Science.gov

Sample records for dense hexagonal iron

  1. Sound velocities of hot dense iron: Birch's law revisited.

    PubMed

    Lin, Jung-Fu; Sturhahn, Wolfgang; Zhao, Jiyong; Shen, Guoyin; Mao, Ho-Kwang; Hemley, Russell J

    2005-06-24

    Sound velocities of hexagonal close-packed iron (hcp-Fe) were measured at pressures up to 73 gigapascals and at temperatures up to 1700 kelvin with nuclear inelastic x-ray scattering in a laser-heated diamond anvil cell. The compressional-wave velocities (VP) and shear-wave velocities (VS) of hcp-Fe decreased significantly with increasing temperature under moderately high pressures. VP and VS under high pressures and temperatures thus cannot be fitted to a linear relation, Birch's law, which has been used to extrapolate measured sound velocities to densities of iron in Earth's interior. This result means that there are more light elements in Earth's core than have been inferred from linear extrapolation at room temperature. PMID:15976298

  2. Quantum molecular dynamics study of warm dense iron

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Wang, Zhe-Bin; Chen, Qi-Feng; Zhang, Ping

    2014-02-01

    The equation of state, the self-diffusion coefficient and viscosity of fluid iron in the warm dense regime at densities from 12.5 to 25.0g/cm3, and temperatures from 0.5 to 15.0 eV have been calculated via quantum molecular dynamics simulations. The principal Hugoniot is in good agreement with nuclear explosive experiments up to ˜50Mbar but predicts lower pressures compared with high intensity laser results. The self-diffusion coefficient and viscosity have been simulated and have been compared with the one-component plasma model. The Stokes-Einstein relationship, defined by connections between the viscosity and the self-diffusion coefficient, has been determined and has been found to be fairly well described by classical predictions.

  3. Growth of epitaxial films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet by laser ablation (abstract)

    SciTech Connect

    Kennedy, R.J.

    1996-04-01

    Thin films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet have been grown by laser ablation. With the exception of Co{sub 3}O{sub 4} deposited on LaAlO{sub 3}, the first three materials deposited on [100] LaAlO{sub 3}, SrTiO{sub 3}, and MgO result in high quality {ital c} axis [100] growth. Co{sub 3}O{sub 4} deposited on LaAlO{sub 3} produces highly oriented but random in-plane growth. Similar highly oriented but random in-plane growth occurs for all three materials deposited on glass. The same three materials deposited on cubic zirconia grow [111] oriented and twinned. Strontium hexagonal ferrite and yttrium iron garnet have been deposited on [111] large lattice constant garnet. Epitaxial [0001] films are obtained for the former while the latter gives [111]-oriented films. For yttrium iron garnet the closeness of lattice match to the substrate necessitates that the mosaicity (rocking curves) obtained from area maps be compared to the growth temperatures and pressures to determine the optimum growth conditions for epitaxiality. {copyright} {ital 1996 American Institute of Physics.}

  4. Thermoelasticity of Hexagonal Close-Packed Iron from the Phonon Density of States

    NASA Astrophysics Data System (ADS)

    Murphy, Caitlin A.

    This thesis explores the vibrational thermodynamic and thermoelastic properties of pure hexagonal close-packed iron (ε-Fe), in an effort to improve our understanding of the properties of a significant fraction of this remote region of the deep Earth and in turn, better constrain its composition. We determined the Debye sound velocity (vD) at each of our compression points from the low-energy region of the phonon DOS and our in situ measured volumes. In turn, vD is related to the compressional and shear sound velocities via our determined densities and the adiabatic bulk modulus. Our high-statistical quality dataset places a new tight constraint on the density dependence of ε-Fe's sound velocities to outer core pressures. Via comparison with existing data for iron alloys, we investigate how nickel and candidate light elements for the core affect the thermoelastic properties of iron. In addition, we explore the effects of temperature on ε-Fe's sound velocities by applying pressure- and temperature-dependent elastic moduli from theoretical calculations to a finite-strain model. Such models allow for direct comparisons with one-dimensional seismic models of Earth's solid inner core (e.g., the Preliminary Reference Earth Model). Next, the volume dependence of the vibrational free energy is directly related to the vibrational thermal pressure, which we combine with previously reported theoretical values for the electronic and anharmonic thermal pressures to find the total thermal pressure of ε-Fe. In addition, we found a steady increase in the Lamb-Mössbauer factor with compression, which suggests restricted thermal atomic motions at outer core pressures. This behavior is related to the high-pressure melting behavior of ε-Fe via Gilvarry's reformulation of Lindemann's melting criterion, which we used to obtain the shape of ε-Fe's melting curve up to 171 GPa. By anchoring our melting curve shape with experimentally determined melting points and considering thermal

  5. Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination

    SciTech Connect

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.; Pizzoferrato, R.; Orsini, A.; Falconi, C.

    2015-05-15

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate and metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.

  6. Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F.

    PubMed

    Clemens, Oliver; Marco, José F; Thomas, Michael F; Forder, Susan D; Zhang, Hongbin; Cartenet, Simon; Monze, Anais; Bingham, Paul A; Slater, Peter R; Berry, Frank J

    2016-09-01

    (57)Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe(3+) state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature. PMID:27355806

  7. Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F

    NASA Astrophysics Data System (ADS)

    Clemens, Oliver; Marco, José F.; Thomas, Michael F.; Forder, Susan D.; Zhang, Hongbin; Cartenet, Simon; Monze, Anais; Bingham, Paul A.; Slater, Peter R.; Berry, Frank J.

    2016-09-01

    57Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe3+ state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature.

  8. Microstructure and Scratch Resistance of TaC Dense Ceramic Layer on an Iron Matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Nana; Xu, Yunhua; Zhong, Lisheng; Yan, Honghua; Ovcharenko, Vladimir E.

    2016-06-01

    A tantalum carbide dense ceramic layer with a thickness of ~20 μm was produced on the surface of an iron matrix using an in situ technique. The morphology, microstructure, and phase composition of the layer were characterized by means of SEM, TEM, and XRD. The results show fairly agglomerated and uniformly sized (~200 nm) TaC particulates with a face-cantered cubic structure. The values of nano-hardness for the surface and cross section of reinforcing layer can be as high as 29.5 ± 0.6 and 26.7 ± 0.1 GPa, respectively, which were analyzed using a nano-indentation apparatus. Moreover, the scratch resistance of the layer was measured by scratch tests under a progressively increasing load of 0-100 N. A high critical load of 90.4 N is obtained. It is worthy to note that there are only cracking, slight splitting, and small flaking pits (even at the maximum load) all over the whole scratch process, namely the reinforcing layer can protect the iron matrix from serious abrasion effectively. In addition, the excellent scratch resistance and mechanism are discussed in detail.

  9. Microstructure and Scratch Resistance of TaC Dense Ceramic Layer on an Iron Matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Nana; Xu, Yunhua; Zhong, Lisheng; Yan, Honghua; Ovcharenko, Vladimir E.

    2016-05-01

    A tantalum carbide dense ceramic layer with a thickness of ~20 μm was produced on the surface of an iron matrix using an in situ technique. The morphology, microstructure, and phase composition of the layer were characterized by means of SEM, TEM, and XRD. The results show fairly agglomerated and uniformly sized (~200 nm) TaC particulates with a face-cantered cubic structure. The values of nano-hardness for the surface and cross section of reinforcing layer can be as high as 29.5 ± 0.6 and 26.7 ± 0.1 GPa, respectively, which were analyzed using a nano-indentation apparatus. Moreover, the scratch resistance of the layer was measured by scratch tests under a progressively increasing load of 0-100 N. A high critical load of 90.4 N is obtained. It is worthy to note that there are only cracking, slight splitting, and small flaking pits (even at the maximum load) all over the whole scratch process, namely the reinforcing layer can protect the iron matrix from serious abrasion effectively. In addition, the excellent scratch resistance and mechanism are discussed in detail.

  10. First Laser Shock Experiment at Esrf to Probe Warm Dense Iron

    NASA Astrophysics Data System (ADS)

    Torchio, R.; Occelli, F.; Mathon, O.; Sollier, A.; Lescoute, E.; Headspith, J.; Helsby, W.; Eakings, D.; Bland, S.; Chapman, D.; Mecseki, K.; Berruyer, G.; Pasternak, S.; Perrin, F.; Videau, L.; Vinci, T.; Harmand, M.; Benuzzi, A.; Rose, S.; Pascarelli, S.; Loubeyre, P.

    2014-12-01

    Dynamic compression of matter induced by powerful lasers allows exploring extreme states beyond the static limit of the diamond anvil cell, to mimic the conditions of the interior of the earth and the other planets. These are "exotic" states of matter like the Warm Dense Matter (WDM) [1] where most of the approximations used in condensed matter physics or in plasma physics break down. We report here the first laser shocked Fe K-edge XAFS data measured on a synchrotron beamline using a single X-ray pulse. Generally such experiments are carried out on a much bigger scale using high power kJ lasers where two orders of magnitude more energy is needed [2]. Linking a portable 40J laser to one of the ESRF's recently upgraded beamline ID24, solid-solid and solid-liquid phase transitions of iron under extreme pressure and temperature could be observed using single shot XANES and EXAFS. The extremely small x-ray beam available at ID24 (5x5 µm) allows focusing the laser so that the power on the sample can reach the 1013 W/cm2 range. The evolution of the thermodynamical conditions during the shock could be probed by varying the laser - X-ray delay. The shock lifetime in the iron target was confined for a few ns using a pair of diamonds windows, providing a time window sufficiently large for the 100 ps synchrotron pulse to probe thermodynamically stable states reaching 370 GPa and 10000 K, as estimated by hydrodynamic simulations. The quality of the data collected on shocked Fe using a single X-ray pulse is similar to that obtainable at ambient conditions. This first experiment demonstrates the feasibility of these studies at a synchrotron beamline, and opens many exciting opportunities for probing the local and electronic structure in very dense states of matter. Dynamic compression experiments thus will in the future become more accessible and profit from the extremely stable X-ray diagnostics of synchrotron beamlines. 1. e.g. V. E. Fortov and Igor T. Iakubov. The Physics of

  11. Hexagonal Platelet-like Magnetite as a Biosignature of Thermophilic Iron-Reducing Bacteria and Its Applications to the Exploration of the Modern Deep, Hot Biosphere and the Emergence of Iron-Reducing Bacteria in Early Precambrian Oceans

    PubMed Central

    2012-01-01

    Abstract Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life. Key Words: Biosignatures—Magnetite—Iron-reducing bacteria—Deep subsurface biosphere—Banded iron formation. Astrobiology 12, 1100–1108. PMID:23145573

  12. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.

    PubMed

    Li, Yi-Liang

    2012-12-01

    Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life. PMID:23145573

  13. Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean.

    PubMed

    Hioki, Nanako; Kuma, Kenshi; Morita, Yuichirou; Sasayama, Ryouhei; Ooki, Atsushi; Kondo, Yoshiko; Obata, Hajime; Nishioka, Jun; Yamashita, Youhei; Nishino, Shigeto; Kikuchi, Takashi; Aoyama, Michio

    2014-01-01

    The location and magnitude of oceanic iron sources remain uncertain owing to a scarcity of data, particularly in the Arctic Ocean. The formation of cold, dense water in the subsurface layer of the western Arctic Ocean is a key process in the lateral transport of iron, macronutrients, and other chemical constituents. Here, we present iron, humic-like fluorescent dissolved organic matter, and nutrient concentration data in waters above the continental slope and shelf and along two transects across the shelf-basin interface in the western Arctic Ocean. We detected high concentrations in shelf bottom waters and in a plume that extended in the subsurface cold dense water of the halocline layer in slope and basin regions. At σθ = 26.5, dissolved Fe, humic-like fluorescence intensity, and nutrient maxima coincided with N* minima (large negative values of N* indicate significant denitrification within shelf sediments). These results suggest that these constituents are supplied from the shelf sediments and then transported laterally to basin regions. Humic dissolved organic matter probably plays the most important role in the subsurface maxima and lateral transport of dissolved Fe in the halocline layer as natural Fe-binding organic ligand. PMID:25345398

  14. Segregation of acid plume pixels from background water pixels, signatures of background water and dispersed acid plumes, and implications for calculation of iron concentration in dense plumes

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1978-01-01

    Two files of data, obtained with a modular multiband scanner, for an acid waste dump into ocean water, were analyzed intensively. Signatures were derived for background water at different levels of effective sunlight intensity, and for different iron concentrations in the dispersed plume from the dump. The effect of increased sunlight intensity on the calculated iron concentration was found to be relatively important at low iron concentrations and relatively unimportant at high values of iron concentration in dispersed plumes. It was concluded that the basic equation for iron concentration is not applicable to dense plumes, particularly because lower values are indicated at the very core of the plume, than in the surrounding sheath, whereas radiances increase consistently from background water to dispersed plume to inner sheath to innermost core. It was likewise concluded that in the dense plume the iron concentration would probably best be measured by the higher wave length radiances, although the suitable relationship remains unknown.

  15. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    SciTech Connect

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-08-20

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H{sub 2}O, MgO, and SiO{sub 2} dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures.

  16. Chlorine Insertion Promoting Iron Reduction in Ba-Fe Hexagonal Perovskites: Effect on the Structural and Magnetic Properties.

    PubMed

    Serrador, Laura; Hernando, María; Martínez, José L; González-Calbet, José M; Varela, Aurea; García-García, F Javier; Parras, Marina

    2016-06-20

    BaFeCl0.13(2)O2.48(2) has been synthesized and studied. A proper tuning of the synthetic route has been designed to stabilize this compound as a single phase. The thermal stability and evolution, along with the magnetic and structural properties are reported here. The crystal structure has been refined from neutron powder diffraction data, and it is of the type (hhchc)2-10H. It is stable up to a temperature of 900 °C, where the composition reads BaFeCl0.13(2)O2.34(2). The study by electron microscopy shows that the crystal structure suffers no changes in the whole BaFeCl0.13(1)O3-y (2.34 ≤ 3 - y ≤ 2.48) compositional range. Refinement of the magnetic structure shows that the Fe is antiferromagneticaly ordered, with the magnetic moment parallel to the ab plane of the hexagonal structure. At higher temperature, a nonreversible phase transition into a (hchc)-4H structure type takes place with overall composition BaFeCl0.13(1)O2.26(1). Microstructural characterization shows that, in some crystals, this phase intergrows with a seemingly cubic related phase. Differences between these two crystalline phases reside in the chlorine content, which keeps constant through the phase transition for the former and disappears for the latter. PMID:27276508

  17. DENSE IRON EJECTA AND CORE-COLLAPSE SUPERNOVA EXPLOSION IN THE YOUNG SUPERNOVA REMNANT G11.2-0.3

    SciTech Connect

    Moon, Dae-Sik; Koo, Bon-Chul; Seok, Ji Yeon; Lee, Ho-Gyu; Matthews, Keith; Lee, Jae-Joon; Pyo, Tae-Soo; Hayashi, Masahiko

    2009-09-20

    We present the results of near-infrared spectroscopic observations of dense ({approx}>10{sup 3} cm{sup -3}) iron ejecta in the young core-collapse supernova remnant G11.2-0.3. Five ejecta knots projected to be close to its center show a large dispersion in their Doppler shifts: two knots in the east are blueshifted by more than 1000 km s{sup -1}, while three western knots have relatively small blueshifts of 20-60 km s{sup -1}. This velocity discrepancy may indicate that the western knots have been significantly decelerated or that there exists a systematic velocity difference among the knots. One ejecta filament in the northwestern boundary, on the other hand, is redshifted by {approx}>200 km s{sup -1}, while opposite filament in the southeastern boundary shows a negligible radial motion. Some of the knots and filaments have secondary velocity components, and one knot shows a bow shock-like feature in the velocity structure. The iron ejecta appear to be devoid of strong emission from other heavy elements, such as S, which may attest to the alpha-rich freezeout process in the explosive nucleosynthesis of the core-collapse supernova explosion close to its center. The prominent bipolar distribution of the Fe ejecta in the northwestern and southeastern direction, along with the elongation of the central pulsar wind nebula in the perpendicular direction, is consistent with the interpretation that the supernova exploded primarily along the northwestern and southeastern direction.

  18. Iron-free hexagonal pnictide superconductor SrPtAs: pairing interaction from electron-phonon coupling and possible d + id pairing?

    NASA Astrophysics Data System (ADS)

    Rhim, Sonny; Agterberg, Daniel F.; Weinert, Michael; Freeman, A. J.

    2014-03-01

    The iron-free hexagonal pnictide superconductor, SrPtAs, exhibits a prime example of staggered non-centrosymmetricity with non-negligible spin-orbit coupling, where locally broken inversion symmetry, despite the presence of global inversion, results in non-trivial consequences- an enhancement of the spin susceptibility and the paramagnetic limiting field.[2] Earlier calculations revealed that SrPtAs has three bands with quasi-two-dimensional features, where corresponding Fermi surfaces have two sheets around the zone center and one around the zone corner. We extended our first-principels calculations to include phonon dispersions. From this, the electron-phonon interaction is investigted in the framework of Eliashberg theory. Phonons near the K point contribute mostly to the pairing via both inter- and intra-band scattering. Further, the possibility of pairing symmetry with chiral d + id is discussed, which has been suggested when EF moves to a van Hove singularity either by n- or p-type doping.[3] DOE (DE-FG02-05ER45372).

  19. Iron and manganese-related magnetic centers in hexagonal silicon carbide: A possible roadmap for spintronic devices

    SciTech Connect

    Machado, W. V. M.; Assali, L. V. C.; Justo, J. F.

    2015-07-28

    The electronic and magnetic properties of manganese- and iron-doped 4H-SiC were investigated by first-principles calculations, using an all electron methodology. The results on stability, spin configurations, formation and transition energies, local magnetic moments, and hyperfine parameters were compared to available theoretical and experimental data. The results indicated that transition metal impurities are energetically more favorable in lattice sites with carbon atoms as their first nearest neighbors, in both substitutional and interstitial configurations, which results from the larger electronegativity of carbon with respect to that of silicon. The analysis of the electronic properties of those impurity centers showed that they could stay in several stable charge states, depending on the Fermi energy level position within the host SiC bandgap. Additionally, by computing the p-d exchange coupling constant, which is related to a spin polarization in the SiC valence band top, we explored the possibility of achieving macroscopic magnetism in SiC. The results indicated that some centers, in both substitutional and interstitial configurations, present reasonably strong magnetic couplings to mediate macroscopic magnetism at high temperatures, which may generate spin polarized currents, leading to applications in spintronic devices.

  20. Dense Iron Ejecta and Core-Collapse Supernova Explosion in the Young Supernova Remnant G11.2-0.3

    NASA Astrophysics Data System (ADS)

    Moon, Dae-Sik; Koo, Bon-Chul; Lee, Ho-Gyu; Matthews, Keith; Lee, Jae-Joon; Pyo, Tae-Soo; Seok, Ji Yeon; Hayashi, Masahiko

    2009-09-01

    We present the results of near-infrared spectroscopic observations of dense (gsim103 cm-3) iron ejecta in the young core-collapse supernova remnant G11.2-0.3. Five ejecta knots projected to be close to its center show a large dispersion in their Doppler shifts: two knots in the east are blueshifted by more than 1000 km s-1, while three western knots have relatively small blueshifts of 20-60 km s-1. This velocity discrepancy may indicate that the western knots have been significantly decelerated or that there exists a systematic velocity difference among the knots. One ejecta filament in the northwestern boundary, on the other hand, is redshifted by gsim200 km s-1, while opposite filament in the southeastern boundary shows a negligible radial motion. Some of the knots and filaments have secondary velocity components, and one knot shows a bow shock-like feature in the velocity structure. The iron ejecta appear to be devoid of strong emission from other heavy elements, such as S, which may attest to the α-rich freezeout process in the explosive nucleosynthesis of the core-collapse supernova explosion close to its center. The prominent bipolar distribution of the Fe ejecta in the northwestern and southeastern direction, along with the elongation of the central pulsar wind nebula in the perpendicular direction, is consistent with the interpretation that the supernova exploded primarily along the northwestern and southeastern direction. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  1. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  2. Hexagons of the Heart

    ERIC Educational Resources Information Center

    Burkhauser, Beth; Porter, Dave

    2010-01-01

    This article discusses the international interdependence Hexagon Project for Haiti which invites students, ages five through eighteen, to create an image within a hexagonal template and respond to big questions surrounding a global culture of interdependence. The hexagon is a visual metaphor for interdependence, with its potential to infinitely…

  3. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  4. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  5. Hexagon solar power panel

    DOEpatents

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  6. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition. PMID:26550724

  7. Hexagonal quartz resonator

    DOEpatents

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  8. Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets

    SciTech Connect

    Soni, Himadri R. Jha, Prafulla K.

    2014-04-24

    Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.

  9. Hexagonal quartz resonator

    DOEpatents

    Peters, R.D.M.

    1982-11-02

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.

  10. Grafting densely-packed poly( n-butyl methacrylate) chains from an iron substrate by aryl diazonium surface-initiated ATRP: XPS monitoring

    NASA Astrophysics Data System (ADS)

    Matrab, Tarik; Save, Maud; Charleux, Bernadette; Pinson, Jean; Cabet-deliry, Eva; Adenier, Alain; Chehimi, Mohamed M.; Delamar, Michel

    2007-06-01

    Poly( n-butyl methacrylate), PBMA, chains were grafted by atom transfer radical polymerization (ATRP) from the surface of iron plates using electrochemically attached initiators based on diazonium salts providing an iron/polyphenylene/PBMA structure. This surface-initiated ATRP procedure was controlled by the addition of a small proportion of Cu ++ deactivator, but in the absence of any sacrificial initiator. Combined XPS, IR and AFM experiments provide a powerful means for the characterization of the obtained complex iron/polyphenylene/PBMA layered structure. It is possible to measure the thickness of the brominated aryl structure covalently attached to iron. Concerning the PBMA brushes, their presence on the surface was confirmed by IRRAS. The brominated chain end could be traced by XPS testifying for the ATRP character of the polymerization and the thickness of the polymer brushes was determined. The controlled living ATRP character of the polymerization is confirmed through a linear correlation between the thickness of the layer and the degree of polymerization. Measurement of the grafting density of PBMA chains indicates that they are compactly packed and that, approximately, one brominated aryl chain out of two efficiently initiates ATRP.

  11. An Explanation for Saturn's Hexagon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a

  12. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.

    PubMed

    Paul, Laiby; Smolders, Erik

    2015-01-01

    The anaerobic biotransformation of trichloroethylene (TCE) can be affected by competing electron acceptors such as Fe (III). This study assessed the role of Fe (III) reduction on the bioenhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). Columns were set up as 1-D diffusion cells consisting of a lower DNAPL layer, a layer with an aquifer substratum and an upper water layer that is regularly refreshed. The substrata used were either inert sand or sand coated with 2-line ferrihydrite (HFO) or two environmental Fe (III) containing samples. The columns were inoculated with KB-1 and were repeatedly fed with formate. In none of the diffusion cells, vinyl chloride or ethene was detected while dissolved and extractable Fe (II) increased strongly during 60 d of incubation. The cis-DCE concentration peaked at 4.0 cm from the DNAPL (inert sand) while it was at 3.4 cm (sand+HFO), 1.7 cm and 2.5 cm (environmental samples). The TCE concentration gradients near the DNAPL indicate that the DNAPL dissolution rate was larger than that in an abiotic cell by factors 1.3 (inert sand), 1.0 (sand+HFO) and 2.2 (both environmental samples). This results show that high bioavailable Fe (III) in HFO reduces the TCE degradation by competitive Fe (III) reduction, yielding lower bioenhanced dissolution. However, Fe (III) reduction in environmental samples was not reducing TCE degradation and the dissolution factor was even larger than that of inert sand. It is speculated that physical factors, e.g. micro-niches in the environmental samples protect microorganisms from toxic concentrations of TCE. PMID:25460750

  13. DENSE MEDIUM CYCLONE OPTIMIZATON

    SciTech Connect

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  14. Process for the synthesis of iron powder

    DOEpatents

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  15. Process for the synthesis of iron powder

    DOEpatents

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  16. Process for the synthesis of iron powder

    DOEpatents

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  17. Hexagonal diamonds in meteorites: implications.

    PubMed

    Hanneman, R E; Strong, H M; Bundy, F P

    1967-02-24

    A new polymorph of carbon, hexagonal diamond, has been discovered in the Canyon Diablo and Goalpara meteorites. This phase had been synthesized recently under specific high-pressure conditions in the laboratory. Our results: provide strong evidence that diamonds found in these meteorites were produced by intense shock pressures acting on crystalline graphite inclusions present within the meteorite before impact, rather than by disintegration of larger, statically grown diamonds, as some theories propose. PMID:17830485

  18. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    DOE PAGESBeta

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-02-07

    In this study, the metastable high pressure ReB2-type hexagonal OsB2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ±more » 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB2 bulk ceramics.« less

  19. Phase transformation of strontium hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Bilovol, V.; Martínez-García, R.

    2015-11-01

    The phase transformation of strontium hexagonal ferrite (SrFe12O19) to magnetite (Fe3O4) as main phase and strontium carbonate (SrCO3) as secondary phase is reported here. SrFe12O19 powder was obtained by a heat treatment at 250 °C under controlled oxygen flow. It was observed that the phase transformation occurred when the SrFe12O19 ferrite was heated up to 625 °C in confinement conditions. This transformation took place by a combination of three factors: the presence of stresses in the crystal lattice of SrFe12O19 due to a low synthesis temperature, the reduction of Fe3+ to Fe2+ during the heating up to 625 °C, and the similarity of the coordination spheres of the iron atoms present in the S-block of SrFe12O19 and Fe3O4. X-ray diffraction analysis confirmed the existence of strain and crystal deformation in SrFe12O19 and the absence of them in the material after the phase transformation. Dispersive X-ray absorption spectroscopy and Fe57 Mössbauer spectroscopy provided evidences of the reduction of Fe3+ to Fe2+ in the SrFe12O19 crystal.

  20. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    SciTech Connect

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-08-06

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  1. Atoms in dense plasmas

    SciTech Connect

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  2. Gluing hexagons at three loops

    NASA Astrophysics Data System (ADS)

    Basso, Benjamin; Goncalves, Vasco; Komatsu, Shota; Vieira, Pedro

    2016-06-01

    We perform extensive three-loop tests of the hexagon bootstrap approach for structure constants in planar N = 4 SYM theory. We focus on correlators involving two BPS operators and one non-BPS operator in the so-called SL (2) sector. At three loops, such correlators receive wrapping corrections from mirror excitations flowing in either the adjacent or the opposing channel. Amusingly, we find that the first type of correction coincides exactly with the leading wrapping correction for the spectrum (divided by the one-loop anomalous dimension). We develop an efficient method for computing the second type of correction for operators with any spin. The results are in perfect agreement with the recently obtained three-loop perturbative data by Chicherin, Drummond, Heslop, Sokatchev [2] and by Eden [3]. We also derive the integrand for general multi-particle wrapping corrections, which turns out to take a remarkably simple form. As an application we estimate the loop order at which various new physical effects are expected to kick-in.

  3. Fermionic pentagons and NMHV hexagon

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2015-05-01

    We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang-Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4) R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.

  4. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  5. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    SciTech Connect

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-03-01

    Graphical abstract: Hexagonal Mg(OH){sub 2} nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH){sub 2} nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH){sub 2} nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH){sub 2} nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH){sub 2} nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH){sub 2} nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH){sub 2}) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH){sub 2} nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH){sub 2} nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH){sub 2} nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes.

  6. Blue-noise halftoning for hexagonal grids.

    PubMed

    Lau, Daniel L; Ulichney, Robert

    2006-05-01

    In this paper, we closely scrutinize the spatial and spectral properties of aperiodic halftoning schemes on rectangular and hexagonal sampling grids. Traditionally, hexagonal sampling grids have been shunned due to their inability to preserve the high-frequency components of blue-noise dither patterns at gray-levels near one-half, but as will be shown, only through the introduction of diagonal correlations between dots can even rectangular sampling grids preserve these frequencies. And by allowing the sampling grid to constrain the placement of dots, a particular algorithm may introduce visual artifacts just as disturbing as excess energy below the principal frequency. If, instead, the algorithm maintains radial symmetry by introducing a minimum degree of clustering, then that algorithm can maintain its grid defiance illusion fundamental to the spirit of the blue-noise model. As such, this paper shows that hexagonal grids are preferrable because they can support gray-levels near one-half with less required clustering of minority pixels and a higher principal frequency. Along with a thorough Fourier analysis of blue-noise dither patterns on both rectangular and hexagonal sampling grids, this paper also demonstrates the construction of a blue-noise dither array for hexagonal grids. PMID:16671307

  7. Micellar hexagonal phases in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.

    1992-09-01

    The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.

  8. Thermally induced microstrain broadening in hexagonal zinc

    SciTech Connect

    Lawson, Andrew C; Valdez, James A; Roberts, Joyce A; Leineweber, Andreas; Mittemeijer, E J; Kreher, W

    2008-01-01

    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  9. Intervalley scattering in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Valvin, P.; Gil, B.

    2016-01-01

    We report photoluminescence experiments bringing the evidence for intervalley scattering in bulk hexagonal boron nitride. From a quantitative analysis of the defect-related emission band, we demonstrate that transverse optical phonons at the K point of the Brillouin zone assist inter-K valley scattering, which becomes observable because stacking faults in bulk hexagonal boron nitride provide a density of final electronic states. Time-resolved experiments highlight the different recombination dynamics of the phonon replicas implying either virtual excitonic states or real electronic states in the structural defects.

  10. Hexagonal structure of baby Skyrmion lattices

    SciTech Connect

    Hen, Itay; Karliner, Marek

    2008-03-01

    We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-studied rectangular lattice, in which splitting into half Skyrmions is observed.

  11. Saturnian north polar region: a triangle inside the hexagon?

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    The famous and "mysterious" stable hexagon structure around the North Pole of Saturn was earlier interpreted as projections of faces of a structural tetrahedron [1]. This "hidden" simplest Plato's polyhedron is a result of an interference of four fundamental (wave 1) warping waves having in any rotating celestial body four directions: orthogonal and diagonal. Origin of the warping waves in any celestial body is due to their movements in elliptical keplerian orbits with periodically changing accelerations. The structural tetrahedron is an intrinsic geometric feature marking the celestial bodies ubiquitous tectonic dichotomy as in a tetrahedron always there is an opposition of a face (expansion) and a vertex (contraction). In the saturnian case the tetrahedron shows a face at the north and a vertex at the south. Morphologically this is manifested by the hexagon and opposing it in the south a vertex. Blue and pink hues of the northern and southern hemispheres also underline the tectonic dichotomy. These geometric expressions are enforced by a subtle dark equilateral triangle appearing in the image PIA11682 also around the north pole and inside the hexagon (the triangle side is about 15000 km long). One angle of the triangle is clearly visible, another one just shows itself and the third one is barely distinguished. The sides of the triangle are not strait lines but slightly broken amidst lines what makes the triangle appear a bit hexagonal (spherical) and the angle is a bit bigger than 60 degrees of a classical equilateral triangle (~70 degrees). The central part of the triangle is not imaged (a black hole in the PIA11682). This image also confirms that the wide northern polar region is also densely "peppered" with bright cloudy more or less isometric spots on average 400 to 800 km across as in other latitudinal belts of Saturn [2, 3, 4]. Earlier they were observed in IR wavelengths, now they show themselves in visible wavelengths. Their origin and size were

  12. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  13. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    SciTech Connect

    Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  14. Hexagonal and Pentagonal Fractal Multiband Antennas

    NASA Technical Reports Server (NTRS)

    Tang, Philip W.; Wahid, Parveen

    2005-01-01

    Multiband dipole antennas based on hexagonal and pentagonal fractals have been analyzed by computational simulations and functionally demonstrated in experiments on prototypes. These antennas are capable of multiband or wide-band operation because they are subdivided into progressively smaller substructures that resonate at progressively higher frequencies by virtue of their smaller dimensions. The novelty of the present antennas lies in their specific hexagonal and pentagonal fractal configurations and the resonant frequencies associated with them. These antennas are potentially applicable to a variety of multiband and wide-band commercial wireless-communication products operating at different frequencies, including personal digital assistants, cellular telephones, pagers, satellite radios, Global Positioning System receivers, and products that combine two or more of the aforementioned functions. Perhaps the best-known prior multiband antenna based on fractal geometry is the Sierpinski triangle antenna (also known as the Sierpinski gasket), shown in the top part of the figure. In this antenna, the scale length at each iteration of the fractal is half the scale length of the preceding iteration, yielding successive resonant frequencies related by a ratio of about 2. The middle and bottom parts of the figure depict the first three iterations of the hexagonal and pentagonal fractals along with typical dipole-antenna configuration based on the second iteration. Successive resonant frequencies of the hexagonal fractal antenna have been found to be related by a ratio of about 3, and those of the pentagonal fractal antenna by a ratio of about 2.59.

  15. Formation and stability of dense arrays of Au nanoclusters on hexagonal boron nitride/Rh(111)

    NASA Astrophysics Data System (ADS)

    Patterson, Matthew C.; Habenicht, Bradley F.; Kurtz, Richard L.; Liu, Li; Xu, Ye; Sprunger, Phillip T.

    2014-05-01

    We have studied the nucleation and growth of Au clusters at submonolayer and greater coverages on the h-BN nanomesh grown on Rh(111) by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). STM reveals that submonolayer Au deposited at 115 K nucleates within the nanomesh pores and remains confined to the pores even after warming to room temperature. Whereas there is a propensity of monoatomic high islands at low temperature, upon annealing, bi- and multilayer Au clusters emerge. Deposition of higher coverages of Au similarly results in Au clusters primarily confined to the nanomesh pores at room temperature. XPS analysis of core-level electronic states in the deposited Au shows strong final-state effects induced by restricted particle size dominating for low Au coverage, with indications that larger Au clusters are negatively charged by interaction through the h-BN monolayer. DFT calculations suggest that the structure of the Au clusters transitions from monolayer to bilayer at a size between 30 and 37 atoms per cluster, in line with our experiment. Bader charge analysis supports the negative charge state of deposited Au.

  16. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    SciTech Connect

    Han,W.Q.

    2008-08-01

    rhombohedral system consists of three-layered units: ABCABC..., whose honeycomb layers are arranged in a shifted phase, like as those of graphite. Reflecting its weak interlayer bond, the h-BN can be cleaved easily along its layers, and hence, is widely used as a lubricant material. The material is stable up to a high temperature of 2300 C before decomposition sets in [2] does not fuse a nitrogen atmosphere of 1 atm, and thus, is applicable as a refractory material. Besides having such properties, similar to those of graphite, the material is transparent, and acts as a good electric insulator, especially at high temperatures (10{sup 6} {Omega}m at 1000 C) [1]. c-BN and w-BN are tetrahedrally linked BN. The former has a cubic sphalerite-type structure, and the latter has a hexagonal wurtzite-type structure. c-BN is the second hardest known material (the hardest is diamond), the so-called white diamond. It is used mainly for grinding and cutting industrial ferrous materials because it does not react with molten iron, nickel, and related alloys at high temperatures whereas diamond does [1]. It displays the second highest thermal conductivity (6-9 W/cm.deg) after diamond. This chapter focuses principally upon information about h-BN nanomaterials, mainly BN nanotubes (BNNTs), porous BN, mono- and few-layer-BN sheets. There are good reviews book chapters about c-BN in [1, 4-6].

  17. Two-dimensional hexagonal smectic structure formed by topological defects

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.; Shuravin, N. S.; Fukuda, Atsuo

    2016-03-01

    A two-dimensional hexagonal smectic structure formed by point topological defects and intersecting defect walls was discovered. This unique structure was predicted theoretically about 30 years ago but not observed. For a long time the hexagonal structure was a challenge for experimentalists. A different type of self-organization in smectic films was found and used to form the hexagonal structure. Methods applied for building the hexagonal phase can be used for the formation of complicated liquid-crystal structures.

  18. Discrete breathers in hexagonal dusty plasma lattices

    SciTech Connect

    Koukouloyannis, V.; Kourakis, I.

    2009-08-15

    The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.

  19. On vortex shedding from a hexagonal cylinder

    NASA Astrophysics Data System (ADS)

    Khaledi, Hatef A.; Andersson, Helge I.

    2011-10-01

    The unsteady wake behind a hexagonal cylinder in cross-flow is investigated numerically. The time-dependent three-dimensional Navier-Stokes equations are solved for three different Reynolds numbers Re and for two different cylinder orientations. The topology of the vortex shedding depends on the orientation and the Strouhal frequency is generally higher in the wake of a face-oriented cylinder than behind a corner-oriented cylinder. For both orientations a higher Strouhal number St is observed when Re is increased from 100 to 500 whereas St is unaffected by a further increase up to Re=1000. The distinct variation of St with the orientation of the hexagonal cylinder relative to the oncoming flow is opposite of earlier findings for square cylinder wakes which exhibited a higher St with corner orientation than with face orientation.

  20. Critical Surface of the Hexagonal Polygon Model

    NASA Astrophysics Data System (ADS)

    Grimmett, Geoffrey R.; Li, Zhongyang

    2016-05-01

    The hexagonal polygon model arises in a natural way via a transformation of the 1-2 model on the hexagonal lattice, and it is related to the high temperature expansion of the Ising model. There are three types of edge, and three corresponding parameters α ,β ,γ >0. By studying the long-range order of a certain two-edge correlation function, it is shown that the parameter space (0,∞)^3 may be divided into subcritical and supercritical regions, separated by critical surfaces satisfying an explicitly known formula. This result complements earlier work on the Ising model and the 1-2 model. The proof uses the Pfaffian representation of Fisher, Kasteleyn, and Temperley for the counts of dimers on planar graphs.

  1. Multilayer hexagonal silicon forming in slit nanopore

    PubMed Central

    He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying

    2015-01-01

    The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518

  2. Multilayer hexagonal silicon forming in slit nanopore.

    PubMed

    He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying

    2015-01-01

    The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518

  3. Control of normal chirality at hexagonal interfaces

    SciTech Connect

    Haraldsen, Jason T; Fishman, Randy Scott

    2010-01-01

    We study the net chirality created by the Dzyaloshinkii-Moriya interaction (DMI) at the boundary between hexagonal layers of magnetic and non-magnetic materials. It is shown that another mechanism besides elastic torsion is required to understand the change in chirality observed in Dy/Y multilayers during field-cooling. The paper shows that due to the overlap between magnetic and non-magnetic atoms, interfacial steps may produce a DMI normal to the interface in magnetic heterostructures.

  4. Dense suspension splash

    NASA Astrophysics Data System (ADS)

    Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Schaarsberg, Martin H. Klein; Jaeger, Heinrich M.; Zhang, Wendy W.

    2014-11-01

    Impact of a dense suspension drop onto a solid surface at speeds of several meters-per-second splashes by ejecting individual liquid-coated particles. Suppression or reduction of this splash is important for thermal spray coating and additive manufacturing. Accomplishing this aim requires distinguishing whether the splash is generated by individual scattering events or by collective motion reminiscent of liquid flow. Since particle inertia dominates over surface tension and viscous drag in a strong splash, we model suspension splash using a discrete-particle simulation in which the densely packed macroscopic particles experience inelastic collisions but zero friction or cohesion. Numerical results based on this highly simplified model are qualitatively consistent with observations. They also show that approximately 70% of the splash is generated by collective motion. Here an initially downward-moving particle is ejected into the splash because it experiences a succession of low-momentum-change collisions whose effects do not cancel but instead accumulate. The remainder of the splash is generated by scattering events in which a small number of high-momentum-change collisions cause a particle to be ejected upwards. Current Address: Physics of Fluids Group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

  5. Warm dense crystallography

    NASA Astrophysics Data System (ADS)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  6. Turing patterns beyond hexagons and stripes.

    PubMed

    Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2006-09-01

    The best known Turing patterns are composed of stripes or simple hexagonal arrangements of spots. Until recently, Turing patterns with other geometries have been observed only rarely. Here we present experimental studies and mathematical modeling of the formation and stability of hexagonal and square Turing superlattice patterns in a photosensitive reaction-diffusion system. The superlattices develop from initial conditions created by illuminating the system through a mask consisting of a simple hexagonal or square lattice with a wavelength close to a multiple of the intrinsic Turing pattern's wavelength. We show that interaction of the photochemical periodic forcing with the Turing instability generates multiple spatial harmonics of the forcing patterns. The harmonics situated within the Turing instability band survive after the illumination is switched off and form superlattices. The square superlattices are the first examples of time-independent square Turing patterns. We also demonstrate that in a system where the Turing band is slightly below criticality, spatially uniform internal or external oscillations can create oscillating square patterns. PMID:17014248

  7. Saturn's North Polar Hexagon Numerical Modeling Results

    NASA Astrophysics Data System (ADS)

    Morales-Juberias, R.; Sayanagi, K. M.; Dowling, T. E.

    2008-12-01

    In 1980, Voyager images revealed the presence of a circumpolar wave at 78 degrees planetographic latitude in the northern hemisphere of Saturn. It was notable for having a dominant planetary wavenumber-six zonal mode, and for being stationary with respect to Saturn's Kilometric Radiation rotation rate measured by Voyager. The center of this hexagonal feature was coincident with the center of a sharp eastward jet with a peak speed of 100 ms-1 and it had a meridional width of about 4 degrees. This hexagonal feature was confirmed in 1991 through ground-based observations, and it was observed again in 2006 with the Cassini VIMS instrument. The latest observations highlight the longevity of the hexagon and suggest that it extends at least several bars deep into the atmosphere. We use the Explicit Planetary Isentropic Code (EPIC) to perform high-resolution numerical simulations of this unique feature. We show that a wavenumber six instability mode arises naturally from initially barotropic jets when seeded with weak random turbulence. We also discuss the properties of the wave activity on the background vertical stability, zonal wind, planetary rotation rate and adjacent vortices. Computational resources were provided by the New Mexico Computing Applications Center and New Mexico Institute of Mining and Technology and the Comparative Planetology Laboratory at the University of Louisville.

  8. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    SciTech Connect

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-02-07

    In this study, the metastable high pressure ReB2-type hexagonal OsB2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB2 bulk ceramics.

  9. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  10. Dense Hypervelocity Plasma Jets

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Case, Andrew; Phillips, Michael W.

    2006-10-01

    High velocity dense plasma jets are under continued experimental development for a variety of fusion applications including refueling, disruption mitigation, rotation drive, and magnetized target fusion. The technical goal is to accelerate plasma slugs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section geometry to prevent formation of the blow-by instability. Injected plasma is generated by electrothermal capillary discharges using either cylindrical capillaries or a newer toroidal spark gap arrangement that has worked at pressures as low as 3.5 x10-6 Torr in bench tests. Experimental plasma data will be presented for a complete 32 injector accelerator system recently built for driving rotation in the Maryland MCX experiment which utilizes the cylindrical capillaries, and also for a 50 spark gap test unit currently under construction.

  11. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  12. Wargaming in Both Rectilinear and Hexagonal Spaces

    NASA Technical Reports Server (NTRS)

    Hoover, Alex

    2012-01-01

    There are two main approaches to managing wargame entity interactions (movement, line of sight, area of effect, etc) freespace and gridded In the freespace approach, the units exist as entities in a continuous volume of (usually) Cartesian 3D space. They move in any direction (based on interaction with "terrain" that occupies the same space) and interact with each other based on references and displacements from their position in that space. In the gridded approach, space is broken up into (usually regular) shaped pieces. Units are considered to occupy the entire volume of one of these pieces, movement, line of sight, and other interactions are based on the relationships among the spaces rather than the absolute positions of the units themselves. Both approaches have advantages and drawbacks. The general issue that this discussion has addressed is that there is no "perfect" approach to implementing a wargaming battlespace. Each of them (and this extends to others not discussed) has different sets of advantages and disadvantages. Nothing will change that basic nature of the various approaches, nor would it be desirable to do so. Along with the advantages, the challenges define the feel of the game and focus the thinking of the players on certain aspects and away from others. The proposed approach to combining square and hexagonal approaches, which we will call the rhombus interface, leverages rhombuses constructed from equilateral triangles into which the hexagon can be decomposed to bridge the gap between the approaches, maintain relative consistency between the two as much as possible, and provide most of the feel of the hexagonal approach.

  13. On the perfect hexagonal packing of rods

    NASA Astrophysics Data System (ADS)

    Starostin, E. L.

    2006-04-01

    In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids. International Workshop on Biopolymers: Thermodynamics, Kinetics and Mechanics of DNA, RNA and Proteins, 30.05.2005-3.06.2005, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy.

  14. Solubilization of nutraceuticals into reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Aserin, Abraham; Garti, Nissim

    2008-08-21

    The solubilization of four bioactive molecules with different polarities, in three reverse hexagonal (HII) systems has been investigated. The three HII systems were a typical reverse hexagonal composed of glycerol monooleate (GMO)/tricaprylin/water and two fluid hexagonal systems containing either 2.75 wt % Transcutol or ethanol as a fourth component. The phase behavior of the liquid crystalline phases in the presence of ascorbic acid, ascorbyl palmitate, D-alpha-tocopherol and D-alpha-tocopherol acetate were determined by small-angle X-ray scattering (SAXS) and optical microscopy. Differential scanning calorimetry (DSC) and Fourier-transform infrared (FT-IR) techniques were utilized to follow modifications in the thermal behavior and in the vibrations of different functional groups upon solubilizing the bioactive molecules. The nature of each guest molecule (in both geometry and polarity) together with the different HII structures (typical and fluids) determined the corresponding phase behavior, swelling or structural transformations and its location in the HII structures. Ascorbic acid was found to act as a chaotropic guest molecule, localized in the water-rich core and at the interface. The AP was also a chaotropic guest molecule with its head located in the vicinity of the GMO headgroup while its tail embedded close to the surfactant tail. D-alpha-tocopherol and D-alpha-tocopherol acetate were incorporated between the GMO tails; however, the D-alpha-tocopherol was located closer to the interface. Once Transcutol or ethanol was present and upon guest molecule incorporation, partial migration was detected. PMID:18665631

  15. Quasiparticles near domain walls in hexagonal superconductors

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumya; Samokhin, Kirill

    We calculate the energy spectrum of quasiparticles trapped by a domain wall separating different time reversal symmetry-breaking ground states in a hexagonal superconductor, such as UPt3. The bound state energy is found to be strongly dependent on the gap symmetry, the domain wall orientation, the quasiparticle's direction of semiclassical propagation, and the phase difference between the domains. We calculate the corresponding density of states and show how one can use its prominent features, in particular, the zero-energy singularity, to distinguish between different pairing symmetries. Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

  16. Quasiparticles near domain walls in hexagonal superconductors

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Samokhin, K. V.

    2016-02-01

    We calculate the energy spectrum of quasiparticles trapped by a domain wall separating different time-reversal symmetry-breaking ground states in a hexagonal superconductor, such as UPt3. The bound-state energy is found to be strongly dependent on the gap symmetry, the domain-wall orientation, the quasiparticle's direction of semiclassical propagation, and the phase difference between the domains. We calculate the corresponding density of states and show how one can use its prominent features, in particular, the zero-energy singularity, to distinguish between different pairing symmetries.

  17. Diamagnetic response in zigzag hexagonal silicene rings

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Chen, Qiao; Tian, Hongyu; Ding, Jianwen; Liu, Junfeng

    2016-09-01

    Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin-orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin-orbit coupling strength and exchange field.

  18. Diagonal form factors and hexagon form factors

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfeng; Petrovskii, Andrei

    2016-07-01

    We study the heavy-heavy-light (HHL) three-point functions in the planar {N} = 4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program [1]. We prove the conjecture of Bajnok, Janik and Wereszczynski [2] on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  19. Method for exfoliation of hexagonal boron nitride

    NASA Technical Reports Server (NTRS)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  20. Ariel's Densely Pitted Surface

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This mosaic of the four highest-resolution images of Ariel represents the most detailed Voyager 2 picture of this satellite of Uranus. The images were taken through the clear filter of Voyager's narrow-angle camera on Jan. 24, 1986, at a distance of about 130,000 kilometers (80,000 miles). Ariel is about 1,200 km (750 mi) in diameter; the resolution here is 2.4 km (1.5 mi). Much of Ariel's surface is densely pitted with craters 5 to 10 km (3 to 6 mi) across. These craters are close to the threshold of detection in this picture. Numerous valleys and fault scarps crisscross the highly pitted terrain. Voyager scientists believe the valleys have formed over down-dropped fault blocks (graben); apparently, extensive faulting has occurred as a result of expansion and stretching of Ariel's crust. The largest fault valleys, near the terminator at right, as well as a smooth region near the center of this image, have been partly filled with deposits that are younger and less heavily cratered than the pitted terrain. Narrow, somewhat sinuous scarps and valleys have been formed, in turn, in these young deposits. It is not yet clear whether these sinuous features have been formed by faulting or by the flow of fluids.

    JPL manages the Voyager project for NASA's Office of Space Science.

  1. Dense Hypervelocity Plasma Jets

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  2. Nylon flocked swab severely reduces Hexagon Obti sensibility.

    PubMed

    Frippiat, Christophe; De Roy, Gilbert; Fontaine, Louis-Marie; Dognaux, Sophie; Noel, Fabrice; Heudt, Laeticia; Lepot, Laurent

    2015-02-01

    Hexagon Obti immunological blood test and flocked swab are widely used in forensic laboratories. Nevertheless, up to now, no compatibility tests have been published between sampling with the ethylene oxide treated flocked swab and the Hexagon Obti blood detection strip. In this study, we investigated this compatibility. Our work shows that sampling with ethylene oxide treated flocked swab reduces by a factor of at least 100 the detection threshold of blood using the Hexagon Obti immunological test. PMID:25575014

  3. Structural properties of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Ooi, N.; Rajan, V.; Gottlieb, J.; Catherine, Y.; Adams, J. B.

    2006-04-01

    The electronic and structural properties of hexagonal boron nitride (BN) were studied using density functional theory calculations. Three different approximations for the exchange—correlation energy (the local density and two forms of the generalized gradient)—were used to calculate properties such as the bulk modulus, cohesive energy and lattice constants to determine their relative predictive abilities for this system. In general, calculations using the local density approximation produced properties slightly closer to experimental values than calculations with either generalized gradient approximations. Different stackings, or arrangements of one basal plane with respect to another, were examined to determine the equilibrium stacking(s) and it was found that the different stackings have similar cohesive energies and bulk moduli. Energy versus volume curves were calculated for each stacking using two different methods to determine their relative efficacy. Bulk moduli values obtained assuming no pressure dependence were closer to experimental values than those obtained from three common equations of state. Comparisons between the cohesive energies of hexagonal BN and cubic BN show that the cubic phase is more stable. The pressure/volume dependence of the band structure was studied for several different stackings and all showed similar behaviour, specifically a 3-4.5 eV band gap that was nearly independent of pressure in the -500 to +500 kb regime. These calculated results of the pressure/volume dependence of the band structure are the first reports for this system.

  4. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1996-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  5. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1997-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  6. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  7. Hexagonal CoSe formation in mechanical alloyed Co 75Se 25 mixture

    NASA Astrophysics Data System (ADS)

    Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Machado, K. D.; Drago, V.; Pizani, P. S.

    2004-07-01

    A hexagonal CoSe alloy with NiAs-type structure was obtained by mechanical alloying starting from a mixture of pure crystalline powders with nominal composition Co 75Se 25. X-ray diffraction (XRD), differential scanning calorimetry (DSC), Mössbauer spectroscopy (MS) and Raman scattering (RS) techniques were used to follow the structural, thermal, magnetic and optical properties of the binary mixture as a function of milling time. XRD results show the formation of a nanometric hexagonal CoSe phase between 3 and 70 h of milling coexisting with non-reacted Co phases, also in nanometric scale. DSC and RS results showed some changes in the thermal and optical properties of the crystalline phases when the milling time increases. The Raman active modes of the CoSe and Co oxide phases were observed. MS results showed practically no iron in the samples milled up to 15 h, while for extended milling times (70 h), they showed the presence of some α-Fe and the formation of other iron alloys due to the contamination by the milling media.

  8. Hexagonal boron nitride and water interaction parameters

    NASA Astrophysics Data System (ADS)

    Wu, Yanbin; Wagner, Lucas K.; Aluru, Narayana R.

    2016-04-01

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  9. The hexagon hypothesis: Six disruptive scenarios.

    PubMed

    Burtles, Jim

    2015-01-01

    This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity. PMID:26420396

  10. Quantum emission from hexagonal boron nitride monolayers.

    PubMed

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing. PMID:26501751

  11. Quantum emission from hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Tran, Toantrong; Bray, Kerem; Ford, Michael J.; Toth, Milos; MTEE Collaboration

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Here, we demonstrate room-temperature, polarized single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. The emitters emit at the red and the near infrared spectral range and exhibit narrowband ultra bright emission (~full width at half maximum of below 10 nm with more than three million counts/s). Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  12. Quantum emission from hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  13. Hexagonal boron nitride and water interaction parameters.

    PubMed

    Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems. PMID:27131542

  14. Structural domain walls in polar hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  15. Synthesis of Fe-MCM-41 Using Iron Ore Tailings as the Silicon and Iron Source

    PubMed Central

    Li, Xin; Yu, Honghao; He, Yan; Xue, Xiangxin

    2012-01-01

    Highly ordered Fe-MCM-41 molecular sieve was successfully synthesized by using n-hexadecyl-trimethyl ammonium bromide (CTAB) as the template and the iron ore tailings (IOTs) as the silicon and iron source. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy, 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption were used to characterize the samples. The results showed that the mesoporous materials had highly ordered 2-dimensional hexagonal structure. The synthesized sample had high surface area, and part of iron atoms is retained in the framework with formation of tetrahedron after removal of the template by calcinations. The results obtained in the present work demonstrate the feasibility of employing iron ore tailings as a potential source of silicon and iron to produce Fe-MCM-41 mesoporous materials. PMID:22567574

  16. Ultracold Quantum Gases in Hexagonal Optical Lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    2010-03-01

    Hexagonal structures occur in a vast variety of systems, ranging from honeycombs of bees in life sciences to carbon nanotubes in material sciences. The latter, in particular its unfolded two-dimensional layer -- Graphene -- has rapidly grown to one of the most discussed topics in condensed-matter physics. Not only does it show proximity to various carbon-based materials but also exceptional properties owing to its unusual energy spectrum. In quantum optics, ultracold quantum gases confined in periodic light fields have shown to be very general and versatile instruments to mimic solid state systems. However, so far nearly all experiments were performed in cubic lattice geometries only. Here we report on the first experimental realization of ultracold quantum gases in a state-dependent, two-dimensional, Graphene-like optical lattice with hexagonal symmetry. The lattice is realized via a spin-dependent optical lattice structure with alternating σ^+ and σ^- -sites and thus constitutes a so called `magnetic'-lattice with `antiferromagnetic'-structure. Atoms with different spin orientation can be loaded to specific lattice sites or -- depending on the parameters -- to the whole lattice. As a consequence e.g. superpositions of a superfluid spin component with a different spin component in the Mott-insulating phase can be realized as well as spin-dependent transport properties, disorder etc. After preparing an antiferromagnetically ordered state we e.g. measure sustainable changes of the transport properties of the atoms. This manifests in a significant reduction of the tunneling as compared to a single-component system. We attribute this observation to a partial tunneling blockade for one spin component induced by population in another spin component localized at alternating lattice sites. Within a Gutzwiller-Ansatz we calculate the phase diagrams for the mixed spin-states and find very good agreement with our experimental results. Moreover, by state-resolved recording

  17. Bootstrapping the Three-Loop Hexagon

    SciTech Connect

    Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  18. Fluorescent Defects in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Exarhos, Annemarie L.; Oser, Kameron; Hopper, David A.; Grote, Richard R.; Bassett, Lee C.

    Mono- and few-layer hexagonal boron nitride (h-BN) can host defects whose electronic states lie deep within the bandgap, similar to the nitrogen-vacancy color center in bulk diamond. Here, we study defect creation in h-BN through irradiation and thermal annealing. We employ confocal photoluminescence (PL) imaging and spectroscopy under various excitation energies on both supported and suspended h-BN to identify and characterize the emission of isolated defect centers. Polarization- and temperature-dependent measurements of the observed PL are used to map out the electronic structure of the defects, enabling optical control of fluorescent defects in h-BN. This knowledge, coupled with the spatial confinement to 2D and the unique electrical, optical, and mechanical properties of h-BN, will enable the use of these defects for quantum sensing and other applications in quantum information processing. Work supported by the ARO (W911NF-15-1-0589) and NSF MRSEC (DMR-1120901).

  19. Hexagonal Antiprismatic Metallacarborane Clusters for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Berkdemir, Cüneyt; Lin, Ping; Sofo, Jorge

    2011-03-01

    We investigated the adsorption properties of molecular hydrogen attached to hexagonal antiprismatic metallacarborane clusters, RuNi C2 B10 H12 and Ru 2 C2 B10 H12 , using density functional theory. These clusters have been recently synthesized using the reduction-metallation (RedMet) approach and their structures have been resolved. The hydrogen molecules are sequentially attached to these clusters until the H2 binding energies fall below 0.2 eV, which is the minimum value of ideal H2 binding energy in the range of 0.2-0.4 eV/H2 for the practical vehicle applications. We included the van der Waals interactions between metallacarborane clusters and molecular hydrogens. We also evaluated the contribution of zero point vibrational energies to the H2 binding energy. The kinetic stability of these clusters before and after hydrogen adsorption is discussed by analyzing the energy gap. The results show that RuNi C2 B10 H12 and Ru 2 C2 B10 H12 clusters can bind up to 8.5 wt % and 9.8 wt % molecular hydrogen, respectively. These results suggest that these metallacarborane clusters are potential hydrogen storage materials to meet the targets of DOE for 2015.

  20. Hyperbolic phonon polaritons in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Dai, Siyuan

    2015-03-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.

  1. Gold nanorods grown on microgels leading to hexagonal nanostructures.

    PubMed

    Kumar, V R Rajeev; Samal, A K; Sreeprasad, T S; Pradeep, T

    2007-08-14

    Hexagonal patterns of gold nanorods were made by assembling gold nanorod-coated poly(N-isopropyl acrylamide) microgels. The required population of nanorods on the microgels was achieved by attaching nanoparticle seeds on the latter and growing them to nanorods. The various materials prepared were characterized by UV-vis spectroscopy and transmission electron microscopy. Similar experiments with nanoparticle-coated or prefabricated nanorod-coated microgels did not give such hexagonal patterns. We suggest that the interlocking of nanorods leads to these regular structures. This is the first report of a solution phase method for assembling nanorods into a hexagonal pattern. PMID:17637011

  2. Defect Chaos of Oscillating Hexagons in Rotating Convection

    SciTech Connect

    Echebarria, Blas; Riecke, Hermann

    2000-05-22

    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found. (c) 2000 The American Physical Society.

  3. Population kinetics in dense plasmas

    SciTech Connect

    Schlanges, M.; Bornath, T.; Prenzel, R.; Kremp, D.

    1996-07-01

    Starting from quantum kinetic equations, rate equations for the number densities of the different atomic states and equations for the energy density are derived which are valid for dense nonideal plasmas. Statistical expressions are presented for the rate coefficients taking into account many-body effects as dynamical screening, lowering of the ionization energy and Pauli-blocking. Based on these generalized expressions, the coefficients of impact ionization, three-body recombination, excitation and deexcitation are calculated for nonideal hydrogen and carbon plasmas. As a result, higher ionization and recombination rates are obtained in the dense plasma region. The influence of the many-body effects on the population kinetics, including density and temperature relaxation, is shown then for a dense hydrogen plasma. {copyright} {ital 1996 American Institute of Physics.}

  4. Stability of hexagonal patterns in Benard-Marangoni convection

    SciTech Connect

    Echebarria, B.; Perez-Garcia, C.

    2001-06-01

    Hexagonal patterns in Benard-Marangoni (BM) convection are studied within the framework of amplitude equations. Near threshold they can be described with Ginzburg-Landau equations that include spatial quadratic terms. The planform selection problem between hexagons and rolls is investigated by explicitly calculating the coefficients of the Ginzburg-Landau equations in terms of the parameters of the fluid. The results are compared with previous studies and with recent experiments. In particular, steady hexagons that arise near onset can become unstable as a result of long-wave instabilities. Within weakly nonlinear theory, a two-dimensional phase equation for long-wave perturbations is derived. This equation allows us to find stability regions for hexagon patterns in BM convection.

  5. Optoelectronic properties of hexagonal boron nitride epilayers

    NASA Astrophysics Data System (ADS)

    Cao, X. K.; Majety, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2013-01-01

    This paper summarizes recent progress primarily achieved in authors' laboratory on synthesizing hexagonal boron nitride (hBN) epilayers by metal organic chemical vapor deposition (MCVD) and studies of their structural and optoelectronic properties. The structural and optical properties of hBN epilayers have been characterized by x-ray diffraction (XRD) and photoluminescence (PL) studies and compared to the better understood wurtzite AIN epilayers with a comparable energy bandgap. These MOCVD grown hBN epilayers exhibit highly efficient band-edge PL emission lines centered at around 5.5 eVat room temperature. The band-edge emission of hBN is two orders of magnitude higher than that of high quality AlN epilayers. Polarization-resolved PL spectroscopy revealed that hEN epilayers are predominantly a surface emission material, in which the band-edge emission with electric field perpendicular to the c-axis (Eemi⊥c) is about 1.7 times stronger than the component along the c-axis (Eemillc). This is in contrast to AIN, in which the band­ edge emission is known to be polarized along the c-axis, (Eemillc). Based on the graphene optical absorption concept, the estimated band-edge absorption coefficient of hBN is about 7x105 cm-1, which is more than 3 times higher than the value for AlN (~2x105 cm-1 . The hBN epilayer based photodetectors exhibit a sharp cut-off wavelength around 230 nm, which coincides with the band-edge PL emission peak and virtually no responses in the long wavelengths. The dielectric strength of hBN epilayers exceeds that of AlN and is greater than 4.5 MV/cm based on the measured result for an hBN epilayer released from the host sapphire substrate.

  6. Method for dense packing discovery

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  7. Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate

    PubMed Central

    Zorko, A.; Pregelj, M.; Gomilšek, M.; Jagličić, Z.; Pajić, D.; Telling, M.; Arčon, I.; Mikulska, I.; Valant, M.

    2015-01-01

    Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO3-δ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases. PMID:25572803

  8. Intrinsic magnetic properties of hexagonal LuFeO{sub 3} and the effects of nonstoichiometry

    SciTech Connect

    Moyer, Jarrett A. E-mail: schlom@cornell.edu; Schiffer, Peter; Misra, Rajiv; Mundy, Julia A.; Brooks, Charles M.; Heron, John T.; Muller, David A.; Schlom, Darrell G. E-mail: schlom@cornell.edu

    2014-01-01

    We used oxide molecular-beam epitaxy in a composition-spread geometry to deposit hexagonal LuFeO{sub 3} (h-LuFeO{sub 3}) thin films with a monotonic variation in the Lu/Fe cation ratio, creating a mosaic of samples that ranged from iron rich to lutetium rich. We characterized the effects of composition variation with x-ray diffraction, atomic force microscopy, scanning transmission electron microscopy, and superconducting quantum interference device magnetometry. After identifying growth conditions leading to stoichiometric film growth, an additional sample was grown with a rotating sample stage. From this stoichiometric sample, we determined stoichiometric h-LuFeO{sub 3} to have a T{sub N} = 147 K and M{sub s} = 0.018 μ{sub B}/Fe.

  9. HEXAGON MOSAIC MAPS FOR DISPLAY OF UNIVARIATE AND BIVARIATE GEOGRAPHICAL DATA

    EPA Science Inventory

    Hexagon mosaic maps and hexagon-based ray glyph maps are presented. he phrase "hexagon mosaic map" refers to maps that use hexagons to tessellate major areas of a map such as land masses. exagon mosaic maps are similar to color-contour (isarithm) maps and show broad regional patt...

  10. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  11. The extended family of hexagonal molybdenum oxide

    SciTech Connect

    Hartl, Monika; Daemen, Luke; Lunk, J H; Hartl, H; Frisk, A T; Shendervich, I; Mauder, D; Feist, M; Eckelt, R

    2009-01-01

    Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.

  12. Warm Dense Matter: An Overview

    SciTech Connect

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  13. Boundary Preserving Dense Local Regions.

    PubMed

    Kim, Jaechul; Grauman, Kristen

    2015-05-01

    We propose a dense local region detector to extract features suitable for image matching and object recognition tasks. Whereas traditional local interest operators rely on repeatable structures that often cross object boundaries (e.g., corners, scale-space blobs), our sampling strategy is driven by segmentation, and thus preserves object boundaries and shape. At the same time, whereas existing region-based representations are sensitive to segmentation parameters and object deformations, our novel approach to robustly sample dense sites and determine their connectivity offers better repeatability. In extensive experiments, we find that the proposed region detector provides significantly better repeatability and localization accuracy for object matching compared to an array of existing feature detectors. In addition, we show our regions lead to excellent results on two benchmark tasks that require good feature matching: weakly supervised foreground discovery and nearest neighbor-based object recognition. PMID:26353319

  14. Dense, finely, grained composite materials

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  15. Dense periodic packings of tori

    NASA Astrophysics Data System (ADS)

    Gabbrielli, Ruggero; Jiao, Yang; Torquato, Salvatore

    2014-02-01

    Dense packings of nonoverlapping bodies in three-dimensional Euclidean space R3 are useful models of the structure of a variety of many-particle systems that arise in the physical and biological sciences. Here we investigate the packing behavior of congruent ring tori in R3, which are multiply connected nonconvex bodies of genus 1, as well as horn and spindle tori. Specifically, we analytically construct a family of dense periodic packings of unlinked tori guided by the organizing principles originally devised for simply connected solid bodies [22 Torquato and Jiao, Phys. Rev. E 86, 011102 (2012), 10.1103/PhysRevE.86.011102]. We find that the horn tori as well as certain spindle and ring tori can achieve a packing density not only higher than that of spheres (i.e., π /√18 =0.7404...) but also higher than the densest known ellipsoid packings (i.e., 0.7707...). In addition, we study dense packings of clusters of pair-linked ring tori (i.e., Hopf links), which can possess much higher densities than corresponding packings consisting of unlinked tori.

  16. Hexagonal uniformly redundant arrays for coded-aperture imaging

    NASA Technical Reports Server (NTRS)

    Finger, M. H.; Prince, T. A.

    1985-01-01

    Uniformly redundant arrays are used in coded-aperture imaging, a technique for forming images without mirrors or lenses. The URAs constructed on hexagonal lattices, are outlined. Details are presented for the construction of a special class of URAs, the skew-Hadamard URAs, which have the following properties: (1) nearly half open and half closed (2) antisymmetric upon rotation by 180 deg except for the central cell and its repetitions. Some of the skew-Hadamard URAs constructed on a hexagonal lattice have additional symmetries. These special URAs that have a hexagonal unit pattern, and are antisymmetric upon rotation by 60 deg, called hexagonal uniformly redundant arrays (HURAs). The HURAs are particularly suited to gamma-ray imaging in high background situations. In a high background situation the best sensitivity is obtained with a half open and half closed mask. The hexagonal symmetry of an HURA is more appropriate for a round position-sensitive detector or a closed-packed array of detectors than a rectangular symmetry.

  17. Hexagonal phase produced by hot implants in silicon

    NASA Astrophysics Data System (ADS)

    Servidori, M.; Cannavò, S.; Ferla, G.; La Ferla, A.; Campisano, S. U.; Rimini, E.

    The damage produced by ion implantation of Kr + in <100> Si substrates at temperatures in the 250-500°C range has been investigated by channeling effect technique and by transmission electron microscopy. Among the variety of defects present after hot implants the hexagonal silicon phase has been investigated. It is located mainly at the depth where the maximum of the energy density deposited into nuclear collisions occurs. The hexagonal phase is formed at target temperatures above 350°C and at fluences higher than 2 × 10 15/cm 2. With increasing temperature the size of the hexagonal silicon particles and the critical fluence for their formation increase. The hexagonal phase is also nucleated during high current-high dose implants of P +. In all the cases the phase disappears after prolonged annealing at T⩾700°C. The experimental region fluence-temperature for the hexagonal phase existence has been determined. The formation and thermal stability of the phase is qualitatively considered according to the existing models.

  18. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  19. HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS

    SciTech Connect

    Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.

    2010-02-22

    This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).

  20. Ab initio engineering of materials with stacked hexagonal tin frameworks

    PubMed Central

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  1. New approach for direct chemical synthesis of hexagonal Co nanoparticles

    NASA Astrophysics Data System (ADS)

    Abel, Frank M.; Tzitzios, Vasilis; Hadjipanayis, George C.

    2016-02-01

    In this paper, we explore the possibility of producing hexagonal Cobalt nanoparticles, with high saturation magnetization by direct chemical synthesis. The nanoparticles were synthesized by reduction of anhydrous cobalt (II) chloride by NaBH4 in tetraglyme at temperatures in the range of 200-270 °C under a nitrogen-hydrogen atmosphere. The reactions were done at high temperatures to allow for the formation of as-made hexagonal cobalt. The size of the particles was controlled by the addition of different surfactants. The best magnetic properties so far were obtained on spherical hexagonal Co nanoparticles with an average size of 45 nm, a saturation magnetization of 143 emu/g and coercivity of 500 Oe. the saturation magnetization and coercivity were further improved by annealing the Co nanoparticles leading to saturation magnetization of 160 emu/g and coercivity of 540 Oe.

  2. Ab initio engineering of materials with stacked hexagonal tin frameworks.

    PubMed

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  3. Stabilization of 4H hexagonal phase in gold nanoribbons

    PubMed Central

    Fan, Zhanxi; Bosman, Michel; Huang, Xiao; Huang, Ding; Yu, Yi; Ong, Khuong P.; Akimov, Yuriy A.; Wu, Lin; Li, Bing; Wu, Jumiati; Huang, Ying; Liu, Qing; Eng Png, Ching; Lip Gan, Chee; Yang, Peidong; Zhang, Hua

    2015-01-01

    Gold, silver, platinum and palladium typically crystallize with the face-centred cubic structure. Here we report the high-yield solution synthesis of gold nanoribbons in the 4H hexagonal polytype, a previously unreported metastable phase of gold. These gold nanoribbons undergo a phase transition from the original 4H hexagonal to face-centred cubic structure on ligand exchange under ambient conditions. Using monochromated electron energy-loss spectroscopy, the strong infrared plasmon absorption of single 4H gold nanoribbons is observed. Furthermore, the 4H hexagonal phases of silver, palladium and platinum can be readily stabilized through direct epitaxial growth of these metals on the 4H gold nanoribbon surface. Our findings may open up new strategies for the crystal phase-controlled synthesis of advanced noble metal nanomaterials. PMID:26216712

  4. White-Eye Hexagonal Pattern in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Dong, Lifang; Wang, Yongjie; Fu, Hongyan; Gao, Yenan

    2014-12-01

    The white-eye hexagonal pattern (WEHP) is firstly observed in a dielectric barrier discharge system and its structure is investigated using a high speed framing camera and a lens-aperture photomultiplier tube system. It bifurcates from a honeycomb pattern as the applied voltage is increased. A phase diagram of the pattern types as a function of gas pressure and gas content is presented. The frames integrated 15 and 100 of voltage cycles respectively show that the WEHP is an interleaving of two hexagonal sub-structures, one of which consists of central spots and the other consists of diffusion rings. The frame corresponding to the second current pulse in each half voltage cycle indicates that the diffusion ring is composed of several filaments, which is further confirmed by the light signals of the white-eye. The results show that wall charges play an important role in the formation of the white-eye hexagonal pattern.

  5. Ab initio engineering of materials with stacked hexagonal tin frameworks

    NASA Astrophysics Data System (ADS)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-07-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  6. Kinematic dynamo action in square and hexagonal patterns

    NASA Astrophysics Data System (ADS)

    Favier, B.; Proctor, M. R. E.

    2013-11-01

    We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.

  7. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    PubMed

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. PMID:22187940

  8. Structural investigations on iron containing natural Zincblende using EBSD

    NASA Astrophysics Data System (ADS)

    Zscheckel, Tilman; Kreher-Hartmann, Birgit; Rüssel, Christian

    2016-05-01

    A sample of natural zinc sulfide containing iron (from Portugal, Albergaria, Velha) was systematically investigated with respect to its microstructure using XRD (X-ray diffraction) and EBSD (electron back scatter diffraction). The habitus of the black sample suggests a hexagonal crystal structure, i.e. the occurrence of the Wurtzite phase. Nevertheless, using XRD and EBSD allowed only detecting and localizing the cubic Zincblende structure within the sample with the fibrous habitus while the expected hexagonal Wurtzite structure and possibly a hexagonal FeS structure were missed. The macroscopic fibrous structures consist of non-uniform and elongated grain structures which possess a preferred orientation with the <224>-direction parallel to the fiber direction. Inside the grains, twinning occurs (Σ3-Twinning) as well as grain fragmentation. Iron is not distributed homogeneously; instead areas with unique iron concentrations occurred. They were arranged like twins with iron concentrations from 4.1 up to 5.1 at% as detected and localized using energy dispersive x-ray spectroscopy (EDS). Fe2+ is incorporated in lattice sites of Zn2+. Although the phase diagram FeS-Zn-S is not yet completely determined in all composition ranges of interest, coexisting phases (zincblende and FeS) should be expected at room temperatures. The results may contribute to further insights into the growth mechanisms of natural zinc sulfide, respectively to the discussion about. Furthermore, it was shown, that the crystal habitus not always allows concluding on the crystals symmetry with certainty.

  9. Room-Temperature Multiferroic Hexagonal LuFeO3

    SciTech Connect

    Cheng, Xuemei; Balke, Nina; Chi, Miaofang; Gai, Zheng; Keavney, David; Lee, Ho Nyung; Shen, Jian; Snijders, Paul C; Wang, Wenbin; Ward, Thomas Z; Xu, Xiaoshan; Yi, Jieyu; Zhu, Leyi; Christen, Hans M; Zhao, Jun

    2013-01-01

    We observed the coexistence of ferroelectricity and weak ferromagnetism at room temperature in the hexagonal phase of LuFeO3 stabilized by epitaxial thin film growth. While the ferroelectricity in hexagonal LuFeO3 can be understood as arising from its polar structure, the observation of weak ferromagnetism at room temperature is remarkable considering the frustrated triangular spin structure. An explanation of the room temperature weak ferromagnetism is proposed in terms of a subtle lattice distortion revealed by the structural characterization. The combination of ferroelectricity and weak ferromagnetism in epitaxial films at room temperature offers great potential for the application of this novel multiferroic material in next generation devices.

  10. Spatial heterogeneity in a lyotropic liquid crystal with hexagonal phase.

    PubMed

    Penaloza, David P; Hori, Koichiro; Shundo, Atsuomi; Tanaka, Keiji

    2012-04-21

    Non-ionic surfactant hexaethylene glycol, C(12)E(6), in water self-assembles into various kinds of mesophases by varying the surfactant concentration. A spatial heterogeneity was discussed on the basis of the diffusion of probe particles dispersed in the C(12)E(6)-water solution. Interestingly, at 50 wt% C(12)E(6) where the hexagonal structure was formed, two kinds of motion of probe particles were observed: some particles normally diffused while others were restricted, indicating the existence of a heterogeneity in the physical properties. Such heterogeneity can be explained in terms of heterogeneous structures composed of hexagonal domains with isotropic-like regions. PMID:22415462

  11. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    NASA Astrophysics Data System (ADS)

    Al-Hamdani, Yasmine S.; Ma, Ming; Alfè, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos

    2015-05-01

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  12. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    SciTech Connect

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alfè, Dario; Lilienfeld, O. Anatole von

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  13. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo.

    PubMed

    Al-Hamdani, Yasmine S; Ma, Ming; Alfè, Dario; von Lilienfeld, O Anatole; Michaelides, Angelos

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT. PMID:25978876

  14. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg

  15. Backscattering by hexagonal ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2013-08-01

    Light backscattering by randomly oriented hexagonal ice crystals of cirrus clouds is considered within the framework of the physical-optics approximation. The fine angular structure of all elements of the Mueller matrix in the vicinity of the exact backward direction is first calculated and discussed. In particular, an approximate equation for the differential scattering cross section is obtained. Its simple spectral dependence is discussed. Also, a hollow of the linear depolarization ratio around the exact backward direction inherent to the long hexagonal columns is revealed. PMID:23903169

  16. Probing cold dense nuclear matter.

    PubMed

    Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L

    2008-06-13

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. PMID:18511658

  17. Probing Cold Dense Nuclear Matter

    SciTech Connect

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  18. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    SciTech Connect

    Timothy L. Ward

    2000-06-30

    . This successfully reduced cracking, however the films retained open porosity. The investigation of this concept will be continued in the final year of the project. Investigation of a metal organic chemical vapor deposition (MOCVD) method for defect mending in dense membranes was also initiated. An appropriate metal organic precursor (iron tetramethylheptanedionate) was identified whose deposition can be controlled by access to oxygen at temperatures in the 280-300 C range. Initial experiments have deposited iron oxide, but only on the membrane surface; thus refinement of this method will continue.

  19. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  20. Magnetism in Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Ferrer, Efrain J.; de la Incera, Vivian

    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.

  1. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  2. Spot addressing for microarray images structured in hexagonal grids.

    PubMed

    Giannakeas, Nikolaos; Kalatzis, Fanis; Tsipouras, Markos G; Fotiadis, Dimitrios I

    2012-04-01

    In this work, an efficient method for spot addressing in images, which are generated by the scanning of hexagonal structured microarrays, is proposed. Initially, the blocks of the image are separated using the projections of the image. Next, all the blocks of the image are processed separately for the detection of each spot. The spot addressing procedure begins with the detection of the high intensity objects, which are probably the spots of the image. Next, the Growing Concentric Hexagon algorithm, which uses the properties of the hexagonal grid, is introduced for the detection of the non-hybridized spots. Finally, the Voronoi diagram is applied to the centers of the detected spots for the gridding of the image. The method is evaluated using spots generated from the scanning of the Beadchip of Illumina, which is used for the detection of Single Nucleotide Polymorphisms in the human genome, and uses hexagonal structure for the location of the spots. For the evaluation, the detected centers for each of the spot in the image are compared to the centers of the annotation, obtaining up to 98% accuracy for the spot addressing procedure. PMID:21924515

  3. Synthesis and photocatalytic activity of porous bismuth oxychloride hexagonal prisms.

    PubMed

    Ding, Liyong; Chen, Huan; Wang, Qingqian; Zhou, Tengfei; Jiang, Qingqing; Yuan, Yuhong; Li, Jinlin; Hu, Juncheng

    2016-01-18

    Porous BiOCl hexagonal prisms have been successfully prepared through a simple solvothermal route. These novel BiOCl HPs with porous structures are assembled from nanoparticles and exhibit high activity and selectivity toward the photocatalytic aerobic oxidation of benzyl alcohol to benzaldehyde and degradation of methyl orange. PMID:26592759

  4. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    SciTech Connect

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki; Mizuhata, Minoru

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectra showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted

  5. Photogrammetric processing of hexagon stereo data for change detection studies

    NASA Astrophysics Data System (ADS)

    Padmanabha, E. Anantha; Shashivardhan Reddy, P.; Narender, B.; Muralikrishnan, S.; Dadhwal, V. K.

    2014-11-01

    Hexagon satellite data acquired as a part of USA Corona program has been declassified and is accessible to general public. This image data was acquired in high resolution much before the launch of civilian satellites. However the non availability of interior and exterior orientation parameters is the main bottle neck in photogrammetric processing of this data. In the present study, an attempt was made to orient and adjust Hexagon stereo pair through Rigorous Sensor Model (RSM) and Rational Function Models (RFM). The study area is part of Western Ghats in India. For rigorous sensor modelling an arbitrary camera file is generated based on the information available in the literature and few assumptions. A terrain dependent RFM was generated for the stereo data using Cartosat-1 reference data. The model accuracy achieved for both RSM and RFM was better than one pixel. DEM and orthoimage were generated with a spacing of 50 m and Ground Sampling Distance (GSD) of 6 m to carry out the change detection with a special emphasis on water bodies with reference to recent Cartosat-1 data. About 72 new water bodies covering an area of 2300 hectares (23 sq. km) were identified in Cartosat-1 orthoimage that were not present in Hexagon data. The image data from various Corona programs like Hexagon provide a rich source of information for temporal studies. However photogrammetric processing of the data is a bit tedious due to lack of information about internal sensor geometry.

  6. Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires.

    PubMed

    Wang, Ping; Yuan, Ying; Zhao, Chao; Wang, Xinqiang; Zheng, Xiantong; Rong, Xin; Wang, Tao; Sheng, Bowen; Wang, Qingxiao; Zhang, Yongqiang; Bian, Lifeng; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Li, Xinzheng; Zhang, Xixiang; Shen, Bo

    2016-02-10

    Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about 2-fold larger in magnitude than those on the (0001̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices. PMID:26694227

  7. Free vibration of hexagonal panels supported at discrete points

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1991-01-01

    An analytical study to determine the structural dynamic behavior of a hexagonal panel with discrete simple supports is presented. These panels are representative of the facets of a precision reflector surface. The effects of both support point location and panel curvature on the lowest natural frequency of the panel are quantified and discussed.

  8. Uniformly dense polymeric foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  9. DPIS for warm dense matter

    SciTech Connect

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  10. Dense inhibitory connectivity in neocortex

    PubMed Central

    Fino, Elodie; Yuste, Rafael

    2011-01-01

    Summary The connectivity diagram of neocortical circuits is still unknown, and there are conflicting data as to whether cortical neurons are wired specifically or not. To investigate the basic structure of cortical microcircuits, we use a novel two-photon photostimulation technique that enables the systematic mapping of synaptic connections with single-cell resolution. We map the inhibitory connectivity between upper layers somatostatin-positive GABAergic interneurons and pyramidal cells in mouse frontal cortex. Most, and sometimes all, inhibitory neurons are locally connected to every sampled pyramidal cell. This dense inhibitory connectivity is found at both young and mature developmental ages. Inhibitory innervation of neighboring pyramidal cells is similar, regardless of whether they are connected among themselves or not. We conclude that local inhibitory connectivity is promiscuous, does not form subnetworks and can approach the theoretical limit of a completely connected synaptic matrix. PMID:21435562

  11. Viscoelastic behavior of dense microemulsions

    NASA Astrophysics Data System (ADS)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  12. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  13. The performance of dense medium processes

    SciTech Connect

    Horsfall, D.W.

    1993-12-31

    Dense medium washing in baths and cyclones is widely carried out in South Africa. The paper shows the reason for the preferred use of dense medium processes rather than gravity concentrators such as jigs. The factors leading to efficient separation in baths are listed and an indication given of the extent to which these factors may be controlled and embodied in the deployment of baths and dense medium cyclones in the planning stages of a plant.

  14. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  15. Hot pressing of Cr{sub 2}O{sub 3} powder with thin hexagonal plate particles

    SciTech Connect

    Komeda, T.; Fukumoto, Y.; Yoshinaka, M.; Hirota, K.; Yamaguchi, O.

    1996-08-01

    Chromium oxide (Cr{sub 2}O{sub 3}) powders with thin hexagonal plate particles have been obtained at 1,200 C to 1,400 C from an amorphous material prepared by adding hydrazine monohydrate to the aqueous solution of chromium nitrate. Tablets molded by wet-uniaxial-pressing were hot-pressed for 2 h at 1,500 C and 30 MPa. The dense sintered Cr{sub 2}O{sub 3} ceramics (>98% of theoretical) obtained had crystal-orientation, in which a <001> axis was parallel to the pressing direction. They exhibited an anisotropy in electrical conductivity, s; the values measured at 700 C in the perpendicular and parallel directions for the <001> axis were 5.5 and 0.58 S-m{sup {minus}1}, respectively. Vickers hardness, HV, and fracture toughness, KIC, were 24.1 GPa and 4.6 MPa{center_dot}m{sup 1/2}, respectively.

  16. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  17. Zonal wavefront estimation using an array of hexagonal grating patterns

    SciTech Connect

    Pathak, Biswajit E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R. E-mail: brboruah@iitg.ernet.in

    2014-10-15

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.

  18. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri

    2009-09-01

    Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 µm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO2 trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C33 value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.

  19. Hexagonal boron nitride is an indirect bandgap semiconductor

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Valvin, P.; Gil, B.

    2016-04-01

    Hexagonal boron nitride is a wide bandgap semiconductor with very high thermal and chemical stability that is used in devices operating under extreme conditions. The growth of high-purity crystals has recently revealed the potential of this material for deep ultraviolet emission, with intense emission around 215 nm. In the last few years, hexagonal boron nitride has been attracting even more attention with the emergence of two-dimensional atomic crystals and van der Waals heterostructures, initiated with the discovery of graphene. Despite this growing interest and a seemingly simple structure, the basic questions of the bandgap nature and value are still controversial. Here, we resolve this long-debated issue by demonstrating evidence for an indirect bandgap at 5.955 eV by means of optical spectroscopy. We demonstrate the existence of phonon-assisted optical transitions and we measure an exciton binding energy of about 130 meV by two-photon spectroscopy.

  20. The structure and electronic properties of hexagonal Fe2Si

    NASA Astrophysics Data System (ADS)

    Tang, Chi Pui; Tam, Kuan Vai; Xiong, Shi Jie; Cao, Jie; Zhang, Xiaoping

    2016-06-01

    On the basis of first principle calculations, we show that a hexagonal structure of Fe2Si is a ferromagnetic crystal. The result of the phonon spectra indicates that it is a stable structure. Such material exhibits a spin-polarized and half-metal-like band structure. From the calculations of generalized gradient approximation, metallic and semiconducting behaviors are observed with a direct and nearly 0 eV band gap in various spin channels. The densities of states in the vicinity of the Fermi level is mainly contributed from the d-electrons of Fe. We calculate the reflection spectrum of Fe2Si, which has minima at 275nm and 3300nm with reflectance of 0.27 and 0.49, respectively. Such results may provide a reference for the search of hexagonal Fe2Si in experiments. With this band characteristic, the material may be applied in the field of novel spintronics devices.

  1. Melting of hexagonal skyrmion states in chiral magnets

    NASA Astrophysics Data System (ADS)

    Ambrose, M. C.; Stamps, R. L.

    2013-05-01

    Skyrmions are spiral structures observed in thin films of certain magnetic materials (Uchida et al 2006 Science 311 359-61). Of the phases allowed by the crystalline symmetries of these materials (Yi et al 2009 Phys. Rev. B 80 054416), only the hexagonally packed phases (SCh) have been observed. Here the melting of the SCh phase is investigated using Monte Carlo simulations. In addition to the usual measure of skyrmion density, chiral charge, a morphological measure is considered. In doing so it is shown that the low-temperature reduction in chiral charge is associated with a change in skyrmion profiles rather than skyrmion destruction. At higher temperatures, the loss of six-fold symmetry is associated with the appearance of elongated skyrmions that disrupt the hexagonal packing.

  2. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    SciTech Connect

    Kaplan, D. Swaminathan, V.; Recine, G.

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for opening and modulating a bandgap in graphene as high as several hundred meV.

  3. Pedestrian simulations in hexagonal cell local field model

    NASA Astrophysics Data System (ADS)

    Leng, Biao; Wang, Jianyuan; Xiong, Zhang

    2015-11-01

    Pedestrian dynamics have caused wide concern over the recent years. This paper presents a local field (LF) model based on regular hexagonal cells to simulate pedestrian dynamics in scenarios such as corridors and bottlenecks. In this model, the simulation scenarios are discretized into regular hexagonal cells. The local field is a small region around pedestrian. Each pedestrian will choose his/her target cell according to the situation in his/her local field. Different walking strategies are considered in the simulation in corridor scenario and the fundamental graphs are used to verify this model. Different shapes of exit are also discussed in the bottleneck scenario. The statistics of push effect show that the smooth bottleneck exit may be more safe.

  4. A new interlayer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Akıner, Tolga; Mason, Jeremy K.; Ertürk, Hakan

    2016-09-01

    A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6–12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6–12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction.

  5. A new interlayer potential for hexagonal boron nitride.

    PubMed

    Akıner, Tolga; Mason, Jeremy K; Ertürk, Hakan

    2016-09-28

    A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6-12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6-12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction. PMID:27452331

  6. Hexagonal liquid crystal lens array for 3D endoscopy.

    PubMed

    Hassanfiroozi, Amir; Huang, Yi-Pai; Javidi, Bahram; Shieh, Han-Ping D

    2015-01-26

    A liquid crystal lens array with a hexagonal arrangement is investigated experimentally. The uniqueness of this study exists in the fact that using convex-ring electrode provides a smooth and controllable applied potential profile across the aperture to manage the phase profile. We observed considerable differences between flat electrode and convex-ring electrode; in particular the lens focal length is variable in a wider range from 2.5cm to infinity. This study presents several noteworthy characteristics such as low driving voltage; 30 μm cell gap and the lens is electrically switchable between 2D/3D modes. We demonstrate a hexagonal LC-lens array for capturing 3D images by using single sensor using integral imaging. PMID:25835856

  7. Zonal wavefront estimation using an array of hexagonal grating patterns

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2014-10-01

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.

  8. Hexagon OPE resummation and multi-Regge kinematics

    NASA Astrophysics Data System (ADS)

    Drummond, J. M.; Papathanasiou, G.

    2016-02-01

    We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar {N}=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the 2 → 4 Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.

  9. Percolation in dense storage arrays

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Scott; Wilcke, Winfried W.; Garner, Robert B.; Huels, Harald

    2002-11-01

    As computers and their accessories become smaller, cheaper, and faster the providers of news, retail sales, and other services we now take for granted on the Internet have met their increasing computing needs by putting more and more computers, hard disks, power supplies, and the data communications linking them to each other and to the rest of the wired world into ever smaller spaces. This has created a new and quite interesting percolation problem. It is no longer desirable to fix computers, storage or switchgear which fail in such a dense array. Attempts to repair things are all too likely to make problems worse. The alternative approach, letting units “fail in place”, be removed from service and routed around, means that a data communications environment will evolve with an underlying regular structure but a very high density of missing pieces. Some of the properties of this kind of network can be described within the existing paradigm of site or bond percolation on lattices, but other important questions have not been explored. I will discuss 3D arrays of hundreds to thousands of storage servers (something which it is quite feasible to build in the next few years), and show that bandwidth, but not percolation fraction or shortest path lengths, is the critical factor affected by the “fail in place” disorder. Redundancy strategies traditionally employed in storage systems may have to be revised. Novel approaches to routing information among the servers have been developed to minimize the impact.

  10. Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    DaSilva, Ashley M.; Jung, Jeil; MacDonald, Allan H.

    2016-07-01

    In fractionally filled Landau levels there is only a small energy difference between broken translational symmetry electron-crystal states and exotic correlated quantum fluid states. We show that the spatially periodic substrate interaction associated with the long period moiré patterns present in graphene on nearly aligned hexagonal boron nitride tilts this close competition in favor of the former, explaining surprising recent experimental findings.

  11. DNA triangles and self-assembled hexagonal tilings.

    PubMed

    Chelyapov, Nickolas; Brun, Yuriy; Gopalkrishnan, Manoj; Reishus, Dustin; Shaw, Bilal; Adleman, Leonard

    2004-11-01

    We have designed and constructed DNA complexes in the form of triangles. We have created hexagonal planar tilings from these triangles via self-assembly. Unlike previously reported structures self-assembled from DNA, our structures appear to involve bending of double helices. Bending helices may be a useful design option in the creation of self-assembled DNA structures. It has been suggested that DNA self-assembly may lead to novel materials and efficient computational devices. PMID:15506744

  12. Competing structures in two dimensions: Square-to-hexagonal transition

    NASA Astrophysics Data System (ADS)

    Gränz, Barbara; Korshunov, Sergey E.; Geshkenbein, Vadim B.; Blatter, Gianni

    2016-08-01

    We study a system of particles in two dimensions interacting via a dipolar long-range potential D /r3 and subject to a square-lattice substrate potential V (r ) with amplitude V and lattice constant b . The isotropic interaction favors a hexagonal arrangement of the particles with lattice constant a , which competes against the square symmetry of the underlying substrate lattice. We determine the minimal-energy states at fixed external pressure p generating the commensurate density n =1 /b2=(4/3 ) 1 /2/a2 in the absence of thermal and quantum fluctuations, using both analytical techniques based on the harmonic and continuum elastic approximations as well as numerical relaxation of particle configurations. At large substrate amplitude V >0.2 eD, with eD=D /b3 the dipolar energy scale, the particles reside in the substrate minima and hence arrange in a square lattice. Upon decreasing V , the square lattice turns unstable with respect to a zone-boundary shear mode and deforms into a period-doubled zigzag lattice. Analytic and numerical results show that this period-doubled phase in turn becomes unstable at V ≈0.074 eD towards a nonuniform phase developing an array of domain walls or solitons; as the density of solitons increases, the particle arrangement approaches that of a rhombic (or isosceles triangular) lattice. At a yet smaller substrate value estimated as V ≈0.046 eD, a further solitonic transition establishes a second nonuniform phase which smoothly approaches the hexagonal (or equilateral triangular) lattice phase with vanishing amplitude V . At small but finite amplitude V , the hexagonal phase is distorted and hexatically locked at an angle of φ ≈3 .8∘ with respect to the substrate lattice. The square-to-hexagonal transformation in this two-dimensional commensurate-incommensurate system thus involves a complex pathway with various nontrivial lattice- and modulated phases.

  13. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  14. Hexagons, kinks, and disorder in oscillated granular layers

    SciTech Connect

    Melo, F.; Umbanhowar, P.B.; Swinney, H.L.

    1995-11-20

    Experiments on vertically oscillated granular layers in an evacuated container reveal a sequence of well-defined pattern bifurcations as the container acceleration is increased. Period doublings of the layer center of mass motion and a standing wave instability interact to produce hexagons and more complicated patterns composed of distinct spatial domains of different relative phase separated by kinks (phase discontinuities). A simple model displays quantitative agreement with the observed transition sequence. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  15. Lambda modes of the neutron diffusion equation in hexagonal geometry

    SciTech Connect

    Barrachina, T.; Ginestar, D.; Verdu, G.

    2006-07-01

    A nodal collocation method is proposed to compute the dominant Lambda modes of nuclear reactor core with a hexagonal geometry. This method is based on a triangular mesh and assumes that the neutronic flux can be approximated as a finite expansion in terms of Dubiner's polynomials. The method transforms the initial differential eigenvalue problem into a generalized algebraic one, from which the dominant modes of the reactor can be computed. The performance of the method is tested with two benchmark problems. (authors)

  16. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    NASA Astrophysics Data System (ADS)

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  17. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    PubMed

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-01-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318

  18. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    PubMed Central

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-01-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318

  19. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    SciTech Connect

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  20. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  1. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE PAGESBeta

    Zou, Yongtao; Li, Qiang; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; et al

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bondingmore » in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  2. Properties of iron under core conditions

    NASA Astrophysics Data System (ADS)

    Brown, J. M.

    2003-04-01

    Underlying an understanding of the geodynamo and evolution of the core is knowledge of the physical and chemical properties of iron and iron mixtures under high pressure and temperature conditions. Key properties include the viscosity of the fluid outer core, thermal diffusivity, equations-of-state, elastic properties of solid phases, and phase equilibria for iron and iron-dominated mixtures. As is expected for work that continues to tax technological and intellectual limits, controversy has followed both experimental and theoretical progress in this field. However, estimates for the melting temperature of the inner core show convergence and the equation-of-state for iron as determined in independent experiments and theories are in remarkable accord. Furthermore, although the structure and elastic properties of the solid inner-core phase remains uncertain, theoretical and experimental underpinnings are better understood and substantial progress is likely in the near future. This talk will focus on an identification of properties that are reasonably well known and those that merit further detailed study. In particular, both theoretical and experimental (static and shock wave) determinations of the density of iron under extreme conditions are in agreement at the 1% or better level. The behavior of the Gruneisen parameter (which determines the geothermal gradient and controls much of the outer core heat flux) is constrained by experiment and theory under core conditions for both solid and liquid phases. Recent experiments and theory are suggestive of structure or structures other than the high-pressure hexagonal close-packed (HCP) phase. Various theories and experiments for the elasticity of HCP iron remain in poor accord. Uncontroversial constraints on core chemistry will likely never be possible. However, reasonable bounds are possible on the basis of seismic profiles, geochemical arguments, and determinations of sound velocities and densities at high pressure and

  3. Thermal stability of hexagonal OsB2

    SciTech Connect

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A; Payzant, E Andrew

    2014-01-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 C and cooling in vacuo down to 225 C. During the heating, the sacrificial reaction 2OsB2+3O2 2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276 426 C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  4. Synthesis and characterization of molecular hexagons and rhomboids and subsequent encapsulation of Keggin-type polyoxometalates by molecular hexagons.

    PubMed

    Uehara, Kazuhiro; Oishi, Takamichi; Hirose, Takayuki; Mizuno, Noritaka

    2013-10-01

    Structural control among hexagonal (trimer), rhomboidal (dimer), and infinite-chain supramolecular complexes with three different supporting ligands of ethylenediamine (en), N,N,N',N'-tetramethylethylenediamine (en*), and 1,2-bis(diphenyl)phosphinoethane (dppe) [(en)Pd(L)]3(OTf)6 1t·OTf, [(en*)Pd(L)]2(PF6)4 2d·PF6, and [(dppe)Pd(L)(OTf)2]∞ 3·OTf (OTf = trifluoromethane sulfonate; L = 1,3-bis(4-pyridylethynyl)benzene) in the solid and solution states was investigated. The encapsulation of a large Keggin-type polyoxometalate [α-PW12O40](3-) by these complexes was also examined. As the steric bulkiness of the supporting ligands increased in the order of en < en* < dppe, the hexagonal, rhomboidal, and infinite-chain structures were obtained, as confirmed by X-ray crystallography. In solution, equilibrium between the molecular hexagon (1t·OTf/2t·PF6) and the molecular rhomboid (1d·OTf/2d·PF6) was observed in the en/en* ligand systems, whereas 3·OTf with the dppe ligand did not exhibit equilibrium and instead existed as a single species. These phenomena were established by cold-spray ionization mass spectroscopy (CSI-MS) and (1)H diffusion ordered NMR spectroscopy (DOSY). The addition of the highly negatively charged Keggin-type phosphododecatungstate [α-PW12O40](3-) to a solution of 2t/2d·PF6 resulted in the encapsulation of the tungstate species in the cavity of the molecular hexagon to form {[(en*)Pd(L)]3[⊃α-PW12O40]}(PF6)3 2t·[α-PW12O40](3-), as confirmed by a combination of (1)H and (31)P DOSY and CSI-MS spectral data. PMID:24050509

  5. Unit cell structure of water-filled monoolein into inverted hexagonal (H(II)) mesophase modeled by molecular dynamics.

    PubMed

    Kolev, Vesselin L; Ivanova, Anela N; Madjarova, Galia K; Aserin, Abraham; Garti, Nissim

    2014-05-22

    The study investigates the unit cell structure of inverted hexagonal (H(II)) mesophase composed of monoolein (1-monoolein, GMO) and water using atomistic molecular dynamics methods without imposing any restraints on lipid and water molecules. Statistically meaningful and very contrast images of the radial mass density distribution, scrutinizing also the separate components water, monoolein, the polar headgroups of the lipids, the double bond, and the termini of the hydrocarbon chain (the tail), are obtained. The lipid/water interface structure is analyzed based on the obtained water density distribution, on the estimated number of hydrogen bonds per monoolein headgroup, and on the headgroup-water radial distribution functions. The headgroup mass density distribution demonstrates hexagonal shape of the monoolein/water interface that is well-defined at higher water/monoolein ratios. Water interacts with the headgroups by forming a three-layer diffusive mass density distribution, and each layer's shape is close to hexagonal, which is an indication of long-range structural interactions. It is found that the monoolein headgroups form a constant number of hydrogen bonds leaving an excessive amount of water molecules outside the first lipid coordination sphere. Furthermore, the quantity of water at the monoolein/water interface increases steadily upon extension of the unit cell, so the interface should have a very dynamic structure. Investigation of the hydrocarbon residues reveals high compression and well-expressed structuring of the tails. The tails form a very compressed and constrained structure of defined layers across the unit cell with properties corresponding to a more densely packed nonpolar liquid (oil). Due to the hexagonal shape the 2D packing frustration is constant and does not depend on the water content. All reported structural features are based on averaging of the atomic coordinates over the time-length of the simulation trajectories. That kind of

  6. High-pressure chemistry of hydrogen in metals: in situ study of iron hydride.

    PubMed

    Badding, J V; Hemley, R J; Mao, H K

    1991-07-26

    Optical observations and x-ray diffraction measurements of the reaction between iron and hydrogen at high pressure to form iron hydride are described. The reaction is associated with a sudden pressure-induced expansion at 3.5 gigapascals of iron samples immersed in fluid hydrogen. Synchrotron x-ray diffraction measurements carried out to 62 gigapascals demonstrate that iron hydride has a double hexagonal close-packed structure, a cell volume up to 17% larger than pure iron, and a stoichiometry close to FeH. These results greatly extend the pressure range over which the technologically important iron-hydrogen phase diagram has been characterized and have implications for problems ranging from hydrogen degradation and embrittlement of ferrous metals to the presence of hydrogen in Earth's metallic core. PMID:17746396

  7. Modeling of hydrogen-assisted cracking in iron crystal using a quasi-Newton method.

    PubMed

    Telitchev, Igor Ye; Vinogradov, Oleg

    2008-07-01

    A Quasi-Newton method was applied in the context of a molecular statics approach to simulate the phenomenon of hydrogen embrittlement of an iron lattice. The atomic system is treated as a truss-type structure. The interatomic forces between the hydrogen-iron and the iron-iron atoms are defined by Morse and modified Morse potential functions, respectively. Two-dimensional hexagonal and 3D bcc crystal structures were subjected to tensile numerical tests. It was shown that the Inverse Broyden's Algorithm-a quasi-Newton method-provides a computationally efficient technique for modeling of the hydrogen-assisted cracking in iron crystal. Simulation results demonstrate that atoms of hydrogen placed near the crack tip produce a strong deformation and crack propagation effect in iron lattice, leading to a decrease in the residual strength of numerically tested samples. PMID:18481119

  8. Metallurgy Beyond Iron

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella; Busch, Ralf

    2009-08-01

    Metallurgy is one of the oldest sciences. Its history can be traced back to 6000 BCE with the discovery of Gold, and each new discovery - Copper, Silver, Lead, Tin, Iron and Mercury - marked the beginning of a new era of civilization. Currently there are 86 known metals, but until the end of the 17th century, only 12 of these were known. Steel (Fe-C alloy) was discovered in the 11th century BCE; however, it took until 1709 CE before we mastered the smelting of pig-iron by using coke instead of charcoal and started the industrial revolution. The metallurgy of nowadays is mainly about discovering better materials with superior properties to fulfil the increasing demand of the global market. Promising are the Glassy Metals or Bulk Metallic Glasses (BMGs) - discovered at first in the late 50s at the California Institute of Technology - which are several times stronger than the best industrial steels and 10-times springier. The unusual structure that lacks crystalline grains makes BMGs so promising. They have a liquid-like structure that means they melt at lower temperatures, can be moulded nearly as easily as plastics, and can be shaped into features just 10 nm across. The best BMG formers are based on Zr, Pd, Pt, Ca, Au and, recently discovered, also Fe. They have typically three to five components with large atomic size mismatch and a composition close to a deep eutectic. Packing in such liquids is very dense, with a low content of free volume, resulting in viscosities that are several orders of magnitude higher than in pure metal melts.

  9. Atomic Transitions in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Murillo, Michael Sean

    Motivation for the study of hot, dense ( ~solid density) plasmas has historically been in connection with stellar interiors. In recent years, however, there has been a growing interest in such plasmas due to their relevance to short wavelength (EUV and x-ray) lasers, inertial confinement fusion, and optical harmonic generation. In constrast to the stellar plasmas, these laboratory plasmas are typically composed of high-z elements and are not in thermal equilibrium. Descriptions of nonthermal plasma experiments must necessarily involve the consideration of the various atomic processes and the rates at which they occur. Traditionally, the rates of collisional atomic processes are calculated by considering a binary collision picture. For example, a single electron may be taken to collisionally excite an ion. A cross section may be defined for this process and, multiplying by a flux, the rate may be obtained. In a high density plasma this binary picture clearly breaks down as the electrons no longer act independently of each other. The cross section is ill-defined in this regime and another approach is needed to obtain rates. In this thesis an approach based on computing rates without recourse to a cross section is presented. In this approach, binary collisions are replaced by stochastic density fluctuations. It is then these density fluctuations which drive transitions in the ions. Furthermore, the oscillator strengths for the transitions are computed in screened Coulomb potentials which reflect the average polarization of the plasma near the ion. Numerical computations are presented for the collisional ionization rate. The effects of screening in the plasma -ion interaction are investigated for He^+ ions in a plasma near solid density. It is shown that dynamic screening plays an important role in this process. Then, density effects in the oscillator strength are explored for both He^+ and Ar^{+17}. Approximations which introduce a nonorthogonality between the initial

  10. Ferrous iron content of intravenous iron formulations.

    PubMed

    Gupta, Ajay; Pratt, Raymond D; Crumbliss, Alvin L

    2016-06-01

    The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose. PMID:26956439

  11. A laboratory model of Saturn’s North Polar Hexagon

    NASA Astrophysics Data System (ADS)

    Barbosa Aguiar, Ana C.; Read, Peter L.; Wordsworth, Robin D.; Salter, Tara; Hiro Yamazaki, Y.

    2010-04-01

    A hexagonal structure has been observed at ˜76°N on Saturn since the 1980s (Godfrey, D.A. [1988]. Icarus 76, 335-356). Recent images by Cassini (Baines, K., Momary, T., Roos-Serote, M., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2007]. Geophys. Res. Abstr. 9, 02109; Baines, K., Momary, T., Fletcher, L., Kim, J., Showman, A., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2009]. Geophys. Res. Abstr. 11, 3375) have shown that the feature is still visible and largely unchanged. Its long lifespan and geometry has puzzled the planetary physics community for many years and its origin remains unclear. The measured rotation rate of the hexagon may be very close to that of the interior of the planet ( Godfrey, D.A. [1990]. Science 247, 1206-1208; Caldwell, J., Hua, X., Turgeon, B., Westphal, J.A., Barnet, C.D. [1993]. Science 206, 326-329; Sánchez-Lavega, A., Lecacheux, J., Colas, F., Laques, P. [1993]. Science 260, 329-332), leading to earlier interpretations of the pattern as a stationary planetary wave, continuously forced by a nearby vortex (Allison, M., Godfrey, D.A., Beebe, R.F. [1990]. Science 247, 1061-1063). Here we present an alternative explanation, based on an analysis of both spacecraft observations of Saturn and observations from laboratory experiments where the instability of quasi-geostrophic barotropic (vertically uniform) jets and shear layers is studied. We also present results from a barotropic linear instability analysis of the saturnian zonal wind profile, which are consistent with the presence of the hexagon in the North Pole and absence of its counter-part in the South Pole. We propose that Saturn's long-lived polygonal structures correspond to wavemodes caused by the nonlinear equilibration of barotropically unstable zonal jets.

  12. Neutrino Propagation in Dense Magnetized Matter

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.

    2009-01-01

    We obtained a complete system of solutions of the Dirac-Pauli equation for a massive neutrino interacting with dense matter and strong electromagnetic field. We demonstrated that these solutions can describe precession of the neutrino spin.

  13. Wide Variation Seen in 'Dense' Breast Diagnoses

    MedlinePlus

    ... defined mammography patients' breasts as dense. Higher breast density is a risk factor for breast cancer, experts ... could have implications for the so-called breast density notification laws that have been passed in about ...

  14. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  15. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  16. A wave dynamical interpretation of Saturn's polar hexagon

    NASA Astrophysics Data System (ADS)

    Allison, M.; Godfrey, D. A.; Beebe, R. F.

    1990-03-01

    The hexagonal, pole-centered cloud feature in Saturn's northern atmosphere, as revealed in Voyager close-encounter imaging mosaics, may be interpreted as a stationary Rossby wave. The wave is embedded within a sharply peaked eastward jet (of 100 meters per second) and appears to be perturbed by at least one anticyclonic oval vortex immediately to the south. The effectively exact observational determination of the horizontal wave number and phase speed, applied to a simple model dispersion relation, suggests that the wave is vertically trapped and provides a diagnostic template for further modeling of the deep atmospheric stratification.

  17. Temperature dependent cubic and hexagonal close packing in micellar structures.

    PubMed

    Wolff, Nicole; Gerth, Stefan; Gutfreund, Philipp; Wolff, Max

    2014-11-14

    The interfacial structure and phase diagram of a micellar solution formed by the three block copolymer (EO20-PO70-EO20) also known as P123 solved in deuterated water close to a solid boundary is investigated with respect to temperature. We find a hysteretic behavior of the d-spacing of the micellar crystal and a spontaneous change in the lateral correlation length going hand in hand with a structural reorganization between cubic and hexagonal. The phase transitions may be initiated by a change in the shape of the micelles from spherical to elongated together with a minimization of the polymer water interface. PMID:25212786

  18. Inter-layer potential for hexagonal boron nitride

    SciTech Connect

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  19. Onset of hexagons in surface-tension-driven Benard convection

    NASA Technical Reports Server (NTRS)

    Schatz, Michael F.; Vanhook, Stephen J.; Swift, John B.; Mccormick, William D.; Swinney, Harry L.

    1994-01-01

    High resolution laboratory experiments with large aspect ratio are being conducted for thin fluid layers heated from below and bounded from above by a free surface. The fluid depths are chosen sufficiently small (less than 0.06 cm) so that surface tension is the dominant driving mechanisms; the Rayleigh number is less than 5 for the results reported here. Shadowgraph visualization reveals that the primary instability leading to hexagons is slightly hysteretic (approximately 1 percent). Preliminary measurements of the convection amplitude using infrared imaging are also presented.

  20. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-05-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm‑1K‑1(+141 Wm‑1K‑1/ ‑24 Wm‑1K‑1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN.

  1. Mysterious hexagonal pyramids on the surface of Pyrobaculum cells.

    PubMed

    Rensen, Elena; Krupovic, Mart; Prangishvili, David

    2015-11-01

    In attempts to induce putative temperate viruses, we UV-irradiated cells of the hyperthermophilic archaeon Pyrobaculum oguniense. Virus replication could not be detected; however, we observed the development of pyramidal structures with 6-fold symmetry on the cell surface. The hexagonal basis of the pyramids was continuous with the cellular cytoplasmic membrane and apparently grew via the gradual expansion of the 6 triangular lateral faces, ultimately protruding through the S-layer. When the base of these isosceles triangles reached approximately 200 nm in length, the pyramids opened like flower petals. The origin and function of these mysterious nanostructures remain unknown. PMID:26115814

  2. Electron knock-on damage in hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Kotakoski, J.; Jin, C. H.; Lehtinen, O.; Suenaga, K.; Krasheninnikov, A. V.

    2010-09-01

    We combine first-principles molecular-dynamics simulations with high-resolution transmission electron microscopy experiments to draw a detailed microscopic picture of irradiation effects in hexagonal boron nitride ( h -BN) monolayers. We determine the displacement threshold energies for boron and nitrogen atoms in h -BN, which differ significantly from the tight-binding estimates found in the literature and remove ambiguity from the interpretation of the experimental results. We further develop a kinetic Monte Carlo model which allows to extend the simulations to macroscopic time scales and make a direct comparison between theory and experiments. Our results provide a comprehensive picture of the response of h -BN nanostructures to electron irradiation.

  3. Field emission characteristics from graphene on hexagonal boron nitride

    SciTech Connect

    Yamada, Takatoshi; Masuzawa, Tomoaki; Ebisudani, Taishi; Okano, Ken; Taniguchi, Takashi

    2014-06-02

    An attempt has been made to utilize uniquely high electron mobility of graphene on hexagonal boron nitride (h-BN) to electron emitter. The field emission property of graphene/h-BN/Si structure has shown enhanced threshold voltage and emission current, both of which are key to develop novel vacuum nanoelectronics devices. The field emission property was discussed along with the electronic structure of graphene investigated by Fowler-Nordheim plot and ultraviolet photoelectron spectroscopy. The result suggested that transferring graphene on h-BN modified its work function, which changed field emission mechanism. Our report opens up a possibility of graphene-based vacuum nanoelectronics devices with tuned work function.

  4. How big should hexagonal ice crystals be to produce halos?

    PubMed

    Mishchenko, M I; Macke, A

    1999-03-20

    It has been hypothesized that the frequent lack of halos in observations of cirrus and contrails and laboratory measurements is caused by small ice crystal sizes that put the particles outside the geometrical optics domain of size parameters. We test this hypothesis by exploiting a strong similarity of ray tracing phase functions for finite hexagonal and circular ice cylinders and using T-matrix computations of electromagnetic scattering by circular cylinders with size parameters up to 180 in the visible. We conclude that well-defined halos should be observable for ice crystal size parameters of the order of 100 and larger and discuss remote-sensing implications of this result. PMID:18305781

  5. Carbon nanotube quantum dots on hexagonal boron nitride

    SciTech Connect

    Baumgartner, A. Abulizi, G.; Gramich, J.; Schönenberger, C.; Watanabe, K.; Taniguchi, T.

    2014-07-14

    We report the fabrication details and low-temperature characteristics of carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.

  6. Inter-layer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  7. Structural performance of two aerobrake hexagonal heat shield panel concepts

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Dyess, James W.

    1992-01-01

    Structural sizing and performance are presented for two structural concepts for an aerobrake hexagonal heat shield panel. One concept features a sandwich construction with an aluminum honeycomb core and thin quasi-isotropic graphite-epoxy face sheets. The other concept features a skin-rib isogrid construction with thin quasi-isotropic graphite-epoxy skins and graphite-epoxy ribs oriented at 0, +60, and -60 degs along the panel. Linear static, linear bifurcation buckling, and nonlinear static analyses were performed to compare the structural performance of the two panel concepts and assess their feasibility for a lunar transfer vehicle aerobrake application.

  8. Backscattering peak of hexagonal ice columns and plates.

    PubMed

    Borovoi, A; Grishin, I; Naats, E; Oppel, U

    2000-09-15

    The backward cross section of hexagonal ice crystals of arbitrary orientation is calculated for visible light by means of a ray-tracing code. It is shown that backscattering of the tilted crystals is caused by a corner-reflector-like effect. A very large peak of backscattering is found for a tilt of 32.5 degrees between the principal particle axis and the incidence direction. This peak is caused by multiple total internal reflections for part of the rays that are incident upon the skewed rectangular faces. Slant lidar measurements for remote sensing of cirrus clouds are proposed. PMID:18066226

  9. Stable three-dimensional metallic carbon with interlocking hexagons

    PubMed Central

    Zhang, Shunhong; Wang, Qian; Chen, Xiaoshuang; Jena, Puru

    2013-01-01

    Design and synthesis of 3D metallic carbon that is stable under ambient conditions has been a long-standing dream. We predict the existence of such phases, T6- and T14-carbon, consisting of interlocking hexagons. Their dynamic, mechanical, and thermal stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Unlike the previously studied K4 and the simple cubic high pressure metallic phases, the structures predicted in this work are stable under ambient conditions. Equally important, they may be synthesized chemically by using benzene or polyacenes molecules. PMID:24191020

  10. Optical Design of Segmented Hexagon Array Solar Mirror

    NASA Technical Reports Server (NTRS)

    Huegele, Vince

    2000-01-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.

  11. Optical design of SHASM: segmented hexagon array solar mirror

    NASA Astrophysics Data System (ADS)

    Huegele, Vinson B.

    2000-10-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have s spherical surface to approximate a parabolic concentrator when combined into the entire 17-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 8 kilowatts of power at the 15 foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance are given.

  12. Magnetic Phases in Dense Quark Matter

    SciTech Connect

    Incera, Vivian de la

    2007-10-26

    In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.

  13. Dense loading of catalyst improves hydrotreater performance

    SciTech Connect

    Nooy, F.M.

    1984-11-12

    This paper discusses the advantages of increased capacity and improved catalyst/oil contact in existing hydrotreating units. The similarities between catalyst loading and other material processes are reviewed. Catalyst bed activity is examined. Dense loading systems are reviewed in detail. Over the last years, many refiners have gained experience with the benefits of dense loading techniques, and these techniques are gaining more and more acceptance.

  14. Dynamical theory of dense groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  15. Dissociation energy of molecules in dense gases

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.

    1992-01-01

    A general approach is presented for calculating the reduction of the dissociation energy of diatomic molecules immersed in a dense (n = less than 10 exp 22/cu cm) gas of molecules and atoms. The dissociation energy of a molecule in a dense gas differs from that of the molecule in vacuum because the intermolecular forces change the intramolecular dynamics of the molecule, and, consequently, the energy of the molecular bond.

  16. Fabric variables in dense sheared suspensions

    NASA Astrophysics Data System (ADS)

    Radjai, Farhang; Amarsid, Lhassan; Delenne, Jean-Yves

    The rheology of granular flows and dense suspensions can be described in terms of their effective shear and bulk viscosities as a function of packing fraction. Using stress partition and equivalence between frictional and viscous descriptions in the dense state, we show that the effective viscosities can be expressed in terms of the force-network anisotropy. This is supported by our extensive DEM-LBM simulations for a broad range of inertial and viscous parameters.

  17. High-Pressure Elasticity of Iron and Anisotropy of Earth's Inner Core.

    PubMed

    Stixrude, L; Cohen, R E

    1995-03-31

    A first principles theoretical approach shows that, at the density of the inner core, both hexagonal [hexagonal close-packed (hcp)] and cubic [face-centered-cubic (fcc)] phases of iron are substantially elastically anisotropic. A forward model of the inner core based on the predicted elastic constants and the assumption that the inner core consists of a nearly perfectly aligned aggregate of hcp crystals shows good agreement with seismic travel time anomalies that have been attributed to inner core anisotropy. A cylindrically averaged aggregate of fcc crystals disagrees with the seismic observations. PMID:17770110

  18. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  19. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  20. Band gap effects of hexagonal boron nitride using oxygen plasma

    SciTech Connect

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  1. Hopf bifurcation in an hexagonal governor system with a spring

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Gang; Mello, Luis Fernando; Chu, Yan-Dong; Li, Xian-Feng; An, Xin-Lei

    2010-03-01

    The complex dynamical behaviors of the hexagonal governor system with a spring are studied in this paper. We go deeper investigating the stability of the equilibrium points in the hexagonal governor system with a spring. These systems have a rich variety of nonlinear behaviors, which are investigated here by numerically integrating the Lagrangian equations of motion. A tiny change in parameters can lead to an enormous difference in the long-term behavior of the system. Hyperchaotic behavior is also observed in cases where two of the Lyapunov exponents are positive, one is zero, and one is negative. The routes to chaos are analyzed using Poincaré maps, which are found to be more complicated than those of nonlinear rotational machines. Periodic and chaotic motions can be clearly distinguished by all of the analytical tools applied here, namely Poincaré sections, bifurcation diagrams, Lyapunov exponents, and Lyapunov dimensions. By studying numerical simulations, it is possible to provide reliable theory and effective numerical method for other systems.

  2. Elastic interaction of point defects in cubic and hexagonal crystals

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Telyatnik, R. S.

    2016-05-01

    The elastic interaction of two point defects in cubic and hexagonal structures has been considered. On the basis of the exact expression for the tensor Green's function of the elastic field obtained by the Lifschitz-Rozentsveig for a hexagonal medium, an exact formula for the interaction energy of two point defects has been obtained. The solution is represented as a function of the angle of their relative position on the example of semiconductors such as III-nitrides and α-SiC. For the cubic medium, the solution is found on the basis of the Lifschitz-Rozentsveig Green's tensors corrected by Ostapchuk, in the weak-anisotropy approximation. It is proven that the calculation of the interaction energy by the original Lifschitz-Rozentsveig Green's tensor leads to the opposite sign of the energy. On the example of the silicon crystal, the approximate solution is compared with the numerical solution, which is represented as an approximation by a series of spherical harmonics. The range of applicability of the continual approach is estimated by the quantum mechanical calculation of the lattice Green's function.

  3. Vertical transport in graphene-hexagonal boron nitride heterostructure devices

    PubMed Central

    Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2015-01-01

    Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656

  4. Vertical transport in graphene-hexagonal boron nitride heterostructure devices.

    PubMed

    Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2015-01-01

    Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656

  5. Vertical transport in graphene-hexagonal boron nitride heterostructure devices

    NASA Astrophysics Data System (ADS)

    Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2015-09-01

    Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions.

  6. Excitation of intense acoustic waves in hexagonal crystals

    SciTech Connect

    Alshits, V. I. Bessonov, D. A.; Lyubimov, V. N.

    2013-11-15

    Resonant excitation of an intense elastic wave using reflection of a pump wave from a free surface of hexagonal crystal is described. A resonance arises in the case of specially chosen propagation geometry where the reflecting boundary slightly deviates from symmetric orientation and the propagation direction of an intense reflected wave is close to that of an exceptional bulk wave, which satisfies the free boundary condition in unperturbed symmetric orientation. It is shown that, in crystals with elastic moduli c{sub 44}>c{sub 66}, a resonance arises when the initial boundary is chosen parallel to the hexagonal axis 6, whereas in crystals characterized by the relation c{sub 44}

  7. Proposal for generating synthetic magnetic fields in hexagonal optical lattices

    NASA Astrophysics Data System (ADS)

    Tian, Binbin; Endres, Manuel; Pekker, David

    2015-05-01

    We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.

  8. Silicene-type Surface Reconstruction on C40 Hexagonal Silicides

    NASA Astrophysics Data System (ADS)

    Volders, Cameron; Reinke, Petra

    Silicene has emerged as the next two-dimensional material possessing a Dirac type electronic structure making it a prime candidate for integration in electronic devices. The study of silicene is relatively new and many aspects have yet to be fully understood. Here we present a scanning tunneling microscopy (STM) study of a Silicene-type surface reconstruction observed on nanometer scale hexagonal-MoSi2 crystallites. This surface reconstruction is specific to the C40 structure of h-MoSi2 and can initially be defined as a geometric silicene while the coupling between the silicene surface and the silicide bulk is under investigation. The lateral dimensions correspond to a superstructure where the silicene hexagons are slightly buckled and two of the six Si atoms are visible in the STM images creating a honeycomb pattern. The local electronic structure of the silicene is currently being studied with ST spectroscopy and the impact of confinement will be addressed. These results open an alternative route to Silicene growth by using surface reconstructions on metallic and semiconducting C40 silicide structures, which is promising for direct device integration on Si-platforms.

  9. Dependence of the stresses on grain orientations in hexagonal films

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Zhang, Yan; Xu, Ke-Wei; Ji, Vincent

    2007-01-01

    A thin polycrystalline film attached tightly to a thick substrate of different thermal expansion coefficients will experience thermal stresses when the temperature is changed during device fabrication and in service. Calculations of these stresses in various ( h k l )-oriented grains relative to the film surface have been made for a polycrystalline film composed of the hexagonal metal Be, Cd, Co, Hf, Mg, Re, Ru, Sc, Ti, Y, Zr and Zn, respectively. For all these hexagonal films, the stresses σ1 and σ2 in plane of the film surface are equal only in (0 0 1)-oriented grains due to the highest six-fold rotation symmetry of the crystallographic Z-axis. Excepting σ1 of Be, Ru, Zr, Zn and σ2 of Cd, Zn, the maximum values of the film plane stresses σ1 and σ2 correspond to the (0 0 1)-oriented grains means that the significant reliability problems, such as, voiding, cracking, hillocking induced by the stresses may be taken place preferred in (0 0 1)-oriented grains.

  10. Faint Luminescent Ring over Saturn’s Polar Hexagon

    NASA Astrophysics Data System (ADS)

    Adriani, Alberto; Moriconi, Maria Luisa; D’Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico

    2015-07-01

    Springtime insolation is presently advancing across Saturn's north polar region. Early solar radiation scattered through the gaseous giant's atmosphere gives a unique opportunity to sound the atmospheric structure at its upper troposphere/lower stratosphere at high latitudes. Here, we report the detection of a tenuous bright structure in Saturn's northern polar cap corresponding to the hexagon equatorward boundary, observed by Cassini Visual and Infrared Mapping Spectrometer on 2013 June. The structure is spectrally characterized by an anomalously enhanced intensity in the 3610–3730 nm wavelength range and near 2500 nm, pertaining to relatively low opacity windows between strong methane absorption bands. Our first results suggest that a strong forward scattering by tropospheric clouds, higher in respect to the surrounding cloud deck, can be responsible for the enhanced intensity of the feature. This can be consistent with the atmospheric dynamics associated with the jet stream embedded in the polar hexagon. Further investigations at higher spectral resolution are needed to better assess the vertical distribution and microphysics of the clouds in this interesting region.

  11. Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Andrianov, Igor V.; Pacheco, Pedro M. C. L.; Savi, Marcelo A.; Starushenko, Galina A.

    2016-08-01

    The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.

  12. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  13. Thermal stability of hexagonal OsB{sub 2}

    SciTech Connect

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-11-15

    The synthesis of novel hexagonal ReB{sub 2}-type OsB{sub 2} ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of {sup 10}B and {sup 11}B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched {sup 11}B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB{sub 2} phase was the main product of synthesis with a small quantity of Os{sub 2}B{sub 3} phase present after synthesis as an intermediate product. In the second case, where coarse crystalline {sup 11}B powder was used as a raw material, only Os{sub 2}B{sub 3} boride was synthesized mechanochemically. The thermal stability of hexagonal OsB{sub 2} powder was studied by heating under argon up to 876 °C and cooling in vacuo down to −225 °C. During the heating, the sacrificial reaction 2OsB{sub 2}+3O{sub 2}→2Os+2B{sub 2}O{sub 3} took place due to presence of O{sub 2}/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B{sub 2}O{sub 3} and precipitation of Os metal out of the OsB{sub 2} lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB{sub 2} changed significantly. The shrinkage of the a lattice parameter was recorded in 276–426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB{sub 2} lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O{sub 2}, the hexagonal OsB{sub 2} ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice

  14. Preparation of hexagonal WO{sub 3} from hexagonal ammonium tungsten bronze for sensing NH{sub 3}

    SciTech Connect

    Szilagyi, Imre Miklos Wang Lisheng; Gouma, Pelagia-Irene; Balazsi, Csaba; Madarasz, Janos; Pokol, Gyoergy

    2009-03-05

    Hexagonal tungsten oxide (h-WO{sub 3}) was prepared by annealing hexagonal ammonium tungsten bronze, (NH{sub 4}){sub 0.07}(NH{sub 3}){sub 0.04}(H{sub 2}O){sub 0.09}WO{sub 2.95}. The structure, composition and morphology of h-WO{sub 3} were studied by XRD, XPS, Raman, {sup 1}H MAS (magic angle spinning) NMR, scanning electron microscopy (SEM), and BET-N{sub 2} specific surface area measurement, while its thermal stability was investigated by in situ XRD. The h-WO{sub 3} sample was built up by 50-100 nm particles, had an average specific surface area of 8.3 m{sup 2}/g and was thermally stable up to 450 deg. C. Gas sensing tests showed that h-WO{sub 3} was sensitive to various levels (10-50 ppm) of NH{sub 3}, with the shortest response and recovery times (1.3 and 3.8 min, respectively) to 50 ppm NH{sub 3}. To this NH{sub 3} concentration, the sensor had significantly higher sensitivity than h-WO{sub 3} samples prepared by wet chemical methods.

  15. [Iron-refractory iron deficiency anemia].

    PubMed

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  16. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  17. HEXPANDO Expanding Head for Fastener-Retention Hexagonal Wrench

    NASA Technical Reports Server (NTRS)

    Bishop, John

    2011-01-01

    The HEXPANDO is an expanding-head hexagonal wrench designed to retain fasteners and keep them from being dislodged from the tool. The tool is intended to remove or install socket-head cap screws (SHCSs) in remote, hard-to-reach locations or in circumstances when a dropped fastener could cause damage to delicate or sensitive hardware. It is not intended for application of torque. This tool is made of two assembled portions. The first portion of the tool comprises tubing, or a hollow shaft, at a length that gives the user adequate reach to the intended location. At one end of the tubing is the expanding hexagonal head fitting with six radial slits cut into it (one at each of the points of the hexagonal shape), and a small hole drilled axially through the center and the end opposite the hex is internally and externally threaded. This fitting is threaded into the shaft (via external threads) and staked or bonded so that it will not loosen. At the other end of the tubing is a knurled collar with a through hole into which the tubing is threaded. This knob is secured in place by a stop nut. The second assembled portion of the tool comprises a length of all thread or solid rod that is slightly longer than the steel tubing. One end has a slightly larger knurled collar affixed while the other end is tapered/pointed and threaded. When the two portions are assembled, the all thread/rod portion feeds through the tubing and is threaded into the expanding hex head fitting. The tapered point allows it to be driven into the through hole of the hex fitting. While holding the smaller collar on the shaft, the user turns the larger collar, and as the threads feed into the fitting, the hex head expands and grips the SHCS, thus providing a safe way to install and remove fasteners. The clamping force retaining the SHCS varies depending on how far the tapered end is inserted into the tool head. Initial tests of the prototype tool, designed for a 5 mm or # 10SHCS have resulted in up to 8 lb

  18. Defect properties of cobalt-doped hexagonal barium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Langhammer, H. T.; Böttcher, R.; Müller, T.; Walther, T.; Ebbinghaus, S. G.

    2015-07-01

    X-ray diffraction (XRD) patterns, electron paramagnetic resonance (EPR) powder spectra (9 and 34 GHz) and the magnetic susceptibility of BaTiO3 + 0.04 BaO + x/2 Co2O3 (0.001 ⩽ x ⩽ 0.02) ceramics were studied to investigate the incorporation of Co ions in the BaTiO3 lattice and their valence states as well as the development of the hexagonal phase (6H modification) in dependence on doping level x and sintering temperature Ts. At Ts = 1400 °C the 6H modification begins to occur at a nominal Co concentration x of about 0.001 and for x > 0.005 the samples are completely hexagonal at room temperature. Two different EPR spectra were observed in the 6H modification of BaTiO3, which were both assigned to paramagnetic Co2+ ions located at the two crystallographically non-equivalent Ti sites in 6H-BaTiO3. The EPR g tensor values as well as the molar paramagnetic susceptibility, measured in the temperature range 5 K-300 K at a magnetic field of 9 T, were analyzed in the framework of the ligand field theory using the program CONCORD. The combination of EPR and magnetic measurements reveals that in air-sintered 6H BaTiO3, the incorporated Co occurs as a mixture of paramagnetic Co2+ and diamagnetic Co3+ ions, whereas in samples annealed in reducing atmosphere the majority of Co is in the divalent state. The occurrence of Co4+ can be excluded for all investigated samples. The sample color caused by Co2+ and Co3+ ions is beige/light yellow and dark grey/black, respectively. The majority of the Co2+ ions substitutes Ti in the exclusively corner-sharing oxygen octahedra possessing nearly cubic symmetry. The corresponding ligand field parameter B04(3) amounts to about -28 000 cm-1 (Wybourne notation, 10Dq ≈ 20 000 cm-1). In the reduced samples nearly 5% of the detected Co2+ ions occupy the Ti site in the face-sharing oxygen octahedra, which are significantly trigonally distorted. The negative sign of the obtained ligand field parameter B02 ≈ -7300 cm-1

  19. Mammalian iron transport.

    PubMed

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  20. Coalescence preference in densely packed microbubbles

    PubMed Central

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-01

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. The surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubbles shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter. PMID:25583640

  1. Supplemental screening sonography in dense breasts.

    PubMed

    Berg, Wendie A

    2004-09-01

    In single-center trials across 42,838 examinations, 150 (0.35%) cancers were identified only sonographically in average-risk women. Over 90% of the 126 women with sonographically depicted cancers had dense or heterogeneously dense parenchyma. Of the 150 cancers, 141 (94%) were invasive, with a mean size of 9 to 11 mm across the series. Over 90% were node-negative. A3-year multicenter trial of screening sonography in high-risk women, blinded to the results of mammography, opened for enrollment April 2004,funded by the Avon Foundation and National Cancer Institute through the American College of Radiology Imaging Network (ACRIN Protocol 6666). If the trial is successful,the results will provide a rational basis for supplemental screening sonography in women with dense breasts. PMID:15337420

  2. Coalescence preference in densely packed microbubbles

    SciTech Connect

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubbles shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.

  3. Coalescence preference in densely packed microbubbles

    DOE PAGESBeta

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  4. [Metabolic syndrome and small dense LDL].

    PubMed

    Yoshino, Gen

    2006-12-01

    Due to the recent westernization of our lifestyle, it is speculated that the prevalence of metabolic syndrome in the young generation will increase in Japan. Different from Western populations, because of our lifestyle as "farmers" from ancient times, excess energy has been stored outside of the body, and the accumulation of visceral fat might have serious adverse effects on glucose and lipid metabolism. Therefore, we must carefully diagnose and treat patients with metabolic syndrome, which is diagnosed based on the existence of visceral obesity. On the other hand, much attention has been paid recently to the atherogenicity of small dense LDL. In this chapter I will introduce a newly established method for estimating the plasma concentration of small dense LDL-cholesterol. Furthermore, the relationship between subclinical atherosclerosis and small dense LDL in metabolic syndrome will be discussed. PMID:17265899

  5. Hexagonal multiple phase-and-amplitude-shift-keyed signal sets

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Smith, J. G.

    1973-01-01

    Selection of a particular signal set array for a bandwidth-constrained multiple phase-and-amplitude-shift-keyed (MPASK) communication system for a linear additive Gaussian noise channel requires consideration of factors such as average and/or peak power vs symbol error probability, signal amplitude dynamic range, simplicity of generation and detection, and number of bit errors per symbol error (Gray code properties). A simple technique is presented for generating and optimally detecting the honeycomb (hexagonal) signal set, i.e., the signal set that has the tightest sphere-packing properties. The symbol and bit error probability performance of this set is compared to other two-dimensional signal sets that have been investigated in the literature, and is shown to be slightly superior from an average power standpoint. The paper concludes with a comparison of all of these signal sets from the standpoint of the factors listed above.

  6. High-Entropy Alloys in Hexagonal Close-Packed Structure

    NASA Astrophysics Data System (ADS)

    Gao, M. C.; Zhang, B.; Guo, S. M.; Qiao, J. W.; Hawk, J. A.

    2016-07-01

    The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.

  7. Electronic structure of interfaces between hexagonal and rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Taut, M.; Koepernik, K.

    2016-07-01

    An analysis of the electronic structure of interfaces between hexagonal (A B ) and rhombohedral (A B C ) graphite based on density functional theory is presented. Both of the two simplest interface structures host (localized) interface bands, which are located around the K point in the Brillouin zone, and which give rise to strong peaks in the density of states at the Fermi level. All interface bands near the Fermi energy are localized at monomers (single atoms with dangling pz orbitals), whereas those around 0.5 eV belong to pz-bonded trimers, which are introduced by the interface and which are not found in the two adjacent bulk substances. There is also an interface band at the (A B ) side of the interface which resembles one of the interface states near a stacking fault in (A B ) graphite.

  8. Structural analysis of Li-intercalated hexagonal boron nitride

    SciTech Connect

    Sumiyoshi, A.; Hyodo, H.; Kimura, K.

    2012-03-15

    A structural investigation of Li-intercalated hexagonal boron nitride (Li-h-BNIC) was performed by synchrotron powder X-ray diffraction analysis and transmission electron microscopy. The host BN framework of Li-h-BNIC was expanded by Li-intercalation. The intralayer B-N bond length was increased by 2.48(1)% and the interlayer distance was expanded by 12.86(1)%. No superlattice structure of intercalated Li was observed. - Graphical abstract: XRD pattern fitting of the sample and schematic view of host h-BN lattice. Highlights: Black-Right-Pointing-Pointer Li-intercalated h-BN was investigated by synchrotron radiation powder XRD. Black-Right-Pointing-Pointer Lattice parameter of host h-BN lattice was increased by intercalation. Black-Right-Pointing-Pointer Increase ratio of B-N bond length was considerably larger than those of Li GICs.

  9. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  10. Sidewall forcing of hexagonal Turing patterns: rhombic patterns

    NASA Astrophysics Data System (ADS)

    Pérez-Muñuzuri, V.; Gómez-Gesteira, M.; Muñuzuri, A. P.; Chua, L. O.; Pérez-Villar, V.

    Rhombic arrays were obtained by sidewall forcing during Turing pattern formation in numerical simulations. Locking between the frequency of forcing and the wave length between blobs was obtained in accordance with the Farey sequence. This locking appears as a perfect rhombic array oriented in the direction of the imposed forcing. For a constant forcing in duration and amplitude, the following scheme of bifurcation was observed: parallel stripes ↦ rhombic array ↦ domains of hexagons and rhombi separated by “penta-hepta” defects. Symmetry considerations based on a non-uniform stretching along the x-axis were used to describe these transitions. Unstable “varicose-vein” stripes were observed to evolve during the temporal evolution arrays.