of the flux term is manifest. We study in detail the symmetric case of equal neutrino and antineutrino densities where the evolution consists of collective pair conversions ('bipolar oscillations'). A gas of this sort is unstable in that an infinitesimal anisotropy is enough to trigger a runaway towards flavor equipartition. The 'self-maintained coherence' of a perfectly isotropic gas gives way to 'self-induced decoherence'.

  2. Hydrophilic polymer composites synthesized by electrospinning under dense carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wahyudiono, Okamoto, Koichi; Machmudah, Siti; Kanda, Hideki; Goto, Motonobu

    2015-12-01

    Electrospinning technique is feasible in some applications, it has attracted more attention in recent years. Various polymers have been successfully electrospun into ultrafine fibers in solvent solution and some in melt form. In this work, polyvinylpyrrolidone (PVP) as a hydrophilic polymer would be synthesized by electrospinning under dense carbon dioxide (CO2). The experiments were performed at 40 °C and ˜ 5 MPa. During the electrospinning process, the applied voltage was 10-17 kV and the distance of nozzle and collector was 8 cm. The concentration of PVP solution as a major component was 4 wt%. The results showed that the fibers surface morphology from PVP which blended with poly L-lactide acid (PLLA) were smooth with hollow core fibers at 5 MPa. At the same conditions, PVP-carbon nanotube was also successfully generated into electrospun fiber products with diameter ˜ 2 μm.

  3. Dense and Sparse Matrix Operations on the Cell Processor

    SciTech Connect

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Husbands,Parry; Yelick, Katherine

    2005-05-01

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. Therefore, the high performance computing community is examining alternative architectures that address the limitations of modern superscalar designs. In this work, we examine STI's forthcoming Cell processor: a novel, low-power architecture that combines a PowerPC core with eight independent SIMD processing units coupled with a software-controlled memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop an analytic framework to predict Cell performance on dense and sparse matrix operations, using a variety of algorithmic approaches. Results demonstrate Cell's potential to deliver more than an order of magnitude better GFLOP/s per watt performance, when compared with the Intel Itanium2 and Cray X1 processors.

  4. Stability of superfluid vortices in dense quark matter

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Mallavarapu, S. Kumar; Vachaspati, Tanmay; Windisch, Andreas

    2016-04-01

    Superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter are known to be energetically disfavored relative to well-separated triplets of so-called semi-superfluid color flux tubes. However, the short-range interaction (metastable versus unstable) has not been established. In this paper we perform numerical calculations using the effective theory of the condensate field, mapping the regions in the parameter space of coupling constants where the vortices are metastable versus unstable. For the case of zero-gauge coupling we analytically identify a candidate for the unstable mode and show that it agrees well with the results of the numerical calculations. We find that in the region of the parameter space that seems likely to correspond to real-world CFL quark matter the vortices are unstable, indicating that if such matter exists in neutron star cores it is very likely to contain semi-superfluid color flux tubes rather than superfluid vortices.

  5. Kinetic theory and long range correlations in moderately dense gases

    SciTech Connect

    Petrosky, T.; Prigogine, I.

    1997-01-01

    The complex spectral representation of the Liouville operator is applied to moderately dense gases interacting through hard-core potentials in arbitrary d-dimensional spaces. It is shown that Markovian kinetic equations exist for all d. This provides an answer to the long standing question do kinetic equations exist in two dimensional systems. The non-Markovian effects, such as the long-time tails for arbitrary n-mode coupling, are estimated by superposition of the Markovian evolutions in each subspace as introduced in our spectral decomposition. The long-time tail effects invalidate the traditional kinetic theory based on a truncation of BBGKY hierarchy for d < 4, as well as the Green-Kubo formalism, as there appear contributions of order t{sup -1}, t{sup -{1/2}},... coming from multiple mode-mode couplings even for d = 3.

  6. Elemental: a new framework for distributed memory dense matrix computations.

    SciTech Connect

    Romero, N.; Poulson, J.; Marker, B.; Hammond, J.; Van de Geijn, R.

    2012-02-14

    Parallelizing dense matrix computations to distributed memory architectures is a well-studied subject and generally considered to be among the best understood domains of parallel computing. Two packages, developed in the mid 1990s, still enjoy regular use: ScaLAPACK and PLAPACK. With the advent of many-core architectures, which may very well take the shape of distributed memory architectures within a single processor, these packages must be revisited since the traditional MPI-based approaches will likely need to be extended. Thus, this is a good time to review lessons learned since the introduction of these two packages and to propose a simple yet effective alternative. Preliminary performance results show the new solution achieves competitive, if not superior, performance on large clusters.

  7. Characterization of the Salmonella paratyphi C Vi polysaccharide.

    PubMed Central

    Daniels, E M; Schneerson, R; Egan, W M; Szu, S C; Robbins, J B

    1989-01-01

    The Vi capsular polysaccharide (Vi) is both a virulence factor and a protective antigen of Salmonella typhi; its pathogenic role for Salmonella paratyphi C is less well understood. We found no differences between the antigenic and immunogenic properties and the structure of the Vi from representative strains of S. paratyphi C, S. typhi, and Citrobacter freundii. There were, however, differences in both the amount produced per cell and the degree of association with the cell among the Vi from the three species of Enterobacteriaceae. S. paratyphi C produced less Vi than both the wild-type S. typhi and C. freundii did, and it showed the fastest release of Vi into the media. These findings may provide an explanation for the inability of the Vi to inhibit completely the agglutination of S. paratyphi C by anti-O sera. In an outbreak of enteric fever caused by S. paratyphi C, 66 of 78 isolates (85%) were Vi positive. Images PMID:2506132

  8. Coalescence preference in densely packed microbubbles

    SciTech Connect

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubbles shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.

  9. Coalescence preference in densely packed microbubbles

    DOE PAGESBeta

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  10. Supplemental screening sonography in dense breasts.

    PubMed

    Berg, Wendie A

    2004-09-01

    In single-center trials across 42,838 examinations, 150 (0.35%) cancers were identified only sonographically in average-risk women. Over 90% of the 126 women with sonographically depicted cancers had dense or heterogeneously dense parenchyma. Of the 150 cancers, 141 (94%) were invasive, with a mean size of 9 to 11 mm across the series. Over 90% were node-negative. A3-year multicenter trial of screening sonography in high-risk women, blinded to the results of mammography, opened for enrollment April 2004,funded by the Avon Foundation and National Cancer Institute through the American College of Radiology Imaging Network (ACRIN Protocol 6666). If the trial is successful,the results will provide a rational basis for supplemental screening sonography in women with dense breasts. PMID:15337420

  11. [Metabolic syndrome and small dense LDL].

    PubMed

    Yoshino, Gen

    2006-12-01

    Due to the recent westernization of our lifestyle, it is speculated that the prevalence of metabolic syndrome in the young generation will increase in Japan. Different from Western populations, because of our lifestyle as "farmers" from ancient times, excess energy has been stored outside of the body, and the accumulation of visceral fat might have serious adverse effects on glucose and lipid metabolism. Therefore, we must carefully diagnose and treat patients with metabolic syndrome, which is diagnosed based on the existence of visceral obesity. On the other hand, much attention has been paid recently to the atherogenicity of small dense LDL. In this chapter I will introduce a newly established method for estimating the plasma concentration of small dense LDL-cholesterol. Furthermore, the relationship between subclinical atherosclerosis and small dense LDL in metabolic syndrome will be discussed. PMID:17265899

  12. Coalescence preference in densely packed microbubbles

    PubMed Central

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-01

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. The surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubbles shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter. PMID:25583640

  13. Radiative properties of hot dense matter III. Proceedings. Meeting on Radiative Properties of Hot Dense Matter 1996.

    NASA Astrophysics Data System (ADS)

    Lee, R. W.

    1997-12-01

    The papers consider the radiative properties of hot dense matter. Numerous contributions were directed at understanding the behavior of plasma not in local thermodynamics equilibrium (NLTE). Contributors have analyzed warm dense matter, inertial confinement fusion implosion cores, femtosecond pulse laser generated plasmas, colliding plasmas, and nanosecond long pulse laser generated plasmas. In all of these reports the level of sophistication is advanced, with effects of nonMaxwellian distributions, laser modified transitions, polarization effects and mind-numbing atomic structure models being presented. To ascertain the validity of these NLTE kinetics codes two kinetics code comparisons are reported, which attempt to provide insight into the workings of the kinetics models. The LTE work is directed largely towards the area of opacity studies where both experimental and theoretical efforts were reported. Moreover, the topics of spectral line shapes and the plasma microfields, are given a strong airing. Recent advances and the addition of new effects including magnetic fields, laser pumping, and continuum perturbing states are presented. Finally, many of the contributors present a detailed discussion of the instrumentation which are central to the spectroscopy, providing new paths for future experimental and theoretical advances.

  14. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provide change rooms in conformance with 29 CFR 1926.51 Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1926.51. Eating and drinking areas... records are maintained and made available in accordance with 29 CFR 1910.1020. (2) Historical...

  15. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... change rooms in conformance with 29 CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1915.97. Eating and drinking areas... records are maintained and made available in accordance with 29 CFR 1910.1020. (2) Historical...

  16. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provide change rooms in conformance with 29 CFR 1926.51 Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1926.51. Eating and drinking areas... records are maintained and made available in accordance with 29 CFR 1910.1020. (2) Historical...

  17. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... change rooms in conformance with 29 CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1915.97. Eating and drinking areas... records are maintained and made available in accordance with 29 CFR 1910.1020. (2) Historical...

  18. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... change rooms in conformance with 29 CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1910.141. Eating and drinking areas... Communication Standard, 29 CFR 1910.1200. (k) Medical surveillance—(1) General. (i) The employer shall...

  19. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... change rooms in conformance with 29 CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1910.141. Eating and drinking areas... Communication Standard, 29 CFR 1910.1200. (k) Medical surveillance—(1) General. (i) The employer shall...

  20. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1915.97. Eating and drinking areas provided by the employer shall...

  1. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1926.51 Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1926.51. Eating and drinking areas provided by the employer shall...

  2. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1915.97. Eating and drinking areas provided by the employer shall...

  3. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1926.51 Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1926.51. Eating and drinking areas provided by the employer shall...

  4. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... efficient in removing mono-dispersed particles of 0.3 micrometers in diameter or larger. Historical... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide...

  5. Solanaceae VI – Genomics Meets Biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This volume, edited by the five authors above, is based on contributed papers presented at a combined conference of the VI International Solanaceae Conference, the 90th Annual Meeting of the Potato Association of America, and the III Solanaceae Genomics Conference. The meeting was held in Madison Wi...

  6. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1910.141. Eating and drinking areas provided by the employer shall...

  7. Data testing of ENDF/B-VI

    SciTech Connect

    MacFarlane, R.E.

    1994-06-01

    A number of the fast reactor and thermal reactor benchmarks have been analyzed using nuclear data from ENDF/B-VI Release 2. Data were prepared with the NJOY nuclear data processing system in MATXS and ACE formats. Transport calculations were preformed with ONEDANT and TWODANT using transport tables prepared by the TRANSX code and with the MCNP Monte Carlo code.

  8. Chromium(VI) bioremediation by probiotics.

    PubMed

    Younan, Soraia; Sakita, Gabriel Z; Albuquerque, Talita R; Keller, Rogéria; Bremer-Neto, Hermann

    2016-09-01

    Chromium is a common mineral in the earth's crust and can be released into the environment from anthropogenic sources. Intake of hexavalent chromium (Cr(VI)) through drinking water and food causes toxic effects, leading to serious diseases, and is a commonly reported environmental problem. Microorganisms can mitigate or prevent the toxic effects caused by heavy metals in addition to having effective resistance mechanisms to prevent cell damage and bind to these metals, sequestering them from the cell surface and removing them from the body. Species of Lactobacillus, Streptococcus, Bacillus and Bifidobacterium present in the human mouth and gut and in fermented foods have the ability to bind and detoxify some of these substances. This review address the primary topics related to Cr(VI) poisoning in animals and humans and the use of probiotics as a way to mitigate or prevent the toxic effects caused by Cr(VI). Further advances in the genetic knowledge of such microorganisms may lead to discoveries which will clarify the most active microorganisms that act as bioprotectants in bodies exposed to Cr(VI) and are an affordable option for people and animals intoxicated by the oral route. © 2016 Society of Chemical Industry. PMID:26997541

  9. Dense packing: surgical indications and technical considerations.

    PubMed

    Farjo, Bessam; Farjo, Nilofer

    2013-08-01

    Dense packing is the philosophy of fitting more than 30 to 35 follicular unit grafts per square centimeter in one operation. The aim is to produce a more even, consistent, and natural looking flow of hair after just one procedure. Although desirable in principle, not all patients are suitable candidates nor is it possible to achieve in certain patients (eg, coarse or curly hair). Patients who have sufficient donor availability, reasonably stable hair loss, and high hair-to-skin color ratios are the ideal candidates. The authors highlight their philosophies and strategies for dense packing. PMID:24017984

  10. Rapid nanosheets and nanowires formation by thermal oxidation of iron in water vapour and their applications as Cr(VI) adsorbent

    NASA Astrophysics Data System (ADS)

    Budiman, Faisal; Bashirom, Nurulhuda; Tan, Wai Kian; Razak, Khairunisak Abdul; Matsuda, Atsunori; Lockman, Zainovia

    2016-09-01

    Thermal oxidation of iron foil was done at 400 °C and 500 °C in for 2 h to form multilayered oxide scale with outer oxide layer of α-Fe2O3 comprising of nanowires and nanosheets respectively. Iron oxidized at 300 °C formed a rather compact film with no noticeable nanostructures. The morphologies of oxide formed in different oxidation environment (water vapour or dry air) were compared; densely packed nanostructures were produced in water vapour compared to dry air. Time variation study indicated rapid growth of nanostructure whereby for 1 min at 500 °C dense nanowires with some noticeable nanosheets were already observed. The nanowires and nanosheets were used to adsorb Cr(VI) from aqueous solution. Adsorption of 10 ppm of Cr(VI) on the nanowires and nanosheets was found to be successful with much faster removal efficiency for the nanosheets. Both samples displayed complete adsorption for less than 1 h.

  11. 40 CFR Appendixes Vi-Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false VI Appendixes VI-VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Appendixes VI-VII to Part 600...

  12. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ensure compliance with Title VI of the Civil Rights Act of 1964; 49 CFR part 21; and related statutes and... 23 Highways 1 2012-04-01 2012-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND...

  13. 40 CFR Appendix Vi to Part 261 - Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Reserved VI Appendix VI to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix VI to Part 261...

  14. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ensure compliance with Title VI of the Civil Rights Act of 1964; 49 CFR part 21; and related statutes and... 23 Highways 1 2014-04-01 2014-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND...

  15. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ensure compliance with Title VI of the Civil Rights Act of 1964; 49 CFR part 21; and related statutes and... 23 Highways 1 2011-04-01 2011-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND...

  16. 40 CFR Appendix Vi to Part 261 - Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Reserved VI Appendix VI to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix VI to Part 261...

  17. 40 CFR Appendix Vi to Part 261 - Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Reserved VI Appendix VI to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix VI to Part 261...

  18. 40 CFR Appendix Vi to Part 261 - Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Reserved VI Appendix VI to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix VI to Part 261...

  19. 40 CFR Appendixes Vi-Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false VI Appendixes VI-VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Appendixes VI-VII to Part 600...

  20. 40 CFR Appendix Vi to Part 261 - Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Reserved VI Appendix VI to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix VI to Part 261...

  1. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ensure compliance with Title VI of the Civil Rights Act of 1964; 49 CFR part 21; and related statutes and... 23 Highways 1 2010-04-01 2010-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND...

  2. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ensure compliance with Title VI of the Civil Rights Act of 1964; 49 CFR part 21; and related statutes and... 23 Highways 1 2013-04-01 2013-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND...

  3. Connecting the Dense Gas and Young Stars in the CARMA Large Area Star Formation Survey

    NASA Astrophysics Data System (ADS)

    Mundy, Lee G.; Storm, Shaye; Looney, Leslie; Lee, Katherine I.; Fernandez Lopez, Manuel; Ostriker, Eve C.; Chen, Che-Yu; CLASSy Team

    2016-01-01

    The CARMA Large Area Star Formation Survey (CLASSy) imaged the dense gas structure and kinematics in five, roughly 1 pc scale regions in the Serpens and Perseus clouds with 7" angular resolution. The spatial distribution and Class of the young stellar population (YSOs) is available for these regions from the Spitzer c2d and Gould Belt surveys, with added sources from the Herschel 70 micron images. Together, these datasets allow us to compare, for the first time at similar spatial resolutions, the distributions of the dense gas and YSOs over regions containing up to 90 identified YSOs. This enables a detailed look at the separation between YSOs and the nearest dense gas peak and a measure of overall relationship between the YSO and dense gas distributions. We find that most Class 0 YSOs are forming in the highest column density regions: leaves in the dendrogram analysis utilized by CLASSy. In Serpens and Perseus, we find that 29% and 38%, respectively, of the leaves have identified embedded YSOs. Class 1 sources are less confined to leaf locations; Class II sources are distributed throughout regions, mostly away from hierarchical peaks. This trend could be due to a modest (0.1 km/sec) velocity difference between YSOs and their natal cores, or due to the YSOs consuming or dispersing their natal cores.

  4. ENDF-201, ENDF/B-VI summary documentation supplement 1, ENDF/HE-VI summary documentation

    SciTech Connect

    McLane, V.

    1996-12-01

    The National Nuclear Data Center (NNDC) provides coordination for and serves as the secretariat to the Cross Section Evaluation Working Group (CSWEG). CSEWG is responsible for the oversight of the ENDF/B Evaluated Nuclear Data File. All data are checked and reviewed by CSEWG, and the file is maintained at the NNDC. For a description of the ENDF/B-VI file, see the ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6. The purpose of this addendum to the ENDF/B-VI Summary Documentation is to provide documentation of Releases 1, 2, 3, and 4 for the ENDF/B-VI and ENDF/HE-VI evaluated nuclear data libraries. These releases contain many new and revised evaluations for the neutron, photo-atomic interaction, radioactive decay data, spontaneous fission product yield, neutron-induced fission product yield, thermal neutron scattering, proton, deuteron, and triton sublibraries. The summaries have been extracted mainly from the ENDF/B-VI File 1 comments (MT = 451), which have been checked, edited, and may also include supplementary information. Some summaries have been provided by the evaluators in electronic format, while others are extracted from reports on the evaluations. All references have been checked and corrected, or updated where appropriate. A list of the laboratories which have contributed evaluations used in ENDF/B-VI is given.

  5. Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture

    NASA Astrophysics Data System (ADS)

    Sashchiuk, Aldona; Yanover, Diana; Rubin-Brusilovski, Anna; Maikov, Georgy I.; Čapek, Richard K.; Vaxenburg, Roman; Tilchin, Jenya; Zaiats, Gary; Lifshitz, Efrat

    2013-08-01

    Colloidal lead chalcogenide (IV-VI) quantum dots and rods are of widespread scientific and technological interest, owing to their size tunable energy band gap at the near-infrared optical regime. This article reviews the development and investigation of IV-VI derivatives, consisting of a core (dot or rod) coated with an epitaxial shell, when either the core or the shell (or both) has an alloy composition, so the entire structure has the chemical formula PbSexS1-x/PbSeyS1-y (0 <= x(y) <= 1). The article describes synthesis procedures and an examination of the structures' chemical and temperature stability. The investigation of the optical properties revealed information about the quantum yield, radiative lifetime, emission's Stokes shift and electron-phonon interaction, on the variation of composition, core-to-shell division, temperature and environment. The study reflected the unique properties of core-shell heterostructures, offering fine electronic tuning (at a fixed size) by changing their architecture. The optical observations are supported by the electronic band structure theoretical model. The challenges related to potential applications of the colloidal lead chalcogenide quantum dots and rods are also briefly addressed in the article.

  6. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  7. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, R.L.

    1993-10-12

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  8. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  9. The Southern California Dense GPS Geodetic Array

    NASA Technical Reports Server (NTRS)

    Webb, F.

    1994-01-01

    The Southern California Earthquake Center is coordinating a effort by scientists at the Jet Propulsion Laboratory, the U.S. Geological Survey, and various academic institutions to establish a dense 250 station, continuously recording GPS geodetic array in southern California for measuring crustal deformation associated with slip on the numerous faults that underlie the major metropolitan areas of southern california.

  10. Preparation of a dense, polycrystalline ceramic structure

    DOEpatents

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  11. DENSE NONAQUEOUS PHASE LIQUIDS -- A WORKSHOP SUMMARY

    EPA Science Inventory

    site characterization, and, therefore, DNAPL remediation, can be expected. Dense nonaqueous phase liquids (DNAPLs) in the subsurface are long-term sources of ground-water contamination, and may persist for centuries before dissolving completely in adjacent ground water. In respo...

  12. Release of contaminant U(VI) from soils

    SciTech Connect

    Zheng, Zuoping; Wan, Jiamin

    2003-08-20

    The retention, mobility, and bio-availability of U(VI) incontaminated soils depend strongly on release of U(VI). Laboratory batchexperiments were performed to evaluate the factors controlling therelease of U(VI) from contaminated soil at Oak Ridge, Tennessee. We foundthat the ionic strength of the extraction solution strongly affectsrelease of U(VI). Increase in ionic strength shows a strong effect onU(VI) release as indicated by the increase in release rates andassociated release of U(VI) concentrations. We also found that the ratioof solution volume to solid mass (V/M) has a significant impact on therelease of U(VI). Increase in the V/M ratio shows a negligible effect onthe U(VI) release over a 4-day period. However, at Day 30 and Day 120,larger V/M ratios cause greater U(VI) release. The maximum U(VI)concentrations observed in the release experiments are in the range ofschoepite estimated under conditions relevant to the experiments,suggesting that schoepite solubility primarily controls the U(VI)release, but that solubilization and desorption effects cannot bedistinguished using macroscopic methods.

  13. O VI Emission from the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Shelton, Robin L.

    2004-01-01

    This project's primary goal was to examine the Local Bubble, a large hot bubble surrounding the solar neighborhood. In order to do this, we observed the 1032 and 1038 A resonance line emission from O VI in the bubble and used the,results to comment on models for the Local Bubble and its embedded clouds. In order to maximize the signal to noise of our spectrum, we combined the awarded guest investigator observation with unpublished FUSE In Orbit Checkout observations. The resulting spectrum was sufficiently good as to enable us to place tight 2 sigma upper limits on the intensities of the 1032 and the 1038 A resonance lines. We also measured or placed upper limits on the other cosmic lines in the bandpass, including C III and C II. These are the first known ultraviolet emission line measurements and/or upper limits for the gas in the Local Bubble (as opposed to gas anywhere along long lines of sight). With the O VI upper limits, we were able to quantitatively evaluate competing theories for the origins of the Local Bubble. The upper limits are well below those expected in the Breitschwerdt model (which proposes that during its its early development, the Local Bubble rapidly expanded beyond its nascent cloud and, as a result, is now vastly underionized). The upper limits on the O VI resonance line doublet intensity and the measurement of the C III intensity, garnered from this project, combined with measurements of the O VI column density, garnered from another project, are so far below the predictions, that they make a good case for eliminating the Breitschwerdt model from the field of possibilities. Thus, instead of being vastly underionized, the Local Bubble is near ionizational equilibrium. In addition, the upper limits challenge the other well-known model for the Local Bubble. In that model, the Local Bubble was blown by a series of supernova explosions and winds and contains a myriad of evaporating clouds. The intensity of the O VI resonance line doublet

  14. Extracting Communities from Complex Networks by the k-Dense Method

    NASA Astrophysics Data System (ADS)

    Saito, Kazumi; Yamada, Takeshi; Kazama, Kazuhiro

    To understand the structural and functional properties of large-scale complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as communities. There have been proposed several such community extraction methods in the literature, including the classical k-core decomposition method and, more recently, the k-clique based community extraction method. The k-core method, although computationally efficient, is often not powerful enough for uncovering a detailed community structure and it produces only coarse-grained and loosely connected communities. The k-clique method, on the other hand, can extract fine-grained and tightly connected communities but requires a substantial amount of computational load for large-scale complex networks. In this paper, we present a new notion of a subnetwork called k-dense, and propose an efficient algorithm for extracting k-dense communities. We applied our method to the three different types of networks assembled from real data, namely, from blog trackbacks, word associations and Wikipedia references, and demonstrated that the k-dense method could extract communities almost as efficiently as the k-core method, while the qualities of the extracted communities are comparable to those obtained by the k-clique method.

  15. Cooling compact stars and phase transitions in dense QCD

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10-3 spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars.

  16. A Dynamical Gravitational Wave Source in a Dense Cluster

    NASA Astrophysics Data System (ADS)

    Hurley, Jarrod R.; Sippel, Anna C.; Tout, Christopher A.; Aarseth, Sverre J.

    2016-08-01

    Making use of a new N-body model to describe the evolution of a moderate-size globular cluster, we investigate the characteristics of the population of black holes within such a cluster. This model reaches core-collapse and achieves a peak central density typical of the dense globular clusters of the Milky Way. Within this high-density environment, we see direct confirmation of the merging of two stellar remnant black holes in a dynamically formed binary, a gravitational wave source. We describe how the formation, evolution, and ultimate ejection/destruction of binary systems containing black holes impacts the evolution of the cluster core. Also, through comparison with previous models of lower density, we show that the period distribution of black hole binaries formed through dynamical interactions in this high-density model favours the production of gravitational wave sources. We confirm that the number of black holes remaining in a star cluster at late times and the characteristics of the binary black hole population depend on the nature of the star cluster, critically on the number density of stars and by extension the relaxation timescale.

  17. Proceedings of Minnowbrook Workshops I to VI

    NASA Technical Reports Server (NTRS)

    2012-01-01

    This DVD collection includes the complete proceedings of Minnowbrook Workshops I through VI. Titles include Minnowbrook I - 1993 Workshop on End-Stage Boundary Layer Transition (NASA/CP-2007-214667, CASI ID 20070038942), Minnowbrook II - 1997 Workshop on Boundary Layer Transition in Turbomachines (NASA/CP-1998-206958, CASI ID 19980206205), Minnowbrook III - 2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flow (NASA/CP-2001-210888, CASI ID 20020067662), Minnowbrook IV - 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows (NASA TM-2004-212913, CASI ID 20040121174), Minnowbrook V - 2006 Workshop on Unsteady Flows in Turbomachinery (NASA/CP-2006-214484, CASI ID 20070024781), and Minnowbrook VI - 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics (NACA/CP-2010-216112, CASI ID 20100018557).

  18. Final Technical Report -- GEO-VI - USGEO

    SciTech Connect

    Hirsch, Leonard

    2009-11-30

    Representatives of US earth observations departments and agencies, other participating governments, NGOs and civil society participated in the Sixth Plenary Meeting of the Group on Earth Observations (GEO-VI), hosted by the United States in Washington, DC on November 17 and 18, 2009. The meeting was held in the Atrium Ballroom of the Ronald Reagan International Trade Center. Exhibitions of international Earth observation technology and programs were held concurrently in the same venue. A number of GEO committee meetings and side events were held in conjunction with the GEO-VI Plenary, including the GEO-IGOS Symposium on Earth observation science and applications, the GEOSS in the Americas Forum on Coastal Zones, and separate meetings of the GEO Communities of Practice on Carbon, Health, and Air Quality.

  19. HalleyVI - a station for science

    NASA Astrophysics Data System (ADS)

    Rose, Mike; Tuplin, Karl

    2013-04-01

    There has been a research station at Halley in Antarctica (75°35'S, 26°34'W) since 1956. Halley has a long and successful scientific record, notably the discovery of the Ozone Hole and significant contributions to areas as diverse as Geology and Space physics. Halley is located on a floating and flowing iceshelf with constant surface accumulation. These conditions have resulted in the necessary regular rebuilding of the station and HalleyVI has just been completed. Halley VI has been fully scientifically operational since Feb 2012. The station supports a chemical and turbulence clean area, an electromagnetic quiet zone, an area for radars, and flexible facilities on the station to support a wide variety of science activities. This presentation outlines the major features of the new station, its current scientific activities, and the facilities that allow the hosting of a wide variety of scientific experiments.

  20. Three Crew Members Capture Intelsat VI

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three crewmembers of mission STS-49 hold onto the 4.5 ton International Telecommunications Organization Satellite (INTELSAT) VI after a six- handed 'capture' was made minutes earlier during the mission's third extravehicular activity (EVA). From left to right: Mission Specialists(MS) Richard J. Hieb, Thomas D. Akers, and Pierre J. Thuot. The three prepare to attach the capture bar which is tethered to Hieb. Thuot is positioned on the Remote Manipulator System (RMS) arm, from which he had made two earlier unsuccessful grapple attempts on two- person EVA sessions. Ground controllers and crewmembers agreed that a third attempt, using three mission specialists in the payload bay (PLB) was the effort needed to accomplish the capture feat. Behind the three astronauts is the vertical perigee stage which will be attached to the Intelsat VI prior to its release from the PLB.

  1. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy

    PubMed Central

    Andronov, Leonid; Orlov, Igor; Lutz, Yves; Vonesch, Jean-Luc; Klaholz, Bruno P.

    2016-01-01

    Super-resolution microscopy (PALM, STORM etc.) provides a plethora of fluorescent signals in dense cellular environments which can be difficult to interpret. Here we describe ClusterViSu, a method for image reconstruction, visualization and quantification of labelled protein clusters, based on Voronoi tessellation of the individual fluorescence events. The general applicability of this clustering approach for the segmentation of super-resolution microscopy data, including for co-localization, is illustrated on a series of important biological objects such as chromatin complexes, RNA polymerase, nuclear pore complexes and microtubules. PMID:27068792

  2. Diagnostic and treatment strategies in mucopolysaccharidosis VI

    PubMed Central

    Vairo, Filippo; Federhen, Andressa; Baldo, Guilherme; Riegel, Mariluce; Burin, Maira; Leistner-Segal, Sandra; Giugliani, Roberto

    2015-01-01

    Mucopolysaccharidosis VI (MPS VI) is a very rare autosomal recessive disorder caused by mutations in the ARSB gene, which lead to deficient activity of the lysosomal enzyme ASB. This enzyme is important for the breakdown of the glycosaminoglycans (GAGs) dermatan sulfate and chondroitin sulfate, which accumulate in body tissues and organs of MPS VI patients. The storage of GAGs (especially dermatan sulfate) causes bone dysplasia, joint restriction, organomegaly, heart disease, and corneal clouding, among several other problems, and reduced life span. Despite the fact that most cases are severe, there is a spectrum of severity and some cases are so attenuated that diagnosis is made late in life. Although the analysis of urinary GAGs and/or the measurement of enzyme activity in dried blood spots are useful screening methods, the diagnosis is based in the demonstration of the enzyme deficiency in leucocytes or fibroblasts, and/or in the identification of pathogenic mutations in the ARSB gene. Specific treatment with enzyme replacement has been available since 2005. It is safe and effective, bringing measurable benefits and increased survival to patients. As several evidences indicate that early initiation of therapy may lead to a better outcome, newborn screening is being considered for this condition, and it is already in place in selected areas where the incidence of MPS VI is increased. However, as enzyme replacement therapy is not curative, associated therapies should be considered, and research on innovative therapies continues. The management of affected patients by a multidisciplinary team with experience in MPS diseases is highly recommended. PMID:26586959

  3. Identifying the need for a multidisciplinary approach for early recognition of mucopolysaccharidosis VI (MPS VI).

    PubMed

    Choy, Yew Sing; Bhattacharya, Kaustuv; Balasubramaniam, Shanti; Fietz, Michael; Fu, Antony; Inwood, Anita; Jin, Dong-Kyu; Kim, Ok-Hwa; Kosuga, Motomichi; Kwun, Young Hee; Lin, Hsiang-Yu; Lin, Shuan-Pei; Mendelsohn, Nancy J; Okuyama, Torayuki; Samion, Hasri; Tan, Adeline; Tanaka, Akemi; Thamkunanon, Verasak; Thong, Meow-Keong; Toh, Teck-Hock; Yang, Albert D; McGill, Jim

    2015-05-01

    Mucopolysaccharidosis VI (MPS VI, Maroteaux-Lamy syndrome) is caused by deficient activity of the enzyme, N-acetylgalactosamine-4-sulfatase, resulting in impaired degradation of the glycosaminoglycan dermatan sulfate. Patients experience a range of manifestations including joint contractures, short stature, dysostosis multiplex, coarse facial features, decreased pulmonary function, cardiac abnormalities, corneal clouding and shortened life span. Recently, clinicians from institutions in the Asia-Pacific region met to discuss the occurrence and implications of delayed diagnosis and misdiagnosis of MPS VI in the patients they have managed. Eighteen patients (44% female) were diagnosed. The most common sign presented by the patients was bone deformities in 11 patients (65%). Delays to diagnosis occurred due to the lack of or distance to diagnostic facilities for four patients (31%), alternative diagnoses for two patients (15%), and misleading symptoms experienced by two patients (15%). Several patients experienced manifestations that were subtler than would be expected and were subsequently overlooked. Several cases highlighted the unique challenges associated with diagnosing MPS VI from the perspective of different specialties and provide insights into how these patients initially present, which may help to elucidate strategies to improve the diagnosis of MPS VI. PMID:25892708

  4. The pro-oxidant chromium(VI) inhibits mitochondrial complex I, complex II, and aconitase in the bronchial epithelium: EPR markers for Fe-S proteins

    PubMed Central

    Myers, Charles R.; Antholine, William E.; Myers, Judith M.

    2010-01-01

    Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr species that also facilitate reactive oxygen species (ROS) generation. Recent studies demonstrated inhibition and oxidation of the thioredoxin system, with greater effects on mitochondrial thioredoxin (Trx2). This implies that Cr(VI)-induced oxidant stress may be especially directed at the mitochondria. Examination of other redox-sensitive mitochondrial functions showed that Cr(VI) treatments that cause Trx2 oxidation in human bronchial epithelial cells also result in pronounced and irreversible inhibition of aconitase, a TCA cycle enzyme that has an iron-sulfur (Fe-S) center that is labile with respect to certain oxidants. The activities of electron transport complexes I and II were also inhibited, whereas complex III was not. Electron paramagnetic resonance (EPR) studies of samples at liquid helium temperature (10 K) showed a strong signal at g = 1.94 that is consistent with the inhibition of electron flow through complexes I and/or II. A signal at g = 2.02 was also observed which is consistent with oxidation of the Fe-S center of aconitase. The g = 1.94 signal was particularly intense and remained after extracellular Cr(VI) was removed, whereas the g = 2.02 signal declined in intensity after Cr(VI) was removed. A similar inhibition of these activities and analogous EPR findings were noted in bovine airways treated ex vivo with Cr(VI). Overall, the data support the hypothesis that Cr(VI) exposure has deleterious effects on a number of redox-sensitive core mitochondrial proteins. The g = 1.94 signal could prove to be an important biomarker for oxidative damage resulting from Cr(VI) exposure. The EPR spectra simultaneously showed signals for Cr(V) and Cr(III) which verify Cr(VI) exposure and its intracellular reductive activation. PMID:20883776

  5. The kinetic chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  6. Dense hadronic matter in holographic QCD

    NASA Astrophysics Data System (ADS)

    Kim, Keun-Young; Sin, Sang-Jin; Zahed, Ismail

    2013-10-01

    We provide a method to study hadronic matter at finite density in the context of the Sakai-Sugimoto model. We introduce the baryon chemical potential through the external U(1) v gauge field in the induced (DBI plus CS) action on the D8-probe-brane, where baryons are skyrmions. Vector dominance is manifest at finite density. We derive the effect of the baryon density on the energy density, and on the dispersion relations of pions and vector mesons at large N c . The energy density asymptotes are constant at large density, suggesting that dense matter at large N c freezes, with the pion velocity dropping to zero. Holographic dense matter enforces exactly the tenets of vector dominance and efficiently screens vector mesons. At the freezing point, the ρ — ππ coupling vanishes with a finite rho mass of about 20% its vacuum value.

  7. Active fluidization in dense glassy systems.

    PubMed

    Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan

    2016-07-20

    Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells. PMID:27380935

  8. Dense matter theory: A simple classical approach

    NASA Astrophysics Data System (ADS)

    Savić, P.; Čelebonović, V.

    1994-07-01

    In the sixties, the first author and by P. Savić and R. Kašanin started developing a mean-field theory of dense matter. It is based on the Coulomb interaction, supplemented by a microscopic selection rule and a set of experimentally founded postulates. Applications of the theory range from the calculation of models of planetary internal structure to DAC experiments.

  9. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  10. Computer codes for dispersion of dense gas

    SciTech Connect

    Weber, A.H.; Watts, J.R.

    1982-02-01

    Two models for describing the behavior of dense gases have been adapted for specific applications at the Savannah River Plant (SRP) and have been programmed on the IBM computer. One of the models has been used to predict the effect of a ruptured H/sub 2/S storage tank at the 400 Area. The other model has been used to simulate the effect of an unignited release of H/sub 2/S from the 400-Area flare tower.

  11. Shear dispersion in dense granular flows

    DOE PAGESBeta

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  12. Computational electromagnetics and parallel dense matrix computations

    SciTech Connect

    Forsman, K.; Kettunen, L.; Gropp, W.; Levine, D.

    1995-06-01

    We present computational results using CORAL, a parallel, three-dimensional, nonlinear magnetostatic code based on a volume integral equation formulation. A key feature of CORAL is the ability to solve, in parallel, the large, dense systems of linear equations that are inherent in the use of integral equation methods. Using the Chameleon and PSLES libraries ensures portability and access to the latest linear algebra solution technology.

  13. Dense Molecular Gas in Centaurus A

    NASA Astrophysics Data System (ADS)

    Wild, Wolfgang; Eckart, Andreas

    1999-10-01

    Centaurus A (NGC 5128) is the closest radio galaxy, and its molecular interstellar medium has been studied extensively in recent years. However, these studies used mostly molecular lines tracing low to medium density gas (see e.g. Eckart et al. 1990. Wild et al. 1997). The amount and distribution of the dense component remained largely unknown. We present spectra of the HCN(1-0) emission - which traces dense (n(H2) > 104 cm-3) molecular gas - at the center and along the prominent dust lane at offset positions +/- 60" and +/- 100", as well as single CS(2-1) and CS(3-2) spectra, observed with the SEST on La Silla, Chile. At the central position, the integrated intensity ratio I(HCN)/I(CO) peaks at 0.064, and decreases to somewhat equal to 0.02 to 0.04 in the dust lane. Based on the line luminosity ratio L(HCN)/L(CO) we estimate that there is a significant amount of dense gas in Centaurus A. The fraction of dense molecular gas as well as the star formation efficiency LFIR/LCO towards the center of Cen A is comparable to ultra-luminous infrared galaxies, and falls in between the values for ULIRGs and normal galaxies for positions in the dust lane. Details will be published in Wild & Eckart (A&A, in prep.). Eckart et al. 1990, ApJ 363, 451 Rydbeck et al. 1993, Astr.Ap. (Letters) 270, L13. Wild, W., Eckart, A. & Wiklind, T. 1997, Astr.Ap. 322, 419.

  14. Structures for dense, crack free thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  15. Diastereoselective Synthesis of the Aminocyclitol Core of Jogyamycin via an Allene Aziridination Strategy

    PubMed Central

    Gerstner, Nels C.; Adams, Christopher S.; Grigg, R. David; Tretbar, Maik; Rigoli, Jared W.; Schomaker, Jennifer M.

    2016-01-01

    Oxidative allene amination provides rapid access to densely functionalized amine-containing stereotriads through highly reactive bicyclic methyleneaziridine intermediates. This strategy has been demonstrated as a viable approach for the construction of the densely functionalized aminocyclitol core of jogyamycin, a natural product with potent antiprotozoal activity. Importantly, the flexibility of oxidative allene amination will enable the syntheses of modified aminocyclitol analogues of the jogyamycin core. PMID:26741730

  16. Multishock Compression Properties of Warm Dense Argon.

    PubMed

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-01-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20-150 GPa and 1.9-5.3 g/cm(3) from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2-23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi' = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi' increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime. PMID:26515505

  17. Dense spray evaporation as a mixing process

    NASA Astrophysics Data System (ADS)

    de Rivas, A.; Villermaux, E.

    2016-05-01

    We explore the processes by which a dense set of small liquid droplets (a spray) evaporates in a dry, stirred gas phase. A dense spray of micron-sized liquid (water or ethanol) droplets is formed in air by a pneumatic atomizer in a closed chamber. The spray is conveyed in ambient air as a plume whose extension depends on the relative humidity of the diluting medium. Standard shear instabilities develop at the plume edge, forming the stretched lamellar structures familiar with passive scalars. Unlike passive scalars however, these lamellae vanish in a finite time, because individual droplets evaporate at their border in contact with the dry environment. Experiments demonstrate that the lifetime of an individual droplet embedded in a lamellae is much larger than expected from the usual d2 law describing the fate of a single drop evaporating in a quiescent environment. By analogy with the way mixing times are understood from the convection-diffusion equation for passive scalars, we show that the lifetime of a spray lamellae stretched at a constant rate γ is tv=1/γ ln(1/+ϕ ϕ ) , where ϕ is a parameter that incorporates the thermodynamic and diffusional properties of the vapor in the diluting phase. The case of time-dependent stretching rates is examined too. A dense spray behaves almost as a (nonconserved) passive scalar.

  18. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  19. Hybrid-Based Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  20. Automated building extraction using dense elevation matrices

    NASA Astrophysics Data System (ADS)

    Bendett, A. A.; Rauhala, Urho A.; Pearson, James J.

    1997-02-01

    The identification and measurement of buildings in imagery is important to a number of applications including cartography, modeling and simulation, and weapon targeting. Extracting large numbers of buildings manually can be time- consuming and expensive, so the automation of the process is highly desirable. This paper describes and demonstrates such an automated process for extracting rectilinear buildings from stereo imagery. The first step is the generation of a dense elevation matrix registered to the imagery. In the examples shown, this was accomplished using global minimum residual matching (GMRM). GMRM automatically removes y- parallax from the stereo imagery and produces a dense matrix of x-parallax values which are proportional to the local elevation, and, of course, registered to the imagery. The second step is to form a joint probability distribution of the image gray levels and the corresponding height values from the elevation matrix. Based on the peaks of that distribution, the area of interest is segmented into feature and non-feature areas. The feature areas are further refined using length, width and height constraints to yield promising building hypotheses with their corresponding vertices. The gray shade image is used in the third step to verify the hypotheses and to determine precise edge locations corresponding to the approximate vertices and satisfying appropriate orthogonality constraints. Examples of successful application of this process to imagery are presented, and extensions involving the use of dense elevation matrices from other sources are possible.

  1. Dense Correspondences across Scenes and Scales.

    PubMed

    Tau, Moria; Hassner, Tal

    2016-05-01

    We seek a practical method for establishing dense correspondences between two images with similar content, but possibly different 3D scenes. One of the challenges in designing such a system is the local scale differences of objects appearing in the two images. Previous methods often considered only few image pixels; matching only pixels for which stable scales may be reliably estimated. Recently, others have considered dense correspondences, but with substantial costs associated with generating, storing and matching scale invariant descriptors. Our work is motivated by the observation that pixels in the image have contexts-the pixels around them-which may be exploited in order to reliably estimate local scales. We make the following contributions. (i) We show that scales estimated in sparse interest points may be propagated to neighboring pixels where this information cannot be reliably determined. Doing so allows scale invariant descriptors to be extracted anywhere in the image. (ii) We explore three means for propagating this information: using the scales at detected interest points, using the underlying image information to guide scale propagation in each image separately, and using both images together. Finally, (iii), we provide extensive qualitative and quantitative results, demonstrating that scale propagation allows for accurate dense correspondences to be obtained even between very different images, with little computational costs beyond those required by existing methods. PMID:26336115

  2. Recyclable magnetic photocatalysts of Fe2+/TiO2 hierarchical architecture with effective removal of Cr(VI) under UV light from water.

    PubMed

    Xu, S C; Zhang, Y X; Pan, S S; Ding, H L; Li, G H

    2011-11-30

    We report the synthesis and photocatalytic removal of Cr(VI) from water of hierarchical micro/nanostructured Fe(2+)/TiO(2) tubes. The TiO(2) tubes fabricated by a facile solvothermal approach show a three-level hierarchical architecture assembled from dense nanosheets nearly vertically standing on the surface of TiO(2) microtube. The nanosheets with a thickness of about 20 nm are composed of numerous TiO(2) nanocrystals with size in the range of 15-20 nm. Ferrous ions are doped into the hierarchical architecture by a reduction route. The Fe(2+)/TiO(2) catalyst demonstrates an effective removal of Cr(VI) from water under UV light and the removal effectiveness reaches 99.3% at the initial Cr(VI) concentration of 10 mg L(-1). The ferrous ion in the catalyst serves not as the photo-electron trap but as an intermedium of a two-step reduction. The TiO(2) photoreduces the Fe(2+) ions to Fe atoms firstly, then the Fe atoms reduce the Cr(VI) to Cr(III), and the later is removed by adsorption. The hierarchical architecture of the catalyst serves as a reactor for the photocatalytic reaction of Cr(VI) ions and an effective absorbent for the removal of Cr(III) ions. The catalyst can be easily magnetically separated from the wastewater after photocatalytic reaction and recycled after acid treatment. PMID:21917375

  3. Mechanical characterization of densely welded Apache Leap tuff

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1991-06-01

    An empirical criterion is formulated to describe the compressive strength of the densely welded Apache Leap tuff. The criterion incorporates the effects of size, L/D ratio, loading rate and density variations. The criterion improves the correlation between the test results and the failure envelope. Uniaxial and triaxial compressive strengths, Brazilian tensile strength and elastic properties of the densely welded brown unit of the Apache Leap tuff have been determined using the ASTM standard test methods. All tuff samples are tested dry at room temperature (22 {plus_minus} 2{degrees}C), and have the core axis normal to the flow layers. The uniaxial compressive strength is 73.2 {plus_minus} 16.5 MPa. The Brazilian tensile strength is 5.12 {plus_minus} 1.2 MPa. The Young`s modulus and Poisson`s ratio are 22.6 {plus_minus} 5.7 GPa and 0.20 {plus_minus} 0.03. Smoothness and perpendicularity do not fully meet the ASTM requirements for all samples, due to the presence of voids and inclusions on the sample surfaces and the sample preparation methods. The investigations of loading rate, L/D radio and cyclic loading effects on the compressive strength and of the size effect on the tensile strength are not conclusive. The Coulomb strength criterion adequately represents the failure envelope of the tuff under confining pressures from 0 to 62 MPa. Cohesion and internal friction angle are 16 MPa and 43 degrees. The brown unit of the Apache Leap tuff is highly heterogeneous as suggested by large variations of the test results. The high intrinsic variability of the tuff is probably caused by the presence of flow layers and by nonuniform distributions of inclusions, voids and degree of welding. Similar variability of the properties has been found in publications on the Topopah Spring tuff at Yucca Mountain. 57 refs., 32 figs., 29 tabs.

  4. Few-layer III-VI and IV-VI 2D semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Sucharitakul, Sukrit; Liu, Mei; Kumar, Rajesh; Sankar, Raman; Chou, Fang C.; Chen, Yit-Tsong; Gao, Xuan

    Since the discovery of atomically thin graphene, a large variety of exfoliable 2D materials have been thoroughly explored for their exotic transport behavior and promises in technological breakthroughs. While most attention on 2D materials beyond graphene is focused on transition metal-dichalcogenides, relatively less attention is paid to layered III-VI and IV-VI semiconductors such as InSe, SnSe etc which bear stronger potential as 2D materials with high electron mobility or thermoelectric figure of merit. We will discuss our recent work on few-layer InSe 2D field effect transistors which exhibit carrier mobility approaching 1000 cm2/Vs and ON-OFF ratio exceeding 107 at room temperature. In addition, the fabrication and device performance of transistors made of mechanically exfoliated multilayer IV-VI semiconductor SnSe and SnSe2 will be discussed.

  5. Role of Anions and Reaction Conditions in the Preparation of Uranium(VI), Neptunium(VI), and Plutonium(VI) Borates

    SciTech Connect

    none,

    2011-02-03

    U(VI), Np(VI), and Pu(VI) borates with the formula AnO2[B8O11(OH)4] (An = U, Np, Pu) have been prepared via the reactions of U(VI) nitrate, Np(VI) perchlorate, or Pu(IV) or Pu(VI) nitrate with molten boric acid. These compounds are all isotypic and consist of a linear actinyl(VI) cation, AnO22+, surrounded by BO3 triangles and BO4 tetrahedra to create an AnO8 hexagonal bipyramidal environment. The actinyl bond lengths are consistent with actinide contraction across this series. The borate anions bridge between actinyl units to create sheets. Additional BO3 triangles and BO4 tetrahedra extend from the polyborate layers and connect these sheets together to form a three-dimensional chiral framework structure. UV-vis-NIR absorption and fluorescence spectroscopy confirms the hexavalent oxidation state in all three compounds. Bond-valence parameters are developed for Np(VI).

  6. Role of anions and reaction conditions in the preparation of uranium(VI), neptunium(VI), and plutonium(VI) borates.

    PubMed

    Wang, Shuao; Villa, Eric M; Diwu, Juan; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-03-21

    U(VI), Np(VI), and Pu(VI) borates with the formula AnO(2)[B(8)O(11)(OH)(4)] (An = U, Np, Pu) have been prepared via the reactions of U(VI) nitrate, Np(VI) perchlorate, or Pu(IV) or Pu(VI) nitrate with molten boric acid. These compounds are all isotypic and consist of a linear actinyl(VI) cation, AnO(2)(2+), surrounded by BO(3) triangles and BO(4) tetrahedra to create an AnO(8) hexagonal bipyramidal environment. The actinyl bond lengths are consistent with actinide contraction across this series. The borate anions bridge between actinyl units to create sheets. Additional BO(3) triangles and BO(4) tetrahedra extend from the polyborate layers and connect these sheets together to form a three-dimensional chiral framework structure. UV-vis-NIR absorption and fluorescence spectroscopy confirms the hexavalent oxidation state in all three compounds. Bond-valence parameters are developed for Np(VI). PMID:21291194

  7. Efficient Online Aggregates in Dense-Region-Based Data Cube Representations

    NASA Astrophysics Data System (ADS)

    Haddadin, Kais; Lauer, Tobias

    In-memory OLAP systems require a space-efficient representation of sparse data cubes in order to accommodate large data sets. On the other hand, most efficient online aggregation techniques, such as prefix sums, are built on dense array-based representations. These are often not applicable to real-world data due to the size of the arrays which usually cannot be compressed well, as most sparsity is removed during pre-processing. A possible solution is to identify dense regions in a sparse cube and only represent those using arrays, while storing sparse data separately, e.g. in a spatial index structure. Previous dense-region-based approaches have concentrated mainly on the effectiveness of the dense-region detection (i.e. on the space-efficiency of the result). However, especially in higher-dimensional cubes, data is usually more cluttered, resulting in a potentially large number of small dense regions, which negatively affects query performance on such a structure. In this paper, our focus is not only on space-efficiency but also on time-efficiency, both for the initial dense-region extraction and for queries carried out in the resulting hybrid data structure. We describe two methods to trade available memory for increased aggregate query performance. In addition, optimizations in our approach significantly reduce the time to build the initial data structure compared to former systems. Also, we present a straightforward adaptation of our approach to support multi-core or multi-processor architectures, which can further enhance query performance. Experiments with different real-world data sets show how various parameter settings can be used to adjust the efficiency and effectiveness of our algorithms.

  8. Morphology of leukocytes from cats affected with alpha-mannosidosis and mucopolysaccharidosis VI (MPS VI).

    PubMed

    Alroy, J; Freden, G O; Goyal, V; Raghavan, S S; Schunk, K L

    1989-07-01

    The morphology and ultrastructure of circulating white blood cells from six Persian and from five Russian Blue/Siamese cats deficient in lysosomal activity of alpha-mannosidase and arylsulfatase B, respectively, were studied and compared to cells from corresponding normal and carrier cats. In cats with mannosidosis, light microscopic examination revealed vacuoles in lymphocytes and monocytes, whereas electron microscopic studies demonstrated additional vacuoles in neutrophils, eosinophils, and basophils. In cats with mucopolysaccharidosis VI (MPS VI), vacuoles containing metachromatic granules were observed in lymphocytes, neutrophils, eosinophils, and monocytes. Ultrastructural studies of these cells identified the accumulation of fibrillar material, which often was associated with lamellated membrane structures. PMID:2503918

  9. Why Do Some Cores Remain Starless?

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.

    2016-08-01

    Prestellar cores, by definition, are gravitationally bound but starless pockets of dense gas. Physical conditions that could render a core starless (in the local Universe) is the subject of investigation in this work. To this end, we studied the evolution of four starless cores, B68, L694-2, L1517B, L1689, and L1521F, a VeLLO. We demonstrate: (i) cores contracted in quasistatic manner over a timescale on the order of ~ 105 yr. Those that remained starless briefly acquired a centrally concentrated density configuration that mimicked the profile of a unstable BonnorEbert sphere before rebounding, (ii) three cores viz. L694-2, L1689-SMM16, and L1521F remained starless despite becoming thermally super-critical. By contrast, B68 and L1517B remained sub-critical; L1521F collapsed to become a VeLLO only when gas-cooling was enhanced by increasing the size of dust-grains. This result is robust, for other starless cores viz. B68, L694-2, L1517B, and L1689 could also be similarly induced to collapse. The temperature-profile of starless cores and those that collapsed was found to be radically different. While in the former type, only very close to the centre of a core was there any evidence of decline in gas temperature, by contrast, a core of the latter type developed a more uniformly cold interior. Our principle conclusions are: (a) thermal super-criticality of a core is insufficient to ensure it will become protostellar, (b) potential star-forming cores (the VeLLO L1521F here), could be experiencing dust-coagulation that must enhance gasdust coupling and in turn lower gas temperature, thereby assisting collapse. This also suggests, mere gravitational/virial boundedness of a core is insufficient to ensure it will form stars.

  10. DISPERSION OF DENSE GAS RELEASES IN A WIND TUNNEL

    EPA Science Inventory

    The paper documents two dense gas projects undertaken at the US EPA Fluid Modeling Facility. The study investigated the basic nature of the transport and dispersion of a dense gas plume in a simulated neutral atmospheric boundary layer. The two dense gas releases were CO2 and SF6...

  11. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Zhong, Lirong; Zachara, John M.

    2010-01-01

    Uranium(VI) diffusion was investigated in a fine-grained saprolite sediment that was collected from U.S. Department of Energy (DOE) Oak Ridge site, TN, where uranium contamination in groundwater is a major environmental concern. U(VI) diffusion was studied in a diffusion cell with one cell end in contact with a large, air-equilibrated electrolyte reservoir. The pH, carbonate and U(VI) concentrations in the reservoir solution were varied to investigate the effect of solution chemical composition and uranyl speciation on U(VI) diffusion. The rates of U(VI) diffusion were evaluated by monitoring the U(VI) concentration in the reservoir solution as a function of time; and by measuring the total concentration of U(VI) extracted from the sediment as a function of time and distance in the diffusion cells. The estimated apparent rate of U(VI) diffusion varied significantly with pH with the slowest rate observed at pH 7 as a result of strong adsorptive retardation. The estimated retardation factor was generally consistent with a surface complexation model. Numerical simulations indicated that a species-based diffusion model that incorporated both aqueous and surface complexation reactions was required to describe U(VI) diffusion in the low permeability material under variable geochemical conditions. Our results implied that low permeability materials will play an important role in storing U(VI) and attenuating U(VI) plume migration at circumneutral pH conditions, and will serve as a long-term source for releasing U(VI) back to the nearby aquifer during and after aquifer decontamination.

  12. Structure of the Type VI secretion system contractile sheath

    PubMed Central

    Kudryashev, Mikhail; Wang, Ray Yu-Ruei; Brackmann, Maximilian; Scherer, Sebastian; Maier, Timm; Baker, David; DiMaio, Frank; Stahlberg, Henning; Egelman, Edward H.; Basler, Marek

    2015-01-01

    Summary Bacteria use rapid contraction of a long sheath of the Type VI secretion system (T6SS) to deliver effectors into a target cell. Here we present an atomic resolution structure of a native contracted Vibrio cholerae sheath determined by cryo-electron microscopy. The sheath subunits, composed of tightly interacting proteins VipA and VipB, assemble into a six-start helix. The helix is stabilized by a core domain assembled from four β-strands donated by one VipA and two VipB molecules. The fold of inner and middle layers is conserved between T6SS and phage sheaths. However, the structure of the outer layer is distinct and suggests a mechanism of interaction of the bacterial sheath with an accessory ATPase, ClpV, that facilitates multiple rounds of effector delivery. Our results provide a mechanistic insight into assembly of contractile nanomachines that bacteria and phages use to translocate macromolecules across membranes. PMID:25723169

  13. Melting the core of giant planets: impact on tidal dissipation

    NASA Astrophysics Data System (ADS)

    Mathis, S.

    2015-12-01

    Giant planets are believed to host central dense rocky/icy cores that are key actors in the core-accretion scenario for their formation. In the same time, some of their components are unstable in the temperature and pressure regimes of central regions of giant planets and only ab-initio EOS computations can address the question of the state of matter. In this framework, several works demonstrated that erosion and redistribution of core materials in the envelope must be taken into account. These complex mechanisms thus may deeply modify giant planet interiors for which signatures of strong tidal dissipation have been obtained for Jupiter and Saturn. The best candidates to explain this dissipation are the viscoelastic dissipation in the central dense core and turbulent friction acting on tidal inertial waves in their fluid convective envelope. In this work, we study the consequences of the possible melting of central regions for the efficiency of each of these mechanisms.

  14. Reductive immobilization of uranium(VI) by amorphous iron sulfide.

    PubMed

    Hua, Bin; Deng, Baolin

    2008-12-01

    Batch experiments were used to evaluate the reductive immobilization of hexavalent uranium (U(VI)) by synthesized, amorphous iron sulfide (FeS) in the anoxic environment. The tests were initiated by spiking 168.0 microM U(VI) to 0.18 g/L FeS suspensions under a CO2-free condition with pH varied from 5.99 to 10.17. The immobilization rate of U(VI) was determined by monitoring the changes of aqueous U(VI) concentration, and the reduction rate of U(VI) associated with FeS was determined by the difference between the total spiked U(VI) and the extractable amount of U(VI) by 25 mM NaHCO3 solution. The results showed that a rapid removal of U(VI) from the aqueous phase occurred within 1 h under all pH conditions accompanied by a simultaneous release of Fe(ll), whereas the reduction of U(VI) associated with FeS took hours to over a week for completion. The reduction rate was greatly increased with decreasing pH within the examined pH range. Product analysis by X-ray photoelectron spectroscopy showed the formation of U3O8/4O9/UO2, polysulfide, and ferric iron. PMID:19192785

  15. Cr(VI) reduction in continuous-flow coculture bioreactor

    SciTech Connect

    Wang, Y.T.; Chirwa, E.M.; Shen, H.

    2000-04-01

    A continuous-flow coculture bioreactor with a phenol-degrading organism, Pseudomonas putida DMP-1, and a Cr(VI)-reducing species, Escherichia coli ATCC 33456, was developed for simultaneous removal of phenol and Cr(VI). Phenol was the sole energy and carbon source added to the coculture along with a basal medium and hexavalent chromium. The coculture bioreactor was operated under three liquid detention times (0.20, 0.31, and 0.52 days) with phenol and Cr(VI) loadings ranging from 2,500 to 8,200 mg/L/day and 4.5-33.2 mg/L/day, respectively. After 279 days of continuous operation, eight quasi-steady-state operation conditions were obtained with near complete removal of phenol and Cr(VI). Elevated levels of Cr(VI) and phenol were observed in the effluent under a high influent Cr(VI) concentration (16 mg/L) or a short liquid detention time (0.20 days). The system recovered from Cr(VI) toxicity after influent Cr(VI) level was reduced. Chromium mass balance analysis revealed that nearly all of the influent Cr(VI) was reduced to Cr(III) in the coculture bioreactor through biological activity. Spectra of UV-Vis and mass spectrometers suggested that phenol metabolites produced by P. putida were utilized by E. coli.

  16. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  17. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGESBeta

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  18. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    PubMed Central

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-01-01

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. PMID:26392208

  19. The Enigmatic Core L1451-mm: A First Hydrostatic Core? Or a Hidden VeLLO?

    NASA Astrophysics Data System (ADS)

    Pineda, Jaime E.; Arce, Héctor G.; Schnee, Scott; Goodman, Alyssa A.; Bourke, Tyler; Foster, Jonathan B.; Robitaille, Thomas; Tanner, Joel; Kauffmann, Jens; Tafalla, Mario; Caselli, Paola; Anglada, Guillem

    2011-12-01

    We present the detection of a dust continuum source at 3 mm (CARMA) and 1.3 mm (Submillimeter Array, SMA), and 12CO (2-1) emission (SMA) toward the L1451-mm dense core. These detections suggest a compact object and an outflow where no point source at mid-infrared wavelengths is detected using Spitzer. An upper limit for the dense core bolometric luminosity of 0.05 L ⊙ is obtained. By modeling the broadband spectral energy distribution and the continuum interferometric visibilities simultaneously, we confirm that a central source of heating is needed to explain the observations. This modeling also shows that the data can be well fitted by a dense core with a young stellar object (YSO) and a disk, or by a dense core with a central first hydrostatic core (FHSC). Unfortunately, we are not able to decide between these two models, which produce similar fits. We also detect 12CO (2-1) emission with redshifted and blueshifted emission suggesting the presence of a slow and poorly collimated outflow, in opposition to what is usually found toward YSOs but in agreement with prediction from simulations of an FHSC. This presents the best candidate, so far, for an FHSC, an object that has been identified in simulations of collapsing dense cores. Whatever the true nature of the central object in L1451-mm, this core presents an excellent laboratory to study the earliest phases of low-mass star formation. Based on observations carried out with the IRAM 30 m Telescope, the Submillimeter Array, and CARMA. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. Support for CARMA construction was derived from the states of California, Illinois, and Maryland, the James S. McDonnell Foundation, the Gordon and Betty Moore Foundation, the Kenneth T

  20. THE NEUTRON STAR MASS-RADIUS RELATION AND THE EQUATION OF STATE OF DENSE MATTER

    SciTech Connect

    Steiner, Andrew W.; Brown, Edward F.; Lattimer, James M. E-mail: ebrown@pa.msu.edu

    2013-03-01

    The equation of state (EOS) of dense matter has been a long-sought goal of nuclear physics. EOSs generate unique mass versus radius (M-R) relations for neutron stars, the ultra-dense remnants of stellar evolution. In this work, we determine the neutron star mass-radius relation and, based on recent observations of both transiently accreting and bursting sources, we show that the radius of a 1.4 solar mass neutron star lies between 10.4 and 12.9 km, independent of assumptions about the composition of the core. We show, for the first time, that these constraints remain valid upon removal from our sample of the most extreme transient sources or of the entire set of bursting sources; our constraints also apply even if deconfined quark matter exists in the neutron star core. Our results significantly constrain the dense matter EOS and are furthermore consistent with constraints from both heavy-ion collisions and theoretical studies of neutron matter. We predict a relatively weak dependence of the symmetry energy on the density and a value for the neutron skin thickness of lead which is less than 0.20 fm, results that are testable in forthcoming experiments.

  1. Impact-activated solidification of dense suspensions

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott

    2013-03-01

    Shear-thickening, non-Newtonian fluids have typically been investigated under steady-state conditions. This approach has produced two pictures for suspension response to imposed forcing. In the weak shear-thickening picture, the response is typically attributed to the hydrodynamic interactions giving rise to hydroclusters, small groups of particles interacting through lubrication forces. At the other end of the spectrum, in the discontinuous shear-thickening regime, the response can be seen as a system-wide jamming that is ultimately limited in strength by the system boundaries. While these steady-state pictures have proven extremely useful, some of the most interesting phenomena associated with dense suspensions is transient and local in character. A prototypical example is the extraordinarily large impact resistance of dense suspensions such as cornstarch and water. When poked lightly these materials respond like a fluid, but when punched or kicked they seem to temporarily ``solidify'' and provide enormous resistance to the motion of the impacting object. Using an array of experimental techniques, including high-speed video, embedded force and acceleration sensing, and x-ray imaging, we are able to investigate the dynamic details this process as it unfolds. We find that an impacting object drives the rapid growth of a jammed, solid-like region directly below the impact site. Being coupled to the surrounding fluid by grain-mediated lubrication forces, this creates substantial peripheral flow and ultimately leads to the sudden extraction of the impactor's momentum. With a simple jamming picture to describe the solidification and an added mass model to explain the force on the rod, we are able to predict the forces on the impactor quantitatively. These findings highlight the importance of the non-equilibrium character of dense suspensions near jamming and might serve as a bridge between the weak and discontinuous shear-thickening pictures.

  2. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  3. Multishock Compression Properties of Warm Dense Argon

    PubMed Central

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-01-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20–150 GPa and 1.9–5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2–23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime. PMID:26515505

  4. Simultaneous Adsorption and Degradation of Cr(VI) and Cd(II) Ions from Aqueous Solution by Silica-Coated Fe0 Nanoparticles

    PubMed Central

    Ma, Hongpu; Ren, Bozhi; Li, Tielong

    2013-01-01

    Core-shell silica-coated Fe0 nanoparticles (Fe@SiO2) were prepared in one-step synthesis by aqueous reduction combined with modified Stöber method. The as-prepared Fe@SiO2 were then used for simultaneous removal of Cr(VI) and Cd(II) from aqueous solution. Batch tests indicated that Fe@SiO2 exhibited high removal capacity toward Cr(VI) and Cd(II). Cr(VI) was removed by Fe@SiO2 through reduction rather than adsorption, while Cd(II) removal was mainly through adsorption. The removal rate increased with increasing initial Fe NPs dose and decreased with increasing initial Cr(VI) and Cd(II) concentrations. Cd(II) adsorption was also strengthened by Cr(VI) reduction with the release of OH−. The removals of Cr(VI) and Cd(II) were weakened in the presence of cations or humic acid, as a result of aggregation and less active site of Fe@SiO2. Overall, the simply prepared Fe@SiO2 were potential material for the heavy metals removed from water. PMID:24455425

  5. Dense stellar matter with strange quark matter driven by kaon condensation

    SciTech Connect

    Kim, Kyungmin; Lee, Hyun Kyu; Rho, Mannque

    2011-09-15

    The core of neutron-star matter is supposed to be at a much higher density than the normal nuclear-matter density, for which various possibilities have been suggested, such as, for example, meson or hyperon condensation and/or deconfined quark or color-superconducting matter. In this work, we explore the implication on hadron physics of a dense compact object that has three ''phases'': nuclear matter at the outer layer, kaon condensed nuclear matter in the middle, and strange quark matter at the core. Using a drastically simplified but not unreasonable model, we develop the scenario where the different phases are smoothly connected with the kaon condensed matter playing a role of a ''doorway'' to a quark core, the equation of state of which with parameters restricted within the range allowed by nature could be made compatible with the mass vs radius constraint given by the 1.97-solar-mass object PSR J1614-2230 recently observed.

  6. Dense optical-electrical interface module

    SciTech Connect

    Paul Chang

    2000-12-21

    The DOIM (Dense Optical-electrical Interface Modules) is a custom-designed optical data transmission module employed in the upgrade of Silicon Vertex Detector of CDF experiment at Fermilab. Each DOIM module consists of a transmitter (TX) converting electrical differential input signals to optical outputs, a middle segment of jacketed fiber ribbon cable, and a receiver (RX) which senses the light inputs and converts them back to electrical signals. The targeted operational frequency is 53 MHz, and higher rate is achievable. This article outlines the design goals, implementation methods, production test results, and radiation hardness tests of these modules.

  7. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  8. Electrical and thermal conductivities in dense plasmas

    SciTech Connect

    Faussurier, G. Blancard, C.; Combis, P.; Videau, L.

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  9. Molecular dynamics simulations of dense plasmas

    SciTech Connect

    Collins, L.A.; Kress, J.D.; Kwon, I.; Lynch, D.L.; Troullier, N.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  10. Gravity-driven dense granular flows

    SciTech Connect

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  11. Out-of-Core Solutions of Complex Sparse Linear Equations

    NASA Technical Reports Server (NTRS)

    Yip, E. L.

    1982-01-01

    ETCLIB is library of subroutines for obtaining out-of-core solutions of complex sparse linear equations. Routines apply to dense and sparse matrices too large to be stored in core. Useful for solving any set of linear equations, but particularly useful in cases where coefficient matrix has no special properties that guarantee convergence with any of interative processes. The only assumption made is that coefficient matrix is not singular.

  12. Grain alignment in starless cores

    SciTech Connect

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  13. Rich-Cores in Networks

    PubMed Central

    Ma, Athen; Mondragón, Raúl J.

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585

  14. Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens

    PubMed Central

    Lin, Jer-Sheng; Wu, Hsin-Hui; Hsu, Pang-Hung; Ma, Lay-Sun; Pang, Yin-Yuin; Tsai, Ming-Daw; Lai, Erh-Min

    2014-01-01

    The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed. PMID:24626341

  15. Chemical Evolution of Infrared Dark Cloud Cores

    NASA Astrophysics Data System (ADS)

    Finn, Susanna C.; Jackson, J. M.; Chambers, E. T.; Rathborne, J. M.; Simon, R.

    2009-05-01

    Infrared dark clouds (IRDCs) are molecular clouds seen as extinction features against the mid-infrared Galactic background. Studies of IRDCs have shown them to be cold (< 25 K), dense (> 10^5 cm^-3), and have very high column densities ( 10^23-10^25 cm^-2, e.g., Egan et al. 1998; Carey et al. 1998, 2000). IRDCs host the earliest stages of high-mass star and cluster formation (Rathborne et al. 2005, 2006, 2007). We have mapped 59 IRDC protostellar cores in the fourth Galactic quadrant using the ATNF Mopra telescope simultaneously in HCN (1-0), HC3N (10-9), HCO+ (1-0), HNC (1-0), N2H+ (1-0), and SiO (2-1). We found that the ratios of intensities of the different molecular tracers vary greatly from cloud to cloud, and from core to core within clouds. These different line ratios probably correspond to chemical differences which arise in different evolutionary sequences. We show that specific line ratios distinguish cold pre-stellar cores from warm star-forming cores. N2H+ was found to be a good tracer of active star-forming cores, correlating well with cores containing "green fuzzies,” i.e., extended 4.5 micron emission due to shocked gas (Chambers et al., in press). This work was funded by NSF grant AST-0808001.

  16. Nonlinear nanostructures in dense quantum plasmas

    SciTech Connect

    Shukla, P. K.; Eliasson, B.

    2009-10-08

    Dense quantum plasmas are ubiquitous in compact astrophysical objects (e.g. the interior of white dwarf stars, in magnetars, etc.), in semiconductors and micro-mechanical systems, as well as in the next generation intense laser-solid density plasma interaction experiments. In contrast to classical plasmas, one encounters extremely high plasma density and low temperature in dense quantum plasmas. In the latter, the electrons and positrons obey the Fermi-Dirac statistics, and there are new forces associated with i) quantum statistical electron and positron pressures, ii) electron and positron tunneling through the Bohm potential, and iii) electron and positron spin-1/2. Inclusion of these quantum forces gives rise to very high-frequency plasma waves (e.g. in the x-ray regime) at nanoscales. Our objective here is to present nonlinear equations that depict the localization of electron plasma waves in the form of a quantum electron hole and quantum vortex, as well as the trapping of intense electromagnetic waves into a quantum electron hole. Our simulation results reveal that these nonlinear nanostructures are quite robust. Hence, they can be explored for the purpose of transferring localized electrostatic and electromagnetic energies over nanoscales.

  17. Super-resolution without dense flow.

    PubMed

    Su, Heng; Wu, Ying; Zhou, Jie

    2012-04-01

    Super-resolution is a widely applied technique that improves the resolution of input images by software methods. Most conventional reconstruction-based super-resolution algorithms assume accurate dense optical flow fields between the input frames, and their performance degrades rapidly when the motion estimation result is not accurate enough. However, optical flow estimation is usually difficult, particularly when complicated motion is presented in real-world videos. In this paper, we explore a new way to solve this problem by using sparse feature point correspondences between the input images. The feature point correspondences, which are obtained by matching a set of feature points, are usually precise and much more robust than dense optical flow fields. This is because the feature points represent well-selected significant locations in the image, and performing matching on the feature point set is usually very accurate. In order to utilize the sparse correspondences in conventional super-resolution, we extract an adaptive support region with a reliable local flow field from each corresponding feature point pair. The normalized prior is also proposed to increase the visual consistency of the reconstructed result. Extensive experiments on real data were carried out, and results show that the proposed algorithm produces high-resolution images with better quality, particularly in the presence of large-scale or complicated motion fields. PMID:22027381

  18. Dense circumnuclear molecular gas in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Green, C.-E.; Cunningham, M. R.; Green, J. A.; Dawson, J. R.; Jones, P. A.; López-Sánchez, Á. R.; Verdes-Montenegro, L.; Henkel, C.; Baan, W. A.; Martín, S.

    2016-04-01

    We present results from a study of the dense circumnuclear molecular gas of starburst galaxies. The study aims to investigate the interplay between starbursts, active galactic nuclei and molecular gas. We characterize the dense gas traced by HCN, HCO+ and HNC and examine its kinematics in the circumnuclear regions of nine starburst galaxies observed with the Australia Telescope Compact Array. We detect HCN (1-0) and HCO+ (1-0) in seven of the nine galaxies and HNC (1-0) in four. Approximately 7 arcsec resolution maps of the circumnuclear molecular gas are presented. The velocity-integrated intensity ratios, HCO+ (1-0)/HCN (1-0) and HNC (1-0)/HCN (1-0), are calculated. Using these integrated intensity ratios and spatial intensity ratio maps, we identify photon-dominated regions (PDRs) in NGC 1097, NGC 1365 and NGC 1808. We find no galaxy which shows the PDR signature in only one part of the observed nuclear region. We also observe unusually strong HNC emission in NGC 5236, but it is not strong enough to be consistent with X-ray-dominated region chemistry. Rotation curves are derived for five of the galaxies and dynamical mass estimates of the inner regions of three of the galaxies are made.

  19. Symmetry energy in cold dense matter

    NASA Astrophysics Data System (ADS)

    Jeong, Kie Sang; Lee, Su Houng

    2016-01-01

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.

  20. Dynamics of Kr in dense clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Klug, D. D.; Tse, J. S.; Zhao, J. Y.; Sturhahn, W.; Alp, E. E.; Tulk, C. A.

    2011-05-01

    The dynamics of Kr atoms as guests in dense clathrate hydrate structures are investigated using site specific Kr83 nuclear resonant inelastic x-ray scattering (NRIXS) spectroscopy in combination with molecular dynamics simulations. The dense structure H hydrate and filled-ice structures are studied at high pressures in a diamond anvil high-pressure cell. The dynamics of Kr in the structure H clathrate hydrate quench recovered at 77 K is also investigated. The Kr phonon density of states obtained from the experimental NRIXS data are compared with molecular dynamics simulations. The temperature and pressure dependence of the phonon spectra provide details of the Kr dynamics in the clathrate hydrate cages. Comparison with the dynamics of Kr atoms in the low-pressure structure II obtained previously was made. The Lamb-Mossbauer factor obtained from NRIXS experiments and molecular dynamics calculations are in excellent agreement and are shown to yield unique information on the strength and temperature dependence of guest-host interactions.

  1. Nuclear quantum dynamics in dense hydrogen

    PubMed Central

    Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin

    2014-01-01

    Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754

  2. Thomson scattering in warm dense matter

    NASA Astrophysics Data System (ADS)

    Thiele, R.; Bornath, T.; F"Austlin, R. R.; Fortmann, C.; Glenzer, S.; Gregori, G.; Holst, B.; Tschentscher, T.; Schwarz, V.; Redmer, R.

    2009-11-01

    Free electron lasers employing scattering of high-brilliant, coherent photons in the extreme ultraviolet (VUV), e.g. at FLASH (DESY Hamburg) or LCLS (Stanford), allow for a systematic study of basic plasma properties in the region of warm dense matter (WDM). WDM is characterized by condensed matter-like densities and temperatures of several eV. Collective Thomson scattering with VUV or x-ray has demonstrated its capacity for robust measurements of the free electron density and temperature in WDM. Collective excitations like plasmons (``electron feature'') appear as maxima in the scattering signal. The respective frequencies can be related to the free electron density. Furthermore, the asymmetry of the red- and blue shifted plasmon intensity gives the electron temperature due to detailed balance. We treat collective Thomson scattering in the Born-Mermin-approximation which includes collisions and present a generalized Gross-Bohm dispersion for plasmas. The influence of plasma inhomogeneities on the scattering spectrum is studied by comparing density and temperature averaged scattering signals with calculations assuming homogeneous targets. For the ``ion feature,'' results of semi-classical hypernetted chain (HNC) calculations and of quantum molecular dynamics simulations are shown for dense beryllium.

  3. Solids flow rate measurement in dense slurries

    SciTech Connect

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  4. Testing ergodicity in dense granular systems

    NASA Astrophysics Data System (ADS)

    Gao, Guo-Jie; Blawzdziewicz, Jerzy; O'Hern, Corey

    2008-03-01

    The Edwards' entropy formalism provides a statistical mechanical framework for describing dense granular systems. Experiments on vibrated granular columns and numerical simulations of quasi- static shear flow of dense granular systems have provided indirect evidence that the Edwards' theory may accurately describe certain aspects of these systems. However, a fundamental assumption of the Edwards' description---that all mechanically stable (MS) granular packings at a given packing fraction and externally imposed stress are equally accessible---has not been explicitly tested. We investigate this assumption by generating all mechanically stable hard disk packings in small bidisperse systems using a protocol where we successively compress or decompress the system followed by energy minimization. We then apply quasi-static shear flow at zero pressure to these MS packings and record the MS packings that occur during the shear flow. We generate a complete library of the allowed MS packings at each value of shear strain and determine the frequency with which each MS packing occurs. We find that the MS packings do not occur with equal probability at any value of shear strain. In fact, in small systems we find that the evolution becomes periodic with a period that grows with system-size. Our studies show that ergodicity can be improved by either adding random fluctuations to the system or increasing the system size.

  5. Continuum equations for dense shallow granular flows

    NASA Astrophysics Data System (ADS)

    Kumaran, Viswanathan

    2015-11-01

    Simplified equations are derived for a granular flow in the `dense' limit where the volume fraction is close to that for dynamical arrest, and the `shallow' limit where the stream-wise length for flow development (L) is large compared to the cross-stream height (h). In the dense limit, the equations are simplified by taking advantage of the power-law divergence of the pair distribution function χ proportional to (ϕad - ϕ) - α, where ϕ is the volume fraction, and ϕad is the volume fraction for arrested dynamics. When the height h is much larger than the conduction length, the energy equation reduces to an algebraic balance between the rates of production and dissipation of energy, and the stress is proportional to the square of the strain rate (Bagnold law). The analysis reveals important differences between granular flows and the flows of Newtonian fluids. One important difference is that the Reynolds number (ratio of inertial and viscous terms) turns out to depend only on the layer height and Bagnold coefficients, and is independent of the flow velocity, because both the inertial terms in the conservation equations and the divergence of the stress depend on the square of the velocity/velocity gradients.

  6. Times Scales in Dense Granular Material

    NASA Astrophysics Data System (ADS)

    Zhang, Duan

    2005-07-01

    Forces in dense granular material are transmitted through particle contacts. The evolution of the contact stress is directly related to dynamical interaction forces between particles. Since particle contacts in a dense granular material are random, a statistical method is employed to describe and model their motions. It is found that the time scales of particle contacts determinate stress relaxation and the fluid- like or solid-like behavior of the material. Numerical simulations are performed to calculate statistical properties of particle interactions. Using results from the numerical simulations we examine the relationship between the averaged local deformation field and the macroscopic deformation field. We also examine the relationship between the averaged local interaction force and the averaged stress field in the material. Validities of the Voigt and the Reuss assumptions are examined; and extensions to these assumptions are studied. Numerical simulations show that tangential frictions between particles significantly increase the contact stress, while the direct contribution of the tangential force to the stress is small. This puzzling observation can be explained by dependency of the relaxation time on the tangential friction.

  7. Quantum molecular dynamics simulations of dense matter

    SciTech Connect

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  8. Six-fold coordinated carbon dioxide VI

    SciTech Connect

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae

    2008-06-16

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO{sub 2}) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of an extended-solid phase of CO{sub 2}: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50 GPa at 530-650 K. Together with the previously reported CO{sub 2}-V and a-carbonia, this extended phase indicates a fundamental similarity between CO{sub 2} (a prototypical molecular solid) and SiO{sub 2} (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO{sub 2}-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III and IV. The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  9. Diaphragmatic dysfunction in Collagen VI myopathies.

    PubMed

    Quijano-Roy, S; Khirani, S; Colella, M; Ramirez, A; Aloui, S; Wehbi, S; de Becdelievre, A; Carlier, R Y; Allamand, V; Richard, P; Azzi, V; Estournet, B; Fauroux, B

    2014-02-01

    Collagen VI-related myopathies are hereditary disorders causing progressive restrictive respiratory insufficiency. Specific diaphragm involvement has been suggested by a drop in supine volumes. This pilot study aimed at characterizing the respiratory muscle phenotype in patients with COL6A1-3 genes mutations. Lung function, blood gases, muscle strength and respiratory mechanics were measured in 7 patients between 2002 and 2012. Patients were classified as Early-Severe (n = 3), Moderate-Progressive (n = 2) and Mild (n = 2) according to clinical disease presentation. Seven patients (aged 6-28) were evaluated. Forced vital capacity distinguished the Mild group (>60% predicted) from the two other groups (<50% predicted). This distinction was also possible using the motor function measure scale. Diaphragmatic dysfunction at rest was observed in all the Early-Severe and Moderate-Progressive patients. During a voluntary sniff maneuver diaphragmatic dysfunction was observed in all patients, as assessed by a negative gastric pressure. All patients had diaphragmatic fatigue assessed by a tension-time index over the threshold of 0.15. Diaphragmatic dysfunction during a maximal voluntary maneuver and diaphragmatic fatigue are constant features in Collagen VI myopathies. These observations can assist the diagnosis and should be taken in account for the clinical management, with the early detection of sleep-disordered breathing. PMID:24314752

  10. Photophysical Properties of II-VI Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gong, Ke

    As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in

  11. Cores, Filaments, and Bundles: Hierarchical core formation in the B213 filament in Taurus

    NASA Astrophysics Data System (ADS)

    Hacar, Alvaro; Tafalla, Mario; Kauffmann, Jens; Kovacs, Attila

    2013-07-01

    Characterizing the dense core formation in filaments is a critical step for our understanding of the star formation process within molecular clouds. Using different molecular tracers to study the gas kinematics at different scales and density regimes, we have investigated the dense core formation in the B213/L1495 filament in Taurus, one of the most prominent structures identified in nearby clouds (see Hacar et al 2013, A&A, 554, A55). Our analysis of its internal kinematics demonstrates that this filament is actually a bundle of 35 velocity-coherent filaments, typically with lengths of ˜ 0.5 pc and oscillatory-like and sonic velocity field, each of them exhibiting linear masses close to the expected mass for a filament in hydrostatic equilibrium. Among them, only a small fraction of these filaments (˜1/4) are "fertile" and efficiently fragment forming all the cores identified within this region, while most of them (˜3/4) do not form cores and remain "sterile". Our observations then suggest that core formation in Taurus occurs in two steps. First, 0.5 pc-long velocity-coherent filaments condense out of the cloud gas, probably as a result of the turbulent cascade. After that, the dense cores condense quasi-statically in only those "fertile" filaments that have accumulated enough mass to became gravitational unstable, inheriting their kinematic properties. The formation of these velocity-coherent filaments appears therefore as a critical step on the star formation process being the first subsonic structures formed out of the turbulent regime that dominates the cloud dynamics at large scales.

  12. ON THE COAGULATION AND SIZE DISTRIBUTION OF PRESSURE CONFINED CORES

    SciTech Connect

    Huang Xu; Zhou Tingtao; Lin, D. N. C.

    2013-05-20

    Observations of the Pipe Nebula have led to the discovery of dense starless cores. The mass of most cores is too small for their self-gravity to hold them together. Instead, they are thought to be pressure confined. The observed dense cores' mass function (CMF) matches well with the initial mass function of stars in young clusters. Similar CMFs are observed in other star forming regions such as the Aquila Nebula, albeit with some dispersion. The shape of these CMF provides important clues to the competing physical processes which lead to star formation and its feedback on the interstellar media. In this paper, we investigate the dynamical origin of the mass function of starless cores which are confined by a warm, less dense medium. In order to follow the evolution of the CMF, we construct a numerical method to consider the coagulation between the cold cores and their ablation due to Kelvin-Helmholtz instability induced by their relative motion through the warm medium. We are able to reproduce the observed CMF among the starless cores in the Pipe Nebula. Our results indicate that in environment similar to the Pipe Nebula: (1) before the onset of their gravitational collapse, the mass distribution of the progenitor cores is similar to that of the young stars, (2) the observed CMF is a robust consequence of dynamical equilibrium between the coagulation and ablation of cores, and (3) a break in the slope of the CMF is due to the enhancement of collisional cross section and suppression of ablation for cores with masses larger than the cores' Bonnor-Ebert mass.

  13. U(VI) behaviour in hyperalkaline calcite systems

    NASA Astrophysics Data System (ADS)

    Smith, Kurt F.; Bryan, Nicholas D.; Swinburne, Adam N.; Bots, Pieter; Shaw, Samuel; Natrajan, Louise S.; Mosselmans, J. Frederick W.; Livens, Francis R.; Morris, Katherine

    2015-01-01

    The behaviour of U(VI) in hyperalkaline fluid/calcite systems was studied over a range of U(VI) concentrations (5.27 × 10-5 μM to 42.0 μM) and in two high pH systems, young and old synthetic cement leachate in batch sorption experiments. These systems were selected to be representative of young- (pH 13.3) and old-stage (pH 10.5) leachate evolution within a cementitious geological disposal facility. Batch sorption experiments, modelling, extended X-ray absorption fine structure spectroscopy, electron microscopy, small angle X-ray scattering and luminescence spectroscopy were used to define the speciation of U(VI) across the systems of study. At the lowest concentrations (5.27 × 10-5 μM 232U(VI)) significant U removal was observed for both old and young cement leachates, and this was successfully modelled using a first order kinetic adsorption modelling approach. At higher concentrations (>4.20 μM) in the young cement leachate, U(VI) showed no interaction with the calcite surface over an 18 month period. Small angle X-ray scattering techniques indicated that at high U concentrations (42.0 μM) and after 18 months, the U(VI) was present in a colloidal form which had little interaction with the calcite surface and consisted of both primary and aggregated particles with a radius of 7.6 ± 1.1 and 217 ± 24 Å, respectively. In the old cement leachate, luminescence spectroscopy identified two surface binding sites for U(VI) on calcite: in the system with 0.21 μM U(VI), a liebigite-like Ca2UO2(CO3)3 surface complex was identified; at higher U(VI) concentrations (0.42 μM), a second binding site of undetermined coordination was identified. At elevated U(VI) concentrations (>2.10 μM) in old cement leachate, both geochemical data and luminescence spectroscopy suggested that surface mediated precipitation was controlling U(VI) behaviour. A focused ion beam mill was used to create a section across the U(VI) precipitate-calcite interface. Transmission electron

  14. KENO-VI Primer: A Primer for Criticality Calculations with SCALE/KENO-VI Using GeeWiz

    SciTech Connect

    Bowman, Stephen M

    2008-09-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer software system developed at Oak Ridge National Laboratory is widely used and accepted around the world for criticality safety analyses. The well-known KENO-VI three-dimensional Monte Carlo criticality computer code is one of the primary criticality safety analysis tools in SCALE. The KENO-VI primer is designed to help a new user understand and use the SCALE/KENO-VI Monte Carlo code for nuclear criticality safety analyses. It assumes that the user has a college education in a technical field. There is no assumption of familiarity with Monte Carlo codes in general or with SCALE/KENO-VI in particular. The primer is designed to teach by example, with each example illustrating two or three features of SCALE/KENO-VI that are useful in criticality analyses. The primer is based on SCALE 6, which includes the Graphically Enhanced Editing Wizard (GeeWiz) Windows user interface. Each example uses GeeWiz to provide the framework for preparing input data and viewing output results. Starting with a Quickstart section, the primer gives an overview of the basic requirements for SCALE/KENO-VI input and allows the user to quickly run a simple criticality problem with SCALE/KENO-VI. The sections that follow Quickstart include a list of basic objectives at the beginning that identifies the goal of the section and the individual SCALE/KENO-VI features that are covered in detail in the sample problems in that section. Upon completion of the primer, a new user should be comfortable using GeeWiz to set up criticality problems in SCALE/KENO-VI. The primer provides a starting point for the criticality safety analyst who uses SCALE/KENO-VI. Complete descriptions are provided in the SCALE/KENO-VI manual. Although the primer is self-contained, it is intended as a companion volume to the SCALE/KENO-VI documentation. (The SCALE manual is provided on the SCALE installation DVD.) The primer provides specific examples of

  15. 32 CFR 2003.6 - Voting (Article VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Voting (Article VI). 2003.6 Section 2003.6...) BYLAWS, RULES, AND APPEAL PROCEDURES Bylaws § 2003.6 Voting (Article VI). (a) Motions. When the Panel is... context of a formal ISCAP meeting. An alternate member may also participate in such a vote if the...

  16. 32 CFR 2003.6 - Voting (Article VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Voting (Article VI). 2003.6 Section 2003.6...) BYLAWS, RULES, AND APPEAL PROCEDURES Bylaws § 2003.6 Voting (Article VI). (a) Motions. When the Panel is... context of a formal ISCAP meeting. An alternate member may also participate in such a vote if the...

  17. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    PubMed

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  18. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Aracil, Bastien; Davé, Romeel; Mulchaey, John; Chen, Hsiao-Wen

    2005-08-01

    A comparison of the baryonic mass density inferred from BBN and the CMB with a census of visible baryonic components at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations predict that the majority of 'missing' baryons lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers directly impacts our understanding of the distribution of baryons in the universe. The principal goal of our program is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web', or a different region of the universe altogether. We are pursuing an observational program to search for galaxies associated with O VI absorbers at low redshift. To accomplish this project, we require deep UBVRI images in fields surrounding quasars surveyed for O VI absorption. This dataset will provide precise photometric redshifts of z< 0.3 galaxies with L > L^*/10 and measures of color and morphology. Ultimately, we will use the photometric redshifts to efficiently pre-select galaxies for spectroscopy on multi-slit spectrometers. By correlating the galaxy redshifts against the O VI absorption lines and comparing directly with cosmological simulations, we will establish the origin of the O VI gas.

  19. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Aracil, Bastien; Davé, Romeel; Mulchaey, John; Chen, Hsiao-Wen

    2006-02-01

    A comparison of the baryonic mass density inferred from BBN and the CMB with a census of visible baryonic components at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations predict that the majority of 'missing' baryons lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers directly impacts our understanding of the distribution of baryons in the universe. The principal goal of our program is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web', or a different region of the universe altogether. We are pursuing an observational program to search for galaxies associated with O VI absorbers at low redshift. To accomplish this project, we require deep UBVRI images in fields surrounding quasars surveyed for O VI absorption. This dataset will provide precise photometric redshifts of z< 0.3 galaxies with L > L^*/10 and measures of color and morphology. Ultimately, we will use the photometric redshifts to efficiently pre-select galaxies for spectroscopy on multi-slit spectrometers. By correlating the galaxy redshifts against the O VI absorption lines and comparing directly with cosmological simulations, we will establish the origin of the O VI gas.

  20. Possible problems in ENDF/B-VI.r8

    SciTech Connect

    Brown, D; Hedstrom, G

    2003-10-30

    This document lists the problems that we encountered in processing ENDF/B-VI.r8 that we suspect are problems with ENDF/B-VI.r8 itself. It also contains a comparison of linear interpolation methods. Finally, this documents proposes an alternative to the current scheme of reporting problems to the ENDF community.

  1. 77 FR 64399 - Order of Succession for HUD Region VI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... URBAN DEVELOPMENT Order of Succession for HUD Region VI AGENCY: Office of Field Policy and Management, HUD. ACTION: Notice of Order of Succession. SUMMARY: In this notice, the Assistant Deputy Secretary... Succession for the Fort Worth Regional Office and its Field Offices (Region VI). This Order of...

  2. Kandinsky's "Composition VI": Heideggerian Poetry in Noah's Ark

    ERIC Educational Resources Information Center

    Hall, Joshua M.

    2012-01-01

    The author will begin his investigation of Wassily Kandinsky's painting "Composition VI" with Kandinsky's own commentary on the painting. He will then turn to the analysis of Kandinsky and the "Compositions" in John Sallis's book "Shades." Using this analysis as his point of departure, the author will consider how "Composition VI" resonates with…

  3. ADSORPTION AND TRANSPORT OF U(VI) IN SUBSURFACE MEDIA

    EPA Science Inventory

    U(VI) adsorption and transport in three natural, heterogeneous subsurface media were investigated in batch and column experiments. The rate of U(VI) adsorption to the natural samples was rapid over the first few hours of the experiments, and then slowed appreciably after twenty-f...

  4. The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-disk Mapping of M51

    NASA Astrophysics Data System (ADS)

    Bigiel, Frank; Leroy, Adam K.; Jiménez-Donaire, Maria J.; Pety, Jérôme; Usero, Antonio; Cormier, Diane; Bolatto, Alberto; Garcia-Burillo, Santiago; Colombo, Dario; González-García, Manuel; Hughes, Annie; Kepley, Amanda A.; Kramer, Carsten; Sandstrom, Karin; Schinnerer, Eva; Schruba, Andreas; Schuster, Karl; Tomicic, Neven; Zschaechner, Laura

    2016-05-01

    We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high-density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3 mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the “luminosity gap” between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, {f}{dense} traced by HCN/CO, and the rate at which dense gas forms stars, {{SFE}}{dense} traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high-surface-density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.

  5. Dual-core antiresonant hollow core fibers.

    PubMed

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters. PMID:27464191

  6. Influence of Calcite Solids and Dissolved Calcium on U(VI) Sorption and Desorption in Hanford Subsurface Sediments

    SciTech Connect

    Dong, Wenming; Ball, William P.; Stone, Alan T.; Bai, Jing; Liu, Chongxuan; Wang, Zheming

    2004-03-29

    We have investigated U(VI) sorption and desorption with batch experiments conducted on core samples from the Hanford, WA, site as well as on sub-fractions of these materials and laboratory-grade calcite. In these studies, [U(VI)] was varied between 10- 7 and 10-5 and pH between 7.2 to 10, at constant I (=0.05) and constant PCO2 (10-3.5 atm), using water that was saturated with respect to calcite. A carbonate-free (acetic acid- treated) fraction of silt/clay material showed higher sorption than untreated material, suggesting that carbonates block access to higher affinity sites. Of particular interest was that U(VI) sorption on untreated material was maximum at pH=8.4, with substantially less sorption at lower and higher pH and in contrast to results from calcite free studies, which show strong sorption at pH {approx} 5 to 8. U(VI) speciation results suggest that aqueous-phase Ca2UO2(CO3)3 was the source of the otherwise unexpectedly low sorption at pH <8.4.

  7. Chemistry of Star-Forming Cores

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.

    1994-01-01

    Chemical effects arising from the exchange of molecules between dust and gas in dense clumps are described. Selective desorption of CO and N2 from grains in cool cores can account for the presence of ammonia in several cores in the NGC 2024 cloud. Evaporation of ices containing methanol and ethanol can lead to detectable abundances of (C2H5)(sub 2)O and CH3OC2H5. Results are presented for the hot core chemistries of sulphur and phosphorus which are initiated by evaporated hydrogen sulphide and phosphine. The implications of these studies for understanding the nature of molecular mantles, the evolution of molecular complexity in the gas phase, and the presence of small-scale abundance gradients in star-forming regions, are briefly discussed.

  8. Rheology of Dense Granular Mixtures and Slurries

    NASA Astrophysics Data System (ADS)

    Tewoldebrhan, Bereket Yohannes

    Dense granular flows, characterized by multiple contacts between grains, are common in many industrial processes and natural events, such as debris flows. Understanding the characteristics of these flows is crucial to predict quantities such as bedrock erosion and distance traveled by debris flows. However, the rheological properties of these flows are complicated due to wide particle size distribution and presence of interstitial fluids. Models for dense sheared granular materials indicate that their rheological properties depend on particle size, but the representative particle size for mixtures is not obvious. Using the discrete element method (DEM) we study sheared granular binary mixtures in a Couette cell to determine the relationship and rheological parameters such as stress and effective coefficient of friction and particle size distribution. The results indicate that the stress does not depend monotonically on the average particle size as it does in models derived from simple dimensional consideration. The stress has an additional dependence on a measure of the effective free volume per particle that is adapted from an expression for packing of monosized particles near the jammed state. The effective friction also has a complicated dependence on particle size distribution. For these systems of relatively hard particles, these relationships are governed largely by the ratio between average collision times and mean-free-path times. The characteristics of shallow free surface flows, important for applications such as debris flows, are different from confined systems. To address this, we also study shallow granular flows in a rotating drum. The stress at the boundary, height profiles and segregation patterns from DEM simulations are quantitatively similar to the results obtained from physical experiments of shallow granular flows in rotating drums. Individual particle-bed impacts rather than enduring contacts dominate the largest forces on the drum bed, which

  9. Millennial-scale variability of the George VI Sound Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Bentley, M.; Hodgson, D.; Bryant, C.; Carmicheal, E.; Noon, P.; Smith, J.; Sugden, D.; Verleyen, E.

    2003-04-01

    This project provides a Late Quaternary perspective of Antarctic ice shelf variability by examining sediment records from epishelf lakes dammed on the eastern side of Alexander Island by George VI Ice Shelf. In recent decades, vast areas of ice shelves on the east coast of the Antarctic Peninsula have fragmented in a series of large break-up events, while others have disintegrated progressively. The global significance of current ice shelf loss is difficult to judge as similar variations may be a feature of the last 10,000 years. George VI Ice Shelf is currently close to the limit for ice shelf stability; hence, a two-season sediment-coring programme was undertaken to establish its palaeo-stability record. Recent results are presented from two principal study sites, Moutonnée and Ablation, with preliminary data from Cannonball and Citadel Bastion. These lakes are almost unique in Antarctica because they possess a continuous palaeolacustrine record of ice shelf history that can be linked to a geomorphological record of ice shelf variability. Most significant thus far, is the discovery of benthic foram-rich zones in the Moutonnée basin cores, representing at least one occasion when the ice shelf withdrew and open marine conditions existed in the sound. To determine when this occurred, mono-specific radiocarbon ages and oxygen and carbon isotope data are being obtained from forams, algal mat material and sediments. Physical, chemical and isotope analysis of cores reveals cyclic patterns that potentially match sections of ice core records.

  10. Factors affecting the adsorption of chromium (VI) on activated carbon

    SciTech Connect

    Yavuz, R.; Orbak, I.; Karatepe, N.

    2006-09-15

    The aim of this investigation was to determine the adsorption behavior of chromium (VI) on two different activated carbon samples produced from Tuncbilek lignite. The effects of the initial chromium (VI) concentration (250-1000 mg/L), temperature (297-323 K) and pH (2.0-9.5) on adsorption were investigated systematically. The effectiveness of the parameters on chromium adsorption was found to be in the order of pH, the initial Cr(VI) concentration and the temperature. Increasing the pH from 2.0 to 9.5 caused a decrease in adsorption. However, the adsorption was increased by increasing the initial Cr(VI) concentration and temperature. The multilinear mathematical model was also developed to predict the Cr(VI) adsorption on activated carbon samples within the experimental conditions.

  11. Electrolytic determination of ruthenium(VI) with 8-mercaptoquinoline

    SciTech Connect

    Avdienko, T.N.; Fedorova, N.G.; Sinkevich, V.V.; Suprunovich, V.I.

    1986-08-01

    The authors studied the possibility of using 8-mercaptoquinoline for the potentiometric and amperometric determination of ruthenium(VI). Previously, this reagent was recommended for the amperometric titration of ruthenium(IV) in the form of (RuCl/sub 6/)/sup 2/-; pd(II), Ir(IV), Cu(III), Au(III), and certain other metals interfere with the determination. A differential analysis of the following two-component systems was carried out: ruthenium(VI)-palladium(II); ruthenium(VI)-osmium(VI). Methods were developed for the potentiometric titration and amperometric (with the polarized electrodes) determination of ruthenium(VI) with 8-mercaptoquinoline in the presence of certain metals of the platinum group. Model mixtures, close in composition to the natural ones, and an industrial sample were analyzed.

  12. Protracted Crystallization of a Dense Basal Magma Ocean

    NASA Astrophysics Data System (ADS)

    Labrosse, S.; Hernlund, J. W.

    2006-12-01

    The presence of silicate melt in a thin layer at the base of Earth's mantle was proposed by Williams and Garnero (1996) to explain the ultralow-velocity zone. Recent ab initio calculations by Stixrude and Karki (2005) suggest that an Fe-enriched silicate melt will be gravitationally stable at the bottom of the mantle. Using energy balances and regional-scale numerical models of convection in the lowermost mantle, we investigate the conditions necessary for the survival of such a melt layer in a cooling earth and its implications for core-mantle thermal coupling. The lifetime of a basal melt layer τ_c is controlled by the balance between heat transfer across the solid mantle and heat capacity of the core times the temperature decrement Δ T_c required to entirely freeze the melt layer. Δ T_c depends on the phase diagram and can also change depending upon whether the layer undergoes bulk or fractional crystallization. In contrast to the short lifetime of the surface magma ocean (~ 10 \\mathrm{Myr}), τ_c is plausibly of order several billion years, with longer lifetimes permitted if the layer undergoes fractional crystallization. Fluctuations of heat flow by mantle convection induce fluctuations in the rate of crystallization which in turn buffers core-mantle heat transfer due to the diffusive adjustment time of the boundary layer at the base of the solid mantle. This could help the dynamo to survive periods of low heat flow across the mantle. Fractional crystallization of the basal melt layer (and subsequent Fe enrichment) could lead to a correlated chemical evolution in the crystallizing solids which, after some time, may become too dense to be entrained by solid state convection in the overlying mantle. This denser material tends to accumulate at the base of up-welling mantle currents and is underlain by material that is naturally buffered to the solidus temperature throughout the lifetime of the melt layer, perhaps providing a simple way to explain the presence

  13. Development of Vi conjugate - a new generation of typhoid vaccine.

    PubMed

    Szu, Shousun Chen

    2013-11-01

    Typhoid fever remains to be a serious disease burden worldwide with an estimated annual incidence about 20 million. The licensed vaccines showed moderate protections and have multiple deficiencies. Most important of all, none of the licensed typhoid vaccines demonstrated protection for children under 5 years old. These limitations impeded successful implementation of typhoid vaccination programs. To improve immunogenicity Vi was conjugated to rEPA, a recombinant exoprotein A from Pseudomonas aeruginosa. Vi-rEPA showed higher and longer lasting anti-Vi IgG in adults and children than Vi alone in high endemic areas. In school-age children and adults, the immunity persisted more than 8 years. In a double-blind, placebo-controlled and randomized efficacy trial in 2- to 5-year-old children, Vi-rEPA conferred 89% protective efficacy against typhoid fever and the protection lasted at least 4 years. When given concomitantly with infant routine vaccines, Vi-rEPA was safe, immunogenic and showed no interference with the routine vaccines. Vi conjugate vaccine was also attempted and successfully demonstrated by several other laboratories and manufactures. Using either rEPA or different carrier proteins, such as diphtheria or tetanus toxoid, recombinant diphtheria toxin (CRM197), the Vi conjugates synthesized was significantly more immunogenic than Vi alone. Recently, two Vi-tetanus toxoid conjugates were licensed in India for all ages, starts as young as 3 month old. This new generation of typhoid vaccine opens up a new era for typhoid prevention and elimination. PMID:24156285

  14. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1996-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  15. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1997-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  16. Ion beam driven warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Ni, P. A.; Leitner, M.; Roy, P. K.; More, R.; Barnard, J. J.; Kireeff Covo, M.; Molvik, A. W.; Yoneda, H.

    2007-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments at LBNL are at 0.3-1 MeV K+ beam (below the Bragg peak), increasing toward the Bragg peak in future versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial experiments include an experiment to study transient darkening at LBNL; and a porous target experiment at GSI heated by intense heavy-ion beams from the SIS 18 storage ring. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.

  17. Granular flow model for dense planetary rings

    SciTech Connect

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1985-09-01

    In the present study of the viscosity of a differentially rotating particle disk, in the limiting case where the particles are densely packed and their collective behavior resembles that of a liquid, the pressure tensor is derived from both the equations of hydrodynamics and a simple kinetic model of collisions due to Haff (1983). Density waves and narrow circular rings are unstable if the liquid approximation applies, and the consequent nonlinear perturbations may generate splashing of the ring material in the vertical direction. These results are pertinent to the origin of the ellipticities of ringlets, the nonaxisymmetric features near the outer edge of the Saturn B ring, and unexplained residuals in kinematic models of the Saturn and Uranus rings. 24 references.

  18. Constitutive relations for steady, dense granular flows

    NASA Astrophysics Data System (ADS)

    Vescovi, D.; Berzi, D.; di Prisco, C. G.

    2011-12-01

    In the recent past, the flow of dense granular materials has been the subject of many scientific works; this is due to the large number of natural phenomena involving solid particles flowing at high concentration (e.g., debris flows and landslides). In contrast with the flow of dilute granular media, where the energy is essentially dissipated in binary collisions, the flow of dense granular materials is characterized by multiple, long-lasting and frictional contacts among the particles. The work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contribution are modeled in the context of the critical state theory [8, 10] and the kinetic theory of dense granular gases [1, 3, 7], respectively. In the critical state theory, the granular material approaches a certain attractor state, independent on the initial arrangement, characterized by the capability of developing unlimited shear strains without any change in the concentration. Given that a disordered granular packing exists only for a range of concentration between the random loose and close packing [11], a form for the concentration dependence of the frictional normal stress that makes the latter vanish at the random loose packing is defined. In the kinetic theory, the particles are assumed to interact through instantaneous, binary and uncorrelated collisions. A new state variable of the problem is introduced, the granular temperature, which accounts for the velocity fluctuations. The model has been extended to account for the decrease in the energy dissipation due to the existence of correlated motion among the particles [5, 6] and to deal with non

  19. Nonplanar electrostatic shock waves in dense plasmas

    SciTech Connect

    Masood, W.; Rizvi, H.

    2010-02-15

    Two-dimensional quantum ion acoustic shock waves (QIASWs) are studied in an unmagnetized plasma consisting of electrons and ions. In this regard, a nonplanar quantum Kadomtsev-Petviashvili-Burgers (QKPB) equation is derived using the small amplitude perturbation expansion method. Using the tangent hyperbolic method, an analytical solution of the planar QKPB equation is obtained and subsequently used as the initial profile to numerically solve the nonplanar QKPB equation. It is observed that the increasing number density (and correspondingly the quantum Bohm potential) and kinematic viscosity affect the propagation characteristics of the QIASW. The temporal evolution of the nonplanar QIASW is investigated both in Cartesian and polar planes and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of propagation of small amplitude localized electrostatic shock structures in dense astrophysical environments.

  20. Plasmon resonance in warm dense matter.

    PubMed

    Thiele, R; Bornath, T; Fortmann, C; Höll, A; Redmer, R; Reinholz, H; Röpke, G; Wierling, A; Glenzer, S H; Gregori, G

    2008-08-01

    Collective Thomson scattering with extreme ultraviolet light or x rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to noncollective scattering, the consideration of collisions is important. PMID:18850950

  1. Plasmon resonance in warm dense matter

    NASA Astrophysics Data System (ADS)

    Thiele, R.; Bornath, T.; Fortmann, C.; Höll, A.; Redmer, R.; Reinholz, H.; Röpke, G.; Wierling, A.; Glenzer, S. H.; Gregori, G.

    2008-08-01

    Collective Thomson scattering with extreme ultraviolet light or x rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to noncollective scattering, the consideration of collisions is important.

  2. Performance Evaluation of Dense Gas Dispersion Models.

    NASA Astrophysics Data System (ADS)

    Touma, Jawad S.; Cox, William M.; Thistle, Harold; Zapert, James G.

    1995-03-01

    This paper summarizes the results of a study to evaluate the performance of seven dense gas dispersion models using data from three field experiments. Two models (DEGADIS and SLAB) are in the public domain and the other five (AIRTOX, CHARM, FOCUS, SAFEMODE, and TRACE) are proprietary. The field data used are the Desert Tortoise pressurized ammonia releases, Burro liquefied natural gas spill tests, and the Goldfish anhydrous hydrofluoric acid spill experiments. Desert Tortoise and Goldfish releases were simulated as horizontal jet releases, and Burro as a liquid pool. Performance statistics were used to compare maximum observed concentrations and plume half-width to those predicted by each model. Model performance varied and no model exhibited consistently good performance across all three databases. However, when combined across the three databases, all models performed within a factor of 2. Problems encountered are discussed in order to help future investigators.

  3. Statistical mechanics of dense granular media

    NASA Astrophysics Data System (ADS)

    Nicodemi, M.; Coniglio, A.; de Candia, A.; Fierro, A.; Ciamarra, M. Pica; Tarzia, M.

    2005-12-01

    We discuss some recent results on Statistical Mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bydisperse granular assemblies. We show that "jamming" corresponds to a phase transition from a "fluid" to a "glassy" phase, observed when crystallization is avoided. The nature of such a "glassy" phase turns out to be the same found in mean field models for glass formers. This gives quantitative evidence to the idea of a unified description of the "jamming" transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and "geometric" effects.

  4. Statistical mechanics of dense granular media

    NASA Astrophysics Data System (ADS)

    Coniglio, A.; Fierro, A.; Nicodemi, M.; Pica Ciamarra, M.; Tarzia, M.

    2005-06-01

    We discuss some recent results on the statistical mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bidisperse granular assemblies. We show that 'jamming' corresponds to a phase transition from a 'fluid' to a 'glassy' phase, observed when crystallization is avoided. The nature of such a 'glassy' phase turns out to be the same as found in mean field models for glass formers. This gives quantitative evidence for the idea of a unified description of the 'jamming' transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and 'geometric' effects.

  5. Earthquake source inversion with dense networks

    NASA Astrophysics Data System (ADS)

    Somala, S.; Ampuero, J. P.; Lapusta, N.

    2012-12-01

    (since the bulk properties are not known at higher frequencies), add noise of the desired level, and then apply our inversion approach. The results indicate that dense networks (e.g., 1-km spacing) produce sharper images of the considered sources than sparse networks (e.g., 10-20 km spacing), with better amplitude recovery and better resolution with depth. This is true even when noiseless sparse networks are compared with noisy dense networks, provided that the standard deviations of noise do not exceed ~1% of the maximum earthquake source amplitude (e.g., 1 cm/s noise for 1 m/s Haskell source). Substantial qualitative improvements arise when features of relatively narrow spatial extent are included in the source, in which case the dense networks can reproduce the features whereas the sparse networks cannot. We will report on our current efforts to mathematically quantify the differences between the inversions of sparse and dense data and to incorporate the effect of errors in the bulk velocity model.

  6. Kaon condensation in dense stellar matter

    SciTech Connect

    Lee, Chang-Hwan; Rho, M. |

    1995-03-01

    This article combines two talks given by the authors and is based on Works done in collaboration with G.E. Brown and D.P. Min on kaon condensation in dense baryonic medium treated in chiral perturbation theory using heavy-baryon formalism. It contains, in addition to what was recently published, astrophysical backgrounds for kaon condensation discussed by Brown and Bethe, a discussion on a renormalization-group analysis to meson condensation worked out together with H.K. Lee and S.J. Sin, and the recent results of K.M. Westerberg in the bound-state approach to the Skyrme model. Negatively charged kaons are predicted to condense at a critical density 2 {approx_lt} {rho}/{rho}o {approx_lt} 4, in the range to allow the intriguing new phenomena predicted by Brown and Bethe to take place in compact star matter.

  7. Engineered circuit QED with dense resonant modes

    NASA Astrophysics Data System (ADS)

    Wilhelm, Frank; Egger, Daniel

    2013-03-01

    In circuit quantum electrodynamics even in the ultrastrong coupling regime, strong quasi-resonant interaction typically involves only one mode of the resonator as the mode spacing is comparable to the frequency of the mode. We are going to present an engineered hybrid transmission line consisting of a left-handed and a right-handed portion that has a low-frequency van-Hove singularity hence showing a dense mode spectrum at an experimentally accessible point. This gives rise to strong multi-mode coupling and can be utilized in multiple ways to create strongly correlated microwave photons. Supported by DARPA through the QuEST program and by NSERC Discovery grants

  8. Prediction of viscosity of dense fluid mixtures

    NASA Astrophysics Data System (ADS)

    Royal, Damian D.; Vesovic, Velisa; Trusler, J. P. Martin; Wakeham, William. A.

    The Vesovic-Wakeham (VW) method of predicting the viscosity of dense fluid mixtures has been improved by implementing new mixing rules based on the rigid sphere formalism. The proposed mixing rules are based on both Lebowitz's solution of the Percus-Yevick equation and on the Carnahan-Starling equation. The predictions of the modified VW method have been compared with experimental viscosity data for a number of diverse fluid mixtures: natural gas, hexane + hheptane, hexane + octane, cyclopentane + toluene, and a ternary mixture of hydrofluorocarbons (R32 + R125 + R134a). The results indicate that the proposed improvements make possible the extension of the original VW method to liquid mixtures and to mixtures containing polar species, while retaining its original accuracy.

  9. Coherent neutrino interactions in a dense medium

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Weiss, Nathan

    1997-11-01

    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p~GFρ/2. We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavor and in a realistic ``standard model'' with two neutrino flavors. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos.

  10. Imaging of High-Z doped, Imploded Capsule Cores

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.; Edwards, M. John; Suter, Larry J.

    2006-10-01

    The ability to correctly ascertain the shape of imploded fusion capsules is critical to be able to achieve the spherical symmetry needed to maximize the energy yield of proposed fusion experiments for the National Ignition Facility. Implosion of the capsule creates a hot, dense core. The introduction of a high-Z dopant into the gas-filled core of the capsule increases the amount of bremsstrahlung radiation produced in the core and should make the imaging of the imploded core easier. Images of the imploded core can then be analyzed to ascertain the symmetry of the implosion. We calculate that the addition of Ne gas into a deuterium gas core will increase the amount of radiation emission while preserving the surrogacy of the radiation and hydrodynamics in the indirect drive NIF hohlraum in the proposed cryogenic hohlraums. The increased emission will more easily enable measurement of asymmetries and tuning of the implosion.

  11. Cryogenic Laser Induced U(VI) Fluorescence Studies of a U(VI) Substituted Natural Calcite: Implications to U(VI) Speciation in Contaminated Hanford Sediments

    SciTech Connect

    Wang, Zheming; Zachara, John M.; McKinley, James P.; Smith, Steven C.

    2005-04-14

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) and imaging spectromicroscopy (TRLFISM) were used to examine the chemical speciation of uranyl in contaminated subsurface sediments from the Hanford Site, Washington. Spectroscopic measurements for contaminant U(VI) were compared to those from a natural, uranyl-bearing calcite (NUC) that had been found via X-ray absorption spectroscopy (XAS) to include uranyl in the same coordination environment as calcium (1). Spectral deconvolution of TRLFS measurements on the NUC revealed the unexpected presence of two distinct chemical environments consistent with published spectra of U(VI)-substituted synthetic calcite and aragonite. Apparently, some U(VI) substitution sites in calcite distorted to exhibit a local, more energetically favorable aragonite structure. TRLFS measurements of the Hanford sediments were similar to the NUC in terms of peak positions and intensity, despite a small CaCO3 content (<0.1 to 3.2 mass%). Spectral deconvolution of the sediment measurements also revealed the presence of U(VI) in calcite and aragonite structural environments. TRLFISM measurements at multiple locations in the different sediments displayed only minor variation indicating a uniform speciation pattern. Collectively, the measurements implied that waste U(VI), long-resident beneath the sampled disposal pond (32 y), had co-precipitated within newly formed carbonates. These results have major implications for the solubility and fate of the contaminated U(VI).

  12. Feeding BAY Vi 7533 to hens.

    PubMed

    Miller, R W; Wong, Y; Thomas, O P

    1984-09-01

    BAY Vi7533 (2-chloro-N-[[[4-(trifluoromethoxy)phenyl] amino] carbonyl] benzamide) was fed to White Leghorn and Vedette Mini-broiler breeder hens at concentrations ranging from 0 to 25 ppm in the ration. Concentrations of 15 and 25 ppm resulted in greater than 95% mortality of house flies, Musca domestica L., seeded as larvae into the droppings. Concentration of 25 ppm reduced egg production in the White Leghorn but not in the Vedette Mini-broiler hens. At each concentration (except 5 ppm for Vedette Mini-broilers) residues of the compound were detected in the eggs. These residues, however, had no adverse effects on fertility or hatchability of the eggs. PMID:6483739

  13. Six-fold Coordinated Carbon Dioxide VI

    SciTech Connect

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  14. Six-fold coordinated carbon dioxide VI.

    PubMed

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae

    2007-01-01

    Under standard conditions, carbon dioxide (CO2) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO2) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO2 transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO2 tridymite. Here, we present the discovery of an extended-solid phase of CO2: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO2-II (refs 1,2) above 50 GPa at 530-650 K. Together with the previously reported CO2-V (refs 3-5) and a-carbonia, this extended phase indicates a fundamental similarity between CO2 (a prototypical molecular solid) and SiO2 (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO2-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II (refs 1,2), III (refs 7,8) and IV (refs 9,10). The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P42/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp3 hybridization. PMID:17160005

  15. Partial Melting in the Inner Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.

    2014-12-01

    The inner core boundary (ICB) is often considered to be permeable to flow, because solid iron could melt as it upwells across the ICB. Such a mechanism has been proposed to accompany inner core convective processes (including translation from a freezing to melting hemisphere), and has also been invoked to explain the formation of a dense Fe-rich liquid F-layer above the ICB. However, the conceptions of ICB melting invoked thus far are extremely simplistic, and neglect the many lessons learned from melting in other geological contexts. Owing to some degree of solid solution in relatively incompatible light alloys in solid iron, the onset of melting in the inner core will likely occur as a partial melt, with the liquid being enriched in these light alloys relative to the co-existing solid. Such a partial melt is then subject to upward migration/percolation out of the solid matrix owing to the buoyancy of melt relative to solid. Removal of melt and viscous compaction of the pore space results in an iron-enriched dense solid, whose negative buoyancy will oppose whatever buoyancy forces initially gave rise to upwelling. Either the negative buoyancy will balance these other forces and cause upwelling to cease, or else the solid will become so depleted in light alloys that it is unable to undergo further melting. Thus a proper accounting of partial melting results in a very different melting regime in the inner core, and suppression of upwelling across the ICB. Any fluid that is able to escape into the outer core from inner core partial melting will likely be buoyant because in order to be a melt it should be enriched in incompatiable alloys relative to whatever is freezing at the ICB. Therefore inner core melting is unlikely to contribute to the formation of an F-layer, but instead will tend to de-stabilize it. I will present models that illustrate these processes, and propose that the F-layer is a relic of incomplete mixing of the core during Earth's final stages of

  16. The FUSE Survey of 0 VI in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.

    2003-01-01

    This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.

  17. Core-halo issues for a very high intensity beam

    SciTech Connect

    Nghiem, P. A. P.; Chauvin, N.; Uriot, D.

    2014-02-17

    The relevance of classical parameters like beam emittance and envelope used to describe a particle beam is questioned in case of a high intensity accelerator. In the presence of strong space charge effects that affect the beam differently following its density, the much less dense halo part behaves differently from the much denser core part. A method for precisely determining the core-halo limit is proposed, that allows characterizing the halo and the core independently. Results in 1D case are given and discussed. Expected developments extending the method to 2D, 4D, or 6D phase spaces are examined.

  18. Development and evaluation of a dense gas plume model

    SciTech Connect

    Matthias, C.S.

    1994-12-31

    The dense gas plume model (continuous release) described in this paper has been developed using the same principles as for a dense gas puff model (instantaneous release). It is a box model for which the main goal is to predict the height H, width W, and maximum concentration C{sub b} for a steady dense plume. A secondary goal is to distribute the mass more realistically by empirically attaching Gaussian distributions in the horizontal and vertical directions. For ease of reference, the models and supporting programs will be referred to as DGM (Dense Gas Models).

  19. Neptunium (VI) and neptunium (VI/V) mixed valence cluster compounds

    SciTech Connect

    May, Iain

    2008-01-01

    Neptunium has three readily accessible oxidation states, IV, V and VI, which can coexist under certain conditions, with the aqueous soluble neptunyl(V) moiety, {l_brace}NpO{sub 2}{r_brace}{sup +}, of most environmental relevance. Careful control of Np chemistry is required during actinide separation processes. In addition, the long half life of the major alpha emitting isotope ({sup 237}Np, t{sub 1/2} = 2.144 x 10{sup 6} years) renders Np a major contributor to the radiotoxicity of nuclear waste as a function of time. Significant quantities of neptunium are generated in nuclear reactors and the current surge in interest in nuclear power will lead to an increase in our need to further understand the chemistry of this element. It is clearly of importance that Np chemistry is well understood and there have been several recent investigations into the structural, spectroscopic and magnetic properties of Np compounds. However, the vast majority of this chemistry has been performed in aqueous solution, prohibiting the use of air and moisture sensitive ligands. This is in stark contrast to uranium and thorium where inert atmosphere chemistry with moisture sensitive donor ligands has flourished, yielding greater insight into the structural and electronic properties of these early actinides. For the uranyl(VI) moiety, {l_brace}UO{sub 2}{r_brace}{sup 2+}, UO{sub 2}Cl{sub 2}(thf){sub 3} (and the desolvated dimer [UO{sub 2}Cl{sub 2}(thf)]{sub 2}) have proven to be excellent moisture-free reagents for inert atmosphere uranyl chemistry. These starting reagents have been used extensively within our group to study soft donor ligand coordination in the uranyl equatorial plane and oxo-activation to Lewis acid coordination. However, until now the absence of such a starting reagent for Np has limited our ability to extend this chemistry any further across the actinide series, which is required if we are to gain a more complete understanding of 5f element chemistry. The synthesis of [Np

  20. Myosin Va Transports Dense Core Secretory Vesicles in Pancreatic MIN6 β-CellsV⃞

    PubMed Central

    Varadi, Aniko; Tsuboi, Takashi; Rutter, Guy A.

    2005-01-01

    The role of unconventional myosins in neuroendocrine cells is not fully understood, with involvement suggested in the movement of both secretory vesicles and mitochondria. Here, we demonstrate colocalization of myosin Va (MyoVa) with insulin in pancreatic β-cells and show that MyoVa copurifies with insulin in density gradients and with the vesicle marker phogrin-enhanced green fluorescent protein upon fluorescence-activated sorting of vesicles. By contrast, MyoVa immunoreactivity was poorly colocalized with mitochondrial or other markers. Demonstrating an important role for MyoVa in the recruitment of secretory vesicles to the cell surface, a reduction of MyoVa protein levels achieved by RNA interference caused a significant decrease in glucose- or depolarization-stimulated insulin secretion. Similarly, expression of the dominant-negative–acting globular tail domain of MyoVa decreased by ∼50% the number of vesicles docked at the plasma membrane and by 87% the number of depolarization-stimulated exocytotic events detected by total internal reflection fluorescence microscopy. We conclude that MyoVa-driven movements of vesicles along the cortical actin network are essential for the terminal stages of regulated exocytosis in β-cells. PMID:15788565

  1. The SNARE protein vti1a functions in dense-core vesicle biogenesis

    PubMed Central

    Walter, Alexander M; Kurps, Julia; de Wit, Heidi; Schöning, Susanne; Toft-Bertelsen, Trine L; Lauks, Juliane; Ziomkiewicz, Iwona; Weiss, Annita N; Schulz, Alexander; Fischer von Mollard, Gabriele; Verhage, Matthijs; Sørensen, Jakob B

    2014-01-01

    The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans-Golgi network, partially overlapping with syntaxin-6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca2+-channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin-2 content. In contrast, release kinetics and Ca2+-sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long-term re-expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short-term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca2+-channel trafficking, but is dispensable for transmitter release. PMID:24902738

  2. Cr(VI) reduction in aqueous solutions by siderite.

    PubMed

    Erdem, Mehmet; Gür, Faruk; Tümen, Fikret

    2004-09-10

    Hexavalent chromium is a common and toxic pollutant in soils and wastewaters. Reduction of the mobile Cr(VI) to less mobile and less toxic Cr(III) is a solution for decontamination of industrial effluents. In this study, the reduction of hexavalent chromium in aqueous solutions by siderite was investigated. The influences of amount of acid, contact time, siderite dosage, initial Cr(VI) concentration, temperature and particle size of siderite have been tested in batch runs. The process was found to be acid, temperature and concentration dependent. The amount of acid is the most effective parameter affecting the Cr(VI) reduction since carbonaceous gangue minerals consume acid by side reactions. The highest Cr(VI) reduction efficiency (100%) occurred in the 50 mg/l Cr(VI) solution containing two times acid with respect to stoichiometric amount of Cr(VI) and at the conditions of siderite dosage 20 g/l, contact time 120 min and temperature 25 degrees C. Reduction efficiency increased with increase in temperature and decrease in particle size. The reduction capacity of siderite was found to be 17 mg-Cr(VI)/g. PMID:15363534

  3. A Mouse Model for Dominant Collagen VI Disorders

    PubMed Central

    Pan, Te-Cheng; Zhang, Rui-Zhu; Arita, Machiko; Bogdanovich, Sasha; Adams, Sheila M.; Gara, Sudheer Kumar; Wagener, Raimund; Khurana, Tejvior S.; Birk, David E.; Chu, Mon-Li

    2014-01-01

    Dominant and recessive mutations in collagen VI genes, COL6A1, COL6A2, and COL6A3, cause a continuous spectrum of disorders characterized by muscle weakness and connective tissue abnormalities ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Herein, we report the development of a mouse model for dominant collagen VI disorders by deleting exon 16 in the Col6a3 gene. The resulting heterozygous mouse, Col6a3+/d16, produced comparable amounts of normal Col6a3 mRNA and a mutant transcript with an in-frame deletion of 54 bp of triple-helical coding sequences, thus mimicking the most common molecular defect found in dominant Ullrich congenital muscular dystrophy patients. Biosynthetic studies of mutant fibroblasts indicated that the mutant α3(VI) collagen protein was produced and exerted a dominant-negative effect on collagen VI microfibrillar assembly. The distribution of the α3(VI)-like chains of collagen VI was not altered in mutant mice during development. The Col6a3+/d16 mice developed histopathologic signs of myopathy and showed ultrastructural alterations of mitochondria and sarcoplasmic reticulum in muscle and abnormal collagen fibrils in tendons. The Col6a3+/d16 mice displayed compromised muscle contractile functions and thereby provide an essential preclinical platform for developing treatment strategies for dominant collagen VI disorders. PMID:24563484

  4. Kinetics of Microbial Reduction of Solid Phase U(VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.; Wang, Zheming; Dohnalkova, Alice; Fredrickson, Jim K.

    2006-10-01

    Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).

  5. Uranium (VI) sorption onto selected mineral surfaces: Key geochemical parameters

    SciTech Connect

    Pabalan, R.T.; Bertetti, F.P.; Prikryl, J.D.; Turner, D.R.

    1996-10-01

    Batch U(VI) sorption experiments were conducted using quartz, montmorillonite, clinoptilolite, and {alpha}-alumina to determine the key geochemical parameters that influence sorption onto mineral surfaces. The experiments were done at different initial U concentration, pH, M/V, and ionic strength, and at ambient and elevated PCO{sub 2} (10{sup -3.5} and 10{sup -2.0} atm, respectively). The results show that U(VI) sorption on all the minerals studied reaches a maximum at near-neutral pH ({approximately}6.3-6.8) and decreases sharply towards more acidic or alkaline conditions. The pH range where U sorption occurs corresponds to the predominance field of aqueous monomeric U(VI)-hydroxy complexes. Sorption is inhibited at high pH and PCO{sub 2} due to formation of aqueous U(VI)-carbonate complexes. For montmorillonite and clinoptilolite, ion-exchange was suppressed due to the relatively high ionic strength of the solutions. Surface charge properties of the sorbent are inferred to be relatively unimportant factors in U(VI) sorption. Sorption data plotted in terms of K{sub d} show that M/V ratio has little influence on the distribution of U(VI) between the solid and aqueous phases. Modeling of the sorption behavior of U(VI) was performed using a surface complexation approach (Diffuse-Layer Model).

  6. Adsorption and desorption of uranium (VI) in aerated zone soil.

    PubMed

    Li, Xiaolong; Wu, Jiaojiao; Liao, Jiali; Zhang, Dong; Yang, Jijun; Feng, Yue; Zeng, Junhui; Wen, Wei; Yang, Yuanyou; Tang, Jun; Liu, Ning

    2013-01-01

    In this paper, the adsorption and desorption behavior of uranium (VI) in aerated zone soil (from Southwest China) was systematically investigated using a static experimental method in order to provide useful information for safety assessment of the disposal of (ultra-)low uraniferous radioactive waste, as well as a potential remediation method for uranium-contaminated soils. The adsorption behavior of uranium (VI) was firstly studied by batch experiments as functions of contact time, pH, liquid/solid ratio, temperature, colloids, minerals and coexistent ions. The results indicated that the adsorption of uranium (VI) by natural soil was efficient at an initial concentration of 10 mg/L uranium (VI) nitrate solution with 100 mg natural soil at room temperature when pH is about 7.0. The adsorption was strongly influenced by the solution pH, contact time, initial concentration and colloids. The adsorption equilibrium for uranium (VI) in soil was obtained within 24 h and the process could be described by the Langmuir adsorption equation. For uranium (VI) desorption, EDTA, citric acid and HNO(3) were evaluated under different conditions of temperature, concentration and proportion of liquid to solid. The adsorbed uranium (VI) on natural soil could be easily extracted by all these agents, especially by HNO(3), implying that the uranium-contaminated soils can be remedied by these reagents. PMID:22939949

  7. Kinetics of Abiotic Uranium(VI) Reduction by Sulfide

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Davis, J. A.; Hayes, K. F.

    2010-12-01

    Uranium(VI) reduction is an important process affecting the radionuclide’s fate under sulfate reducing conditions. In this work, kinetics of abiotic U(VI) reduction by dissolved sulfide was studied using a batch reactor. The effects of solution pH, dissolved carbonate, Ca(II), U(VI), and S(-II) concentration on the reduction kinetics were tested. The ranges of these experimental variables were designed to cover the variation in groundwater chemistry observed at the Old Rifle uranium mill tailings site (Colorado, USA). Dissolved U concentration was monitored as a function of time using inductively coupled plasma-mass spectrometry to measure the rate of U(VI) reduction. Solid phase reduction products were identified using X-ray diffraction, transmission electron microscopy, and X-ray absorption spectroscopy. The results showed that changes in the experimental variables significantly affected U(VI) reduction kinetics by dissolved sulfide. U(VI) reduction occurred under circumneutral pH while no reduction was observed under alkaline conditions. The reduction rate was slowed by increased dissolved carbonate concentration. One solid phase reduction product was identified as nanoscale uraninite (UO2+x(s)). Thermodynamic modeling showed that the dissolved U(VI) aqueous species changed as a function of solution conditions correlated with the change in the reduction rate. These results show that U(VI) aqueous speciation is important in determining abiotic U(VI) reduction kinetics by dissolved sulfide. This study also illustrates the potential importance of dissolved sulfide in field-scale modeling of U reactive transport, and is expected to contribute to the understanding of long-term effects of biostimulation on U transport at the Rifle site.

  8. Ferrate(VI) oxidation of weak-acid dissociable cyanides.

    PubMed

    Yngard, Ria A; Sharma, Virender K; Filip, Jan; Zboril, Radek

    2008-04-15

    Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)), were studied as a function of pH (9.1-10.5) and temperature (15-45 degrees C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN)4(2-) and Ni(CN)4(2-), and the rate-laws for the oxidation may be -d[Fe(VI)]/dt = k[Fe(VI)][M(CN)4(2-)]n where n = 0.5 and 1 for Cd(CN)4(2-) and Ni(CN)4(2-), respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO4(-). The stoichiometries with Fe(VI) were determined to be: 4HFeO4(-) + M(CN)4(2-) + 6H2O --> 4Fe(OH)3 + M(2+) + 4NCO(-) + O2 + 4OH(-). Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. PMID:18497158

  9. Influence of magnetite stoichiometry on U(VI) reduction.

    PubMed

    Latta, Drew E; Gorski, Christopher A; Boyanov, Maxim I; O'Loughlin, Edward J; Kemner, Kenneth M; Scherer, Michelle M

    2012-01-17

    Hexavalent uranium (U(VI)) can be reduced enzymatically by various microbes and abiotically by Fe(2+)-bearing minerals, including magnetite, of interest because of its formation from Fe(3+) (oxy)hydroxides via dissimilatory iron reduction. Magnetite is also a corrosion product of iron metal in suboxic and anoxic conditions and is likely to form during corrosion of steel waste containers holding uranium-containing spent nuclear fuel. Previous work indicated discrepancies in the extent of U(VI) reduction by magnetite. Here, we demonstrate that the stoichiometry (the bulk Fe(2+)/Fe(3+) ratio, x) of magnetite can, in part, explain the observed discrepancies. In our studies, magnetite stoichiometry significantly influenced the extent of U(VI) reduction by magnetite. Stoichiometric and partially oxidized magnetites with x ≥ 0.38 reduced U(VI) to U(IV) in UO(2) (uraninite) nanoparticles, whereas with more oxidized magnetites (x < 0.38) and maghemite (x = 0), sorbed U(VI) was the dominant phase observed. Furthermore, as with our chemically synthesized magnetites (x ≥ 0.38), nanoparticulate UO(2) was formed from reduction of U(VI) in a heat-killed suspension of biogenic magnetite (x = 0.43). X-ray absorption and Mössbauer spectroscopy results indicate that reduction of U(VI) to U(IV) is coupled to oxidation of Fe(2+) in magnetite. The addition of aqueous Fe(2+) to suspensions of oxidized magnetite resulted in reduction of U(VI) to UO(2), consistent with our previous finding that Fe(2+) taken up from solution increased the magnetite stoichiometry. Our results suggest that magnetite stoichiometry and the ability of aqueous Fe(2+) to recharge magnetite are important factors in reduction of U(VI) in the subsurface. PMID:22148359

  10. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  11. An experimental study of dense aerosol aggregations

    NASA Astrophysics Data System (ADS)

    Dhaubhadel, Rajan

    We demonstrated that an aerosol can gel. This gelation was then used for a one-step method to produce an ultralow density porous carbon or silica material. This material was named an aerosol gel because it was made via gelation of particles in the aerosol phase. The carbon and silica aerosol gels had high specific surface area (200--350 sq m2/g for carbon and 300--500 sq m2/g for silica) and an extremely low density (2.5--6.0 mg/cm3), properties similar to conventional aerogels. Key aspects to form a gel from an aerosol are large volume fraction, ca. 10-4 or greater, and small primary particle size, 50 nm or smaller, so that the gel time is fast compared to other characteristic times. Next we report the results of a study of the cluster morphology and kinetics of a dense aggregating aerosol system using the small angle light scattering technique. The soot particles started as individual monomers, ca. 38 nm radius, grew to bigger clusters with time and finally stopped evolving after spanning a network across the whole system volume. This spanning is aerosol gelation. The gelled system showed a hybrid morphology with a lower fractal dimension at length scales of a micron or smaller and a higher fractal dimension at length scales greater than a micron. The study of the kinetics of the aggregating system showed that when the system gelled, the aggregation kernel homogeneity lambda attained a value 0.4 or higher. The magnitude of the aggregation kernel showed an increase with increasing volume fraction. We also used image analysis technique to study the cluster morphology. From the digitized pictures of soot clusters the cluster morphology was determined by two different methods: structure factor and perimeter analysis. We find a hybrid, superaggregate morphology characterized by a fractal dimension of Df ≈ to 1.8 between the monomer size, ca. 50 nm, and 1 mum micron and Df ≈ to 2.6 at larger length scales up to ˜ 10 mum. The superaggregate morphology is a

  12. A survey with Copernicus of interstellar O VI absorption

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Meloy, D. A.

    1974-01-01

    The presence of broad, shallow absorptions caused by O VI ions were revealed from UV spectra observations recorded by the Copernicus satellite for thirty-two stars. A table lists survey data on the stars observed for which values of the O VI column densities or their upper limits are extracted. Interstellar rather than circumstellar origin is evident from observation of the lack of correspondence between radical velocities of the stars and those of the O VI profiles. The presence of a low-density high-temperature phase of interstellar gas produced by supernova explosions is suggested.

  13. Incorporation of neptunium(VI) into a uranyl selenite.

    PubMed

    Meredith, Nathan A; Polinski, Matthew J; Lin, Jian; Simonetti, Antonio; Albrecht-Schmitt, Thomas E

    2012-10-15

    The incorporation of neptunium(VI) into the layered uranyl selenite Cs[(UO(2))(HSeO(3))(SeO(3))] has yielded the highest level of neptunium uptake in a uranyl compound to date with an average of 12(±3)% substitution of Np(VI) for U(VI). Furthermore, this is the first case in nearly 2 decades of dedicated incorporation studies in which the oxidation state of neptunium has been determined spectroscopically in a doped uranyl compound and also the first time in which neptunium incorporation has resulted in a structural transformation. PMID:23030830

  14. Atomic-Scale Characterization of II-VI Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Smith, David J.

    2013-11-01

    Alloys of II-VI compound semiconductors with suitable band gap selection potentially provide broad coverage of wavelengths for photodetector applications. Achievement of high-quality epitaxial growth is, however, essential for successful development of integrated photonic and optoelectronic devices. Atomic-scale characterization of structural defects in II-VI heterostructures using electron microscopy plays an invaluable role in accomplishing this goal. This paper reviews some recent high-resolution studies of II-VI compound semiconductors with zincblende crystal structure, as grown epitaxially on commonly used substrates. Exploratory studies using aberration-corrected electron microscopes are also briefly considered.

  15. THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. IV. LUPUS V AND VI OBSERVED WITH IRAC AND MIPS

    SciTech Connect

    Spezzi, Loredana; Vernazza, Pierre; Merin, Bruno; Allen, Lori E.; Evans, Neal J. II; Harvey, Paul M.; Joergensen, Jes K.; Bourke, Tyler L.; Peterson, Dawn; Cieza, Lucas A.; Dunham, Michael M.; Huard, Tracy L.; Tothill, Nick F. H.

    2011-04-01

    We present Gould's Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spitzer 'Core to Disk' (c2d) Legacy Survey. We found 43 young stellar object (YSO) candidates in Lupus V and 45 in Lupus VI, including two transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main-sequence star from previous optical, near-IR, and X-ray surveys. A large majority of these YSO candidates appear to be surrounded by thin disks (Class III; {approx}79% in Lupus V and {approx}87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photoevaporation due to nearby OB stars is not responsible for the high fraction of Class III objects. The gas surface densities measured for Lupus V and VI lie below the star formation threshold (A{sub V} {approx} 8.6 mag), while this is not the case for other Lupus clouds. Thus, few Myr older age for the YSOs in Lupus V and VI with respect to other Lupus clouds is the most likely explanation of the high fraction of Class III objects in these clouds, while a higher characteristic stellar mass might be a contributing factor. Better constraints on the age and binary fraction of the Lupus clouds might solve the puzzle but require further observations.

  16. Defective collagen VI α6 chain expression in the skeletal muscle of patients with collagen VI-related myopathies.

    PubMed

    Tagliavini, F; Pellegrini, C; Sardone, F; Squarzoni, S; Paulsson, M; Wagener, R; Gualandi, F; Trabanelli, C; Ferlini, A; Merlini, L; Santi, S; Maraldi, N M; Faldini, C; Sabatelli, P

    2014-09-01

    Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the "classical" α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders. PMID:24907562

  17. Defective collagen VI α6 chain expression in the skeletal muscle of patients with collagen VI-related myopathies

    PubMed Central

    Tagliavini, F.; Pellegrini, C.; Sardone, F.; Squarzoni, S.; Paulsson, M.; Wagener, R.; Gualandi, F.; Trabanelli, C.; Ferlini, A.; Merlini, L.; Santi, S.; Maraldi, N.M.; Faldini, C.; Sabatelli, P.

    2014-01-01

    Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the “classical” α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders. PMID:24907562

  18. Evolutionary models of rotating dense stellar systems: challenges in software and hardware

    NASA Astrophysics Data System (ADS)

    Fiestas, Jose

    2016-02-01

    We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of initial axisymmetry due to rotation. Central black hole seeds are alternatively included in our models, and black hole growth due to consumption of stellar matter is simulated until the central potential dominates the kinematics in the core. Goal is to study the long-term evolution (~ Gyr) of relaxed dense stellar systems, which deviate from spherical symmetry, their morphology and final kinematics. With this purpose, we developed a 2D Fokker-Planck analytical code, which results we confirm by detailed N-Body techniques, applying a high performance code, developed for GPU machines. We compare our models to available observations of galactic rotating globular clusters, and conclude that initial rotation modifies significantly the shape and lifetime of these systems, and can not be neglected in studying the evolution of globular clusters, and the galaxy itself.

  19. Excited-state PAW Potentials: Modelling Hot-Dense Plasmas From First Principles

    NASA Astrophysics Data System (ADS)

    Hollebon, Patrick; Vinko, Sam; Ciricosta, Orlando; Wark, Justin

    2015-11-01

    Finite temperature density functional theory has proven to be a successful means of modelling warm and hot dense plasma systems, including the calculation of transport properties, equation of state and ionization potential depression. Such methods take into account the non-negligible influence of quantum mechanics on the electronic structure of these strongly coupled systems. We apply excited state frozen core potentials to model general core-hole states in high density plasma, allowing for the calculation of the electronic structure of a range of ionic configurations. The advantages of using excited-state potentials are explored and we investigate their application towards various response function calculations, with the results shown to be in good agreement with all-electron calculations at finite-temperatures.

  20. Artificial Dense Granules: A Procoagulant Liposomal Formulation Modeled after Platelet Polyphosphate Storage Pools.

    PubMed

    Donovan, Alexander J; Kalkowski, Joseph; Szymusiak, Magdalena; Wang, Canhui; Smith, Stephanie A; Klie, Robert F; Morrissey, James H; Liu, Ying

    2016-08-01

    Granular platelet-sized polyphosphate nanoparticles (polyP NPs) were encapsulated in sterically stabilized liposomes, forming a potential, targeted procoagulant nanotherapy resembling human platelet dense granules in both structure and functionality. Dynamic light scattering (DLS) measurements reveal that artificial dense granules (ADGs) are colloidally stable and that the granular polyP NPs are encapsulated at high efficiencies. High-resolution scanning transmission electron microscopy (HR-STEM) indicates that the ADGs are monodisperse particles with a 150 nm diameter dense core consisting of P, Ca, and O surrounded by a corrugated 25 nm thick shell containing P, C, and O. Further, the ADGs manifest promising procoagulant activity: Detergent solubilization by Tween 20 or digestion of the lipid envelope by phospholipase C (PLC) allows for ADGs to trigger autoactivation of Factor XII (FXII), the first proteolytic step in the activation of the contact pathway of clotting. Moreover, ADGs' ability to reduce the clotting time of human plasma in the presence of PLC further demonstrate the feasibility to develop ADGs into a potential procoagulant nanomedicine. PMID:27405511

  1. Dense heteroclinic tangencies near a Bykov cycle

    NASA Astrophysics Data System (ADS)

    Labouriau, Isabel S.; Rodrigues, Alexandre A. P.

    2015-12-01

    This article presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a neighbourhood of a Bykov cycle where trajectories turn in opposite directions near the two nodes - we say that the nodes have different chirality. We show that in the set of vector fields defined on a three-dimensional manifold, there is a class where tangencies of the invariant manifolds of two hyperbolic saddle-foci occur densely. The class is defined by the presence of the Bykov cycle, and by a condition on the parameters that determine the linear part of the vector field at the equilibria. This has important consequences: the global dynamics is persistently dominated by heteroclinic tangencies and by Newhouse phenomena, coexisting with hyperbolic dynamics arising from transversality. The coexistence gives rise to linked suspensions of Cantor sets, with hyperbolic and non-hyperbolic dynamics, in contrast with the case where the nodes have the same chirality. We illustrate our theory with an explicit example where tangencies arise in the unfolding of a symmetric vector field on the three-dimensional sphere.

  2. Understanding shape entropy through local dense packing

    PubMed Central

    van Anders, Greg; Klotsa, Daphne; Ahmed, N. Khalid; Engel, Michael; Glotzer, Sharon C.

    2014-01-01

    Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy (kBT) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa. PMID:25344532

  3. Dense ceramic membranes for methane conversion

    SciTech Connect

    Balachandran, U.; Mieville, R.L.; Ma, B.; Udovich, C.A.

    1996-05-01

    This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

  4. A new rheology for dense granular flows

    NASA Astrophysics Data System (ADS)

    Jop, Pierre

    2005-11-01

    Recent experiments and numerical simulations of dry and dense granular flows suggest that a simple rheological description, in terms of a shear rate dependent friction coefficient, may be sufficient to capture the major flow properties [1,2]. In this work we generalize this approach by proposing a tensorial form of this rheology leading to 3D hydrodynamic equations for granular flows. We show that quantitative predictions can be obtained with this model by studying the flow of grains on a pile confined between two lateral walls. In this configuration we have experimentally measured the free surface velocity profile, the flowing thickness for different flow rates and channel widths. The results are compared with numerical simulations of the hydrodynamic model and quantitative agreement is observed. This study strongly supports the relevance of the proposed rheology. 1. F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux and F. Chevoir, cond-mat/ 0503682 (2005)2. G.D.R. Midi, EPJE14 367-371 (2004)

  5. Oblique impact of dense granular sheets

    NASA Astrophysics Data System (ADS)

    Ellowitz, Jake; Guttenberg, Nicholas; Jaeger, Heinrich M.; Nagel, Sidney R.; Zhang, Wendy W.

    2013-11-01

    Motivated by experiments showing impacts of granular jets with non-circular cross sections produce thin ejecta sheets with anisotropic shapes, we study what happens when two sheets containing densely packed, rigid grains traveling at the same speed collide asymmetrically. Discrete particle simulations and a continuum frictional fluid model yield the same steady-state solution of two exit streams emerging from incident streams. When the incident angle Δθ is less than Δθc =120° +/-10° , the exit streams' angles differ from that measured in water sheet experiments. Below Δθc , the exit angles from granular and water sheet impacts agree. This correspondence is surprising because 2D Euler jet impact, the idealization relevant for both situations, is ill posed: a generic Δθ value permits a continuous family of solutions. Our finding that granular and water sheet impacts evolve into the same member of the solution family suggests previous proposals that perturbations such as viscous drag, surface tension or air entrapment select the actual outcome are not correct. Currently at Department of Physics, University of Oregon, Eugene, OR 97403.

  6. Packing frustration in dense confined fluids

    NASA Astrophysics Data System (ADS)

    Nygârd, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-01

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile - each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  7. The lifetime of evaporating dense sprays

    NASA Astrophysics Data System (ADS)

    de Rivas, Alois; Villermaux, Emmanuel

    2015-11-01

    We study the processes by which a set of nearby liquid droplets (a spray) evaporates in a gas phase whose relative humidity (vapor concentration) is controlled at will. A dense spray of micron-sized water droplets is formed in air by a pneumatic atomizer and conveyed through a nozzle in a closed chamber whose vapor concentration has been pre-set to a controlled value. The resulting plume extension depends on the relative humidity of the diluting medium. When the spray plume is straight and laminar, droplets evaporate at its edge where the vapor is saturated, and diffuses through a boundary layer developing around the plume. We quantify the shape and length of the plume as a function of the injecting, vapor diffusion, thermodynamic and environment parameters. For higher injection Reynolds numbers, standard shear instabilities distort the plume into stretched lamellae, thus enhancing the diffusion of vapor from their boundary towards the diluting medium. These lamellae vanish in a finite time depending on the intensity of the stretching, and relative humidity of the environment, with a lifetime diverging close to the equilibrium limit, when the plume develops in an medium saturated in vapor. The dependences are described quantitatively.

  8. Dense colloidal fluids form denser amorphous sediments

    PubMed Central

    Liber, Shir R.; Borohovich, Shai; Butenko, Alexander V.; Schofield, Andrew B.; Sloutskin, Eli

    2013-01-01

    We relate, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems the random loose packing limit, φRLP = 0.55. The dense fluids of the same spheres form denser sediments, approaching the so-called random close packing limit, φRCP = 0.64. Our experiments, where particle sedimentation in a centrifuge is sufficiently rapid to avoid crystallization, demonstrate that the density of the sediments varies monotonically with the volume fraction of the initial suspension. We reproduce our experimental data by simple computer simulations, where structural reorganizations are prohibited, such that the rate of sedimentation is irrelevant. This suggests that in colloidal systems, where viscous forces dominate, the structure of randomly close-packed and randomly loose-packed sediments is determined by the well-known structure of the initial fluids of simple hard spheres, provided that the crystallization is fully suppressed. PMID:23530198

  9. Particular Properties of Dense Supernova Matter

    NASA Astrophysics Data System (ADS)

    Takatsuka, T.; Nishizaki, S.; Hiura, J.

    1994-10-01

    Dense supernova matter composed of n, p, e-, e+, νe and bar{ν}e is investigated in detail by solving self-consistently a set of finite-temperature Hartree-Fock equations with an effective nucleon interaction. The effective interaction includes a phenomenological three-nucleon interaction to assure the saturation property of symmetric nuclear matter. Results of thermodynamic quantities and mixing ratios of respective components are analyzed and tabulated for wide region of density (ρ = (1 - 6)ρ0) and temperature (T = (10 - 40) MeV) by choosing the lepton fraction Yl = (0.3, 0.35, 0.4). We discuss particular properties of the matter such as the constancy of composition, the large proton fraction expressed by Yp =~ (2/3)Yl + 0.05 and the stiffened equation of state, and also discuss remarkable features of hot neutron stars at birth such as the fat density profile and the increasing temperature toward the center. It is shown that these features are caused essentially by the effects of neutrino trapping to generate the high and constant lepton fraction and isentropic nature, the effects which are absent in neutron star matter.

  10. New source of dense, cryogenic positron plasmas.

    PubMed

    Jørgensen, L V; Amoretti, M; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi Rizzini, E; Macrì, M; Madsen, N; Mitchard, D; Montagna, P; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y

    2005-07-01

    We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10(-9) mbar) into a 15 K Penning-Malmberg trap immersed in a 3 T magnetic field with a base pressure better than 10(-13) mbar. The achieved positron accumulation rate in the high field cryogenic trap is more than one and a half orders of magnitude higher than the previous most efficient UHV compatible scheme. Subsequent stacking resulted in a plasma containing more than 1.2 x 10(9) positrons, which is a factor 4 higher than previously reported. Using a rotating wall electric field, plasmas containing about 20 x 10(6) positrons were compressed to a density of 2.6 x 10(10) cm(-3). This is a factor of 6 improvement over earlier measurements. PMID:16090691

  11. Borehole stability in densely welded tuffs

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

  12. Proton Stopping Power in Warm Dense Hydrogen

    NASA Astrophysics Data System (ADS)

    Higginson, Drew; Chen, Sophia; Atzeni, Stefano; Gauthier, Maxence; Mangia, Feliciana; Marquès, Jean-Raphaël; Riquier, Raphaël; Fuchs, Julien

    2013-10-01

    Warm dense matter (WDM) research is fundamental to many fields of physics including fusion sciences, and astrophysical phenomena. In the WDM regime, particle stopping-power differs significantly from cold matter and ideal plasma due to free electron contributions, plasma correlation effects and electron degeneracy. The creation of WDM with temporal duration consistent with the particles probes is difficult to achieve experimentally. The short-pulse laser platform allows for the production of WDM along with relatively short bunches of protons compatible of such measurements, however, until recently, the intrinsic broadband proton spectrum was not well suited to investigate the stopping power directly. This difficulty has been overcome using a novel magnetic particle selector (ΔE/E = 10%) to select protons (in the range 100-1000 keV) as demonstrated with the ELFIE laser in LULI, France. These protons bunches probe high-density (5 × 1020 cm-3) gases (H, He) heated by a nanosecond laser to reach estimated temperatures above 100 eV. Measurement of the proton energy loss within the heated gas allows the stopping power to be determined quantitatively. The experimental results in cold matter are compared to preexisting models to give credibility to the measurement technique. The results from heated matter show that the stopping power of 450 keV protons is dramatically reduced within heated hydrogen plasma.

  13. Order and instabilities in dense bacterial colonies

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev

    2012-02-01

    The structure of cell colonies is governed by the interplay of many physical and biological factors, ranging from properties of surrounding media to cell-cell communication and gene expression in individual cells. The biomechanical interactions arising from the growth and division of individual cells in confined environments are ubiquitous, yet little work has focused on this fundamental aspect of colony formation. By combining experimental observations of growing monolayers of non-motile strain of bacteria Escherichia coli in a shallow microfluidic chemostat with discrete-element simulations and continuous theory, we demonstrate that expansion of a dense colony leads to rapid orientational alignment of rod-like cells. However, in larger colonies, anisotropic compression may lead to buckling instability which breaks perfect nematic order. Furthermore, we found that in shallow cavities feedback between cell growth and mobility in a confined environment leads to a novel cell streaming instability. Joint work with W. Mather, D. Volfson, O. Mondrag'on-Palomino, T. Danino, S. Cookson, and J. Hasty (UCSD) and D. Boyer, S. Orozco-Fuentes (UNAM, Mexico).

  14. Inference by replication in densely connected systems.

    PubMed

    Neirotti, Juan P; Saad, David

    2007-10-01

    An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance. PMID:17995074

  15. Understanding shape entropy through local dense packing.

    PubMed

    van Anders, Greg; Klotsa, Daphne; Ahmed, N Khalid; Engel, Michael; Glotzer, Sharon C

    2014-11-11

    Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy ([Formula: see text]) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa. PMID:25344532

  16. Droplet formation and scaling in dense suspensions

    PubMed Central

    Miskin, Marc Z.; Jaeger, Heinrich M.

    2012-01-01

    When a dense suspension is squeezed from a nozzle, droplet detachment can occur similar to that of pure liquids. While in pure liquids the process of droplet detachment is well characterized through self-similar profiles and known scaling laws, we show here the simple presence of particles causes suspensions to break up in a new fashion. Using high-speed imaging, we find that detachment of a suspension drop is described by a power law; specifically we find the neck minimum radius, rm, scales like near breakup at time τ = 0. We demonstrate data collapse in a variety of particle/liquid combinations, packing fractions, solvent viscosities, and initial conditions. We argue that this scaling is a consequence of particles deforming the neck surface, thereby creating a pressure that is balanced by inertia, and show how it emerges from topological constraints that relate particle configurations with macroscopic Gaussian curvature. This new type of scaling, uniquely enforced by geometry and regulated by the particles, displays memory of its initial conditions, fails to be self-similar, and has implications for the pressure given at generic suspension interfaces. PMID:22392979

  17. Activated Dynamics in Dense Model Nanocomposites

    NASA Astrophysics Data System (ADS)

    Xie, Shijie; Schweizer, Kenneth

    The nonlinear Langevin equation approach is applied to investigate the ensemble-averaged activated dynamics of small molecule liquids (or disconnected segments in a polymer melt) in dense nanocomposites under model isobaric conditions where the spherical nanoparticles are dynamically fixed. Fully thermalized and quenched-replica integral equation theory methods are employed to investigate the influence on matrix dynamics of the equilibrium and nonequilibrium nanocomposite structure, respectively. In equilibrium, the miscibility window can be narrow due to depletion and bridging attraction induced phase separation which limits the study of activated dynamics to regimes where the barriers are relatively low. In contrast, by using replica integral equation theory, macroscopic demixing is suppressed, and the addition of nanoparticles can induce much slower activated matrix dynamics which can be studied over a wide range of pure liquid alpha relaxation times, interfacial attraction strengths and ranges, particle sizes and loadings, and mixture microstructures. Numerical results for the mean activated relaxation time, transient localization length, matrix elasticity and kinetic vitrification in the nanocomposite will be presented.

  18. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Dense Hypervelocity Plasma Jets for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Thio, Y. C. Francis

    2005-10-01

    High velocity dense plasma jets are being developed for a variety of fusion applications, including refueling, disruption mitigation, High Energy Density Plasmas, magnetized target/magneto-inertial fusion, injection of angular momentum into centrifugally confined mirrors, and others. The technical goal is to accelerate plasma blobs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section that prevents formation of the blow-by instability. AFRL MACH2 modeling identified 2 electrode configurations that produce the desired plasma jet parameters. The injected plasma is generated by up to 64 radially oriented capillary discharges arranged uniformly around the circumference of an angled annular injection section. Initial experimental results are presented in which 8 capillaries are fired in parallel with jitter of ˜100 ns. Current focus is on higher voltage operation to reduce jitter to a few 10's of ns, and development of a suite of optical and spectroscopic plasma diagnostics.

  20. Thermochemistry of dense hydrous magnesium silicates

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.