Warm dense matter created by isochoric laser heating
NASA Astrophysics Data System (ADS)
Ping, Y.; Correa, A. A.; Ogitsu, T.; Draeger, E.; Schwegler, E.; Ao, T.; Widmann, K.; Price, D. F.; Lee, E.; Tam, H.; Springer, P. T.; Hanson, D.; Koslow, I.; Prendergast, D.; Collins, G.; Ng, A.
2010-06-01
Warm Dense Matter (WDM) physics has been a growing field of high energy density physics, driven by the fundamental urge to understand the convergence between plasma and condensed matter physics, and the practical need to understand dynamic behavior of materials under extreme conditions. A platform for creating and probing WDM by isochoric heating of free-standing nano-foils has been developed recently to study the non-equilibrium processes. Results of optical measurements reveal the existence of a quasi-steady state in the time history, during which the interband component of the dielectric function shows both enhancement and a red shift. First-principles calculations of the dielectric function suggest that the enhanced red shift of the interband transition peak might be explained by a positive charge state of the gold foil due to ejection of electrons by the high intensity laser pulse. The impact on optical properties by the formation of an electronic sheath was examined by the Thomas-Fermi theory with local equilibrium approximation.
Stone, J. R.
2014-05-02
The microscopic composition and properties of matter at super-saturation densities have been a subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high-density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfill basic requirements of fundamental laws of physics.
NASA Astrophysics Data System (ADS)
Stone, J. R.
2014-05-01
The microscopic composition and properties of matter at super-saturation densities have been a subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high-density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfill basic requirements of fundamental laws of physics.
Stavinskiy, A. V.
2015-07-15
The possibility of studying matter at densities on the order of or higher than the neutron-star density in laboratory experiments is considered. For this, it is proposed to employ a rare kinematical trigger in collisions of relativistic ions. The expected properties of matter under such unusual conditions and a program for investigations into it are discussed, and a design of experimental setup for such investigations is proposed.
Warm Dense Matter: An Overview
Kalantar, D H; Lee, R W; Molitoris, J D
2004-04-21
This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this
Magnetism in Dense Quark Matter
NASA Astrophysics Data System (ADS)
Ferrer, Efrain J.; de la Incera, Vivian
We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.
Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.
2010-05-23
Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.
Neutrino Propagation in Dense Magnetized Matter
NASA Astrophysics Data System (ADS)
Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.
2009-01-01
We obtained a complete system of solutions of the Dirac-Pauli equation for a massive neutrino interacting with dense matter and strong electromagnetic field. We demonstrated that these solutions can describe precession of the neutrino spin.
Experimental Studies of the Transport Parameters of Warm Dense Matter
Chouffani, Khalid
2014-12-01
There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.
Probing cold dense nuclear matter.
Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L
2008-06-13
The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. PMID:18511658
Probing Cold Dense Nuclear Matter
Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan
2008-06-01
The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.
Molecular dynamics for dense matter
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi
2012-08-01
We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.
Quantum anomalies in dense matter
Son, D.T.; Zhitnitsky, Ariel R.
2004-10-01
We consider the effects of quantum anomalies involving the baryon current for high-density matter. In the effective Lagrangian, the anomaly terms describe the interaction of three light fields: the electromagnetic photons A{sub {mu}}, neutral light Nambu-Goldstone bosons ({pi}, {eta}, {eta}{sup '}), and the superfluid phonon. The anomaly induced interactions lead to a number of interesting phenomena which may have phenomenological consequences observable in neutron stars.
Crystallization of dense neutron matter
NASA Technical Reports Server (NTRS)
Canuto, V.; Chitre, S. M.
1974-01-01
The equation of state for cold neutron matter at high density is studied in the t-matrix formulation, and it is shown that energetically it is convenient to have neutrons in a crystalline configuration rather than in a liquid state for values of the density exceeding 1600 Tg/cu cm. The study of the mechanical properties indicates that the system is stable against shearing stresses. A solid core in the deep interior of heavy neutron stars appears to offer the most plausible explanation of speed-ups observed in the Vela pulsar.
Dense hadronic matter in holographic QCD
NASA Astrophysics Data System (ADS)
Kim, Keun-Young; Sin, Sang-Jin; Zahed, Ismail
2013-10-01
We provide a method to study hadronic matter at finite density in the context of the Sakai-Sugimoto model. We introduce the baryon chemical potential through the external U(1) v gauge field in the induced (DBI plus CS) action on the D8-probe-brane, where baryons are skyrmions. Vector dominance is manifest at finite density. We derive the effect of the baryon density on the energy density, and on the dispersion relations of pions and vector mesons at large N c . The energy density asymptotes are constant at large density, suggesting that dense matter at large N c freezes, with the pion velocity dropping to zero. Holographic dense matter enforces exactly the tenets of vector dominance and efficiently screens vector mesons. At the freezing point, the ρ — ππ coupling vanishes with a finite rho mass of about 20% its vacuum value.
Dense matter theory: A simple classical approach
NASA Astrophysics Data System (ADS)
Savić, P.; Čelebonović, V.
1994-07-01
In the sixties, the first author and by P. Savić and R. Kašanin started developing a mean-field theory of dense matter. It is based on the Coulomb interaction, supplemented by a microscopic selection rule and a set of experimentally founded postulates. Applications of the theory range from the calculation of models of planetary internal structure to DAC experiments.
Ion beam driven warm dense matter experiments
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Ni, P. A.; Leitner, M.; Roy, P. K.; More, R.; Barnard, J. J.; Kireeff Covo, M.; Molvik, A. W.; Yoneda, H.
2007-11-01
We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments at LBNL are at 0.3-1 MeV K+ beam (below the Bragg peak), increasing toward the Bragg peak in future versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial experiments include an experiment to study transient darkening at LBNL; and a porous target experiment at GSI heated by intense heavy-ion beams from the SIS 18 storage ring. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.
Thomson scattering in warm dense matter
NASA Astrophysics Data System (ADS)
Thiele, R.; Bornath, T.; F"Austlin, R. R.; Fortmann, C.; Glenzer, S.; Gregori, G.; Holst, B.; Tschentscher, T.; Schwarz, V.; Redmer, R.
2009-11-01
Free electron lasers employing scattering of high-brilliant, coherent photons in the extreme ultraviolet (VUV), e.g. at FLASH (DESY Hamburg) or LCLS (Stanford), allow for a systematic study of basic plasma properties in the region of warm dense matter (WDM). WDM is characterized by condensed matter-like densities and temperatures of several eV. Collective Thomson scattering with VUV or x-ray has demonstrated its capacity for robust measurements of the free electron density and temperature in WDM. Collective excitations like plasmons (``electron feature'') appear as maxima in the scattering signal. The respective frequencies can be related to the free electron density. Furthermore, the asymmetry of the red- and blue shifted plasmon intensity gives the electron temperature due to detailed balance. We treat collective Thomson scattering in the Born-Mermin-approximation which includes collisions and present a generalized Gross-Bohm dispersion for plasmas. The influence of plasma inhomogeneities on the scattering spectrum is studied by comparing density and temperature averaged scattering signals with calculations assuming homogeneous targets. For the ``ion feature,'' results of semi-classical hypernetted chain (HNC) calculations and of quantum molecular dynamics simulations are shown for dense beryllium.
Particular Properties of Dense Supernova Matter
NASA Astrophysics Data System (ADS)
Takatsuka, T.; Nishizaki, S.; Hiura, J.
1994-10-01
Dense supernova matter composed of n, p, e-, e+, νe and bar{ν}e is investigated in detail by solving self-consistently a set of finite-temperature Hartree-Fock equations with an effective nucleon interaction. The effective interaction includes a phenomenological three-nucleon interaction to assure the saturation property of symmetric nuclear matter. Results of thermodynamic quantities and mixing ratios of respective components are analyzed and tabulated for wide region of density (ρ = (1 - 6)ρ0) and temperature (T = (10 - 40) MeV) by choosing the lepton fraction Yl = (0.3, 0.35, 0.4). We discuss particular properties of the matter such as the constancy of composition, the large proton fraction expressed by Yp =~ (2/3)Yl + 0.05 and the stiffened equation of state, and also discuss remarkable features of hot neutron stars at birth such as the fat density profile and the increasing temperature toward the center. It is shown that these features are caused essentially by the effects of neutrino trapping to generate the high and constant lepton fraction and isentropic nature, the effects which are absent in neutron star matter.
Kaon condensation in dense stellar matter
Lee, Chang-Hwan; Rho, M. |
1995-03-01
This article combines two talks given by the authors and is based on Works done in collaboration with G.E. Brown and D.P. Min on kaon condensation in dense baryonic medium treated in chiral perturbation theory using heavy-baryon formalism. It contains, in addition to what was recently published, astrophysical backgrounds for kaon condensation discussed by Brown and Bethe, a discussion on a renormalization-group analysis to meson condensation worked out together with H.K. Lee and S.J. Sin, and the recent results of K.M. Westerberg in the bound-state approach to the Skyrme model. Negatively charged kaons are predicted to condense at a critical density 2 {approx_lt} {rho}/{rho}o {approx_lt} 4, in the range to allow the intriguing new phenomena predicted by Brown and Bethe to take place in compact star matter.
Symmetry energy in cold dense matter
NASA Astrophysics Data System (ADS)
Jeong, Kie Sang; Lee, Su Houng
2016-01-01
We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.
Quantum molecular dynamics simulations of dense matter
Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.
1997-12-31
The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.
Magnetic Phases in Dense Quark Matter
Incera, Vivian de la
2007-10-26
In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.
Neutrino spin dynamics in dense matter and electromagnetic field
NASA Astrophysics Data System (ADS)
Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.
2009-01-01
A complete set of solutions to the Dirac-Pauli equation is derived for a massive neutrino that interacts with dense matter and a strong electromagnetic field. It is shown that these solutions may describe neutrino spin precession.
Frontiers the Physics of Dense Matter for Neutron Stars
NASA Astrophysics Data System (ADS)
Steiner, Andrew W.
2016-04-01
Neutron stars are an excellent laboratory for nuclear physics. They probe the nucleon-nucleon interaction, the structure of nuclei, and the nature of dense QCD in ways which complement current experimental efforts. This article very briefly summarizes some of the current frontiers in neutron stars and dense matter with an emphasis on how our understanding might be improved in the near future.
Variational Theory of Hot Dense Matter
ERIC Educational Resources Information Center
Mukherjee, Abhishek
2009-01-01
We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…
Nucleation of strange matter in dense stellar cores
Horvath, J.E. Sao Paulo, Sao Paulo ); Benvenuto, O.G. La Plata ); Vucetich, H. La Plata )
1992-05-15
We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature {ital T} for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios.
Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
Graziani, F R; Bauer, J D; Murillo, M S
2014-09-01
Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD
Plasmon resonance in warm dense matter.
Thiele, R; Bornath, T; Fortmann, C; Höll, A; Redmer, R; Reinholz, H; Röpke, G; Wierling, A; Glenzer, S H; Gregori, G
2008-08-01
Collective Thomson scattering with extreme ultraviolet light or x rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to noncollective scattering, the consideration of collisions is important. PMID:18850950
Plasmon resonance in warm dense matter
NASA Astrophysics Data System (ADS)
Thiele, R.; Bornath, T.; Fortmann, C.; Höll, A.; Redmer, R.; Reinholz, H.; Röpke, G.; Wierling, A.; Glenzer, S. H.; Gregori, G.
2008-08-01
Collective Thomson scattering with extreme ultraviolet light or x rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to noncollective scattering, the consideration of collisions is important.
Intense ion beams as a tool for opacity measurements in warm dense matter
Abdallah, Joseph; Tauschwiz, An; Jacoby, J; Maruhn, J A; Novikov, V G; Tauschwitz, A; Onkels, E; Wittle, K; Rosmej, F B; Schott, R
2009-01-01
Opacity measurements in warm dense matter (WDM) provide a valuable benchmark for the diverging theoretical models in this regime. Heating of thin foils with intense heavy-ion beams allows one to create isolated samples of warm dense matter suitable for experimental determination of frequency-dependent opacities. A prerequisite for the measurements is the isothermal expansion of the heated foil. Hydrodynamic simulations predict that this condition is fulfilled. The analysis shows that existing ion-beam accelerators are capable to contribute to this field of research.
Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter
Reddy, Sanjay
2013-09-06
It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.
Chirally symmetric but confining dense, cold matter
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential {mu} and obtain a clear chiral restoration phase transition at the critical value {mu}{sub cr}. Below this value the spectrum is similar to the previously obtained one at {mu}=0. At {mu}>{mu}{sub cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
Chirally symmetric but confining dense, cold matter
NASA Astrophysics Data System (ADS)
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ and obtain a clear chiral restoration phase transition at the critical value μcr. Below this value the spectrum is similar to the previously obtained one at μ=0. At μ>μcr the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
Meson condensation and critical point in dense quark matter
Schmitt, Andreas; Stetina, Stephan; Tachibana, Motoi
2011-05-23
The phase structure of dense QCD matter is studied based on the Ginzburg-Landau approach. In three flavor massless quark matter, one can show that a novel entanglement between chiral condensate and diquark condensate via the axial anomaly gives rise to a critical point at moderate density. We further investigate the effect of nonzero strange quark mass by taking into account a possible meson condensate. Then the fate of the critical point is discussed.
Neutrino spin dynamics in dense matter and electromagnetic field
NASA Astrophysics Data System (ADS)
Arbuzova, E. V.
2008-11-01
We discuss behavior of massive Dirac neutrino with anomalous magnetic moment propagating through dense magnetized matter on the basis of the obtained solutions of the Dirac-Pauli equation. This system of solutions demonstrates spin rotating properties and represents pure neutrino states.
X-ray sources for radiography of warm dense matter
NASA Astrophysics Data System (ADS)
Benuzzi-Mounaix, Alessandra; Brambrink, Erik; Barbrel, Benjamin; Koenig, Michel; Gregory, Chris; Loupias, Bérénice; Ravasio, Alessandra; Rabec Le Gloahec, Marc; Vinci, Tommaso; Boehly, Tom; Endo, Takashi; Kimura, Tomoaki; Ozaki, Norimasa; Wei, Huigang; Aglitskiy, Yefim; Faenov, Anatoly; Pikuz, Tatiana
2008-11-01
The knowledge of Warm Dense Matter is important in different domains such as inertial confinement fusion, astrophysics and geophysics. The development of techniques for direct probing of this type of matter is of great interest. X-ray radiography is one of the most promising diagnostic to measure density directly. Here we present some results of low-Z material radiography and an experiment devoted to characterize a short pulse laser driven hard x-ray source for the radiography of medium and high Z matter. Experiments have been performed on LULI2000 and TW facilities at the Ecole Polytechnique.
Soliton matter as a model of dense nuclear matter
Glendenning, N.K.
1985-01-01
We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures.
Classical dense matter physics: some basic methods and results
NASA Astrophysics Data System (ADS)
Čelebonović, Vladan
2002-07-01
This is an introduction to the basic notions, some methods and open problems of dense matter physics and their applications in astrophysics. Experimental topics cover the range from the work of P. W. Bridgman to the discovery and basic results of use of the diamond anvil cell. On the theoretical side, the semiclassical method of P. Savić and R. Kašanin is described. The choice of these topics is conditioned by their applicability in astrophysics and the author's research experience. At the end of the paper is presented a list of some unsolved problems in dense matter physics and astrophysics, some (or all) of which could form a basis of future collaborations.
Topical Collaboration "Neutrinos and Nucleosynthesis in Hot and Dense Matter"
Allahverdi, Rouzbeh
2015-09-18
This is the final technical report describing contributions from the University of New Mexico to Topical Collaboration on "Neutrinos and Nucleosynthesis in Hot and Dense Matter" in the period June 2010 through May 2015. During the funding period, the University of New Mexico successfully hired Huaiyu Duan as a new faculty member with the support from DOE, who has contributed to the Topical Collaboration through his research and collaborations.
Diffusion and Coulomb separation of ions in dense matter.
Beznogov, M V; Yakovlev, D G
2013-10-18
We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars. PMID:24182248
Diffusion and Coulomb Separation of Ions in Dense Matter
NASA Astrophysics Data System (ADS)
Beznogov, M. V.; Yakovlev, D. G.
2013-10-01
We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars.
Characteristics of warm dense matter produced by a relativistic electron beam
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Schmitt, Mark; Berninger, Michael
2009-11-01
Accurate equation-of-state theory on warm dense matter is a big challenge to model and good experimental data is difficult to obtain. One of the difficulties is the creation of a warm dense matter (WDM) suitable for experiments to examine its equation of state. We have performed calculations using MCNP and LASNEX to examine the warm dense matter created by a highly energetic electron beam such as the DARHT beam at LANL in a cylindrical sample confined by a collar. Energy deposition by the electron beam in the target and collar of different materials were calculated with different beam profiles. The energy deposition was sourced into LASNEX calculations to examine the dynamic evolution of the target and the generation of radially outward propagating shock waves. Our calculations indicated warm dense matter with a temperature of a few electron volts is achievable and the speed of the shock wave can be determined using photonic Doppler velocimetry technique. We will present results from our calculations for various materials of the target and collar and in different geometries.
Overview of Warm Dense Matter Experiments at LCLS
NASA Astrophysics Data System (ADS)
Galtier, Eric; Levy, Anna; Williams, Gareth; Fletcher, Luke; Dorchies, Fabien; Gaudin, Jérôme; Sperling, Philipp
Warm Dense Matter (WDM) is found in numerous astrophysical systems, from giant planets to brown dwarves or cool dense stars. Being this intermediate regime where condensed matter or plasma theories do not apply, it can be produced in all laser-induced plasma experiments on Earth. As a consequence, understanding its properties is fundamental and the whole community is investigating this extreme state of matter. With the advent of the 4th generation of light sources, namely the Free Electron Lasers (FELs), a new way of producing and diagnosing WDM becomes available. In 2009, the Linac Coherent Light Source (LCLS) at SLAC was the first FEL to produce X-ray photons to be used by the user community. Since then, various experiments took place at LCLS to produce and measure specific physical properties of WDM. In this talk, we will present an overview of key experiments performed at LCLS to study WDM. The LCLS has been used in a variety of configuration: as the main heating mechanism, as a probe or both at the same time. When used as a probe, high power lasers have been used to shock matter and excite it into the WDM regime. Finally, we will describe exciting perspectives on the WDM research, as the LCLS-II will become available in about 5 years.
Stability of superfluid vortices in dense quark matter
NASA Astrophysics Data System (ADS)
Alford, Mark G.; Mallavarapu, S. Kumar; Vachaspati, Tanmay; Windisch, Andreas
2016-04-01
Superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter are known to be energetically disfavored relative to well-separated triplets of so-called semi-superfluid color flux tubes. However, the short-range interaction (metastable versus unstable) has not been established. In this paper we perform numerical calculations using the effective theory of the condensate field, mapping the regions in the parameter space of coupling constants where the vortices are metastable versus unstable. For the case of zero-gauge coupling we analytically identify a candidate for the unstable mode and show that it agrees well with the results of the numerical calculations. We find that in the region of the parameter space that seems likely to correspond to real-world CFL quark matter the vortices are unstable, indicating that if such matter exists in neutron star cores it is very likely to contain semi-superfluid color flux tubes rather than superfluid vortices.
Equation of State of Warm Dense Matter at DARHT-2 Facility
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Schmitt, Mark; Daughton, William; Ekdahl, Carl; Benage, John; Murillo, Michael; Wysocki, Frederick
2008-11-01
Accurate equation-of-state theory on warm dense matter is a big challenge to model and good experimental data is difficult to obtain. One of the difficulties is the creation of a warm dense matter (WDM) suitable for experiments to examine its equation of state. We have examine methods of creating a warm dense matter using three different kinds of energetic particle beams such as short pulse laser, energetic proton beam, and relativistic electron beam. We found that the use of relativistic electrons such as the second axis of the Dual Axis Radiographic Hydro-Test (DARHT) facility at Los Alamos National Laboratory can create WDM ideally suitable for experiments to obtain data on the equation of state of such WDM over an extended parameter space. The electron beam has an energy of 18 MeV and a current of 2 kA. Its pulse length can be varied from 20 ns to 200 ns. We will present results from our calculations on the creation and characterization of WDM using the DARHT electron beam. We will also present our planned experiments specifically for the measurements of equations of state of such a WDM.
Uniform electron gas at warm, dense matter conditions
NASA Astrophysics Data System (ADS)
Dutta, Sandipan; Dufty, James
2013-06-01
A simple, practical model for computing the equilibrium thermodynamics and structure of the uniform electron gas (jellium) by classical strong-coupling methods is proposed. Conditions addressed are those of interest for recent studies of warm dense matter: solid densities and temperatures from zero to plasma states. An effective pair potential and coupling constant are introduced, incorporating the ideal gas, low density, and weak-coupling quantum limits. The resulting parameter-free, analytic model is illustrated by the calculation of the pair correlation function via strong-coupling classical liquid state theory. The results compare favorably with the first finite-temperature restricted path integral Monte Carlo simulations reported recently.
Thermal Corrections to Density Functional Simulations of Warm Dense Matter
NASA Astrophysics Data System (ADS)
Smith, Justin; Pribram-Jones, Aurora; Burke, Kieron
Present density functional calculations of warm dense matter often use the Mermin-Kohn-Sham (MKS) scheme at finite temperature, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable non-trivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies, the exact Mermin-Kohn-Sham functionals for this system, and extract the exact XC free energy. For moderate temperatures and weak correlation, we show this approximation is excellent, but fails for stronger correlations. Additionally, we use this system to test various conditions that must be satisfied.
The physics of hot and dense quark-gluon matter
Kharzeev, Dmitri E
2012-05-10
This technical report describes the work done under the DOE grant DE-FG-88ER41723 (final award number DE-SC0005645), "The physics of hot and dense quark-gluon matter", during the year of 12/01/2010 through 11/30/2011. As planned in the proposal, the performed research focused along two main thrusts: 1) topological effects in hot quark-gluon matter and 2) phenomenology of relativistic heavy ion collisions. The results of research are presented in 12 papers published in reputable refereed journals (Physical Review Letters, Physical Review, Physics Letters and Nuclear Physics). All of the performed research is directly related to the experimental programs of DOE, especially at the Relativistic Heavy Ion Collider. Much of it also has broader interdisciplinary implications - for example, the work on the non-dissipative chiral magnetic current is directly relevant for quantum computing. The attached report describes the performed work in detail.
Stopping Power and Transport in Warm and Hot Dense Matter
NASA Astrophysics Data System (ADS)
Grabowski, Paul
2015-11-01
Stopping power is not only of direct relevance to the heating of fusion-burning plasmas and fast ignition inertial confinement fusion, but also serves as a velocity-resolved probe of the many-body response of plasma. The accuracy of a model for a set of plasma conditions and projectile energy and charge serves as a detailed test of collision operators and their predicted transport coefficients. Classical molecular dynamics studies can tell us much about the relative importance of strong scattering, nonlinear screening, and inter-particle correlations of a uniform plasma. The dominant quantum correction for hot dense matter is quantum diffraction, which can be experimentally confirmed. However, the presence of bound states and inhomogeneous electronic structure in warm dense matter requires more sophisticated models. These models fall into two main classes: the local density approximation and bound-free splitting. High-precision experiments (~ 3%) can now confirm such approximations, but a full survey of parameter space must be done. I will put these models in a unified framework and discuss their relationship. Support is gratefully acknowledged from Grant DE14-017426.
Thermal conductivity measurements of proton-heated warm dense matter
NASA Astrophysics Data System (ADS)
McKelvey, A.; Fernandez-Panella, A.; Hua, R.; Kim, J.; King, J.; Sio, H.; McGuffey, C.; Kemp, G. E.; Freeman, R. R.; Beg, F. N.; Shepherd, R.; Ping, Y.
2015-06-01
Accurate knowledge of conductivity characteristics in the strongly coupled plasma regime is extremely important for ICF processes such as the onset of hydrodynamic instabilities, thermonuclear burn propagation waves, shell mixing, and efficient x-ray conversion of indirect drive schemes. Recently, an experiment was performed on the Titan laser platform at the Jupiter Laser Facility to measure the thermal conductivity of proton-heated warm dense matter. In the experiment, proton beams generated via target normal sheath acceleration were used to heat bi-layer targets with high-Z front layers and lower-Z back layers. The stopping power of a material is approximately proportional to Z2 so a sharp temperature gradient is established between the two materials. The subsequent thermal conduction from the higher-Z material to the lower-Z was measured with time resolved streaked optical pyrometry (SOP) and Fourier domain interferometry (FDI) of the rear surface. Results will be used to compare predictions from the thermal conduction equation and the Wiedemann-Franz Law in the warm dense matter regime. Data from the time resolved diagnostics for Au/Al and Au/C Targets of 20-200 nm thickness will be presented.
CHIRAL MODEL FOR DENSE, HOT AND STRANGE HADRONIC MATTER
ZSCHIESCHE,D.; PAPAZOGLOU,P.; BECKMANN,C.W.; SCHRAMM,S.; SCHAFFNER-BIELICH,J.; STOCKER,H.; GREINER,W.
1999-06-10
Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One successfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models, where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting effective models. It has been shown that effective {sigma}-{omega}-models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] the authors have shown that an extended SU(3) x SU(3) chiral {sigma}-{omega} model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here they discuss the predictions of this model for dense, hot, and strange hadronic matter.
Dense stellar matter with strange quark matter driven by kaon condensation
Kim, Kyungmin; Lee, Hyun Kyu; Rho, Mannque
2011-09-15
The core of neutron-star matter is supposed to be at a much higher density than the normal nuclear-matter density, for which various possibilities have been suggested, such as, for example, meson or hyperon condensation and/or deconfined quark or color-superconducting matter. In this work, we explore the implication on hadron physics of a dense compact object that has three ''phases'': nuclear matter at the outer layer, kaon condensed nuclear matter in the middle, and strange quark matter at the core. Using a drastically simplified but not unreasonable model, we develop the scenario where the different phases are smoothly connected with the kaon condensed matter playing a role of a ''doorway'' to a quark core, the equation of state of which with parameters restricted within the range allowed by nature could be made compatible with the mass vs radius constraint given by the 1.97-solar-mass object PSR J1614-2230 recently observed.
A new approach to understanding Warm Dense Matter
NASA Astrophysics Data System (ADS)
More, Richard
2008-11-01
The physical state of matter at density ˜ 1 g/cm^3 and temperature ˜ 1 eV - called Warm Dense Matter (WDM) -- has been a misty island in the phase plane describing the structure of matter. Logical approaches (starting from hot solids, dense chemically-reacting fluids, low-temperature plasmas or release from shock-compressed solids) reach a barrier in the WDM range beyond which the theories do not converge and fail to describe the strongly interacting mix of atoms, molecules, ions and semi-free electrons. This talk will describe the most challenging scientific questions for WDM and will sketch a new approach, based on a high-density version of the Saha (chemical-equilibrium) method. The advantage of the new method is that it incorporates a great deal of existing experimental data in a coherent thermodynamic structure. The method can be tested against quantum molecular dynamics, which has provided surprising ideas about the importance of dimers (weakly bound molecules) and the metal-insulator transition in WDM. On the experimental side, good results require rapid heating to produce the desired conditions, along with rapid diagnostics to acquire data, before the sample has time to disassemble. While electrical heating is relatively slow and laser heating is inherently non-uniform, new heating technologies such as intense pulsed ion-beam and x-ray deposition can be faster and more homogeneous. Recent progress on developing experiments using these methods will be presented. This work was done in collaboration with Dr. M. P. Desjarlais of the Sandia National Laboratories, Albuquerque, NM.
Effective Field Theories for Hot and Dense Matter
NASA Astrophysics Data System (ADS)
Blaschke, D.
2010-10-01
The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations). Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1) the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2) the Schrodinger equation for heavy-quarkonia [4], and (2) Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu-Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann-Oakes-Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.
NASA Astrophysics Data System (ADS)
Lee, R. W.
1997-12-01
The papers consider the radiative properties of hot dense matter. Numerous contributions were directed at understanding the behavior of plasma not in local thermodynamics equilibrium (NLTE). Contributors have analyzed warm dense matter, inertial confinement fusion implosion cores, femtosecond pulse laser generated plasmas, colliding plasmas, and nanosecond long pulse laser generated plasmas. In all of these reports the level of sophistication is advanced, with effects of nonMaxwellian distributions, laser modified transitions, polarization effects and mind-numbing atomic structure models being presented. To ascertain the validity of these NLTE kinetics codes two kinetics code comparisons are reported, which attempt to provide insight into the workings of the kinetics models. The LTE work is directed largely towards the area of opacity studies where both experimental and theoretical efforts were reported. Moreover, the topics of spectral line shapes and the plasma microfields, are given a strong airing. Recent advances and the addition of new effects including magnetic fields, laser pumping, and continuum perturbing states are presented. Finally, many of the contributors present a detailed discussion of the instrumentation which are central to the spectroscopy, providing new paths for future experimental and theoretical advances.
Dynamics of hot and dense nuclear and partonic matter
Bratkovskaya, E. L.; Cassing, W.; Linnyk, O.; Konchakovski, V. P.; Voronyuk, V.; Ozvenchuk, V.
2012-06-15
The dynamics of hot and dense nuclear matter is discussed from the microscopic transport point of view. The basic concepts of the Hadron-String-Dynamical transport model (HSD)-derived from Kadanoff-Baym equations in phase phase-are presented as well as 'highlights' of HSD results for different observables in heavy-ion collisions from 100 A MeV (SIS) to 21 A TeV(RHIC) energies. Furthermore, a novel extension of the HSD model for the description of the partonic phase-the Parton-Hadron-String-Dynamics (PHSD) approach-is introduced. PHSD includes a nontrivial partonic equation of state-in line with lattice QCD-as well as covariant transition rates from partonic to hadronic degrees of freedom. The sensitivity of hadronic observables to the partonic phase is demonstrated for relativistic heavy-ion collisions from the FAIR/NICA up to the RHIC energy regime.
Role of dense matter in collective supernova neutrino transformations
Esteban-Pretel, A.; Pastor, S.; Mirizzi, A.; Tomas, R.; Raffelt, G. G.; Serpico, P. D.; Sigl, G.
2008-10-15
For neutrinos streaming from a supernova core, dense matter suppresses self-induced flavor transformations if the electron density n{sub e} significantly exceeds the neutrino density n{sub {nu}} in the conversion region. If n{sub e} is comparable to n{sub {nu}}, one finds multiangle decoherence, whereas the standard self-induced transformation behavior requires that in the transformation region n{sub {nu}} is safely above n{sub e}. This condition need not be satisfied in the early phase after the supernova core bounce. Our new multiangle effect is a subtle consequence of neutrinos traveling on different trajectories when streaming from a source that is not pointlike.
Electron conductivity in warm and hot dense matter
NASA Astrophysics Data System (ADS)
Starrett, Charles; Charest, Marc; Feinblum, David; Burrill, Daniel
2015-11-01
The electronic conductivity of warm and hot dense matter is investigated by combining the Ziman-Evans approach with the recently developed pseudo-atom molecular dynamics (PAMD) method. PAMD gives an accurate description of the electronic and ionic structure of the plasma. The Ziman-Evans approach to conductivity, which takes the electronic and ionic structures as inputs, has been widely used but with numerous different assumptions on these inputs. Here we present a systematic study of these assumptions by comparing results to gold-standard QMD results that are thought to be accurate but are very expensive to produce. The study reveals that some assumptions yield very inaccurate results and should not be used, while others give consistently reasonable results. Finally, we show that the Thomas-Fermi version of PAMD can also be used to give accurate conductivities very rapidly, taking a few minutes per point on a single processor.
Bypassing the malfunction junction in warm dense matter simulations
NASA Astrophysics Data System (ADS)
Cangi, Attila; Pribram-Jones, Aurora
2015-03-01
Simulation of warm dense matter requires computational methods that capture both quantum and classical behavior efficiently under high-temperature and high-density conditions. The state-of-the-art approach to model electrons and ions under those conditions is density functional theory molecular dynamics, but this method's computational cost skyrockets as temperatures and densities increase. We propose finite-temperature potential functional theory as an in-principle-exact alternative that suffers no such drawback. In analogy to the zero-temperature theory developed previously, we derive an orbital-free free energy approximation through a coupling-constant formalism. Our density approximation and its associated free energy approximation demonstrate the method's accuracy and efficiency. A.C. has been partially supported by NSF Grant CHE-1112442. A.P.J. is supported by DOE Grant DE-FG02-97ER25308.
Creating Motivating Learning Environments: Teachers Matter
ERIC Educational Resources Information Center
Daniels, Erika
2011-01-01
This article shares thoughts about motivating young adolescents from the perspective of middle level students. The most compelling thread to emerge from the interviews with students was the fact that teachers matter. Teachers have a direct and significant impact on students' motivation to achieve. This article identifies three ways in which…
Jets as a probe of dense matter at RHIC
Filimonov, Kirill
2004-04-01
Jet quenching in the matter created in high energy nucleus-nucleus collisions provides a tomographic tool to probe the medium properties. Recent experimental results on jet production at the Relativistic Heavy-Ion Collider (RHIC) are reviewed. Jet properties in p+p and d+Au collisions have been measured, establishing the baseline for studying jet modification in heavy-ion collisions. Current progress on detailed studies of high transverse momentum production in Au+Au collisions is discussed, with an emphasis on dihadron correlation measurements.
Hot and dense matter beyond relativistic mean field theory
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Prakash, Madappa
2016-05-01
Properties of hot and dense matter are calculated in the framework of quantum hadrodynamics by including contributions from two-loop (TL) diagrams arising from the exchange of isoscalar and isovector mesons between nucleons. Our extension of mean field theory (MFT) employs the same five density-independent coupling strengths which are calibrated using the empirical properties at the equilibrium density of isospin-symmetric matter. Results of calculations from the MFT and TL approximations are compared for conditions of density, temperature, and proton fraction encountered in the study of core-collapse supernovae, young and old neutron stars, and mergers of compact binary stars. The TL results for the equation of state (EOS) of cold pure neutron matter at sub- and near-nuclear densities agree well with those of modern quantum Monte Carlo and effective field-theoretical approaches. Although the high-density EOS in the TL approximation for cold and β -equilibrated neutron-star matter is substantially softer than its MFT counterpart, it is able to support a 2 M⊙ neutron star required by recent precise determinations. In addition, radii of 1.4 M⊙ stars are smaller by ˜1 km than those obtained in MFT and lie in the range indicated by analysis of astronomical data. In contrast to MFT, the TL results also give a better account of the single-particle or optical potentials extracted from analyses of medium-energy proton-nucleus and heavy-ion experiments. In degenerate conditions, the thermal variables are well reproduced by results of Landau's Fermi-liquid theory in which density-dependent effective masses feature prominently. The ratio of the thermal components of pressure and energy density expressed as Γth=1 +(Pth/ɛth) , often used in astrophysical simulations, exhibits a stronger dependence on density than on proton fraction and temperature in both MFT and TL calculations. The prominent peak of Γth at supranuclear density found in MFT is, however, suppressed in
Properties of hadron matter. II - Dense baryon matter and neutron stars.
NASA Technical Reports Server (NTRS)
Leung, Y. C.; Wang, C. G.
1971-01-01
In this article we have provided certain details of a nuclear-matter computation, based on the Brueckner-Bethe-Goldstone theory of nuclear reaction, which leads to an equation of state for matter in the density region of 10 to 500 trillion g/cu cm. We also explore the possibilities that at very high baryon densities or for very short baryon separations, the net baryon-baryon interaction may be negligible so that the results of dynamical models, like the statistical bootstrap model and the dual-resonance model, may be applicable to the study of dense baryon matter. Several plausible equations of state are constructed, and their effect on the limiting mass of the neutron star is examined.
Intense Ion Beam for Warm Dense Matter Physics
Coleman, Joshua Eugene
2008-05-23
The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons
Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets
2015-03-23
In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as it transitions into a superhot, highly compressed concoction known as “warm dense matter.”
Characterization of warm dense matter (WDM) from high intensity laser driven shockwaves
NASA Astrophysics Data System (ADS)
Krauland, Christine; Wei, Mingsheng; Santos, Joao; Belancourt, Patrick; Theobald, Wolfgang; Keiter, Paul; Beg, Farhat
2015-11-01
Understanding the transport physics of an intense relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for electron transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense and hot dense plasmas. In order to extend fast electron transport and energy coupling studies in pre-assembled plasmas, we must first characterize those regime possibilities. We present initial experiments conducted on the OMEGA EP laser (~ 1014 W/cm2) to characterize WDM created from the shock compression of low density (ρ0 ~ 330 mg/cc) CRF foams and solid Al foil targets. In foam targets, imaging x-ray Thomson scattering is used to measure spatial profiles of the temperature, ionization state and relative material density. The ASBO diagnostic and radiation hydrodynamics simulations deduce shock pressure in Al targets of various thicknesses. Details of the experiment and available data will be presented. The work was funded by the US DOE/NNSA NLUF Program.
Warm dense matter at the bench-top: Fs-laser-induced confined micro-explosion
Gamaly, E.G.; Vailionis, A.; Mizeikis, V.; Yang, W.; Rode, A.V.; Juodkazis, S.
2012-02-07
We report the experimental evidence for creation of Warm Dense Matter (WDM) in ultrafast laser-induced micro-explosion inside a sapphire (Al{sub 2}O{sub 3}) crystal. We show that the WDM can be formed by a 100 nJ fs-pulse if the following conditions are satisfied: (1) the laser pulse is tightly focused to inside of the bulk of transparent material so the intensity at focus is two orders of magnitude higher than the optical breakdown threshold; (2) the pulse duration is shorter than the electron-ion energy exchange time; and, (3) the absorbed energy density is above the Young's modulus for the material studied. The empty void created inside a sapphire crystal surrounded by a shell of compressed material provides the direct evidence of the maximum pressure above the Young's modulus of sapphire ({approx}400 GPa). Synchrotron X-ray diffraction (XRD) analysis of the shell revealed the presence of novel super-dense bcc-Al crystalline phase predicted at pressures above {approx}380 GPa theoretically, which has never been observed experimentally before neither in nature in laboratory experiments. These results show that confined micro-explosion induced by tightly focused fs-laser inside a transparent solid opens new routes for synthesis of new materials and study of WDM at a laboratory bench-top.
Study of the Warm Dense Matter with XANES spectroscopy - Applications to planetary interiors
NASA Astrophysics Data System (ADS)
Denoeud, Adrien
With the recent discovery of many exoplanets, modelling the interior of these celestial bodies is becoming a fascinating scientific challenge. In this context, it is crucial to accurately know the equations of state and the macroscopic and microscopic physical properties of their constituent materials in the Warm Dense Matter regime (WDM). Moreover, planetary models rely almost exclusively on physical properties obtained using first principles simulations based on density functional theory (DFT) predictions. It is thus of paramount importance to validate the basic underlying mechanisms occurring for key planetary constituents (metallization, dissociation, structural modifications, phase transitions, etc....) as pressure and temperature both increase. In this work, we were interested in two materials that can be mainly found in the Earth-like planets: silica, or SiO2, as a model compound of the silicates that constitute the major part of their mantles, and iron, which is found in abundance in their cores. These two materials were compressed and brought to the WDM regime by using strong shock created by laser pulses during various experiments performed on the LULI2000 (Palaiseau, France) and the JLF (Livermore, US) laser facilities and on the LCLS XFEL (Stanford, US). In order to penetrate this dense matter and to have access to its both ionic and electronic structures, we have probed silica and iron with time-resolved X-ray Absorption Near Edge Structure (XANES). In parallel with these experiments, we performed quantum molecular dynamics simulations based on DFT at conditions representative of the region investigated experimentally so as to extract the interesting physical processes and comprehend the limits of the implemented models. In particular, these works allowed us to highlight the metallization processes of silica in temperature and the structural changes of its liquid in density, as well as to more constrain the melting curve of iron at very high pressures.
Scale-invariant hidden local symmetry, topology change, and dense baryonic matter
NASA Astrophysics Data System (ADS)
Paeng, Won-Gi; Kuo, Thomas T. S.; Lee, Hyun Kyu; Rho, Mannque
2016-05-01
When scale symmetry is implemented into hidden local symmetry in low-energy strong interactions to arrive at a scale-invariant hidden local symmetric (HLS) theory, the scalar f0(500 ) may be interpreted as pseudo-Nambu-Goldstone (pNG) boson, i.e., dilaton, of spontaneously broken scale invariance, joining the pseudoscalar pNG bosons π and the matter fields V =(ρ ,ω ) as relevant degrees of freedom. Implementing the skyrmion-half-skyrmion transition predicted at large Nc in QCD at a density roughly twice the nuclear matter density found in the crystal simulation of dense skyrmion matter, we determine the intrinsically density-dependent "bare parameters" of the scale-invariant HLS Lagrangian matched to QCD at a matching scale ΛM. The resulting effective Lagrangian, with the parameters scaling with the density of the system, is applied to nuclear matter and dense baryonic matter relevant to massive compact stars by means of the double-decimation renormalization-group Vlow k formalism. We satisfactorily postdict the properties of normal nuclear matter and more significantly predict the equation of state of dense compact-star matter that quantitatively accounts for the presently available data coming from both the terrestrial and space laboratories. We interpret the resulting structure of compact-star matter as revealing how the combination of hidden-scale symmetry and hidden local symmetry manifests itself in compressed baryonic matter.
Warm and dense stellar matter under strong magnetic fields
Rabhi, A.; Panda, P. K.; Providencia, C.
2011-09-15
We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino-free and neutrino-trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean-field nuclear model, including the possibility of hyperon formation, is considered. A density-dependent magnetic field with a magnitude of 10{sup 15} G at the surface and not more than 3x10{sup 18} G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that a hybrid protoneutron star will not evolve into a low-mass black hole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low-mass black hole.
Dense baryonic matter: Constraints from recent neutron star observations
NASA Astrophysics Data System (ADS)
Hell, Thomas; Weise, Wolfram
2014-10-01
Updated constraints from neutron star masses and radii impose stronger restrictions on the equation of state for baryonic matter at high densities and low temperatures. The existence of 2M⊙ neutron stars rules out many soft equations of state with prominent "exotic" compositions. The present work reviews the conditions required for the pressure as a function of baryon density to satisfy these constraints. Several scenarios for sufficiently stiff equations of state are evaluated. The common starting point is a realistic description of both nuclear and neutron matter based on a chiral effective field theory approach to the nuclear many-body problem. Possible forms of hybrid matter featuring a quark core in the center of the star are discussed using a three-flavor Polyakov-Nambu-Jona-Lasinio model. It is found that a conventional equation of state based on nuclear chiral dynamics meets the astrophysical constraints. Hybrid matter generally turns out to be too soft unless additional strongly repulsive correlations, e.g., through vector current interactions between quarks, are introduced. The extent to which strangeness can accumulate in the equation of state is also discussed.
Effective kaon masses in dense nuclear and neutron matter
NASA Astrophysics Data System (ADS)
Waas, T.; Kaiser, N.; Weise, W.
1996-02-01
The effective mass and decay width of kaonic modes in baryonic matter are studied within a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, π∑, πΛ system. Including Pauli blocking and Fermi motion in the kaon dispersion relation, we find a strong non-linear density dependence of the K - effective mass and decay width in symmetric nuclear matter at densities around 0.1 times normal nuclear matter density ϱ0 due to the in-medium dynamics of the Λ(1405) resonance. At higher densities the K - effective mass decreases slowly but stays above 0.5 mK at least up to densities below 3 ϱ0. In neutron matter the K - effective mass decreases almost linearly with increasing density but remains relatively large ( m K∗ > 0.65 m K) for ϱn ≲ 3 ϱ0. The K + effective mass turns out to increase very slowly with rising density.
Dense Matter Characterization by X-ray Thomson Scattering
Landen, O L; Glenzer, S H; Edwards, M J; Lee, R W; Collins, G W; Cauble, R C; Hsing, W W; Hammel, B A
2000-12-29
We discuss the extension of the powerful technique of Thomson scattering to the x-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally-resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution to. We also present a discussion for a proof-of-principle experiment appropriate for a high energy laser facility.
Domain growth and ordering kinetics in dense quark matter
Singh, A.; Puri, S.; Mishra, H.
2012-06-15
The kinetics of chiral transitions in quark matter is studied in a two-flavor Nambu-Jona-Lasinio model. We focus on the phase-ordering dynamics subsequent to a temperature quench from the massless quark phase to the massive quark phase. We study the dynamics by considering a phenomenological model (Ginzburg-Landau free-energy functional). The morphology of the ordering system is characterized by the scaling of the order-parameter correlation function.
Hyperon-Nucleon Interactions and the Composition of Dense Matter from Quantum Chromodynamics
Konstantinos Orginos, Silas Beane, Emmanuel Chang, Saul Cohen, Huey-Wen Lin, Tom Luu, Assumpta Parreno, Martin Savage, Andre Walker-Loud, William Detmold
2012-10-01
The low-energy n{Sigma}{sup -} interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase-shifts for this system are determined from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our results, performed at a pion mass of m{sub {pi}} ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The calculated interactions indicate that the strange quark plays an important role in dense matter.
Diffusivity of Mixtures in Warm Dense Matter Regime
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Rudd, Robert; Jackson, Julie; Langdon, A. Bruce; Glosli, James; Graziani, Frank
2013-10-01
Modeling of ionic diffusion in warm dense plasma mixtures has been of longstanding interest in astrophysics and in Inertial Confinement Fusion. In this work we employ classical Molecular Dynamics (MD) to calculate diffusion coefficients in mixed plasmas. In the MD study we make use of the Yukawa potential as an effective ion-ion interaction potential that accounts for the screening effects of the electrons. We focus in binary asymmetric mixtures between Deuterium and Argon at Temperatures from 10-100eV and ion densities from 1023-1025 ion/cc. In uniform mixed systems we use Green-Kubo techniques to calculate self-diffusivities and Maxwell-Stefan diffusivities over a range of conditions. The new results from this study show that a simple linear relations between Maxwell-Stefan diffusivity and self-diffusivities is not always valid. The interdiffusivity that enters in Fickian equation can be related to the Maxwell-Stefan diffusivities through the thermodynamic factor. The latter requires knowledge of the equation of state of the mixture. We compare these results with classical kinetic theories that assume binary collisions. To test these Green-Kubo approaches and to estimate the activity contribution we have also employed large-scale non-equilibrium, non-uniform mixed, MD. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
Probing Warm Dense Matter electronic structure using X-ray absorption Near Edge Spectroscopy (XANES)
NASA Astrophysics Data System (ADS)
Benuzzi Mounaix, Alessandra
2011-06-01
The behavior and physical properties of warm dense matter, fundamental for various branches of physics including planetology and Inertial Confinement Fusion, are non trivial to simulate either theoretically, numerically or experimentally. Despite important progress obtained in the last decade on macroscopic characterization (e.g. equations of state), microscopic studies are today necessary to investigate finely the WDM structure changes, the phase transitions and to test physical hypothesis and approximations commonly used in calculations. In this work, highly compressed aluminum has been investigated with the aim of bringing information on the evolution of its electronic structure by using K-edge shift and XANES. The experiment was performed at LULI laboratory where we used one long pulse (500 ps, IL ~ 8 1013 W/cm2) to create a uniform shock and a second ps beam (IL ~ 1017 W/cm2) to generate an ultra-short broadband X-ray source near the Al K-edge. The spectra were registered by using two conical KAP Bragg crystals. The main target was designed to probe the Aluminum in reshocked conditions allowing us to probe and to test theories in an extreme regime up to now unexplored (ρ ~ 3 ρ0 and T ~ 8 eV). The hydrodynamical Al conditions were measured by using VISARs interferometers and self-emission diagnostics. By increasing the delay between the two beams, we have been able to observe the modification of absorption spectra for unloading Al conditions (ρ >= 0.5 g/cc), and to put in evidence the relocalization of the 3p valence electrons occurring in the metal-non metal transition. All data have been compared to ab initio and dense plasma calculations.
Diffusion of dark matter in a hot and dense nuclear environment
NASA Astrophysics Data System (ADS)
Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph
2016-07-01
We calculate the mean free path in a hot and dense nuclear environment for a fermionic dark matter particle candidate in the ˜GeV mass range interacting with nucleons via scalar and vector effective couplings. We focus on the effects of density and temperature in the nuclear medium in order to evaluate the importance of the final state blocking in the scattering process. We discuss qualitatively possible implications for opacities in stellar nuclear scenarios, where dark matter may be gravitationally accreted.
Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration
Badziak, J.; Jablonski, S.; Pisarczyk, T.; Raczka, P.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Rosinski, M.; Borodziuk, S.; Krousky, E.; Liska, R.; Kucharik, M.; Ullschmied, J.
2012-05-15
Acceleration of dense matter to high velocities is of high importance for high energy density physics, inertial confinement fusion, or space research. The acceleration schemes employed so far are capable of accelerating dense microprojectiles to velocities approaching 1000 km/s; however, the energetic efficiency of acceleration is low. Here, we propose and demonstrate a highly efficient scheme of acceleration of dense matter in which a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and then accelerated in a guiding channel by the pressure of a hot plasma produced in the cavity by the laser beam or by the photon pressure of the ultra-intense laser radiation trapped in the cavity. We show that the acceleration efficiency in this scheme can be much higher than that achieved so far and that sub-relativisitic projectile velocities are feasible in the radiation pressure regime.
X-ray Thomson scattering of warm dense matter on the Z-accelerator
NASA Astrophysics Data System (ADS)
Ao, Tommy; Harding, Eric; Bailey, James; Desjarlais, Michael; Hansen, Stephanie; Lemke, Raymond; Rochau, Gregory; Sinars, Daniel; Smith, Ian; Knudson, Marcus; Reneker, Joseph; Kernaghan, Matthew; Gregori, Gianluca
2013-06-01
Experiments on the Z-accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size. Significant progress to combine x-ray Thomson scattering (XRTS), a powerful diagnostic for WDM, with the extreme environments created at Z has been accomplished. The large Z current is used to magnetically launch Al flyers to impact CH2 foam (0.12 g/cm3) . The uniformly-shocked CH2 volume is 5-10 mm3, and the steady shock phase lasts 10-100 ns, which are roughly 1500 & 100 times larger, respectively, than typical laser shocked samples. The Z-Beamlet laser irradiates a 5 μm thick Mn foil near the load to generate 6.181 keV Mn-He- α x-rays that penetrate into the WDM state and scatter from it. A new high sensitivity x-ray scattering spherical spectrometer (XRS3) with both high spatial (~75 μm) and spectral (E / ΔE ~ 1500) resolution is fielded that enables benchmark quality data by simultaneously measuring x-rays scattered from shocked and ambient regions of the CH2 foam, and the Mn x-ray source. SNL is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's NNSA under contract DE-AC04-94AL85000.
X-ray Thomson scattering in warm dense matter at low frequencies
Murillo, Michael S.
2010-03-15
The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the 'plasmon-pole'-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions.
X-ray Thomson scattering in warm dense matter at low frequencies.
Murillo, Michael S
2010-03-01
The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the "plasmon-pole"-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions. PMID:20365878
X-ray Thomson scattering in warm dense matter at low frequencies
NASA Astrophysics Data System (ADS)
Murillo, Michael
2010-11-01
The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure factor with data for the extreme case of a liquid metal. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the ``plasmon-pole''-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions. This suggests a method by which viscous transport properties can be measured.
X-ray Thomson scattering in warm dense matter at low frequencies
NASA Astrophysics Data System (ADS)
Murillo, Michael S.
2010-03-01
The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the “plasmon-pole”-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions.
Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter
NASA Astrophysics Data System (ADS)
Davis, Paul F.
In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45°, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.
Absorption of Bound States in Hot, Dense Matter
Sheperd, R; Audebert, P; Chenais-Popovics, C; Geindre, J P; Fajardo, M; Iglesias, C; Moon, S; Rogers, F; Gauthier, J C; Springer, P
2001-03-06
Preliminary experiments using a long pulse laser generated X-ray source to back-light a short pulse laser heated thin foil have been performed at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) at Ecole Polytechnique in France. In this experiment, a 2 J, 300 ps, 532 nm laser was used to create the X-ray back-lighter. The primary diagnostic was a von Hamos spectrograph coupled to a 500 fs X-ray streak camera (TREX-VHS) developed at LLNL. This diagnostic combines high collection efficiency ({approx} 10{sup -4} steradians) with fast temporal response ({approx} 500 fs), allowing resolution of extremely transient spectral variations. The TREX-VHS was used to determine the time history, intensity, and spectral content of the back-lighter. The second diagnostic, Fourier Domain Interferometry (FDI), provides information about the position of the critical density of the target and thus the expansion hydrodynamics, laying the ground work for the plasma characterization. The plasmas were determined to be moderately to strongly coupled, resulting in absorption measurements that provide insight into bound states under such conditions.
Charge equilibrium of a laser-generated carbon-ion beam in warm dense matter.
Gauthier, M; Chen, S N; Levy, A; Audebert, P; Blancard, C; Ceccotti, T; Cerchez, M; Doria, D; Floquet, V; Lamour, E; Peth, C; Romagnani, L; Rozet, J-P; Scheinder, M; Shepherd, R; Toncian, T; Vernhet, D; Willi, O; Borghesi, M; Faussurier, G; Fuchs, J
2013-03-29
Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter. PMID:23581330
The equation of state of dense matter: from nuclear collisions to neutron stars
NASA Astrophysics Data System (ADS)
Burgio, G. F.
2008-01-01
The equation of state (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within the Brueckner Hartree Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu Jona-Lasinio and the color dielectric models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.
A pulsed power hydrodynamics approach to exploring properties of warm dense matter
Reinovsky, Robert Emil
2008-01-01
Pulsed Power Hydrodynamics, as an application of low-impedance, pulsed power, and high magnetic field technology developed over the last decade to study advanced hydrodynamic problems, instabilities, turbulence, and material properties, can potentially be applied to the study of the behavior and properties of warm dense matter (WDM) as well. Exploration of the properties, such as equation of state and conductivity, of warm dense matter is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to a few times solid density) and modest temperatures ({approx}1-10 eV). Warm dense matter conditions can be achieved by laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers is applying these techniques using petawatt scale laser systems, but the microscopic size scale of the WDM produced in this way limits access to some physics phenomena. Pulsed power hydrodynamics techniques, either through high convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques both offer the prospect for producing warm dense matter in macroscopic quantities. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. Similarly, liner compression of normal density material, perhaps using multiple reflected shocks can provide access to the challenging region above normal density -- again with the requirement of very large amounts of driving energy. In this paper we will provide an introduction to techniques that might be applied to explore this
Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter
Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; Vold, Erik Lehman; Boettger, Jonathan Carl; Fernández, Juan Carlos
2016-07-12
Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less
Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter
Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.
2016-01-01
Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly with temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. These simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement. PMID:27405664
Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter
NASA Astrophysics Data System (ADS)
Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.
2016-07-01
Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly with temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. These simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.
THE NEUTRON STAR MASS-RADIUS RELATION AND THE EQUATION OF STATE OF DENSE MATTER
Steiner, Andrew W.; Brown, Edward F.; Lattimer, James M. E-mail: ebrown@pa.msu.edu
2013-03-01
The equation of state (EOS) of dense matter has been a long-sought goal of nuclear physics. EOSs generate unique mass versus radius (M-R) relations for neutron stars, the ultra-dense remnants of stellar evolution. In this work, we determine the neutron star mass-radius relation and, based on recent observations of both transiently accreting and bursting sources, we show that the radius of a 1.4 solar mass neutron star lies between 10.4 and 12.9 km, independent of assumptions about the composition of the core. We show, for the first time, that these constraints remain valid upon removal from our sample of the most extreme transient sources or of the entire set of bursting sources; our constraints also apply even if deconfined quark matter exists in the neutron star core. Our results significantly constrain the dense matter EOS and are furthermore consistent with constraints from both heavy-ion collisions and theoretical studies of neutron matter. We predict a relatively weak dependence of the symmetry energy on the density and a value for the neutron skin thickness of lead which is less than 0.20 fm, results that are testable in forthcoming experiments.
Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter.
Bang, W; Albright, B J; Bradley, P A; Vold, E L; Boettger, J C; Fernández, J C
2016-01-01
Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1-100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly with temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. These simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement. PMID:27405664
Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics
Beane, S R; Cohen, S D; Detmold, W; Lin, H -W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Walker-Loud, A
2012-10-01
The low-energy neutron-{Sigma}{sup -} interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m{sub pi} ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
Ion beam heated target simulations for warm dense matter physics and inertial fusion energy
NASA Astrophysics Data System (ADS)
Barnard, J. J.; Armijo, J.; Bailey, D. S.; Friedman, A.; Bieniosek, F. M.; Henestroza, E.; Kaganovich, I.; Leung, P. T.; Logan, B. G.; Marinak, M. M.; More, R. M.; Ng, S. F.; Penn, G. E.; Perkins, L. J.; Veitzer, S.; Wurtele, J. S.; Yu, S. S.; Zylstra, A. B.
2009-07-01
Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy-related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single-pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam-target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies.
ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY
Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.
2008-08-01
Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.
Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy
Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B
2008-08-12
Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.
A Unique U.S. Approach for Accelerator-Driven Warm Dense Matter Research--Preliminary Report
Logan, B G; Davidson, R C; Barnard, J J; Lee, R
2004-12-22
The warm density matter regime of high energy density physics [1, 2, 3] has a high scientific discovery potential for the properties of plasmas at high densities and pressures and at moderate temperatures (kT) in which the Coulomb interaction energy between plasma particles exceed kT. This leads to correlations in the plasma characterized by the dimensionless ''coupling'' parameter {Lambda} > 1, where {Lambda} is defined by {Lambda} = q{sup 2}n{sup 1/3}/kT. Here q is the effective ion charge and n the ion density. Strongly-coupled plasmas with {Lambda} > 1 are difficult to study analytically and by numerical simulation. Many astrophysical systems (e.g., brown dwarfs, and giant planets) and inertial fusion plasmas in the beginning stages of compression fall into this regime. There is an opportunity to develop improved understanding and models through accurate measurements of properties in the large parameter space of temperature and density where data is currently limited or non-existent. X-ray free-electron lasers (Fourth generation light sources), ultra-short pulse and high energy optical lasers, pulsed-power z-pinch x-ray sources, and high explosives are all capable of producing warm dense matter conditions at various temperatures, pressures, and sample sizes. Therefore, the challenge is not how to create warm dense matter conditions, but to create it so that it's fundamental properties can be best studied. The goal is to advance this field of science through a variety of complementary facilities and methods which offer several combinations of desirable attributes: Precise control and uniformity of energy deposition; Large sample sizes compared to diagnostic resolution volumes; A benign environment for diagnostics (low debris and radiation background); High shot rates (10/hour to 1/second) and multiple beamlines/target chambers; and Sites with easy access for broad participation by university scientists and students; and with the technical support for designing
Symmetric and anti-symmetric Landau parameters and magnetic properties of dense quark matter
NASA Astrophysics Data System (ADS)
Pal, Kausik; Dutt-Mazumder, Abhee K.
2010-05-01
We calculate the dimensionless Fermi liquid parameters (FLPs), F0,1sym and F0,1asym, for spin asymmetric dense quark matter. In general, the FLPs are infrared divergent due to the exchange of massless gluons. To remove such divergences, the hard density loop (HDL) corrected gluon propagator is used. The FLPs so determined are then invoked to calculate magnetic properties such as magnetization
Thermodynamic instabilities in warm and dense asymmetric nuclear matter and in compact stars
NASA Astrophysics Data System (ADS)
Lavagno, A.; Gervino, G.; Pigato, D.
2016-01-01
We investigate the possible thermodynamic instability in a warm and dense nuclear medium where a phase transition from nucleonic matter to resonance-dominated Δ-matter can take place. Such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase transition, the nucleonic and the Δ-matter phase have a different isospin density in the mixed phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon- Δmatter phase transition due essentially to a Δ- excess in the Δ-matter phase in asymmetric nuclear matter. In this context we also discuss the relevance of Δ-isobar degrees of freedom in the bulk properties and in the maximum mass of compact stars.
Apparatus and method for creating a photonic densely-accumulated ray-point
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.
Thermal properties of hot and dense matter with finite range interactions
NASA Astrophysics Data System (ADS)
Constantinou, Constantinos; Muccioli, Brian; Prakash, Madappa; Lattimer, James M.
2015-08-01
We explore the thermal properties of hot and dense matter using a model that reproduces the empirical properties of isospin symmetric and asymmetric bulk nuclear matter, optical-model fits to nucleon-nucleus scattering data, heavy-ion flow data in the energy range 0.5-2 GeV/A , and the largest well-measured neutron star mass of 2 M⊙ . This model, which incorporates finite range interactions through a Yukawa-type finite range force, is contrasted with a conventional zero range Skyrme model. Both models predict nearly identical zero-temperature properties at all densities and proton fractions, including the neutron star maximum mass, but differ in their predictions for heavy-ion flow data. We contrast their predictions of thermal properties, including their specific heats, and provide analytical formulas for the strongly degenerate and nondegenerate limits. We find significant differences in the results of the two models for quantities that depend on the density derivatives of nucleon effective masses. We show that a constant value for the ratio of the thermal components of pressure and energy density expressed as Γth=1 +(Pth/ɛth) , often used in simulations of proto-neutron stars and merging compact object binaries, fails to adequately describe results of either nuclear model. The region of greatest discrepancy extends from subsaturation densities to a few times the saturation density of symmetric nuclear matter. Our results suggest alternate approximations for the thermal properties of dense matter that are more realistic.
Constraining the State of Ultra-dense Matter with the Neutron Star Interior Composition Explorer
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko
2016-04-01
[This presentation is submitted on behalf of the entire NICER Science Team] The state of cold matter at densities exceeding those of atomic nuclei remains one of the principal outstanding problems in modern physics. Neutron stars provide the only known setting in the universe where these physical conditions can be explored. Thermal X-ray radiation from the physical surface of a neutron star can serve as a powerful tool for probing the poorly understood behavior of the matter in the dense stellar interior. For instance, realistic modeling of the thermal X-ray modulations observed from rotation-powered millisecond pulsars can produce stringent constraints on the neutron star mass-radius relation, and by extension the state of supra-nuclear matter. I will describe the prospects for precision neutron star equation of state constraints with millisecond pulsars using the forthcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.
Ultrabright x-ray laser scattering for dynamic warm dense matter physics
Fletcher, L. B.; Lee, H. J.; Doppner, T.; Galtier, E.; Nagler, B.; Heimann, P.; Fortmann, C.; Mao, T.; Millot, M.; Pak, A.; Turnbull, D.; Chapman, D. A.; Gericke, D. O.; Vorberger, J.; White, T.; Gregori, G.; Wei, M.; Barbrel, B.; Falcone, R. W.; Kao, C. -C.; Nuhn, H.; Welch, J.; Zastrau, U.; Neumayer, P.; Hastings, J. B.; Glenzer, S. H.
2015-03-23
In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ångström) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. Additionally, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.
Free-electron laser measurements of plasmons in warm dense matter
NASA Astrophysics Data System (ADS)
Gamboa, Eliseo
2014-10-01
Strong plasmon resonances characteristic of electron density fluctuations in warm dense matter (WDM) plasmas have recently been observed for the first time at the Linac Coherent Light Source (LCLS). These experiments record forward scattering from ultrabright 8 keV x-ray pulses to probe dynamically compressed solids driven by shaped ns laser pulses at the Matter in Extreme Conditions (MEC) instrument. From the x-ray scattering spectra we observe well-pronounced plasmon peaks that directly access the electron densities and temperatures. We can access densities >5 g/cm3 and pressures approaching 5 Mbar that are important for planetary and material science as well as inertial confinement fusion research. In this talk we characterize the plasmon loss against wavenumber-resolved x-ray scattering that provides an independent density measurement through shifted Bragg and ion-ion correlation scattering features. We will compare ideal plasma states achieved in heated aluminum with those measured from uncompressed and compressed CVD diamond. The latter shows plasmon energies strongly affected by the band structure up to the highest experimental pressures of several Mbar. This method is presently being applied in numerous experiments to characterize the physical properties of dense plasmas. We will describe the first demonstration of this technique at LCLS, present applications to characterize shocks in dense plasmas, and discuss novel ideas for measuring the properties of high-pressure materials.
Confronting effective models for deconfinement in dense quark matter with lattice data
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Brauner, Tomáš; Naylor, William R.
2015-12-01
Ab initio numerical simulations of the thermodynamics of dense quark matter remain a challenge. Apart from the infamous sign problem, lattice methods have to deal with finite volume and discretization effects as well as with the necessity to introduce sources for symmetry-breaking order parameters. We study these artifacts in the Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model and compare its predictions to existing lattice data for cold and dense two-color matter with two flavors of Wilson quarks. To achieve even qualitative agreement with lattice data requires the introduction of two novel elements in the model: (i) explicit chiral symmetry breaking in the effective contact four-fermion interaction, referred to as the chiral twist, and (ii) renormalization of the Polyakov loop. The feedback of the dense medium to the gauge sector is modeled by a chemical-potential-dependent scale in the Polyakov-loop potential. In contrast to previously used analytical Ansätze, we determine its dependence on the chemical potential from lattice data for the expectation value of the Polyakov loop. Finally, we propose adding a two-derivative operator to our effective model. This term acts as an additional source of explicit chiral symmetry breaking, mimicking an analogous term in the lattice Wilson action.
The neutron star radius and the dense-matter equation of state
NASA Astrophysics Data System (ADS)
Guillot, Sebastien; Servillat, M.; Webb, N.; Rutledge, R. E.
2014-01-01
A physical understanding of the behaviour of cold ultra-dense matter - at and above nuclear density - can only be achieved by the study of neutron stars, and the thermal emission from quiescent low-mass X-ray binaries inside globular clusters have proven very useful for that purpose. The recent 1.97±0.04 Msun measurement for the radio pulsar PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of states (EoS) are disfavoured, in favour of hadronic "normal matter" EoSs. Over much of the neutron star mass-radius parameter space, "normal matter" EoSs produce lines of quasi-constant radii (within the measurement uncertainties, of about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to un-modelled spectrally hard components. Our results suggest a neutron star radius much smaller than previously reported, with a value Rns = 9.1±1.4 km, at 90% confidence, using conservative assumptions, which suggests that neutron start matter is best described by the softest "normal matter" equations of state.
Measuring the neutron star radius to constrain the dense-matter equation of state.
NASA Astrophysics Data System (ADS)
Guillot, Sebastien; Servillat, Mathieu; Webb, Natalie; Rutledge, Robert E.
2014-08-01
A physical understanding of the behaviour of cold ultra-dense matter - at and above nuclear density - can only be achieved by the study of neutron stars, and the thermal emission from quiescent low-mass X-ray binaries inside globular clusters have proven very useful for that purpose. The recent ~2M⊙ mass measurements suggest that strange quark matter and hyperons/kaons condensate equations of states (EoS) are disfavoured, in favour of hadronic "normal matter" EoSs. Over much of the neutron star mass-radius parameter space, "normal matter" EoSs produce lines of quasi-constant radii (within the measurement uncertainties, of about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to un-modelled spectrally hard components. Our results suggest a neutron star radius much smaller than previously reported, with a value RNS = 9.1±1.4 km, at 90% confidence, using conservative assumptions, which suggests that neutron star matter is best described by the softest "normal matter" equations of state.
NASA Astrophysics Data System (ADS)
Lavagno, A.; Gervino, G.; Pigato, D.
2014-03-01
We study a nonlinear nuclear equation of state in the framework of a relativistic mean field theory. We investigate the possible thermodynamic instability in a warm and dense asymmetric nuclear medium where a phase transition from nucleonic matter to resonance dominated Δ matter can take place. Such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase transition, the nucleonic and the Δ-matter phase have a different isospin density in the mixed phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon-Δ matter phase transition due essentially to a negative Δ-particles excess in asymmetric nuclear matter. In this context, we investigate also the effects of power law effects, due to the possible presence of nonextensive statistical mechanics effects.
X-ray Radiography and Scattering Diagnosis of Dense Shock-Compressed Matter
NASA Astrophysics Data System (ADS)
Lepape, Sebastien
2009-11-01
Spectrally resolved x-ray Thomson scattering is an established technique that allows characterizing Fermi degenerate dense plasmas accessible in laser shocked-compressed foil experiments. It has been used in a variety of experiments that, besides measuring plasma density and temperature, served as critical test for models that calculate important plasma parameters like structure factors, bound-free contributions, and ionization energy lowering in warm dense matter. Experiments realized at the TITAN facility at Lawrence Livermore National Laboratory apply ultra-short pulse laser produced K- x rays to characterize plasmas at pressures above 1.5 Mbar that are produced with an energetic nanosecond laser. High energy x-rays produced by the short pulse laser allow probing compressed matter with a high temporal resolution (about 10 ps). From collective and non-collective scattering spectra mass density of the compressed Boron is inferred. X-ray radiography has been used as an independent way to characterize the mass density of matter for identical drive conditions. Here, we use K- X rays in a point projection scheme to probe the shock wave. Densities ranging from 3 to 4 g/cc have been measured, in excellent agreement with the x-ray Thomson scattering data. These radiography data combined with accurate measurement of the Plasmon dispersion in shocked Boron help improving the accuracy of the collision model as well as structure factor calculation.
NDCX-II, A New Induction Linear Accelerator for Warm Dense Matter Research
Leitner, M.; Bieniosek, F.; Kwan, J.; Logan, G.; Waldron, W.; Barnard, J.J.; Friedman, A.; Sharp, B.; Gilson, E.; Davidson, R.
2009-06-01
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30 nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.
In Medium Properties of Charmed Strange Mesons in Dense Hadron ic Matter
NASA Astrophysics Data System (ADS)
Kumar, Sushil
2015-05-01
The medium modifications of the charmed strange mesons in the dense hadronic matter are investigated within chiral S U(4) model. The charmed strange meson properties modifies due to their interactions with the nucleons, hyperons and the scalar mesons (scalar-isoscalar mesons ( σ, ζ), scalar isovector meson ( δ)) in the dense hadronic medium. The various parameters used in the chiral model are obtained by fitting the vacuum baryon masses and saturation properties of nuclear matter. The non-linear coupled equations of the scalar fields are solved to obtain their baryon density, isospin and strangeness dependent values. Furthermore, the dispersion relations are derived for charmed strange mesons. Effects of isospin asymmetry and strangeness on the energies of charmed strange mesons are investigated. The in medium properties of charmed strange mesons can be particularly relevant to the experiments with neutron rich beams at the Facility for Antiproton and Ion Research (FAIR) at GSI, Germany, as well as to experiments at the Rare Isotope Accelerator (RIA) laboratory, USA. The present study of the in medium properties of charmed strange mesons will be of direct relevance for the observables from the compressed baryonic matter, resulting from the heavy ion collision experiments.
Using a Relativistic Electron Beam to Generate Warm Dense Matter for Equation of State Studies
Berninger, M.
2011-06-24
Experimental equation-of-state (EOS) data are difficult to obtain for warm dense matter (WDM)–ionized materials at near-solid densities and temperatures ranging from a few to tens of electron volts–due to the difficulty in preparing suitable plasmas without significant density gradients and transient phenomena. We propose that the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility can be used to create a temporally stationary and spatially uniform WDM. DARHT has an 18 MeV electron beam with 2 kA of current and a programmable pulse length of 20 ns to 200 ns. This poster describes how Monte Carlo n-Particle (MCNP) radiation transport and LASNEX hydrodynamics codes were used to demonstrate that the DARHT beam is favorable for avoiding the problems that have hindered past attempts to constrain WDM properties. In our concept, a 60 ns pulse of electrons is focused onto a small, cylindrical (1 mm diameter × 1 mm long) foam target, which is inside a stiff high-heat capacity tube that both confines the WDM and allows pressure measurements. In our model, the foam is made of 30% density Au and the tamper is a B4C tube. An MCNP model of the DARHT beam investigated electron collisions and the amount of energy deposited in the foam target. The MCNP data became the basis for a LASNEX source model, where the total energy was distributed over a 60 ns time-dependent linear ramp consistent with the DARHT pulse. We used LASNEX to calculate the evolution of the foam EOS properties during and after deposition. Besides indicating that a ~3 eV Au plasma can be achieved, LASNEX models also showed that the WDM generates a shock wave into the tamper whose speed can be measured using photonic Doppler velocimetry. EOS pressures can be identified to better than 10% precision. These pressures can be correlated to energy deposition with electron spectrometry in order to obtain the Au EOS. Radial uniformity in the DARHT beam was also investigated. To further obtain uniform radial
Comparison of electron transport calculations in warm dense matter using the Ziman formula
Burrill, D. J.; Feinblum, D. V.; Charest, M. R. J.; Starrett, C. E.
2016-02-10
The Ziman formulation of electrical conductivity is tested in warm and hot dense matter using the pseudo-atom molecular dynamics method. Several implementation options that have been widely used in the literature are systematically tested through a comparison to the accurate, but expensive Kohn–Sham density functional theory molecular dynamics (KS-DFT-MD) calculations. As a result, the comparison is made for several elements and mixtures and for a wide range of temperatures and densities, and reveals a preferred method that generally gives very good agreement with the KS-DFT-MD results, but at a fraction of the computational cost.
Feasibility study of measuring the temperature and pressure of warm dense matter.
Rambo, Patrick K.; Schwarz, Jens
2008-09-01
We have investigated the feasibility of making accurate measurements of the temperature and pressure of solid-density samples rapidly heated by the Z-Petawatt laser to warm dense matter (WDM) conditions, with temperatures approaching 100eV. The study focused specifically on the heating caused by laser generated proton beams. Based on an extensive literature search and numerical investigations, a WDM experiment is proposed which will accurately measure temperature and pressure based on optical emission from the surface and sample expansion velocity.
Evaluation Method for Thermal Conductivity in Warm Dense Matter by using Ruby Fluorescence Probe
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Kawaguchi, Yoshimasa; Ohuchi, Takumi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.
2016-03-01
We have proposed a concept of experimentally estimating thermal conductivity in warm dense matter from the ruby fluorescence. To reduce the dimension of the system, a cylindrically arranged sample tamped by the ruby capillary has been considered. From the estimated ruby temperature, in which is simulated by the time-dependent thermal diffusion in equation, the ruby fluorescence can be obtained from 0.5 mm to 0.6 mm. The results indicated that the low density regime as ρ/ρs < 0.004 is possible to evaluate the ruby fluorescence.
The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter
Faussurier, G.; Libby, S. B.; Silvestrelli, P. L.
2014-07-04
Here, we study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecture derived from string theory ideas.
Comparison of electron transport calculations in warm dense matter using the Ziman formula
NASA Astrophysics Data System (ADS)
Burrill, D. J.; Feinblum, D. V.; Charest, M. R. J.; Starrett, C. E.
2016-06-01
The Ziman formulation of electrical conductivity is tested in warm and hot dense matter using the pseudo-atom molecular dynamics method. Several implementation options that have been widely used in the literature are systematically tested through a comparison to the accurate, but expensive Kohn-Sham density functional theory molecular dynamics (KS-DFT-MD) calculations. The comparison is made for several elements and mixtures and for a wide range of temperatures and densities, and reveals a preferred method that generally gives very good agreement with the KS-DFT-MD results, but at a fraction of the computational cost.
Observations of continuum depression in warm dense matter with x-ray Thomson scattering.
Fletcher, L B; Kritcher, A L; Pak, A; Ma, T; Döppner, T; Fortmann, C; Divol, L; Jones, O S; Landen, O L; Scott, H A; Vorberger, J; Chapman, D A; Gericke, D O; Mattern, B A; Seidler, G T; Gregori, G; Falcone, R W; Glenzer, S H
2014-04-11
Detailed measurements of the electron densities, temperatures, and ionization states of compressed CH shells approaching pressures of 50 Mbar are achieved with spectrally resolved x-ray scattering. Laser-produced 9 keV x-rays probe the plasma during the transient state of three-shock coalescence. High signal-to-noise x-ray scattering spectra show direct evidence of continuum depression in highly degenerate warm dense matter states with electron densities ne>1024 cm-3. The measured densities and temperatures agree well with radiation-hydrodynamic modeling when accounting for continuum lowering in calculations that employ detailed configuration accounting. PMID:24765979
Finite-temperature exchange-correlation theory for dense, partially ionized matter
Ritchie, A B
2006-12-21
The importance of exchange-correlation in dense, partially-ionized matter at elevated temperatures is demonstrated using ab initio theoretical methods. Good agreement with the Kohn-Sham exchange model, as extended to finite temperatures by Gupta and Rajagopal, is obtained for the Be Hugoniot at maximum compression. Exchange correlation is achieved by calculating the quantum average of the electron-electron interaction using the spectral solution of the time-dependent Schrodinger equation, which is a superposition of eigenfunctions. The quantum average of the electron-electron interaction has strong temporal fluctuations about a stationary time average. The eigenfunctions calculated in the temporally fluctuating potential are sensibly stationary.
Properties of hot and dense matter from relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Braun-Munzinger, Peter; Koch, Volker; Schäfer, Thomas; Stachel, Johanna
2016-03-01
We review the progress achieved in extracting the properties of hot and dense matter from relativistic heavy ion collisions at the relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory and the large hadron collider (LHC) at CERN. We focus on bulk properties of the medium, in particular the evidence for thermalization, aspects of the equation of state, transport properties, as well as fluctuations and correlations. We also discuss the in-medium properties of hadrons with light and heavy quarks, and measurements of dileptons and quarkonia. This review is dedicated to the memory of Gerald E. Brown.
Characterization of warm dense matter produced by laser-accelerated high-energy protons
NASA Astrophysics Data System (ADS)
Nakatsutsumi, M.; Fuchs, J.; Mancic, A.; Robiche, J.; Renaudin, P.; Combis, P.; Dorchies, F.; Harmand, M.; Maynard, G.; Vassaux, J.; Mora, P.; Antici, P.; Fourmaux, S.; Audebert, P.
2008-11-01
Producing warm dense plasmas (WDM: solid density, few eV ˜ few 10s eV) is of interest for fundamental plasma physics or ICF. Laser-produced proton heating is of interest since they are short (<1ps) and deposit their energy volumetrically. Experiments were performed using the LULI 100 TW facility to create and characterize WDM. We used, (i) 2D time-resolved optical self-emission of the heated target, (ii) surface expansion velocity measurement through phase measurements of a reflecting probe beam, and (iii) x-ray absorption spectroscopy. We showed that we could produce quasi-uniform heating of solids, as suited for e.g. EoS measurements. Time-resolved solid-liquid-plasma transition has been measured, as well as energy-loss of MeV protons in warm dense plasmas.
Probing Dense Plasmas Created from Intense Irradiation of Solid Target in the XUV Domain
Dobosz, S.; Doumy, G.; Stabile, H.; Monot, P.; Bougeard, M.; Reau, F.; Martin, Ph.
2006-04-07
In this paper, electronic density and temperature have been inferred from XUV transmission through hot solid-density plasma created by high temporal contrast femtosecond irradiation of thin plastic foil target in the 1018W/cm2 intensity range. High order harmonics generated in pulsed gas jet are used as a probe beam. The initial plasma parameters are determined with an accuracy better than 15% on the 100fs time scale, by comparison of the transmission of two consecutive harmonics.
First-principles entropy calculations for liquid metals and warm dense matter
NASA Astrophysics Data System (ADS)
Desjarlais, Michael
2013-06-01
The total entropy is not an explicit or easily accessible quantity in first-principles molecular dynamics simulations. It is, however, an extremely important quantity for the calculation of total free energies and derived properties such as equilibrium phase boundaries. In shock experiments the entropy of the shock state determines the release isentrope. Recent advances in the calculation of the entropy for liquid metals and warm dense matter directly from the velocity history in quantum molecular dynamics simulations are presented. The method, a generalization of the 2PT method for classical molecular dynamics, significantly increases the accuracy of the method for systems with electronic entropy, spin degrees of freedom, and the softer interactions characteristic of liquid metals and warm dense matter. The results are compared to data and the results of indirect methods, such as coexistence simulations to determine phase boundaries. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Average-atom model combined with the hypernetted chain approximation applied to warm dense matter.
Hou, Yong; Bredow, Richard; Yuan, Jianmin; Redmer, Ronald
2015-03-01
We have combined the average-atom model with the hypernetted chain approximation (AAHNC) to describe the electronic and ionic structure in the warm dense matter regime. On the basis of the electronic and ionic structures, the x-ray Thomson scattering (XRTS) spectrum is calculated using the random-phase approximation. While the electronic structure is described within the average-atom model, the effects of other ions on the electronic structure are considered using an integral equation method of the theory of liquids, namely the hypernetted chain approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution. Finally, the electronic and ionic structures are determined self-consistently. The XRTS spectrum is calculated according to the Chihara formula, where the scattering contributions are divided into three components: elastic, bound-free, and free-free. Comparison of the present AAHNC results with other theoretical models and experimental data shows very good agreement. Thus the AAHNC model can give a reasonable description of the electronic and ionic structure in warm dense matter. PMID:25871231
Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC
Nouicer, Rachid
2015-05-29
Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quark-antiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons have been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, R_{AA}(p_{T}), for J/ψ in U + U collisions at √^{s}NN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.
Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC
Nouicer, Rachid
2015-05-29
Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quark-antiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons havemore » been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, RAA(pT), for J/ψ in U + U collisions at √sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.« less
NASA Astrophysics Data System (ADS)
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the
Stability of β-equilibrated dense matter and core-crust transition in neutron stars
NASA Astrophysics Data System (ADS)
Atta, Debasis; Basu, D. N.
2014-09-01
The stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y effective nucleon-nucleon interaction, the effects of the nuclear incompressibility on the proton fraction in neutron stars and the location of the inner edge of their crusts and core-crust transition density and pressure are investigated. The high-density behavior of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using β-equilibrated neutron star matter obtained from this effective interaction for a pure hadronic model agree with the recent observations of the massive compact stars. The density, pressure, and proton fraction at the inner edge separating the liquid core from the solid crust of neutron stars are determined to be ρt=0.0938 fm-3, Pt=0.5006 MeV fm-3, and xp (t)=0.0308, respectively.
Degenerate limit thermodynamics beyond leading order for models of dense matter
NASA Astrophysics Data System (ADS)
Constantinou, Constantinos; Muccioli, Brian; Prakash, Madappa; Lattimer, James M.
2015-12-01
Analytical formulas for next-to-leading order temperature corrections to the thermal state variables of interacting nucleons in bulk matter are derived in the degenerate limit. The formalism developed is applicable to a wide class of non-relativistic and relativistic models of hot and dense matter currently used in nuclear physics and astrophysics (supernovae, proto-neutron stars and neutron star mergers) as well as in condensed matter physics. We consider the general case of arbitrary dimensionality of momentum space and an arbitrary degree of relativity (for relativistic models). For non-relativistic zero-range interactions, knowledge of the Landau effective mass suffices to compute next-to-leading order effects, but for finite-range interactions, momentum derivatives of the Landau effective mass function up to second order are required. Results from our analytical formulas are compared with the exact results for zero- and finite-range potential and relativistic mean-field theoretical models. In all cases, inclusion of next-to-leading order temperature effects substantially extends the ranges of partial degeneracy for which the analytical treatment remains valid. Effects of many-body correlations that deserve further investigation are highlighted.
The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter
Faussurier, G.; Libby, S. B.; Silvestrelli, P. L.
2014-07-04
Here, we study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecturemore » derived from string theory ideas.« less
Hydrogen and helium under high pressure - A case for a classical theory of dense matter
NASA Astrophysics Data System (ADS)
Celebonovic, Vladan
1989-06-01
When subject to high pressure, H2 and He-3 are expected to undergo phase transitions, and to become metallic at a sufficiently high pressure. Using a semiclassical theory of dense matter proposed by Savic and Kasanin, calculations of phase transition and metallization pressure have been performed for these two materials. In hydrogen, metallization occurs at p(M) = (3.0 + or - 0.2) Mbar, while for helium the corresponding value is (106 + or - 1) Mbar. A phase transition occurs in helium at p(tr) = (10.0 + or - 0.4) Mbar. These values are close to the results obtainable by more rigorous methods. Possibilities of experimental verification of the calculations are briefly discussed.
Ab initio approach to model x-ray diffraction in warm dense matter.
Vorberger, J; Gericke, D O
2015-03-01
It is demonstrated how the static electron-electron structure factor in warm dense matter can be obtained from density functional theory in combination with quantum Monte Carlo data. In contrast to theories assuming well-separated bound and free states, this ab initio approach yields also valid results for systems close to the Mott transition (pressure ionization), where bound states are strongly modified and merge with the continuum. The approach is applied to x-ray Thomson scattering and compared to predictions of the Chihara formula whereby we use the ion-ion and electron-ion structure from the same simulations. The results show significant deviations of the screening cloud from the often applied Debye-like form. PMID:25871229
Design of an Extreme Ultraviolet Spectrometer Suite for Isochoric-Heated Warm-Dense-Matter Studies
NASA Astrophysics Data System (ADS)
Ivancic, S.; Stillman, C. R.; Nilson, P. M.; Froula, D. H.
2015-11-01
An ultrafast streaked extreme ultraviolet (XUV) spectrometer (5 to 35 nm) is in development for the measurement of warm dense matter (WDM). In contrast to other forms of pyrometry where the temperature is inferred from bulk x-ray emission, XUV emission is restricted to the sample surface, allowing for the measurement of temperature at the material-vacuum interface. The measurement of the surface temperature is of particular importance in constraining models for the release of WDM. The divergence of surface and bulk temperature measurements may indicate gradients in temperature in the target. Coupling the XUV spectrometer to an ultrafast streak camera allows for the observation of picosecond time-scale evolution of the surface layer temperature. Two high-throughput XUV spectrometers are being designed to measure the time-resolved and absolute XUV emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime
Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentsher, T; Glenzer, S H
2008-04-30
Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.
Input energy measurement toward warm dense matter generation using intense pulsed power generator
NASA Astrophysics Data System (ADS)
Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.
2016-05-01
In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.
X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition
NASA Astrophysics Data System (ADS)
Baczewski, A. D.; Shulenburger, L.; Desjarlais, M. P.; Hansen, S. B.; Magyar, R. J.
2016-03-01
X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.
X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition.
Baczewski, A D; Shulenburger, L; Desjarlais, M P; Hansen, S B; Magyar, R J
2016-03-18
X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium. PMID:27035307
NASA Astrophysics Data System (ADS)
Kritcher, Andrea Lynn
Material conditions in the high-energy-density-physics regime relevant for the study of planetary formation, the modeling of planetary composition, and for inertial confinement fusion experiments, such as on the future National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL), can be produced and studied in the laboratory using high powered lasers that shock compress material to pressures greater than > 1 Mbar. Measurement of the compression and heating of shock-compressed dense matter at high pressures is fundamental in the study and understanding of the physical and chemical properties of these extreme states. Investigation of the behavior of the ionic and elecronic properties in this regime is important to determine the equation of state and thermodynamic properties of materials under extreme conditions, that are not currently well understood. In previous work, x-ray Thomson scattering has been employed to characterize dense matter conditions, ne > 3 x 10 21cm-3, that cannot be probed using the well established technique of optical Thomson scattering. These experiments employed x-ray probes with a temporal resolution of 100 ps. However, for the full characterization of strong shocks in dense matter, an x-ray source that provides picosecond temporal resolution, i.e. K-alpha x-rays, is desirable. Presented in this thesis, are the first spectrally and temporally resolved x ray Thomson scattering measurements using ultrafast (10 ps) Ti K-alpha x-rays. These measurements have provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 nanosecond heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models, mainly dependent on choice of Equation of State (EOS). Here, the temperature evolution of the target at various times during shock progression was characterized from the
Neutron star merger, gravitational waves, and the dense matter equation of state
NASA Astrophysics Data System (ADS)
Sekiguchi, Yuichiro
2014-09-01
The equation of state of dense matter that determines properties of the neutron star also characterizes the dynamics and gravitational waveforms emitted during binary neutron-star mergers. Understanding the effects of the equation of state on them requires numerical-relativity simulations of the mergers and a number of strategies for extracting information of equation of sate from gravitational waves have been proposed. Furthermore, recent numerical-relativity simulations also clarified that the neutron-star equation of state has a significant impact on the r-process nucleosynthesis which proceeds in the neutron-rich ejecta of the mergers. The r-process in the mergers has been accumulated wide interests both as a possible origin of heavy nuclei and a promising electro-magnetic counterpart to gravitational waves. I will review these topics and discuss possible feedbacks to the nuclear physics. The equation of state of dense matter that determines properties of the neutron star also characterizes the dynamics and gravitational waveforms emitted during binary neutron-star mergers. Understanding the effects of the equation of state on them requires numerical-relativity simulations of the mergers and a number of strategies for extracting information of equation of sate from gravitational waves have been proposed. Furthermore, recent numerical-relativity simulations also clarified that the neutron-star equation of state has a significant impact on the r-process nucleosynthesis which proceeds in the neutron-rich ejecta of the mergers. The r-process in the mergers has been accumulated wide interests both as a possible origin of heavy nuclei and a promising electro-magnetic counterpart to gravitational waves. I will review these topics and discuss possible feedbacks to the nuclear physics. Supported by the JSPS Grant-in-Aid for Scientific Research (24244028, 25103510), Scientific Research on Innovative Area (20105004), and HPCI Strategic Program.
Going to Extremes: Pulsar Gives Insight on Ultra Dense Matter and Magnetic Fields
NASA Astrophysics Data System (ADS)
2004-12-01
A long look at a young pulsar with NASA's Chandra X-ray Observatory revealed unexpectedly rapid cooling, which suggests that it contains much denser matter than previously expected. The pulsar's cool temperature and the vast magnetic web of high-energy particles that surrounds it have implications for the theory of nuclear matter and the origin of magnetic fields in cosmic objects. Animation: Layers of Chandra's 3-Color Image Animation: Layers of Chandra's 3-Color Image An international team of scientists used the Chandra data to measure the temperature of the pulsar at the center of 3C58, the remains of a star observed to explode in the year 1181. Chandra's image of 3C58 also shows spectacular jets, rings and magnetized loops of high-energy particles generated by the pulsar. "We now have strong evidence that, in slightly more than 800 years, the surface of the 3C58 pulsar has cooled to a temperature of slightly less than a million degrees Celsius," said Patrick Slane of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and lead author on a paper describing these results in the November 20, 2004 issue of The Astrophysical Journal. "A million degrees may sound pretty hot, but for a young neutron star that's like the frozen tundra in Green Bay, Wisconsin." Optical & Chandra X-ray Composite of 3C58 Optical & Chandra X-ray Composite of 3C58 Pulsars are formed when the central core of a massive star collapses to create a dense object about 15 miles across that is composed almost entirely of neutrons. Collisions between neutrons and other subatomic particles in the interior of the star produce neutrinos that carry away energy as they escape from the star. This cooling process depends critically on the density and type of particles in the interior, so measurements of the surface temperature of pulsars provide a way to probe extreme conditions where densities are so high that our current understanding of how particles interact with one another is limited
Mixing rules for optical and transport properties of warm, dense matter
Kress, Joel D; Horner, Daniel A; Collins, Lee A
2009-01-01
The warm, dense matter (WDM) regime requires a sophisticated treatment since neither ideal gas laws or fully ionized plasma models apply. Mixtures represent the predominant form of matter throughout the universe and the ability to predict the properties of a mixture, though direct simulation or from convolution of the properties of the constituents is both a challenging prospect and an important goal. Through quantum molecular dynamics (QMD), we accurately simulate WDM and compute equations of state, transport, and optical properties of such materials, including mixtures, in a self-consistent manner from a single simulation. With the ability to directly compute the mixture properties, we are able to validate mixing rules for combining the optical and dynamical properties of Li and H separately to predict the properties of lithium hydride (LiH). We have examined two such mixing rules and extend them to morphologies beyond a simple liquid alloy. We have also studied a mixture of polyethylene and aluminum at T = 1 eV.
Equation of state studies of warm dense matter samples heated by laser produced proton beams
NASA Astrophysics Data System (ADS)
Hoarty, D. J.; Guymer, T.; James, S. F.; Gumbrell, E.; Brown, C. R. D.; Hill, M.; Morton, J.; Doyle, H.
2012-03-01
Heating of matter by proton beams produced by short pulse, laser-solid target interaction has been demonstrated over the last ten years by a number of workers. In the work described in this paper heating by a pulse of laser produced protons has been combined with high-resolution soft x-ray radiography to record the expansion of thin wire targets. Analysis of the radiographs yields material properties in the warm dense matter regime. These measurements imply initial temperatures in the experimental samples over a range from 14 eV up to 40 eV; the sample densities varied from solid to a tenth solid density. Assuming an adiabatic expansion after the initial proton heating phase isentropes of the aluminium sample material were inferred and compared to tabulated data from the SESAME equation of state library. The proton spectrum was also measured using calibrated magnetic spectrometers and radiochromic film. The accuracy of the technique used to infer material data is discussed along with possible future development.
NASA Astrophysics Data System (ADS)
Kotick, Jordan; Schumaker, Will; Condamine, Florian; Albert, Felicie; Barbrel, Benjamin; Galtier, Eric; Granados, Eduardo; Ravasio, Alessandra; Glenzer, Siegfried
2015-11-01
Laser wakefield acceleration (LWFA) has been shown to produce short X-ray pulses from betatron oscillations of electrons within the plasma wake. These betatron X-rays pulses have a broad, synchrotron-like energy spectrum and a duration on the order of the driving laser pulse, thereby enabling probing of ultrafast interactions. Using the 1 J, 40fs short-pulse laser at the Matter in Extreme Conditions experimental station at LCLS, we have implemented LWFA to generate and subsequently characterized betatron X-rays. Notch filtering and single photon counting techniques were used to measure the betatron X-ray spectrum while the spatial profile was measured using X-ray CCDs and image plates. We used an ellipsoidal mirror to focus the soft betatron X-rays for pump-probe studies on various targets in conjunction with LCLS X-ray and optical laser pulses. This experimental platform provides the conditions necessary to do a detailed study of warm-dense matter dynamics on the ultrafast time-scale.
Thermodynamic instabilities in dense asymmetric nuclear matter and in compact stars
NASA Astrophysics Data System (ADS)
Lavagno, A.; Drago, A.; Pagliara, G.; Pigato, D.
2014-07-01
We investigate the presence of thermodynamic instabilities in compressed asymmetric baryonic matter, reachable in high energy heavy ion collisions, and in the cold β-stable compact stars. To this end we study the relativistic nuclear equation of state with the inclusion of Δ-isobars and require the global conservation of baryon and electric charge numbers. Similarly to the low density nuclear liquid-gas phase transition, we show that a phase transition can occur in dense asymmetric nuclear matter and it is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the electric charge concentration). Such thermodynamic instabilities can imply a very different electric charge fraction Z/A in the coexisting phases during the phase transition and favoring an early formation of Δ- particles with relevant phenomenological consequences in the physics of the protoneutron stars and compact stars. Finally, we discuss the possible co-existence of very compact and very massive compact stars in terms of two separate families: compact hadronic stars and very massive quark stars.
Optical Response of Warm Dense Matter Using Real-Time Electron Dynamics
NASA Astrophysics Data System (ADS)
Baczewski, Andrew; Shulenburger, Luke; Desjarlais, Michael; Magyar, Rudolph
2014-03-01
The extreme temperatures and solid-like densities in warm dense matter present a unique challenge for theory, wherein neither conventional models from condensed matter nor plasma physics capture all of the relevant phenomenology. While Kubo-Greenwood DFT calculations have proven capable of reproducing optical properties of WDM, they require a significant number of virtual orbitals to reach convergence due to their perturbative nature. Real-time TDDFT presents a complementary framework with a number of computationally favorable properties, including reduced cost complexity and better scalability, and has been used to reproduce the optical response of finite and ordered extended systems. We will describe the use of Ehrenfest-TDDFT to evolve coupled electron-nuclear dynamics in WDM systems, and the subsequent evaluation of optical response functions from the real-time electron dynamics. The advantages and disadvantages of this approach will be discussed relative to the current state-of-the-art. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Shimizu, Takafumi; Masai, Kuniaki; Koyama, Katsuji
2012-04-01
We carried out 3D-hydrodynamical calculations for the interaction of expanding supernova ejecta with the dense circumstellar matter (CSM) and the rarefied interstellar medium (ISM) outside. The CSM is composed of stellar-wind matter from the progenitor in its pre-supernova phase, and assumed to be axially symmetric: more matter around the equator than in the polar direction driven by rotation of the progenitor. Because of the high density of the CSM, the ionization state of the shock-heated ejecta quickly becomes equilibrium with the electron temperature. When the blast wave breaks out of the CSM into the rarefied ISM, the shocked ejecta cools rapidly due to adiabatic expansion, and hence an over-ionized/recombining plasma would be left. The ejecta is reheated by the second reverse shock due to the interaction with the ISM. We calculated the emission measure of the supernova remnant (SNR) along the line of sight, and found that the over-ionized plasma appears to be bar-like with wings in the edge-on (equatorial view), while shell-like in the face-on (polar view) geometry with respect to the rotation axis. Hot gas heated by the blast wave exists in the outermost region of the SNR with a nearly complete shell, but the X-rays therefrom are too faint to be observable. Thus, depending on the viewing angle, the SNR of the over-ionized plasma would exhibit a center-filled morphology in X-rays, like W 49 B, a mixed-morphology SNR. The bar-like structure is swept out by the second reverse shock and disappears eventually, and then the SNR becomes shell-like in both the equatorial and polar views in the later phase of evolution.
Mo, M. Z.; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Sokolowski-Tinten, K.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; et al
2016-08-04
We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less
NASA Astrophysics Data System (ADS)
Sasaki, Toru; Miki, Yasutoshi; Tachinami, Fumitaka; Saito, Hirotaka; Takahashi, Takuya; Anzai, Nobuyuki; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.
2014-01-01
In order to explore high energy density physics, we have performed WDM experiment by using several pulsed-power devices. To generate well-defined warm dense state for evaluating electrical conductivity and its properties, we have proposed an isochoric heating of foamed metal by using pulsed-power discharge. The proposed technique yields the electrical conductivity of warm dense matter with a well-defined temperature. To observe the warm dense matter, a pulsed-power generator based on a pulse-forming-network (PFN) was studied toward generating an intense point-spot-like X-ray source from X-pinch technique. From comparison of the designing and the actual inductances of the X-pinch system, the actual inductance of X-pinch system is 3.5 times higher than the designing inductance. To reduce the total inductance of X-pinch system, we will modify the gap switch system such as multi spake gap.
Tkachenko, Svetlana; Romanova, Vera; Mingaleev, Albert; Ter-Oganesyan, Alexey; Shelkovenko, Tatiana; Pikuz, Sergey
2009-01-21
Distribution of dense and current-conducting matter upon electrical wire explosion using electrical, optical, and UV diagnostics was studied. Wires of 25 {mu}m diameter and 12 mm length were exploded in vacuum by 10 kA current pulse having a 50 A/ns rate of current rise.
Results from an Orion proton heating experiment for Warm Dense Matter studies
NASA Astrophysics Data System (ADS)
Allan, Peter; James, Steven; Brown, Colin; Hobbs, Lauren; Hill, Matthew; Hoarty, David; Chen, Hui; Hazi, Andy; AWE Team; LLNL Team
2014-10-01
The properties of warm dense matter covering densities and temperatures in the ranges 0.1-10x solid and 1-100eV, fall between ideal plasma and condensed matter theories. Studies have highlighted uncertainties in EoS predictions using methods based on the Thomas-Fermi and ion-cell models. In particular, such models predict large departures from ideal gas behaviour for low Z material at low densities and temperatures. In an extension of previous work, material has been isochorically heated using short-pulse laser-generated proton beams. Here, the method of Foord et al. was used toinfer isentropes oflow Z materials and provide data to validate model predictions. Earlier measurements were limited by the eV backlighterenergy to relatively low densities and pressures below 1.5Mbar, and were conducted in cylindrical geometry. More recent experiments performed at the Orion laser use a parabolic crystal imaging system in order to measure to higher pressures by probing planar expansion of aluminium foils at 1.8keV. The imaging system is described and results are presented showing a spatial resolution of 6um, which was then streaked to give temporal resolution of 10ps. Preliminary analysis of the foil expansion indicates a peak temperature of 30eV. The proton and ion spectra used to heat the sample were measured by a magnetic spectrometer and a Thomson parabola. These results are presented and the effect on the measured expansion discussed. Plans for future measurements are discussed in the light of results obtained so far.
Short intense ion pulses for materials and warm dense matter research
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
Li, Dafang; Liu, Haitao; Zeng, Siliang; Wang, Cong; Wu, Zeqing; Zhang, Ping; Yan, Jun
2014-01-01
By performing quantum molecular dynamics (QMD) simulations, we investigate the equation of states, electrical and optical properties of the expanded beryllium at densities two to one-hundred lower than the normal solid density, and temperatures ranging from 5000 to 30000 K. With decreasing the density of Be, the optical response evolves from the one characteristic of a simple metal to the one of an atomic fluid. By fitting the optical conductivity spectra with the Drude-Smith model, it is found that the conducting electrons become localized at lower densities. In addition, the negative derivative of the electrical resistivity on temperature at density about eight lower than the normal solid density demonstrates that the metal to nonmetal transition takes place in the expanded Be. To interpret this transition, the electronic density of states is analyzed systematically. Furthermore, a direct comparison of the Rosseland opacity obtained by using QMD and the standard opacity code demonstrates that QMD provides a powerful tool to validate plasma models used in atomic physics approaches in the warm dense matter regime. PMID:25081816
Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime
Kress, J. D.; Cohen, James S.; Horner, D. A.; Collins, L. A.; Lambert, F.
2010-09-15
We have calculated viscosity and mutual diffusion of deuterium-tritium (DT) in the warm, dense matter regime for densities from 5 to 20 g/cm{sup 3} and temperatures from 2 to 10 eV, using both finite-temperature Kohn-Sham density-functional theory molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD). The OFMD simulations are in generally good agreement with the benchmark QMD results, and we conclude that the simpler OFMD method can be used with confidence in this regime. For low temperatures (3 eV and below), one-component plasma (OCP) model simulations for diffusion agree with the QMD and OFMD calculations, but deviate by 30% at 10 eV. In comparison with the QMD and OFMD results, the OCP viscosities are not as good as for diffusion, especially for 5 g/cm{sup 3} where the temperature dependence is significantly different. The QMD and OFMD reduced diffusion and viscosity coefficients are found to depend largely, though not completely, only on the Coulomb coupling parameter {Gamma}, with a minimum in the reduced viscosity at {Gamma}{approx_equal}25, approximately the same position found in the OCP simulations. The QMD and OFMD equations of state (pressure) are also compared with the hydrogen two-component plasma model.
A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter
NASA Astrophysics Data System (ADS)
Fang, Chung
2016-07-01
The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.
Linear accelerator design study with direct plasma injection scheme for warm dense matter
Kondo, K.; Kanesue, T; Okamura, M.
2011-03-28
Warm Dense Matter (WDM) is a challenging science field, which is related to heavy ion inertial fusion and planetary science. It is difficult to expect the behavior because the state with high density and low temperature is completely different from ideal condition. The well-defined WDM generation is required to understand it. Moderate energy ion beams ({approx} MeV/u) slightly above Bragg peak is an advantageous method for WDM because of the uniform energy deposition. Direct Plasma Injection Scheme (DPIS) with a Interdigital H-mode (IH) accelerator has a potential for the beam parameter. We show feasible parameters of the IH accelerator for WDM. WDM physics is a challenging science and is strongly related to Heavy Ion Fusion science. WDM formation by Direct Plasma Injection Scheme (DPIS) with IH accelerator, which is a compact system, is proposed. Feasible parameters for IH accelerator are shown for WDM state. These represents that DPIS with IH accelerator can access a different parameter region of WDM.
Short Intense Ion Pulses for Materials and Warm Dense Matter Research
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
PLANS FOR WARM DENSE MATTER EXPERIMENTS AND IFE TARGET EXPERIMENTS ON NDCX-II
Waldron, W.L.; Barnard, J.J.; Bieniosek, F.M.; Friedman, A.; Henestroza, E.; Leitner, M.; Logan, B.G.; Ni, P.A.; Roy, P.K.; Seidl, P.A.; Sharp, W.M.
2008-09-22
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is currently developing design concepts for NDCX-II, the second phase of the Neutralized Drift Compression Experiment, which will use ion beams to explore Warm Dense Matter (WDM) and Inertial Fusion Energy (IFE) target hydrodynamics. The ion induction accelerator will consist of a new short pulse injector and induction cells from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). To fit within an existing building and to meet the energy and temporal requirements of various target experiments, an aggressive beam compression and acceleration schedule is planned. WDM physics and ion-driven direct drive hydrodynamics will initially be explored with 30 nC of lithium ions in experiments involving ion deposition, ablation, acceleration and stability of planar targets. Other ion sources which may deliver higher charge per bunch will be explored. A test stand has been built at Lawrence Berkeley National Laboratory (LBNL) to test refurbished ATA induction cells and pulsed power hardware for voltage holding and ability to produce various compression and acceleration waveforms. Another test stand is being used to develop and characterize lithium-doped aluminosilicate ion sources. The first experiments will include heating metallic targets to 10,000 K and hydrodynamics studies with cryogenic hydrogen targets.
Electronic Contributions to the Equation-of-State of Warm Dense Matter*
NASA Astrophysics Data System (ADS)
Albritton, J. R.; Liberman, D. A.; Sonnad, V.; Young, D. A.; Reisman, D. B.; Cauble, R. C.
2001-10-01
We describe calculations with the INFERNO[1] atom-in-jellium model to produce single-shock Hugoniot curves for aluminum, copper, and still other elements, from their normal initial density and also from "expanded" states of initial density of about 1/10 normal. These calculations address the regime of "warm-dense-matter", the former in support of experiments toward maximum compression, and the latter in support of experiments toward isentropic compression. INFERNO provides the electronic contributions to the internal energy and pressure, and ideal-gas or QEOS[2] atomic nuclear contributions complete the scheme. We compare INFERNO’s fully quantum-mechanical treatment of electrons with the familiar Thomas-Fermi model. We also investigate the one-component-plasma[3] model for the non-ideal contributions of atomic ions in strongly-coupled plasmas. [1] D.A. Liberman, Phys Rev B, 20, 4981 (1979) [2] R.M. More, K.H. Warren, D.A. Young, and G.B. Zimmerman, Phys Fluids, 31, 3059 (1988) [3] H. DeWitt, W. Slattery, and Gilles Chabrier, Physica B, 228, 21 (1996) *This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Generalized Beth–Uhlenbeck approach to mesons and diquarks in hot, dense quark matter
Blaschke, D.; Buballa, M.; Dubinin, A.; Röpke, G.; Zablocki, D.
2014-09-15
An important first step in the program of hadronization of chiral quark models is the bosonization in meson and diquark channels. This procedure is presented at finite temperatures and chemical potentials for the SU(2) flavor case of the NJL model with special emphasis on the mixing between scalar meson and scalar diquark modes which occurs in the 2SC color superconducting phase. The thermodynamic potential is obtained in the Gaussian approximation for the meson and diquark fields and it is given in the Beth–Uhlenbeck form. This allows a detailed discussion of bound state dissociation in hot, dense matter (Mott effect) in terms of the in-medium scattering phase shift of two-particle correlations. It is shown for the case without meson–diquark mixing that the phase shift can be separated into a continuum and a resonance part. In the latter, the Mott transition manifests itself by a change of the phase shift at threshold by π in accordance with Levinson’s theorem, when a bound state transforms to a resonance in the scattering continuum. The consequences for the contribution of pionic correlations to the pressure are discussed by evaluating the Beth–Uhlenbeck equation of state in different approximations. A similar discussion is performed for the scalar diquark channel in the normal phase. Further developments and applications of the developed approach are outlined.
PROGRESS IN BEAM FOCUSING AND COMPRESSION FOR WARM-DENSE MATTER EXPERIMENTS
Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Calanog, J.; Chen, A.X.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.K.; Van den Bogert, K.; Waltron, W.L.; Welch, D.R.
2008-09-25
The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using spacecharge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has beendemonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlledramps and forced neutralization. Using an injected 30-mA K+ ion beam with initialkinetic energy 0.3 MeV, axial compression leading to ~;;50-fold current amplification andsimultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to our Neutralized Drift Compression Experiment and associated beam diagnostics that are under development to reach the necessary higher beam intensities, including: (1) greater axial compression via a longer velocity ramp using a new bunching module with approximately twice the available voltseconds; (2) improved centroid control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time-dependent focusing elements to correct considerable chromatic aberrations; and (4) plasma injection improvements to establish a plasma density always greater than the beam density, expected to be>1013 cm-3.
A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter
NASA Astrophysics Data System (ADS)
Fang, Chung
2015-07-01
The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.
Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments
Seidl, Peter; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.A.; Waldron, W.L.; Welch, D.R.
2009-04-17
The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30 mA K{sup +} ion beam with initial kinetic energy 0.3 MeV, axial compression leading to {approx}50X current amplification and simultaneous radial focusing to a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to NDCX to reach the necessary higher beam intensities, including: beam diagnostics, greater axial compression via a longer velocity ramp; and plasma injection improvements to establish a plasma density always greater than the beam density, expected to be > 10{sup 13} cm{sup -3}.
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; et al
2015-11-11
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics tomore » be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-11
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10^{10} ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li^{+} ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
NASA Technical Reports Server (NTRS)
Ofek, E.O; Fox, D.; Cenko, B.; Sullivan, M.; Gnat, O.; Frail A.; Horesh, A.; Corsi, A; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Filippenko, A. V.; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D; Arcavi, L.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J.
2012-01-01
The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (so-called shock breakout) in optically thick (tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into 8. collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift-XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 type-IIn SNe, one type-Ibn SN and eiht hydrogen-poor super-luminous SNe (SLSN-I; SN 2005ap like). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSl\\l. Therefore, we suggest that their optical light curves are powered by shock breakout in CSM. We show that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock breakout model. We conclude that the light curves of some, but not all, type-IIn/Ibn SNe are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all the SLSN-I events, our X-ray limits are not deep enough and were typically obtained at too early times (i.e., near the SN maximum light) to conclude about their nature. Late time X-ray observations are required in order to further test if these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakOut in a wind profile. We argue that the time scale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. The optical light curves of SNe, for which the X-ray emission peaks at late times, are likely powered by the
NASA Technical Reports Server (NTRS)
Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Fillippenko, A. V; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J..
2013-01-01
The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above
Propagation in compressed matter of hot electrons created by short intense lasers
NASA Astrophysics Data System (ADS)
Batani, D.; Bernardinello, A.; Masella, V.; Pisani, F.; Koenig, M.; Krishnan, J.; Benuzzi, A.; Ellwi, S.; Hall, T.; Norreys, P.; Djaoui, A.; Neely, D.; Rose, S.; Fews, P.; Key, M.
1998-02-01
We performed the first experimental study of propagation in compressed matter of hot electrons created by a short pulse intense laser. The experiment has been carried out with the VULCAN laser at Rutherford compressing plastic targets with two ns laser beams at an intensity ⩾1014W/cm2. A CPA beam with an intensity ⩾1016W/cm2 irradiated the rear side of the target and created hot electrons propagating through the compressed matter. K-α emission was used as diagnostics of hot electron penetration by putting a chloride plastic layer inside the target.
NASA Astrophysics Data System (ADS)
Schönlein, A.; Boutoux, G.; Pikuz, S.; Antonelli, L.; Batani, D.; Debayle, A.; Franz, A.; Giuffrida, L.; Honrubia, J. J.; Jacoby, J.; Khaghani, D.; Neumayer, P.; Rosmej, O. N.; Sakaki, T.; Santos, J. J.; Sauteray, A.
2016-05-01
We studied the interaction of a high-intensity laser with mass-limited Ti-wires. The laser was focused up to 7× 1020 \\text{W/cm}2 , with contrast of 10-10 to produce relativistic electrons. High-spatial-resolution X-ray spectroscopy was used to measure isochoric heating induced by hot electrons propagating along the wire up to 1 mm depth. For the first time it was possible to distinguish surface target regions heated by mixed plasma mechanisms from those heated only by the hot electrons that generate warm dense matter with temperatures up to 50 eV. Our results are compared to simulations that highlight both the role of electron confinement inside the wire and the importance of resistive stopping powers in warm dense matter.
Importance of finite-temperature exchange correlation for warm dense matter calculations
NASA Astrophysics Data System (ADS)
Karasiev, Valentin V.; Calderín, Lázaro; Trickey, S. B.
2016-06-01
The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014), 10.1103/PhysRevLett.112.076403] parametrized from restricted path-integral Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T -dependent densities. Both Kohn-Sham (KS) and orbital-free density-functional theories are used, depending upon computational resource demands. Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T =15 kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is T ≥7200 K for the T -dependent XC, a result that the ground-state XC underestimates by about 1000 K.
Importance of finite-temperature exchange correlation for warm dense matter calculations.
Karasiev, Valentin V; Calderín, Lázaro; Trickey, S B
2016-06-01
The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.076403] parametrized from restricted path-integral Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T-dependent densities. Both Kohn-Sham (KS) and orbital-free density-functional theories are used, depending upon computational resource demands. Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T=15 kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is T≥7200 K for the T-dependent XC, a result that the ground-state XC underestimates by about 1000 K. PMID:27415377
Theory of X-ray Thomson scattering in warm dense matter
NASA Astrophysics Data System (ADS)
Wunsch, Kathrin
This thesis presents the theoretical framework required to apply spectrally resolved x-ray Thomson scattering (XRTS) as a diagnostic method for warm dense matter. In particular, the theory is generalised to allow for the description of systems with multiple ion species where all mutual correlations are taken into account within the new approach. Supplemented with the theory presented, XRTS is now a promising diagnostics for high-energy-density matter containing different chemical elements or mixtures of different materials. The signal measured at XRTS contains the unshifted Rayleigh peak and frequency-shifted features. The first is related to elastic scattering from electrons co-moving with the ions whilst the second occurs due to scattering from free electrons and excitation/ionisation events. The focus of this thesis lies on the elastic scattering feature which requires the ion structure and the electron density around the ion as input for the theoretical modelling. The ion structure is obtained from quantum simulations (DFT-MD) and classical hypernetted-chain (HNC) equations. The analysis of the DTF-MD simulation data reveals that partial ionisation yields strong modifications of the ion-ion interactions. Similar effects are found for the form of the electron screening cloud around an ion. On the basis of the newly developed theory and structural models, multicomponent effects on the XRTS signal are studied. It is shown that the Rayleigh feature is very sensitive to the ratio of the elements in the scattering volume and their mutual correlations. These results indicate that XRTS is well-suited to probe the properties of complex materials and the process of mixing in the WDM regime. The advanced theories are finally applied to experimental spectra. The procedure allows for both extracting the basic plasma parameters and assessing the quality of the theoretical models applied. Comparisons with several experiments demonstrated that the non-collective regime (large
The origin of rotation, dense matter physics and all that: a tribute to Pavle Savić.
NASA Astrophysics Data System (ADS)
Čelebonović, V.
1995-04-01
This is a review of the main physical ideas and examples of applicability in astrophysics and pure physics of a semiclassical theory of dense matter proposed by Pavle Savićand Radivoje Kašanin in the early sixties. A hypothesis, advanced by Savić with the aim of solving the problem of the origin of rotation of celestial bodies, will also be discussed. The paper is dedicated to the memory of Pavle Savić.
Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter
Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.
2010-04-26
This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and
NASA Astrophysics Data System (ADS)
Hayashi, Ryota; Kashine, Kenji; Tokuchi, Akira; Tamura, Fumihiro; Watabe, Arata; Kudo, Takahiro; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.; Jiang, Weihua
2016-03-01
An evaluation method for warm dense matter (WDM) with similar timescale in inertial confinement fusion (ICF) by isochoric heating using intense pulsed power generator ETIGO-II is considered for evaluating target behavior. The temperature increase of the sample is estimated from the numerical calculation using the measured current. As a result, in the case that the shape of sample is ϕ2 mm x 10 mm and the density is 0.01 times solid density of copper, the temperature of sample increases up to 30000 K. It is expected that the WDM is generated using the proposed method with ICF implosion timescale.
Veysman, M; Röpke, G; Winkel, M; Reinholz, H
2016-07-01
Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles stopping; and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon, and argon plasmas. PMID:27575226
NASA Astrophysics Data System (ADS)
Veysman, M.; Röpke, G.; Winkel, M.; Reinholz, H.
2016-07-01
Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles stopping; and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon, and argon plasmas.
Schmitt, Andreas; Stetina, Stephan; Tachibana, Motoi
2011-02-15
We discuss the phase structure of dense matter, in particular, the nature of the transition between hadronic and quark matter. Calculations within a Ginzburg-Landau approach show that the axial anomaly can induce a critical point in this transition region. This is possible because in three-flavor quark matter with instanton effects a chiral condensate can be added to the color-flavor locked phase without changing the symmetries of the ground state. In (massless) two-flavor quark matter such a critical point is not possible since the corresponding color superconductor (2SC) does not break chiral symmetry. We study the effects of a nonzero but finite strange quark mass which interpolates between these two cases. Since at ultrahigh density the first reaction of the color-flavor locked phase to a nonzero strange quark mass is to develop a kaon condensate, we extend previous Ginzburg-Landau studies by including such a condensate. We discuss the fate of the critical point systematically and show that the continuity between hadronic and quark matter can be disrupted by the onset of a kaon condensate. Moreover, we identify the mass terms in the Ginzburg-Landau potential which are needed for the 2SC phase to occur in the phase diagram.
NASA Astrophysics Data System (ADS)
Studenikin, A. I.
2008-04-01
We present quite a powerful method in investigations of different phenomena that can appear when neutrinos and electrons propagate in background matter. This method implies use of exact solutions of modified Dirac equations that contain the correspondent effective potentials accounting for the matter influence on particles. For several particular cases the exact solutions of modified Dirac and Dirac-Pauli equations for a neutrino and an electron in the background environment of different composition are obtained (the case of magnetized matter is also considered). Neutrino reflection, trapping, neutrino pair creation and annihilation in matter and neutrino energy quantization in a rotating medium are discussed. The neutrino Green functions in matter are also derived. The two recently proposed mechanisms of electromagnetic radiation by a neutrino and an electron in matter (the spin light of neutrino and electron, SLν and SLe) are considered. A possibility to introduce an effective 'matter-induced Lorentz force' acting on a neutrino and an electron is discussed. A new mechanism of electromagnetic radiation that can be emitted by an electron moving in the neutrino background with nonzero gradient of density is predicted.
A Unified Equation for the Reaction Rate in Dense Matter Stars
Gasques, L. R.; Wiescher, M.; Yakovlev, D. G.
2007-10-26
We analyze thermonuclear and pycnonuclear reaction rates in multi-component dense stellar plasma. First we describe calculations of the astrophysical S-factor at low energies using the Sao Paulo potential on the basis of the barrier penetration model. Then we present a simple phenomenological expression for a reaction rate. The expression contains several fit parameters which we adjust to reproduce the best microscopic calculations available in the literature.
Backward Raman compression of x-rays in metals and warm dense matters
Son, S.; Ku, S.; Moon, Sung Joon
2010-11-15
Experimentally observed decay rate of the long wavelength Langmuir wave in metals and dense plasmas is orders of magnitude larger than the prediction of the prevalent Landau damping theory. The discrepancy is explored, and the existence of a regime where the forward Raman scattering is stable and the backward Raman scattering is unstable is examined. The amplification of a x-ray pulse in this regime, via the backward Raman compression, is computationally demonstrated, and the optimal pulse duration and intensity is estimated.
Athena's Constraints on the Dense Matter Equation of State from Quiescent Low Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Guillot, Sebastien
2016-07-01
The study of neutron star quiescent low-mass X-ray binaries (qLMXBs) will address one of the science goals of the Athena X-ray observatory. The study of the soft X-ray thermal emission from the neutron star surface in qLMXBs is a crucial tool to place constrains on the dense matter equation of state and understand the interior structure of neutron stars. I will briefly review this method, its strengths and current weaknesses and limitations, as well as the current constraints on the equation of state from qLMXBs. The superior sensitivity of Athena will permit the acquisition of unprecedentedly high signal-to-noise spectra from these sources. It has been demonstrated that a single qLMXB, even with a high signal-to-noise spectrum, will not place useful constraints on the dense matter equation of state. However, a combination of qLMXB spectra has shown great promises of obtaining tight constraints on the equation of state. I will discuss the expected prospects for observations of qLMXBs and in particular, I will show that very tight constraints on the equation of state can be obtained from the observations of qLMXBs with the Athena X-ray observatory (even with a 10 % uncertainty on the flux calibration).
Hioki, Nanako; Kuma, Kenshi; Morita, Yuichirou; Sasayama, Ryouhei; Ooki, Atsushi; Kondo, Yoshiko; Obata, Hajime; Nishioka, Jun; Yamashita, Youhei; Nishino, Shigeto; Kikuchi, Takashi; Aoyama, Michio
2014-01-01
The location and magnitude of oceanic iron sources remain uncertain owing to a scarcity of data, particularly in the Arctic Ocean. The formation of cold, dense water in the subsurface layer of the western Arctic Ocean is a key process in the lateral transport of iron, macronutrients, and other chemical constituents. Here, we present iron, humic-like fluorescent dissolved organic matter, and nutrient concentration data in waters above the continental slope and shelf and along two transects across the shelf-basin interface in the western Arctic Ocean. We detected high concentrations in shelf bottom waters and in a plume that extended in the subsurface cold dense water of the halocline layer in slope and basin regions. At σθ = 26.5, dissolved Fe, humic-like fluorescence intensity, and nutrient maxima coincided with N* minima (large negative values of N* indicate significant denitrification within shelf sediments). These results suggest that these constituents are supplied from the shelf sediments and then transported laterally to basin regions. Humic dissolved organic matter probably plays the most important role in the subsurface maxima and lateral transport of dissolved Fe in the halocline layer as natural Fe-binding organic ligand. PMID:25345398
NASA Astrophysics Data System (ADS)
Nättilä, J.; Steiner, A. W.; Kajava, J. J. E.; Suleimanov, V. F.; Poutanen, J.
2016-06-01
The cooling phase of thermonuclear (type-I) X-ray bursts can be used to constrain neutron star (NS) compactness by comparing the observed cooling tracks of bursts to accurate theoretical atmosphere model calculations. By applying the so-called cooling tail method, where the information from the whole cooling track is used, we constrain the mass, radius, and distance for three different NSs in low-mass X-ray binaries 4U 1702-429, 4U 1724-307, and SAX J1810.8-260. Care is taken to use only the hard state bursts where it is thought that the NS surface alone is emitting. We then use a Markov chain Monte Carlo algorithm within a Bayesian framework to obtain a parameterized equation of state (EoS) of cold dense matter from our initial mass and radius constraints. This allows us to set limits on various nuclear parameters and to constrain an empirical pressure-density relationship for the dense matter. Our predicted EoS results in NS a radius between 10.5-12.8 km (95% confidence limits) for a mass of 1.4 M⊙, depending slightly on the assumed composition. Because of systematic errors and uncertainty in the composition, these results should be interpreted as lower limits for the radius.
Visualizing expanding warm dense matter heated by laser-generated ion beams
Bang, Woosuk
2015-08-24
This PowerPoint presentation concluded with the following. We calculated the expected heating per atom and temperatures of various target materials using a Monte Carlo simulation code and SESAME EOS tables. We used aluminum ion beams to heat gold and diamond uniformly and isochorically. A streak camera imaged the expansion of warm dense gold (5.5 eV) and diamond (1.7 eV). GXI-X recorded all 16 x-ray images of the unheated gold bar targets proving that it could image the motion of the gold/diamond interface of the proposed target.
The four basic ways of creating dark matter through a portal
Chu, Xiaoyong; Hambye, Thomas; Tytgat, Michel H.G. E-mail: thambye@ulb.ac.be
2012-05-01
We consider the possibility that along the thermal history of the Universe, dark matter (DM) would have been created from Standard Model particles, either through a kinetic mixing portal to an extra U(1) gauge field, or through the Higgs portal. Depending solely on the DM particle mass, on the portal and on the DM hidden sector interaction, we show how the observed DM relic density can be obtained. There are four possible freeze-in/reannihilation/freeze-out regimes, which together result in a simple characteristic relic density phase diagram, with the shape of a ''Mesa''. In the case of the kinetic mixing portal, we show that, unlike other freeze-in scenarios discussed in the literature, the freeze-in regime can be probed by forthcoming DM direct detection experiments. These results are well representative of any scenario where a DM hidden sector would be created out of the Standard Model (sector)
Dense Dark Matter Hairs Spreading Out from Earth, Jupiter, and Other Compact Bodies
NASA Astrophysics Data System (ADS)
Prézeau, G.
2015-12-01
It is shown that compact bodies project out strands of concentrated dark matter filaments, henceforth simply called hairs. These hairs are a consequence of the fine-grained stream structure of dark matter halos, and as such constitute a new physical prediction of ΛCDM. Using both an analytical model of planetary density and numerical simulations utilizing the Fast Accurate Integrand Renormalization algorithm (a fast geodesics calculator described below) with realistic planetary density inputs, dark matter streams moving through a compact body are shown to produce hugely magnified dark matter densities along the stream velocity axis passing through the center of the body. Typical hair density enhancements are 107 for Earth and 108 for Jupiter. The largest enhancements occur for particles streaming through the core of the body that are mostly focused at a single point called the root of the hair. For the Earth, the root is located at about 106 km from the planetary center with a density enhancement of around 109 while for a gas giant like Jupiter, the root is located at around 105 km with an enhancement of around 1011. Beyond the root, the hair density precisely reflects the density layers of the body, providing a direct probe of planetary interiors.
Kaon properties in dense nuclear matter: are there experimental evidences of in medio effects?
Mangiarotti, A.
2009-06-03
Beyond the general interest for nuclear matter theory, the K{sup -} in medio mass modification could have important astrophysical consequences. Experimental evidences of how a nuclear medium affects K{sup +} and K{sup -} properties will be summarised. To reach a firm conclusion about the K{sup -}, the missing information on the flow will be shown to be still relevant.
Phase transitions in dense matter and the maximum mass of neutron stars
NASA Astrophysics Data System (ADS)
Chamel, N.; Fantina, A. F.; Pearson, J. M.; Goriely, S.
2013-05-01
Context. The recent precise measurement of the mass of pulsar PSR J1614-2230, as well as observational indications of even more massive neutron stars, has revived the question of the composition of matter at the high densities prevailing inside neutron-star cores. Aims: We study the impact on the maximum possible neutron-star mass of an "exotic" core consisting of non-nucleonic matter. For this purpose, we study the occurrence of a first-order phase transition in nucleonic matter. Methods: Given the current lack of knowledge of non-nucleonic matter, we consider the stiffest possible equation of state subject only to the constraints of causality and thermodynamic stability. The case of a hadron-quark phase transition is discussed separately. The purely nucleonic matter is described using a set of unified equations of state that have been recently developed to permit a consistent treatment of both homogeneous and inhomogeneous phases. We then compute the mass-radius relation of cold nonaccreting neutron stars with and without exotic cores from the Tolman-Oppenheimer-Volkoff equations. Results: We find that even if there is a significant softening of the equation of state associated with the actual transition to an exotic phase, there can still be a stiffening at higher densities closer to the center of the star that is sufficient to increase the maximum possible mass. However, with quarks the maximum neutron-star mass is always reduced by assuming that the sound speed is limited by c/√3 as suggested by QCD calculations. In particular, by invoking such a phase transition, it becomes possible to support PSR J1614-2230 with a nucleonic equation of state that is soft enough to be compatible with the kaon and pion production in heavy-ion collisions.
Mizeikis, Vygantas; Vailionis, Arturas; Gamaly, Eugene G.; Yang, Wenge; Rode, Andrei V.; Juodkazis, Saulius
2012-06-26
We describe synthesis of a new super-dense phase of aluminum under extreme pressure and temperature conditions created by laser-induced microexplosions in sapphire. Micro explosions in sub-micrometer sized regions of sapphire were induced by tightly-focused femtosecond laser pulses with a temporal length of {approx} 100 fs and an energy of {approx} 100 nJ. Fast, explosive expansion of photogenerated high-density plasma created strong heating and pressure transients with peak temperature and pressure of {approx} 105 K and 10 TPa, respectively. Partial decomposition of sapphire in the shock-compressed sapphire led to formation of nanocrystalline bcc-Al phase, which is different from ambient fcc-Al phase, and was permanently preserved by fast quenching. The existence of super-dense bcc-Al phase was confirmed using X-ray diffraction technique. This is the first observation of bcc-Al phase, which so far has been only predicted theoretically, and a demonstration that laser-induced micro explosions technique enables simple, safe and cost-efficient access to extreme pressures and temperatures without the tediousness typical to traditional techniques that use diamond anvil cells, gas guns, explosives, or megajoule-class lasers.
LPM Interference and Cherenkov-like Gluon Bremsstrahlung in DenseMatter
Majumder, Abhijit; Wang, Xin-Nian
2005-07-26
Gluon bremsstrahlung induced by multiple parton scattering in a finite dense medium has a unique angular distribution with respect to the initial parton direction. A dead-cone structure with an opening angle; theta2{sub 0}; approx 2(1-z)/(zLE) for gluons with fractional energy z arises from the Landau-Pomeran chuck-Migdal (LPM) interference. In a medium where the gluon's dielectric constant is; epsilon>1, the LPM interference pattern is shown to become Cherenkov-like with an increased opening angle determined by the dielectric constant$/cos2/theta{sub c}=z+(1-z)//epsilon$. For a large dielectric constant/epsilon; gg 1+2/z2LE, the corresponding total radiative parton energy loss is about twice that from normal gluon bremsstrahlung. Implications of this Cherenkov-like gluon bremsstrahlung to the jet correlation pattern in high-energy heavy-ion collisions is discussed.
Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process
Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentscher, T; Landen, O L; Glenzer, S H
2006-09-25
Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare near solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.
Plasma cutoff and enhancement of radiative transitions in dense stellar matter
NASA Astrophysics Data System (ADS)
Shternin, P. S.; Yakovlev, D. G.
2009-06-01
We study plasma effects on radiative transitions (e.g., decay of excited states of atoms or atomic nuclei) in a dense plasma at the transition frequencies ω≲ωp (where ωp is the electron plasma frequency). The decay goes through four channels—the emission of real transverse and longitudinal plasmons as well as the emission of virtual transverse and longitudinal plasmons with subsequent absorption of such plasmons by the plasma. The emission of real plasmons dies out at ω≤ωp, but the processes with virtual plasmons strongly enhance the radiative decay. Applications of these results to radiative processes in white dwarf cores and neutron star envelopes are discussed.
Ishino, Masahiko Hasegawa, Noboru; Nishikino, Masaharu; Kawachi, Tetsuya; Yamagiwa, Mitsuru; Pikuz, Tatiana; Skobelev, Igor; Faenov, Anatoly; Inogamov, Nail
2014-11-14
We investigated the optical emission from the ablating surfaces induced by the irradiations of soft x-ray laser (SXRL) pulses with the aim of estimation of the maximum electron temperature. No emission signal in the spectral range of 400–800 nm could be observed despite the formation of damage structures on the target surfaces. Hence, we estimated an upper limit for the electron temperature of 0.4–0.7 eV for the process duration of 100–1000 ps. Our results imply that the ablation and/or surface modification by the SXRL is not accompanied by plasma formation but is induced by thermo-mechanical pressure, which is so called a spallative ablation. This spallative ablation process occurs in the low electron temperature region of a non-equilibrium state of warm dense matter.
NASA Astrophysics Data System (ADS)
Pérez-García, M. Ángeles; Martins, C. J. A. P.
2012-12-01
We discuss the coupled variations of the gravitational, strong and electroweak coupling constants and the current knowledge of the nuclear equation of state based on heavy ion collision experiments and neutron star mass-radius relationship. In particular we focus in our description on phenomenological parameters, R, relating variations in the quantum chromodynamics scale ΛQCD and the fine structure constant α, and S, relating variations of v, the Higgs vacuum expectation value and the Yukawa couplings, h, in the quark sector. This parametrization is valid for any model where gauge coupling unification occurs at some (unspecified) high energy scale. From a physically motivated set of equations of state for dense matter we obtain the constrained parameter phase space (R,S) in high density nuclear environments. This procedure is complementary to (although currently less powerful than) those used in low-density conditions. For variations of Δα/α=0.005 we find that the obtained constrained parameter lies on a strip region in the (R,S) plane that partially overlaps some of the allowed values of parameters derived from primordial abundances. This may be of interest in the context of unification scenarios where a dense phase of the universe may have existed at early times.
Simulation of electromagnetic and strange probes of dense nuclear matter at NICA/MPD
NASA Astrophysics Data System (ADS)
Zinchenko, A.; Kolesnikov, V.; Vasendina, V.
2016-01-01
The main task of the NICA/MPD physics program is a study of the properties of nuclear matter under extreme conditions achieved in collisions of heavy ions. These properties can reveal themselves through different probes, the most promising among those being the lepton-antilepton pairs and strange hadrons. In this paper the MPD performance for measuring the electron-positron pairs and strange hyperons in central Au+Au collisions at NICA energies is presented.
Approach to the propagation of massive neutrinos in dense matter by Wigner functions
NASA Astrophysics Data System (ADS)
Sirera Tomas, Miguel
The problem of massive neutrinos comes from Grant Unification Theories but also from the so called Neutrino Solar Puzzle. The solution of this puzzle seems to be in the neutrinos physics and to need that the neutrinos are particles with mass. The possible mass of the neutrinos is not only important for Solar Neutrinos but also in other astrophysical environments such as Supernovae, Neutron Stars or The Early Universe. If the neutrinos are particles with mass, or at least one of their generations, oscillations are produced in both vacuum and matter. The oscillation in matter could cause the so called MSW effect, that transforms a neutrino flavour to another. The problem of the propagation of neutrinos in matter has been dealt with by many authors who have usually solved the covariant motion equations, and sometimes by Green Functions. In this work, this has been done using statistical techniques by Wigner Functions, which do not only allow us to study the propagation ways but also to know the behavior of the neutrinos field in equilibrium. On the other hand, the astrophysical systems, that we have commented above, yield a great amount of neutrinos which spread through them and are finally emitted to space, and so it is important to have a transport equation that explain how a neutrinos distribution is spread which is not in equilibrium. It is possible to achieve this equation by motion equations of the Wigner Functions.
X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse
NASA Astrophysics Data System (ADS)
Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.
2007-05-01
Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.
Kritcher, A; Neumayer, P; Lee, H J; Doeppner, T; Falcone, R; Glenzer, S; Morse, E C
2008-05-05
We discuss the first successful K-{alpha} x-ray Thomson scattering experiment from solid density plasmas for use as a diagnostic in determining the temperature, density, and ionization state of warm dense matter with picosecond resolution. The development of this source as a diagnostic and stringent requirements for successful K-{alpha} x-ray Thomson scattering are addressed. Data for the experimental techniques described in this paper [1] suggest the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future Free Electron Lasers (FEL) where comparable scattering signal levels are predicted.
Hot and dense hadronic matter in an effective mean-field approach
Lavagno, A.
2010-04-15
We investigate the equation of state of hadronic matter at finite values of baryon density and temperature reachable in high-energy heavy-ion collisions. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number, electric charge fraction, and zero net strangeness. We consider an effective relativistic mean-field model with the inclusion of DELTA isobars, hyperons, and the lightest pseudoscalar and vector meson degrees of freedom. In this context, we study the influence of the DELTA-isobar degrees of freedom in the hadronic equation of state and, in connection, the behavior of different particle-antiparticle ratios and strangeness production.
Antistrange meson-baryon interaction in hot and dense nuclear matter
NASA Astrophysics Data System (ADS)
Cabrera, D.; Tolós, L.; Aichelin, J.; Bratkovskaya, E.
2014-11-01
We present a study of in-medium cross sections and (off-shell) transition rates for the most relevant binary reactions for strange pseudoscalar meson production close to threshold in heavy-ion collisions at energies available at the Facility for Antiproton and Ion Research. Our results rely on a chiral unitary approach in coupled channels which incorporates the s and p waves of the kaon-nucleon interaction. The formalism, which is modified in the hot and dense medium to account for Pauli blocking effects, mean-field binding on baryons, and pion and kaon self-energies, has been improved to implement unitarization and self-consistency for both the s - and the p -wave interactions at finite temperature and density. This gives access to in-medium amplitudes in several elastic and inelastic coupled channels with strangeness content S =-1 . The obtained total cross sections mostly reflect the fate of the Λ (1405 ) resonance, which melts in the nuclear environment, whereas the off-shell transition probabilities are also sensitive to the in-medium properties of the hyperons excited in the p -wave amplitudes [Λ ,Σ , and Σ*(1385 ) ]. The single-particle potentials of these hyperons at finite momentum, density, and temperature are also discussed in connection with the pertinent scattering amplitudes. Our results are the basis for future implementations in microscopic transport approaches accounting for off-shell dynamics of strangeness production in nucleus-nucleus collisions.
Landau levels of cold dense quark matter in a strong magnetic field
NASA Astrophysics Data System (ADS)
Wen, Xin-Jian; Liang, Jun-Jun
2016-07-01
The occupied Landau levels of strange quark matter are investigated in the framework of the SU(3) NJL model with a conventional coupling and a magnetic-field dependent coupling respectively. At lower density, the Landau levels are mainly dominated by u and d quarks. Threshold values of the chemical potential for the s quark onset are shown in the μ -B plane. The magnetic-field-dependent running coupling can broaden the region of three-flavor matter by decreasing the dynamical masses of s quarks. Before the onset of s quarks, the Landau level number of light quarks is directly dependent on the magnetic field strength B by a simple inverse proportional relation ki ,max≈Bi0/B with Bd0=5 ×1 019 G , which is approximately 2 times Bu0 of u quarks at a common chemical potential. When the magnetic field increases up to Bd0, almost all three flavors are lying in the lowest Landau level.
Hard photons and neutral pions as probes of hot and dense nuclear matter
NASA Astrophysics Data System (ADS)
Schutz, Y.; Martínez, G.; Marqués, F. M.; Marín, A.; Matulewicz, T.; Ostendorf, R. W.; Bożek, P.; Delagrange, H.; Díaz, J.; Franke, M.; Gudima, K. K.; Hlaváč, S.; Holzmann, R.; Lautridou, P.; Lefèvre, F.; Löhner, H.; Mittig, W.; Płoszajczak, M.; van Pol, J. H. G.; Québert, J.; Roussel-Chomaz, P.; Schubert, A.; Siemssen, R. H.; Simon, R. S.; Sujkowski, Z.; Toneev, V. D.; Wagner, V.; Wilschut, H. W.; Wolf, Gy.
1997-02-01
The dynamics of heavy-ion collisions is studied in an energy domain in the vicinity of the Fermi energy. The early history of the collision is analyzed from the theoretical and experimental point of view in which the message conveyed by bremsstrahlung photons and neutral pions is exploited. The Boltzmann-Uehling-Uhlenbeck model and the Dubna Cascade Model, both based on similar principles but each adopting different computation technics, are briefly described and their respective predictions are discussed. In particular the emission pattern of bremsstrahlung photons is discussed. The photon production has been measured in the systems 86Kr+ 58Ni at 60 A MeV, 181Ta+ 197Au at 40 A MeV and 208Pb+ 197Au at 30 A MeV and energy spectra, angular distributions and two-photon correlations have been analyzed. We find that bremsstrahlung photons are emitted from two distinct sources that can be correlated with nuclear-matter density oscillations. The properties of photon emission are discussed in terms of collective properties of nuclear matter. The high energy tail of the photon spectrum is interpreted by π0 and Δ decay but predominantly by radiative capture of pions. The π0 absorption in the nuclear medium is further analyzed by examining their emission pattern.
Free-electron x-ray laser measurements of collisionally-damped plasmons in warm dense matter
NASA Astrophysics Data System (ADS)
Sperling, Philipp; Gamboa, Eliseo; Chung, Hyun; Omarbakiyeva, Yultuz; Reinholz, Heidi; Röpke, Gerd; Zastrau, Ulf; Fletcher, Luke; Lee, Hae-Ja; Glenzer, Siegfried
2015-06-01
In this talk, we will discuss the first measurement of strong collisions and dynamical screening effects affecting the electron-ion collisions and the electric conductivity of solid matter. We observed collisionally-damped plasmons in highly-spectrally resolved measurements of x-ray scattering from isochorically heated solid aluminum, which permits the first determination of the effects of dynamical screening and strong electron-ion collisions on the dynamic electrical conductivity. X-ray pulses from the seeded Linac Coherent Light Source delivering an average of 0 . 3 mJ of 8 keV x-ray photons in a 0 . 005 % bandwidth pulse, have been focused to micrometer diameter focal spots isochorically heating solid aluminum foils to temperatures up to 6 eV. The forward scattering spectra show plasmons that directly determine the temperature from detailed balance indicating a warm dense matter state. These experiments show a reduced electrical conductivity as well as a non-quadratic plasmon dispersion relation best described by taking into account electron-electron collisions as well as strong electron-ion collisions and dynamical screening effects that are beyond the Born approximation. These findings will affect measurements in the compressed density regime.
X-ray continuum emission spectroscopy from hot dense matter at Gbar pressures
Kraus, D. Falcone, R. W.; Döppner, T.; Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Hawreliak, J. A.; Landen, O. L.; Ma, T.; Le Pape, S.; Swift, D. C.; Chapman, D. A.; Glenzer, S. H.; Neumayer, P.
2014-11-15
We have measured the time-resolved x-ray continuum emission spectrum of ∼30 times compressed polystyrene created at stagnation of spherically convergent shock waves within the Gbar fundamental science campaign at the National Ignition Facility. From an exponential emission slope between 7.7 keV and 8.1 keV photon energy and using an emission model which accounts for reabsorption, we infer an average electron temperature of 375 ± 21 eV, which is in good agreement with HYDRA-1D simulations.
X-ray continuum emission spectroscopy from hot dense matter at Gbar pressures.
Kraus, D; Döppner, T; Kritcher, A L; Bachmann, B; Chapman, D A; Collins, G W; Glenzer, S H; Hawreliak, J A; Landen, O L; Ma, T; Le Pape, S; Neumayer, P; Swift, D C; Falcone, R W
2014-11-01
We have measured the time-resolved x-ray continuum emission spectrum of ∼30 times compressed polystyrene created at stagnation of spherically convergent shock waves within the Gbar fundamental science campaign at the National Ignition Facility. From an exponential emission slope between 7.7 keV and 8.1 keV photon energy and using an emission model which accounts for reabsorption, we infer an average electron temperature of 375 ± 21 eV, which is in good agreement with HYDRA-1D simulations. PMID:25430182
Heavy vector and axial-vector mesons in hot and dense asymmetric strange hadronic matter
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Chhabra, Rahul
2015-09-01
We calculate the effects of finite density and temperature of isospin asymmetric strange hadronic matter, for different strangeness fractions, on the in-medium properties of vector (D*,Ds*,B*,Bs*) and axial-vector (D1,D1 s,B1,B1 s) mesons, using the chiral hadronic SU(3) model and QCD sum rules. We focus on the evaluation of in-medium mass-shift and shift in decay constant of above vector and axial-vector mesons. In the quantum chromodynamics sum rule approach, the properties, e.g., the masses and decay constants of vector and axial-vector mesons are written in terms of quark and gluon condensates. These quark and gluon condensates are evaluated in the present work within the chiral SU(3) model, through the medium modification of scalar-isoscalar fields σ and ζ , the scalar-isovector field δ , and the scalar dilaton field χ , in the strange hadronic medium which includes both nucleons as well as hyperons. As we shall see in detail, the masses and decay constants of heavy vector and axial-vector mesons are affected significantly from isospin asymmetry and the strangeness fraction of the medium, and these modifications may influence the experimental observables produced in heavy-ion collision experiments. The results of present investigations of in-medium properties of vector and axial-vector mesons at finite density and temperature of strange hadronic medium may be helpful for understanding the experimental data from heavy-ion collision experiments in particular for the compressed baryonic matter (CBM) experiment of the FAIR facility at GSI, Germany.
Creating a Community to Strengthen the Broader Impacts of Condensed Matter Physics Research
NASA Astrophysics Data System (ADS)
Adenwalla, Shireen; Bosley, Jocelyn; Voth, Gregory; Smith, Leigh
The Broader Impacts (BI) merit criteria set out by the National Science Foundation are essential for building the public support necessary for science to flourish. Condensed matter physicists (CMP) have made transformative impacts on our society, but these are often invisible to the public. Communicating the societal benefits of our research can be challenging, because CMP consists of many independent research groups for whom effective engagement in the public arena is not necessarily a forte. Other BI activities, such as engaging K-12 students and teachers to increase scientific literacy and strengthen the STEM workforce, may be very effective, but these are often isolated and short in duration. To increase the visibility of CMP and to make the implementation of BI activities more efficient, we have created a website with two sides: a public side to communicate to a broad audience exciting scientific discoveries in CMP and the technologies they enable, and a private side for condensed matter researchers to communicate with one another about effective broader impact activities. Here we discuss the content of the new website, and the best practices we have identified for communicating the excitement of CMP research to the broadest possible audience. Nsf-DMR 1550737, 1550724 and 1550681.
Charge state and stopping dynamics of fast heavy ions in dense matter
Rosmej, O. N.; Blazevic, A.; Korostiy, S.; Bock, R.; Hoffmann, D. H. H.; Pikuz, S. A. Jr.; Efremov, V. P.; Fortov, V. E.; Fertman, A.; Mutin, T.; Pikuz, T. A.; Faenov, A. Ya.
2005-11-15
K-shell radiation of fast heavy ions penetrating solid matter was used to analyze the stopping dynamics of ions over more than 80% of the stopping path. The most important advantage of this method is that the data is obtained with a high spatial resolution directly from the interaction volume. In experiments 11.4 MeV/u Ca projectile were slowed down in solid quartz and low-density SiO{sub 2} aerogel targets. Characteristic projectile and target spectra in the photon energy range of 1.5-4 keV were registered by means of spherically bent crystal spectrometers with high spectral and spatial resolution in the direction of the ion beam propagation. K-shell spectra of heavy ions induced by close collisions with target atoms provided information about the projectile charge state and velocity dynamics. The line intensity distribution of the K-shell transitions arising from ions with different ion charges represents the charge state distribution along the ion beam track. The variation of the line Doppler shift due to the ion deceleration in the target material was used to determine the ion velocity dynamics. The spectroscopic analysis of the stopping process was complemented by measurements of the energy loss and ion charge state distribution after the ion beam emerged from the target using a standard time-of-flight method and magnet spectrometer.
Indications for a Critical End Point in the Phase Diagram for Hot and Dense Nuclear Matter
NASA Astrophysics Data System (ADS)
Lacey, Roy A.
2015-04-01
Excitation functions for the Gaussian emission source radii difference (Rout2-Rside2) obtained from two-pion interferometry measurements in Au +Au (√{sN N }=7.7 - 200 GeV ) and Pb +Pb (√{sN N }=2.76 TeV ) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T ,μB) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates Tcep˜165 MeV and μBcep˜95 MeV for the location of the critical end point. The critical exponents (ν ≈0.66 and γ ≈1.2 ) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class.
Neutron stars, fast pulsars, supernovae and the equation of state of dense matter
Glendening, N.K.
1989-06-01
We discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neutron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general theory of relativity is correct at the macroscopic scale. If the millisecond pulses briefly observed in the remnant of SN1987A can be attributed to uniform rotation of a pulsar, then a very severe constraint is placed on the equation of state. The theory again is very secure. The precise nature of the constraint is not yet understood, but it appears that the equation of state must be neither too soft nor stiff, and it may be that there is information not only on the stiffness of the equation of state but on its shape. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Not even the broad category of mechanism for the explosion is agreed upon (prompt shock, delayed shock, or nuclear explosion). In connection with very fast pulsars, we include some speculations on pure quark matter stars, and on possible scenarios for understanding the disappearance of the fast pulsar in SN1987A. 47 refs., 16 figs., 1 tab.
Measurements of soft and intermediate p photons from hot and dense matter at RHIC-PHENIX
NASA Astrophysics Data System (ADS)
PHENIX Collaboration; Yamaguchi, Yorito; PHENIX Collaboration
2009-11-01
The measurements of direct photons in 1.0
matter is higher than the critical temperature of QGP. The d+Au data taken in 2008 are promising to evaluate the contribution of the nuclear effects due to its large statistics.
Indications for a critical end point in the phase diagram for hot and dense nuclear matter.
Lacey, Roy A
2015-04-10
Excitation functions for the Gaussian emission source radii difference (R_{out}^{2}-R_{side}^{2}) obtained from two-pion interferometry measurements in Au+Au (sqrt[s_{NN}]=7.7-200 GeV) and Pb+Pb (sqrt[s_{NN}]=2.76 TeV) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T,μ_{B}) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates T^{cep}∼165 MeV and μ_{B}^{cep}∼95 MeV for the location of the critical end point. The critical exponents (ν≈0.66 and γ≈1.2) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class. PMID:25910113
Observation of the critical end point in the phase diagram for hot and dense nuclear matter
NASA Astrophysics Data System (ADS)
Lacey, Roy
2015-10-01
Excitation functions for the Gaussian emission source radii difference (Rout2 -Rside2) obtained from two-pion interferometry measurements in Au+Au (√{sNN} = 7 . 7 - 200 GeV) and Pb+Pb (√{sNN} = 2 . 76 TeV) collisions, are studied for a broad range of collision centralities. The observed non-monotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature vs. baryon chemical potential (T ,μB) plane of the nuclear matter phase diagram. A Dynamic Finite-Size Scaling (DFSS) analysis of these data suggests a second order phase transition with the estimates Tcep 165 MeV and μBcep 95 MeV for the location of the critical end point. The critical exponents (ν 0 . 66 and γ 1 . 2) extracted via the same DFSS analysis, places this CEP in the 3D Ising model universality class. This research is supported by the US DOE under Contract DE-FG02-87ER40331.A008.
The in-medium effects on the neutrino reaction in dense matter
Cheoun, Myung-Ki; Kim, K. S.; Saito, Koichi; Kajino, Toshitaka; Tsushima, Kazuo
2014-01-01
The nucleon form factors in free space are usually thought to be modified when a nucleon is bound in a nucleus or immersed in a nuclear medium. We investigated effects of the density-dependent axial and weak-vector form factors on the electro-neutrino (ν{sub e}) and anti-electro-neutrino (¯ν{sub e}) reactions with incident energy E{sub v} ≤ 80 MeV via neutral current (NC) and charged current (CC) for a nucleon in a nuclear medium or ¹²C. For the density-dependent form factors, we exploited the quark-meson-coupling (QMC) model, and apply them to the ν{sub e} and ¯ν{sub e} induced reactions by NC and CC. In CC reaction, about 5 % decrease of the electro neutrino (ν{sub e}) reaction cross section on the nucleon is shown to be occurred in normal density, ρ=ρ{sub 0}~0.15fm⁻³, and also about 5 % reduction of total ν{sub e} cross section on ¹²C is obtained by the modification of the weak form factors for bound nucleons. Density effects for both cases are relatively small, but they are as large as the effect by the Coulomb distortion of outgoing leptons in the ν-reaction. However, density effects in the anti-electro neutrino (¯ν{sub e}) reaction reduced significantly about 30 % the cross sections for both the nucleon and ¹²C cases. For NC, about 12 % decrease of the total cross section by the ν{sub e} reaction on the nucleon is obtained at normal density, ρ=ρ₀~0.15fm⁻³, as well as about 18 % reduction of the total ν{sub e} cross section on ¹²C, by the modification of the weak form factors of the bound nucleon. However, similarly to the CC reaction, effects of the nucleon property change in the ¯ν{sub e} reaction reduce significantly the cross sections about 30 % for the nucleon in matter and ¹²C cases. In this talk, we address that such a large asymmetry in the ¯ν{sub e} cross sections in both reactions is originated from the different helicities of ¯ν{sub e} and ν{sub e}.
NASA Astrophysics Data System (ADS)
Guillot, Sebastien; Oezel, F.
2015-09-01
The study of neutron star quiescent low-mass X-ray binaries (qLMXBs) will address one of the main science goals of the Athena x-ray observatory. The study of the soft X-ray thermal emission from the neutron star surface in qLMXBs is a crucial tool to place constrains on the dense matter equation of state. I will briefly review this method, its strength and current weaknesses and limitations, as well as the current constraints on the equation of state from qLMXBs. The superior sensitivity of Athena will permit the acquisition of unprecedentedly high signal-to-noise spectra from these sources. It has been demonstrated that a single qLMXB, even with high S/N, will not place useful constraints on the EoS. However, a combination of qLMXBs spectra has shown promises of obtaining tight constraints on the equation of state. I will discuss the expected prospects for observations of qLMXBs inside globular clusters -- those that Athena will be able to resolve. I will also present the constraints on the equation of state that Athena will be able to obtain from these qLMXBs and from a population of qLMXBs in the field of the Galaxy, with distance measurements provided by Gaia.
NASA Astrophysics Data System (ADS)
Torchio, Raffaella; Occelli, Florent; Mathon, Olivier; Sollier, Arnaud; Lescoute, Emilien; Videau, Laurent; Vinci, Tommaso; Benuzzi-Mounaix, Alessandra; Headspith, Jon; Helsby, William; Bland, Simon; Eakins, Daniel; Chapman, David; Pascarelli, Sakura; Loubeyre, Paul
2016-06-01
Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models.
Torchio, Raffaella; Occelli, Florent; Mathon, Olivier; Sollier, Arnaud; Lescoute, Emilien; Videau, Laurent; Vinci, Tommaso; Benuzzi-Mounaix, Alessandra; Headspith, Jon; Helsby, William; Bland, Simon; Eakins, Daniel; Chapman, David; Pascarelli, Sakura; Loubeyre, Paul
2016-01-01
Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models. PMID:27246145
NASA Astrophysics Data System (ADS)
Sasaki, Toru; Ohuchi, Takumi; Takahashi, Takuya; Kawaguchi, Yoshinari; Saito, Hirotaka; Miki, Yasutoshi; Takahashi, Kazumasa; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.
2016-03-01
To observe AC and DC electrical conductivity in warm dense matter (WDM), we have demonstrated to apply the spectroscopic ellipsometry for a pulsed-power discharge with isochoric vessel. At 10 μs from the beginning of discharge, the generated parameters by using pulsed-power discharge with isochoric vessel are 0.1 ρ s (ρ s: solid density) of density and 4000 K of temperature, respectively. The DC electrical conductivity for above parameters is estimated to be 104 S/m. In order to measure the AC electrical conductivity, we have developed a four-detector spectroscopic ellipsometer with a multichannel spectrometer. The multichannel spectrometer, in which consists of a 16-channel photodiode array, a two-stages voltage adder, and a flat diffraction grating, has 10 MHz of the frequency response with covered visible spectrum. For applying the four-detector spectroscopic ellipsometer, we observe the each observation signal evolves the polarized behavior compared to the ratio as I 1/I 2.
Ji, Q; Seidl, P A; Waldron, W L; Takakuwa, J H; Friedman, A; Grote, D P; Persaud, A; Barnard, J J; Schenkel, T
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He(+) ions leads to more uniform energy deposition of the target material than Li(+) ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li(+) ions from a hot plate type ion source. He(+) beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies. PMID:26932070
NASA Astrophysics Data System (ADS)
Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ˜1 eV using intense, short pulses (˜1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
NASA Astrophysics Data System (ADS)
Schenkel, T.; Persaud, A.; Gua, H.; Seidl, P. A.; Waldron, W. L.; Gilson, E. P.; Kaganovich, I. D.; Davidson, R. C.; Friedman, A.; Barnard, J. J.; Minior, A. M.
2014-10-01
We report results from the 2nd generation Neutralized Drift Compression Experiment at Berkeley Lab. NDCX-II is a pulsed, linear induction accelerator designed to drive thin foils to warm dense matter (WDM) states with peak temperatures of ~ 1 eV using intense, short pulses of 1.2 MeV lithium ions. Tunability of the ion beam enables pump-probe studies of radiation effects in solids as a function of excitation density, from isolated collision cascades to the onset of phase-transitions and WDM. Ion channeling is an in situ diagnostic of damage evolution during ion pulses with a sensitivity of <0.1% displacements per atom. We will report results from damage evolution studies in thin silicon crystals with Li + and K + beams. Detection of channeled ions tracks lattice disorder evolution with a resolution of ~ 1 ns using fast current measurements. We will discuss pump-probe experiments with pulsed ion beams and the development of diagnostics for WDM and multi-scale (ms to fs) access to the materials physics of collision cascades e.g. in fusion reactor materials. Work performed under auspices of the US DOE under Contract No. DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; Romero, D.; Sinars, D. B.; Rochau, G. A.; Benage, J. F.
2016-03-01
Experiments on the Sandia Z pulsed-power accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (>20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data are composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Detailed spectral information from three target locations is provided simultaneously: the incident x-ray source, the scattered signal from unshocked foam, and the scattered signal from shocked foam.
Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; et al
2016-01-13
Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature ofmore » 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less
Torchio, Raffaella; Occelli, Florent; Mathon, Olivier; Sollier, Arnaud; Lescoute, Emilien; Videau, Laurent; Vinci, Tommaso; Benuzzi-Mounaix, Alessandra; Headspith, Jon; Helsby, William; Bland, Simon; Eakins, Daniel; Chapman, David; Pascarelli, Sakura; Loubeyre, Paul
2016-01-01
Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models. PMID:27246145
Koniges, A; Eder, E; Liu, W; Barnard, J; Friedman, A; Logan, G; Fisher, A; Masers, N; Bertozzi, A
2011-11-04
The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related
NASA Astrophysics Data System (ADS)
Valenza, Ryan A.; Seidler, Gerald T.
2016-03-01
The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.
Is dark matter an illusion created by the gravitational polarization of the quantum vacuum?
NASA Astrophysics Data System (ADS)
Hajdukovic, Dragan Slavkov
2011-08-01
Assuming that a particle and its antiparticle have the gravitational charge of the opposite sign, the physical vacuum may be considered as a fluid of virtual gravitational dipoles. Following this hypothesis, we present the first indications that dark matter may not exist and that the phenomena for which it was invoked might be explained by the gravitational polarization of the quantum vacuum by the known baryonic matter.
More, R.M.
1986-01-01
Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.
NASA Astrophysics Data System (ADS)
Lazanu, Ionel; Ciurea, Magdalena Lidia; Lazanu, Sorina
2013-04-01
The cryogenic detectors in the form of bolometers are presently used for different applications, in particular for very rare or hypothetical events associated with new forms of matter, specifically related to searches for dark matter. In the detection of particles with a semiconductor as target and detector, usually two signals are measured: ionization and heat. The amplification of the thermal signal is obtained with the prescriptions from the Luke-Neganov effect. The energy deposited in the semiconductor lattice as stable defects in the form of Frenkel pairs at cryogenic temperatures, following the interaction of a dark matter particle, is evaluated and consequences for measured quantities are discussed. This contribution is included in the energy balance of the Luke effect. Applying the present model to germanium and silicon, we found that for the same incident weakly interacting massive particle the energy deposited in defects in germanium is about twice the value for silicon.
Words Matter: Unpack the Language of Teaching to Create Shared Understanding
ERIC Educational Resources Information Center
Graff-Ermeling, Genevieve; Ermeling, Bradley A.; Gallimore, Ronald
2015-01-01
Words matter--the more clearly teachers articulate what is to be learned and the instructional practices to be used--the better they teach and their students are more likely to develop knowledge and skills. How can teachers recognize and address the multiple meanings of words in their planning and reflection process? These authors present four…
NASA Astrophysics Data System (ADS)
KIKUCHI, Takashi; HAYASHI, Ryota; TAKAHASHI, Takuya; TAMURA, Fumihiro; TAKAHASHI, Kazumasa; SASAKI, Toru; ASO, Tsukasa; HARADA, Nob.
2016-03-01
Property data in warm dense matter (WDM) are important to optimize implosion dynamics in a fuel pellet of inertial confinement fusion (ICF). A table-top pulsed power discharge device with isochoric heating using a sapphire hollow capillary was proposed, and was used to generate the extreme state of matter with a well-defined condition. We investigated numerically to generate the WDM by using the pulsed power discharge device. The numerical model was developed by time-dependent one-dimensional thermal diffusion with radiative transfer of multi-group approximation, and the numerical simulation was carried out according with the experimental condition. The achieved temperature of the numerical simulation result was confirmed by the previous experimental result. Also, the radiation energy density was shown at each group of the wavelength of emission.
Matters of Light & Depth: Creating Memorable Images for Video, Film, & Stills through Lighting.
ERIC Educational Resources Information Center
Lowell, Ross
Written for students, professionals with limited experience, and professionals who encounter lighting difficulties, this book encourages sensitivity to light in its myriad manifestations: it offers advice in creating memorable images for video, film, and stills through lighting. Chapters in the book are: (1) "Lights of Passage: Basic Theory and…
Using Magnetic Fields to Create and Control High Energy Density Matter
Herrmann, Mark
2012-05-09
The recently refurbished Z facility at Sandia National Laboratories is the world’s largest pulsed power driver. Z can efficiently deliver currents as large as 26 Million Amperes to centimeter scale loads. These large currents create large magnetic fields that, in turn, create very large pressures in conducting materials. These very large pressures have been used to create unique conditions for high energy density science experiments for a variety of applications. Recently, we have been exploring the use of very strong magnetic fields to significantly relax the requirements for achieving inertial confinement fusion self heating1. The magnetized liner inertial fusion (MagLIF) concept relies on a cylindrically imploding liner, an axial magnetic field, and a laser heated fuel region. We hope to achieve significant fusion yield on the Z facility with this concept. Initial experiments assessing the growth of the Magneto-Rayleigh Taylor instability are promising and recent calculational work has identified an approach to achieving high gain with this concept.
Begum, Bilkis A; Hopke, Philip K
2013-09-01
Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 microg/m3 and 6.0 microg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter. PMID:24151680
NASA Astrophysics Data System (ADS)
Sperling, P.; Gamboa, E. J.; Lee, H. J.; Chung, H. K.; Galtier, E.; Omarbakiyeva, Y.; Reinholz, H.; Röpke, G.; Zastrau, U.; Hastings, J.; Fletcher, L. B.; Glenzer, S. H.
2015-09-01
We present the first highly resolved measurements of the plasmon spectrum in an ultrafast heated solid. Multi-keV x-ray photons from the Linac Coherent Light Source have been focused to one micrometer diameter focal spots producing solid density aluminum plasmas with a known electron density of ne=1.8 ×1023 cm-3 . Detailed balance is observed through the intensity ratio of up- and down-shifted plasmons in x-ray forward scattering spectra measuring the electron temperature. The plasmon damping is treated by electron-ion collision models beyond the Born approximation to determine the electrical conductivity of warm dense aluminum.
Why power matters: creating a foundation of mutual support in couple relationships.
Knudson-Martin, Carmen
2013-03-01
Research shows that equal power helps couples create intimacy and relationship success. However, though couples increasingly desire equal relationships, cultural models of mutual support are not well developed. Clinicians often approach heterosexual couple therapy as though partners are inherently equal, thus reinforcing unacknowledged gender inequities. This article examines research that shows why power imbalances are destructive to intimate relationships and focuses on four gender-related aspects of mutual support: (a) shared relational responsibility, (b) mutual vulnerability, (c) mutual attunement, and (d) shared influence. Case examples illustrate how socio-emotional attunement, interrupting the flow of power, and introducing alternative relational experience help couple therapists identify and address power disparities in these important relational processes. Encouraging the powerful person to take relational initiative and introducing alternative gender discourse are especially important. PMID:25408086
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter
NASA Astrophysics Data System (ADS)
Johnson, W. R.; Nilsen, J.
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
NASA Astrophysics Data System (ADS)
Hansen, S. B.; Colgan, J.; Faenov, A. Ya.; Abdallah, J.; Pikuz, S. A.; Skobelev, I. Yu.; Wagenaars, E.; Booth, N.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. K.; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Woolsey, N. C.
2014-03-01
X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.
Hansen, S. B. E-mail: anatolyf@hotmail.com; Colgan, J.; Abdallah, J.; Faenov, A. Ya. E-mail: anatolyf@hotmail.com; Pikuz, S. A.; Skobelev, I. Yu.; Wagenaars, E.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Rossall, A. K.; Woolsey, N. C.; Booth, N.; Lancaster, K. L.; Evans, R. G.; Gray, R. J.; McKenna, P.; Kaempfer, T.; Schulze, K. S.; Uschmann, I.; and others
2014-03-15
X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.
A multi-wavelength streak-optical-pyrometer for warm-dense matter experiments at NDCX-I and NDCX-II
NASA Astrophysics Data System (ADS)
Ni, P. A.; Bieniosek, F. M.; Henestroza, E.; Lidia, S. M.
2014-01-01
We report on a multi-wavelength streak-optical-pyrometer (SOP) developed the for warm-dense-matter (WDM) experiments at the existing NDCX-I facility and the NDCX-II facility currently being commissioned at LBNL. The SOP served as the primary temperature diagnostic in the recent NDCX-I experiments, in which an intense K+ beam was used to heat different metal samples into WDM states. The SOP consists of a spectral grating (visible and near-infrared spectral range) and a fast, high-dynamic-range optical streak camera. The instrument is calibrated absolutely with a NIST-traceable tungsten ribbon lamp and can itself be considered as an absolutely calibrated, time-resolving spectrometer. The sample temperature is determined from fitting the recorded thermal spectrum into the Planck formula multiplied by a model of emissivity.
NASA Astrophysics Data System (ADS)
Kang, Dongdong; Hou, Yong; Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin
2016-05-01
In warm dense matter(WDM), the thermal motion energy of a nucleus may be comparable to its coupling energy with the neighbor nuclei and comparable to the valence electronic orbital motion energy. As the much small mass of electrons, the fluctuations of the electron orbitals are almost adiabatic dynamical changes with nuclear motion. The electronic and nuclear structure of warm and dense He and Ar are simulated by using the density functional based molecular dynamics method. The nuclear thermal motion driven adiabatic thermalization of the electron states, depression of the energy band gap and even phase transitions of electron states from insulator to metal are predicted when the nuclear thermal motion energy is comparable to the coupling energy between the neighboring atoms as well as to the valence electronic orbital motion energy. These kind of nuclear thermal motion driven adiabatic electronic states from insulator to metal phase transition occurs at much lower temperatures than the normal thermal collision excitation in low density and high temperature gases.
NASA Astrophysics Data System (ADS)
Ziaja, Beata; Saxena, Vikrant; Son, Sang-Kil; Medvedev, Nikita; Barbrel, Benjamin; Woloncewicz, Bianca; Stransky, Michal
2016-05-01
We report on the kinetic Boltzmann approach adapted for simulations of highly ionized matter created from a solid by its x-ray irradiation. X rays can excite inner-shell electrons, which leads to the creation of deeply lying core holes. Their relaxation, especially in heavier elements, can take complicated paths, leading to a large number of active configurations. Their number can be so large that solving the set of respective evolution equations becomes computationally inefficient and another modeling approach should be used instead. To circumvent this complexity, the commonly used continuum models employ a superconfiguration scheme. Here, we propose an alternative approach which still uses "true" atomic configurations but limits their number by restricting the sample relaxation to the predominant relaxation paths. We test its reliability, performing respective calculations for a bulk material consisting of light atoms and comparing the results with a full calculation including all relaxation paths. Prospective application for heavy elements is discussed.
Ziaja, Beata; Saxena, Vikrant; Son, Sang-Kil; Medvedev, Nikita; Barbrel, Benjamin; Woloncewicz, Bianca; Stransky, Michal
2016-05-01
We report on the kinetic Boltzmann approach adapted for simulations of highly ionized matter created from a solid by its x-ray irradiation. X rays can excite inner-shell electrons, which leads to the creation of deeply lying core holes. Their relaxation, especially in heavier elements, can take complicated paths, leading to a large number of active configurations. Their number can be so large that solving the set of respective evolution equations becomes computationally inefficient and another modeling approach should be used instead. To circumvent this complexity, the commonly used continuum models employ a superconfiguration scheme. Here, we propose an alternative approach which still uses "true" atomic configurations but limits their number by restricting the sample relaxation to the predominant relaxation paths. We test its reliability, performing respective calculations for a bulk material consisting of light atoms and comparing the results with a full calculation including all relaxation paths. Prospective application for heavy elements is discussed. PMID:27300998
Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams
Ni, P.A.; Kulish, M.I.; Mintsev, V.; Nikolaev, D.N.; Ternovoi, V.Ya.; Hoffmann, D.H.H.; Udrea, S.; Tahir, N.A.; Varentsov, D.; Hug, A.
2008-12-01
This paper describes a fast multi-channel radiation pyrometer that was developed for warmdense-matter experiments with intense heavy ion beams at Gesellschaft fur Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring of brightness temperatures from 2000 K to 50000 K, at 6 wavelengths in visible and near-infrared parts of spectrum, with 5 nanosecond temporal resolution and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on interference filters, which act as filters and mirrors to allow for simultaneous spectral discrimination of the same ray at multiple wavelengths.
NASA Astrophysics Data System (ADS)
Isobe, Tadaaki; SPiRIT Collaboration
2014-09-01
The nuclear Equation of State (EoS) is a fundamental property of nuclear matter that describes the relationships between the parameters for a nuclear system, such as energy, density and temperature. An international collaboration, named SPiRIT, to study the nuclear EoS has been formed recently. One of the main devices of experimental setup is a Time Projection Chamber (TPC) which will be installed into the SAMURAI dipole magnet at RIKEN-RIBF. The TPC can measure charged pions, protons and light ions simultaneously in heavy RI collisions, and those will be used as probes to study the asymmetric dense nuclear matter. In addition to the status of the SPiRIT project, testing of SPiRIT-TPC with GET electronics will be presented in this talk. GET, general electronics for TPC, is a project for the development of novel electronics for TPC supported by NSF and ANR. This work is supported in part by the Japan Grant-in-Aide award and the US DOE grant DE-SC0004835 and JUSEIPEN.
Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime.
Colgan, J; Abdallah, J; Faenov, A Ya; Pikuz, S A; Wagenaars, E; Booth, N; Culfa, O; Dance, R J; Evans, R G; Gray, R J; Kaempfer, T; Lancaster, K L; McKenna, P; Rossall, A L; Skobelev, I Yu; Schulze, K S; Uschmann, I; Zhidkov, A G; Woolsey, N C
2013-03-22
In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 × 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 × 10(18) W/cm(2) and is in the 3 keV range. PMID:25166812
Dharma-wardana, M W C
2012-09-01
The pair interactions Uij(r) determine the thermodynamics and linear transport properties of matter via the pair-distribution functions (PDFs), i.e., gij(r). Great simplicity is achieved if Uij(r) could be directly used to predict material properties via classical simulations, avoiding many-body wave functions. Warm dense matter (WDM) is encountered in quasiequilibria where the electron temperature Te differs from the ion temperature Ti, as in laser-heated or in shock-compressed matter. The electron PDFs gee(r) as perturbed by the ions are used to evaluate fully nonlocal exchange-correlation corrections to the free energy, using hydrogen as an example. Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with Te≠Ti, and valid for times shorter than the electron-ion relaxation time. In some cases the potentials develop attractive regions and then become repulsive and "Yukawa-like" for higher Te. These results clarify the origin of initial phonon hardening and rapid release. Pair potentials for shock-heated WDM show that phonon hardening would not occur in most such systems. Defining meaningful quasiequilibrium static transport coefficients consistent with the dynamic values is addressed. There seems to be no meaningful "static conductivity" obtainable by extrapolating experimental or theoretical σ(ω,Ti,Te) to ω→0, unless Ti→Te as well. Illustrative calculations of quasistatic resistivities R(Ti,Te) of laser-heated as well as shock-heated aluminum and silicon are presented using our pseudopotentials, pair potentials, and classical integral equations. The quasistatic resistivities display clear differences in their temperature evolutions, but are not the strict ω→0 limits of the dynamic values. PMID:23031034