Science.gov

Sample records for dense hydrogen plasmas

  1. Electron Recombination in a Dense Hydrogen Plasma

    SciTech Connect

    Jana, M.R.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moretti, A.; Popovic, M.; Tollestrup, A.V.; Yonehara, K.; Leonova, M.A.; Schwarz, T.A.; Chung, M.; /Unlisted /IIT, Chicago /Fermilab /MUONS Inc., Batavia /Turin Polytechnic

    2012-05-01

    A high pressure hydrogen gas filled RF cavity was subjected to an intense proton beam to study the evolution of the beam induced plasma inside the cavity. Varying beam intensities, gas pressures and electric fields were tested. Beam induced ionized electrons load the cavity, thereby decreasing the accelerating gradient. The extent and duration of this degradation has been measured. A model of the recombination between ionized electrons and ions is presented, with the intent of producing a baseline for the physics inside such a cavity used in a muon accelerator. Analysis of the data taken during the summer of 2011 shows that self recombination takes place in pure hydrogen gas. The decay of the number of electrons in the cavity once the beam is turned off indicates self recombination rather than attachment to electronegative dopants or impurities. The cross section of electron recombination grows for larger clusters of hydrogen and so at the equilibrium of electron production and recombination in the cavity, processes involving H{sub 5}{sup +} or larger clusters must be taking place. The measured recombination rates during this time match or exceed the analytic predicted values. The accelerating gradient in the cavity recovers fully in time for the next beam pulse of a muon collider. Exactly what the recombination rate is and how much the gradient degrades during the 60 ns muon collider beam pulse will be extrapolated from data taken during the spring of 2012.

  2. Resonances in positron-hydrogen scattering in dense quantum plasmas

    SciTech Connect

    Jiang, Zishi; Zhang, Yong-Zhi; Kar, Sabyasachi

    2015-05-15

    We have investigated the S-wave resonance states in positron-hydrogen system embedded in dense quantum plasmas using Hylleraas-type wave functions within the framework of the stabilization method. The effect of quantum plasmas has been incorporated using the exponential-cosine-screened Coulomb (modified Yukawa-type) potential. Resonance parameters (both position and width) below the Ps n = 2 threshold are reported as functions of plasma screening parameters.

  3. Positron scattering from hydrogen atom embedded in dense quantum plasma

    SciTech Connect

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2013-08-15

    Scattering of positrons from the ground state of hydrogen atoms embedded in dense quantum plasma has been investigated by applying a formulation of the three-body collision problem in the form of coupled multi-channel two-body Lippmann-Schwinger equations. The interactions among the charged particles in dense quantum plasma have been represented by exponential cosine-screened Coulomb potentials. Variationally determined hydrogenic wave function has been employed to calculate the partial-wave scattering amplitude. Plasma screening effects on various possible mode of fragmentation of the system e{sup +}+H(1s) during the collision, such as 1s→1s and 2s→2s elastic collisions, 1s→2s excitation, positronium formation, elastic proton-positronium collisions, have been reported in the energy range 13.6-350 eV. Furthermore, a comparison has been made on the plasma screening effect of a dense quantum plasma with that of a weakly coupled plasma for which the plasma screening effect has been represented by the Debye model. Our results for the unscreened case are in fair agreement with some of the most accurate results available in the literature.

  4. Line shape modeling in warm and dense hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Gigosos, M. A.; González, M. A.

    2007-05-01

    A study of hydrogen lines emitted in warm ( T˜1eV) and dense ( N≥1018cm -3) plasmas is presented. Under such plasma conditions, the electronic and the ionic contributions to the line width are comparable, and the general question related to a transition from impact to quasi-static broadening arises not only for the far wings but also for the core of spectral lines. The transition from impact to quasi-static broadening for electrons is analyzed by means of Frequency Fluctuation Model (FFM). In parallel, direct integration of the semi-classical evolution equation is performed using electron electric fields calculated by Molecular Dynamics (MD) simulations that permit one to correctly describe the emitter environment. New cross comparisons between benchmark MD simulations and FFM are carried out for electron broadening of the Balmer series lines, and, especially, for the Hα line, for which a few experiments in the warm and dense plasma regimes are available.

  5. Hydrogen Balmer-alpha broadening in dense plasmas.

    PubMed

    Alexiou, S; Leboucher-Dalimier, E

    1999-09-01

    This work presents a theoretical analysis of experimental results for the hydrogen Balmer-alpha line in dense plasmas, with electron densities between 2x10(18) and 9x10(18) e/cm(3) A simulation of both electrons and ions is employed to produce reliable theoretical widths. These results are essentially in agreement with standard theory results and, for the most part, disagree with the experimental results. Consequently, either mechanisms not accounted for in the theoretical results (such as quadrupoles) are more important than previously thought at these densities, or else there is a problem in the experimental data (such as a possible reabsorption, which is not ruled out by the experimental data). PMID:11970167

  6. Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1993-01-01

    Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.

  7. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  8. Positron impact excitations of hydrogen atom embedded in dense quantum plasmas: Formation of Rydberg atoms

    SciTech Connect

    Rej, Pramit; Ghoshal, Arijit

    2014-11-15

    Formation of Rydberg atoms due to 1 s → nlm excitations of hydrogen by positron impact, for arbitrary n, l, m, in dense quantum plasma has been investigated using a distorted wave theory which includes screened dipole polarization potential. The interactions among the charged particles in the plasma have been represented by exponential cosine-screened Coulomb potentials. Making use of a simple variationally determined hydrogen wave function, it has been possible to obtain the distorted wave scattering amplitude in a closed analytical form. A detailed study has been made to explore the structure of differential and total cross sections in the energy range 20–300 eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1 s → nlm inelastic positron-hydrogen collisions in dense quantum plasma is the first reported in the literature.

  9. Influence of dense quantum plasmas on fine-structure splitting of Lyman doublets of hydrogenic systems

    SciTech Connect

    De, Madhab Ray, Debasis

    2015-05-15

    Relativistic calculations are performed to study the effects of oscillatory quantum plasma screening on the fine-structure splitting between the components of Lyman-α and β line doublets of atomic hydrogen and hydrgen-like argon ion within dense quantum plasmas, where the effective two-body (electron–nucleus) interaction is modeled by the Shukla–Eliasson oscillatory exponential cosine screened-Coulomb potential. The numerical solutions of the radial Dirac equation for the quantum plasma-embedded atomic systems reveal that the oscillatory quantum screening effect suppresses the doublet (energy) splitting substantially and the suppression becomes more prominent at large quantum wave number k{sub q}. In the absence of the oscillatory cosine screening term, much larger amount of suppression is noticed at larger values of k{sub q}, and the corresponding results represent the screening effect of an exponential screened-Coulomb two-body interaction. The Z{sup 4} scaling of the Lyman doublet splitting in low-Z hydrogen isoelectronic series of ions in free space is violated in dense quantum plasma environments. The relativistic data for the doublet splitting in the zero screening (k{sub q} = 0) case are in very good agreement with the NIST reference data, with slight discrepancies (∼0.2%) arising from the neglect of the quantum electrodynamic effects.

  10. Coupling and ionization effects on hydrogen spectral line shapes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Bureyeva, L. A.; Lisitsa, V. S.; Shuvaev, D.; Talin, B.

    2007-06-01

    A study of hydrogen lines emitted in dense and low temperature plasmas is presented. Coupling and ionization effects in a transition from impact to quasi-static broadening for electrons are analyzed with the help of the Frequency Fluctuation Model (FFM). Electron broadening of Balmer series lines is studied for different densities and temperatures spanning a wide domain from impact to quasi-static limit. It is shown that electronic broadening makes a transition from impact to quasi-static limit depending on plasma conditions and principal quantum number. Even for the Balmer alpha line, at a density equals 1018 cm-3 and a temperature equals 1 eV, this transition occurs both in the wings and the core of the line.

  11. Quantum-statistical T-matrix approach to line broadening of hydrogen in dense plasmas

    SciTech Connect

    Lorenzen, Sonja; Wierling, August; Roepke, Gerd; Reinholz, Heidi; Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor

    2010-10-29

    The electronic self-energy {Sigma}{sup e} is an important input in a quantum-statistical theory for spectral line profile calculations. It describes the influence of plasma electrons on bound state properties. In dense plasmas, the effect of strong, i.e. close, electron-emitter collisions can be considered by three-particle T-matrix diagrams. These digrams are approximated with the help of an effective two-particle T-matrix, which is obtained from convergent close-coupling calculations with Debye screening. A comparison with other theories is carried out for the 2p level of hydrogen at k{sub B}T = 1 eV and n{sub e} = 2{center_dot}10{sup 23} m{sup -3}, and results are given for n{sub e} = 1{center_dot}10{sup 25} m{sup -3}.

  12. Bound-bound transitions in hydrogen-like ions in dense quantum plasmas

    NASA Astrophysics Data System (ADS)

    Qi, Y. Y.; Wang, J. G.; Janev, R. K.

    2016-07-01

    The properties of bound-bound transitions in hydrogen-like ions in dense quantum plasmas, characterized by a cosine-Debye-Hückel interaction between charged particles, are studied in detail. The transition frequencies, oscillator strengths, and radiative transition probabilities of Lyman and Balmer series are calculated for a wide range of screening strengths of the interaction up to the n = 5 shell. For Δ n ≠ 0 transitions, all these quantities exhibit a significant decrease with increasing screening strength, while for the Δ n = 0 transitions and for the radiative lifetimes, the opposite is true. The present results are compared with those available from the literature. They are also compared with the results for the pure Debye-Hückel potential with the same screening strength.

  13. Population kinetics in dense plasmas

    SciTech Connect

    Schlanges, M.; Bornath, T.; Prenzel, R.; Kremp, D.

    1996-07-01

    Starting from quantum kinetic equations, rate equations for the number densities of the different atomic states and equations for the energy density are derived which are valid for dense nonideal plasmas. Statistical expressions are presented for the rate coefficients taking into account many-body effects as dynamical screening, lowering of the ionization energy and Pauli-blocking. Based on these generalized expressions, the coefficients of impact ionization, three-body recombination, excitation and deexcitation are calculated for nonideal hydrogen and carbon plasmas. As a result, higher ionization and recombination rates are obtained in the dense plasma region. The influence of the many-body effects on the population kinetics, including density and temperature relaxation, is shown then for a dense hydrogen plasma. {copyright} {ital 1996 American Institute of Physics.}

  14. Atoms in dense plasmas

    SciTech Connect

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  15. Stark broadening of hydrogen lines in dense plasmas: analysis of recent experiments.

    PubMed

    Alexiou, S

    2005-06-01

    In recent years experiments conducted by a number of different groups on line broadening of hydrogen lines, mainly H(alpha) on dense plasmas of densities larger than or equal to 10(18) e/cm3 have claimed significant differences from the predictions of the standard theory. At these high densities the standard theory predictions depend on some cutoffs, necessary to preserve unitarity, the long range approximation and to ensure the validity of a semiclassical picture. Furthermore, a new, supposedly "advanced" theory based on a number of incorrect assumptions and/or approximations with extra exotic effects has claimed good agreement with these experiments. In this work we produce benchmark simulation calculations for these data to identify relevant and not relevant physics for the parameters of these experiments. In this way, we evaluate claims of electron-ion coupling, ion dynamics, electron vs ion broadening, nonimpact effects, and nonperturbative effects. At least one data set is seen to be dubious, in agreement with previous analyses. PMID:16089876

  16. Shifts of the H sub. beta. line in dense hydrogen plasmas

    SciTech Connect

    Mijatovic, Z.; Pavlov, M.; Djurovic, S. )

    1991-06-01

    The H{sub {beta}} line shifts were measured in dense {ital ssT}-shaped-tube plasmas for electron densities from 2.1{times}10{sup 17} to 7.8{times}10{sup 17} cm{sup {minus}3} and temperatures between 19 000 and 35 000 K. Comparisons of these shifts with recent theories (H. R. Griem, Phys. Rev. A 28, 1596 (1983); 38, 2943 (1988)) that take the dynamical quadratic Stark effect for {Delta}{ital n}=0 and {ital n}{prime}={ital n}+1 interactions and ion quadrupole effects into account are presented. Also, comparisons with some experimental results (H. L. Wiese, D. E. Kelleher, and D. R. Paquette, Phys. Rev. A 6, 1132 (1972)) were made. Our results are in agreement with an extrapolated experimental best fit to the experimental results of Wiese {ital et} {ital al}., but the measured shifts are larger than the theories predict.

  17. Dense Hypervelocity Plasma Jets

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Case, Andrew; Phillips, Michael W.

    2006-10-01

    High velocity dense plasma jets are under continued experimental development for a variety of fusion applications including refueling, disruption mitigation, rotation drive, and magnetized target fusion. The technical goal is to accelerate plasma slugs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section geometry to prevent formation of the blow-by instability. Injected plasma is generated by electrothermal capillary discharges using either cylindrical capillaries or a newer toroidal spark gap arrangement that has worked at pressures as low as 3.5 x10-6 Torr in bench tests. Experimental plasma data will be presented for a complete 32 injector accelerator system recently built for driving rotation in the Maryland MCX experiment which utilizes the cylindrical capillaries, and also for a 50 spark gap test unit currently under construction.

  18. Dense Hypervelocity Plasma Jets

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  19. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  20. Molecular dynamics simulations of dense plasmas

    SciTech Connect

    Collins, L.A.; Kress, J.D.; Kwon, I.; Lynch, D.L.; Troullier, N.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  1. Proton Stopping Power in Warm Dense Hydrogen

    NASA Astrophysics Data System (ADS)

    Higginson, Drew; Chen, Sophia; Atzeni, Stefano; Gauthier, Maxence; Mangia, Feliciana; Marquès, Jean-Raphaël; Riquier, Raphaël; Fuchs, Julien

    2013-10-01

    Warm dense matter (WDM) research is fundamental to many fields of physics including fusion sciences, and astrophysical phenomena. In the WDM regime, particle stopping-power differs significantly from cold matter and ideal plasma due to free electron contributions, plasma correlation effects and electron degeneracy. The creation of WDM with temporal duration consistent with the particles probes is difficult to achieve experimentally. The short-pulse laser platform allows for the production of WDM along with relatively short bunches of protons compatible of such measurements, however, until recently, the intrinsic broadband proton spectrum was not well suited to investigate the stopping power directly. This difficulty has been overcome using a novel magnetic particle selector (ΔE/E = 10%) to select protons (in the range 100-1000 keV) as demonstrated with the ELFIE laser in LULI, France. These protons bunches probe high-density (5 × 1020 cm-3) gases (H, He) heated by a nanosecond laser to reach estimated temperatures above 100 eV. Measurement of the proton energy loss within the heated gas allows the stopping power to be determined quantitatively. The experimental results in cold matter are compared to preexisting models to give credibility to the measurement technique. The results from heated matter show that the stopping power of 450 keV protons is dramatically reduced within heated hydrogen plasma.

  2. Atomic Transitions in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Murillo, Michael Sean

    Motivation for the study of hot, dense ( ~solid density) plasmas has historically been in connection with stellar interiors. In recent years, however, there has been a growing interest in such plasmas due to their relevance to short wavelength (EUV and x-ray) lasers, inertial confinement fusion, and optical harmonic generation. In constrast to the stellar plasmas, these laboratory plasmas are typically composed of high-z elements and are not in thermal equilibrium. Descriptions of nonthermal plasma experiments must necessarily involve the consideration of the various atomic processes and the rates at which they occur. Traditionally, the rates of collisional atomic processes are calculated by considering a binary collision picture. For example, a single electron may be taken to collisionally excite an ion. A cross section may be defined for this process and, multiplying by a flux, the rate may be obtained. In a high density plasma this binary picture clearly breaks down as the electrons no longer act independently of each other. The cross section is ill-defined in this regime and another approach is needed to obtain rates. In this thesis an approach based on computing rates without recourse to a cross section is presented. In this approach, binary collisions are replaced by stochastic density fluctuations. It is then these density fluctuations which drive transitions in the ions. Furthermore, the oscillator strengths for the transitions are computed in screened Coulomb potentials which reflect the average polarization of the plasma near the ion. Numerical computations are presented for the collisional ionization rate. The effects of screening in the plasma -ion interaction are investigated for He^+ ions in a plasma near solid density. It is shown that dynamic screening plays an important role in this process. Then, density effects in the oscillator strength are explored for both He^+ and Ar^{+17}. Approximations which introduce a nonorthogonality between the initial

  3. Ultrasfast Dynamics in Dense Hydrogen Explored at Flash

    SciTech Connect

    Hilbert, V; Zastrau, U; Neumayer, P; Hochhaus, D; Toleikis, S; Harmand, M; Przystawik, A; Tschentscher, T; Glenzer, S H; Doeppner, T; Fortmann, C; White, T; Gregori, G; Gode, S; Tiggesbaumker, J; Skruszewicz, S; Meiwes-Broer, K H; Sperling, P; Redmer, R; Forster, E

    2011-08-01

    The short pulse duration and high intensity of the FLASH (Free-electron LASer in Hamburg) allows us to generate and probe homogeneous warm dense non-equilibrium hydrogen within a single extreme ultraviolet (EUV) light pulse. By analyzing the spectrum of the 13.5 nm Thomson scattered light we determine the plasma temperature and density. We find that classical models of this interaction are in good agreement with our dense plasma conditions. In a FEL-pump FEL-probe experiment droplets of liquid hydrogen and their scattering behavior for different pump-probe setups were observed under 20{sup o} and 90{sup o}. We find that the scattering behavior of the scattered intensity depends on the scattering angle.

  4. Renormalization plasma shielding effects on scattering entanglement fidelity in dense plasmas

    SciTech Connect

    Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae

    2014-10-15

    The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that the renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.

  5. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  6. Atomic phenomena in dense plasmas

    SciTech Connect

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination. (MOW)

  7. Nuclear quantum dynamics in dense hydrogen

    PubMed Central

    Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin

    2014-01-01

    Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754

  8. Nonlinear nanostructures in dense quantum plasmas

    SciTech Connect

    Shukla, P. K.; Eliasson, B.

    2009-10-08

    Dense quantum plasmas are ubiquitous in compact astrophysical objects (e.g. the interior of white dwarf stars, in magnetars, etc.), in semiconductors and micro-mechanical systems, as well as in the next generation intense laser-solid density plasma interaction experiments. In contrast to classical plasmas, one encounters extremely high plasma density and low temperature in dense quantum plasmas. In the latter, the electrons and positrons obey the Fermi-Dirac statistics, and there are new forces associated with i) quantum statistical electron and positron pressures, ii) electron and positron tunneling through the Bohm potential, and iii) electron and positron spin-1/2. Inclusion of these quantum forces gives rise to very high-frequency plasma waves (e.g. in the x-ray regime) at nanoscales. Our objective here is to present nonlinear equations that depict the localization of electron plasma waves in the form of a quantum electron hole and quantum vortex, as well as the trapping of intense electromagnetic waves into a quantum electron hole. Our simulation results reveal that these nonlinear nanostructures are quite robust. Hence, they can be explored for the purpose of transferring localized electrostatic and electromagnetic energies over nanoscales.

  9. Nuclear Probing of Dense Plasmas

    SciTech Connect

    Richard Petrasso

    2007-02-14

    The object of inertial confinement fusion (ICF) is to compress a fuel capsule to a state with high enough density and temperature to ignite, starting a self-sustaining fusion burn that consumes much of the fuel and releases a large amount of energy. The national ICF research program is trying to reach this goal, especially through experiments at the OMEGA laser facility of the University of Rochester Laboratory of Laser Energetics (LLE), planned experiments at the National Ignition Facility (NIF) under construction at the Lawrence Livermore National Laboratory (LLNL), and experimental and theoretical work at other national laboratories. The work by MIT reported here has played several important roles in this national program. First, the development of new and improved charged-particle-based plasma diagnostics has allowed the gathering of new and unique diagnostic information about the implosions of fuel capsules in ICF experiments, providing new means for evaluating experiments and for studying capsule implosion dynamics. Proton spectrometers have become the standard for evaluating the mass assembly in compressed capsules in experiments at OMEGA; the measured energy downshift of either primary or secondary D3He fusion protons to determines the areal density, or ?R, of imploded capsules. The Proton Temporal Diagnostic measures the time history of fusion burn, and multiple proton emission imaging cameras reveal the 3-D spatial distribution of fusion burn. A new compact neutron spectrometer, for measuring fusion yield, is described here for the first time. And of especially high importance to future work is the Magnetic Recoil Spectrometer (MRS), which is a neutron spectrometer that will be used to study a range of important performance parameters in future experiments at the NIF. A prototype is currently being prepared for testing at OMEGA, using a magnet funded by this grant. Second, MIT has used these diagnostic instruments to perform its own physics experiments

  10. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  11. Electrical and thermal conductivities in dense plasmas

    SciTech Connect

    Faussurier, G. Blancard, C.; Combis, P.; Videau, L.

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  12. Dense Hypervelocity Plasma Jets for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Thio, Y. C. Francis

    2005-10-01

    High velocity dense plasma jets are being developed for a variety of fusion applications, including refueling, disruption mitigation, High Energy Density Plasmas, magnetized target/magneto-inertial fusion, injection of angular momentum into centrifugally confined mirrors, and others. The technical goal is to accelerate plasma blobs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section that prevents formation of the blow-by instability. AFRL MACH2 modeling identified 2 electrode configurations that produce the desired plasma jet parameters. The injected plasma is generated by up to 64 radially oriented capillary discharges arranged uniformly around the circumference of an angled annular injection section. Initial experimental results are presented in which 8 capillaries are fired in parallel with jitter of ˜100 ns. Current focus is on higher voltage operation to reduce jitter to a few 10's of ns, and development of a suite of optical and spectroscopic plasma diagnostics.

  13. Dense, layered membranes for hydrogen separation

    DOEpatents

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  14. Molecular Dynamics Simulations of Temperature Equilibration in Dense Hydrogen

    SciTech Connect

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M; Benedict, L; Hau-Riege, S; Langdon, A; London, R

    2008-02-14

    The temperature equilibration rate in dense hydrogen (for both T{sub i} > T{sub e} and T{sub i} < T{sub e}) has been calculated with large-scale molecular dynamics simulations for temperatures between 10 and 300 eV and densities between 10{sup 20}/cc to 10{sup 24}/cc. Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L {approx}> 1, Brown-Preston-Singleton [Brown et al., Phys. Rep. 410, 237 (2005)] with the sub-leading corrections and the fit of Gericke-Murillo-Schlanges [Gericke et al., PRE 65, 036418 (2003)] to the T-matrix evaluation of the collision operator, agrees with the MD data to within the error bars of the simulation. For more strongly-coupled plasmas where L {approx}< 1, our numerical results are consistent with the fit of Gericke-Murillo-Schlanges.

  15. Dense Plasma Injectors for the HyperV Plasma Jets

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Bomgardner, Richard; Case, Andrew; Messer, Sarah; Brockington, Samuel

    2008-04-01

    HyperV is developing high velocity dense plasma jets for application to fusion and HEDP. The approach uses symmetric pulsed injection of high density plasma into a coaxial EM accelerator having a cross-section tailored to prevent formation of the blow-by instability. Work to date has focused on injection using ablative plasma sources, such as capillaries and sparkgaps, but injection of pure plasma, such as D and T, or high-Z gases such as Argon, require a different approach. We describe experiments and diagnostic measurements to develop small parallel plate railguns (MiniRailguns) to generate high density plasma pulses for injection into the coax gun. We also present a brief update of latest results from the 112 electrode sparkgap gun and the 64 capillary TwoPi plasma jet merging experiment, both of which have been upgraded with higher energy pulse forming networks to double the mass of ablatively injected plasma.

  16. Monte Carlo simulations of ionization potential depression in dense plasmas

    NASA Astrophysics Data System (ADS)

    Stransky, M.

    2016-01-01

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.

  17. New source of dense, cryogenic positron plasmas.

    PubMed

    Jørgensen, L V; Amoretti, M; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi Rizzini, E; Macrì, M; Madsen, N; Mitchard, D; Montagna, P; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y

    2005-07-01

    We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10(-9) mbar) into a 15 K Penning-Malmberg trap immersed in a 3 T magnetic field with a base pressure better than 10(-13) mbar. The achieved positron accumulation rate in the high field cryogenic trap is more than one and a half orders of magnitude higher than the previous most efficient UHV compatible scheme. Subsequent stacking resulted in a plasma containing more than 1.2 x 10(9) positrons, which is a factor 4 higher than previously reported. Using a rotating wall electric field, plasmas containing about 20 x 10(6) positrons were compressed to a density of 2.6 x 10(10) cm(-3). This is a factor of 6 improvement over earlier measurements. PMID:16090691

  18. Magnetically Induced Plasma Rotation and the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Witalis, E. A.

    1983-09-01

    Fusion for Fission fuel breeding and other incentives for unconventional magnetic fusion research are introductorily mentioned. The design, operation and peculiar characteristics of dense plasma foci are briefly described with attention to their remarkable ion acceleration and plasma heating capabilities. Attempts for interpretations are reviewed, and a brief account is given for an explanation based on the concept of magnetically induced plasma rotation, recently derived in detail in this journal. Basically an ion acceleration mechanism of betraton character it describes in combination with a dynamic, generalized Bennett relation focus plasma characteristics like the polarity dependence, the current channel disruption, the axial ion beam formation and the prerequisites for the ensuing turbulent plasma dissipative stage. Fundamental differences with respect to mainline fusion research are emphasized, and some conjectures and proposals are presented as to the further development of plasma focus nuclear fusion or fission energy production.

  19. Mach reflection in a warm dense plasma

    SciTech Connect

    Foster, J. M.; Rosen, P. A.; Wilde, B. H.; Hartigan, P.; Perry, T. S.

    2010-11-15

    The phenomenon of irregular shock-wave reflection is of importance in high-temperature gas dynamics, astrophysics, inertial-confinement fusion, and related fields of high-energy-density science. However, most experimental studies of irregular reflection have used supersonic wind tunnels or shock tubes, and few or no data are available for Mach reflection phenomena in the plasma regime. Similarly, analytic studies have often been confined to calorically perfect gases. We report the first direct observation, and numerical modeling, of Mach stem formation for a warm, dense plasma. Two ablatively driven aluminum disks launch oppositely directed, near-spherical shock waves into a cylindrical plastic block. The interaction of these shocks results in the formation of a Mach-ring shock that is diagnosed by x-ray backlighting. The data are modeled using radiation hydrocodes developed by AWE and LANL. The experiments were carried out at the University of Rochester's Omega laser [J. M. Soures, R. L. McCrory, C. P. Verdon et al., Phys. Plasmas 3, 2108 (1996)] and were inspired by modeling [A. M. Khokhlov, P. A. Hoeflich, E. S. Oran et al., Astrophys J. 524, L107 (1999)] of core-collapse supernovae that suggest that in asymmetric supernova explosion significant mass may be ejected in a Mach-ring formation launched by bipolar jets.

  20. Thomson scattering in dense plasmas with density and temperature gradients

    NASA Astrophysics Data System (ADS)

    Fortmann, C.; Thiele, R.; Fäustlin, R. R.; Bornath, Th.; Holst, B.; Kraeft, W.-D.; Schwarz, V.; Toleikis, S.; Tschentscher, Th.; Redmer, R.

    2009-09-01

    Collective X-ray Thomson scattering has become a versatile tool for the diagnostics of dense plasmas. Assuming homogeneous density and temperature throughout the target sample, these parameters can be determined directly from the plasmon dispersion and the ratio of plasmon amplitudes via detailed balance. In inhomogeneous media, the scattering signal is an average of the density and temperature dependent scattering cross-section weighted with the density and temperature profiles. We analyse Thomson scattering spectra in the XUV range from near solid density hydrogen targets generated by free electron laser radiation. The influence of plasma inhomogeneities on the scattering spectrum is investigated by comparing density and temperature averaged scattering signals to calculations assuming homogeneous targets. We find discrepancies larger than 10% between the mean electron density and the effective density as well as between the mean temperature and the effective temperature.

  1. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-12-15

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He{sup +}, He{sup ++}) and hydrogen (H{sup +}) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas.

  2. Nonplanar electrostatic shock waves in dense plasmas

    SciTech Connect

    Masood, W.; Rizvi, H.

    2010-02-15

    Two-dimensional quantum ion acoustic shock waves (QIASWs) are studied in an unmagnetized plasma consisting of electrons and ions. In this regard, a nonplanar quantum Kadomtsev-Petviashvili-Burgers (QKPB) equation is derived using the small amplitude perturbation expansion method. Using the tangent hyperbolic method, an analytical solution of the planar QKPB equation is obtained and subsequently used as the initial profile to numerically solve the nonplanar QKPB equation. It is observed that the increasing number density (and correspondingly the quantum Bohm potential) and kinematic viscosity affect the propagation characteristics of the QIASW. The temporal evolution of the nonplanar QIASW is investigated both in Cartesian and polar planes and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of propagation of small amplitude localized electrostatic shock structures in dense astrophysical environments.

  3. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Redistribution function for resonance radiation in a hot dense plasma

    SciTech Connect

    Bulyshev, A.E.; Demura, A.V.; Lisitsa, V.S.

    1995-07-01

    The redistribution function for resonance radiation in the L{sup {alpha}} spectral line of hydrogenic ions in a dense hot plasma is calculated. The calculation is based on a self-consistent solution of the equations for the populations of the excited ionic sublevels and for the polarizations of the transitions considered. Nonlinear interference effects due to mixing of atomic states in both static and dynamic ionic fields are thereby taken into account. Molecular dynamics methods are used to account for the evolution of the multiparticle ionic field resulting from thermal motion of the ions. We calculate the L{sup {alpha}} line of the hydrogen-like argon ion in a plasma with electron temperature 1 keV and electron density N{sub e}=10{sup 22}-cm{sup {minus}3}. The rescattering function is compared with the approximation provided by complete frequency redistribution. The results demonstrate the limited usefulness of the latter approximation for a plasma consisting of multiply-charged ions. 23 refs., 4 figs.

  5. Optical Spectroscopy of a Mega-Ampere Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Dutra, Eric; Bennett, Nichelle; Hagen, Edward; Hunt, Eugene; Hsu, Scott; Koch, Jeffrey; Ross, Patrick; Waltman, Thomas

    2015-11-01

    An optical streaked spectroscopy system was developed to evaluate the spectral emission of the run-down, run-in and pinch phase on the Gemini Dense Plasma Focus (DPF). Time-resolved emission spectra were captured for hydrogen, deuterium, argon, and krypton gas from these phases. The emission was focused onto a fiber, and fed to a spectrometer that was coupled to a streak camera. Spectra of hydrogen, deuterium, argon, and krypton gas were modeled using Spec3D. Plasma parameters including electron density and temperature, from LSP simulations of the DPF discharge, were loaded into the Spec3D simulation to evaluate the emission spectra. Spectra collected from DPF on the streaked spectrometer system were then compared to the Spec3D simulations, and used to verify known optical emission lines for the various gases and to identify possible contaminants. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, and by Los Alamos National Laboratory, under Contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. DOE/NV/25946-2519.

  6. A predictive model for the temperature relaxation rate in dense plasmas

    SciTech Connect

    Daligault, Jerome; Dimonte, Guy

    2008-01-01

    We present and validate a simple model for the electron-ion temperature relaxation rate in plasmas that applies over a wide range of plasma temperatures and densities, including weakly-coupled, non-degenerate as well as strongly-coupled, degenerate plasmas. Electron degeneracy and static correlation effects between electrons and ions are shown to play a cumulative role that, at low temperature, lead to relaxation rates a few times smaller than when these effects are neglected. We predict the evolution of the relaxation in dense hydrogen plasmas from the fully degenerate to the non-degenerate limit.

  7. Dense Plasma Injection Experiment at MCX

    NASA Astrophysics Data System (ADS)

    Uzun-Kaymak, I.; Messer, S.; Bomgardner, R.; Case, A.; Clary, R.; Ellis, R.; Elton, R.; Hassam, A.; Teodorescu, C.; Witherspoon, D.; Young, W.

    2009-09-01

    We present preliminary results of the High Density Plasma Injection Experiment at the Maryland Centrifugal Experiment (MCX). HyperV Technologies Corp. has designed, built, and installed a prototype coaxial gun to drive rotation in MCX. This gun has been designed to avoid the blow-by instability via a combination of electrode shaping and a tailored plasma armature. An array of diagnostics indicates the gun is capable of plasma jets with a mass of 160 μg at 70 km/s with an average plasma density above 1015 cm-3. Preliminary measurements are underway at MCX to understand the penetration of the plasma jet through the MCX magnetic field and the momentum transfer from the jet to the MCX plasma. Data will be presented for a wide range of MCX field parameters, and the prospects for future injection experiments will be evaluated.

  8. Dynamical Crossover in Hot Dense Water: The Hydrogen Bond Role.

    PubMed

    Ranieri, Umbertoluca; Giura, Paola; Gorelli, Federico A; Santoro, Mario; Klotz, Stefan; Gillet, Philippe; Paolasini, Luigi; Koza, Michael Marek; Bove, Livia E

    2016-09-01

    We investigate the terahertz dynamics of liquid H2O as a function of pressure along the 450 K isotherm, by coupled quasielastic neutron scattering and inelastic X-ray scattering experiments. The pressure dependence of the single-molecule dynamics is anomalous in terms of both microscopic translation and rotation. In particular, the Stokes-Einstein-Debye equations are shown to be violated in hot water compressed to the GPa regime. The dynamics of the hydrogen bond network is only weakly affected by the pressure variation. The time scale of the structural relaxation driving the collective dynamics increases by a mere factor of 2 along the investigated isotherm, and the structural relaxation strength turns out to be almost pressure independent. Our results point at the persistence of the hydrogen bond network in hot dense water up to ice VII crystallization, thus questioning the long-standing perception that hydrogen bonds are broken in liquid water under the effect of compression. PMID:27479235

  9. Gas-injection experiments on a dense plasma focus

    SciTech Connect

    Barnouin, O.; Javedani, J.; Del Medico, S.; Miley, G.H.; Bromley, B.

    1994-12-31

    Rockford Technology Associates, Inc. (RTA) has been doing experiments on the Dense Plasma focus (DPF) device at the Fusion Studies Laboratory of the University of Illinois. This DPF consists of four racks of five 2-{mu}F capacitors whose charge is switched onto the inner electrode of a plasma focus by four Trigatron spark gaps. The stored energy is 12.5 kJ at 25 kV. The bank is usually discharged in a static fill of H{sub 2} at {approx} 6 torr. Preliminary experiments aimed at exploring the potential of the DPF device as a magnetoplasmadynamic (MPD) thruster and as an x-ray source for lithography have investigated various alternative ways of injecting gas between the electrodes. One of those approaches consists of injecting gas from the tip of the inner electrode at a steady rate. In this operation, the DPF chamber pressure was held constant by running the vacuum pump at full throttle. This operation simulated simultaneous pulsed injection at the base insulator and electrode tip. Hydrogen was fed through a 1/16th-inch hole at a flow rate of {approx} 90 cm/s. Pulsing was then performed at 23 kV, and the corresponding variations of the current were observed using a Rogowski coil. It is found that the plasma collapses into a pinch at the same time as in conventional experiments using a static fill. The singularity in the current waveform is slightly smaller with tip injection, but its size and shape are easily reproducible. Further details and comparison of this operation with conventional pulsing will be presented.

  10. General trend for pressurized superconducting hydrogen-dense materials

    SciTech Connect

    Kim, Duck Young; Scheicher, Ralph H.; Mao, Ho-kwang; Kang, T. W.; Ahuja, Rajeev

    2010-02-16

    The long-standing prediction that hydrogen can assume a metallic state under high pressure, combined with arguments put forward more recently that this state might even be superconducting up to high temperatures, continues to spur tremendous research activities toward the experimental realization of metallic hydrogen. These efforts have however so far been impeded by the enormous challenges associated with the exceedingly large required pressure. Hydrogen-dense materials, of the MH{sub 4} form (where M can be, e.g., Si, Ge, or Sn) or of the MH{sub 3} form (with M being, e.g., Al, Sc, Y, or La), allow for the rather exciting opportunity to carry out a proxy study of metallic hydrogen and associated high-temperature superconductivity at pressures within the reach of current techniques. At least one experimental report indicates that a superconducting state might have been observed already in SiH{sub 4}, and several theoretical studies have predicted superconductivity in pressurized hydrogen-rich materials; however, no systematic dependence on the applied pressure has yet been identified so far. In the present work, we have used first-principles methods in an attempt to predict the superconducting critical temperature (T{sub c}) as a function of pressure (P) for three metal-hydride systems of the MH{sub 3} form, namely ScH{sub 3}, YH{sub 3}, and LaH{sub 3}. By comparing the obtained results, we are able to point out a general trend in the T{sub c}-dependence on P. These gained insights presented here are likely to stimulate further theoretical studies of metallic phases of hydrogen-dense materials and should lead to new experimental investigations of their superconducting properties.

  11. Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.

    2011-10-01

    Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.

  12. Laboratory measurements of the resistivity of warm dense plasmas

    NASA Astrophysics Data System (ADS)

    Booth, Nicola; Robinson, Alex; Hakel, Peter; Gregori, Ginaluca; Rajeev, Pattathil; Woolsey, Nigel

    2015-11-01

    In this talk we will present a method for studying material resistivity in warm dense plasmas in the laboratory in which we interrogate the microphysics of the low energy electron distributions associated with an anisotropic return current. Through experimental measurements of the polarization of the Ly- α doublet emission (2s1 / 2-2p1 / 2,3/2 transitions) of sulphur, we determine the resistivity of a sulphur-doped plastic target heated to warm dense conditions by an ultra-intense laser at relativistic intensities, I ~ 5 ×1020 Wcm-2. We describe a method of exploiting classical x-ray scattering to separately measure both the π- and σ- polarizations of Ly-α1 spectral emission in a single shot. These measurements make it possible to explore fundamental material properties such as resistivity in warm and hot dense plasmas through matching plasma physics modelling to atomic physics calculations of the experimentally measured large, positive, polarisation.

  13. Plasma Spraying Of Dense, Rough Bond Coats

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Edmonds, Brian J.; Leissler, George W.

    1988-01-01

    Simple modification of plasma torch facilitates spraying of coarse powders. Shape of nozzle changed to obtain decrease in velocity of gas and consequent increase in time particles spend in flame before impact on substrate. Increased residence time allows melting of coarser powders, spraying of which results in rougher bond surfaces.

  14. Hydrogen manufacturing using plasma reformers

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C.

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  15. Self-Diffusion in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Stern, Julie; Murillo, Michael

    2014-10-01

    Large angle scattering has been shown to be important in ICF plasmas [Turrell et al. PRL 112, 245002 (2014)]. We use molecular dynamics to obtain effective Coulomb logarithms across coupling regimes through a careful study of self-diffusion in screened ionic systems. Through a theoretical analysis of the MD data, we assess the applicability of the Coulomb logarithm in different regimes, finding three distinct regimes of transport. Although theoretical models of Ornstein-Uhlenbeck typically model Brownian motion processes, they cannot fully capture collective dynamics in all regimes of plasma coupling. Modified memory based theoretical OU models are introduced. In order to make the models more accurate, the role of stochastic charge fluctuations relative to the mean ionization state < Z > is investigated. The Yukawa pair potential is combined with a Stewart-Pyatt continuum-lowered Saha method. Transport coefficients using average charges < Z > are compared with charge state distributions {Z i } . We model the time-evolving charge state fluctuations using a discrete stochastic evolution algorithm. Mixtures are investigated and compared to single-species. *murillo@lanl.gov

  16. Multi-scaling of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Lee, S.

    2015-03-01

    The dense plasma focus is a copious source of multi-radiations with many potential new applications of special interest such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes and imaging. This paper reviews the series of numerical experiments conducted using the Lee model code to obtain the scaling laws of the multi-radiations.

  17. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  18. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings

    SciTech Connect

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  19. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    SciTech Connect

    Ichimaru, S. . Dept. of Physics); Tajima, T. . Inst. for Fusion Studies)

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  20. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    SciTech Connect

    Dzhumagulova, K. N. Shalenov, E. O.; Ramazanov, T. S.

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  1. PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION

    SciTech Connect

    Jerry Y.S. Lin

    2002-12-01

    This project is aimed at preparation of thin membranes of a modified strontium ceramic material on porous substrates with improved hydrogen permeance. The research work conducted in this reporting period was focused on studying synthesis methods for preparation of thin thulium doped strontium cerate (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}, SCTm) membranes. The following two methods were studied in the past year: (1) polymeric-gel casting and (2) dry-pressing. The polymeric-gel casting method includes preparation of mixed metal oxide gel and coating of the gel on a macroporous alumina support. Micrometer thick SCTm films of the perovskite structure can be obtained by this method. However, the deposited films are not hermetic and it may require about 50 coatings in order to obtain gas-tight SCTm films by this method. Asymmetric SCTm membranes consisting of a thick macroporous SCTm support and a thin SCTm layer can be effectively prepared by the dry-pressing method. The membranes were prepared by pressing together a thick layer of coarse SCTm powder and a thin layer of finer SCTm powder, followed by calcination and sintering under proper conditions. The asymmetric SCTm membranes have desired phase structure and are hermetic. Hydrogen permeation flux through the SCT membranes is inversely proportional to the thickness of the dense layer of the asymmetric membranes. The results show a substantial improvement in hydrogen permeation flux by reducing the SCTm membrane thickness.

  2. Measurement of charged-particle stopping in warm dense plasma.

    PubMed

    Zylstra, A B; Frenje, J A; Grabowski, P E; Li, C K; Collins, G W; Fitzsimmons, P; Glenzer, S; Graziani, F; Hansen, S B; Hu, S X; Johnson, M Gatu; Keiter, P; Reynolds, H; Rygg, J R; Séguin, F H; Petrasso, R D

    2015-05-29

    We measured the stopping of energetic protons in an isochorically heated solid-density Be plasma with an electron temperature of ∼32  eV, corresponding to moderately coupled [(e^{2}/a)/(k_{B}T_{e}+E_{F})∼0.3] and moderately degenerate [k_{B}T_{e}/E_{F}∼2] "warm-dense matter" (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma. PMID:26066441

  3. Energy levels of a heavy ion moving in dense plasmas

    SciTech Connect

    Hu, Hongwei; Chen, Wencong; Zhao, Yongtao; Li, Fuli; Dong, Chenzhong

    2013-12-15

    In this paper, the potential of a slowly moving test particle moving in collisional dense plasmas is studied. It is composed of the Debye-shielding potential, wake potential, and collision term. The Ritz variational-perturbational method is developed for calculating relativistic binding energy levels of a heavy ion moving in dense plasmas. Binding energy levels of a heavy ion moving in plasmas are calculated. The results show that both non-relativistic energy levels and relativistic energy levels become more negative as the temperature becomes high. They also become more negative as the number density decreasing. Relativistic correction is important for calculating binding energy levels. Both relativistic energy levels and non-relativistic energy levels vary minutely as the speed of heavy ion varies.

  4. Magnetoacoustic solitons in dense astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Mahmood, S.; Mushtaq, A.

    2013-08-01

    Nonlinear magnetoacoustic waves in dense electron-positron-ion plasmas are investigated by using three fluid quantum magnetohydrodynamic model. The quantum mechanical effects of electrons and positrons are taken into account due to their Fermionic nature (to obey Fermi statistics) and quantum diffraction effects (Bohm diffusion term) in the model. The reductive perturbation method is employed to derive the Korteweg-de Vries (KdV) equation for low amplitude magnetoacoustic soliton in dense electron-positron-ion plasmas. It is found that positron concentration has significant impact on the phase velocity of magnetoacoustic wave and on the formation of single pulse nonlinear structure. The numerical results are also illustrated by taking into account the plasma parameters of the outside layers of white dwarfs and neutron stars/pulsars.

  5. Dense magnetospheric plasma and Kelvin-Helmholtz waves

    NASA Astrophysics Data System (ADS)

    Walsh, B.

    2015-12-01

    The coupling of energy between the solar wind and a planetary magnetosphere is a function of the plasma parameters on both sides of the planet's magnetopause. Scientists routinely monitor the changing conditions in the solar wind in efforts to predict the dynamics at the magnetopause, but there can also be significant changes within the magnetosphere that play a role. On the magnetospheric side, the plasma density can change by several orders of magnitude (0.1cm-3 to 50cm-3). The current study investigates the role of dense magnetospheric plasma in the formation of Kelvin-Helmholtz waves at the magnetopause boundary. Spacecraft observations and SuperDARN radar measurements are presented showing the occurrence of Kelvin-Helmholtz waves on the dayside magnetopause under relatively low shear flows in the presence of a dense plasmaspheric plume.

  6. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  7. Interaction of graphite with a hot, dense deuterium plasma

    SciTech Connect

    Desko, J.C. Jr.

    1980-01-01

    The erosion of ATJ-S graphite caused by a hot, dense deuterium plasma has been investigated experimentally. The plasma was produced in an electromagnetic shock tube. Plasma characteristics were typically: ion temperature approx. = 800 eV (approx. 1 x 10/sup 7/ /sup 0/K), number density approx. = 10/sup 16//cm/sup 3/, and transverse magnetic field approx. = 1 tesla. The energetic ion flux, phi, to the sample surfaces was approx. 10/sup 23/ ions/cm/sup 2/-sec for a single pulse duration of approx. 0.1 usec. Sample surfaces were metallographically prepared and examined with a scanning electron microscope before and after exposure.

  8. PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION

    SciTech Connect

    Jerry Y.S. Lin; Vineet Gupta; Scott Cheng

    2004-11-01

    Dense thin films of SrCe{sub 0.95}Tm{sub 0.05}O{sub 3-{delta}} (SCTm) with perovskite structure were prepared on porous alumina or SCTm substrates by the methods of (1) polymeric-gel casting and (2) dry-pressing. The polymeric-gel casting method includes preparation of mixed metal oxide gel and coating of the gel on a macroporous alumina support. Micrometer thick SCTm films of the perovskite structure can be obtained by the polymeric-gel casting method. However, the deposited films are not hermetic and it may require about 50 coatings in order to obtain gas-tight SCTm films by this method. Pd-Cu thin films were synthesized with elemental palladium and copper targets by the sequential R.F. sputter deposition on porous substrates. Pd-Cu alloy films could be formed after proper annealing. The deposited Pd-Cu films were gas-tight. This result demonstrated the feasibility of obtaining an ultrathin SCTm film by the sequential sputter deposition of Sr, Ce and Tm metals followed by proper annealing and oxidation. Such ultrathin SCTm membranes will offer sufficiently high hydrogen permeance for practical applications. Thin gas-tight SCTm membranes were synthesized on porous SCTm supports by the dry-pressing method. In this method, the green powder of SCTm was prepared by wet chemical method using metal nitrates as the precursors. Particle size of the powder was revealed to be a vital factor in determining the porosity and shrinkage of the sintered disks. Small particle size formed the dense film while large particle size produced porous substrates. The SCTm film thickness was varied from 1 mm to 0.15 mm by varying the amount of the target powder. A close match between the shrinkage of the substrate and the dense film led to the defect free-thin films. The selectivity of H{sub 2} over He with these films was infinite. The chemical environment on each side of the membrane influenced the H{sub 2} permeation flux as it had concurrent effects on the driving force and electronic

  9. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    PubMed

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures. PMID:23368058

  10. Equation of state of partially-ionized dense plasmas

    SciTech Connect

    Rogers, F.J.

    1989-09-28

    This paper describes methods for calculating the equation of state of partially-ionized dense plasmas. The term dense plasma is used rather than strongly coupled plasma, since it is possible that at plasma conditions such that only a few levels can be observed spectroscopically the plasma coupling parameters are not large. Due mainly to their importance in theoretical astrophysics, the properties of partially ionized plasmas have been of interest for a long while. More recently, this interest has intensified due to the development of methods for producing partially ionized plasmas in the laboratory. This has opened up large programs of experimental investigation and of practical application. In this paper we consider detailed statistical mechanical methods that explicitly treat the distribution over ionic species and their energy level structure. These detailed approaches are generally characterized as being in the chemical picture'' when a free energy expression is minimized or in the physical picture'' when the starting point is the grand canonical ensemble. 52 refs., 2 tabs.

  11. Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH

    SciTech Connect

    Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-07-15

    We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

  12. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  13. Ponderomotive potential and backward Raman scattering in dense quantum plasmas

    SciTech Connect

    Son, S.

    2014-03-15

    The backward Raman scattering is studied in dense quantum plasmas. The coefficients in the backward Raman scattering is found to be underestimated (overestimated) in the classical theory if the excited Langmuir wave has low-wave vector (high-wave vector). The second-order quantum perturbation theory shows that the second harmonic of the ponderomotive potential arises naturally even in a single particle motion contrary to the classical prediction.

  14. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  15. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory.

    PubMed

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-01

    We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014);] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)]. PMID:26764850

  16. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-01

    We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014), 10.1103/PhysRevLett.113.155006;] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001].

  17. Interaction of fast magnetoacoustic solitons in dense plasmas

    SciTech Connect

    Jahangir, R.; Saleem, Khalid; Masood, W.; Siddiq, M.; Batool, Nazia

    2015-09-15

    One dimensional propagation of fast magnetoacoustic solitary waves in dense plasmas with degenerate electrons is investigated in this paper in the small amplitude limit. In this regard, Korteweg deVries equation is derived and discussed using the plasma parameters that are typically found in white dwarf stars. The interaction of fast magnetoacoustic solitons is explored by using the Hirota bilinear formalism, which admits multi soliton solutions. It is observed that the values of the propagation vectors determine the interaction of solitary waves. It is further noted that the amplitude of the respective solitary waves remain unchanged after the interaction; however, they do experience a phase shift.

  18. Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics.

    PubMed

    Daligault, Jérôme; Baalrud, Scott D; Starrett, Charles E; Saumon, Didier; Sjostrom, Travis

    2016-02-19

    We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the equilibrium radial density distribution based on an average atom model and the integral equations theory of fluids. The model should find broad use in applications where nonideal plasma conditions are traversed, including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and numerous present-day high energy density laboratory experiments. PMID:26943540

  19. Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme; Baalrud, Scott D.; Starrett, Charles E.; Saumon, Didier; Sjostrom, Travis

    2016-02-01

    We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the equilibrium radial density distribution based on an average atom model and the integral equations theory of fluids. The model should find broad use in applications where nonideal plasma conditions are traversed, including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and numerous present-day high energy density laboratory experiments.

  20. Unified description of linear screening in dense plasmas.

    PubMed

    Stanton, L G; Murillo, M S

    2015-03-01

    Electron screening of ions is among the most fundamental properties of plasmas, determining the effective ionic interactions that impact all properties of a plasma. With the development of new experimental facilities that probe high-energy-density physics regimes ranging from warm dense matter to hot dense matter, a unified framework for describing dense plasma screening has become essential. Such a unified framework is presented here based on finite-temperature orbital-free density functional theory, including gradient corrections and exchange-correlation effects. We find a new analytic pair potential for the ion-ion interaction that incorporates moderate electronic coupling, quantum degeneracy, gradient corrections to the free energy, and finite temperatures. This potential can be used in large-scale "classical" molecular dynamics simulations, as well as in simpler theoretical models (e.g., integral equations and Monte Carlo), with no additional computational complexity. The new potential theoretically connects limits of Debye-Hückel-Yukawa, Lindhard, Thomas-Fermi, and Bohmian quantum hydrodynamics descriptions. Based on this new potential, we predict ionic static structure factors that can be validated using x-ray Thomson scattering data. PMID:25871221

  1. Understanding neutron production in the deuterium dense plasma focus

    SciTech Connect

    Appelbe, Brian E-mail: j.chittenden@imperial.ac.uk; Chittenden, Jeremy E-mail: j.chittenden@imperial.ac.uk

    2014-12-15

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  2. Molecular Dynamics Description of Partially Ionized Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Lagattuta, Ken

    2004-11-01

    A report on work in progress: the approach to steady-state of partially ionized dense plasmas, containing more than one atomic element, is being simulated with the quasi-classical method known as Fermi Molecular Dynamics (FMD). We recap the FMD method, recalling its several advantages and disadvantages, and present an overview of past work. we have continued to develop the FMD method as a tool for simulating the behaviors of a variety of inhomogeneous, partially ionized, dense plasma systems, in cases for which more rigorous methods are still unavailable. Predictions of the average ionization state Z* of atoms, in a plasma containing more than one atomic element, is complicated by many factors, especially under conditions of high density, and not too high temperature. Average atom models become problematic when two or more atomic elements are present together. In order to address this problem, we have applied the FMD method to plasmas containing selected mixtures of atomic elements, determining Z* for each element over a range of temperatures and densities. LANL archived abstract: LA-UR-04-2186

  3. Current and Perspective Applications of Dense Plasma Focus Devices

    SciTech Connect

    Gribkov, V. A.

    2008-04-07

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement--MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  4. Dense Plasma X-ray Scattering: Methods and Applications

    SciTech Connect

    Glenzer, S H; Lee, H J; Davis, P; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Munro, D H; Redmer, R; Weber, S

    2009-08-19

    We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion-ion structure factor and consequently the equation of state of dense matter can be directly tested.

  5. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M. L.

    2011-12-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries.

  6. Dense plasma in Z-pinches and the plasma focus

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    1981-04-01

    Studies of the plasma focus, which after its three-dimensional compression closely resembles a Z-pinch, have shown that an electron temperature of 1 keV can be achieved in a narrow filament. Of great interest is the very high neutron yield, up to one trillion neutrons per discharge, which greatly exceeds that of any other fusion device. The origin of the neutrons is still a matter for research, as under different conditions there is evidence of intense electron and ion beams, instabilities, turbulence, and filamentations. All of these phenomena seem to be closely correlated to the neutron production which may not be thermonuclear in origin at all. An investigation is conducted of the physical processes that could be playing an important role in this case. A simplified interpretation of the phenomena could be that at a high line density the plasma focus is violently MHD unstable, but can form reconnecting bubbles.

  7. Extreme ultraviolet emission from dense plasmas generated with sub-10-fs laser pulses

    SciTech Connect

    Osterholz, J.; Brandl, F.; Cerchez, M.; Fischer, T.; Hemmers, D.; Hidding, B.; Pipahl, A.; Pretzler, G.; Willi, O.; Rose, S. J.

    2008-10-15

    The extreme ultraviolet (XUV) emission from dense plasmas generated with sub-10-fs laser pulses with varying peak intensities up to 3x10{sup 16} W/cm{sup 2} is investigated for different target materials. K shell spectra are obtained from low Z targets (carbon and boron nitride). In the spectra, a series limit for the hydrogen- and helium-like resonance lines is observed, indicating that the plasma is at high density and that pressure ionization has removed the higher levels. In addition, L shell spectra from titanium targets were obtained. Basic features of the K and L shell spectra are reproduced with computer simulations. The calculations include hydrodynamic simulation of the plasma expansion and collisional radiative calculations of the XUV emission.

  8. Renormalization screening and collision-induced quantum interference in dense plasmas

    SciTech Connect

    Jung, Young-Dae; Rasheed, A.; Jamil, M.

    2014-07-15

    The influence of renormalization screening and collision-induced quantum interference in electron-electron collisions is investigated in partially ionized dense hydrogen plasmas. The effective interaction potential with the total spin-states of the collision system is considered to obtain the differential electron-electron scattering cross section. The results show that the renormalization plasma screening effect suppresses the electron-electron scattering cross section, including the quantum interference effect, especially, except for the forward and backward scattering directions. It is also shown that the renormalization plasma screening effect on the scattering cross section decreases with increasing collision energy. However, the renormalization screening effect is found to be important for the forward directions in the scattering cross section neglecting the quantum interference effect. The variations of the renormalization screening and collision-induced quantum interference effects are also discussed.

  9. INPIStron switched pulsed power for dense plasma pinches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.

  10. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGESBeta

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more » from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  11. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  12. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25 }m{sup −3} and 1.6 × 10{sup 28 }m{sup −3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ∼20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 λ{sub p} to 0.6 λ{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  13. Equation of state of dense plasmas with pseudoatom molecular dynamics

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.; Saumon, D.

    2016-06-01

    We present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015), 10.1103/PhysRevE.91.013104]. While the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method is validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.

  14. Observations of strong ion-ion correlations in dense plasmas

    SciTech Connect

    Ma, T. Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T.; Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Gericke, D. O.; Gregori, G.; White, T. G.; Neumayer, P.; Vorberger, J.; and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  15. Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry

    SciTech Connect

    Felten, A.; Nittler, L.; Pireaux, J.-J.; McManus, D.; Rice, C.; Casiraghi, C.

    2014-11-03

    Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values as high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.

  16. Thermodynamic properties of hydrogen-helium plasmas

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1971-01-01

    The thermodynamic properties of an atomic hydrogen-helium plasma are calculated and tabulated for temperatures from 10,000 to 100,000 K as a function of the mass fraction ratio of atomic hydrogen. The tabulation is for densities from 10 to the minus 10th power to 10 to the minus 6th power gm/cu cm and for hydrogen mass fraction ratios of 0, 0.333, 0.600, 0.800, and 1.0, which correspond to pure helium, 50 percent hydrogen per unit volume, 75 percent hydrogen per unit volume, 89 percent hydrogen per unit volume, and pure hydrogen plasmas, respectively. From an appended computer program, calculations can be made at other densities and mass fractions. The program output agrees well with previous thermodynamic property calculations for limiting cases of pure hydrogen and pure helium plasmas.

  17. Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping

    SciTech Connect

    Loisch, G.; Jacoby, J.; Xu, G.; Blazevic, A.; Cihodariu-Ionita, B.

    2015-05-15

    Due to the superior ability of dense and highly ionised plasmas to ionise penetrating heavy ion beams to degrees beyond those reachable by common gas strippers, many experiments have been performed to find suitable plasma generators for this application. In the field of gas discharges, mainly z-pinch devices have been investigated so far, which are known to be limited by the nonlinear focusing effects of the plasma columns sustaining current and by electrode erosion. The spherical theta pinch has therefore been proposed as a substitution for the z-pinch, promising progress by inductive rather than capacitive coupling and displacement of the outer magnetic field by the dense, diamagnetic discharge plasma. As yet mainly experiments with argon/hydrogen mixture gas have been performed, which is not suitable for the application as a plasma stripper, this paper describes the first detailed analysis of the plasma parameters and dynamics of a hydrogen plasma created by the spherical theta pinch. These include the time integrated and time resolved electron density, the dynamics of the plasma in the discharge vessel, the comparison with the argon dominated plasma, and an outlook to reachable characteristics with similar devices.

  18. Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping

    NASA Astrophysics Data System (ADS)

    Loisch, G.; Xu, G.; Blazevic, A.; Cihodariu-Ionita, B.; Jacoby, J.

    2015-05-01

    Due to the superior ability of dense and highly ionised plasmas to ionise penetrating heavy ion beams to degrees beyond those reachable by common gas strippers, many experiments have been performed to find suitable plasma generators for this application. In the field of gas discharges, mainly z-pinch devices have been investigated so far, which are known to be limited by the nonlinear focusing effects of the plasma columns sustaining current and by electrode erosion. The spherical theta pinch has therefore been proposed as a substitution for the z-pinch, promising progress by inductive rather than capacitive coupling and displacement of the outer magnetic field by the dense, diamagnetic discharge plasma. As yet mainly experiments with argon/hydrogen mixture gas have been performed, which is not suitable for the application as a plasma stripper, this paper describes the first detailed analysis of the plasma parameters and dynamics of a hydrogen plasma created by the spherical theta pinch. These include the time integrated and time resolved electron density, the dynamics of the plasma in the discharge vessel, the comparison with the argon dominated plasma, and an outlook to reachable characteristics with similar devices.

  19. The LICPA accelerator of dense plasma and ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabloński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Rosiński, M.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.; Torrisi, L.

    2014-04-01

    Laser-induced cavity pressure acceleration (LICPA) is a novel scheme of acceleration of dense matter having a potential to accelerate plasma projectiles with the energetic efficiency much higher than the achieved so far with other methods. In this scheme, a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and accelerated along a guiding channel by the thermal pressure created in the cavity by the laser-produced plasma or by the photon pressure of the ultraintense laser radiation trapped in the cavity. This paper summarizes briefly the main results of our recent LICPA studies, in particular, experimental investigations of ion beam generation and heavy macroparticle acceleration in the hydrodynamic LICPA regime (at moderate laser intensities ~ 1015W/cm2) and numerical, particle-in-cell (PIC) studies of production of ultraintense ion beams and fast macroparticles using the photon pressure LICPA regime (at high laser intensities > 1020 W/cm2). It is shown that in both LICPA regimes the macroparticles and ion beams can be accelerated much more efficiently than in other laser-based acceleration scheme commonly used and the accelerated plasma/ion bunches can have a wide variety of parameters. It creates a prospect for a broad range of applications of the LICPA accelerator, in particular in such domains as high energy density physics, ICF research (ion fast ignition, impact ignition) or nuclear physics.

  20. Kinetic theory of alpha particles production in a dense and strongly magnetized plasma

    NASA Astrophysics Data System (ADS)

    Cereceda, Carlo; Deutsch, Claude; De Peretti, Michel; Sabatier, Michel; Basko, Mikhail M.; Kemp, Andreas; Meyer-ter-Vehn, Jurgend

    2000-11-01

    In connection with fundamental issues relevant to magnetized target fusion, the distribution function of thermonuclear alpha particles produced in situ in a dense, hot, and strongly magnetized hydrogenic plasma considered fully ionized in a cylindrical geometry is investigated. The latter is assumed in local thermodynamic equilibrium with Maxwellian charged particles. The approach is based on the Fokker-Planck equation with isotropic source S and loss s terms, which may be taken arbitrarily under the proviso that they remain compatible with a steady state. A novel and general expression is then proposed for the isotropic and stationary distribution f(v). Its time-dependent extension is worked out numerically. The solutions are valid for any particle velocity v and plasma temperature T. Higher order magnetic and collisional corrections are also obtained for electron gyroradius larger than Debye length. f(v) moments provide particle diffusion coefficient and heat thermal conductivity. Their scaling on collision time departs from Braginski's.

  1. Microwave Plasma Hydrogen Recovery System

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  2. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M.; Welch, D.; Meehan, B. T.; Hagen, E. C.

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  3. ALEGRA-HEDP simulations of the dense plasma focus.

    SciTech Connect

    Flicker, Dawn G.; Kueny, Christopher S.; Rose, David V.

    2009-09-01

    We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from the beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.

  4. Unified concept of effective one component plasma for hot dense plasmas

    DOE PAGESBeta

    Clerouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D.; Collins, Lee A.

    2016-03-17

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation timemore » scales of the correlation functions associated with ionic motion. Lastly, in the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.« less

  5. Unified Concept of Effective One Component Plasma for Hot Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Clérouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D.; Collins, Lee A.

    2016-03-01

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

  6. Unified Concept of Effective One Component Plasma for Hot Dense Plasmas.

    PubMed

    Clérouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D; Collins, Lee A

    2016-03-18

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments. PMID:27035306

  7. Silicon layer transfer using plasma hydrogenation

    SciTech Connect

    Chen Peng; Lau, S.S.; Chu, Paul K.; Henttinen, K.; Suni, T.; Suni, I.; Theodore, N. David; Alford, T.L.; Mayer, J.W.; Shao Lin; Nastasi, M.

    2005-09-12

    In this work, we demonstrate a novel approach for the transfer of Si layers onto handle wafers, induced by plasma hydrogenation. In the conventional ion-cut process, hydrogen ion implantation is used to initiate layer delamination at a desired depth, which leads to ion damage in the transferred layer. In this study, we investigated the use of plasma hydrogenation to achieve high-quality layer transfer. To place hydrogen atoms introduced during plasma hydrogenation at a specific depth, a uniform trapping layer for H atoms must be prepared in the substrate before hydrogenation. The hydrogenated Si wafer was then bonded to another Si wafer coated with a thermal oxide, followed by thermal annealing to induce Si layer transfer. Cross-section transmission electron microscopy showed that the transferred Si layer was relatively free of lattice damage. The H trapping during plasma hydrogenation, and the subsequent layer delamination mechanism, are discussed. These results show direct evidence of the feasibility of using plasma hydrogenation to transfer relatively defect-free Si layers.

  8. Final Report LDRD 02-ERD-013 Dense Plasma Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Gregori, G; Pollaine, S M; Hammer, J H; Rogers, F; Meezan, N B; Chung, H; Lee, R W

    2005-02-11

    We have successfully demonstrated spectrally-resolved x-ray scattering in a variety of dense plasmas as a powerful new technique for providing microscopic dense plasma parameters unattainable by other means. The results have also been used to distinguish between ionization balance models. This has led to 10 published or to be published papers, 8 invited talks and significant interest from both internal and external experimental plasma physicists and the international statistical plasma physics theory community.

  9. Experimental investigation of a hydrogen plasma railgun

    SciTech Connect

    Harden, B.; Howell, J.R. . Center for Energy Studies)

    1991-10-01

    This paper reports that the plasma velocity and temperature and composition distributions in a hydrogen plasma railgun were measured. Typical velocities near the muzzle were {approximately}95 km/s at an initial capacitor bank stored energy of 4.1 kJ. Temperatures ranged from a peak of {approximately}24000 K in the current-carrying plasma, to {approximately}85000 K in the tail. The current-carrying plasma was composed of roughly equal parts of hydrogen and copper. Also, computer modeling of armature B-dot probe signals has yielded a simple interpretation of the signal.

  10. X-ray Spectral Measurements of a Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Petr, Rodney A.; Freshman, Jay; Hoey, David W.; Heaton, John

    2002-10-01

    Absolute intensities of spectra in a dense-plasma-focus (DPF) source have been recorded and analyzed. This DPF source has been identified as one of the more promising sources for X-ray lithography. The source, developed by Science Research Laboratory, Inc., is currently undergoing testing and further development at BAE Systems, Inc. The DPF operates at 60 Hz and produces an average output pulse of ~5 J of X rays into 4π steradians in a continuous operation mode. In all runs, there was an initial number of pulses, typically between 30 to 40, during which the X-ray output increased and the DPF appeared to be undergoing a conditioning process, and after which a "steady-state" mode was achieved where the average X-ray power was relatively constant. Each spectral run was exposed to ~600 J of output, as measured by the PIN. The X-ray spectral region between 0.8 and 3 keV was recorded on Kodak DEF film in a potassium acid phthalate (KAP) convex curved-crystal spectrograph. The source emits neon line radiation from Ne IX and Ne X ionization stages in the 900 to 1300 eV region, suitable for lithographic exposures of photoresist. Two helium-like neon lines contribute more than 50% of the total energy. From continuum shape, plasma temperatures were found to be approximately 170-200 eV. The absolute, integrated spectral outputs were verified to within 30% by comparison with measurements by a PIN detector and a radiachromic X-ray dosimeter.

  11. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2013-07-01

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Zi = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×108 V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  12. Advancements in Dense Plasma Focus (DPF) for Space Propulsion

    SciTech Connect

    Thomas, Robert; Yang Yang; Miley, G.H.; Mead, F.B.

    2005-02-06

    The development of a dense plasma focus (DPF) propulsion device using p-11B is described. A propulsion system of this type is attractive because of its high thrust-to-weight ratio capabilities at high specific impulses. From a fuel standpoint, p-11B is advantageous because of the aneutronic nature of the reaction, which is favorable for the production of thrust since the charged particles can be channeled by a magnetic field. Different fusion mechanisms are investigated and their implication to the p-11B reaction is explored. Three main requirements must be satisfied to reach breakeven for DPF fusion: a high Ti/Te ratio ({approx}20), an order of magnitude higher pinch lifetime, and the reflection and absorption of at least 50% radiation. Moreover, a power re-circulation method with high efficiency must be available for the relatively low Q value of the DPF fusion reactor. A possible direct energy conversion scheme using magnetic field compression is discussed. DPF parameters are estimated for thrust levels of 1000 kN and 500 kN, and possible propulsion applications are discussed, along with developmental issues.

  13. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  14. Experiments on the interaction of heavy-ion beams with dense plasmas

    SciTech Connect

    Stoeckl, C.; Roth, M.; Suess, W.; Wetzler, H; Seelig, W.; Kulish, M.; Spiller, P.; Jacoby, J.; Hoffmann, D.H.H.

    1997-03-01

    Gas discharge plasma targets were used for energy loss and charge state measurements of fast heavy ions 5 MeV/u < E{sub kin} < 10 MeV/u in a regime of electron density and temperature up to 10{sup 19}cm{sup -3} and 20 eV, respectively. Progress has been achieved in the understanding of charge exchange processes in fully ionized hydrogen plasma. An improved model that has taken excitation-autoionization processes into account has removed some of the discrepancies of previous theoretical descriptions. Furthermore, the energy loss of the ion beam serves as an excellent diagnostic tool for measuring the electron density in partially ionized plasmas such as argon. The experience with these methods will be used in the future to diagnose dense laser-produced plasmas. A setup with a 5-GW neodymium-glass laser, currently under construction, will provide access to density ranges up to 10{sup 21} cm{sup -3} and temperatures > 100 eV. 13 refs., 7 figs.

  15. Plasma heating power dissipation in low temperature hydrogen plasmas

    SciTech Connect

    Komppula, J. Tarvainen, O.

    2015-10-15

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  16. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, Joan; Gorelick, Sergey; Guzenko, Vitaliy A.; Färm, Elina; Ritala, Mikko; David, Christian

    2010-07-01

    We investigated the fabrication of dense, high aspect ratio hydrogen silsesquioxane (HSQ) nanostructures by 100 keV electron beam lithography. The samples were developed using a high contrast developer and supercritically dried in carbon dioxide. Dense gratings with line widths down to 25 nm were patterned in 500 nm-thick resist layers and semi-dense gratings with line widths down to 10 nm (40 nm pitch) were patterned in 250 nm-thick resist layers. The dense HSQ nanostructures were used as molds for gold electrodeposition, and the semi-dense HSQ gratings were iridium-coated by atomic layer deposition. We used these methods to produce Fresnel zone plates with extreme aspect ratio for scanning transmission x-ray microscopy that showed excellent performance at 1.0 keV photon energy.

  17. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography.

    PubMed

    Vila-Comamala, Joan; Gorelick, Sergey; Guzenko, Vitaliy A; Färm, Elina; Ritala, Mikko; David, Christian

    2010-07-16

    We investigated the fabrication of dense, high aspect ratio hydrogen silsesquioxane (HSQ) nanostructures by 100 keV electron beam lithography. The samples were developed using a high contrast developer and supercritically dried in carbon dioxide. Dense gratings with line widths down to 25 nm were patterned in 500 nm-thick resist layers and semi-dense gratings with line widths down to 10 nm (40 nm pitch) were patterned in 250 nm-thick resist layers. The dense HSQ nanostructures were used as molds for gold electrodeposition, and the semi-dense HSQ gratings were iridium-coated by atomic layer deposition. We used these methods to produce Fresnel zone plates with extreme aspect ratio for scanning transmission x-ray microscopy that showed excellent performance at 1.0 keV photon energy. PMID:20562479

  18. PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION

    SciTech Connect

    Jerry Y.S. Lin

    2001-11-30

    This project is aimed at preparation of thin (1-10? m) membranes of a modified strontium ceramic material with improved hydrogen permeance on mesoporous substrates. The research work conducted in this reporting period was focused on the following three aspects: (1) preparation of thick proton-conducting ceramic membranes and synthesis of porous substrates as support for thin proton-conducting ceramic film, (2) setting up RF sputter deposition unit for deposition of thin ceramic films and performing deposition experiments with the sputter deposition unit, and (3) modeling hydrogen permeation through the proton-conducting ceramic membranes. Proton-conducting thulium doped strontium cerate membranes were reproducibly prepared by the citrate method. Mesoporous ceria membranes were fabricated by a sol-gel method. The membranes will be used as the substrate for coating thin strontium cerate films. A magnetron sputter deposition unit was set up and good quality thin metal alloy films were formed on the mesoporous substrates by an alternative deposition method with the sputter deposition unit. A theoretical model has been developed for hydrogen permeation through proton conducting ceramic membranes. This model can be used to quantitatively describe the hydrogen permeation data.

  19. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    SciTech Connect

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lower temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.

  20. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGESBeta

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  1. The metallization and superconductivity of dense hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming

    2014-05-01

    Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S-H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10-200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ˜80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).

  2. Semimetallic dense hydrogen above 260 GPa

    PubMed Central

    Lebègue, Sébastien; Araujo, Carlos Moyses; Kim, Duck Young; Ramzan, Muhammad; Mao, Ho-kwang; Ahuja, Rajeev

    2012-01-01

    Being the lightest and the most abundant element in the universe, hydrogen is fascinating to physicists. In particular, the conditions of its metallization associated with a possible superconducting state at high temperature have been a matter of much debate in the scientific community, and progress in this field is strongly correlated with the advancements in theoretical methods and experimental techniques. Recently, the existence of hydrogen in a metallic state was reported experimentally at room temperature under a pressure of 260–270 GPa, but was shortly after that disputed in the light of more experiments, finding either a semimetal or a transition to an other phase. With the aim to reconcile the different interpretations proposed, we propose by combining several computational techniques, such as density functional theory and the GW approximation, that phase III at ambient temperature of hydrogen is the Cmca-12 phase, which becomes a semimetal at 260 GPa . From phonon calculations, we demonstrate it to be dynamically stable; calculated electron–phonon coupling is rather weak and therefore this phase is not expected to be a high-temperature superconductor. PMID:22665782

  3. The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas

    NASA Astrophysics Data System (ADS)

    Preston, Thomas R.; Vinko, Sam M.; Ciricosta, Orlando; Chung, Hyun-Kyung; Lee, Richard W.; Wark, Justin S.

    2013-06-01

    Recent experiments at the Linac Coherent Light Source (LCLS) X-ray Free-Electron-Laser (FEL) have demonstrated that the standard model used for simulating ionization potential depression (IPD) in a plasma (the Stewart-Pyatt (SP) model, J.C. Stewart and K.D. Pyatt Jr., Astrophysical Journal 144 (1966) 1203) considerably underestimates the degree of IPD in a solid density aluminium plasma at temperatures up to 200 eV. In contrast, good agreement with the experimental data was found by use of a modified Ecker-Kröll (mEK) model (G. Ecker and W. Kröll, Physics of Fluids 6 (1963) 62-69). We present here detailed simulations, using the FLYCHK code, of the predicted spectra from hot dense, hydrogenic and helium-like aluminium plasmas ranging in densities from 0.1 to 4 times solid density, and at temperatures up to 1000 eV. Importantly, we find that the greater IPDs predicted by the mEK model result in the loss of the n = 3 states for the hydrogenic ions for all densities above ≈0.8 times solid density, and for the helium-like ions above ≈0.65 solid density. Therefore, we posit that if the mEK model holds at these higher temperatures, the temperature of solid density highly-charged aluminium plasmas cannot be determined by using spectral features associated with the n = 3 principal quantum number, and propose a re-evaluation of previous experimental data where high densities have been inferred from the spectra, and the SP model has been used.

  4. Thermodynamic properties of hydrogen-helium plasmas.

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1972-01-01

    Calculation of the thermodynamic properties of an atomic hydrogen-helium plasma for postulated conditions present in a stagnation shock layer of a spacecraft entering the atmosphere of Jupiter. These properties can be used to evaluate transport properties, to calculate convective heating, and to investigate nonequilibrium behavior. The calculations have been made for temperatures from 10,000 to 100,000 K, densities of 10 to the minus 7th and .00001 g cu cm, and three plasma compositions: pure hydrogen, 50% hydrogen/50% helium, and pure helium. The shock layer plasma consists of electrons, protons, atomic hydrogen, atomic helium, singly ionized helium, and doubly atomized helium. The thermodynamic properties which have been investigated are: pressure, average molecular weight, internal energy, enthalpy, entropy, specific heat, and isentropic speed of sound. A consistent model was used for the reduction of the ionization potential in the calculation of the partition functions.

  5. Dense magnetized plasma associated with a fast radio burst.

    PubMed

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy. PMID:26633633

  6. Dense magnetized plasma associated with a fast radio burst

    NASA Astrophysics Data System (ADS)

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J.; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B.; Roman, Alexander; Timbie, Peter T.; Voytek, Tabitha; Yadav, Jaswant K.

    2015-12-01

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  7. Low frequency electrostatic and electromagnetic modes of ultracold magnetized nonuniform dense plasmas

    SciTech Connect

    Saleem, H.; Ahmad, Ali; Khan, S. A.

    2008-09-15

    A coupled linear dispersion relation for the basic electrostatic and electromagnetic waves in the ultracold nonuniform magnetized dense plasmas has been obtained which interestingly is analogous to the classical case. The scales of macroscopic phenomena and the interparticle quantum interactions are discussed. It is important to point out that hydrodynamic models cannot take into account strong quantum effects and they are not applicable to very dense plasmas. The analysis is presented with applications to dense plasmas which are relevant to both laboratory and astrophysical environments.

  8. Experimental investigation of hydrogen peroxide RF plasmas

    NASA Astrophysics Data System (ADS)

    Barni, R.; Decina, A.; Zanini, S.; D'Orazio, A.; Riccardi, C.

    2016-04-01

    This work reports a detailed experimental study of the plasma properties in low pressure RF discharges in hydrogen peroxide and a comparison with argon under the same operating conditions. H2O2 plasmas have been proposed for sterilization purposes. Electrical properties of the discharge were shown to be similar, as for the RF and DC voltages of the driving electrode. Bulk plasma volume remains stable, concentrated in an almost cylindrical region between the two facing electrodes. It was found that the electron temperature is almost uniform across the plasma and independent of the power level. This is higher than in argon discharges: T e  =  4.6  ±  0.9 eV versus T e  =  3.3  ±  1.1 eV. The plasma density increases almost linearly with the power level and a substantial negative ion component has been ruled out in hydrogen peroxide. Dissociation in the plasma gas phase was revealed by atomic hydrogen and hydroxyl radical emission in the discharge spectra. Emission from hydroxyl and atomic oxygen demonstrates that oxidizing radicals are produced by hydrogen peroxide discharges, revealing its usefulness for plasma processing other than sterilization, for instance to increase polymer film surface energy. On the other hand, argon could be considered as a candidate for the sterilization purposes due to the intense production of UV radiation.

  9. Hydrogen ionic plasma generated using Al plasma grid

    NASA Astrophysics Data System (ADS)

    Oohara, W.; Anegawa, N.; Egawa, M.; Kawata, K.; Kamikawa, T.

    2016-08-01

    Negative hydrogen ions are produced in the apertures of a plasma grid made of aluminum under the irradiation of positive ions, generating an ionic plasma consisting of positive and negative ions. The saturation current ratio obtained using a Langmuir probe reflects the existence ratio of electrons and is found to increase in connection with the diffusion of the ionic plasma. The local increment of the current ratio suggests the collapse of negative ions and the replacement of detached electrons.

  10. Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011

    SciTech Connect

    Hagen, E. C.

    2011-07-02

    A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

  11. Raman measurements of phase transitions in dense solid hydrogen and deuterium to 325 GPa

    PubMed Central

    Zha, Chang-sheng; Cohen, R. E.; Mao, Ho-kwang; Hemley, Russell J.

    2014-01-01

    Raman spectroscopy of dense hydrogen and deuterium performed to 325 GPa at 300 K reveals previously unidentified transitions. Detailed analysis of the spectra from multiple experimental runs, together with comparison with previous infrared and Raman measurements, provides information on structural modifications of hydrogen as a function of density through the I–III–IV transition sequence, beginning near 200 GPa at 300 K. The data suggest that the transition sequence at these temperatures proceeds by formation of disordered stacking of molecular and distorted layers. Weaker spectral changes are observed at 250, 285, and 300 GPa, that are characterized by discontinuities in pressure shifts of Raman frequencies, and changes in intensities and linewidths. The results indicate changes in structure and bonding, molecular orientational order, and electronic structure of dense hydrogen at these conditions. The data suggest the existence of new phases, either variations of phase IV, or altogether new structures. PMID:24639543

  12. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-01-01

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  13. Evidence of a liquid–liquid phase transition in hot dense hydrogen

    PubMed Central

    Dzyabura, Vasily; Zaghoo, Mohamed; Silvera, Isaac F.

    2013-01-01

    We use pulsed-laser heating of hydrogen at static pressures in the megabar pressure region to search for the plasma phase transition to liquid atomic metallic hydrogen. We heat our samples substantially above the melting line and observe a plateau in a temperature vs. laser power curve that otherwise increases with power. This anomaly in the heating curve appears correlated with theoretical predictions for the plasma phase transition. PMID:23630287

  14. Evidence of a liquid-liquid phase transition in hot dense hydrogen.

    PubMed

    Dzyabura, Vasily; Zaghoo, Mohamed; Silvera, Isaac F

    2013-05-14

    We use pulsed-laser heating of hydrogen at static pressures in the megabar pressure region to search for the plasma phase transition to liquid atomic metallic hydrogen. We heat our samples substantially above the melting line and observe a plateau in a temperature vs. laser power curve that otherwise increases with power. This anomaly in the heating curve appears correlated with theoretical predictions for the plasma phase transition. PMID:23630287

  15. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    NASA Astrophysics Data System (ADS)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  16. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    SciTech Connect

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  17. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  18. Novel dense membrane for hydrogen separation for energy applications

    SciTech Connect

    Bandopadhyay, Sukumar; Balachandran, Uthamalingam; Nag, Nagendra

    2013-10-24

    The main objectives of this project are: (1) Characterization of the thermo mechanical properties of the novel dense HTM bulk sample; (2) Development of a correlation among the intrinsic factors (such as grain size and phase distribution), and the extrinsic factors (such as temperature and atmosphere) and the thermo-mechanical properties (such as strengths and stress) to predict the performance of a HTM system (HTM membrane and porous substrate) ; and (3) Evaluation of the stability of the novel HTM membrane and its property correlations after thermal cycling. Based on all results and analysis of the thermo mechanical properties for the HTM cermet bulk samples, several important conclusions were made. The mean σfs at room temperature is approximately 356 MPa for the HTM cermet. The mean σfs value decreases to 284 MPa as the temperature increases to 850?C. The Difference difference in atmosphere, such as air or N2, had an insignificant effect on the flexural strength values at 850?C for the HTM cermet. The HTM cermet samples at room temperature and at 500?C fractured without any significant plastic deformation. Whereas, at 850?C, the HTM cermet samples fractured, preceded by an extensive plastic deformation. It seems that the HTM cermet behaves more like an elastic material such as a nonmetal ceramic at the room temperature, and more like a ductile material at increased temperature (850?C). The exothermic peak during the TG/DTA tests centered at 600?C is most likely associated with both the enthalpy change of transformation from the amorphous phase into crystalline zirconia and the oxidation of Pd phase in HTM cermet in air. The endothermic peak centered at 800?C is associated with the dissociation of PdO to Pd for the HTM cermet sample in both inert N2 environment and air. There is a corresponding weight gain as oxidation occurs for palladium (Pd) phase to form palladium oxide (PdO) and there is a weight loss as the unstable PdO is dissociated back to Pd and

  19. Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Carter, Richard J.; Schneider, Thomas P.; Nemanich, Robert J.

    2015-09-15

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

  20. Asymptotic regimes for the electrical and thermal conductivities in dense plasmas

    SciTech Connect

    Faussurier, G. Blancard, C.

    2015-04-15

    We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester–Thellung–Kubo–Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann–Franz law is obtained in the degenerate case.

  1. Asymptotic regimes for the electrical and thermal conductivities in dense plasmas

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; Blancard, C.

    2015-04-01

    We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann-Franz law is obtained in the degenerate case.

  2. Kubo–Greenwood approach to conductivity in dense plasmas with average atom models

    DOE PAGESBeta

    Starrett, C. E.

    2016-06-01

    In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less

  3. Kubo-Greenwood approach to conductivity in dense plasmas with average atom models

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2016-06-01

    A new formulation of the Kubo-Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman-Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman-Evans formula. Again, results based on this expression are in good agreement with ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.

  4. Absorption of a laser light pulse in a dense plasma.

    NASA Technical Reports Server (NTRS)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  5. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm‑3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm‑3 to 1015 cm‑3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the

  6. Stability Limits and Properties of Dense Nonneutral Plasmas

    SciTech Connect

    Pollock, R. E.

    2001-12-14

    Developed equipment consisted of a high magnetic field solenoid with supporting instrumentation for electron plasma confinement. The solenoid was designed and delivered in year 1. In year 2, it was mapped and the trap was created and commissioned. In parallel, an ongoing program of beam-plasma interaction studies was carried out with a lower field trap developed earlier. The trap was placed in the IUCF Coolor (an intermediate-energy electron-cooled storage ring) and the effects of the beam on the plasma were investigated, including energy and angular momentum transfer. Student projects carried out within the beam-plasma group also included development of a diagnostic with high spatial resolution, and preparation for extension of the beam-plasma interaction study to much lower beam energy. This became the principal group activity during the latter part of the project.

  7. Self-similar expansion of a warm dense plasma

    SciTech Connect

    Djebli, Mourad; Moslem, Waleed M.

    2013-07-15

    The properties of an expanding plasma composed of degenerate electron fluid and non-degenerate ions are studied. For our purposes, we use fluid equations for ions together with the electron momentum equation that include quantum forces (e.g., the quantum statistical pressure, forces due to the electron-exchange and electron correlations effects) and the quasi-neutrality condition. The governing equation is written in a tractable form by using a self-similar transformation. Numerical results for typical beryllium plasma parameters revealed that, during the expansion, the ion acoustic speed decreases for both isothermal and adiabatic ion pressure. When compared with classical hydrodynamic plasma expansion model, the electrons and ions are found to initially escape faster in vacuum creating thus an intense electric field that accelerates most of the particles into the vacuum ahead of the plasma expansion. The relevancy of the present model to beryllium plasma produced by a femto-second laser is highlighted.

  8. Plasma probe characteristics in low density hydrogen pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Zotovich, A. I.; Zyryanov, S. M.; Lopaev, D. V.; Bijkerk, F.

    2015-10-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates.

  9. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Mansfeld, Dmitry; Golubev, Sergey; Viktorov, Mikhail; Vodopyanov, Alexander; Yushkov, George

    2015-11-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013cm-3 to 1015cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge and injected into open magnetic trap across magnetic field lines. The filling of the arched magnetic trap with plasma and further magnetic field lines break by dense plasma flow was accompanied by pulsed electromagnetic emission at electron cyclotron frequency range, which can generated by electrons in the place of intensive deceleration of plasma flow in magnetic field. Grant of Ministry of Education 14.Z50.31.0007.

  10. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  11. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    SciTech Connect

    Qamar, Anisa; Ata-ur-Rahman; Mirza, Arshad M.

    2012-05-15

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  12. Properties of warm dense polystyrene plasmas along the principal Hugoniot.

    PubMed

    Hu, S X; Boehly, T R; Collins, L A

    2014-06-01

    Polystyrene (CH) is often chosen as the ablator material for inertial confinement fusion (ICF) targets. Its static, dynamical, and optical properties in warm, dense conditions (due to shock compression) are important for ICF designs. Using the first-principles quantum molecular dynamics (QMD) method, we have investigated the equation of state (EOS) and optical reflectivity of shock-compressed CH up to an unprecedentedly high pressure of 62 Mbar along the principal Hugoniot. The QMD results are compared with existing experimental measurements as well as the SESAME EOS model. Although the Hugoniot pressure and/or temperature from QMD calculations agrees with experiments and the SESAME EOS model at low pressures below 10 Mbar, we have identified for the first time a stiffer behavior of shocked CH at higher pressures (>10 Mbar). Such a stiffer behavior of warm, dense CH can affect the ablation pressure (shock strength), shock coalescence dynamics, and nonuniformity growth in ICF implosions. In addition, we corrected the mistake made in literature for calculating the reflectivity of shocked CH and obtained good agreements with experimental measurements, which should lend credence to future opacity calculations in a first-principles fashion. PMID:25019901

  13. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  14. Quantum-Mechanical Calculation of Ionization-Potential Lowering in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Thiele, Robert; Jurek, Zoltan; Ziaja, Beata; Santra, Robin

    2014-07-01

    The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model, we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with x-ray free-electron lasers.

  15. Damping of electron cyclotron waves in dense plasmas of a compact ignition tokamak

    SciTech Connect

    Mazzucato, E.; Fidone, I.; Granata, G.

    1987-06-01

    Absorption of electromagnetic waves by hot and dense plasmas is investigated in the electron cyclotron range of frequency. It is shown that the strong reduction of the damping of the extraordinary mode, caused by finite Larmor radius effects on waves propagating perpendicularly to the magnetic field, becomes insignificant at large values of the parallel component of the refractive index. With an appropriate form of the relativistic dispersion relation which includes high order Larmor radius terms, heating of dense plasmas in a Compact Ignition Tokamak is investigated. It is shown that by using the extraordinary mode with oblique propagation and frequency of 190 GHz it is possible to bring to thermonuclear ignition a dense ohmic plasma with a toroidal magnetic field of 105 kG and a central density of 1 x 10/sup 15/ cm/sup -3/. 11 refs., 11 figs.

  16. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ayub, M. K.; Ahmad, Ali

    2012-10-01

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  17. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    SciTech Connect

    Khan, S. A.; Ayub, M. K.; Ahmad, Ali

    2012-10-15

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  18. Collector optic cleaning by in-situ hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Elg, Daniel T.; Panici, Gianluca A.; Srivastava, Shailendra N.; Ruzic, D. N.

    2015-03-01

    Extreme ultraviolet (EUV) lithography sources produce EUV photons by means of a hot, dense, highly-ionized Sn plasma. This plasma expels high-energy Sn ions and neutrals, which deposit on the collector optic used to focus the EUV light. This Sn deposition lowers the reflectivity of the collector optic, necessitating downtime for collector cleaning and replacement. A method is being developed to clean the collector with an in-situ hydrogen plasma, which provides hydrogen radicals that etch the Sn by forming gaseous SnH4. This method has the potential to significantly reduce collector-related source downtime. EUV reflectivity restoration and Sn cleaning have been demonstrated on multilayer mirror samples attached to a Sn-coated 300mm-diameter steel dummy collector driven at 300W RF power with 500sccm H2 and a pressure of 260mTorr. Use of the in-situ cleaning method is also being studied at industriallyapplicable high pressure (1.3 Torr). Plasma creation across the dummy collector surface has been demonstrated at 1.3 Torr with 1000sccm H2 flow, and etch rates have been measured. Additionally, etching has been demonstrated at higher flow rates up to 3200sccm. A catalytic probe has been used to measure radical density at various pressures and flows. The results lend further credence to the hypothesis that Sn removal is limited not by radical creation but by the removal of SnH4 from the plasma. Additionally, further progress has been made in an attempt to model the physical processes behind Sn removal.

  19. A generalized model of atomic processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Chung, Hyun-Kyung; Chen, M.; Ciricosta, O.; Vinko, S.; Wark, J.; Lee, R. W.

    2015-11-01

    A generalized model of atomic processes in plasmas, FLYCHK, has been developed over a decade to provide experimentalists fast and simple but reasonable predictions of atomic properties of plasmas. For a given plasma condition, it provides charge state distributions and spectroscopic properties, which have been extensively used for experimental design and data analysis and currently available through NIST web site. In recent years, highly transient and non-equilibrium plasmas have been created with X-ray free electron lasers (XFEL). As high intensity x-rays interact with matter, the inner-shell electrons are ionized and Auger electrons and photo electrons are generated. With time, electrons participate in the ionization processes and collisional ionization by these electrons dominates photoionization as electron density increases. To study highly complex XFEL produced plasmas, SCFLY, an extended version of FLYCHK code has been used. The code accepts the time-dependent history of x-ray energy and intensity to compute population distribution and ionization distribution self-consistently with electron temperature and density assuming an instantaneous equilibration. The model and its applications to XFEL experiments will be presented as well as its limitations.

  20. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-06-24

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  1. JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas

    SciTech Connect

    Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

    2011-03-07

    Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

  2. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Akhtar, N.; Mahmood, S.

    2011-11-15

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  3. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    SciTech Connect

    Khan, S. A.

    2012-01-15

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  4. Producing Hydrogen by Plasma Pyrolysis of Methane

    NASA Technical Reports Server (NTRS)

    Atwater, James; Akse, James; Wheeler, Richard

    2010-01-01

    Plasma pyrolysis of methane has been investigated for utility as a process for producing hydrogen. This process was conceived as a means of recovering hydrogen from methane produced as a byproduct of operation of a life-support system aboard a spacecraft. On Earth, this process, when fully developed, could be a means of producing hydrogen (for use as a fuel) from methane in natural gas. The most closely related prior competing process - catalytic pyrolysis of methane - has several disadvantages: a) The reactor used in the process is highly susceptible to fouling and deactivation of the catalyst by carbon deposits, necessitating frequent regeneration or replacement of the catalyst. b) The reactor is highly susceptible to plugging by deposition of carbon within fixed beds, with consequent channeling of flow, high pressure drops, and severe limitations on mass transfer, all contributing to reductions in reactor efficiency. c) Reaction rates are intrinsically low. d) The energy demand of the process is high.

  5. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur-

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  6. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  7. Microwave plasma torches used for hydrogen production

    NASA Astrophysics Data System (ADS)

    Dias, F. M.; Bundaleska, N.; Henriques, J.; Tatarova, E.; Ferreira, C. M.

    2014-06-01

    A microwave plasma torch operating at 2.45 GHz and atmospheric pressure has been used as a medium and a tool for decomposition of alcohol in order to produce molecular hydrogen. Plasma in a gas mixture of argon and ethanol/methanol, with or without water, has been created using a waveguide surfatron launcher and a microwave generator delivering a power in the range 0.2-2.0 kW. Mass, Fourier Transform Infrared, and optical emission spectrometry have been applied as diagnostic tools. The decomposition yield of methanol was nearly 100 % with H2, CO, CO2, H2O, and solid carbon as the main reaction products. The influence of the fraction of Ar flow through the liquid ethanol/methanol on H2, CO, and CO2 partial pressures has been investigated, as well as the dependence of the produced H2 flow on the total flow and power. The optical emission spectrum in the range 250-700 nm has also been detected. There is a decrease of the OH(A-X) band intensity with the increase of methanol in the mixture. The emission of carbon atoms in the near UV range (240-300 nm) exhibits a significant increase as the amount of alcohol in the mixture grows. The obtained results clearly show that this microwave plasma torch at atmospheric pressure provides an efficient plasma environment for hydrogen production.

  8. User facility for research on fusion systems with dense plasmas

    SciTech Connect

    Ryutov, D. D.

    1999-01-07

    There are a number of fusion systems whose dimensions can be scaled down to a few centimeters, if the plasma density and confining magnetic field are raised to sufficiently high values. This prompts a "user-facility" approach to the studies of this class of fusion systems. The concept of such a user facility was first briefly mentioned in Ref. 1. Here we present a more detailed description.

  9. Recent developments in the modeling of dense plasmas

    SciTech Connect

    Colgan, J.; Abdallah, J. Jr.; Fontes, C. J.; Streufert, B.

    2007-08-02

    Recent experiments using intense laser pulses on thin targets have produced spectra in which it has been speculated that certain features are due to multiple ionization or recombination events. To explore this possibility, the rate coefficients for collisional double ionization and its inverse process, four-body recombination, have been added to the collisional rate matrix computed within the Los Alamos plasma kinetics code ATOMIC. The collisional double ionization cross sections are obtained from semi-empirical fits to experimental measurements, and the corresponding four-body recombination rates are derived from detailed-balance considerations. We have examined emission spectra produced from solving the coupled rate equations, including the double ionization and four-body recombination rate coefficients, for an Ar plasma in which various fractions of hot electrons are present. We have also explored the sensitivity of our results to the approximations made for the ionization cross sections used in our calculations. We find that inclusion of these multiple-electron effects can make appreciable differences to the average ionization stage of the plasma and the resulting emission spectra at moderately high electron densities, but is strongly dependent on the form of the differential cross sections used in our model.

  10. Diffusivity in asymmetric Yukawa ionic mixtures in dense plasmas

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2014-08-01

    In this paper we present molecular dynamics (MD) calculations of the interdiffusion coefficient for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density ˜1025 ions/cm3. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. The species diffusivity is then calculated using the Green-Kubo approach using an integral of the interdiffusion current autocorrelation function, a quantity calculated in the equilibrium MD simulations. Our MD simulation results show that a widely used expression relating the interdiffusion coefficient with the concentration-weighted sum of self-diffusion coefficients overestimates the interdiffusion coefficient. We argue that this effect due to cross-correlation terms in velocities is characteristic of asymmetric mixed plasmas. Comparison of the MD results with predictions of kinetic theories also shows a discrepancy with MD giving effectively a larger Coulomb logarithm.

  11. Diffusivity in asymmetric Yukawa ionic mixtures in dense plasmas.

    PubMed

    Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R

    2014-08-01

    In this paper we present molecular dynamics (MD) calculations of the interdiffusion coefficient for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density ∼10(25) ions/cm(3). The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. The species diffusivity is then calculated using the Green-Kubo approach using an integral of the interdiffusion current autocorrelation function, a quantity calculated in the equilibrium MD simulations. Our MD simulation results show that a widely used expression relating the interdiffusion coefficient with the concentration-weighted sum of self-diffusion coefficients overestimates the interdiffusion coefficient. We argue that this effect due to cross-correlation terms in velocities is characteristic of asymmetric mixed plasmas. Comparison of the MD results with predictions of kinetic theories also shows a discrepancy with MD giving effectively a larger Coulomb logarithm. PMID:25215836

  12. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    SciTech Connect

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentsher, T; Glenzer, S H

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.

  13. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    SciTech Connect

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-10-22

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  14. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    SciTech Connect

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-06-15

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  15. Energy loss of correlated ions in dense plasma

    NASA Astrophysics Data System (ADS)

    Ahmed, Baida Muhsen; Ahmed, Khalid A.; Ahmed, Riayhd Khalil

    2016-05-01

    The interaction between proton clusters and plasma gas is studied using the dielectric function by fried-conte formalism. The theoretical formula of the potential basis equation derived and the energy loss of incident proton (point-like, correlate and dicluster) with different parameters (velocity, distance, densities and temperatures) is calculated numerically. Two different equations were used to enhance the correlation stopping (ECS), it is clear that the present results are consistent with the dielectric calculation of energy loss at parameters ne = 1017cm-3 and T = (2 - 10) eV. The result showed a good correlation with the previous work.

  16. Lorentz Mapping of Magnetic Fields in Hot Dense Plasmas

    SciTech Connect

    Petrasso, R. D.; Li, C. K.; Seguin, F. H.; Rygg, J. R.; Frenje, J. A.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Amendt, P. A.; Froula, D. H.; Landen, O. L.; Patel, P. K.; Ross, J. S.; Town, R. P. J.

    2009-08-21

    Unique detection of electromagnetic fields and identification of field type and strength as a function of position were used to determine the nature of self-generated fields in a novel experiment with laser-generated plasma bubbles on two sides of a plastic foil. Field-induced deflections of monoenergetic 15-MeV probe protons passing through the two bubbles, measured quantitatively with proton radiography, were combined with Lorentz mapping to provide separate measurements of magnetic and electric fields. The result was absolute identification and measurement of a toroidal magnetic field around each bubble and determination that any electric field component parallel to the foil was below measurement uncertainties.

  17. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    SciTech Connect

    Gil, J. M.; Rodriguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Minguez, E.; Sauvan, P.; Angelo, P.; Dalimier, E.; Schott, R.; Mancini, R.

    2008-10-22

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph ({lambda}/{delta}{lambda}{approx_equal}6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Ly{alpha}, He{beta}, He{gamma}, Ly{beta} and Ly{gamma} line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  18. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Gil, J. M.; Rodríguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Mínguez, E.; Sauvan, P.; Angelo, P.; Schott, R.; Dalimier, E.; Mancini, R.

    2008-10-01

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph (λ/Δλ≈6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Lyα, Heβ, Heγ, Lyβ and Lyγ line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  19. Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium

    SciTech Connect

    Kress, J. D.; Cohen, James S.; Kilcrease, D. P.; Horner, D. A.; Collins, L. A.

    2011-02-15

    We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are about 40% lower than measured experimentally, whereas a previous calculation using an empirical interatomic potential (modified embedded-atom method) obtained results 3-4 times larger than the experiment. The QMD and OFMD results agree well at the intermediate temperatures. The calculations in the dense-plasma regime for temperatures from 50 to 5000 eV and densities about 1-5 times ambient are compared with the one-component plasma (OCP) model, using effective charges given by the average-atom code inferno. The inferno-OCP model results agree with the OFMD to within about a factor of 2, except for the viscosity at temperatures less than about 100 eV, where the disagreement is greater. A Stokes-Einstein relationship of the viscosities and diffusion coefficients is found to hold fairly well separately in both the liquid and dense-plasma regimes.

  20. A nonlinear model for magnetoacoustic waves in dense dissipative plasmas with degenerate electrons

    SciTech Connect

    Masood, W.; Jahangir, R.; Siddiq, M.; Eliasson, B.

    2014-10-15

    The properties of nonlinear fast magnetoacoustic waves in dense dissipative plasmas with degenerate electrons are studied theoretically in the framework of the Zabolotskaya-Khokhlov (ZK) equation for small but finite amplitude excitations. Shock-like solutions of the ZK equation are obtained and are applied to parameters relevant to white dwarf stars.

  1. Numerical analysis of thermonuclear detonation in dense plasma

    NASA Astrophysics Data System (ADS)

    Avronin, Y. N.; Bunatyan, A. A.; Gadzhiyev, A. D.; Mustafin, K. A.; Nurbakov, A. S.; Pisarev, V. N.; Feoktistov, L. P.; Frolov, V. D.; Shibarshov, L. I.

    1985-01-01

    The propagation of thermonuclear combustion from the region heated to thermonuclear temperatures by an external source to the remaining part of the target was investigated. The target was a tube of inert material (gold, lead, beryllium, etc.) filled with a deuterium-tritium mixture. It was determined analytically that thermonuclear combustion can propagate from a small portion of a nonspherical target to the remainder of the target and that a steady-state thermonuclear detonation wave can be formed. The role of various physical processes in thermonuclear detonation was investigated. Shock wave is the main mechanism underlying detonation propagation. The detonation rate and intensity of the thermonuclear reaction is influenced by the leakage of heat due to transvere heat conductivity. The critical diameter for thermonuclear detonation was determined approximately for a plasma filament encased in a housing with twice the density of the fuel.

  2. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    DOE PAGESBeta

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; et al

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less

  3. Measurement of charged-particle stopping in warm-dense plasma

    DOE PAGESBeta

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; Li, C.  K.; Collins, G.  W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.  B.; Hu, S. X.; et al

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories inmore » WDM plasma.« less

  4. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    SciTech Connect

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, the inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  5. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    PubMed Central

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-01-01

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs. PMID:26541650

  6. Numerical study of ion acoustic shock waves in dense quantum plasma

    SciTech Connect

    Hanif, M.; Mirza, Arshad M.; Ali, S.; Mukhtar, Q.

    2014-03-15

    Two fluid quantum hydrodynamic equations are solved numerically to investigate the propagation characteristics of ion acoustic shock waves in an unmagnetized dense quantum plasma, whose constituents are the electrons and ions. For this purpose, we employ the standard finite difference Lax Wendroff and relaxation methods, to examine the quantum effects on the profiles of shock potential, the electron/ion number densities, and velocity even for quantum parameter at H = 2. The effects of the latter vanish in a weakly non-linear limit while obeying the KdV theory. It is shown that the evolution of the wave depends sensitively on the plasma density and the quantum parameter. Numerical results reveal that the kinks or oscillations are pronounced for large values of quantum parameter, especially at H = 2. Our results should be important to understand the shock wave excitations in dense quantum plasmas, white dwarfs, neutron stars, etc.

  7. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    NASA Astrophysics Data System (ADS)

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-11-01

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  8. Measurement of charged-particle stopping in warm-dense plasma

    SciTech Connect

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; Li, C.  K.; Collins, G.  W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.  B.; Hu, S. X.; Johnson, M. Gatu; Keiter, P.; Reynolds, H.; Rygg, J.  R.; Séguin, F. H.; Petrasso, R. D.

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma.

  9. Ion acoustic solitons in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons

    SciTech Connect

    Sadiq, Safeer; Mahmood, S.; Haque, Q.; Ali, Munazza Zulfiqar

    2014-09-20

    The propagation of electrostatic waves in a dense magnetized electron-positron-ion (EPI) plasma with nonrelativistic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons. The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons and positrons is employed, which has not been used in earlier published work. The present investigation is useful for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.

  10. Quasitransient backward Raman amplification of powerful laser pulses in dense plasmas with multicharged ions

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2010-07-01

    The range of plasma parameters, where the efficient quasitransient backward Raman amplification (QBRA) of powerful laser pulses is possible, is determined for dense plasmas with multicharged ions. Approximate scalings that portray in a simple way the efficient QBRA range in multidimensional parameter space are found. The calculation, applicable to infrared, ultraviolet, soft x-ray, and x-ray laser pulses, takes into account plasma heating by the lasers. It is shown that efficient QBRA can survive even the nonsaturated linear Landau damping of the Langmuir wave mediating the energy transfer from the pump to the seed laser pulse; moreover, this survival does not require very intense seed laser pulses.

  11. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  12. Optical Measurements of Dense Hypervelocity Plasmoids from a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Messer, Sarah; Bomgardner, Richard; Brockington, Sam; Witherspoon, Douglas; Elton, R.

    2008-11-01

    High velocity dense plasma jets are under continued experimental development for fusion applications including refueling, disruption mitigation, rotation drive, and magnetized target fusion. We present spectroscopic measurements of plasma velocity, temperature and density, along with spatially resolved line-integrated density measurements taken using a two channel quadrature heterodyne HeNe interferometer. Results from these measurements are in agreement with each other and with time of flight measurements taken using photodiodes. Plasma density is greater than 5 x10^15 cm-3, and velocities range up to 100 km/s, with a small component in some cases exceeding 120 km/s.

  13. Modelling penetration and plasma response of a dense neutral gas jet in a post-thermal quenched plasma

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Wu, W.

    2014-02-01

    This paper is about the dynamics of gas jet injection and propagation into the cold, current quench (CQ) discharge following the thermal quench (TQ) phase of a disruption event. Understanding the processes involved in the interpenetration between a dense, fast-moving supersonic gas jet and a magnetized plasma is fundamental to the solution of the disruption mitigation problem using massive gas injection. An analytical model was developed that provides the penetration depth of the jet in the CQ discharge. The model developed incorporates the injector, the vacuum space between injector and plasma, and the low beta CQ plasma through which the jet penetrates. The radially moving gas stagnates at some point inside the plasma by formation of a ‘bottle shock’, resulting in a certain penetration depth. Consistent with experimental findings, it is shown that high fuelling efficiency >70% and good penetration beyond the q = 2 surface is possible in such plasma discharges, but in normal (unquenched) plasma discharges penetration of dense gas jets will be quite poor. The paper also sheds light on how the external plasma responds to allow interpenetration of perfectly insulating gas jet through a strong magnetic field B2/2μ0 ≫ ρu2. The paper also develops semi-analytical models for the response of the cold, high-current, collision-dominated plasma to the insertion of a dense neutral jet: the propagation of cooling waves out along the magnetic field lines, the heated and ionized surface layer which also expands outwards along the magnetic field lines, and the electrical breakdown of the neutral gas within the jet volume. Although good penetration in the ITER post-TQ discharge can be achieved, the plasma resistivity is only marginally enhanced. This may render repetitive gas inject ineffective, as the concept requires a sizable resistivity enhancement to initiate a current profile contraction, and resulting kink-tearing activity to suppress runaway avalanching.

  14. Hydrogen alpha laser ablation plasma diagnostics.

    PubMed

    Parigger, C G; Surmick, D M; Gautam, G; El Sherbini, A M

    2015-08-01

    Spectral measurements of the H(α) Balmer series line and the continuum radiation are applied to draw inferences of electron density, temperature, and the level of self-absorption in laser ablation of a solid ice target in ambient air. Electron densities of 17 to 3.2×10(24) m(-3) are determined from absolute calibrated emission coefficients for time delays of 100-650 ns after generation of laser plasma using Q-switched Nd:YAG radiation. The corresponding temperatures of 4.5-0.95 eV were evaluated from the absolute spectral radiance of the continuum at the longer wavelengths. The redshifted, Stark-broadened hydrogen alpha line emerges from the continuum radiation after a time delay of 300 ns. The electron densities inferred from power law formulas agree with the values obtained from the plasma emission coefficients. PMID:26258326

  15. Fluid-Plasma Coupling in Hydrogen Flames

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Retter, Jonathan; Glumac, Nick; Elliot, Gregg; Freund, Jonathan

    2015-11-01

    Recent experiments show that hydrogen diffusion flames at low Reynolds number can be markedly affected by a dielectric barrier discharge (DBD) plasma. The flame surface deforms and flattens, and light emissions increase. We develop a simulation model to analyze the mechanisms that causes these changes, and apply it to numerical calculations of axisymmetric flames with co-annular DBD, matching the corresponding experiments. Body forces due to charge sheaths are found to be the main mechanism, with radicals produced by plasma excitation playing a secondary role for the present conditions. The non-actuated flame flickers at approximately 10 Hz, in good agreement with the experiments. As the DBD voltage is increased, the flame flattens and oscillations decrease, eventually ceasing above a threshold value. The fully flattened case has a stoichiometric surface lying flat across the fuel orifice, with flame temperature exceeding significantly the adiabatic flame value. A force based on a linearized plasma sheath model, calibrated against air experiments, reproduces the main features of the experiments and provides a good estimate for the threshold flattening potential. In faster flowing regimes, radical production by the plasma becomes more important.

  16. Negative ion extraction from hydrogen plasma bulk

    SciTech Connect

    Oudini, N.; Taccogna, F.; Minelli, P.

    2013-10-15

    A two-dimensional particle-in-cell/Monte Carlo collision model has been developed and used to study low electronegative magnetized hydrogen plasma. A configuration characterized by four electrodes is used: the left electrode is biased at V{sub l} = −100 V, the right electrode is grounded, while the upper and lower transversal electrodes are biased at an intermediate voltage V{sub ud} between 0 and −100 V. A constant and homogeneous magnetic field is applied parallel to the lateral (left/right) electrodes. It is shown that in the magnetized case, the bulk plasma potential is close to the transversal electrodes bias inducing then a reversed sheath in front of the right electrode. The potential drop within the reversed sheath is controlled by the transversal electrodes bias allowing extraction of negative ions with a significant reduction of co-extracted electron current. Furthermore, introducing plasma electrodes, between the transversal electrodes and the right electrode, biased with a voltage just above the plasma bulk potential, increases the negative ion extracted current and decreases significantly the co-extracted electron current. The physical mechanism on basis of this phenomenon has been discussed.

  17. Dense Plasma Focus: A question in search of answers, a technology in search of applications

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-08-01

    Diagnostic information accumulated over four decades of research suggests a directionality of toroidal motion for energetic ions responsible for fusion neutron production in the Dense Plasma Focus (DPF) and existence of an axial component of magnetic field even under conditions of azimuthal symmetry. This is at variance with the traditional view of Dense Plasma Focus as a purely irrotational compressive flow. The difficulty in understanding the experimental situation from a theoretical standpoint arises from polarity of the observed solenoidal state: three independent experiments confirm existence of a fixed polarity of the axial magnetic field or related azimuthal current. Since the equations governing plasma dynamics do not have a built-in direction, the fixed polarity must be related with initial conditions: the plasma dynamics must interact with an external physical vector in order to generate a solenoidal state of fixed polarity. Only four such external physical vectors can be identified: the earth's magnetic field, earth's angular momentum, direction of current flow and the direction of the plasma accelerator. How interaction of plasma dynamics with these fields can generate observed solenoidal state is a question still in search of answers; this paper outlines one possible answer. The importance of this question goes beyond scientific curiosity into technological uses of the energetic ions and the high-power-density plasma environment. However, commercial utilization of such technologies faces reliability concerns, which can be met only by first-principles integrated design of globally-optimized industrial-quality DPF hardware. Issues involved in the emergence of the Dense Plasma Focus as a technology platform for commercial applications in the not-too-distant future are discussed.

  18. Effect of temperature on layer separation by plasma-hydrogenation

    SciTech Connect

    Di, Zengfeng; Michael, Nastasi A; Wang, Yongqiang

    2008-01-01

    We have studied hydrogen diffusion in plasma hydrogenated Si/SiGe/Si heterostructure at different temperatures. At low temperature, intrinsic point defects in the molecular beam epitaxy grown Si capping layer are found to compete with the buried strain SiGe layer for hydrogen trapping. The interaction of hydrogen with point defects affects the hydrogen long-range diffusion, and restricts the amount of hydrogen available for trapping by the SiGe layer. However, hydrogen trapping by the capping layer is attenuated with increasing hydrogenation temperature allowing more hydrogen to be trapped in the strain SiGe layer with subsequent surface blister formation. A potential temperature window for plasma hydrogenation induced layer separation is identified based on the combined considerations of trap-limited diffusion at low temperature and outdiffusion of H{sub 2} molecule together with the dissociation of Si-H bonds inside of H platelet at high temperature.

  19. Effect of temperature on layer separation by plasma hydrogenation

    SciTech Connect

    Di, Z. F.; Wang, Y. Q.; Nastasi, M.; Rossi, F.; Shao, L.; Thompson, P. E.

    2008-12-22

    We have studied hydrogen diffusion in plasma hydrogenated Si/SiGe/Si heterostructure at different temperatures. At low temperature, intrinsic point defects in the molecular beam epitaxy grown Si capping layer are found to compete with the buried strain SiGe layer for hydrogen trapping. The interaction of hydrogen with point defects affects the hydrogen long-range diffusion, and restricts the amount of hydrogen available for trapping by the SiGe layer. However, hydrogen trapping by the capping layer is attenuated with increasing hydrogenation temperature allowing more hydrogen to be trapped in the strain SiGe layer with subsequent surface blister formation. A potential temperature window for plasma hydrogenation induced layer separation is identified based on the combined considerations of trap-limited diffusion at low temperature and outdiffusion of H{sub 2} molecule together with the dissociation of Si-H bonds inside of H platelet at high temperature.

  20. Nonlinear oscillatory and monotonic shocks in dense plasmas with ultra-relativistic degenerate electrons

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Rehman, Aman-ur; Hasnain, H.; Mustafa, N.

    2015-09-01

    In this paper we study the ion acoustic oscillatory and monotonic shocks in dissipative homogeneous magnetized plasmas. The dissipation in the plasma system is considered via kinematic viscosity of ions and quantum effects are included through degeneracy pressure of ultra-relativistic electrons. Korteweg de Vries Burgers (KdVB) equation is derived by using reductive perturbation method. Numerical and analytical solutions of KdVB equation are presented. The transition from oscillatory profile to monotonic shock are studied numerically at different values of kinematic viscosity. We also analyzed the effects of variations of different plasma parameters on the strength of the shock structure in dense plasmas. The relevance of the work to astrophysical plasma conditions such as in compact stars is also pointed out.

  1. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    SciTech Connect

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentscher, T; Landen, O L; Glenzer, S H

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare near solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.

  2. Plasma processing methods for hydrogen production

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Jasiński, Mariusz

    2016-08-01

    In the future a transfer from the fossil fuel-based economy to hydrogen-based economy is expected. Therefore the development of systems for efficient H2 production becomes important. The several conventional methods of mass-scale (or central) H2 production (methane, natural gas and higher hydrocarbons reforming, coal gasification reforming) are well developed and their costs of H2 production are acceptable. However, due to the H2 transport and storage problems the small-scale (distributed) technologies for H2 production are demanded. However, these new technologies have to meet the requirement of producing H2 at a production cost of (1-2)/kg(H2) (or 60 g(H2)/kWh) by 2020 (the U.S. Department of Energy's target). Recently several plasma methods have been proposed for the small-scale H2 production. The most promising plasmas for this purpose seems to be those generated by gliding, plasmatron and nozzle arcs, and microwave discharges. In this paper plasma methods proposed for H2 production are briefly described and critically evaluated from the view point of H2 production efficiency. The paper is aiming at answering a question if any plasma method for the small-scale H2 production approaches such challenges as the production energy yield of 60 g(H2)/kWh, high production rate, high reliability and low investment cost. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  3. Partial ionization in dense plasmas: comparisons among average-atom density functional models.

    PubMed

    Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter. PMID:23848795

  4. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.; Zobaer, M. S.

    2014-02-01

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it "M-Z equation"). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers' equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  5. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    SciTech Connect

    Mamun, A. A.; Zobaer, M. S.

    2014-02-15

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it “M-Z equation”). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers’ equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  6. Equation of state of dense neon and krypton plasmas in the partial ionization regime

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Li, Z. G.

    2015-12-15

    The compression behaviors of dense neon and krypton plasmas over a wide pressure-temperature range are investigated by self-consistent fluid variational theory. The ionization degree and equation of state of dense neon and krypton are calculated in the density-temperature range of 0.01–10 g/cm{sup 3} and 4–50 kK. A region of thermodynamic instability is found which is related to the plasma phase transition. The calculated shock adiabat and principal Hugoniot of liquid krypton are in good agreement with available experimental data. The predicted results of shock-compressed liquid neon are presented, which provide a guide for dynamical experiments or numerical first-principle calculations aimed at studying the compression properties of liquid neon in the partial ionization regime.

  7. The equation of state and ionization equilibrium of dense aluminum plasma with conductivity verification

    SciTech Connect

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Bai, Jun; Wu, Jian; Jia, Shenli

    2015-06-15

    The equation of state, ionization equilibrium, and conductivity are the most important parameters for investigation of dense plasma. The equation of state is calculated with the non-ideal effects taken into consideration. The electron chemical potential and pressure, which are commonly used thermodynamic quantities, are calculated by the non-ideal free energy and compared with results of a semi-empirical equation of state based on Thomas-Fermi-Kirzhnits model. The lowering of ionization potential, which is a crucial factor in the calculation of non-ideal Saha equation, is settled according to the non-ideal free energy. The full coupled non-ideal Saha equation is applied to describe the ionization equilibrium of dense plasma. The conductivity calculated by the Lee-More-Desjarlais model combined with non-ideal Saha equation is compared with experimental data. It provides a possible approach to verify the accuracy of the equation of state and ionization equilibrium.

  8. Hydrogen and helium under high pressure - A case for a classical theory of dense matter

    NASA Astrophysics Data System (ADS)

    Celebonovic, Vladan

    1989-06-01

    When subject to high pressure, H2 and He-3 are expected to undergo phase transitions, and to become metallic at a sufficiently high pressure. Using a semiclassical theory of dense matter proposed by Savic and Kasanin, calculations of phase transition and metallization pressure have been performed for these two materials. In hydrogen, metallization occurs at p(M) = (3.0 + or - 0.2) Mbar, while for helium the corresponding value is (106 + or - 1) Mbar. A phase transition occurs in helium at p(tr) = (10.0 + or - 0.4) Mbar. These values are close to the results obtainable by more rigorous methods. Possibilities of experimental verification of the calculations are briefly discussed.

  9. XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.

    2016-03-01

    Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

  10. Simulation studies of ion dynamic effects on dense plasma line shapes

    SciTech Connect

    Pollock, E.L.

    1986-12-01

    Computer simulations have been widely used in studying dense plasma properties including the local field properties important in spectral line broadening calculations. We will review here a more recent use of simulation, possibly less familiar to this audience, where the time dependent ionic microfield generated by computer simulation of a plasma is used directly as a time dependent external potential for the evolution of the electronic structure of an ion. This permits calculation of the dipole correlation function and thus line shapes with the inclusion of ion dynamic effects. 12 refs., 7 figs.

  11. Energy and momentum relaxation of heavy fermion in dense and warm plasma

    SciTech Connect

    Sarkar, Sreemoyee; Dutt-Mazumder, Abhee K.

    2010-09-01

    We determine the drag and the momentum diffusion coefficients of heavy fermion in dense plasma. It is seen that in degenerate matter the drag coefficient at the leading order mediated by the transverse photon is proportional to (E-{mu}){sup 2} while for the longitudinal exchange this goes as (E-{mu}){sup 3}. We also calculate the longitudinal diffusion coefficient to obtain the Einstein relation in a relativistic degenerate plasma. Finally, finite temperature corrections are included both for the drag and the diffusion coefficients.

  12. Stark profiles of forbidden and allowed transitions in a dense, laser produced helium plasma.

    NASA Technical Reports Server (NTRS)

    Ya'akobi, B.; George, E. V.; Bekefi, G.; Hawryluk, R. J.

    1972-01-01

    Comparisons of experimental and theoretical Stark profiles of the allowed 2(1)P-3(1)D helium line at 6678 A and of the forbidden 2(1)P-3(1)P component at 6632 A in a dense plasma were carried out. The plasma was produced by optical breakdown of helium by means of a repetitive, high power CO2 laser. The allowed line shows good agreement with conventional theory, but discrepancies are found around the centre of the forbidden component. When normally neglected ion motions are taken into consideration, the observed discrepancies are partially removed. Tables of the Stark profiles for the pair of lines are given.

  13. Melting of Dense Hydrogen during Heavy Ion Beam-Driven Compression

    SciTech Connect

    Grinenko, A; Gericke, D O; Vorberger, J; Glenzer, S H

    2009-03-02

    Until now the thermodynamic and structural properties of hydrogen continue to be understood unsatisfactory. A number of complex high pressure phases at relatively low temperatures has been confirmed [1]. However, conclusive answers on the existence of a plasma phase transition, the dissociation of hydrogen molecules at high densities, the metallization in the solid, and the melting line for pressures above 70GPa are still missing. A particularly interesting behavior has been predicted for the melting line at high pressures where it has a maximum and its slope changes sign [2]. In Ref. [3], we have shown that these states can be created using cylindrical compression driven by heavy ion beams. Employing ab initio simulations [4] and experimental data, a new wide range equation of state for hydrogen was constructed [3]. This new hydrogen EOS combined with hydrodynamic simulations is then used to describe the compression of hydrogen in LAPLAS targets [5] driven by heavy ion beams to be generated at the FAIR. The results shown in Fig. 1 indicate that the melting line up to its maximum as well as the transition from molecular fluids to fully ionized plasmas can be tested. By carefully tuning the number of particles in the beam, the compression can be adjusted to yield states at the solid-liquid phase transition (compare panels (a) and (b) in Fig. 1). This allows one to test the shape of the melting line beyond its maximum. It was demonstrated [3] that x-ray scattering [6] can be used to distinguish between the molecular solid and liquid phases as well as the metallic states. Hydrodynamic simulations have also highlighted the importance of temperature diagnostics, as it is more sensitive to the EOS than the density based diagnostic methods. Different materials have been considered as absorber. Although lead might seem to be the natural choice, the simulations show that aluminium is also a feasible option if slightly less compression is sufficient. Moreover, aluminium

  14. Stark Broadening Analysis Using Optical Spectroscopy of the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Ross, Patrick; Bennett, Nikki; Dutra, Eric; Hagen, E. Chris; Hsu, Scott; Hunt, Gene; Koch, Jeff; Waltman, Tom; NSTec DPF Team

    2015-11-01

    To aid in validating numerical modeling of MA-class dense plasma focus (DPF) devices, spectroscopic measurements of the Gemini Dense Plasma Focus (DPF) were performed using deuterium and deuterium/dopant (argon/krypton) gas. The spectroscopic measurements were made using a fiber-coupled spectrometer and streak camera. Stark line-broadening analysis was applied to the deuterium beta emission (486 nm) in the region near the breakdown of the plasma and during the run-down and run-in phases of the plasma evolution. Densities in the range of 1e17 to low 1e18 cm-3 were obtained. These values are in agreement with models of the DPF performed using the LSP code. The spectra also show a rise and fall with time, indicative of the plasma sheath passing by the view port. Impurity features were also identified in the spectra which grew in intensity as the gas inside the DPF was discharged repeatedly without cycling. Implications of this impurity increase for D-T discharges (without fresh gas fills between every discharge) will be discussed. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, and by Los Alamos National Laboratory, under Contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. DOE/NV/25946-2515.

  15. Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Zheng, Xianjun; Deng, Baiquan

    2015-05-01

    Quantum effects play an enhancement role in p-p chain reactions occurring within stars. Such an enhancement is quantified by a wave penetration factor that is proportional to the density of the participating fuel particles. This leads to an innovative theory for dense plasma, and its result shows good agreement with independent data derived from the solar energy output. An analysis of the first Z-pinch machine in mankind's history exhibiting neutron emission leads to a derived deuterium plasma beam density greater than that of water, with plasma velocities exceeding 10000 km/s. Fusion power could be achieved by the intersection of four such pinched plasma beams with powerful head-on collisions in their common focal region due to the beam and target enhanced reaction. supported by the Fund for the Construction of Graduate Degree of China (No. 2014XWD-S0805)

  16. Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; Gray, Ross J.; King, Martin; Dance, Rachel J.; Wilson, Robbie; McCreadie, John; Butler, Nicholas M. H.; Capdessus, Remi; Hawkes, Steve; Green, James S.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-05-01

    The collective response of charged particles to intense fields is intrinsic to plasma accelerators and radiation sources, relativistic optics and many astrophysical phenomena. Here we show that a relativistic plasma aperture is generated in thin foils by intense laser light, resulting in the fundamental optical process of diffraction. The plasma electrons collectively respond to the resulting laser near-field diffraction pattern, producing a beam of energetic electrons with a spatial structure that can be controlled by variation of the laser pulse parameters. It is shown that static electron-beam and induced-magnetic-field structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarization. The concept is demonstrated numerically and verified experimentally, and is an important step towards optical control of charged particle dynamics in laser-driven dense plasma sources.

  17. Nonlinear electrostatic drift waves in dense electron-positron-ion plasmas

    SciTech Connect

    Haque, Q.; Mahmood, S.; Mushtaq, A.

    2008-08-15

    The Korteweg-de Vries-Burgers (KdVB)-type equation is obtained using the quantum hydrodynamic model in an inhomogeneous electron-positron-ion quantum magnetoplasma with neutral particles in the background. The KdV-type solitary waves, Burgers-type monotonic, and oscillatory shock like solutions are discussed in different limits. The quantum parameter is also dependent on the positron concentration in dense multicomponent plasmas. It is found that both solitary hump and dip are formed and their amplitude and width are dependent on percentage presence of positrons in electron-ion plasmas. The height of the monotonic shock is decreased with the increase of positron concentration and it is independent of the quantum parameter in electron-positron-ion magnetized quantum plasmas. However, the amplitude of the oscillatory shock is dependent on positron concentration and quantum parameter in electron-positron-ion plasmas.

  18. Microparticle injection effects on microwave transmission through an overly dense plasma layer

    SciTech Connect

    Gillman, Eric D. Amatucci, W. E.; Williams, Jeremiah; Compton, C. S.

    2015-04-15

    Microparticles injected into a plasma have been shown to deplete the free electron population as electrons are collected through the process of microparticles charging to the plasma floating potential. However, these charged microparticles can also act to scatter electromagnetic signals. These experiments investigate microwave penetration through a previously impenetrable overly dense plasma layer as microparticles are injected and the physical phenomena associated with the competing processes that occur due to electron depletion and microwave scattering. The timescales for when each of these competing processes dominates is analyzed in detail. It was found that while both processes play a significant and dominant role at different times, ultimately, transmission through this impenetrable plasma layer can be significantly increased with microparticle injection.

  19. Plasma cutoff and enhancement of radiative transitions in dense stellar matter

    NASA Astrophysics Data System (ADS)

    Shternin, P. S.; Yakovlev, D. G.

    2009-06-01

    We study plasma effects on radiative transitions (e.g., decay of excited states of atoms or atomic nuclei) in a dense plasma at the transition frequencies ω≲ωp (where ωp is the electron plasma frequency). The decay goes through four channels—the emission of real transverse and longitudinal plasmons as well as the emission of virtual transverse and longitudinal plasmons with subsequent absorption of such plasmons by the plasma. The emission of real plasmons dies out at ω≤ωp, but the processes with virtual plasmons strongly enhance the radiative decay. Applications of these results to radiative processes in white dwarf cores and neutron star envelopes are discussed.

  20. Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas

    SciTech Connect

    Vauzour, B.; Nicolaie, Ph.; Dorchies, F.; Fourment, C.; Hulin, S.; Regan, C.; Ribeyre, X.; Schurtz, G.; Santos, J. J.; Perez, F.; Baton, S. D.; Brambrink, E.; Volpe, L.; Batani, D.; Jafer, R.; Lancaster, K.; Galimberti, M.; Heathcote, R.; Beg, F. N.; Chawla, S.

    2011-04-15

    Fast ignition requires a precise knowledge of fast electron propagation in a dense hydrogen plasma. In this context, a dedicated HiPER (High Power laser Energy Research) experiment was performed on the VULCAN laser facility where the propagation of relativistic electron beams through cylindrically compressed plastic targets was studied. In this paper, we characterize the plasma parameters such as temperature and density during the compression of cylindrical polyimide shells filled with CH foams at three different initial densities. X-ray and proton radiography were used to measure the cylinder radius at different stages of the compression. By comparing both diagnostics results with 2D hydrodynamic simulations, we could infer densities from 2 to 11 g/cm{sup 3} and temperatures from 30 to 120 eV at maximum compression at the center of targets. According to the initial foam density, kinetic, coupled (sometimes degenerated) plasmas were obtained. The temporal and spatial evolution of the resulting areal densities and electrical conductivities allow for testing electron transport in a wide range of configurations.

  1. Modeling the hot-dense plasma of the solar interior in and out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Hsuan

    The developments in helioseismology ensure a wealth of studies in solar physics. In particular, with the high precision of the observations of helioseismology, a high-quality solar model is mandated, since even the tiny deviations between a model and the real Sun can be detected. One crucial ingredient of any solar model is the thermodynamics of hot-dense plasmas, in particular the equation of state. This has motivated efforts to develop sophisticated theoretical equations of state (EOS). It is important to realize that for the conditions of solar-interior plasmas, there are no terrestrial laboratory experiments; the only observational constraints come from helioseismology. Among the most successful EOS is so called OPAL EOS, which is part of the Opacity Project at Livermore. It is based on an activity expansion of the quantum plasma, and realized in the so-called "physical picture". One of its main competitor is the so called MHD EOS, which is part of the international Opacity Project (OP), a non-classified multi-country consortium. The approach of MHD is via the so-called "chemical picture". Since OPAL is the most accurate equation of state so far, there has been a call for a public-domain version of it. However, the OPAL code remains proprietary, and its "emulation" makes sense. An additional reason for such a project is that the results form OPAL can only be accessed via tables generated by the OPAL team. Their users do not have the flexibility to change the chemical composition from their end. The earlier MHD-based OPAL emulator worked well with its modifications of the MHD equation of state, which is the Planck-Larkin partition function and its corresponding scattering terms. With this modification, MHD can serve as a OPAL emulator with all the flexibility and accessibility. However, to build a really user-friendly OPAL emulator one should consider CEFF-based OPAL emulator. CEFF itself is already widely used practical EOS which can be easily implemented

  2. Evidence of a Liquid-Liquid Phase Transition Hot Dense Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Dzyabura, Vasily; Zaghoo, Mohamed

    2013-03-01

    We use pulsed laser heating of hydrogen at static pressures in the megabar pressure region generated in a diamond anvil cell to search for the plasma phase transition (PPT) to liquid atomic metallic hydrogen. Heating the sample substantially above the melting line we observe a plateau in a temperature vs laser power curve that otherwise increases with power. This anomaly in the heating curve is closely correlated with theoretical predictions for the PPT, falling within the theoretically predicted range and having a negative slope with increasing pressure. Details will be presented. The NSF, grant DMR-0804378 and the DOE Stockpile Stewardship Academic Alliance program, grant DE-FG52-10NA29656 supported this research.

  3. Hydrogen transport through stainless steel under plasma irradiation

    NASA Astrophysics Data System (ADS)

    Airapetov, A. A.; Begrambekov, L. B.; Kaplevsky, A. S.; Sadovskiy, Ya A.

    2016-01-01

    The paper presents the results of investigation of gas exchange through stainless steel surface of the plasma chamber under irradiation with hydrogen atoms in oxygen atmosphere or oxygen contaminated hydrogen plasma. Dependence of this process on various irradiation parameters, such as the metal temperature, energy of irradiating ions, gas composition of plasma are studied. It is shown, that desorption from stainless steel is activated with the increase of the plasma chamber walls temperature and energy of irradiating ions. Hydrogen release occurs also under irradiation of the walls by helium and argon plasmas added with oxygen, however the amount of released hydrogen is several times lower than in the case of irradiation with oxygen contaminated deuterium plasma.

  4. Charge-exchange-induced two-electron satellite transitions from autoionizing levels in dense plasmas.

    PubMed

    Rosmej, F B; Griem, H R; Elton, R C; Jacobs, V L; Cobble, J A; Faenov, A Ya; Pikuz, T A; Geissel, M; Hoffmann, D H H; Süss, W; Uskov, D B; Shevelko, V P; Mancini, R C

    2002-11-01

    Order-of-magnitude anomalously high intensities for two-electron (dielectronic) satellite transitions, originating from the He-like 2s(2) 1S0 and Li-like 1s2s(2) (2)S(1/2) autoionizing states of silicon, have been observed in dense laser-produced plasmas at different laboratories. Spatially resolved, high-resolution spectra and plasma images show that these effects are correlated with an intense emission of the He-like 1s3p 1P-1s(2) 1S lines, as well as the K(alpha) lines. A time-dependent, collisional-radiative model, allowing for non-Maxwellian electron-energy distributions, has been developed for the determination of the relevant nonequilibrium level populations of the silicon ions, and a detailed analysis of the experimental data has been carried out. Taking into account electron density and temperature variations, plasma optical-depth effects, and hot-electron distributions, the spectral simulations are found to be not in agreement with the observations. We propose that highly stripped target ions (e.g., bare nuclei or H-like 1s ground-state ions) are transported into the dense, cold plasma (predominantly consisting of L- and M-shell ions) near the target surface and undergo single- and double-electron charge-transfer processes. The spectral simulations indicate that, in dense and optically thick plasmas, these charge-transfer processes may lead to an enhancement of the intensities of the two-electron transitions by up to a factor of 10 relative to those of the other emission lines, in agreement with the spectral observations. PMID:12513602

  5. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    SciTech Connect

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; Bornath, T.; Bredow, R.; Doppner, T.; Fennel, T.; Fletcher, L. B.; Forster, E.; Gode, S.; Gregori, G.; Harmand, M.; Hilbert, V.; Laarmann, T.; Lee, H. J.; Ma, T.; Meiwes-Broer, K. H.; Mithen, J. P.; Murphy, C. D.; Nakatsutsumi, M.; Neumayer, P.; Przystawik, A.; Skruszewicz, S.; Tiggesbaumker, J.; Toleikis, S.; White, T. G.; Glenzer, S. H.; Redmer, R.; Tschentscher, T.

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities of ${10}^{15}-{10}^{16}\\;$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $40\\;\\mathrm{eV}$ for simulated delay times up to $+70\\;\\mathrm{fs}$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $30\\;$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.

  6. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    DOE PAGESBeta

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; Becker, A.; Bornath, T.; Bredow, R.; Doppner, T.; Fennel, T.; Fletcher, L. B.; Forster, E.; et al

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities ofmore » $${10}^{15}-{10}^{16}\\;$$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\\;\\mathrm{eV}$$ for simulated delay times up to $$+70\\;\\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.« less

  7. Plasma Boosted Hydrogen Generation for Vehicle Pollution Reduction

    NASA Astrophysics Data System (ADS)

    Cohn, Daniel R.

    1999-11-01

    Plasma boosted hydrogen generators could improve the environmental quality of vehicles onboard production of hydrogen. (Bromberg,L, Cohn DR, Rabinovich A, Surma JE, Virden J, Compact plasmatron boosted hydrogen generation for vehicular applications. Int J Hydrogen Energy 1999;24) Plasma based devices can provide a rapid response and compact means of converting a wide range of fuels into hydrogen-rich gas. Spark ignition engine operation could facilitate an order of magnitude reduction in Nox generation during the entire driving cycle. Hydrogen-rich gas might also be employed to reduce pollution in Diesel engine vehicles. There also may be applications to fuel cell and turbine vehicles. In addition, plasma boosted hydrogen generation might be employed to facilitate the use of biomass derived oils by onboard conversion into hydrogen-rich gas. Use of biomass derived oils could lead to a net reduction in CO2 production. Plasma based devices facilitate hydrogen production from partial oxidation of hydrocarbon fuels by providing additional enthalpy, reactive species and mixing. Experimental studies of hydrogen production from compact plasma based devices will be discussed.

  8. Analysis of hydrogen plasma in MPCVD reactor

    NASA Astrophysics Data System (ADS)

    Shivkumar, Gayathri

    The aim of this work is to build a numerical model that can predict the plasma properties of hydrogen plasmas inside a Seki Technotron Corp. AX5200S MPCVD system so that it may be used to understand and optimize the conditions for the growth of carbon nanostructures. A 2D model of the system is used in the finite element high frequency Maxwell solver and heat trasfer solver in COMSOL Multiphysics, where the solvers are coupled with user defined functions to analyze the plasma. A simplified chemistry model is formulated in order to determine the electron temperature in the plasma. This is used in the UDFs which calculate the electron number density as well as electron temperature. A Boltzmann equation solver for electrons in weakly ionized gases under uniform electric fields, called BOLSIG+, is used to obtain certain input parameters required for these UDFs. The system is modeled for several reactor geometries at pressures of 10 Torr and 30 Torr and powers ranging from 300 W to 700 W. The variation of plasma characteristics with changes in input conditions is studied and the electric field, electron number density, electron temperature and gas temperature are seen to increase with increasing power. Electric field, electron number density and electron temperature decrease and gas temperature increases with increasing pressure. The modeling results are compared with experimental measurements and a good agreement is found after calibrating the parameter gamma in Funer's model to match experimental electron number densities. The gas temperature is seen to have a weak dependence on power and a strong dependence on gas pressure. On an average, the gas temperature at a point 5 mm above the center of the puck increases from about 1000 K at a pressure of 10 Torr to about 1500 K at 30 Torr. The inclusion of the pillar produces an increase in the maximum electron number density of approximately 50%; it is higher under some conditions. It increases the maximum electron

  9. A collision term valid from rarefied to dense gases and plasmas

    NASA Astrophysics Data System (ADS)

    Zamlutti, C. J.

    2004-10-01

    The Boltzmann collision integral for binary encounters is restricted to rarefied gases and plasmas by the constraint that the mean free path be much larger than the range of interaction. For dense media the two lengths become comparable and a proper account of the mutual influence exerted by one particle on the other during a collision must be taken. There are also other situations involving charged charged long-range interactions for which this condition is met even in rarefied plasmas. The matter is considered in this work with the solution of the BBGKY (Born, Bogoliubov, Kirkwood, (H. S.) Green, Yvon) equation to determine the joint distribution function for the encountering particles. It is shown, in particular, that for dense gases the results replace the traditional Enskog chi factor, whereas for plasmas oscillatory phenomena can be driven. The proposed theory constitutes an improvement over the revised Enskog theory (RET) to the extent that it is not restricted to the soft sphere encounters, but valid for any sort of field interaction between colliding particles. Moreover the correlation term replaces the unsuitable restitution coefficient of the RET approach, which is restricted to impact theory. The present material is important for studies in solar and terrestrial physics, which require the sole knowledge of the one particle distribution function, namely gas dynamics and Coulomb plasma research.

  10. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGESBeta

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; Vold, Erik Lehman; Boettger, Jonathan Carl; Fernández, Juan Carlos

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  11. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    PubMed Central

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2016-01-01

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly with temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. These simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement. PMID:27405664

  12. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2016-07-01

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly with temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. These simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.

  13. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter.

    PubMed

    Bang, W; Albright, B J; Bradley, P A; Vold, E L; Boettger, J C; Fernández, J C

    2016-01-01

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1-100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly with temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. These simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement. PMID:27405664

  14. Bremsstrahlung and Line Spectroscopy of Warm Dense Aluminum Plasma Generated by EUV Free Electron Laser

    SciTech Connect

    Zastrau, U; Fortmann, C; Faustlin, R; Bornath, T; Cao, L F; Doppner, T; Dusterer, S; Forster, E; Glenzer, S H; Gregori, G; Holl, A; Laarmann, T; Lee, H; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Tiggesbaumker, J; Thiele, R; Truong, N X; Uschmann, I; Toleikis, S; Tschentscher, T; Wierling, A

    2008-03-07

    We report on the novel creation of a solid density aluminum plasma using free electron laser radiation at 13.5 nm wavelength. Ultrashort pulses of 30 fs duration and 47 {micro}J pulse energy were focused on a spot of 25 {micro}m diameter, yielding an intensity of 3 x 10{sup 14} W/cm{sup 2} on the bulk Al-target. The radiation emitted from the plasma was measured using a high resolution, high throughput EUV spectrometer. The analysis of both bremsstrahlung and line spectra results in an estimated electron temperature of (30 {+-} 10) eV, which is in very good agreement with radiation hydrodynamics simulations of the laser-target-interaction. This demonstrates the feasibility of exciting plasmas at warm dense matter conditions using EUV free electron lasers and their accurate characterization by EUV spectroscopy.

  15. Gamma ray measurements with photoconductive detectors using a dense plasma focus.

    PubMed

    May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C

    2014-11-01

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident. PMID:25430296

  16. Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration

    SciTech Connect

    Tang, V; Adams, M L; Rusnak, B

    2009-07-24

    The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

  17. Gamma ray measurements with photoconductive detectors using a dense plasma focus

    SciTech Connect

    May, M. J. Brown, G. V.; Halvorson, C.; Schmidt, A.; Bower, D.; Tran, B.; Lewis, P.; Hagen, C.

    2014-11-15

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or “pinches” plasmas of various gases (e.g., H{sub 2}, D{sub 2}, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n{sup ′}) reactions if D{sub 2} gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  18. Time-Resolved Spectra of Dense Plasma Focus Using Spectrometer, Streak Camera, CCD Combination

    SciTech Connect

    F. J. Goldin, B. T. Meehan, E. C. Hagen, P. R. Wilkins

    2010-10-01

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny–Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  19. Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination

    SciTech Connect

    Goldin, F. J.; Meehan, B. T.; Hagen, E. C.; Wilkins, P. R.

    2010-10-15

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  20. Mechanisms for multi-scale structures in dense degenerate astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Shatashvili, N. L.; Mahajan, S. M.; Berezhiani, V. I.

    2016-02-01

    Two distinct routes lead to the creation of multi-scale equilibrium structures in dense degenerate plasmas, often met in astrophysical conditions. By analyzing an e-p-i plasma consisting of degenerate electrons and positrons with a small contamination of mobile classical ions, we show the creation of a new macro scale L_{macro} (controlled by ion concentration). The temperature and degeneracy enhancement effective inertia of bulk e-p components also makes the effective skin depths larger (much larger) than the standard skin depth. The emergence of these intermediate and macro scales lends immense richness to the process of structure formation, and vastly increases the channels for energy transformations. The possible role played by this mechanism in explaining the existence of large-scale structures in astrophysical objects with degenerate plasmas, is examined.

  1. Temperature and density dependence of XANES spectra in warm dense aluminum plasmas

    SciTech Connect

    Recoules, V.; Mazevet, S.

    2009-08-01

    Using ab initio molecular-dynamics simulations combined with linear-response theory, we calculate the density and temperature dependence of the x-ray absorption near-edge structure (XANES) of a dense aluminum plasma. At solid density and for temperatures increasing up to 6 eV, we see that the XANES spectrum loses its well-known room-temperature structure, first due to melting and second due to loss of correlation in the liquid. Similarly, as the density decreases and the system evolves from a liquid to a plasma, the XANES spectrum becomes less structured. As the density is further lowered and the system turns into an atomic fluid, a pre-edge forms as the 3p state becomes bound. We suggest that direct measurements of the XANES spectra in this density region is a unique opportunity to validate pressure ionization models routinely used in plasma physics modeling.

  2. Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas

    SciTech Connect

    Ridgers, C. P.; Bell, A. R.; Brady, C. S.; Bennett, K.; Arber, T. D.; Duclous, R.; Kirk, J. G.

    2013-05-15

    In simulations of a 12.5 PW laser (focussed intensity I=4×10{sup 23}Wcm{sup −2}) striking a solid aluminum target, 10% of the laser energy is converted to gamma-rays. A dense electron-positron plasma is generated with a maximum density of 10{sup 26}m{sup −3}, seven orders of magnitude denser than pure e{sup −} e{sup +} plasmas generated with 1PW lasers. When the laser power is increased to 320 PW (I=10{sup 25}Wcm{sup −2}), 40% of the laser energy is converted to gamma-ray photons and 10% to electron-positron pairs. In both cases, there is strong feedback between the QED emission processes and the plasma physics, the defining feature of the new “QED-plasma” regime reached in these interactions.

  3. Direct entry of dense flowing plasmas into the distant tail lobes

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.; Hayakawa, H.; Kokubun, S.; Nakamura, M.; Okada, T.; Yamamoto, T.; Tsuruda, K.

    1994-01-01

    Electric field, magnetic field, and spacecraft potential measurements on the Geotail satellite have confirmed earlier observations of relatively dense flowing plasmas in the magnetotail lobes. Within these flowing plasmas, density discontinuities of factors of 2 to 4 were observed. At least 15 of the 18 magnetopause crossings that occurred during a 24-hour interval when the spacecraft was at GSM coordinates near X = -140 R(sub e), Y = 0, and Z = 15 R(sub e), were rotational discontinuities across which the magnetosheath plasma had direct entry into the tail lobes. Within the lobes near the rotational discontinuities, the spacecraft typically crossed a second boundary at which the plasma density decreased from its magnetosheath value by a typical factor of 1.5 to 3 while the magnetic field strength and flow speed increased. Equatorward of this density discontinuity, the plasma density and flow remained appreciable. At least 2 of the 18 magnetopause crossings may have been tangential discontinuities across which the density and magnetic field strength both changed. Within the lobes near these tangential discontinuities, significant densities of flowing plasma were observed. Since 11 of the 18 discontinuities were crossed within a time interval of less than 7 seconds, the bondary current layer was well-defined and very thin.

  4. Magnetoacoustic solitons and shocks in dense astrophysical plasmas with relativistic degenerate electrons

    NASA Astrophysics Data System (ADS)

    Irfan, M.; Ali, S.; Mirza, Arshad M.

    2016-02-01

    Two-fluid quantum magnetohydrodynamic (QMHD) equations are employed to investigate linear and nonlinear properties of the magnetosonic waves in a semi-relativistic dense plasma accounting for degenerate relativistic electrons. In the linear analysis, a plane wave solution is used to derive the dispersion relation of magnetosonic waves, which is significantly modified due to relativistic degenerate electrons. However, for a nonlinear investigation of solitary and shock waves, we employ the reductive perturbation technique for the derivation of Korteweg-de Vries (KdV) and Korteweg-de Vries Burger (KdVB) equations, admitting nonlinear wave solutions. Numerically, it is shown that the wave frequency decreases to attain a lowest possible value at a certain critical number density Nc(0), and then increases beyond Nc(0) as the plasma number density increases. Moreover, the relativistic electrons and associated pressure degeneracy lead to a reduction in the spatial extents of the magnetosonic waves and a strengthening of the shock amplitude. The results might be important for understanding the linear and nonlinear magnetosonic excitations in dense astrophysical plasmas, such as in white dwarfs, magnetars and neutron stars, etc., where relativistic degenerate electrons are present.

  5. Hydrogen uptake into silicon from an ECR plasma

    SciTech Connect

    Wampler, W.R.; Barbour, J.C.

    1993-12-01

    The concentration of hydrogen in solution near the surface of silicon exposed to an electron cyclotron resonance (ECR) plasma was determined by measuring the flux of hydrogen permeating to subsurface microcavities. The energy and flux of hydrogen impinging onto the surface from the plasma was also measured. A model is described which predicts the concentration of hydrogen in solution from the energy and flux of the impinging hydrogen. The measured solution concentrations were {approximately}10{sup {minus}9} H/Si at 600{degrees}C and {approximately}10{sup {minus}8} H/Si at 400{degrees}C, in fairly good agreement with the model. The absence of accumulation of immobile hydrogen near the surface indicates that lattice defects, which strongly trap hydrogen, were not produced by the ECR plasma. This study establishes a connection between the properties of the ECR plasma and the concentration of hydrogen in silicon samples exposed to the plasma, which allows improved control over passivation of defects and dopants.

  6. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    SciTech Connect

    Witherspoon, F. Douglas; Welch, Dale R.; Thompson, John R.; MacFarlane, Joeseph J.; Phillips, Michael W.; Bruner, Nicki; Mostrom, Chris; Thoma, Carsten; Clark, R. E.; Bogatu, Nick; Kim, Jin-Soo; Galkin, Sergei; Golovkin, Igor E.; Woodruff, P. R.; Wu, Linchun; Messer, Sarah J.

    2014-05-20

    Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism

  7. Surface Wave Plasma Driven by Ring Dielectric Line for Producing Dense, Large Area, Uniform Plasmas

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoki

    1999-10-01

    Surface Wave excited Plasma (SWP), has been put into practice as a plasma source for the fabrication process of ULSI and LCD devices. This plasma has several advanced features: 1) Very high electron density with relatively low electron temperature; 2) Very uniform plasma density over large areas; 3) Operation from gas pressure of few mT to the order of thousands of mT. We present a newly developed microwave driven surface wave plasma source called a Ring Dielectric Line (RDL). The RDL is a metal ring wave-guide, filled with dielectric material, driven by a microwave. Slots for coupling the microwave power are symmetrically arrayed under the dielectric, facing towards the processing chamber. The electromagnetic power generates an electromagnetic surface wave, which in turn excites a plasma surface wave on the bottom side of the quartz plate in the processing chamber. In terms of its plasma characteristics, the uniformly distributed argon plasma with wide range of pressure of 20, 40 and 80mT as well as with high density about 5×10^17/m^3 over the cutoff density was observed. The electron temperature was about 2eV. In addition, in the 5000-minutes continuous running test for C_4F8 etching, it achieved repeatability of +/-0.7% and non-uniformity of about +/-3%.

  8. Observations of non-collective x-ray scattering in warm dense carbon plasma

    SciTech Connect

    Bao Lihua; Zhang Jiyan; Zhao Yang; Ding Yongkun; Zhang Xiaoding

    2012-12-15

    An experiment for observing the spectrally resolved non-collective x-ray scattering in warm dense carbon plasma is presented in this paper. The experiment used Ta M-band x-rays to heat a foamed carbon cylinder sample isochorically and measured the scattering spectrum with a HOPG crystal spectrometer. The spectrum was compared with the calculation results using a Born-Mermin-approximation model. The best fitting was found at an electron temperature of T{sub e}=34 eV and an electron density of n{sub e}=1.6 Multiplication-Sign 10{sup 23}cm{sup -3}.

  9. Modeling of Hydrogen Retention in Metallic Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Guterl, Jerome; Smirnov, R.

    2012-10-01

    The retention of hydrogen isotopes in the vacuum vessel of the ITER device is a critical plasma wall interaction issue for safety (tritium inventory) and operational reasons (hydrogen recycling). In particular, long-term retention of hydrogen have been observed both in the near-surface region and in the bulk of material in experiments reproducing ITER first wall conditions [1]. In this work, we present a modeling of the long-term hydrogen retention in a plasma exposed metallic walltaking into account processes both at the wall surface (material erosion, hydrogen adsorption, etc.) and in the bulk (hydrogen implantation, creation of trap sites, etc.). Using numerical simulations, the model is applied to analyze retention as a function of various parameters of the wall irradiated by hydrogen plasma for beryllium wall. Depth profiles of retained hydrogen for several ion energies as well as dependencies of retained hydrogen amount on wall temperature are obtained, showing good agreement with experimental data. The role of radiation-induced point-defects in the hydrogen retention as well as other aspects of retention are discussed in application to ITER conditions. [4pt] [1] R.A. Anderl, et al., J. Nucl. Mater. 273 (1999) 1

  10. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect

    Kakati, B. Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.; Saxena, Y. C.

    2014-10-28

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.